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Abstract. Structural aspects modify the structure of a program. Like
behavioral aspects, structural aspects may interact and raise conflicts.
While current aspect systems mostly under-consider this issue, this work
addresses structural aspect interactions under the light of an iterative
composition process that involves the programmer in a cycle of auto-
matic detection of interactions and explicit, declarative resolution of
these interactions. Beyond a general analysis of the issue of composi-
tion of structural aspects and an associated composition process, this
work reports on the concrete extension of the Reflex AOP kernel to fully
support the requirements drawn from our analysis. Based on a structural
model supporting per-aspect subjective views, and using the power of an
embedded logic engine, the result is a versatile aspect system supporting
automatic detection of various kinds of structural aspect interactions,
extensible reporting tools, and declarative mechanisms for the resolution
of interactions between structural aspects.

1 Introduction

Aspect-Oriented Programming (AOP) provides means for the proper modular-
ization of crosscutting concerns [11]. The fact that many aspects can be applied
to the same program raises the aspect composition issue [5], which is more and
more attracting the attention of the research community, as the use of AOP gets
wider and scaling issues arise.

However, although most AOP approaches focus on behavioral aspects follow-
ing the pointcut-advice model of AspectJ [18], structural aspects, as exemplified
by inter-type declarations (aka. introductions) in AspectJ, seem to find quite a
number of applications in real cases. A structural aspect is one that, as part of
its action, modifies the structure of program elements. Mostly, structural aspects
in current proposals are able to add members or interfaces to classes.

A consequence of this focusing on behavioral aspects is that most work on
composition of aspects ignores issues related to structural aspect composition [19,
4, 9, 24]. However, as structural aspects become popular, the case of their inter-
actions turns out to be crucial. Some proposals have recently emerged that deal
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with structural aspect composition [16, 28, 20, 15]. Structural interactions can
arise in various ways. First, because of aspects modifying base code in con-
flicting ways, yielding invalid code; for instance by adding a method to a class
that already contains a method with the same signature. Also, because aspects
typically rely on structural properties of a program (possibly augmented with
dynamic properties) in order to determine if they apply, the fact that some as-
pects may alter this structure can result in inconsistencies and surprises due to
(hidden) dependencies.

For instance, if the KALA domain-specific aspect language for advanced
transaction management [12] is used to make all methods of a class transactional,
while another aspect adds a method to the same class, what should happen with
this added method with respect to transactionality? Based on concrete experi-
ments with multi-language AOP [31, 13], we have started to analyze and address
the issue of aspect composition [28]. This work is an extension of previous work
that focuses on structural aspect composition.

The aspect composition problem can be divided in two parts: that of the
detection of aspect interactions, and that of their resolution. Systems like
SOUL/Aop [4], AspectJ, or JAsCo [27], only address means to specify compo-
sition, while Klaeren et al. [19] focus on means to detect interactions. Concrete
approaches to detection all deal with conflicts of aspects over a shared program
point; being able to detect semantic interactions between two aspects that do
not interact from a weaving point of view is to our knowledge not addressed by
any proposal, as in the general case it is undecidable. There are some attempts at
detecting semantic interactions in the context of a limited action language [10],
but the general case is an open issue. In any case, a proper model of interactions
is missing and needed.

It is also generally admitted that automatic resolution of interactions is
not feasible; an exception to this is the approach of [10], where the limited
expressiveness of the aspect language is used to automatically determine
and resolve interactions between aspects. In [16], an automatic approach
to structural composition is also targeted, however with limitations for the
programmer, as will be discussed in the related work section of this paper. As
a matter of fact, in a general setting, unless it can be proven that two aspects
commute, the resolution of their interaction has to be specified explicitly [9]. In
this work, we follow this approach to aspect composition, by focusing on the
case of interactions between structural aspects. This raises several issues which
are not found in the case of behavioral aspects.

The contributions of this work are:

– An analysis of interactions between structural aspects, which results in the
identification of (a) three kinds of interactions depending on the parties in-
volved (base-action, action-action, action-cut), (b) four possible interaction
resolution mechanisms (skipping actions, combining elements, visibility of
changes, and order of application), as well as (c) a clear distinction of three
dimensions of interactions (conflicting, resolved, effective).
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– The proposition of a composition process that explicitly considers the levels
of involvement of the programmer and the iterative nature of the detection
and resolution of interactions.

– A full implementation of the proposed process in Reflex, supporting (a) a
uniform representation of all the identified interaction kinds, allowing exten-
sible reporting tools to be developed, (b) the automatic detection of inter-
actions, including action-cut interactions, based on a logic engine integrated
into Reflex, (c) the different declarative resolution mechanisms previously
highlighted.

– The illustration of how advanced language mechanisms, such as subjective
views over the program structure, and collaboration between an object-
oriented model and a logic engine, can be leveraged to address some of the
challenges raised by scaling up aspect-oriented programming.

The structure of the paper is as follows: Section 2 reports, in a general
setting, on structural aspect interactions, their kinds, properties, and possible
resolution mechanisms. Section 3 proposes, also in a general setting, an iterative
process to support composition of structural aspects. Section 4 presents our gen-
eral approach to structural aspect composition in the case of Reflex, providing
background information on how structural aspects are supported by this plat-
form. Then, we present our proposal in more details: Section 5 focuses on the
automatic detection of structural aspect interactions, Section 6 on the reporting
of interactions to the programmer, and Section 7 on the resolution mechanisms,
both from the point of view of the programmer and from the point of view of
how they are implemented in the Reflex kernel. Section 8 opens discussion on
previous, related, and future work, and Section 9 concludes.

2 Interactions of Structural Aspects

In this section, we first clarify what we mean by structural aspects, highlight-
ing the range of our analysis and proposal. We then propose a classification of
structural interactions (Section 2.2). We discuss the detection and resolution
mechanisms that one would expect from a comprehensive system fully support-
ing structural aspect composition (Section 2.3). Finally, in Section 2.4 we come
back to the terminology at the light of the previous section.

2.1 Anatomy of Structural Aspects

In the following, a structural element denotes any piece of structure in an object-
oriented program, i.e. a class, interface, annotation, field, method, constructor,
or expression. A structural container is an element containing other structural
elements; for instance, the virtual machine is a structural container of classes, a
class is a structural container of members, and a member is a structural container
of its annotations and body expressions.

We distinguish two levels of aspects. A primitive aspect is a single pair con-
sisting of a cut and an action. The cut of an aspect is the (usually intensional)
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selection of points of interest, either static or dynamic. The action is the spec-
ification of the effect of the aspect on its cut. In this view, a primitive aspect
is said to be behavioral if its action affects the behavior of the application, and
structural if its action modifies the program structure. These cut-action pairs
are said to be primitive because most aspects are indeed composed of several
such pairs. For instance an AspectJ aspect can perform a number of inter-type
declarations as well as define a number of pointcuts and advices. Such a compos-
ite aspect can be viewed as grouping several structural and behavioral primitive
aspects. This view is useful because the actual kinds of interactions and ways
to handle composition differ greatly enough between structural and behavioral
aspects to deserve separate treatment. Note that a hierarchical composition of
primitive aspects also makes sense, for instance when considering higher-order
pointcut designators like control flow: a primitive aspect exposes control flow
information while another (possibly composite) depends on it.

