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Abstract
Domain-specific aspect languages (DSALs) bring the well-known
advantages of domain specificity to the level of aspect code. How-
ever, DSALs incur the significant cost of implementing or extend-
ing a language processor or weaver. Furthermore, this weaver typi-
cally operates blindly, making detection of interactions with aspects
written in other languages impossible. This raises the necessity of
an appropriate infrastructure for DSALs. The case study we present
here illustrates how the Reflex kernel for multi-language AOP ad-
dresses these issues, by considering the implementation of a DSAL
for advanced transaction management, KALA. We first detail the
implementation of KALA in Reflex, illustrating the ease of imple-
mentation of runtime semantics, syntax, and language translation.
We then show a straightforward and modular extension to KALA
at all these levels, and demonstrate how Reflex helps in dealing
with interactions between KALA and another DSAL for concur-
rency management. These invaluable assets enable faster develop-
ment of DSALs as well as their ability to coexist within one appli-
cation, thereby removing the most important impediments to their
re-emergence in the aspect community.

Keywords domain-specific aspect languages, language design
and implementation, Reflex, KALA.

1. Introduction
Initial research on AOP focused on domain-specific aspect lan-
guages (DSALs), like RG [20] and AML [15]. DSALs bring all the
well-known advantages of domain specificity to aspect program-
mers, such as conciseness and abstraction. However, this research
has quickly become overshadowed by work on general-purpose
languages, such as AspectJ [17]. Important reasons for this trend
are the following three impediments to the growth of DSALs.

The first impediment is that the implementation of a language
processor or aspect weaver requires a large amount of effort. Each
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DSAL tends to be implemented using an ad-hoc weaver, which is
not necessarily reusable for other DSALs. Second, such weavers
can be hard to extend to adapt to changes in the language. This is
because they are not designed with extensibility in mind. A third
major impediment is that such weavers are usually not aware of
other aspect weavers that may affect the same application, and
therefore blindly weave their code into the application. As a re-
sult, aspect composition, particularly when there are interactions,
becomes problematic. There is no indication of interaction and pos-
sible conflicts, let alone a possibility for simple conflict resolution.

The above three impediments can however be addressed through
the use of an appropriate infrastructure for DSALs. Using a plat-
form that provides adequate support for implementing DSALs, it
becomes easier to experiment with them, their extensions, as well
as with interactions between aspects defined in different DSALs.
This is precisely the objective of Reflex, a kernel for multi-language
AOP [30]. Reflex provides as a base a large number of generic fa-
cilities for the creation of aspects, in addition to which support is
included for detection and resolution of interaction conflicts, and
last but not least, support for language definition and transforma-
tion based on state-of-the art DSL technologies [3]. This allows
DSALs and their extensions to be implemented faster, and pro-
vides direct support for detection of interactions between different
aspects, as well as for their resolution [26, 27].

This paper validates the multi-language AOP approach by
studying the design and implementation of a non-trivial DSAL
on top of Reflex. We consider KALA, a DSAL for advanced trans-
action management [11, 12]. KALA is a good candidate for this
work not only because of its significant size but also because of
its complexity and specific syntax and scoping rules. The in-depth
discussion of the implementation of KALA in Reflex provided here
shows that (a) Reflex provides appropriate support for DSAL devel-
opment, allowing for faster and easier implementation of such lan-
guages; (b) the DSL technologies used by Reflex enable straightfor-
ward modular extension of DSALs; (c) Reflex adequately detects
and reports on interactions between aspects defined in different
DSALs, as well as supporting the resolution of these interactions.

The paper is structured as follows: Section 2 discusses multi-
language AOP and Reflex. Section 3 introduces the domain of
advanced transaction management and KALA. Section 4 gives an
operational description of KALA, and discusses its implementation
in Reflex. Section 5 completes the language implementation by
treating both the KALA syntax definition and the assimilation of
KALA code into Java code for Reflex. Section 6 evaluates our
solution by considering both an extension to KALA, and a case
of interaction with another DSAL. Section 7 discusses previous,
related, and future work. Section 8 concludes.
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Figure 1. Architecture of a versatile kernel for multi-language
aspect-oriented programming.

2. Multi-language AOP and Reflex
This section briefly introduces the necessary background concepts
on multi-language AOP and the Reflex AOP kernel.

2.1 Multi-language AOP
In order to be able to define and use different aspect languages, in-
cluding domain-specific ones, to modularize the different concerns
of a software system, we have previously proposed the architecture
of a versatile kernel for multi-language AOP [29] and our current
Java implementation, Reflex [30].

An AOP kernel supports the core semantics of various AO lan-
guages through proper structural and behavioral models. Designers
of aspect languages can experiment rapidly with an AOP kernel
as a back-end, as it provides a high level of abstraction for driv-
ing transformation. Furthermore, a crucial role of an AOP kernel
is that of a mediator between different coexisting AO approaches:
detecting interactions between aspects, possibly written in different
languages, and providing expressive means for their resolution.

The architecture of an AOP kernel hence consists of three layers
(Fig. 1): a transformation layer in charge of basic weaving, support-
ing both structural and behavioral modifications of the base pro-
gram; a composition layer, for detection and resolution of aspect
interactions; a language layer, for modular definition of aspect lan-
guages. It has to be noted that the transformation layer is not nec-
essarily implemented by a (byte)code transformation system: it can
very well be integrated directly in the language interpreter [14]. As
a matter of fact, the role of a versatile AOP kernel is to complement
traditional processors of object-oriented languages. Therefore, the
fact that our implementation in Java is based on code transforma-
tion should be seen as an implementation detail, not as a defining
characteristic of the kernel approach.

2.2 Reflex in a Nutshell
Architecture. Reflex is our Java implementation of versatile ker-
nel for multi-language AOP. As such, it follows the architecture of
an AOP kernel (Fig. 1):

• The transformation layer is based on a reflective core extend-
ing Java with behavioral and structural reflective facilities. The
model of behavioral reflection is based on that presented in [31],
and explained in more details hereafter.

• The composition layer ensures automatic detection of aspect
interactions, and provides expressive means for their explicit
resolution. The composition facilities of Reflex were presented
in [26], and recently, advanced mechanisms for declarative
composition of structural aspects were introduced [27].

• The language layer is based on the MetaBorg approach for un-
restricted embedding and assimilation of domain-specific lan-
guages [3]. Concrete syntax for the Reflex kernel API using
this approach was presented in [28]. In Section 5 we report
on the definition of KALA and its assimilation to Reflex using
MetaBorg.
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Figure 2. The link model and correspondence to AOP concepts.

Links. The central abstraction supported at the level of the kernel
to drive behavioral transformation is that of explicit links binding
a set of program points (a hookset) to a metaobject. A link is char-
acterized by a number of attributes, among which the control at
which metaobjects act (before, after, around), and a dynamically-
evaluated activation condition. Fig. 2 depicts two links, one of
which is not subject to activation, along with the correspondence
to the AOP concepts of the pointcut/advice model. The aforemen-
tioned links are called behavioral links to distinguish them from
structural links, which are used to perform structural actions [27],
as briefly illustrated in Sect. 6.1 when extending KALA.

A link can therefore be seen as a primitive aspect, that is, a sin-
gle cut/action pair. Higher-level aspects (a.k.a. composite aspects)
typically consist of several such pairs, and may as well include
structural primitive aspects (e.g. inter-type declarations).

