
Unveiling Models
What’s about Model-Driven Approaches

Daniel Perovich

29/08/06

1 Introduction

To model has been an intrinsic activity for men to conceptualize and reason
about reality. Models have played an important role in several human activ-
ities, mainly in the context of science and also engineering. As well as other
engineering disciplines, models have been incorporated in software engineering,
and hence models have aided developers on abstracting, designing and docu-
menting software systems. Modeling languages emerged in the 80’s, increasing
their acceptance and applicability in the 90’s. A working software system is
the most important artifact of a software development project; such an artifact
can be considered as a model expressed in a particular language, namely the
language understood by the technological platform intended to execute such
model. Several intermediate artifacts, and particularly models, are built in the
process of reaching the final working system. Which models must be built, who
must do it, and when and how they are to be done, is specified by the software
development process guiding the software development project. The diversity
of possible processes, and hence kind of models, is enormous, and clearly not
yet standardized. This reflects the fact that the software engineering discipline
is still incipient, and consequently, it is very rich in improvements and of rapid
evolution.

In such a context, the term of model is increasingly recognized as central. How-
ever, as other terms in the discipline, a veil of mysteriousness is still wrapping
it up. We consider that there are three directions to tackled such concept, and
thus, unveiling models. First, it is important to set up the intuition of the term.
The concept of model has been revisited by several authors in the recent years.
Even though there is no standard definition for it, several aspects are recurrent
in those definitions. To revisit the definition in order to get the intuitive mean-
ing of the term is one of the directions to explore. Second, the foundation that
supports the term must be stated. Major efforts in this direction has been placed
by means of a meta-circular approach based on the object-oriented paradigm;
such approach is followed by the four-layer architecture proposal of the Object

1



Management Group (OMG) [8]. To build the foundation of something, i.e. to
provide the semantics for a concept, implies to map this concept to a more
basic and better-understood set of concepts. In this sense, the object-oriented
paradigm is the target of OMG’s approach. To provide a mathematical founda-
tion for models is the second direction to undertake. Third, the concept must
be studied from the perspective of its applicability. We have already mentioned
that models are actually in use, but no standard procedures are defined to aid
their applicability at each step of a software development project. Several au-
thors have proposed different approaches and have clearly defined certain kind
of models, but such effort is far from being complete. What is more, there is
no clear procedure to characterize models and neither to contextualize software
development techniques with respect to them. To aid such understanding in the
third aspect to cover.

The goal of this work is to tackle these three directions. First, we revisit the
definition of the term model. We propose several aspects from which this term
should be analyzed, and as a result, we build a general definition for the term.
Second, we develop the foundations for the concept of model and its related
terms. Our approach differ from those found in the related literature as we
build a mathematical foundations based on graphs. Remarkably, not only this
foundation is aligned to the intuitive meaning of the concepts, but also it is
easily mappable to OMG’s four-layer architecture. Finally, we propose a multi-
dimensional framework that accomplishes two purposes: to characterize models
and to contextualize existing software development techniques. Most of the dis-
cussion may not result new to the reader as the topics we work on are somehow
treated in the bibliography. Nevertheless, to the best of our knowledge, to or-
ganize the discussion in terms of a multidimensional space which thoroughly
explores six aspects that characterize the term, is not done in the bibliography.
The proposed framework helps to clearly define what kind of representation a
model should look for, which kind of relationships with other models are pos-
sible, and how software development techniques are involved. Then, this work
make the following contributions:

_ identifies several aspects that provide the intuition on the meaning of the
term model and its related terms, based on various definitions proposed
by different authors, and proposed a definition that embraces all these
aspects;

_ builds a simple but accurate foundation which formalizes the terms of
model, modeling language and model transformation, using graphs to ex-
press their semantics;

_ propose a multidimensional framework to characterize the term model and
its applicability, which in turn helps to contextualize software development
techniques and provides a clear basis for understanding how model-driven
approaches can/will evolve.

2



This work is organized as follows. To begin with, inspired on the definitions
provided by several authors, Section §2 analyzes different aspects of the term
model in order to set up the intuition on it. Later, Section §3 deepens this
intuitive meaning. It proposes a rigorous definition for model, introduces the
need for modeling languages, and defines the concept of model transformation
based on those formal definitions. Afterwards, Section §4 presents the proposed
multidimensional framework to categorize models and to aid the understanding
on several software techniques such as software development processes and their
disciplines, model-driven approaches, aspect-oriented approaches, etc. Finally,
Section §5 concludes this work commenting on important remarks that can be
derived from the study/application of this framework. It also suggests research
lines that can be further developed.

2 Definition/Intuition

Unlike other terms in software engineering, the concept of model is broadly un-
derstood (at least intuitively) and accepted in the software community. Either
due to a larger trajectory of usage in other disciplines or to the fact that sub-
sequent authors have been refining the definition previously proposed by other
authors, nowadays such definitions are being revisited with minor changes.

In this section we identify and analyze several aspects which are involved in the
definition of the term model and its related terms. Our goal here is to set up
the intuitive understanding of these terms. Afterwards, a definition for all of
them is proposed so as to close this section. The aspects involved in the concept
of model are the following.

What is being modeled. A model is a representation of another thing, being
such thing a physical, abstract or hypothetical reality [3]. The model is not the
actual thing, it just describes or represents those aspects of the reality that are
important from a given perspective and fulfills a given objective. In [2] it is
discussed the need for a particular term to name what is being modeled; we
call system to what is being modeled by a model. As noted by the authors in
[2], even though the term system generally refers to a software system in the
software engineering discipline, this term is conceived in a broader sense and
complies to whatever the target of a model is; e.g. for a business model the
system is the business itself.

Rephrasing: a model is a representation of a system.

Considered a representation of a system. Then, the model is not the
system itself, they are separate things. A model is a representation or description
of (part of) the system. Whether the system may be physical or not, a model
is an abstract thing. A system is generally complex and hence unmanageable

3



directly. A model focuses on the set of characteristics of the system aimed to
certain purpose, by omitting those that are irrelevant to it. As established in
[10], a model captures the essential aspects of a system and ignores others; which
ones are essential is a matter of judgement that depends on the purpose of the
model.

Rephrasing: a model is a representation of (part of) a system, capturing the
essential aspects of such system and ignoring others.

Level of meaning. Some authors use the term abstraction to characterize
the relationship between a model and the system, i.e. a model is an abstraction
of the system. Considering that to abstract means to pay special attention on
something to the exclusion of all else, hence a model is an abstraction in the
sense that it focuses on essential parts ignoring others considered as detail. From
a different viewpoint, the abstraction provided by a model can lay at different
levels of meaning, focusing on distinct concerns, and partially or completely
describing the system; these are separate dimensions in which a model can be
formulated. We explore this idea further in Section §4. However, it is important
to keep in mind that a model represents a system at a given level of meaning or
understanding, and so compelling a set of particular points on the mentioned
dimensions.

Rephrasing: a model is a representation of (part of) a system, capturing the
essential aspect of such system and ignoring others, at a given level of meaning.

Purpose and perspective. As studied in [10], models are used for several
purposes: from capturing and thinking about the requirements, design and
implementation of a system, to organize, master and explore alternatives of a
complex system. The better understood the purpose, the most useful the model
(for this given purpose).

In addition, a model is built from a particular perspective. Several stakeholders
are involved in a software development project and different aspects of a system
may be of interest for them. A model usually serves a given purpose of a
particular (set of) stakeholder(s) or covering a particular (set of) concern(s).

Rephrasing: a model is a representation of (part of) a system, capturing the
essential aspects of such system and ignoring others, at a given level of meaning,
expressed from a particular perspective and serving an specific purpose.

Its constituent elements. A model is a composed artifact. It consists of
a set of model elements structurally organized by means of different kind of
relationships such as composition, aggregation, specialization, among others. In
the Unified Modeling Language (UML) [9], as noted in [10], a model comprises
a containment hierarchy of packages in which the top-level package corresponds
to the entire system. We consider such a description to be too specific, and

4



so prefer the constituent elements to be of any kind and related by any sort of
relationship. A model element is a representation of a particular characteristic
of the system, being the interconnected set of model elements the representation
of the entire system.

