
Database Management for a Trace Oriented Debugger

Benchmarks of COTS database management systems

Table of Contents
Introduction..1
Setup...2

Simplified model...2
Protocol...2

Event generation...2
Queries..3

Environment..3
Databases backends..3

Raw storage...3
Relational databases..3

E/R model...3
Relational model...4
Implementation...5

Generic databases..6
Presentation of Berkeley DB Java Edition...6
Primary database...7
Secondary databases...7

Results..7
Conclusions..9

Introduction
In step #1 we detailed the types of queries that must be supported by the database backend of TOD,

a trace-oriented debugger:

• Generic filters, which are basically selection operations.

• Statistics, which permit to obtain a sampling of the rate at which certain events occur during the
execution of the debugged program.

• Control flow reconstitution, which is a mean to obtain a tree view out of a flat event sequence,
descending into a new node for each behavior enter event, and going up one level for each
behavior exit.

In addition to these three main query types, there are two very similar kinds of queries, both of which
can be implemented in terms of generic filters, but which might benefit from specific optimizations:

• Object state reconstitution

• Stack frame reconstitution

1 of 9 CC55A – Step #2 Guillaume Pothier

In this document we will present the results of our measurements of the actual performance of
widely used database management systems for our application. We created three classes of backends:

• Raw storage, which does not support any kind of query but is useful to obtain an upper bound
on the efficiency.

• Relational databases: we measured the insertion speeds of two widely used relational databases
system: PostgreSQL and Oracle.

• Generic databases: we implemented the last backend using Berkeley DB, which is a persistent
dictionary with indexing capabilities.

It is important to note that we did not perform any query benchmarks. Given the very poor insertion
results of COTS databases, we did not consider wise to spend time in actually implementing a query
benchmark suite. We however modeled our databases in a way that would allow optimized query
execution (except for raw storage).

Setup
All the source files necessary to run the benchmarks can be found in the following Subversion

repository (at revision 951):

http://reflex.dcc.uchile.cl/svn/misc/TOD/trunk/

This repository is the complete TOD Eclipse project. Benchmarks are in the package
tod.experiments.bench, whose source is in the src/experiments folder. Additionally, the script that runs
the benchmarks suite can be found in doc/cc55a/run-all-benchs.sh. Many parameters are hardcoded and
specific to a particular machine and user account; running the benchmarks on another machine would
require a bit of reconfiguration.

Simplified model

For these measurements we use a simplified model of the event trace:

• We consider only three kinds of events: field write, local variable write, behavior enter and
behavior exit (behaviors denote both methods and constructors).

• We do not consider explicit objects like strings or numbers which the debugger sends by
value; we will only handle object that are sent by reference.

Protocol

Event generation

We simulate the debugging of a program that generates up to 100,000,000 events in total, evenly
distributed in 10 threads (note: access to the database is not multithreaded, only the simulated debugged
program is). For each thread, the program enters an infinite loop in which it calls a single method. This
method then uses a pseudorandom sequence to determine its behavior: it will perform a certain number
of field writes, local variable writes and method calls (all of which in turn behaves in the same way, up
to a maximum recursion depth). We will suppose the existence of 1.000 methods (each with a random
number of parameters), 1.000 fields and 50 local variables. Note that the pseudorandom sequence is
always seeded with the same value so that repeated executions generate the same sequence of events.

2 of 9 CC55A – Step #2 Guillaume Pothier

http://reflex.dcc.uchile.cl/svn/misc/TOD/trunk/

The program that runs the benchmarks take the number of events to generate as a parameter. In order
to simplify the implementation, that number is not exactly respected: when the program detects that the
number has been reached, it processes to terminated the debugged program as soon as possible, by
properly exiting active methods. The actual number of events is thus slightly larger than requested. We
observed, however, that the order of magnitude is respected.

The benchmarks measure the time spent in storing all the events to the backend. We also measure the
amount of storage used (although not for every backend).

Queries

Queries will not be benchmarked. Given the poor insertion results observed with COTS databases,
we did not find useful to spend time implementing query benchmarks. We modeled the databases in a
way that would allow for efficient execution of all queries, except for the statistical ones. Given that
improving the models to allow efficient statistical queries would require more indexing and therefore
further degrade insertion performance, our argument remains valid.

Environment

Hardware: Dell Latitude D810 (Pentium M 2.0GHz, 1GB DDR533 RAM, HDD 7200rpm).

Software: Ubuntu Linux 5.10 with a bare minimum of services running (in particular: no X11, no
cron). Both PostgreSQL and Oracle servers are running when the benchmark suite is run.

Databases backends
In this section we describe the different backends used to realize the benchmarks: raw storage,

relational databases and generic databases.

Raw storage

This backend simply serializes events to the hard disk, without any kind indexing. It gives an upper
bound to the insertion efficiency of any database system.

Relational databases

We will perform measurements against two relational databases: the open source PostgreSQL 8.1.2
and the proprietary Oracle 10g Express Edition. For both we will use the same relational model,
described below.