Hooksets. A hookset is specified by defining predicates match-
ing a reification of program elements, following a class-object
structural model similar to that of Javassist [6]: an RPool ob-
ject gives access to RClass objects, which in turn give access to
their members as RMember objects (either RField, RMethod, or
RConstructor), which in turn give access to their bodies as RExpr
objects (with a specific type for each kind of expression). These ob-
jects are causally-connected representations of the underlying byte-
code, offering a source-level abstraction over bytecode. Reflex is
implemented as a Java 5 instrumentation agent operating on byte-
code, typically at load time. During installation of behavioral links,
hooks are inserted in class definitions at the appropriate places ac-
cording to hooksets, in order to provoke reification at runtime, fol-
lowing the protocol specified for each link.

Metaobjects. A metaobject implements the action associated to
an aspect. In Reflex it can actually be any standard Java object,
whose existence may even precede the actual definition of the link
(e.g. System.out can serve as a metaobject for a link). Reflex
makes it possible to customize the actual protocol between the base
program and metaobjects, on a per-link basis. For instance, a call
descriptor can specify that the println method of System.out be
called passing only the intercepted method name as parameter.

3. KALA in a Nutshell
In this section we first introduce advanced transaction models
(ATMS), via two well-known models. We then present the KALA
domain-specific aspect language for ATMS, illustrating its use with
example code for these two advanced transaction models.

3.1 Advanced Transaction Models
Transactions are the cornerstone of concurrency management in
multi-tier distributed systems. Originally designed to provide con-
currency management for short and unstructured data accesses to
databases, they are however now used outside of this domain. This
observation is not new, and significant research has been performed
to address the shortcomings of classical transactions through the
use of advanced transaction models [10, 16]. An overview of these
models is outside of the scope of this paper. Instead we briefly intro-
duce what are arguably the two best-known advanced transaction
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Figure 3. The nested transactions ATMS.

models: nested transactions [21] and sagas [13]. Nested transac-
tions allow a hierarchically structured computation to be matched
to a tree of transactions, while sagas can be used to split a long-lived
transaction into a number of shorter steps.

Nested transactions. This model is one of the oldest and arguably
the best-known ATMS [21]. It enables a running transaction T to
have a number of child transactions Tc (as shown in Fig. 3). Each
Tc can view the data used by T . This is in contrast to classical trans-
actions, where the data of T is not shared with other transactions.
Tc may itself also have a number of children Tgc, forming a tree of
nested transactions. When a child transaction Tc commits its data,
this data is not written to the database, but instead it is delegated to
its parent T , where it becomes part of the data of T . If a transaction
Tx is the root of a transaction tree, i.e. it has no parent, its data is
committed to the database when it commits. Another characteristic
of this model is that if a child transaction Tc aborts, the parent T
is not required to abort, i.e. when it ends it may choose to either
commit or abort.

Sagas. The model of sagas [13] is, next to nested transactions,
one of the oldest ATMS and also arguably one of the most ref-
erenced ATMS in the community. Sagas is tailored towards long-
lived transactions. Instead of one long transaction T , a saga S splits
T into a sequence of sub-transactions T1 to Tn (as shown in Fig. 4).
Each sub-transaction is a normal classical transaction and this se-
quence is executed completely before the saga commits. To abort
or rollback a running saga S, the currently running sub-transaction
Ti is aborted and the work of already-committed transactions T1 to
Ti−1 has to be undone, as their results have already been commit-
ted to the database. To allow this, the application programmer has
to define for each sub-transaction Ti a compensating transaction
Ci that performs a semantical compensation action. To undo the
work of T1 to Ti−1, C1 to Ci−1 are ran by the runtime transaction
monitor in inverse sequence, i.e. starting with Ci−1.

The ACTA Formalism. In addition to a large amount of advanced
transaction models –each addressing a specific subset of the short-
comings of classical transactions– a formalism has been devel-
oped for advanced transaction models. This formalism is called
ACTA [8]. ACTA allows a wide variety of advanced models to be
described formally. An in-depth treatment of ACTA is outside of
the scope of this paper. Suffice it to say that ACTA specifications
for a given model formally describe properties that are exhibited by
transactions in this model.

Towards aspects. From the viewpoint of an application, an ACTA
specification can be seen as formally defining the properties of
the concern of advanced transaction management. This leads us
to aspect-oriented programming. Indeed, transaction management
is a well-known aspect, and a significant amount of work has
already been done to aspectize transaction management [19, 22,
25]. However, none of this work goes beyond classical transactions.
Using the ACTA formalism as a base, we have developed a DSAL
for ATMS: KALA, which we present next.
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Figure 4. The sagas ATMS.

3.2 KALA: an Aspect Language for Advanced Transaction
Models

KALA is a domain-specific aspect language for the domain of ad-
vanced transaction models, based on the ACTA formalism. KALA
reifies the concepts of the ACTA formal model as statements in the
language. Our implementation of KALA targets Java applications:
a base Java application can be made transactional, using KALA,
with transactions that exhibit the properties of an advanced trans-
action model. An in-depth treatment of KALA, the design process
and the tradeoffs made is provided in [12]; in this paper, we solely
provide a short description of the language using two example pro-
gram fragments: one for nested transactions and one for sagas.

KALA Programs. A KALA program declares transactional prop-
erties (discussed below) for a number of transactions based on the
life-cycle of a given transaction. As is the norm in multi-tier trans-
actional systems, the life-cycle of every transaction coincides with
the life-cycle of a method. The transaction begins when the method
begins, commits when the method ends normally, and aborts if the
method ends with a given type of exception. A KALA declaration
consists of a signature and body. The signature identifies a method,
and therefore a transaction, possibly using wildcards, similar to
type and method name patterns in AspectJ [17].

Consider the KALA code shown in Fig. 5. Line (1) is the KALA
signature, which identifies the transactional methods. As a result,
all data accesses to shared data within the method (and within
methods called by this method) are included in the transaction.
To indicate that instances of a given class contain shared data,
i.e. that they are transactional objects, the class must implement
the Resourceable interface. This interface declares one method:
getPrimaryKey(), that should return a unique identifier for the
object. Note that having to implement this interface implies an in-
complete separation of concerns. This is because the implementa-
tion has to be done at the base level of the application, and not at
the level of the transaction aspect. We address this incomplete sep-
aration of concerns in Section 6.1.

In the KALA body, transactional properties are declared for this
transaction, and possibly for other transactions. The properties take
effect at given times in the life-cycle of the transaction: properties
can be declared to apply at begin time, commit time and abort
time. This is done by placing these declarations, which are KALA
statements, in a begin block (5)-(6), commit block (7)-(9) and
abort block (10)-(11), respectively. Outside of these blocks, a
number of statements can be placed in the preliminaries (2)-(4).
We shall talk about the preliminaries later.

Transactional properties. The transactional properties of a method
that can be declared to apply either at begin, commit or abort time
are taken from the ACTA formal model: views, delegation and de-
pendencies. Each of these properties is reified as a statement in
KALA, respectively view, del and dep statements.

The view property declared in (6) states that the current trans-
action, which is a child transaction, can see the data of its parent
transaction. This property is established when the transaction be-
gins. The delegation property of (7) states that upon commit, the



util.strategy.Hierarchical.child*() { 1

alias(parent Thread.currentThread() ); 2

name(self Thread.currentThread()); 3

groupAdd(self "ChildrenOf"+parent); 4

begin { dep(self wd parent); dep(parent cd self); 5

view(self parent); } 6

commit { del(self parent); 7

name(parent Thread.currentThread()); 8

terminate("ChildrenOf"+self); } 9

abort { name(parent Thread.currentThread()); 10

terminate("ChildrenOf"+self);} } 11

Figure 5. KALA code for children in nested transactions.

child transaction delegates its data changes to its parent transac-
tion. This concisely expresses the most important characteristics of
nested transactions as discussed previously.