Rephrasing: a model is composed by a structurally organized set of intercon-
nected model elements, each representing a particular characteristic of the sys-
tem.

A medium in which it is expressed. As we mentioned above, a model is
an abstract and intangible thing, i.e. it is not physical or manipulable. In order
to be used by more than one individual, a model must be somehow denoted
so as it can be shared among individuals and be the subject of work for the
development team (e.g. studied, updated, etc.).

A model is expressed in terms of a modeling language. A modeling language
defines the set of constructs that can be used to express models. This set of con-
structs establishes (i.e. determines and hence limits) the kind of representation
of a given system that can be made by means of the language. From another
point of view, a particular aspect of a system can be represented by those model-
ing languages that provide the necessary constructs to fully represent this aspect
at a specific level of meaning and precision. A modeling language determines
both the syntax (either textual or graphical) and the semantics for each kind
of construct. The clearer the syntax and the more unambiguous the semantics,
the clearer and more unambiguous the model built by means of the language.

Counting with a well-defined modeling language enables the manipulation and
storage of models, particularly by computer-assisted tools. In this context, a
tool aimed to view and edit models is called a model viewers or editor, while a
tool that persists a model is called model repository. Computer-assisted tools
(environments) generally involve this kind of tools among others. Besides, and
somehow more important, such tools permits to automatically manipulate mod-
els generating a given output (models) from a particular input (also models).
Such tools, called model transformations, are the basis for model-driven ap-
proaches.

Rephrasing: a model is expressed in terms of a modeling language which defines
(both the syntax and the semantics of) the set of constructs that determines and
limits the kind of representation of a system that can be made by models built on
this language. A modeling language makes a model tangible and operable, and
hence, enables the development of computer-assisted tools for viewing, editing,
storing and transforming models.

5



Definition

Summing up these aspects, we can define the term model in the following way:

A model is a representation of (part of) a physical, abstract or hypo-
thetical reality, called system, capturing its essential aspects and ignoring
others, at a given level of meaning, expressed from a particular perspec-
tive and serving an specific purpose. A model is a composed artifact
structurally organized by a set of interconnected elements, called model
elements, each representing a specific characteristic of the system. As a
model is an abstract thing, a modeling language is used to express a model
and its constituent parts. A modeling language comprises the definition
of the syntax and semantics of the set of constructs that determines and
limits the kind of representation of a system that can be done by models
expressed on the language. A modeling language makes a model tangi-
ble and operable, enabling the development of computer-assisted tools for
viewing, editing, storing and transforming models.

3 Foundation

In the previous section we study the different aspects involved in the definition
of the term model and we provide a concise definition of it. Even though that
section encompasses the broadly-understood conception of what a model is, such
definition, expressed in terms of natural language, can only help on aligning the
readers’ intuition of what a model comprises. In this section we encourage a
formal definition of the term. In addition, we complement the formal foundation
by also defining the related terms mentioned in the previous section.

In this section we first present a formal definition for model based on graphs.
Then, we introduce the notion of modeling language which completes the defini-
tion of model. Later, we formally define model transformation. Finally, we con-
clude this section by commenting on the relationship among our formalization
and the well-known specification practice by means of four-layer architecture
proposed by the OMG.

3.1 Model

A model is particular kind of graph with a specific set of characteristics. Initially,
let’s consider such graph G as a pair (VG, EG), where VG is a set of vertexes
and EG is a set of edges. Let’s now analyze them separately in order to come
up to a full definition of the term.

Each vertex v ∈ VG has identity, is typed, and has a labeled tuple associated
to it. Vertexes have identity, that is, each vertex can be distinguished from
any other, even though the associated information (their corresponding labeled

6



tuple) coincide. The typing property of vertexes organizes the set VG in several
(possible overlapping) subsets; the type of the vertex characterizes its meaning.
Finally, each vertex has a labeled tuple associated to it; such tuple holds data
which is particular to the vertex. Hence, a graph G consists of a set of vertexes
VG, a typing function τVG from the set of vertexes VG to the set of vertex types
TVG , and a function δVG from the set VG to the set of labeled tuples ∆VG that
indicates the associated labeled tuple to each vertex.

The component EG of a graph is a set of ordered pairs of elements of VG, named
edges. Each edge e ∈ EG has identity, i.e. it is possible to distinguish among
two edges, even though they hold the very same data and corresponds to the
very same pair of vertexes. Notice that this implies that EG is a multi-set if
its elements are simply ordered pairs, as the pair (v, u) can appear more than
once. Moreover, EG can have loops, i.e. there can be edges with the very same
vertex in both component of the ordered pair. There exist two functions that
for each edge obtains the first and second component of the pair, respectively.
As vertexes, edges are typed and has a labeled tuple associated to it. Again,
the type categorizes the edges and characterizes their meaning, and the labeled
tuple hold the edge’s data. Hence, a graph G consists of a set of edges EG,
a typing function τEG from the set EG to the set of edge types TEG , and a
function δEG from the set EG to the set of labeled tuples ∆EG that indicates
the associated labeled tuple to each edge.

It is possible to extend even further the notion of edge. Instead of considering
binary edges (as they are ordered pairs), we can define edges as an n-ary tuple
of vertexes from VG; for example, this approach allow us to have ternary re-
lationships among vertexes. Moreover, each component of the n-ary tuple can
also be a set of vertexes Ve ⊆ VG instead of a simple vertex; this extension allow
us to establish relationships between set of vertexes. An additional extension
is to allow edges to be n-ary tuples of (sets of) elements in VG × EG, allowing
also to establish relationships among edges. By gaining in flexibility we loose
in simplicity. Hence, we will keep the notion of edge simple as generally such
complex structures can be simulated by additional vertexes and simple edges.

Then, a model M is defined by the tuple (VM , τVM , δVM , EM , τEM , δEM ). Notice
that the set of vertex types TVM and the set of edges types TEM , corresponding
to the codomain of the functions τVM and τEM respectively, were explicitly
excluded from the definition of a model M . Besides, the structure of the of
the associated labeled tuples, i.e. the codomain of the functions δVM and δEM ,
namely ∆VM and ∆EM respectively, were also excluded. Thus, our definition of
model is parameterized in these four aspects. By providing particular sets for
each of these parameters we can have a model fully specified.

3.2 Modeling Language

The previous definition of model explicitly left out the typing and data defi-
nitions for vertexes and edges. From another point of view, the definition of

7



such general aspects were factorized out from the set of models that share the
same aspects. Thus, we can initially define a modeling language L as the tuple
(TLV ,∆LV , TLE ,∆LE ) of particular codomains required to fully define a model.
By this means, a modeling language defines both the set of types (constructs)
and the set of associated data (construct structure) that can be used to define
particular models in the language.

Certain aspects still remain absent from the definition of modeling language. We
have stated previously that vertex and edge types characterize them. On one
hand, by characterize we can simple understand that types define groups in the
universe of vertexes and edges. On the other hand, we can expect that types
enforces specific restrictions on vertex and edges. This second approach allow us
to place further requirements to how vertex and edges can be defined in models.
Such requirements involve properties on the following: which type of vertexes
can be connected by edges of a given type and which kind of information can
be held by the associated tuples (i.e. the internal structure of the tuple) of
vertex and edges of given types. These kind of restrictions are structural and
further indicates how the constructs defined by the language (the types) can be
instantiated and used in order to build a model.

Generally, another set of restrictions are required in order to fully specified
the set of valid models. Such restrictions involve properties on the following:
how many times can a vertex participate on edges of a given type, general
properties on the values held by the associated tuples, and relationships among
the presence or absence of edges under given conditions. Many of this kind of
restrictions may have been resolved structurally, but generally, not only some of
them cannot be expressed in this way, but also they complicates the structure
of the models. Hence, we separate this set of restrictions from those that are
purely structural. Then, we can state that a modeling language L is a tuple
(TLV ,∆LV , TLE ,∆LE , SL, RL), where the first four components are as before, SL
is the set of structural restrictions that apply on the first four components, and
RL is the set of additional restrictions that must also hold for these components.
Both sets SL and RL has predicates as elements.