E/R model

The Entity/Relation model is given in Illustration 1. The most important entity set is Event, which
has four subclasses corresponding to each type of event. An event is identified by a thread id and a
sequence number within that thread (successive events of the same thread have successive sequence
numbers). Additionally, an event always has a parent behavior enter event (except for the root event of
each thread). The children of a behavior enter event are all the event that occur directly during the
execution of the behavior.

The other prominent entity set is Object. It is the collection of all the objects that exist during the

3 of 9 CC55A – Step #2 Guillaume Pothier

execution of the debugged program. It has no attributes: first, different objects can belong to different
classes, which have different structures. But more importantly, the state of the objects, and even their
existence, change over time. Actually, as objects have no attribute, there is no relation representing
them in the relational model; they are simply identified by a serial number.

A field write event refers to a target object (the object whose field is written) and a value object (the
value assigned to the field).

A variable write event only refers to the new value of the variable (the current target is mostly
irrelevant, but if needed can be obtained from the parent event).

A behavior enter event refers to a target object and some number of objects passed as arguments.

A behavior exit event refers to the return value of the behavior.

Relational model

The corresponding relational model is as follows (described in an imaginary language).

4 of 9 CC55A – Step #2 Guillaume Pothier

Illustration 1: E/R model used for the benchmarks with relational databases

Event

Field write
Behavior

enter
Variable

write
Behavior

exit

ISA

Parent

Objects

Target

Value

Timestamp

Seq

Thread Id

Field Id Variable Id

Value

Behavior IdBehavior Id

Target

Args
Index

 0..n
Ret.
value

Table Events
tid long
seq long
time long
type enum {FW, VW, BEn, BEx}
parentTid long
parentSeq long

PRIMARY KEY: {tid, seq}
FOREIGN KEY: {parentTid, parentSeq} references BEnters

Table FieldWrites
tid long
seq long
fieldId int
target long
value long

PRIMARY KEY: {tid, seq}
FOREIGN KEY: {tid, seq} references Events

Table VarWrites
tid long
seq long
varId int
value long

PRIMARY KEY: {tid, seq}
FOREIGN KEY: {tid, seq} references Events

Table BEnters
tid long
seq long
bhvId int
target long
argsId long

PRIMARY KEY: {tid, seq}
FOREIGN KEY: {tid, seq} references Events
FOREIGN KEY: {argsId} references Args

Table BExits
tid long
seq long
retValue long

PRIMARY KEY: {tid, seq}
FOREIGN KEY: {tid, seq} references Events

Table Args
id long
index int
value long

Implementation

With both PostgreSQL and Orcale, inserts are performed using prepared statements. As far as

5 of 9 CC55A – Step #2 Guillaume Pothier

PostgreSQL is concerned, we tried to tune memory settings, without noticing any performance impact
(probably because we are not performing queries).

Given the extremely poor results obtained with PostgreSQL, we implemented an additional backend
named PostgreSQL Light, which only performs inserts in the Events table.

Generic databases

Presentation of Berkeley DB Java Edition

Berkeley DB Java Edition (as well as the C version) is a persistent dictionary: it permits to map keys
to values, where both keys and values are arbitrary byte sequences (of any length). In Berkeley DB
terminology, a database is a single such dictionary. As such, a database does not perform any kind of
indexing expect for the key. But primary databases can be attached any number of secondary databases
that serve as indices. Whenever an entry is inserted into a primary database, the key creator associated
with each secondary database receives the data of the primary entry and uses it to produce a secondary
key that is associated to a reference to the primary entry. For instance let's consider a database of
people, where each person is identified by its social security number. The database stores the name and
birth date of each person.

The primary database would look like this:

key value

0145211774 Max/1978-05-14

4155710014 John/1964-11-20

7748002145 Max/1985-04-05

... ...

This primary database permits to retrieve any person given its ssn, but not given its name (excluding
a full scan of the whole database).

An appropriate secondary database can be created to handle this kind of request. The key creator
would extract the part of the primary entry's value before the “/”. We would obtain this secondary
database:

key value

John 4155710014

Max 0145211774

Max 7748002145

... ...

So when the client needs the people whose name is “Max”, the secondary database is queried (using
a cursor so that multiple entries with the same key can be retrieved, if necessary). Secondary database
queries actually return the value associated with the entry from the primary database. ie. querying the
secondary database for “John” would return (“4155710014”, “John/1964-11-20”) and not just
“4155710014”.

6 of 9 CC55A – Step #2 Guillaume Pothier

It is also possible to form compound queries using join cursors, which permit to retrieve primary
records based on the intersection of multiple secondary entries.

Berkeley DB claims to be a database engine well suited for static queries over dynamic data, in
contrast with relational databases which are more geared towards dynamic queries over static data. We
will see in the results section that this claim is well founded.

Primary database

In the Berkeley DB backend the primary database contains all of the events. The keys are (thread id,
sequence number) pairs, and the values are records that contain all the remaining information. The
information associated with each event can be divided into two parts:

• Common information: the attributes that are shared by all events, no matter their type.
These are: timestamp, type, parent thread id and parent sequence id (note the parallell with the
Events table in our relational model).