A dependency statement, dep, sets relationships between points
in the life-cycle of two transactions. For example, a dependency can
force a transaction to commit if another transaction aborts (the cmd
dependency), it can restrict one transaction to start only if another
transaction has committed (the bcd dependency), or to start only
if another transaction has aborted (the bad dependency) . Com-
binations of dependencies can be used to, for instance, sequence
different transactions or trigger the beginning of a compensating
transaction. A wide variety of dependencies have been defined in
the ACTA formal model, and are available in KALA. We do not
discuss these in detail here, instead we refer to [8, 12]. The depen-
dency self wd parent (5) states that if the parent aborts before
this transaction ends, then this transaction will be forced to also
abort. parent cd self states that if the parent wants to commit,
it has to wait until this transaction has ended.

Naming transactions. Dependencies, views and delegation need
to be able to denote the two transactions they affect; therefore there
is a need for a variable binding mechanism. Within KALA code,
such a binding is known as an alias. An alias is looked up through
the use of a global naming service, which is declared using the
alias statement (2). This statement takes as argument the alias
for a transaction, i.e. the variable name, and a Java expression that
evaluates to a key that is used to look up the transaction reference
in the name service. This expression, as well as all expressions we
mention in the remainder of this section, has access to the actual
parameters of the method and to aliases which have already been
resolved. Special cases are the alias self, which is always bound
to the currently running transaction, and the null transaction, which
is the result of a lookup failure. KALA statements which have as
an argument the null transaction fail silently.

Adding transactions to the naming service is performed using
the name statement, which takes as argument an alias and a Java
expression that evaluates to the key for the naming service. On
Fig. 5, the current thread is first used as a key to lookup the parent
transaction (2), then to register the current transaction (overriding
the binding) (3), and finally, upon commit or abort, the parent
binding is restored (8),(10). The scope of aliases within a KALA
declaration follows the usual lexical scoping rules: aliases obtained
in the preliminaries of a declaration are accessible thoughout the
remainder of the KALA code for that declaration; aliases placed in
begin, commit and abort blocks are only accessible at that time.

Grouping transactions. KALA provides support for named
groups of transactions. A transaction can be added to a group us-
ing the groupAdd statement: (4) adds the current transaction to
the group of children of the parent transaction. All KALA state-
ments have an overloaded behavior for groups, e.g. setting a view
from a transaction to a group of transactions implies setting the

Cashier.transfer(Account src, Account dest, int a){
alias(saga Thread.currentThread());
autostart(Cashier.transfer( 12

Account src, Account dest, int a)<dest, src, a> 13

{ name(self "CompOf"+saga); } ); 14

begin{ alias(comp "CompOf"+saga);
dep(saga ad self); dep(self wd saga);
dep(comp bcd self); } 15

commit{ alias(comp "CompOf"+saga);
dep(comp cmd saga); dep(comp bad saga);}} 16

Figure 6. KALA code for a step in a bank transfer saga.

view to each member of the group. The only non-obvious case is
when a group is a destination of a delegation statement. As seman-
tically this has no sense –delegating some changes to a group of
transactions–, a failure is produced. Note that for conciseness in
the remainder of the text, we shall refer to the collection of name,
alias and groupAdd statements as naming statements.

Terminating transactions. Because dependencies may refer to
transactions which have already ended, it is impossible to perform
automatic garbage collection of names and dependency relation-
ships when transactions have ended. Instead the KALA program-
mer is made responsible for such cleanup operations. This is per-
formed through the terminate statement, which takes as argu-
ment a Java expression. This expression is resolved to a name of
the transaction or group of transactions to be collected. Termina-
tion of transactions can be performed within a begin, commit and
abort block. For instance, (9) and (11) state that if a nested trans-
action finishes (by commit or abort), it terminates the group of its
child transactions. Note that if a transaction is terminated when it
has not yet ended, it is immediately forced to rollback.

Autostarting transactions. An important number of advanced
transaction models require that, when some properties are satis-
fied, a new transaction is automatically started. An example is the
use of compensating transactions in the Sagas model, which we
have discussed above. We term these kinds of transactions sec-
ondary transactions. A secondary transaction runs outside of the
main control flow of the application, and does not need to be run
in order to have a successful completion of the original transac-
tion. KALA provides support for secondary transactions through
the autostart statement: it specifies the signature of the method
corresponding to the secondary transaction to start in parallel, a list
of actual parameters, and optionally a nested KALA declaration
for this transaction. Autostarts are specified in the preliminaries
and their nested KALA code has access to all aliases defined in the
preliminaries, following the rules of lexical scope.

An example of an autostart is given in Fig. 6, which shows part
of the KALA code for one step of a bank transfer saga. This step
performs the actual bank transfer between two bank accounts. The
compensating transaction for this transfer (12)-(14) is the inverse
operation, i.e. calling the transfer method with the src and dest
arguments swapped (13). The dependencies set in (15) and (16)

restrict the compensating transaction to run only if the saga rolls
back after this step has committed. Without these dependencies in
place, the compensating transaction defined in the autostart would
immediately start, and run in parallel with the transaction of the
top-level KALA declaration, which is not the desired semantics.

Summary. KALA is an expressive aspect language for ATMS be-
cause it is the direct realization of the ACTA formalism; it provides
clear advantages over general-purpose aspect languages, such as
conciseness, coherent scoping rules, and appropriate abstractions
corresponding to the domain at stake, among others.



4. ReLAx: Implementing KALA in Reflex
We now enter in more details with respect to the working of KALA
and its implementation in Reflex.

4.1 Operational Description of KALA
Generally, transactions are managed at runtime by a component
known as a TP monitor, whose task is to manage concurrent ac-
cesses to shared data: individual transactions notify the TP monitor
of their intent to read or write shared data, and the TP monitor al-
lows or disallows these accesses, to prevent race conditions.

KALA is no exception to this rule. KALA works in close coop-
eration with a TP Monitor, called ATPMos. ATPMos was specifi-
cally developed for advanced transaction models and is also based
on the ACTA formalism. At runtime, beyond the normal tasks of
a TP Monitor, ATPMos keeps track of dependencies and view re-
lationships and is able to perform delegation between transactions;
it also provides the naming services required by KALA (naming,
grouping, termination). A detailed discussion of ATPMos is out-
side the scope of this paper (more information is in [11]).

At each point in the life-cycle of a transaction, the responsi-
bilities of KALA therefore are: To instruct ATPMos to place de-
pendencies and views, to perform delegation and termination, and
to coordinate with ATPMos to ensure that dependencies are met.
While a transaction runs, KALA informs ATPMos of all reads and
writes to shared data, before they are performed. Autostarts are en-
tirely managed by KALA; ATPMos provides no specific support
for them: it sees them as normal transactions. The flow chart in
Fig. 7, discussed below, outlines how KALA works.

Preliminaries. First, general setup is performed: obtaining a
unique transaction identifier from ATPMos, and setting up the alias
environment, which keeps bindings for aliases. The environment
is initialized with the binding of self to the obtained transaction
identifier, as well as with the bindings of formal parameters of the
transactional method (as specified in the KALA code) to their ac-
tual values. Alias environments can be nested: if a lookup fails in
an environment, it is performed in the parent, if present.

Next, the naming statements of the preliminaries are executed.
As a rule, all naming is performed at the beginning of a phase, in the
sequence of the statements in the KALA code. Recall that alias
statements add bindings from names to transaction or group identi-
fiers in the alias environment, name statements add these bindings
to the naming service of ATPMos, and groupAdd statements add
transaction identifiers to the grouping service of ATPMos.