Finally, we can extend the notion of modeling language allowing a sub-typing
relationship among the vertex types and edges types. By this means it is possible
to incrementally specify the properties of vertexes and edges. Although possible
and recommended, such extension is not further explored in this work.

Model as instances. Given that a modeling language determines the set of
constructs (types) and relationships that can be used by models expressed on
the language, it is said that a model is an instance or belongs to the modeling
language, fact denoted by M ∈ L. To state that M ∈ L is to state that vertexes
and edges ofM has types (and tuple types) defined by L and that every predicate
in SL and RL holds for M . We say that a model M is well-structured when
every predicate in SL holds, and we say that M is well-defined when predicates
in either SL or RL hold.

8



Language for languages. A modeling language can be seen as a model itself
where vertexes corresponds to the types and edges corresponds to the set of
structural restrictions of the language. Hence, there is a (meta-) language L
that can be used for defining modeling languages.

Basis. The basis behind the foundation for models and modeling languages
presented so far is inspired in well-known foundations for (programming) lan-
guage processing tools such as parsers and compilers. In such tools, a textual
program (just a sequence of characters) expressed in terms of a concrete syntax
is parsed in order to build a parse tree. As parse trees include more detail than
needed (due to having been build from the input text), an abstract syntax tree
(AST) is later generated from the parse tree. An AST is a finite labeled directed
tree conforming an abstract representation of the original text. An AST con-
tains only those vertexes and edges that are obtained from the syntax rules that
directly affect the semantics of the language, omitting the others. All possible
ASTs for a language are determined by its abstract syntax. A subsequent step
is to build an abstract semantic graph (ASG). An ASG is at a higher level of ab-
straction of an AST [11]. It is built from an AST by a process of enrichment an
abstraction. In the former, the AST is extended by appending edges from those
vertexes that references other vertexes. In the latter, some detailed constructs
present in the AST are removed.

Thus, the way models were defined can be seen as a particular kind of ASG.
Moreover, modeling languages corresponds to the concept of abstract syntax,
extended to ASGs. Notice that we consider a model definition directly as an
ASG, not as any textual or graphical representation which can be later trans-
formed into this ASG.

3.3 Relationship to the meta-modeling approach

Besides the intuition for the proposed foundation in terms of ASGs, it is im-
portant to notice also how close is our foundation with respect to the four-layer
architecture for model specifications suggested by the OMG. The four-layer ar-
chitecture involves at the bottom-most level, called M0, the instances of models.
The following level, namely M1, consists of the model of the system. M2 con-
sists on meta-data, it is a model for defining models; models in M2 are called
meta-models. Finally, the top-most level is called M3, and consists of the basic
minimal infrastructure to define meta-models [3]. The OMG proposes several
standard meta-models at M2, namely the Unified Modeling Language (UML)
and the Common Warehouse MetaModel (CWM) [5], while basing the top-
most level by a single, meta-circularly specified standard, Meta Object Facility
(MOF) [6].

Our foundation can be easily mapped into such four-layer architecture. Models
are equivalent to models inhabiting the M1 layer while the modeling languages

9



presented inhabits M2, as they provide the constructs for building models. Fi-
nally, conceiving the single language L for defining modeling languages is anal-
ogous to having a single top-most meta-meta-model.

Another subtle but important remark is that OMG’s models are mainly object-
oriented. The basic essential component of MOF is the Class construct con-
taining a set of properties (in which elements of other classes can be attached),
is much more similar to our models or even modeling languages organized as
vertexes holding data and edges relating them (both aspects held by properties
in MOF). Hence, it is notable that there is a semantical equivalence among our
proposal and the widely-accepted OMG’s one.

3.4 Model Transformation

The previous section formally defines the concepts of model and modeling lan-
guage. As we mentioned in Section §2, having a formal representation of models
aids the development of tools for manipulating and storing models; such tools
can be logical mechanisms or computer programs. Based on the foundation we
have already built, we can logically define a model transformation. A computer
representation of this foundation would enable such transformations to be pro-
grammed and executed. We define a model transformation as a function which
takes a model as input and produces a model as its output. Such function can
really be of any arity and hence, a tuple of models may be its input and a tuple
of models may conform its output.

Let’s start by defining unary transformations. An unary transformation is a
function which transforms a model into a model. Let M be the input model,
and let L be the modeling language in which M was build, i.e. M ∈ L. Let L′

be the language in which the target model is to be expressed. Hence, a unary
model transformation T (that generates only one model) is a function from L
to L′, denoted by T : L → L′. In other words, T is a member of the set of
functions {L→ L′}.
Recall that a modeling language L states two sets of restrictions, namely SL
and RL. The transformation T is defined only on those models that are well-
defined, i.e. that satisfy both sets of restrictions. Given a particular language L,
we can derive the more general language L̂ which is equal to L except that the
set of additional restrictions is empty, i.e. RbL = ∅. A well-structured models
in L̂ is both well-defined in L̂ and also well-structured in L but may not be
well-defined in L. Then, we can define a particular kind of transformation
T̂L : L̂ → B which takes those models in L̂ that are also models in L to true
and takes all others to false; notice that B is a model for boolean values, i.e.
it consists on two (unconnected) vertexes, namely true and false. In other
words, the transformation T̂L can be used to state whether a model M satisfies
or not the set of additional restrictions RL of the modeling language L.

Two other specific kind of unary transformations are those that build a model M

10



from an input string (parser transformation), and those that produce an output
string representing the model (pretty-printing transformations). Both kinds of
transformations take, and generate respectively, a model expressed in terms of
a string of characters. Such particular language is generally called Σ∗ and can
be represented by a type of vertex for each element in Σ (which resembles an
alphabet), and a single type of edge denoting precedence among them.

Binary transformations take two input models M and M ′ and generate an-
other one. Such transformation T is a function from L × L′ into L′′, being
these languages the corresponding ones for the models. A binary transforma-
tion merges or combines what is being modeled in the input models generating
a third one consisting in such combination. This kind of transformations need
specific information about the correspondence among elements on the models.
Such additional information can be placed in either of the two models (i.e. one
model states to which element in the other model corresponds; this can be done
by means of names), on the transformation itself (i.e. the transformation de-
termines which elements are corresponding ones), or in a separate model. This
latter approach is much more flexible as this third model parameterized the
transformation.

There is a specific kind of binary transformations in which the transformations
were originally thought of as unary but additional information is required to
generate the target model. Approaches as Model-Driven Architecture (MDA)
[7], propose to mark the source model prior to apply the transformation. Such
marks provide the additional information required to generate the desired target
model. Instead of following this approach, a separate model can be considered
where those marks are independently expressed. In such scenario, the trans-
formation is binary as it takes the original model M and an additional model
representing the required marks for M . Again, this approach provides greater
flexibility.

Transformations of greater arity are also possible; we have already considered
a ternary one above. The Model-Driven Development approach is based on
this general idea of transformations taking several input models and generating
several output ones. The need to output more than one model can be seen
as outputting an element on the cartesian product of the languages of each of
the models. Anyways, such transformations can be split in separate ones, each
generating one of these models.

As transformations are functions, they can be composed. By this means, having
a transformation T : L → L′ and another transformation T ′ : L′ → L′′, the
composed transformation T ′ ◦ T : L → L′′ is defined for every M in L as
(T ′ ◦ T )(M) = T ′(T (M)). Besides, the inverse transformation T−1 can be
defined as T−1(M ′) = M if and only if T (M) = M ′. It must be notice, however,
that even though we can logically define such transformation, there is not always
the possibility or a direct procedure to obtain the transformation T−1 given a
transformation T . A transformation T for which T−1 is known (i.e. it can be
built) is called bidirectional.

11



3.5 Transformation language

A model transformation T : L → L′ takes a model M ∈ L to generate a
model M ′ ∈ L′. Such transformation must be somehow expressed in order to
unambiguously define what the transformation is about. To this end, there must
be a specific language that provides the set of constructs required to express any
kind of transformations. Such language can be declarative or imperative. The
former consists on a set of rules that must hold on the source and target model.
The latter consists of a set of instructions that establishes what must be created
in the target model by querying the source model. Both approaches, however,
must have the ability to query a model, and the latter must also be able to
instantiate one.