In this work we limit our analysis to structural aspects whose cut relies on
structural introspection (i.e. lexical information): the cut of a structural aspect
is a condition over the properties of the structural elements that make up the
program. In a dynamic language like Smalltalk, this need not be so: an aspect
can very well undertake a structural modification at runtime upon certain events
(behavioral cut); we only consider structural cuts. Also, the cut of a structural
aspect is considered to be as expressive as needed: in other words, the cut is pos-
sibly algorithmic, defined in a Turing-complete language, and has a full power of
introspection, down to expressions. This supports what is also known as expres-
sive pointcuts in behavioral aspects [22]. For structural aspects in AspectJ, the
cut is defined by a type pattern, which is insufficient for expressive cuts such as
“matching classes that have at least one method that does at least one message
send matching a given pattern”. Expressive cut for structural aspects is also
provided by Josh [7].

The actions we consider are the addition of structural elements to a structural
container, e.g. adding a new class, a new method to a class, or a new annotation
to a field. This corresponds to the sum introduction operator in the algebra pre-
sented in [20], and concretely implemented in a language like AspectJ. Note that
we consider neither addition of expressions nor modifications like renaming and
removing. The precise analysis of the consequences of these features on compo-
sition support is left as future work. Even considering the above restrictions, the
present work covers current proposals of structural aspects like inter-type dec-
larations of AspectJ and more, due to the fact that structural cuts and actions
are operationally defined in full Java.

2.2 Kinds of Structural Interactions

A structural interaction is an interaction involving a structural aspect. Behav-
ioral interactions, i.e. interactions involving behavioral aspects, refer to the prob-
lem of shared join points, e.g. two aspects that affect the same method execution.
In other words, behavioral interactions dealt with in the literature are typically
cut-cut interactions: the cuts of two aspects overlap.
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Cut-cut interactions of structural aspects are not relevant as such because two
structural aspects can apply orthogonally to the same class (e.g. by adding two
completely unrelated methods). The interest is rather in dealing with interactions
involving the action of at least one structural aspect. Such an action can either
interact with the base code, or with the action or cut of other aspects. This
yields the following three kinds of structural interactions:

Base-action interactions. This kind of interaction refers to clashes between
structural elements added by aspects on the one hand, and structural ele-
ments of the original base code on the other hand (Fig. 1). Examples of such
interactions include an aspect adding a class that has the same name as an
existing class, or adding a method to a class that already has one with the
same signature.

Action-action interactions. This kind of interaction refers to clashes between
structural elements added by two aspects (Fig. 2). Such an interaction occurs
for instance if two aspects add methods with the same signature to the same
base class, or add the same annotation to the same structural element.

Action-cut interactions. This kind of interaction refers to potential depen-
dencies between the (intensionally-defined) cut of a structural aspect (i.e. the
set of structural elements it affects) and structural elements newly introduced
by another aspect (Fig. 3). The question being raised is whether the intro-
duced element should possibly be part of the cut of other aspects. Examples
of such interactions include an aspect adding a class to a given package,
while another aspect adds a method to all classes of that package —should
the introduced class get the new method?—; or an aspect adding an annota-
tion to all fields of a class, and an aspect adding a field to that class —should
the introduced field be annotated?—.

Note that behavioral aspects can also yield interactions related to their ac-
tions; indeed of each of the three kinds above. For instance, an action-action
interaction between two behavioral aspects can occur if one defines an aspect
turning a light on when another aspects turns the light off. Similarly, base-action
and action-cut interactions can occur. For instance if a third aspect only matches
some execution events if the light is turned on. However, this is generally an un-
decidable problem; this explains why work on interactions of behavioral aspects
only focuses on cut-cut interactions. What makes structural aspects different
is that their action domain is bounded: structural actions here are only modi-
fications of the program structure. This is an action domain that is restricted
enough to be analyzed in order to fully address interactions.

2.3 Detection and Resolution Mechanisms

We now consider the different possible detection and resolution mechanisms for
each of the interaction kind discussed above.

The two first kinds of interaction we mentioned (Fig. 1 and Fig. 2) typically
result in compilation errors, as the underlying processor (compiler/interpreter)
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Syndrome An aspect adds a structural element which is already present in the
base code.

Examples Add class C but C already exists.
Add method m to class C which already has this method (either di-
rectly or via inheritance).

Treatments Skip the action.
Combine element to add with existing one.
Modify the aspect to avoid the clash.

Fig. 1. Base-action interactions.

Syndrome Two aspects add an element with the same signature in the same
structural container.

Examples Aspects A1 and A2 add a class C.
Aspects A1 and A2 add a method m to class C (either directly or via
inheritance).

Treatments Skip one or both of the actions.
Combine both elements to add in a single one.
Modify one or both aspects to avoid the clash.

Fig. 2. Action-action interactions.

rejects the addition of an already-existing structural element. So their detection
is in a way ensured by traditional technology. There are therefore two major
alternatives: (1) ensuring that the interaction does not occur, either by manually
modifying the definition of (one of) the aspect(s), or by declaring that (one of)
the aspect action(s) should be skipped; (2) specifying an actual combination of
the structural elements in conflict. Manual modification of the aspect(s) to avoid
the interaction does not deserve any special mechanism from the aspect system,
so we do not discuss it further. If the language processor is sufficiently open, it
can be possible to instruct it to deal with these errors. We are therefore left with
the two following desirable resolution mechanisms:

Skipping aspect actions. This mechanism consists in specifying that the de-
tected interaction should not happen. This can possibly be declared either
by stating that an aspect does not apply to the class causing the problem,
or that every conflict provoked by the aspect should be skipped (i.e. by sim-
ply not adding the method that the aspect was supposed to add). Another
point of view is to declare some mutual exclusion between two aspects, by
stating that if two aspects apply on the same class, one of them has to be
skipped. A variant is to generate an error in such a case, for instance if two
aspects are known to be intrinsically incompatible and hence any interaction
between them is to be considered a programming error. Mutual exclusion is
not necessarily a binary relation, so it can be interesting to be able to specify
more advanced dependencies that relate to many aspects.

Combining structural elements. When the addition of a structural element
conflicts with the current state of the program, a possibility is to combine
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Syndrome An aspect adds an element which belongs to the intensional cut of
another aspect.

Examples Aspect A1 adds a class C to package p, and aspect A2 adds a method
m to all classes of p.
Aspect A1 adds an annotation to all fields of class C, and aspect A2

adds a field to class C.

Treatments Make added element visible or not to (the cut of) other aspects.
Control order of application of aspects.

Fig. 3. Action-cut interactions.

the element to add with the existing one (which may have been added by
an aspect or not). By combining, we mean a mechanism similar to the com-
position operator provided in traits [26], where two conflicting methods can
be aliased and used in a third combination method. When taken to the level
of classes, this mechanism resembles the composition mechanisms offered in
systems like Hyper/J [25, 15].