Finally, for each autostart statement a thread is defined that
calls the method specified in the autostart statement. This trans-
actional method is parameterized by the KALA body nested in
the autostart, overriding any other KALA declarations for that
method. Furthermore, the current alias environment is given as
a parent environment of the created transaction: this allows the
KALA declarations in the autostart to refer to aliases defined
in the enclosing KALA definition. The autostart thread is started,
and allowed to run until its preliminaries are finished. This allows
for the registration of a global name that can be used in the enclos-
ing KALA code, such as in Fig. 6, where the autostart of a saga
registers itself with a name, which is then looked up in the begin
and commit block of the enclosing KALA definition.

Begin. In the begin phase, a nested alias environment is created,
and naming operations are performed. Then, dependencies are set
in ATPMos, as they may impact the begin of an autostart or of
the current transaction. For instance, in Fig. 6, the autostart is a
compensating transaction that may not begin unless this transaction
has committed and the saga aborts, which is specified both in
the begin and abort block. After dependencies have been set, the
autostarts are allowed to proceed with their begin phase.
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Figure 7. Flow chart of a KALA transaction.

At this point, ATPMos is asked if, according to the dependencies
currently placed on this transaction, it may begin; otherwise, this
call blocks. An example of this is the case of a compensating
transaction in a saga (Fig. 6). This is because the compensating
action should only be performed when the saga aborts. The call
to ATPMos may finally return with three possible values (Fig. 7):
the transaction may be allowed to begin, or it may be immediately
be forced to commit or to abort. The latter two cases occur if the
dependencies currently placed require immediate commit or abort
of the method. The compensating transaction mentioned above is
such a case: if the overall saga has committed, it will never need
to run, and therefore has to immediately abort. If the transaction
is allowed to begin, views are set and delegation is performed,
ATPMos is informed that the transaction is about to begin, and
termination is performed. If the transaction must commit or abort,
control flow proceeds in the corresponding phases.

Running. The running phase of the transaction corresponds to
running the code of the method, i.e. the application logic, but with
an interception of all getters and setters of transactional objects.
The interception calls ATPMos to inform it that this shared data is
going to be read or written. This call may block, in order to prevent
race conditions, and may throw a transactional exception, e.g. in
case that a deadlock needs to be broken. If such an exception is
thrown, either by ATPMos, or by the application logic, the control
flow proceeds with the abort phase.



ATPMos
util.strategy.Hierarchical.child*() {
  alias(parent Thread.currentThread());
  name(self Thread.currentThread());
  groudAdd(self "ChildrenOf"+parent);
  begin { 
   dep(self wd parent); 
   dep(parent cd self); ...
  }
  commit { terminate(..) ... }
  abort { ... } }

Cashier.transfer(BankAccount src, 
     BankAccount dest, int amount){
  ...
  autostart( Cashier.transfer(...)<..>{ 
    name(self "CompOf"+saga); });
  begin { ... }
  commit { ... } }

demarcator

hookset
KALA source code

demarcate(m,args)

Runtime

hookset

demarcatordemarcate(m,args)

(a)

(a)

(c)
(c)

(b)

(b)

Figure 8. Mapping of KALA declarations to runtime objects.
There is one link per KALA declaration. Method signatures are mapped to hook-
sets (a). Demarcators are parameterized by configuration objects reifying KALA state-
ments (a pair for preliminaries (b), and one for each block (c)); they are given control
upon transactional method executions, and interact with ATPMos.

Commit. The commit phase starts with a choice point for the en-
forcement of dependencies, similar to the choice point in the begin
phase. If the transaction may commit, the actions are straightfor-
ward; the only difference with the begin phase is that dependencies
are done after the choice point, because they are considered to hold
only if the transaction actually commits. If it must abort, control
flow proceeds with the abort phase.

Abort. The abort phase is mostly identical to the commit phase.
There are two differences, which we discuss here. First, if the
transaction is forced to commit, control flow does not proceed to
the beginning of the commit phase, but it skips the choice point.
This is to avoid loops if a transaction is both forced to abort and
forced to commit because of conflicting dependencies. Although
such a conflict might be a bug in the specification, we have chosen
to let the transaction end instead of letting the application loop
endlessly [11]. Second, a transactional exception is thrown to the
caller of the method at the end of the phase. This is done to inform
the caller that this transaction ended in an abort, i.e. that the work
expected of this method was not performed successfully. Note that
the caller may also be a transactional method, and hence will also
abort, unless the exception is caught by the application logic.

4.2 Reflex Definitions for KALA
Having discussed the operational description of KALA, we now
give an overview of how this is implemented using Reflex.

Declaration links. We consider one primitive KALA aspect per
KALA declaration. The cut of a KALA aspect is defined by the
method signature of the declaration. In terms of execution points,
this corresponds to a Reflex hookset (Fig. 8 (a)), matching the ex-
ecution of the methods specified by the pattern. The action of a
KALA aspect occurs around the specified methods, and is imple-
mented in a Java object, called a Demarcator. There is one Reflex
link per KALA declaration, binding the hookset to the demarcator,
and specifying the information that must be passed at runtime: the
name of the method and its actual parameters (Fig. 8).

Demarcator. The runtime behavior of KALA programs is imple-
mented in the demarcate method of a Demarcator. This method
is generic for all KALA programs: it just ensures the correct control
flow, following Fig. 7, interacting with ATPMos. Actions that are
specific to KALA programs are delegated to a number of KALA
configuration objects that reify KALA statements and interpret
them, as discussed next. There is one demarcator per KALA decla-
ration: a demarcator is instantiated with a number of configuration

class ReLAxConfig extends ReflexConfig {
void install(Hookset hs, String[] formals, 17

NamingEval p_nt, AStart[] as, NamingEval b_nt,
KProps b_props, NamingEval c_nt, KProps c_props,
NamingEval a_nt, KProps a_props) {

Demarcator d = new Demarcator(formals, p_nt, as, 18

b_nt, b_props, c_nt, c_props, a_nt, a_props);
BLink demarcate = Links.get(hs, d); 19

demarcate.setControl(Control.AROUND); ... 20

demarcate.install(); } ... } 21

Figure 9. Method of the configuration class that installs a link for
a given reified KALA declaration.

objects, as well as with the list of formal parameters of the transac-
tional method. A Demarcator is reentrant so it is shared between
all running instances of a given KALA declaration.

Configuration objects. There are three categories of configura-
tion objects, corresponding to different KALA statements:

• Transactional properties are a simple reification of depen-
dencies, views and delegation statements as structured data. A
KProps object is a triplet of bi-dimensional string arrays, one
per kind of property. For instance, the statement dep(self wd
parent) is represented as an array {"self","wd","parent"},
within the array of dependencies. The actual interpretation of
these values consists in looking up the identifiers in the alias en-
vironment, then calling ATPMos to set the property (if a group
is involved, the property is set for each member of the group).
Lookup failures are reported as errors and no action is taken.

• Naming evaluators are objects interpreting a number of nam-
ing and termination statements. Naming and termination state-
ments are not pure data, they include expressions that need
to be evaluated at runtime, including identifiers that must be
looked up in the alias environment. Therefore a set of naming
and termination statements is represented as a dedicated Java
class implementing their expressions. This class is a subclass
of NamingEval, which defines generic evaluation and lookup
mechanisms.

• Autostarts are represented as runnable objects, subclass of
AStart, whose run method calls the method indicated in the
autostart statement. The values for arguments to this method
call are looked up in the alias environment. Furthermore, the
AStart object sets the Demarcator object of the method that
it calls to a new metaobject. This new object is configured by
the nested KALA declaration of the autostart and the alias envi-
ronment it contains has as parent the current alias environment.