There are distinct approaches for specifying transformations. One first approach
is to use a particular language LTLL′ for the transformation which permits to
query instances of the language L and to query and create instances of the lan-
guage L′. Such language provides special constructs for manipulating models
expressed exclusively in these particular languages. A second approach is to de-
fine a general language LT which provides constructs for manipulating (querying
and instantiating) any language. Such transformation language must be based
in terms of the meta-modeling language presented above, namely L. In either
case, a transformation can also be seen as a model, as it is an element specified
by a given language. Thus, transformations are also subject of transformations.

4 Models’ Dimensions

The previous sections tackled the definition of key concepts related to model
driven approaches, namely models, modeling languages and model transforma-
tions, both intuitively and formally. Several aspects of models were discussed
in Section §2, including the notion of system and the fact that a model serves
a given purpose, is elaborated from a given perspective and at a given level of
abstraction. This intuition, however, was not formalized in Section §3. In this
section we provide a framework aimed to contextualize these aspects of models.

Models play an important role in software development projects. They are
elaborated during most phases of the process, serving as documentation, de-
liverables, and as input and output of several activities. A model repository
(see §2) is nowadays even more helpful than before as several models are built
and used during the development effort, each tackling different aspects of the
software system. Moreover, to state and preserve the relationships among all
these models is becoming even more important. First, it helps developers to
trace model elements, to understand where they come from or where they have
influence. Second, these relationships are indispensable to computer-assisted
tools in order to manipulate models accurately.

The way to correctly characterize and catalogue models is partially cleared.

12



time/process

concern

viewpoint

correctness

completeness

abstraction

Figure 1: Sketch of the multidimensional framework

Models are part of UML, which provides some variety of dependencies that
allow certain degree of tracking of model elements. In this section we deepen
the characterization of models. We explore several dimensions in which models
take part. Based on these dimensions, development processes, activities, and
artifacts, can be clearly located and understood.

The study of this framework is done incrementally, beginning with the time/process
dimension and incorporating all the others one by one. Together with introduc-
ing dimensions, software development techniques are commented and discussed
to the light of the framework being built. The multidimensional framework pro-
posed focuses on six major aspects of models and modeling. Even though several
additional dimensions may be considered, the coverage of those presented here
is enough to identify most major software techniques, including model-driven
approaches. Figure 1 sketches the multidimensional framework elaborated in
this section1. The main dimensions are named (represented by solid lines in the
figure) while other dimensions (shaded lines) are present but not considered in
what follows.

4.1 Time/Process

The first dimension in which models must be considered is the time or process
dimension, as every software development project generally follows a software
development process and spans on certain period of time. This dimension can
be continuous if considering it as a time line, or it can be discrete by considering

1The reader should be aware of the difficulty of drawing in a plane an element of six
dimensions. Although presented as a cone, the far-most circle resembles the origin while the
solid lines resembles the dimensions, which must be thought as orthogonal to each other.

13



an specific set of points in time which are of interest for the project.

Dimension conformation and localizing a model. In the first scenario,
the origin of the dimension is the project initial point in time, and the dimension
span to the end of the project. Moreover, it can span infinitely so as to cover
any future evolution of the system. A model would cover a (possible infinite)
time span, beginning at the point in time the model was created, and lasting till
the end of the project (or indefinitely). In this scenario, even though a model
may exists till the end of the project, it may be really useful for a shorter period
of time. Consider a model Mi that was updated during an activity in order to
generate a newer version of it. We face two possibilities. On the one hand, we
can consider the new version Mi+1 as the very same model as Mi, preserving
the former overwriting the latter. On the other hand, we can consider the new
version Mi+1 a separate model from Mi; the model Mi+1 is considered as being
created while Mi remain untouched. Then both models are preserved. The
first case is preferable to small changes in the model while the second case is
preferable to large changes. In this case, we must state that Mi+1 is somehow
related to Mi. Then, the model Mi does not necessarily span till the end of the
project, instead it may span till a new version is available.

The second scenario consists on defining a finite set of points in time which
are of interest to the project. Most projects define an execution plan in which
major milestones are stated. In addition, the activities involved in a develop-
ment project work on input artifacts (particularly models) producing new ones
or updating them. As projects generally involve configuration managements
activities, artifacts are versioned and preserved. Thus, we can choose the set
of expected versions, which in turn include versions for milestones, as the set
of points in time to be considered in this dimension. In this case, a model
simply inhabits a single point in time, particularly the point corresponding to
its versioning information. Notice that this approach is more compact than the
previous scenario but provides the same information.

Interesting points. It is important to notice that several models within dif-
ferent points in time (versions) can be considered as deliverables and hence be
mandatory. Additionally, and yet more important, the final version of the mod-
els are those of major interest, particularly the model corresponding to the final
working software system; such models are located at the far-most point from
the origin of the dimension.

Model relationship. As we consider a model Mi and its subsequent version
Mi+1 as separate models, it is important to provide a mechanism to relate mod-
els within this dimension. We call such relationship trace, and hence, we can
state that Mi+1 traces Mi. The name for the relationship through this dimen-
sion is taken from UML. In UML, a trace dependency is a particular kind of an
abstraction dependency that indicates a historical development process or other

14



extra-model relationship between two elements that represents the same concept
without specific rules for deriving one from the other; such dependency is used
as a remainder to the developers during development [10]. Unfortunately, as
also stated in [10], a trace dependency can be additionally used to relate model
elements at different planes of meaning, such as tracing a design construct in
one model to a corresponding requirement construct in another model. It is
important to notice that these different levels of meaning do not necessarily
imply different points in time, and neither that a lower level of meaning need
to be posterior to a higher level of meaning. We propose to limit the trace rela-
tionship exclusively to the time/process dimension. The other intent of UML’s
trace dependency is covered later when we consider the abstraction dimension
of the framework.

Remarks. As a final remark, to reduce the time to market can be understood
as making this dimension the shortest possible, i.e. making the largest point the
closest to the origin of the dimension.

4.2 Viewpoint/Perspective

The viewpoint/perspective dimension is a finite discrete dimension that considers
the set of all viewpoints or perspectives involved in a software development
project.

Dimension conformation. All stakeholders, or more accurate all categories
of stakeholders, are represented by a point in this dimension. A stakeholder
is an individual with a particular interest in the software development project
being carried and/or in the software system being developed. Generally, it is
possible to separate two distinct aspects for stakeholders: roles and workers. A
role is the definition of a profile of stakeholders. It defines a set of activities in
which is needed to participate, a set of artifacts needed to work on, and a set
of artifact of him/her direct responsibility. On the other hand, a worker is an
individual involved in the software development project. A worker plays one or
more roles during the project, and conversely, a role can be played by one or
more workers. To the light of this distinction, we find more accurate to define
the points of the viewpoint/perspective dimension in terms of roles instead of
workers. Notice that different workers playing the same role should be interested
in the same artifacts (particularly models) and would have the same perspective
of the system; a role specifies such perspective.

Localizing a model. A model M can be in one or more points of this dimen-
sion, meaning that the particular model is of interest for all those roles marked
as points on this dimension. A model rarely covers all points in this dimension.
The most broadly targeted models can be the project plan and the software ar-

15



chitecture description, artifacts aimed to assist the needs of several stakeholders.
Apart from them, most models would cover only a few points in this dimension.
It is important to remark, however, that most roles are interested in reaching a
working software system, and hence, such final model would inhabit all points
in the dimension. It must be noticed that there may exist some roles, such as
architecture reviewer or domain expert, that may not be interested in the final
system.

Model relationship. We do not identify any important relationship among
models through this dimension. Additionally, as far as we know the bibliography
does not propose any neither.

Relation with other dimensions. There is no special relationship between
this dimension and others dimensions. This dimension is mainly administrative
and its goal is to identify (and define) the expected perspective of a model.
Generally, new versions of models are of interest of the same category of stake-
holders, but this is not necessarily the case. The project manager together with
the system architect should collaboratively decide which models are to be built
during the project and to whom these models are targeted.