Action-cut interactions (Fig. 3) are more subtle, because they generally do
not result in compilation errors. Still, they can have important semantic impact.
For instance, in the second example of Fig. 3, it is important that the programmer
is informed that the field added by A2 to C may or may not be annotated by A1.
The aspect system has absolutely no means to automatically infer the desired
semantics, as it all depends on the particular application and setting. This implies
that it is crucial for the programmer that the aspect system detects them. We
identify two dimensions to the possible resolution mechanism:

Visibility of changes. The first dimension concerns the visibility of structural
changes made by an aspect to the cut of other aspects. Some changes may
necessarily be hidden, others visible, while some changes may potentially be
visible to only some aspects and not others.

Order of application. The second dimension relates to the order in which
structural aspects are applied, that is, the order in which changes to a class
definition are effectively carried out. This may affect the correct compilation
of some changes, for instance if a method added by an aspect has a reference
to another method that is added by another aspect, the referred method
must be added before the other one.

These two dimensions are clearly not orthogonal. If it is ensured that all struc-
tural changes made by aspects are invisible to other aspects, then there cannot
be any action-cut interaction. However, if some structural changes made by an
aspect A can be seen by all or some other aspect(s), then necessarily aspect A has
to be applied before these other aspects determine their cut. This discussion leads
us to the need for a clarification of the terminology associated to interactions.
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2.4 Terminology: Interactions and Conflicts

To clarify the different cases of interactions that can be faced, we introduce three
independent dimensions. The first refers to the fact that an interaction can or
cannot be an actual conflict:

Definition 1 (Conflicting interaction). An interaction is conflicting
(a.k.a. a conflict) if and only if it results in undesired semantics from the point
of view of either the program processor or the programmer. Otherwise, it is said
to be non-conflicting.

This dimension is important because it actually highlights that all interactions
are not necessarily “problems” as such. The second dimension relates to the
explicit specification of a resolution by the programmer:

Definition 2 (Resolved interaction). An interaction is resolved if and only
if the program code includes an explicit specification of the desired resolution.
Otherwise, it is said to be unresolved.

Finally, as discussed in the previous section, action-cut interactions are subtle
because they do not necessarily occur: contrarily to base-action and action-action
interactions, their effectiveness depends on both visibility of changes and order-
ing of application:

Definition 3 (Effective interaction). An interaction is effective if it can oc-
cur; otherwise, it is said to be non-effective. Base-action and action-action in-
teractions are always effective. An action-cut interaction between the action of
an aspect A and the cut of an aspect B is effective if and only if (1) the action
of A is evaluated before the cut of B, and (2) the structural changes made by
the action of A are visible to the cut of B.

Discriminating between these dimensions is important when it comes to consid-
ering the actual composition process in which a programmer has to engage.

3 An Iterative Composition Process

Section 2 has proposed an analysis of the issue of structural aspect interactions,
from the point of view of the nature of the interactions and what can be done
with respect to their detection and resolution. This section now approaches the
problem from a higher-level point of view, and proposes a composition process.
This process clarifies the role and interactions between the programmer on the
one hand, and the machinery for detection, resolution and actual weaving on the
other hand. Our concrete implementation, in the Reflex AOP kernel, is presented
from Section 4 onward.
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Fig. 4. The iterative composition process.

3.1 General Approach to Composition

Our approach to composition follows that proposed by Douence et al. in the
context of behavioral aspects [9]: it relies on automatic detection of aspect in-
teractions, explicit resolution of the interactions, and then composition by the
aspect system in accordance to the specified resolution. We assume this process
to be essentially iterative: the programmer is involved in a detection-resolution
loop, and proceeds by trial and error to fine-tune the specified resolution. This
is necessary because it is unlikely that the programmer can correctly specify all
resolutions at once, and also because the specification of a particular resolution
can have side effects on the interaction space: some interactions can become
effective when they were not, new conflicting interactions can appear, etc.

It is conjectured that the programmer can, in a finite number of iterations,
weight the different tradeoffs and converge to a final solution. Of course, this
can imply realizing that two or more aspects are definitely incompatible and can
therefore not be deployed simultaneously over the application. The proposed
composition process is illustrated in Fig. 4 and discussed in more details below.

3.2 Steps of the Composition Process

First of all, let us assume that the programmer does not take interactions into
account when programming the application and the aspects. The aspect proces-
sor (be it an interpreter or compiler) consumes such definitions and produces the
woven program. During this phase, detection of interactions results in a report
being handed to the programmer. The report includes all kinds of interactions,
be they conflictive or not and effective or not. Based on this report, the program-
mer can reflect upon the situation, fully aware of all the issues at stake (since
even non-effective interactions are reported). As a result, resolution is specified.
As discussed in the previous section, resolution implies that the user explicitly
specifies (a) dependencies between aspects, (b) the visibility of changes made by
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an aspect to other aspects, and (c) the relative ordering of application of the ac-
tions of the aspects. We consider that such specifications are made declaratively,
and thereafter refer to these as composition rules.

In the following run, the aspect processor, now fed with composition rules
in addition to (possibly modified) aspects and (normally untouched) base code,
proceeds with another weaving, whereby dependencies, visibility and ordering
are taken into account as specified by the programmer. This modified weaving
phase results in another report of interactions for the programmer. The cycle
ends when the programmer is satisfied with the composition specification. When
this is the case, the aspect processor can be run with the detection process shut
down in order to accelerate the weaving phase. The weaver proceeds stand-alone,
though driven by the composition rules.

Technically, this process raises a number of issues:

– how are interactions automatically detected?
– how are interactions reported to the programmer?
– what are composition rules and how are they specified?

To answer these questions, we now leave the general setting in which we have
progressed until now, and consider the particular case of the Reflex AOP kernel,
which implements our proposal.

4 Declarative Composition of Structural Aspects
in Reflex: General Approach

In this section we progressively dive into our proposal by first introducing Reflex
and how structural aspects are defined and implemented in this platform. We
then describe the interactions that Reflex is able to detect (Section 4.2) and
how they are represented. Treatment of detection, reporting, and resolution is
deferred to the following sections.

4.1 Structural Aspects in Reflex

Reflex in a Nutshell. Reflex is a kernel for multi-language AOP in Java,
that is, an AOP system whose aim is to facilitate the definition and integration
of different aspect languages, including domain-specific ones, to modularize the
different concerns of a software system. The motivation and requirements for
such a versatile kernel were presented in [30], and the first global account of
Reflex as an AOP kernel in [31].

An AOP kernel supports the core semantics of aspect languages through
proper structural and behavioral models, easing the task for aspect language
designers. This paper focuses on the structural part of Reflex, the behavioral
model is based on [32]. A fundamental role of an AOP kernel is that of a media-
tor between different coexisting aspect-oriented approaches; this clearly includes
the detection and resolution of interactions between aspects possibly written in
different languages. The composition facilities of Reflex were reported in [28],
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Fig. 5. The structural model of Reflex.

but focused on the composition of behavioral aspects, with a limited account of
structural aspect composition.

The abstraction provided by Reflex for defining aspects is that of explicit links
binding a cut to an action. A link is therefore the direct correspondent of the
primitive aspects we discussed in Section 2.1. Reflex provides both structural and
behavioral links, depending on whether the objective is to affect the structure or
behavior of an application. An aspect as such is therefore defined as a number
of links. Note that we do not consider any further the correspondence between
composite aspects and links, nor the mapping of aspect languages to kernel
constructs (elements of discussion on both issues can be found in [31]).