A Demarcator is initialized with four pairs of configuration ob-
jects, one for each of the sections of a KALA declaration (Fig. 8):
a naming evaluator and autostarts for the preliminaries (b), and for
begin, commit and abort blocks a naming evaluator and a trans-
actional properties object (c). Fig. 9 shows the install method of
the base configuration class used for ReLAx: given all the above pa-
rameters, the method creates the demarcator (18) and the link bind-
ing the given hookset to the demarcator (19). Link attributes, like
control, scope, etc., are then set (20), before the link is installed (21).

Transactional objects. In addition to the above, KALA includes
a secondary aspect: that of intercepting executions of getter and
setter methods of classes that implement the Resourceable in-
terface. This aspect is implemented as a single link, binding a
hookset matching the above executions to other methods of the
Demarcator (preWrite and preRead). These methods simply in-
form ATPMos of reads and writes to shared data, as discussed pre-
viously. Because these methods are stateless and reentrant for all



module Kala imports Java-15-Prefixed Pattern 22

exports context-free syntax
KDecl* -> CompilationUnit 23

FQMPattern KBody -> KDecl 24

"{" Prelim? BeginBlock?
CommitBlock? AbortBlock? "}" -> KBody 25

PrelimStm* -> Prelim 26

"begin" "{" BlockStm* "}" -> BeginBlock 27

"commit" "{" BlockStm* "}" -> CommitBlock 28

"abort" "{" BlockStm* "}" -> AbortBlock 29

AStartStm -> PrelimStm 30

NamingStm -> PrelimStm 31

NamingStm -> BlockStm 32

DepStm -> BlockStm 33

ViewStm -> BlockStm 34

DelStm -> BlockStm 35

TermStm -> BlockStm 36

"autostart" "(" MethSig ASActuals
KBody ")" ";" -> AStartStm 37

"alias" "(" KBinding ")" ";" -> NamingStm 38

"name" "(" KBinding ")" ";" -> NamingStm 39

"groupAdd" "(" KBinding ")" ";" -> NamingStm 40

"dep" "(" JavaId JavaId JavaId ")" ";"-> DepStm 41

"view" "(" Min? JavaId JavaId ")" ";" -> ViewStm 42

"del" "(" JavaId JavaId ")" ";" -> DelStm 43

"terminate" "(" JavaExpr ")" ";" -> TermStm 44

JavaId JavaExpr -> KBinding 45

Figure 10. Syntax definition of KALA in SDF.

KALA programs, the link is installed only once, when the first
KALA program is being woven.

5. Definition and Assimilation of KALA
After this informal discussion of both the operational semantics of
KALA and the way it is supported in Reflex as a framework, we
present how the actual KALA language is defined in our infras-
tructure. This includes the concrete syntax definition, as well as the
automatic transformation of a KALA program into Reflex configu-
ration code in plain Java.

5.1 Declarative Syntax Definition
The syntax definition of KALA is performed using SDF, a modular
syntax definition formalism [33]. Fig. 10 shows the syntax defini-
tion of KALA in SDF: it is defined as an SDF module importing
the Java 5 syntax as well as a module for pattern syntax (taken
from the SDF definition of AspectJ [2]), shown in line (22). SDF
productions are declared in the reverse manner from the traditional
BNF notations, as illustrated in Fig. 10 where (23) states that a
number of KALA declarations are valid as a CompilationUnit
non-terminal. This non-terminal is the root of the Java language
SDF definition, therefore we are actually extending the Java lan-
guage with the KALA syntax. Note that although this allows Java
and KALA code to be mixed in one file, the KALA assimilator
presented below only processes KALA code.

A KALA declaration consists of a fully-qualified method pat-
tern followed by a body (24); a KBody is made up of 4 optional
sections (25): preliminaries, begin block, commit block, and abort
block. Preliminaries are a list of PrelimStm (26), while blocks are
made up of BlockStm (27)-(29). A PrelimStm can be either an
autostart (30) (defined on line (37)), or a naming statement (31). A
naming statement is also valid as a BlockStm (32), along with de-
pendency, view, delegation, and termination statements (33)-(36).
A naming statement can either be an alias (38), a name (39), or
a groupAdd (40). These statements include binding expressions,
binding a Java identifier to an expression (45). Dependency, view,

AssimKDecl : 46

KDecl(meth, KBody(prelim, begin, commit, abort)) ->
|[ Hookset ~hs = ~<AssimMethSig> meth ; 47

String[] ~formals = ~<AssimFormals> meth; 48

NamingEval ~pre-nts = ~<AssimNTs> prelim; 49

AStart[] ~as = ~<AssimAStarts> prelim; 50

NamingEval ~b-nts = ~<AssimNTs> begin; 51

KProps ~b-props = ~<AssimProps> begin; 52

// ...same for commit and abort blocks...
this.install(~hs, ~formals, ~pre-nts, ~b-nts, 53

~b-props, ~c-nts, ~c-props, ~a-nts, ~a-props); ]|
where <newname> "hs" => hs 54

; // etc. for all variable names

Figure 11. Rule for assimilating a KALA declaration.

delegation, and termination statements also make use of the im-
ported Java non-terminals JavaId and JavaExpr (41)-(44).

The KALA syntax definition is very compact and declarative
thanks to the SDF notation. We have only omitted a few lines of
details such as the method patterns. It is also modularly extensible,
as will be illustrated in Section 6.1.

5.2 Reflex Code Generation
With the SDF definition above, the MetaBorg toolset generates
a parser for KALA that produces an abstract syntax tree in the
ATerm format [32]. The actual AST nodes that are produced for
the non-terminals of the grammar are specified using constructor
declarations, omitted here for conciseness. The AST is then pro-
cessed by an assimilator defined declaratively using the Stratego
language [34]. By defining assimilation rules, KALA declarations
are converted into Reflex configuration code, in plain Java.

Assimilating declarations. Fig. 11 shows the main assimilation
rule, which deals with KALA declarations. An assimilation rule
has a name (46), and specifies how a term (AST node) matching the
pattern on the left-hand side is transformed into the right-hand side.
We make use of the embedding of Java within Stratego, so the result
of the transformation is directly written in Java code between the |[
and ]| separators [3]. Within this block, metavariables are referred
to using the ~ escape. A where clause (54) can be specified for
applying further rules to some elements and bind them to variables
which can be used in the right-hand side of the rule.

The assimilation rule of a KALA declaration generates the
hookset, the formal parameters array, and the configuration objects
that are needed to create the corresponding link. Then the install
method of Fig. 9 (17) is called (53). These statements are inserted
in the initReflex method of a class extending ReLAxConfig
(Fig. 9). A configuration class is instantiated and called at startup
in order to perform the necessary link definitions. We generate one
configuration class per KALA source file. A single source file can
of course contain more than one declaration, resulting in a Reflex
configuration class that installs more than one parameterized link.

Assimilating parameters. The different configuration objects in
Fig. 11 are denoted by an identifier in order to refer to them when
calling the install method (53). To ensure hygiene, identifiers
are automatically generated by Stratego. This is why the hookset
variable in (47) is the metavariable ~hs, which is determined in the
where clause of the rule, which applies the <newname> utility rule
to the "hs" symbol (54). The result of this transformation is then
bound to the variable we use in the Java code. This means Stratego
will generate hookset variable names hs 0, hs 1, etc., as needed.