Remarks. As a final remark, it is important to see that this dimension is very
important from the management perspective of a software development project,
but provides few information to software developers themselves. Developers are
more interested in the other dimensions we propose.

4.3 Abstraction

The abstraction dimension is also a finite discrete dimension considering all dif-
ferent levels of meaning, understanding or abstraction. It might be considered
continuous, but at the price of incorporating more complexity and loosing man-
ageability. Generally, as we present later, a handful of levels of abstraction are
enough for a software project. The abstraction dimension contains at the origin
the bottom-most level of abstraction, meaning by bottom-most level that of the
computer infrastructure. At the opposite side of the dimension is the top-most
level corresponding to the human abstract understanding of the system. The
upper the level, the more understandable for most humans, the lower the level,
the more computer-related and technical.

Dimension conformation. This dimension is generally inhabited by the
principal development disciplines involved in any software development process:
requirements, analysis, design, and implementation. Even though a software
development process does not explicitly make such a distinction, these levels of
abstraction are implicitly present in the developers conception of the system.

16



Certainly, we can further separate the levels of abstraction. For example, re-
quirements can be gathered at the business level (higher) or at the system level
(lower). Also, the implementation can be subdivided in source code, executable
units (those directly deployed), the underlaying platform. Which particular
levels are to be used (conceived) in a project strongly depends on the software
development process followed and the peculiarities of the system being built.
However, it is important to notice that the levels we have already mentioned
are widely accepted and used. See for example that these are different disci-
plines proposed by the Rational Unified Process (RUP) [1]. Additionally, the
models proposed by the Model-Driven Architecture (MDA) [7, 4] approach, can
easily be mapped to these few levels. The Computation Independent Model
(CIM), the Platform Independent Model (PIM), the Platform Specific Model
(PSM), and Implementation Specific Model (ISM), directly corresponds to re-
quirements, analysis, design and implementation, respectively.

Localizing a model. Even though we can develop a model whose elements
are at a different level of abstraction or meaning, this approach is clearly in-
convenient and is strongly unrecommended throughout the bibliography. As
we define in Section §2, a model must be a representation of the system as
a particular level of meaning, focusing on the essential aspects and ignoring
the others. Hence, a model at a given level of abstraction should not include
elements conveying neither a higher nor lower level of abstraction. Then, a
particular model M is located at exactly one point in this dimension; having a
model M inhabiting more than one point is generally due to bad practice.

Interesting points. The final working software system clearly inhabits the
lowest level of abstraction as this level is the one a computer can directly execute
the system. However, models at such lowest level are improbably directly pro-
duced by developers. Instead, models are developed at a higher level than this
and several tools are used to convert them into those which are executable by
the computer. Generally, the lowest level used by developers is the source code.
The implementation at this level is then targeted to a platform to be executed.
The basic scenario for this transformation is by means of a compiler which
generates the binary sequence understood by the underlying platform. More
complex scenarios can be used and are now gaining acceptance. Compilers gen-
erates intermediate representations (i.e. models at lower levels of abstraction)
which are then executed by a virtual machine, further compiled by just-in-time
compilers, etc.; such is the case of Java and the .NET platform.

There are specific kind of models that can be place next to the underlying
platform, even lower than source code. Deployment scripts or configuration
files are particularly targeted to the platform and specifies the parameters for a
smooth execution of the system in such platform. Clearly, such model concretize
a deployment model at a higher level of abstraction, if present.

The final working system, located near to the computer level of abstraction,

17



is seldom the unique model developed during a software development project.
Several models are built, at higher level of abstractions, which provide improved
understanding, communication and reasoning. The higher the level, the best
for human understanding, and thus, models at the highest levels are preferable.
Consequently, there is a (enormous) gap between the computer expectations
of a model and our expectations; such gap is not new, software development
processes devote enormous effort to propose how to traverse it.

Model relationship. We can consider a model M ′ as a more concrete version
of a model M , or conversely, a model M as a more abstract version of a model
M ′. Model M ′ is at a lower level of abstraction than M , even though if follows
a similar purpose and represents the system from the same perspective as M .
Uniquely, these models are different in the sense that M ′ incorporates additional
characteristics that approximates it to the underlying platform and may omit,
also, some information from M which is more related to human understanding.
Then, we define the concretizes relationship among models, and the converse
relationship abstracts, to state such relationship among models. Thus, we can
state that M ′ concretizes M , and in other words, that M abstracts M ′.

UML proposes a dependency kind called abstraction for this very same pur-
pose. However, this dependency targets a broader kind of relationship than
ours. Quoting [10], an abstraction dependency is a relationship between two
elements at different abstraction levels, at different levels of precision, at differ-
ent levels of concreteness, or at a different level of optimization. We consider
that such relationship can be categorized in different independent kind of re-
lationships. Hence, we consider our abstracts relationship as the one in UML
under the meaning of different abstraction level or different concreteness levels
(a distinction among this two aspects is unclear and is not further commented
in the bibliography). Notice that the precision aspect is being tackled later by
the completeness dimension.

Additionally, UML proposes an specific variation of the abstraction dependency
called refinement. This relationship represents a fuller specification of something
that has already been specified at a certain level of detail or at a different
semantic level [10]. It remains unclear if a different semantic level means a
different level of meaning or abstraction, but it can be guessed that it does.
Again, such a relationship seems to tackled several aspects of how two elements
(and particularly models) can be related; on the one hand detail (precision)
and on the other hand semantic (abstraction) level. We propose to use the
abstracts relationship for relating models through this dimension, and prefer to
use the refines relationship to state the relationship among models through the
completeness dimension; as we mentioned above, such dimension is concerned
on detail and precision.

Relation with other dimensions. Now we have already introduce various
dimensions, it is important to study the connection among them. We have

18



time

abstraction

time

abstraction

time

abstraction

time

abstraction

(a) Waterfall

(c) Evolutive

(b) Iterative

(d) Agile

Figure 2: Relation among the abstraction and time/process dimensions.

not done this before as we state that the viewpoint/perspective is independent
of other dimensions. However, by relating the time/process and abstraction
dimensions we can provide a better understanding of the usefulness of this mul-
tidimensional framework. Using this two dimensions we can graphically show
how different software development process models behave in terms of artifact
elaborations towards a final working software system. In Figure 2 we depict
four of such process models.

Figure 2a presents the waterfall process model which organizes a process in
stages to tackle requirement gathering, analysis, design, implementation and
testing, where one begins when the previous one is totally completed. Graphi-
cally, every non-increasing function can be used to represent which artifacts are
created at which point in time. Notice that we use a continuous line in order to
make clearer the exposition, however, recall that we consider both dimensions
as discrete. The figure shows that the more abstract models are built at the
beginning, and that models at a lower level of abstraction are built afterwards.
Notice also that the final working system (depicted as a small square) is reached
at the end of the project. A models at a low level of abstraction concretizes a

19



model in a higher level. In the case of a linear curve (as in the figure), no
traces relationship exists. However, although we show a linear curve, any non-
increasing function is possible, as several versions of models at the same level
of abstraction can be built. In such case, traces relationships are also present.

In Figure 2b an iterative process is shown. An iterative process is organized
in iterations, each of which proceed on every activity performed in a waterfall
process model, but tackling only a small part of the whole system. Each iteration
generally produces an increment obtaining finally the working software system.
In the figure, we show a project consisting only of five iterations reaching the
final working product at the end of the fifth one. A model Mi+1 located at a
given level of abstraction at the (i+1)-th iteration traces a model Mi at the very
same level of abstraction but in the i-th iteration; such relationship takes place
horizontally. Also, the model Mi concretizes an upper model in the abstraction
dimension in the same point in time; such relationship takes place vertically.
Again, although we use a linear curve, any non-increasing function apply to the
depiction of an iteration, and different curves are possible for the iterations.