Structural links. A structural link in Reflex (s-link for short) binds a structural
cut to a structural action. The structural cut is defined with a class selector,
algorithmically defining, via introspection, the classes that are affected by the
link. The action of the link is defined in a structural metaobject, which is a
standard Java object that defines structural modifications to classes.

Both class selectors and structural metaobjects operate over a complete reifi-
cation of the program structure, designed according to a class-object model
similar to that of Javassist (on which Reflex relies for low-level work) [8]. The
structural model is depicted in Fig. 5: an RPool object gives access to RClass
objects, which in turn give access to their members as either RField, RMethod or
RConstructor objects (all RMembers). The non-abstract members in turn give
access to their bodies as RExpr objects (with a specific subtype for each kind
of expression). The objects are causally-connected representations of the under-
lying bytecode, offering a source-level abstraction over bytecode. All these are
subtypes of RStructuralElement.

A class selector is any object that implements a predicate interface matching
or not an RClass object. A class selector can fully introspect the class (down to
all its methods expressions if necessary) in order to determine whether a class
should be matched or not. For instance, the following reusable class selector
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matches all classes that have at least one method whose exception types include
one of the types given at selector instantiation time:

class ClassesWithExcs implements ClassSelector {

List<RClass> excsTypes;

ClassesWithExcs(List<RClass> types){ excsTypes = types; }

boolean accept(RClass aClass){

for (RMethod m : aClass.getMethods()){

for (RClass t : m.getExceptionTypes()){

if (excsTypes.contains(t)) return true;

} }

return false;

} }

A structural metaobject can change the definition of a class, by adding struc-
tural elements to it. For instance, the following reusable metaobject adds both
a String getWarning() method to a class, which returns whatever string is
passed at metaobject instantiation time, and the IWarning interface so that the
added method can be invoked:

class WarningAdder implements SMetaobject {

static RClass WARNING_INTERFACE = RClass.forName("IWarning");

String warning;

WarningAdder(String s){ warning = s; }

void handleClass(RClass aClass){

aClass.addInterface(WARNING_INTERFACE);

aClass.addMethod("public String getWarning(){ " +

"return \"" + warning + "\";}");

} }

Finally, an s-link is simply defined by associating a class selector with a meta-
object. The s-link below adds a particular warning to each class that can throw
either BadException or VeryBadException exceptions:

List<RClass> badExcTypes = ...;

SLink badExcWarn =

Links.get(new ClassesWithExcs(badExcTypes),

new WarningAdder("can throw bad/very bad exceptions!"));

badExcWarn.install();

A structural aspect in Reflex is therefore characterized by the fact that both
its cut and actions are operationally defined, as opposed to the declarative and
limited expressiveness of inter-type declarations in AspectJ. The cut of a struc-
tural aspect in AspectJ is restricted to type patterns, insufficient to express
e.g. the example above, and the action is the plain declaration of the members
to add, which cannot be parameterized, as opposed to what can be achieved in
Reflex. The full power of the Java programming language combined with the
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structural model of Reflex is available to define structural links. As a side note,
one can define an s-link that, upon finding a class matching a forbidden crite-
ria either emits a warning or throws an error. This is similar to the declare
warning/error mechanism of AspectJ, but with more expressiveness with re-
spect to structural properties. In other words, s-links can be used to do shadow
programming as proposed in [33].

Structural correspondence. The above example illustrates briefly the struc-
tural abilities of Reflex. As a matter of fact, they all come from Javassist, which
is the bytecode transformation back-end used by Reflex. The reason why we have
introduced our own structural types rather than directly using the ones of Javas-
sist, is to ensure structural correspondence (Fig. 6). This principle, introduced
in [3], consists in ensuring that the program structure observed via a reflection
API corresponds to what one actually expects, rather than including synthetic
elements added by a processor, compiler, or weaver. For instance, the Java re-
flection API does not ensure structural correspondence because at runtime one
can observe synthetic fields added by the compiler to implement features not
directly supported by the virtual machine, such as inner classes.

The structural model of Reflex ensures structural correspondence by system-
atically hiding all structural changes made by links to other links. As discussed
in [28], this makes it possible to avoid unwanted conflation of extended and non-
extended functionalities, as discussed in the meta-helix architecture [6]. The
structural API of Reflex is therefore mirror-based, exposing only interface types
to users, rather than implementation types as in Javassist (Fig. 6). The coor-
dination layer that stands in between the user and the implementation classes
of Javassist makes it possible for Reflex to coordinate visibility of structural el-
ements “behind the scene”. For instance, each structural element added by a
link knows by which link it was added, and that it is hence invisible by default.
Therefore, by default, in Reflex action-cut interactions are always non-effective,
because the cut of a link does not see the effects of others. We come back to
the visibility issue in Section 7.1, when introducing declarative visibility for per-
aspect subjective views on the program structure.

4.2 Supported Interactions

Reflex detects interactions and reports them to the programmer. This section
describes the model of structural interactions we have adopted. All interactions
detected and reported by Reflex fit in this model (Fig. 7). The purpose of reifying
interactions as such is to offer a uniform interface for interaction report tools, as
discussed later in Section 6.

A structural interaction is represented as an Interaction object, instance
of one of the three concrete subclasses representing the three kinds of inter-
actions discussed in Section 2.2: BaseActionInt for base-action interactions,
ActionActionInt for action-action interactions, and ActionCutInt for action-
cut interactions. Note that although base-action and action-action interactions
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Fig. 6. Structural correspondence in Reflex.

are detected by the underlying compiler (because they actually represent compi-
lation errors), Reflex does not simply let the compiler exceptions reach the user,
but rather builds more meaningful interaction objects for the reporting phase.

An interaction references the structural element (class, method, field, etc.)
that is subject to the interaction, as well as a property designator that refers to
which property of the element is involved in the interaction. For instance, in an
interaction between an aspect looking at the methods of a class for determining
its cut and another adding a method to that class, the structural element is the
class, and the property designator denotes the “set of methods” property of the
class. An interaction also references the s-link that causes it; in the case of inter-
actions involving two links (action-action and action-cut), the second link is also
available (see the BiLinkInt abstract class). Finally, an interaction has a state,
indicating whether the interaction is effective or not. This makes it possible for
the programmer to discriminate between action-cut interactions that effectively
occur from those that could possibly occur, if the relative visibility and ordering
of the involved links were set appropriately (Section 2.4). The interaction state
also discriminates between conflicting and non-conflicting interactions, describ-
ing the fact that an interaction may come from a compiler exception.

5 Automatic Detection of Interactions

The difficulty of detecting structural interactions depends on their kind (Sec-
tion 2.2). As already mentioned, base-action and action-action interactions are
detected by the bytecode transformer that acts as the weaver because these in-
teractions lead to compilation errors. Therefore detection of these interactions
is not discussed any longer. On the other hand, action-cut interactions are much
more subtle to detect, precisely because they are not incorrect from a compilation
viewpoint. However they may semantically have a great impact.
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Fig. 7. Model of structural interactions.

5.1 Detecting Action-Cut Interactions

Detecting an action-cut interaction implies knowing, on the one hand, what
structural elements a given aspect effectively introspects as part of determining
its cut, and on the other hand, what changes are performed by other aspects.
Then, if one aspect introspects a property that is changed by another aspect,
there is a potential interaction.