• Specific information: the attributes that are specific to each type of event.

As Berkeley DB supports keys and values of any size within the same database, there is no need to
use one database for each type of event.

Secondary databases

We provide indexes on:

• timestamps

• field ids (only for field write events)

• variable ids (only for variable write events)

• behavior ids (only for behavior enter events)

• parent events.

These indices should allow for rather efficient implementations of all necessary queries.

Results
The results are presented in Illustration 2 (figures) and Illustration 3 (chart). Raw storage gave us

expected results. Storage rate figures (20-30MB/s) are very close to disk IO bandwidth. The event rate
is simply the disk bandwidth divided by the average event size. The slight performance decrease
observed with the largest data set is probably due to the fact that the amount of data (more than 3GB)
was greater than available RAM, which was not the case with smaller data sets.

As far as relational databases are concerned, poor performance was expected: they are too generic
for our purposes. We obtained rates of about 50 events/s with PostgreSQL, and a bit more than 500
events/s with Oracle (noting that the efficiency slightly improves as the number of events increase).
Note that the storage sizes measured for PostgreSQL are not very relevant, as an almost empty database
already uses quite a lot of space.

However, we had high expectations of Berkeley DB, and were disappointed by the outcome: around
8,000 events/s with 100,000 events, and the performance degrades slightly as the number of events
increase (down to 7,000 events/s with 10,000,000 events). And to make things worse, Berkeley DB

7 of 9 CC55A – Step #2 Guillaume Pothier

8 of 9 CC55A – Step #2 Guillaume Pothier

Illustration 2: Benchmark results for all backends

Illustration 3: Chart of benchmark results. Event rates use a logarithmic scale

1,030 4,030 12,730 103,660 1,003,230 10,002,200 100,002,900

1

10

100

1,000

10,000

100,000

1,000,000

Event rates

Raw storage

PostgreSQL

PostgreSQL (light)

Oracle

Berkeley DB

Number of events

E
ve

nt
s/

s,
 lo

ga
rit

hm
ic

Order of magnitude of trace size
100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Exact number of events
1,030 4,030 12,730 103,660 1,003,230 10,002,200 100,002,900

Raw storage
Total execution time (s) 1.1 11.3 207

Events rate (ev/s) 883,903 887,900 483,222
Storage size (MB) 39.8 396.5 3,963.9
Storage rate (MB/s) 35.03 35.2 19.15

PostgreSQL
Total execution time (s) 18.9 72.8 233.3 1,901.3

Events rate (ev/s) 54 55 54 54
Storage size (MB) 48.4 48.8 49.8 61.2
Storage rate (MB/s) 2,568 .67 .21 .03

PostgreSQL (light)
Total execution time (s) 9.3 35.1 111 898.5

Events rate (ev/s) 111 114 114 115
Storage size (MB)

Storage rate (MB/s)

Oracle
Total execution time (s) 20.1 7.9 24.3 171.6 1,620.3

Events rate (ev/s) 51 508 523 604 619
Storage size (MB)

Storage rate (MB/s)

Berkeley DB
Total execution time (s) 12.8 116.7 1,378.7

Events rate (ev/s) 8,083 8,598 7,254
Storage size (MB) 67.5 711.3 7,788.5
Storage rate (MB/s) 5.27 6.1 5.65

uses more than ten times as much disk space as the raw storage backend!

We can make a few remarks that are not directly relevant to our study but that the reader might find
interesting:

• We ran informal benchmarks with the C version of Berkeley DB, which is a much older
and more mature product. At our great surprise, it performed a bit worse than the Java Edition.

• In an iteration of the implementation of the Raw Storage backend, we observed an
efficiency below expectations (around 7MB/s data rate). This was due to calls to
System.currentTimeMillis() for timestamping. Removing these calls yielded a threefold
improvement. Although not a relevant fact for our database benchmarks (in the real TOD
implementation events are already timestamped when they reach the backend), this is a very
important information for the implementation of TOD itself.

• In the same Raw Storage backend, we observed that wrapping a FileOutputStream in a
BufferdOutputStream with an adequate buffer size gives a more that tenfold improvement.

Conclusions
Neither relational databases nor Berkeley DB provide us with acceptable performance for our

application, as we planned to support at least 100,000 events/s. Moreover, none of the models we
presented here provide specific optimizations for statistical queries: adding such an optimization would
probably further degrade insertion performance, and not adding it would make statistical queries
prohibitively costly. On the other hand, we saw that a raw storage approach gives us almost one order
of magnitude more performance than what we need, which might be a sufficient margin for
implementing a backend with an acceptable query efficiency.

We will therefore concentrate our efforts on developing a custom solution, leveraging the
particularities of our data source and queries.

9 of 9 CC55A – Step #2 Guillaume Pothier

	Introduction
	Setup
	Simplified model
	Protocol
	Event generation
	Queries

	Environment

	Databases backends
	Raw storage
	Relational databases
	E/R model
	Relational model
	Implementation

	Generic databases
	Presentation of Berkeley DB Java Edition
	Primary database
	Secondary databases

	Results
	Conclusions