An evolutive process model is shown in Figure 2c. This kind of process involves
to parallel carry out specification, development and validation of the process.
The three activities are performed altogether producing new versions of the ar-
tifacts till reaching the final working system. The figure show models at two
different levels of abstraction, the upper level corresponds to an specification
model while the lower level to an implementation model. At both levels, subse-
quent versions of these two models are produced, obtaining the final system as
the last version of the lowest level. This example also show that the relationship
between the two dimensions is not necessarily a function, it is a relation. How-
ever, in processes where no parallel development exists, such relation is properly
a function. Notice that this is not necessarily the case for the two previous cases,
at least the iterative process model as it can include parallel development, even
though we have not depicted this case.

Finally, Figure 2d sketches an agile process model which are mainly devoted
to implementation, using round-trip engineering among implementation and
design. Models at both levels of abstraction are used, one used to derive a
newer version of the other, either automatically or manually. Even though we
present it as a sinusoidal curve, it is generally flatter than this, consisting of
several versions of models at the implementation level and some picks to the
design level at certain points in time.

Remarks. It is important to notice that testing activities are not directly
expressed in the abstraction dimension. Its impact indirectly influence on the
combination of this dimension with the time/process one, generating a new
version Mi+1 of a model Mi at the same level of abstraction. We are not able
yet to state when a model is more accurate than other; we can only guess it
by considering the fact that certain time has passed. Nonetheless, it is possible
to have a newer version of a model but without any improvement in terms

20



of correctness. This particular issue is covered by the correctness dimension
discussed next.

As a final remark, we can say that model-driven approaches are targeting the
construction of mechanisms and tools to aid the conversion of models at the high-
est levels into models at the lowest levels automatically, or at least computer-
assisted.

4.4 Correctness

The correctness dimension consists of the level (percentage) of correctness of
models. Even though the dimension can be both continuous or discrete; consid-
ering the percentage of correctness is generally easier to maintain and also to
characterize models. The fact of being correct is particularly difficult to estab-
lish for a model. A definition of correctness must be stated and procedures to
measure it are required, preferably quantitative procedures to qualitative ones.
However, this is not an easy task.

The testing activity directly tackles the improvement of the accuracy on models.
Several testing techniques have been designed, most of them tackling models at
the lowest levels of abstraction. In spite of this, revision techniques are being
applied to most kind of models, and hence the testing phase is more able to
improve the correctness of models

Within this dimension, it is important to consider the fact that nothing is correct
by itself, or, from another perspective, everything is correct by itself. In other
words, a sentence like x := x + 1; can be correct or incorrect, depending of
the expected behavior for the sentence. Additionally, to represent a domain
concept as a class or as an association can be correct or incorrect, depending
mainly of the domain expert knowledge and on the semantics of the domain
concept. Then, the correctness of a particular model element, and consequently
its containing model, is relative to the expected intent for the element. So, to
state how correct is a model is to establish how well it satisfies the expected
intention. The expected intention of a model should be clearly stated, generally
independently of the model itself, and to check the correctness of the model
involves to verify that the model satisfies its specification. It is important to
notice that to build a model specification is also to build a model.

An important problem arise when considering this dimension. Let’s consider
that we can catalogue models as specification or realization models2. Hav-
ing specification models, we can verify that a realization model is correct if
somehow it does realize its corresponding specification model. The problem is,
however, how to determine whether an specification model is correct or not.
For models at a low level of abstraction, its specification can be elaborated in
terms of the specification models at higher levels. However, it is not possible
to (systematically) determine whether the specification models at high levels of

2Such distinction may be treated as a separate dimension of the framework.

21



abstractions are correct or not. To be correct would mean to match all stake-
holder understanding of the system, a particularly difficult task to concretize in
an specification (model). It is important to notice that the problem we identify
here is the fact that states the distinction among verification and validation
activities in the testing discipline. To verify means to check whether the model
satisfies its specification while to validate means to check whether it satisfies
the stakeholders intent.

Dimension conformation. We propose to conform this dimension in per-
centage of correctness, or any other discrete scale defined for the particular
project. As a matter of convenience, we match the origin of the dimension to
the most correct while the far-most point to the less correct.

Localizing a model. A model can be placed at any point of this dimension,
but exactly at one of them. The software development process must define
several metrics to quantitatively determine the level of correctness of a model,
and hence, to uniquely locate it at the corresponding point in this dimension.

At the light of the previous discussion, specification models may be difficult
to determine their correctness, mainly those corresponding to the higher levels
of abstraction. The intuition of the responsible of those artifacts can be an
approximative metric.

Interesting points. The most interesting point in this dimension is the origin,
corresponding to flawless models. However, testing techniques which do not
apply formal methods for verification can seldom reach this level. Then, the
best models are those which are nearest to the origin, being the final working
system (hopefully) one of them.

Model relationship. We can define a relationship to relate models through
this dimension. Let’s consider a model Mi to be the input of the testing activity
and as an output we determine a set of flaws in it. The change management
discipline together with the responsible roles of Mi would determine the required
changes and then perform them. An improved new version Mi+1 of Mi would
be created which corrects (most of) the detected flaws. Then, we can state that
Mi+1 corrects Mi as the former one is more correct than the latter.

It is important to remark that a flaw in a model is due to one of two different
causes: an error in the model or an error in the specification. In other words,
a model can fail to satisfy its specification because it does not properly realizes
its specification or because although it does realize its specification, such spec-
ification is not correctly expressed in the already built specification. Suppose
we have model Mi and its specification model Si. When we detect a flaw in Mi

then either Mi or Si are incorrect. To correct a model means either to update
it or to update its specification. The first case is the one detailed above. The

22



latter case would produce a new version Si+1 that corrects Si. Notice that the
same relationship is used for both scenarios.

Relation with other dimensions. As we mentioned above, models at any
level of abstraction can be incorrect and hence the target of verification or
validation. These activities produce change requests which are then performed
to build new versions of the models. Hence, once a model Mi is generated, the
testing discipline determines at which level of correctness isMi, while performing
the required changes (if exist), a new version Mi+1 is built and tested again (by
means of regression tests). Then, there is no particular relationship among this
dimension and the abstraction dimension, a model at any level can be erroneous
and so subject of change.

It is interesting, however, to remark the relationship among the correctness and
the time/process dimensions. Once the changes outputted by a testing activity
are performed a new version of an existing model is developed which corrects
the previous one. Hence, after testing and performing changes, a model Mi is
turned into a model Mi+1 which is closer to the origin than Mi in this dimension.
In addition, Mi+1 also traces Mi and hence is a bit farther from the origin with
respect to the time/process dimension.

4.5 Completeness

The completeness dimension consists of the level (percentage) of completeness
or coverage of models. This dimension can also be continuous or discrete, and
again, the latter case makes it more manageable and understandable. Similar
to the correctness dimension, it is difficult to establish how complete is the
representation provided by a model with respect to the model’s purpose and
perspective. We can consider the completeness of a model M in terms of the
percentage of its specification that is covered or solved. For specification models,
however, this procedure is not possible. A specification model can be measured
in terms of completeness looking at how much detail of the represented system
has been considered in the model. For example, a domain model delineating
just concepts and their associations is less detailed than a domain model which
mentions the attributes of the concepts as well. Moreover, a domain model that
indicates the type of the attributes and also state constraints on the overall
structure is far more detailed.

It is important to notice that to be more detailed does not imply to be more
concrete in terms of the abstraction dimension; the example presented above
makes clear such distinction. We discuss this issue later.

Dimension conformation. We propose to conform this dimension in per-
centage of completeness, or, as before, any other discrete scale defined for the

23



particular project. Again, as a matter of convenience, models near the origin
are more complete while those far from the origin are less complete.

Localizing a model. A model can be placed at any point of this dimension,
but exactly in one of them. It is difficult however to define uniform metrics to
check how much complete is a model. Such metrics should depend on the kind
of model, conceiving by kind of model the level of abstraction and the concern(s)
of the model (concerns are discussed latter).

There are no standard procedures to determine the level of completeness of a
model, mainly for specification models. It is the responsibility of the software
development process to indicate which kind of models should be built, and at
which level of completeness they should be defined, depending on the phase of
the project. As we notice later, iterative & incremental process models focus it-
erations on producing an increment (i.e. on gaining completeness) of the models
built so far.