Line (47) specifies that the right-hand side of the assignment
for the hookset is obtained by applying the AssimMethSig rule to
the meth term (the AST node representing the method signature).
The list of formal parameters of the method is also obtained by



AssimProps :
stms ->
|[ new KProps(new String[][]{~deps }, 55

new String[][]{~views},
new String[][]{~dels }) ]|

where <try(filter(AssimDep))> stms => deps 56

; <try(filter(AssimView))> stms => views 57

; <try(filter(AssimDel))> stms => dels 58

AssimDep : 59

DepStm(Id(src), Id(dep), Id(dest)) ->
var-init |[ { "~src", "~dep", "~dest" } ]| 60

// similar for views and delegation

Figure 12. Rule for assimilating transactional properties.

AssimNTs :
stms ->
|[ new NamingEval(){ 61

void evalNaming(KALAEnv e,TxManager t){~n_stms} 62

void evalTerm(KALAEnv e,TxManager t){~t_stms}} ]| 63

where <try(filter(AssimNaming))> stms => n_stms 64

; <try(filter(AssimTerm))> stms => t_stms 65

AssimNaming :
NameStm(KBinding(Id(id), expr)) ->

|[ this.nameOp(e, t, "~id", ~expr_ok); ]| 66

where <topdown(try(LookupId))> expr => expr_ok 67

// similar for alias and groupAdd statements
AssimTerm :
TermStm(Term(expr)) -> 68

|[ this.terminateOp(e, t, ~expr_ok); ]|
where <topdown(try(LookupId))> expr => expr_ok

LookupId :
ExprName(Id(id)) -> |[ e.lookup("~id") ]| 69

Figure 13. Rules for assimilating naming and termination.

applying a rule to this same term (48). Following this, the eight
configuration objects (Sect. 4.2) needed are obtained via applica-
tion of dedicated rules: the preliminary naming statements (49), the
autostart objects (50), the naming and termination statements of the
begin block (51), its transactional properties (52), etc.

Assimilating properties. Statements that deal with transactional
properties –i.e. dependencies, views and delegation– are assimi-
lated into a configuration object KProps (Fig. 12). A KProps object
is a bi-dimensional array of strings, as explained in Sect. 4.2. The
creation of this array is shown in (55); the content of each column in
this configuration object is obtained via applying other assimilation
rules, one for each type of property: dependencies (56), views (57),
and delegation (58). The use of the try and filter strategies en-
sures that the rule is applied to all terms (the statements) and that
the process goes on if a term does not match. Fig. 12 shows the
assimilation rule for dependencies (59): if a statement is a depen-
dency, it is assimilated into a variable initializer with the three cor-
responding values (source, dependency, and destination) (60).

Assimilating naming and termination. Naming and termination
are more complex statements to assimilate (Fig. 13), because they
directly relate to the scope of identifiers in KALA. For each part
of a KALA declaration (preliminaries, begin, commit and abort),
a NamingEval object is created and passed as parameter to the
Demarcator (recall Sect. 4.2) (61). A naming evaluator has two
methods, evalNaming and evalTerm, which are filled in with
statements generated by the assimilation of naming (62) and termi-
nation (63), respectively. The application of these assimilations is
defined in the where clause of the main assimilation rule (64)(65).

module KalaT imports Kala 71

exports context-free syntax
"transactional" TypePattern

PKMethod? ";" -> KDecl 72

"(" JavaId ")" -> PKMethod 73

Figure 14. SDF module extending KALA with transactional dec-
larations.

As an example, Fig. 13 shows the case of a name statement
(the operation is similar for alias and groupAdd). The generated
statement is a call to the nameOp method defined in the superclass
NamingEval, which takes as parameter the current environment
and transaction manager, the name to bind, and the expression to
which the name should be bound to (66). Note however that the
expression is processed in order to replace all occurrences of iden-
tifiers with a lookup for the identifier in the alias environment (67).
This is because a naming statement can include aliases and formal
parameters of the method (recall Sect. 3.2); these names are not
valid in the generated Java method, so they are transformed into
an alias environment lookup expression (69). The assimilation of a
termination statement is very similar (68).

6. Evaluation
In this section we evaluate the benefits of our infrastructure by
considering an extension to the KALA language, and discussing
a scenario of composition of KALA with another domain-specific
aspect language for concurrency management.

6.1 Extending KALA
We first illustrate the extensibility of our implementation by con-
sidering a simple extension to the KALA language. Recall from
Section 3.2 that the identification of transactional objects is made
explicitly by the programmer: classes of transactional objects
must implement the Resourceable interface, which declares a
getPrimaryKey() method. This method returns a unique identi-
fier for a transactional object.

The extension we consider here is to provide transactional dec-
larations in KALA, such as:

transactional *Data;

to specify that all classes whose name ends with Data should
be made transactional, automatically. If a class of transactional
objects already implements a method that can serve the purpose
of getPrimaryKey, this can be specified:

transactional *Data (getID); 70

The getID method will be called by a generated getPrimaryKey
method, which therefore just serves as an adapter for the resource-
able protocol on which KALA relies.

In the following, we first give the syntax of this extension,
then describe how to operationally implement the transformation
with Reflex. Finally, we describe the assimilation of the language
extension with Stratego. This example illustrates the conciseness
and modularity of domain-specific aspect language extensions.

Syntax definition. The syntax extension is very concise, as illus-
trated in Fig. 14. A new SDF module extending the KALA module
of Fig. 10 is defined (71): it simply gives an alternative production
for the KalaDecl non-terminal, which corresponds to transactional
declarations (72). Classes are identified by a type pattern, which is
a non-terminal inherited from the Pattern module used for the
standard KALA language (and which comes from the SDF of As-
pectJ [2]). Optionally, the primary key method is specified, as a
Java identifier (73).



class TrAdd implements SMetaobject {
String pkmethod = null;
TrAdd(String m){

if(m.length != 0)
pkmethod = "Object getPrimaryKey(){" + 74

"return this." + m + "();}"; }
void handleClass(RClass c){

c.addInterface(RClass.forName("Resourceable")); 75

if(pkmethod != null) c.addMethod(pk_method); 76

} }

Figure 15. The implementation of the TrAdd metaobject.

AssimKDecl :
TransDecl(type, Some(PKMethod(Id(x)))) -> 77

|[ ClassSelector ~cs = ~<AssimClassSel> type ; 78

SLink ~sl = Links.get(~cs, new TrAdd("~x")); 79

~sl.install(); ]| 80

where <newname> "cs" => cs; <newname> "sl" => sl

Figure 16. Rule for assimilating transactional declarations.

Operational description. For classes matching the type pattern,
Reflex must add the Resourceable interface, and if so specified,
generate the standard primary key method that calls the existing
one. Both steps are easily implemented using the structural abil-
ities of Reflex [30]. A structural link is defined, binding a class
selector that matches classes according to the given type pattern to
a metaobject that performs the operations above. The implementa-
tion of TrAdd is straightforward (Fig. 15): if given a non-empty
string when created, the metaobject builds a string representing
the source code of the primary key method to add (74). The ac-
tion of the metaobject, defined in handleClass simply consists of
adding the resourceable interface (75) and, if necessary, the gener-
ated method (76).

Assimilation. The assimilation of the KALA extension is also de-
fined modularly and concisely. A new Stratego module importing
the KALA assimilation module defines an alternative assimilation
rule for KALA declarations (Fig. 16). The parse tree node corre-
sponding to a transactional declaration is TransDecl (77). The as-
similation consists in first creating the class selector corresponding
to the type pattern (78), and then creating a structural link with the
class selector and a TrAdd metaobject created with the primary key
method name (79). Finally, the structural link is installed (80).