It is important to note that the issue of the automatic detection of action-
cut interactions can be simplified if the aspect system only offers limited and/or
declarative means for the cut or the action of a structural aspect (e.g. AspectJ
and Compose* [16] both have restricted languages for structural cuts and ac-
tions). In this work, our objective is to maintain the applicability of Reflex as a
versatile AOP kernel, therefore we do not accept any alternative that restricts
the expressiveness of the kernel. Both cuts and actions are defined operationally
in full Java over the structural reflective model, as presented in Section 4.1.

Without restricting expressiveness, an alternative that simplifies the detec-
tion issue is to require that the aspect programmer declares explicitly what an
aspect introspects and what it changes. This alternative has the double benefit
of simplifying detection, and of ensuring that the kernel detects only interactions
that are deducible from the declarations of the programmer; however it imposes
a strong burden on the programmer.

In this work we therefore opt for an alternative approach: while maintaining
the expressiveness of Reflex, we aim at automatic detection of interactions that
does not require any specific declarations from the programmer. Our approach
is to use the structural entities themselves as the source of information of what
is being observed and changed: during weaving, upon observation and changes,
structural entities emit logic facts to a logic engine newly integrated into Reflex.
Interaction logic rules then allow the logic engine to detect interactions. Fact
generation and interaction rules are described hereafter. The logic engine is also
used in the handling of interaction resolutions specified by the programmer, as
discussed in Section 7.
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5.2 Fact Generation

Two sets of facts are generated by structural entities themselves in order to
keep track of the activity of structural links during weaving: introspection facts
(what structural elements are looked at), and intercession facts (what structural
changes are performed).

Upon introspection, i.e. evaluation of the class selector of a link, structural
elements (classes, methods, fields, etc.) generate logic facts indicating that they
are being observed by a given link. For instance, suppose a structural link L1
selects classes that have a field with the @Persistent annotation. For the eval-
uation of its class selector over class C, L1 first accesses the set of fields of the
class and then, on each field it accesses the set of annotations of the field and
finally, it reads the name of each annotation. This results in the generation of
the following facts:

– The RClass object representing class C generates the fact that L1 reads its
set of fields:
readFields(’L1’,’C’).

– Each RField object f representing a field of C generates the fact that L1
reads its pool of annotations:
readFieldAnnotations(’L1’,’C’,’f’).

– Each RAnnotation object a representing an annotation of a field f of C
generates the fact that L1 reads its name:
readFieldAnnotationName(’L1’,’C’,’f’,’a’).

Similarly, upon intercession, i.e. evaluation of the metaobject bound to a
link, structural elements generate logic facts indicating the changes being made
to them. For instance, if a link L2 is applied to class C, and as part of its action
adds the annotation @Persistent to its field f, then class C generates:
addAnnotationToField(’L2’,’C’,’C’,’Persistent’,’f’).
The above fact includes two class being mentioned: the application class (i.e. the
class to which the s-link is being applied) and the target class (i.e. the class to
which the s-link adds the annotation on a field). These two classes need not be
the same because, as a side effect of applying to a given class, an s-link can very
well perform structural changes on another class (e.g. one of its inner classes).

The Reflex logic engine supports similar facts for all possible read and add
operations performed on structural elements. Thanks to an abstract factory for
the implementation classes of the structural model (the coordination layer on
Fig. 6), we have developed a complete set of structural element classes that
generates facts as discussed above. Of course, fact generation requires that at
any time during weaving, Reflex exposes (a) the link being applied and (b) the
class on which it is being applied.

5.3 Interaction Rules

With the above facts at hand, an interaction is easily detected using the logic
engine. An interaction rule states that whenever an introspection fact and an
intercession fact are related, there is an interaction.
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For instance, the interaction rule below states that there is an interaction
regarding the annotations of a field F in class TgtCls between two links A and
B, whenever link A reads the set of annotations of field F in class TgtCls, and
when link B, applied to AppCls, adds an annotation Annot to the same field F
in TgtCls:

interactFieldAnnotations(A,B,AppCls,TgtCls,Annot,F) :-

readFieldAnnotations(A,TgtCls,F),

addAnnotationToField(B,AppCls,TgtCls,Annot,F).

The logic engine includes many interaction rules as above, namely one for
each possible kind of action-cut interaction. Note that the interaction rules are
indeed a bit more complex, as they must take into account the resolution speci-
fications. We come back to this in Section 7.2. Section 7.3 gives an operational
view on the weaving process, explaining when detection is performed.

6 Reporting Interactions

When an interaction is detected via the logic engine as explained above, a cor-
responding Java interaction object is created, embedding all necessary pieces of
information characterizing the interaction (recall Fig. 7). Therefore, the result of
a detection phase is a collection of interaction objects. These interaction objects
can be presented in a variety of ways to the programmer.

6.1 Simple Reporting

In the current implementation, Reflex only uses a text-based interaction report
solution. It simply outputs a string representation of all interaction objects. For
instance, the interaction object corresponding to the field annotations interaction
presented in the previous section is printed as:

Interaction L1-L2 [action-cut/non-conflicting/non-effective]

-> L1 is reading the set of annotations of field f of class C.

-> L2 (applied to class C) adds an annotation to field f of class C.

The interaction is described with the involved links, its type (action-cut), it is
non-conflicting (no compilation error), and non-effective (meaning L2 is applied
after L1 reads the set of annotations of f). The rest of the output describes the
object of the interaction.

As another example, suppose two links L3 and L4 both add a method of
signature int m() to a class C. This action-action interaction is reported as
follows:

Interaction L3-L4 [action-action/conflicting/effective]

-> L3 (applied to class C) adds a method int m() to class C.

-> L4 (applied to class C) adds a method int m() to class C.
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The interaction is conflicting, meaning that the addition of m by the second
link applied could actually not be performed because of a compilation error. It
is effective, since all action-action interactions are by definition effective (Sec-
tion 2.4). Finally, the following illustrates the output of a base-action interaction
(supposing class C already has a method m):

Interaction L3 [base-action/conflicting/effective]

-> L3 (applied to class C) adds a method int m() to class C.

-> class C already has a method int m().

6.2 Towards Advanced Reporting

The simple reporting presented above is just but a necessary step to validate that
our detection mechanism works. It is however limited because all interactions
are reported in a flat text, which may quickly become too cumbersome for the
programmer to conveniently understand the issues at stake.

A first step towards better reporting is to include some report filters, filtering
out interactions with certain characteristics. For instance, one may prefer to see
only conflicts in a first step, without worrying about non-effective action-cut
interactions. More ambitiously, we envision a graphical environment with better
functionality for interaction reporting: in addition to filtering, the environment
should make it possible to view interactions sorted by type, by link involved,
by structural element subject to conflict, etc. All the potential is there in the
interaction report as a collection of interaction objects. This was actually the
greatest motivation for adopting a full object model for interactions. We believe
that the complexity coming from the interactions of various aspects can only
be tackled if such a tool allows a programmer to conveniently navigate through
interactions, resolving them progressively and seeing how the set of interactions
evolves. This is left as future work.