Interesting points. The most interesting point in this dimension is the origin.
Models at this point are complete and hence, totally fulfil their purpose and
cover all aspects from their perspective, at the particular level of abstraction.
Models at this level are precise. Conversely, the farthest we get from the origin,
the fewest precision or the most incomplete the model.

Model relationship. A we mentioned above, UML defines the refinement
dependency to state that an element represents a fuller specification of other
element that has already been specified at a certain level of detail or at a different
semantic level.

The abstracts relationship was defined above for relating models among differ-
ent levels of abstraction (i.e. different semantic level). We propose the refines
relationship to state the model relationship in which a model specifies more de-
tail than other, i.e. that is more complete. Thus, given a model Mi at a certain
percentage of completeness or precision, and given a model Mi+1 consisting of
a more detailed version of Mi, we can say that Mi+1 refines Mi.

It is important to notice that in our framework, being more concrete (i.e. less
abstract) means to be expressed at a level of abstraction that is more close
to the computer. However, to be more precise means to be expressed with
further details but at the same level of abstraction. Of course, a model at a
lower level of abstraction can include more detail that a model at a higher level
of abstraction. Suppose we have an analysis model Ai in which we partially
specify the functionality of the system, and then we build (derive) a design
model Di which solves the same functionality but also covers exceptional cases
not considered by the analysis model. First, the design model Di includes
certain platform aspects which have been abstracted away by Ai when solving
the same functionality; this is the main difference among these two levels of

24



abstraction. Hence, we can state that Ai abstracts Di, or equivalently, that
Di concretizes Ai. Second, as Di is more complete that Ai as it also solves
certain functionality which was not included in Ai (i.e. Di is more precise as
it has more coverage than Ai), we can also state that Di refines Ai. For sake
of completeness, the developer team should have built another model A′i which
covers as much functionality as Di but at the same level of abstraction than Ai.
In this case, we have that A′i refines Ai and that Di concretizes A′i, but in this
case, the two later models are at the same level of completeness. Even though
this is both possible and a clearer scenario, to omit A′i is a general practice.

This scenario is somehow new to our exposition as we are now stating a relation-
ship among models in more than one dimension at the same time. However, we
have already done this before as generally when we state the traces relationship
among a model Mi+1 and Mi, another relationship is also present due to the
fact that Mi+1 is somehow (i.e. in the sense of a dimension) an improved version
of Mi.

Relation with other dimensions. We can relate the completeness and
time/process dimensions similarly to how we have related the latter to the cor-
rectness dimension. When a model Mi+1 is built as a refinement of a model Mi,
both the refines and traces relationships take place at the same time. The newer
version is created posteriorly to the old one, and the former is a refinement of
the latter.

There is no particular relationship with respect to the abstraction dimension.
However, in order to clarify the difference among both dimensions, let’s revisit
some of the examples presented earlier when we introduced the abstraction di-
mension. The first example we consider is the waterfall process model; Figure 3
depicts this example. The figure presents three dimensions at the same time,
namely time/process, abstraction and correctness. The project being depicted
involves four levels of abstraction. As it follows the waterfall process, it first
fully develop the upper-most level, say Requirements. The process of developing
this model involves five stages in the example, each model being a refinement
of the previous one. Once a complete model at the upper-most level of ab-
straction is obtained, the project advances to the next phase: constructing the
corresponding model at the immediate lower level of abstraction. Subsequent
phases take place till the final working system is reached when the model at the
lowest level of abstraction is completed; such model is colored differently. The
different shaded boxes represents models, where darker color means a posterior
stage in the development process. The picture shows that as time passes, the
model corresponding to the stage of the waterfall process is repeatedly refined
till a complete version is reached. At this time, the following stage is tackled
in the very same way. It can also be noticed that, at each plane of complete-
ness, the models residing in such plane are organized in a linear curve. As we
have mentioned earlier, any other non-increasing function is also possible. It
is needed, however, that the oldest model (left-most) of a particular level of

25



time

abstraction

completeness

Figure 3: Involved models when following a waterfall process.

abstraction is posterior to the youngest model (right-most) of any upper level
of abstraction; such condition is implied by the waterfall process.

The second example to be revisited is the iterative & incremental process model,
depicted in Figure 4. This figure considers the same three dimensions as the
previous example. The example presents a project consisting of four iterations,
and models are organized in terms of five levels of abstraction. The first itera-
tion, in the lightest gray in the figure, builds one initial model at each level of
abstraction, one after the other (as before, for simplicity we are considering no
parallelism when building models). All models are partial as they are created
in the first iteration. The second iteration produces an increment, and hence all
models are quite more complete. Subsequent iterations involve a corresponding
increment till the final working system is reached; it is colored differently to
other models. To improve the understanding of the figure, models (which are
drawn as small boxes) are colored in different tones of gray. Each tone cor-
responds to a given iteration. Models built in the (i + 1)-th iteration (shown
darker than models at the i-th iteration) are shifted right in the time/process
dimension as they are built after i-th models, and they are shifted front as they
are more complete than i-th models. The slashed lines are only intended to help
with the perspective of the picture.

26



time

abstraction

completeness

Figure 4: Involved models when following an iterative & incremental process.

4.6 Concern

The concern dimension focuses on one of the most tackled problems in software
engineering: the separation of concerns. The software engineering discipline
has developed several techniques in order to solve how to separate different
concerns involved in software development. Object-orientation, by means of
encapsulation and information hiding was originally introduced as a promising
approach to finally obtain the desired mechanism. Nowadays, additional ap-
proaches, mainly complementary to the object-oriented approach have arisen.
Aspect-oriented programming, or more generally, aspect-oriented development,
and multi-dimensional separation of concerns (MDSOC) techniques, have po-
sitioned recently as effective approaches to solve several problems found when
using object-oriented development. Apart from them, or conversely in the same
direction, model-driven development is positioning as an alternative approach
to successfully deal with separation of concerns.

A concern is any piece, fragment or aspect of interest of focus in a system,
typically being associated to a system expected feature or behavior. To separate
concerns is the process of partition a system into distinct features that overlaps
in functionality as little as possible. Each paradigm aids the separation of
concerns, mainly by mean of modularity and encapsulation. To organize a
software system into separate models can also be considered a paradigm to
separate concerns.

The previous dimensions already considered do not tackled the separation of

27



concerns directly. The one that may be most related (or confused) with separa-
tion of concerns is abstraction. However, the abstraction dimension is not about
the separation of the system in terms of features or categories of features, it is
about the level of meaning at which a particular feature or set of features are
represented, human- or computer-oriented. The concern dimension involves the
separation of these features.

Dimension conformation. There is no broad consensus about which con-
cerns or aspects are important or interesting for all systems, neither for a single
system. Software development processes rarely incorporate activities for defin-
ing system concerns explicitly. Which concerns are of interest can usually be ob-
tained from requirements; the separation among functional and non-functional
requirements provides an initial clear separation. However, considering sim-
ply these two concerns is not enough for well-separating concerns. A possible
approach to identify the concerns of interest of a system is a more refined cate-
gorization of requirements.

Functional requirements can be further categorized. When use-case techniques
are employed, each use-case can be consider a concern (or aspect or feature of the
system). A finer categorization may be obtained by considering each scenario
of each use-case while a coarse-grain one may be attained by using groups (or
packages) of use-cases. When use-cases are not used for functional requirement
specification, or for those functionalities specified following a different technique,
categories or groups of system functionalities can be considered as a concern.
Then, a set of well-defined “points” of functionality are considered as concerns,
and hence inhabit the concern dimension.

Non-functional requirements can also be further categorized. The FURPS+
categorization identifies and describes several non-functional requirements pre-
sent in software systems; notice that the “F” refers to functionality and was
already considered above. Non-functional requirements refer to or state the
desired characteristics that a software system must have or present; such char-
acteristics include availability, efficiency, maintainability, security, persistency,
transactionality, reliability, portability, distribution, etc. They can be stated
(modeled) qualitatively (at different level of precision) or quantitatively (which
are preferable although harder to achieve). Those non-functional requirements
that can be isolated and (quantitatively) stated in an independent way, which
are desired characteristics of the system being built, should be included in the
concern dimension.