6.2 Composing KALA
We now illustrate a major advantage of using a versatile kernel
for multi-language AOP as discussed in Sect. 2.1: the detection
and resolution facilities provided to handle interactions between as-
pects defined in different languages. Aspect composition is a multi-
faceted issue, and our objective here is not to cover it exhaustively;
in-depth discussion of aspect composition in Reflex can be found
in [26] and [27].

In previous work, a library for concurrent programming pro-
viding the Sequential Object Monitor (SOM) abstraction was pro-
posed [5]. SOM is implemented as a Java library, and also has a
small DSAL for configuring it. With SOM, one can specify which
objects have to be turned into monitors, and in addition specify a
scheduler that has complete control over the scheduling strategy
of concurrent requests over the monitor it is associated with. SOM
presents several advantages over hand-coding this functionality, in
particular with regard to modularity and efficiency. A SOM speci-
fication in the DSAL is very simple:

schedule: BufferData with: GetPriorityScheduler;

LinkSelector kalaLinks = new LinkSelector(){ 81

public boolean accept(Link l){
return l.getProperty(Reflex.LANG).equals("KALA");}}; 82

LinkSelector somLinks = /* similar */; 83

Rules.declareError(kalaLinks, somLinks, 84

"SOM and KALA cannot affect the same objects"); 85

Figure 17. Error declaration when KALA and SOM links interact.

This specification ensures that (non-thread safe) BufferData ob-
jects are turned into object monitors whose scheduling policy gives
priority to get requests (in addition to ensuring the usual condi-
tional synchronization of put and get requests on the buffer).

Both KALA and SOM can be used in a single application, if
there is no interaction. Here by interaction we mean a shared join
point. Basically, this refers to the fact that it is erroneous to have
an object being both a transactional object from the KALA point of
view, and an object monitor from the SOM point of view. This is
because both aspect languages, although with a different focus and
scope, deal with concurrency. Note that a similar observation has
also been made by Kienzle and Guerraoui in [19].

Suppose the above SOM aspect is defined in a file buf.som, and
a KALA program including the transactional declaration of (70)

is defined in a file data.kala. When run, since BufferData
actually matches both the SOM aspect and the type pattern of the
transactional declaration of KALA, Reflex detects and reports this
interaction to the user when weaving on the get and put methods:

[WARNING] don’t know how to compose on BufferData.get():
- SOM (buf.som, line 1)
- KALA (data.kala, line 1).

[WARNING] composing arbitrarily (sequence).
...weaving goes on...

The programmer is therefore informed of the interaction, and
can decide which measure to take. In the case of SOM and KALA,
as we said, it is semantically incorrect to have both apply to the
same objects, although they can co-exist in an application. Reflex
makes it possible to declare a mutual exclusion between links [26],
that can result either in a warning or in an error. In the case of
an interaction between any link coming from KALA and any link
coming from SOM, an error should occur. This declaration can
be put e.g. in a separate configuration class, in order to avoid
modifying both KALA and SOM aspect definitions.

The code for this is shown in Fig. 17. It first creates a selec-
tor matching all links resulting from the assimilation of a KALA
aspect (81). This is done by introspecting the LANG property of
a link (82)

1. The same is done for matching all links resulting
from a SOM declaration (83). Finally, a composition rule is de-
clared (84)-(85): it ensures that any interaction between a SOM
link and a KALA link is interpreted as an error, hence stopping
the weaving process with the given error message, in addition to
the information related to the interaction:

[ERROR] forbidden interaction on BufferData.get():
- SOM (buf.som, line 1)
- KALA (data.kala, line 1).

-> SOM and KALA cannot affect the same objects

In this scenario, the programmer is therefore left with the alterna-
tive of modifying the cut of the aspects in order to ensure that they
do not interact.

1 Links can have arbitrary properties. A usage of these properties is pre-
cisely to tag links with information related to the DSAL program that gen-
erated them, such as language name and source code location. We have
chosen not to present these features here for the sake of clarity and brevity
of the assimilation code.



6.3 Benefits of the Infrastructure
This section highlights the main benefits of our infrastructure for
domain-specific aspect languages:

• Versatile weaving facilities – The reflective core of Reflex of-
fers generic facilities for both structural and behavioral aspects,
with both expressive cuts and actions. The fact that all con-
stituents of an aspect are first-class entities (objects) brings a lot
of benefits [9], some of which have been used in the implemen-
tation of KALA: a KALA aspect definition is parameterized by
both its cut and the parameters used for the explicit instantia-
tion of the demarcator; the demarcator controlling an autostart
method is dynamically set to the demarcator of the enclosing
definition; and the resourceable aspect is programmatically de-
ployed upon the first definition of a KALA aspect.

• Extensible language definition – The language facilities of
MetaBorg combine very well with the versatility of Reflex,
since it is possible to define concisely, declaratively, and mod-
ularly, both domain-specific aspect languages and extensions to
them. In addition, although we have not illustrated this feature
here, MetaBorg supports actual embedding of languages within
a host language [3]. This means that for example KALA code
can be embedded within Java code.

• Composition support – The composition facilities of Reflex
represent a major motivation for using this platform to imple-
ment domain-specific aspect languages, because it ensures that
DSALs can be used in conjunction with other aspect languages,
domain-specific or not. The fact that Reflex automatically de-
tects interactions, reports on them, and offers expressive means
for their resolution is crucial for AOP in general, and multi-
language AOP in particular.

It is true that our infrastructure is certainly not as efficient as
agressively-optimized compilers like abc [1]. Nevertheless, recent
performance evaluations of AOP systems [14] show that Reflex
performs really well compared to other dynamic aspect systems,
which makes it a reasonable platform from this point of view.
Also, the conciness of language definitions and extensions makes
it more suitable for rapid language prototyping and validation of
ideas, because less burden is placed on the programmer than that of
extending a full compiler infrastructure.

7. Discussion
7.1 Previous Work
The motivation for a versatile AOP kernel was first presented
in [29], and the first account of Reflex as a kernel for multi-
language AOP was reported in [30]. Although a first attempt at
the language layer of the kernel was included, the only languages
supported in Reflex were AspectJ and SOM [5]. SOM indeed fea-
tures a very limited DSAL because it is only used to configure
bindings of schedulers implemented in Java, and the implementa-
tion of AspectJ was not extensible [23].

Since then, a major shift has been taken with respect to the lan-
guage layer by working on the integration of MetaBorg, as reported
here. An extensible kernel language for Reflex, i.e. concrete syntax
for the Reflex kernel API using SDF plus the corresponding assim-
ilation in Stratego, was proposed in [28]. Here, we have pushed the
experimentation on the kernel a step further by studying the support
of a full-fledged domain-specific aspect language. KALA is an in-
teresting DSAL because it has its own specific syntax and scoping
rules and, if considering the extension we have presented, requires
both behavioral and structural abilities of the kernel.

With respect to KALA, the original proof-of-concept imple-
mentation was based on source-code transformation and required

a variety of tools to be combined to weave KALA and Java source
into one executable. The implementation in Reflex integrates these
tools, making the development process using KALA much easier.
Considering the time taken, the implementation in Reflex was com-
pleted in approximately half a man-month, whereas the original im-
plementation took almost two. In terms of the implementation, we
can compare both the syntax definition and the semantics.