7 Resolution Mechanisms

Once the programmer is informed about the various interactions involved in a
particular application-aspects setting, resolutions can be declared. In this section
we first present the different resolution mechanisms from the viewpoint of the
programmer, and then explain in Section 7.2 how the resolution declarations are
taken into account by the Reflex kernel. Section 7.3 ends with an explanation of
the overall weaving process of Reflex, which supports our proposal.

7.1 Programmer Viewpoint

The different resolution mechanisms available to the programmer are summa-
rized on Fig. 8. They are all provided as static methods of the Rules class. We
briefly discuss them hereafter.
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Fig. 8. Resolution mechanisms in Reflex.

Ignoring Interactions. It is possible for the programmer to state that inter-
actions involving any given link, or interactions between two given links, do not
matter and that Reflex should simply ignore them. In the case of non-conflicting
interactions, this is no problem, but in the case of conflicting interactions, the
consequence is that upon a compilation error, the underlying exception is thrown
back to the programmer. This mechanism is basically used to shut down the de-
tection layer of Reflex, for certain links, so that the resulting behavior of Reflex
is the same as prior to this work.

Skipping Actions. The second category of resolution mechanisms results in
some aspect action being skipped. There are several services for this. First,
skipActionOn(l,cs) declares that the action of l should not be applied to
classes matched by the cs class selector. This can be seen as a mechanism similar
to the global pointcut restrictor introduced in EAJ [1]: a means to further
restrict the application of an aspect “from the outside”. Then, skipConflicts
services allow the programmer to declare that if a conflicting interaction (base-
action or action-action) occurs, then the action of the responsible link should be
skipped (either always or only for interactions related to certain classes).

A sub-category of mechanisms for skipping actions is to declare dependen-
cies, as already introduced in [28]. One type of dependency is to declare that a
link applies whenever another one (a.k.a. implicit cut). But more interesting to
us here is the mutual exclusion mechanism: stating that a link should not apply
if another one does (declareMutex). An alternative is to declare that the inter-
action of two links actually represents an error and therefore weaving should not
proceed. This is obtained using declareError.

For expressing more intricate dependencies between links that are not ex-
pressible using the mutex-error mechanism above, Reflex supports lower-level
interaction filters, specified using addFilter. Interaction filters are Java objects
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that can filter out some links out of a given interaction depending on the links
present in the interaction, similar to the combination strategies of JAsCo [27].
Actually, the mutex and error mechanisms are implemented using simple inter-
action filters.

Combining Elements. When two links add elements with the same signature
to the same structural element (e.g. two methods int m() to a class C), it is
possible to specify a combinator. For instance, a method combinator is an object
that, given a method upon which there is a conflict, returns the source code of a
method that should be inserted as a combination of the original method on the
one hand, and of the new method on the other hand. This mechanism is taken
from the composition operator in traits [26]. For instance, if a class has a method
String toString() and a link l adds a method with the same signature, this
results in a base-action conflict. The programmer can then declare that the two
methods be combined as follows:

Rules.combineMethod(l, new MethodCombinator(){

public boolean match(RMethod m){

return "toString".equals(m.getName()) &&

m.getArgumentTypes().length == 0;

}

public String getCombination(){

return " $orig_m$() + \" (aka. \" + $new_m$() + \")\" ";

} }

The above code declares that if link l is involved in a base-action interaction con-
cerning a no-arg method named toString –as expressed by the match method–,
then the original method and the method added by l should be combined in
a way that the result is the combination of both results –as expressed by the
getCombination method–. The return source can refer to the original method
using $orig m$ and to the added method using $new m$. The above combina-
tion method specifies that the two toString methods are combined in a way
producing a result like "original-string (aka. new-string)". This is done
by renaming and aliasing both the original and the new method, and by adding
the combination method to the class (with the original signature), exactly as
done for traits.

This feature is at the moment only provided for methods, but one can think of
other combinators in the line of Hyper/J [25]. Of course, to be more convenient,
this feature would greatly benefit from concrete syntax, in order to avoid painful
string escaping and the like. Concrete syntax for the Reflex kernel is on our
research agenda (see [29] for preliminary elements).

Controlling Ordering. Structural links are applied sequentially, in an arbi-
trary order. If required, the programmer can enforce some ordering constraints,
either by stating that a link should be applied before another (precede), or by
stating that a link should be applied before all other links (precedeAll). If two
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links are said to apply before all others, then their relative order is arbitrary,
unless a precede declaration addressing their relative order is given. Because by
default, as said in Section 4.1, a link does not see the changes made by others,
s-link application is typically commutative. However, this is always true from a
metalevel point of view (the reifications of program elements), but not always
from a base level point of view (the actual bytes): it can happen that the code
of an inserted method a contains a reference to a method b: although invisible
at the metalevel, the method b is required for the proper insertion of a. So it
can be necessary to enforce ordering for compilation to succeed, or for method
combinators to be applied in the desired order. More generally, ordering makes
sense when combined with visibility, as discussed hereafter.

Controlling Visibility. When introspecting a class for determining if its cut
matches or not, a link only sees what has been declared to be its view of the
program. By default, a link only sees the original program definition. But it is
possible to declare that a link has an augmented view of the program, i.e. in-
cluding changes made by other links:

(1) Rules.augmentViewOf(l1, l2);

(2) Rules.addToDefaultView(l);

Line (1) above declares that l1 sees all changes made by l2. Several links can
be given to augmentViewOf. Line (2) adopts a different focus, by promoting all
changes made by l as part of the default view.

To support the subjectivity introduced above, Reflex automatically records
the identity of the link affecting a given structural element as a metadata of
the element. Metadata are stored in a general-purpose key-value property map
attached to each structural element, and can be used for many purposes. In
particular, it is possible for a link to force a new structural element to be always
visible (resp. always hidden) by setting a particular property forceVisible
(resp. forceHidden).

Finally, because a link can only see changes made to a class before actually
looking at that class, visibility requires ordering: all visibility declaration always
trigger the corresponding ordering declarations (e.g. augmentViewOf(l1,l2)
triggers precede(l1,l2)). Note that it is also possible to express conditional
visibility, i.e. visibility that happens only if ordering is separately stated.

Discussion. The presented mechanisms for resolution are always expressed at
the level of links or classes. It is indeed possible to go at a finer level of granularity,
for instance down to particular members. We have chosen to retain the current
granularity for a matter of simplicity, but are willing to refine the API if required.

Another issue is the way resolution is expressed. The above presentation
suggests that resolution is expressed in Java, not in Prolog. This is the case
because we have maintained the abstraction that Reflex is a Java AOP ker-
nel, so the whole API is available via Java. However, this does neither preclude
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expressing resolution directly in Prolog nor using a more straightforward con-
crete syntax that some aspect languages defined on top of the kernel may pro-
vide. Recall that Reflex is a kernel for multi-language AOP, supporting several
flavors of general-purpose and domain-specific aspect languages [31, 13]. This
includes aspect languages with explicit support for aspect composition, like As-
pectJ declare precedence, as well as languages dedicated to express aspect
composition. Designing a specific language covering the full range of composi-
tion features of Reflex is left as future work.

7.2 Kernel Viewpoint

Once resolution is stated by the programmer, the kernel must take it into ac-
count for both application of structural links (weaving) and further detection of
interactions. We now briefly discuss how the previous mechanisms are handled
by the kernel. Some elements are dealt with in the Java world, others in the
Prolog world, while some require a mix of both. All this is transparent to the
programmer.

Ignoring interactions. The kernel generates the corresponding logic fact
(ignore(l1,l2) or ignore(l1, )), and all interaction rules are extended
to take into account the fact that for an interaction to exist (and hence be
reported), there must not be an ignore fact matching the interacting link(s).

Skipping actions. A removal of a link from an interaction is expressed as a
fact (removed(l,c) for all concerned classes), and all interaction rules are
extended to take such facts into account (interacting links must not have
been removed).

Combining elements. This is handled at the Java level only, using a small
extension of the online compiler of Javassist [8] on which Reflex relies.

Controlling ordering. All precedence declarations are mapped to logic facts
(ord(l1,l2) or ord(l1, )). A Prolog insert-sort algorithm, which ensures
that circular dependencies are detected and reported as specification errors,
sorts s-links appropriately when asked by the Java core.

Controlling visibility. A visibility declaration entails the associated ordering
declaration (with its corresponding logic fact as discussed above), plus a
change in the visibility of the concerned structural elements. The visibility
semantics is handled by the classes implementing the structural model (the
coordination layer in Fig. 6): each structural element knows by which link(s)
it can be seen, in addition to knowing which link created it (if any). Also,
interaction rules are extended in order to take into account visibility (this
affects the effectiveness of the detected interaction).

7.3 Overall Weaving Process

We now have all the elements required to give an explanation of the overall weav-
ing process of Reflex (Fig. 9). A class being loaded first passes through the SLA
phase (structural links application), before going to the BLS phase (behavioral
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Fig. 9. Overall weaving process of Reflex.
(The grayed activities are those interacting with the logic engine.)

links setup). The reason for the ordering of these two phase is to possibly allow
behavioral links to affect join point shadows in structural elements added by
structural links (see [28] for details). Once both phases are complete, the weaver
consults the logic engine for all detected interactions and forwards the collec-
tion of interaction objects to the interaction report system in use (Section 6).
All grayed activities in Figure 9 denote activities that interact with the logic
engine: e.g. in the interactions reporting phase, the logic engine is asked for all
the detected interactions. The other activities, specific to the SLA phase, are
discussed hereafter.

A Staged Application Process for Structural Links. The structural link
application process of Reflex is different from the one originally presented in [31].
It has been modified in order to make action-cut interactions possibly effec-
tive. Indeed, in the previous version, upon the loading of a class, all s-link were
matched against the class to determine the set of applying links, before any was
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applied. This simply forbids an s-link to see the changes of others, as it cannot
evaluate its cut against the modified version of the class1.

The current process for the s-link application phase is therefore more complex
as it implies organizing s-link application in several stages: taking into account
the precedence and visibility relations between links, the logic engine is requested
for a number of s-link batches (Fig. 9/SLA). A batch contains a number of s-
links fulfilling the property that they are independent, in the sense that they are
oblivious to one another for the evaluation of their cut. In other words, their
application is commutative: all s-links within a single batch can be matched and
applied to the current class in any arbitrary order. On the other hand, if a link
l1 must see the changes made by a link l2, then l1 is put in a batch processed
after the batch containing l2. The independence properties are inferred by the
logic engine based on the dependency and ordering specifications.

Within a batch, the process is as follows: all s-links are matched against the
current class (i.e. their class selector is evaluated to see if they apply), and within
the resulting links, mutual exclusion and other interaction filters are applied. Fi-
nally, the remaining links are applied. Note that during the matching of a link
against the current class, introspection facts are generated in the logic engine,
and during s-link application, both introspection and intercession facts are gen-
erated; this is why these two activities are grayed on Fig. 9. These generated
facts serve as the basis for the subsequent detection of interactions (Section 5).

8 Discussion

In this section, we discuss our previous work on aspect composition and how
it relates to the current proposal. We then address related work in the area of
structural aspect composition and finish by briefly presenting tracks of future
research continuing the present effort.

8.1 Previous Work

In [28], we presented several dimensions of aspect composition and how they are
handled in Reflex. In particular, we exposed the approach for automatic detec-
tion and explicit resolution of aspect interactions, mainly for behavioral aspects.
The case of structural aspects was deliberately left aside as future work. Interac-
tions of structural aspects were only coarsely detected whenever two structural
links matched against the same class. Conversely, in this work we go much fur-
ther in terms of the precision of interaction detection, and provide declarative
mechanisms for their resolution. The latter was not addressed in previous work.

The mirror-based structural API was already present in our previous work,
because it was necessary to control the visibility of structural changes with re-
spect to behavioral links. Although structural changes could be visible to the
1 Note that the structural correspondence issue was dealt with in the context of in-

teractions between the changes made by s-links and the following installation of
behavioral links [28].
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cut of some behavioral links, they were always hidden to all structural links.
This was ensured by the fact that all class selectors of structural links were
evaluated with the original class definitions, before some structural changes were
actually performed. The process has been refined in this work in order to al-
low for controlled interactions between structural links, in particular action-cut
interactions.

Also, this work proposes a classification of interactions kinds as well as associ-
ated detection and resolution mechanisms. A preliminary version of this analysis
was reported in [17]. The present version improves on it, based on our experience
with the concrete implementation of the features presented here.

8.2 Related Work

Our general approach on aspect composition is inspired by the work of Douence
et al. [9]: we adopt the proposed framework of automatic detection and explicit
resolution of aspect interactions. However, the present work does not share more
with their work, as it is concerned with structural aspects, and [9] only focuses
on behavioral aspects. Actually, in the area of aspect composition, not much
has been done on structural aspects. Most work on aspect composition focuses
on behavioral aspects. In AspectJ [18], base-action and action-action conflicts
are reported as compilation errors, while action-cut conflicts are not reported.
Furthermore, very little expressive power is given to the programmer to resolve
conflicts.

Klaeren et al. have focused on the issue of validating combinations of as-
pects [19]. They use assertions to ensure the correctness of the dependencies be-
tween aspects with respect to the specification, focusing on mutually-exclusive
aspects. However they do not address means to resolve interactions between as-
pects. Reflex also covers mutual exclusion, either declaratively or operationally
with interaction filters.

JAsCo [27] provides two mechanisms for aspect composition: precedence
strategies and combination strategies. Although JAsCo is restricted to behavioral
aspects, the above mechanisms are interesting and actually have their equiva-
lence in Reflex, both in the behavioral and structural parts. In JAsCo, an aspect
is deployed by specifying a connector that determines which hooks should be
enabled (the cut of an aspect) and which advice should be triggered when the
cut is matched. Within a connector that instantiates several hooks, it is possible
to specify explicitly the order in which associated advices are executed, leading
to fine-grained control on precedence strategies. This is similar to what can be
expressed declaratively in Reflex. However, this mechanism of JAsCo works fine
only for interacting aspects that are deployed by one connector. On the other
hand, Reflex allows precedence declarations to affect any aspect. For other inter-
action problems that are not solved by means of precedence strategies, JAsCo
provides combination strategies: a strategy is like a filter on the list of hooks that
are applicable at a certain point in the execution. With combination strategies,
one can programmatically exclude certain hooks from the current interaction.
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This is similar to what can be achieved in Reflex with interaction filters. Finally,
JAsCo does not automatically report on interactions.