In the original implementation the concrete grammar was de-
fined using a yacc-like parser generator, and required 130 lines
of code. The SDF definition is 4 times more compact (32 lines,
Fig. 10). Also, the original version suffered from context-sensitive
parsing issues for the Java expressions embedded in KALA state-
ments, which required the use of special escape characters. ReLAx
does not have this drawback, due to to the many advantages of SDF
for parsing “composite” languages [2]. With respect to semantics,
the original source code transformation engine consists of approx-
imately 1200 lines of code, not counting the Java parser used. The
ReLAx implementation consists of 150 lines of Stratego rules, and
500 lines of Java code. It not only is half the size of the original im-
plementation but also presents several modularity advantages. First,
transformation rules are specified declaratively in Stratego, sepa-
rately from the actual semantics implementation in Java (Sect. 5.2).
Second, the Java implementation consists of only 25 lines of weav-
ing specification (the Reflex configuration class of Fig. 9), and 4
classes implementing the whole of KALA as explained in Sect. 4.2.
The demarcator class is the most involved; about 230 lines of code.
In contrast to this, the original implementation is an ad-hoc engine
handling weaving- and semantics-related concerns in a mixed man-
ner, making it much less evolvable and understandable.

The current implementation furthermore has several advantages
over the previous one. First of all, because Reflex is based on
bytecode weaving, the source code of the base program is no longer
required, potentially allowing a larger amount of software to be
treated, and we are somewhat more protected from changes in the
Java language grammar. Second, the current implementation is, as
we have shown, modularly extensible, both in terms of syntax and
semantics. This is important for future work on KALA. Finally,
the fact that Reflex manages composition of aspects written in
different languages is a definite plus compared to the previous
version. Managing interactions such as between SOM and KALA
would have been impossible with the previous version, because it
“blindly” transforms base application code.

7.2 Related Work
Transaction management as an aspect. Although transaction
management is generally accepted by the AOSD community as be-
ing an aspect, only a few papers have been published that treat this
subject [19, 22, 25]. Furthermore, in two of these papers transac-
tion management is but a minor topic because the main focus of the
paper is on persistence [22, 25]. Common to the three papers is that
they use AspectJ and aspectize classical transactions only and do
not address issues like what happens if a transactional method calls
another transactional method. KALA however addresses not only
classical transactions, but also a wide variety of advanced trans-
action models. This allows the above issue to be easily addressed,
e.g. using nested transactions it can straightforwardly be mapped
to spawning a child transaction.

The first of the three above papers, by Kienzle and Ger-
raoui [19], is arguably the best known, using transaction manage-
ment to evaluate AOP. The same topic is addressed by Soares et
al. [25]: they build a number of persistence and distribution as-
pects, which include transaction management and implement a
health watcher system first without and afterwards with these as-
pects. Similarly, Rashid and Chitchyan implement a persistence
aspect, which includes a transaction management part [22]. The



paper explores whether persistence can be aspectized and if this as-
pect is reusable for other applications. Remarkably, the conclusions
of the last two papers contradict the first: Kienzle and Gerraoui are
pessimistic, while Soares et al. and Rashid and Chitchyan are opti-
mistic about the use of AOSD for transactions.

Also treating the topics of aspects and transaction management
is the recent work of Kienzle and Gélineau [18]. It is however not
directly related to our work and the above three papers. This is
because it discusses the design and implementation of a TP Monitor
using aspects, raising interesting composition issues and not how
(advanced) transactions are used by an application.

Extensible aspect languages. Work on extensible aspect lan-
guages somehow relates to ours. Josh [7] is an open AspectJ-like
language, which makes it possible to experiment with new means
of describing pointcuts and advices. However it does not fit the pur-
pose of multi-language AOP mainly because of its lack of support
for aspect composition, as well as the fact that it is not possible to
experiment with DSALs whose syntax does not fit the AspectJ feel.

The AspectBench Compiler [1] is an extensible framework for
experimenting with new language features in AspectJ. The spirit of
abc is similar to Josh, but since abc is a full compiler, it provides
a powerful framework for static analysis. By sticking to AspectJ
as the basic language, abc presents the inconvenience that both the
complexity of AspectJ and that of a full compiler infrastructure may
be overkill for simple extensions. Also, issues in the extensibility
of the syntax definition mechanism presently used in abc have
been reported in [2]. The focus of abc is on efficient extensions to
AspectJ, rather than on combination of different aspect languages
and treatment of aspect composition.

Platforms for DSALs. The above projects do not explicitly target
multi-language AOP as such, and are therefore only loosely related
to our work. As a matter of fact, only a few proposals of platforms
for domain-specific aspect languages have been made.

XAspects [24] is a plugin mechanism for domain-specific as-
pect languages, based on AspectJ [17]. An aspect language is im-
plemented as a plugin generating AspectJ code, while the global
compilation process is managed by the XAspects compiler. XAs-
pects suffers a number of limitations, among which the most impor-
tant are that the XAspects compiler provides no higher-level inter-
mediate abstractions to DSAL implementors, and that composition
of aspects is not tackled at all. Furthermore, because AspectJ is a
mature and production-quality aspect language with a strong prac-
titioner perspective, it has a limited versatility for the purposes of
multi-language AOP: no detection of aspect interactions, restricted
means for resolution, it is impossible to define algorithmic cuts, to
parameterize aspects, pointcuts and advices, etc.

Brichau et al. [4] present an approach to building composable
aspect-specific languages with logic metaprogramming. Using the
same logic language, aspects and aspect languages can be com-
posed. The underlying logic facilities are very good for expressing
advanced and parameterized aspects, however, the aspect languages
do not really shield the programmer from the inherent power of
the logic metaprogramming approach: no aspect-specific syntax is
provided, aspects are defined in the same logic framework as lan-
guages. Issues such as detection of interactions and support for
structural aspects are not considered.

7.3 Future Work
Although research on advanced transactions has been dormant for
some years, these concepts are becoming more and more relevant
with the growth of Web Services and the requirements for compo-
sition of Web Services. We are therefore performing research on
how KALA can be adapted to best fit this domain.

With respect to the support of domain-specific aspect languages
in Reflex, we are in the process of fine-tuning a plugin architecture
for the seamless integration of Reflex and MetaBorg, addressing is-
sues such as packaging of language implementations, traceability,
and dynamic combination of aspect languages. We are also design-
ing and implementing a number of domain-specific and general-
purpose aspect languages on top of this infrastructure.

8. Conclusions
In this paper we have shown how an infrastructure for domain-
specific aspect languages (DSALs) aids in their development. In
particular, we have detailed the implementation of KALA, a DSAL
for advanced transaction management in the Reflex kernel for
multi-language AOP. KALA is a good candidate for this case study
because it has its own specific syntax and scoping rules and, in the
extended version, requires both behavioral and structural abilities
of the kernel in which it is implemented.

We first provided an operational description of KALA and gave
an overview of its implementation over Reflex as a generic object
parameterized by a collection of configuration objects. This illus-
trates an important benefit of using an infrastructure like Reflex,
which is the use of generic facilities for aspects, where all con-
stituents of an aspect are first-class objects. We then described how
KALA programs are translated into the required configuration ob-
jects, giving the full KALA syntax definition and an overview of
how code generation is performed, using SDF and Stratego. We
have finally shown some additional benefits of using Reflex over
writing a domain-specific weaver from scratch: (a) ease of making
modular extensions to the language, and (b) built-in support for the
automatic detection and explicit resolution of interactions between
aspects written in different languages.

This brings us to the conclusion that the use of a appropri-
ate infrastructure for domain-specific aspect languages, such as
Reflex, gives a number of invaluable assets to the aspect language
developer: ease of implementation, ease of extension and effort-
less support for composition. Using such an infrastructure enables
a faster development cycle of DSALs and allows them to coexist
within one application, thereby removing the most important im-
pediments to the re-emergence of DSALs in the aspect community.

Availability. ReLAx is available on the Reflex website:
http://reflex.dcc.uchile.cl/
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