In [22], Masuhara and Aotani discuss issues associated with the interac-
tions between aspect effects and expressive pointcuts, i.e. high-level and/or user-
defined pointcuts that specify join points of interest based on more high-level
information than mere join point intrinsic properties. This relates to our work
because Reflex also supports expressive pointcuts. In the specific context of struc-
tural links, expressive structural cuts can be expressed as has been illustrated in
Section 4.1. Masuhara and Aotani propose two properties of expressive point-
cuts required for aspect interactions, the first of which is directly related to our
work: it is stated that effects of aspects should be visible from the analyses of
expressive pointcuts. In the terminology we used in this paper, this means that
structural changes should be visible to the cut of other aspects. This is in the
line with the work of Havinga et al. [16], which we discuss further below. The
SCoPE compiler therefore supports this property by ensuring that the cut of an
aspect sees the changes made by others. We conversely adopt an approach in
which by default changes are hidden, in order to avoid unwanted conflation of
extended and non-extended functionalities, as discussed in the meta-helix archi-
tecture [6]. However, we do not hide the fact that there is a potential interaction:
Reflex detects and reports the interaction, and makes clear to the programmer
that the interaction is not effective (see first example of Section 6). Only if the
programmer desires some changes to be visible to the cut of some other aspects
are those changes made visible. This is declaratively stated by the programmer,
not automatically decided by the weaver. Declarative aspect composition has
also been proposed in [4, 24] but they are too restricted to behavioral aspects to
be transposable to the case of structural aspects.

In the area of structural aspects, the work of Havinga et al. directly relates to
ours. In Compose* [16], the approach consists in trying to automatically order
structural actions properly, and reject any specification that leads to circularity.
The automatic approach to resolution of interactions is interesting, but we rather
share the point of view that resolution should be done explicitly, as in many cases,
the precise resolution depends on specificities of the considered application [9].
As an example, action-cut interactions, although impossible to automatically
order, can be taken advantage of rather than resulting in circularity errors. In
Reflex, if two aspects have circular dependencies, then the programmer has the
full range of choice: choose one ordering or the other, and analyze the result,
or consider this circularity an issue and address it by modifying the aspects. In
all cases, the programmer is aware of the circular dependency, because e.g. an
action-cut interaction is reported in both orderings, but can actually declare
which ordering is correct.

Lopez-Herrejon, Batory and Lengauer have proposed an algebraic model of
aspects seen as program transformation that makes it possible to reason more
clearly about aspect composition [20]. They consider both structural advices (in-
troductions, a.k.a. inter-type declarations) and behavioral advices (simply called
advices). They propose two models for aspects. The first one models aspects as
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pairs < a, i >, where a is the advice part and i the introduction part. In the
second model, aspects are modeled as a function A(x) = a(i+x), where x is the
program to which an aspect A is applied (+ is the introduction sum, that is, the
addition of structural elements). They show that both models differ in terms of
the composition they enable. The pair model expresses unbounded quantification
(i.e. the scope of advice covers the entire program), while the functional model
expresses bounded quantification (i.e. the scope of advice extends over a stage in
the development of the program). They show that the functional model is more
expressive as it can express all compositions of the pair model, and more. Our
approach to composition definitely falls into the functional model, as illustrated
by the staged weaving process of Reflex (Fig. 9), which makes it possible for both
structural and behavioral advices to have a bounded scope: the scope of advice
(in our case both structural and behavioral) is bounded by the actual view of
that aspect over the aspectual changes made by other aspects.

Mehner et al. have proposed a technique for interaction analysis of aspects
at the model level [23]. Interactions and dependencies are detected using graph
transformation techniques at the level of activities that refine use cases. Although
our work is at the programming language level and not at the model level, we
share the idea of reporting interactions to system developers in a convenient
manner. [23] mentions conflict and dependency matrix as graphical tools to help
in the understanding of a system. These visualization techniques are among
the many possible interaction reporters we are considering for future work, as
discussed in Section 6 and below.

In related areas dealing with structural composition, the method combination
approach we have adopted is that proposed for traits in [26]. The generalization
of this idea to structural elements other than methods brings us to the general
composition operators proposed in [15], whose integration into Reflex as new
resolution mechanisms for base-action and action-action conflicts seems both
possible and interesting. For these resolution mechanisms, it however seems that
offering a dedicated syntax is a must, in order to avoid cumbersome string-based
specifications. Extensible concrete syntax for Reflex is on-going work [29].

Finally, the subjective approach adopted by Reflex, in which aspects have
their own view on the program structure, which can be declaratively augmented,
is, to our knowledge, a distinguishing feature of our work. It enables fine-grained
control in the resolution of subtle interactions. Also, the detection and uni-
form representation of the three kinds of structural interactions (base-action,
action-action, and action-cut), in the context of fully expressive cut and action
languages, is also, as far as we know, a particularity of this proposal.

8.3 Future Work

We are now exploring a number of extensions to this work. First of all, the
handling of behavioral link composition [28] is currently implemented in Java.
The cumbersome implementation of some deductions, e.g. for ordering and mu-
tual exclusion, was actually among our main motivations to start integrating a
logic engine when working on structural aspect composition. This part should
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be modified in order to benefit from the logic engine now integrated in Reflex.
This should result in a more concise and robust implementation of the existing
mechanisms for behavioral link composition.

Once this integration performed, we need to further experiment with the
composition process we have presented here, including behavioral aspects, and
coming up with an integrated process for both structural and behavioral aspect
composition. In order to support this process, it seems crucial to consider ap-
propriate tool support. This means considering an advanced aspect interaction
management environment, for assisting the programmer in browsing through
detected interactions and declaring their resolution, in an intrinsically iterative
manner. Also, recall that because we do not compromise with the expressiveness
of the cut and action languages, we generate all introspection and intercession
facts that may point at an interaction. As a consequence there may be too many
reported interactions. An appropriate aspect management environment should
help in limiting the cognitive overhead induced by this defensive fact generation.

Finally, since the beginning of this paper, it has been made clear that we only
consider aspects whose structural changes consist in adding structural elements
to a base program. It makes sense to extend this work to other transformations
such as direct renaming of structural elements or modification of their other
properties.

9 Conclusion

We have presented a general analysis of interactions between structural aspects,
identifying different kinds of interactions, as well as the corresponding detection
and resolution mechanisms. We have then proposed a composition process that
involves the programmer in a cycle of automatic detection of interactions and
explicit, declarative resolution of these interactions. Finally, we have described a
full implementation of the proposed process in Reflex, supporting (a) a uniform
representation of all the identified interaction kinds, allowing extensible reporting
tools to be developed, (b) the automatic detection of interactions, including
action-cut interactions, based on a logic engine integrated into Reflex, (c) the
different declarative resolution mechanisms previously highlighted.

On a more global standpoint, this work also illustrates the interest of sub-
jectivity and logic programming in addressing some of the challenges raised by
the wider use of aspect-oriented programming. We believe that next generation
environments for AOP should consider such advanced mechanisms in order to
assist programmers facing the complexity of AOP in the large.
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