To sum up, the concern dimension is conformed by points corresponding to
each category of functional requirements (scenario, use-case, group of use-cases,
group of functional system features) and by points corresponding to each desired
non-functional requirement that can be quantitatively stated (or modeled).

28



Localizing a model. A model can be located at any point in this dimen-
sion, and clearly it can cover more than one point. A model can cope some or
all points corresponding to functional requirements and one or all points from
non-functional ones. Also, a model can cope points from both subsets. For
example, an analysis model representing all the expected functionality of the
software system covers all points in this dimension which refers to functional
requirements. A analysis model which represents the realization of a particular
use-case would inhabit only one point in this dimension. An implementation
model which realizes the functionality of one use-case but also deals with persis-
tency and transactionality inhabits several points, corresponding to functional
and non-functional requirements.

Interesting points. All points are of interest in this dimension as concerns
are inspired in categories of requirements and all the requirements are expected
features of the system. However, it must be clear that not every model inhabits
all points. As we mentioned above, a model is a means for modularity and
encapsulation (at least at a high level) and hence there are models that are
particularly focused on a single point of this dimension. Notice that if each
use-case is modeled separately, each of these models refers to a single point.
Besides, a model representing the security needs also refers to a single point. It
is important to notice also that the final working system should cover all points,
and hence, this special model must extend throughout the whole dimension.

Model relationship. At first sight, there appear to be no special relationship
between models along this dimension. Two separate models covering different
subsets of points, either overlapping or disjoint, need not be specially related
as they cover isolated aspects or concerns of the system. Nevertheless, this is
not really the case. A model covering one concern may refer to model elements
that are defined in other model which covers other concerns. For example, a
security model which defines the permissions for each user profile may be some-
how related to the actors involved in a separate use-case model. Additionally,
a model to quantitatively state the expected performance of the system may
specify time restrictions for certain use-cases. As a different example, a model
specifying how transactionality is provided may be related to a separate model
specifying the persistency mechanism. How the model elements in a model re-
fer to model elements in other (independent) model depends on the particular
modeling languages in use; referencing elements by name and/or placing stub
elements in the source model are the most common (suggested) practice. Such a
relationship among model elements inspires (or permits to derive) a relationship
among models.

We propose the refers to relationship among models to indicate that the source
model includes references to the target model. When a model M inhabiting
a particular subset of concerns and containing model elements that allude to
model elements in a model M ′ covering a (possible overlapping) subset of con-

29



cerns, we say that M refers to M ′. Even though not required, it should be the
case that both M and M ′ are at the same level of abstraction.

It is important to notice that the relationship through this dimension is not
accompanied with a new version of a previous model, as it is the case for the
dimensions like correctness and completeness. The fact that a model M refers
to a model M ′ does not imply that one model is a subsequent version of the
other. Thus, the refers to relationship does not occur at the same time that the
trace relationship we define through the time/process dimension. Notice that
the behavior of this relationship is similar to the behavior of the abstracts and
concretizes relationships through the abstraction dimension.

Relation with other dimensions. The concern dimension can be related to
some dimensions which have already been introduced; let’s discuss some remarks
on this direction.

The concern dimension is conformed by points representing functional and non-
functional requirements of the system being built. As there is no standard means
for modeling system requirements, we cannot establish a direct correspondence
to models at high levels of abstraction of the abstraction dimension. Generally,
use-cases are captured altogether, but apart from non-functional requirements.
Hence separate models may be supposed to exist but several concerns may be
represented in the same model. On the contrary, to separately specify each of
the concerns in a different model conforms a modular approach which favors the
reuse. In such scenario, we can think the system requirements to be represented
for many models, at least one per point in the concern dimension, all of them
at the highest level in the abstraction dimension. From these models, more
concrete models are built towards the final working system at the lowest level.
To this end, architectural and design decisions are made in order to build more
concrete models that satisfy the specification of those abstract set of models.
As we follow this process, the concrete models (i.e. models at lower levels of
abstraction) tackle several concerns at once. Notice that generally, to satisfy a
non-functional requirement is not only to build a specific software component
to this purpose, even though such a component may be needed, a lot of model
elements are somehow involved in satisfying the non-functional requirements;
these are known as cross-cutting concerns. For example, consider an analysis
model that solves all the system functionality, and a security model which spec-
ifies the security requirements of the system. A design model (at a lower level
of abstraction than the analysis model) can be constructed to provide all the
functionality depicted in the analysis model, and also to solve the security re-
quirements by incorporating the needed constructs for this purpose. Finally, at
least the bottom-most model, from the abstraction dimension perspective, must
satisfy all requirements and hence inhabits all concerns.

Then, we can state that, in general, starting from separate models for each
concern, all of them at the highest level of abstraction, to build more concrete
models from them produce models that covers more than one concern, par-

30



ticularly, the union of the concerns of the original models. To clarify the idea,
suppose we have two models A and A′ where A′ refers to A, both at the analysis
level of abstraction, and covering different subsets of concerns. Then, we derive
a model D at the design level by transforming (or weaving) A and A′. Thus,
not only model D concretizes A and A′, but also it covers the concerns in which
both models are involved. So, it is important to remark that the higher the level
of abstraction, the smaller the coverage, and conversely, the lower the level the
greater the coverage. Notice that following this approach, to “merge”abstract
models for building concrete ones involves to widen the coverage, and then, at
the last step, the final system covers the whole concern dimension.

It is important to notice the difference among being more complete and covering
more concerns. The completeness dimension is about details and precision, it
refers to how deep understanding is represented by the model. The concern
dimension, however, is about coverage of features, it refers to how much a model
embraces all desired features. A model M can be very precise (i.e. it is near the
origin in the completeness dimension) but only cover one single concern (i.e. a
single point in the concern dimension). In opposition, a model M can be built
with very little detail, just an sketch of a lot of features of the system. Such
model, even though covering several (if not all) points of the concern dimension,
is located very far from the origin of the completeness dimension (i.e. it is very
incomplete).

It is important to remark here that starting with several models at a high
level of abstraction, where each one covers some concerns but incompletely, and
needing to “derive” models at a lower level of abstraction which covers those
concerns but more completely, is a common scenario in software development
projects. Clearly, such derivation implies that the developers take decisions that
are beyond concretizing (making more computer-aware). When such decisions
are significant to the overall understanding of the system, they mean a hole in the
system specification. Here, designers or even implementers take architectural
decisions due to incompleteness of the specification, yielding a worse overall
structure and quality of the final system.

5 Conclusions

This work was aimed to unveil the concept of model and relating terms as model
element, modeling language, and model transformation. To throw light upon a
broadly-accepted and widely-known concept is not an easy task. This end was
pursued by tackling it in three separate directions. • First, we set up the intu-
itive meaning. We enumerate the aspects we consider relevant for defining the
term and then we provide a definition for them. Such definition is inspired in
revisited definitions throughout the bibliography. • Second, we look beyond this
intuition. We establish the foundation for a formal definition of these related
terms. Our formal basis was built in terms of graphs. Additionally, we look

31



forward to somehow validate our foundation. Then, we explore its relationship
with well-known techniques for language processing and to already proposed for-
malizations. In the former case, we present that our formal basis is equivalent
to what is known as Abstract Semantics Graph (ASG). In the latter case, we
notice that our definition can be mapped to the four-layer architecture and the
Meta Object Facility (MOF) initiative. • Third, we attend the applicability of
the intuition and this formal basis. The latter permits a deeper understanding
of the term, but does not help on how it can be applied in real projects. To
assist in this direction, we develop a multidimensional framework that permits
the characterization of models by clearly defining six dimensions in which a
model can be understood and how different models can be related among this
dimensions. In addition, such framework allows us to contextualize several soft-
ware engineering techniques such us process models, model-driven approaches,
object- and aspect-oriented techniques, among others.

The three directions were tackled independently in this work, stating their re-
lationship when needed. Our goal was achieved in the sense that all directions
were embraced, and interesting results have emerged while this work was being
done. The following fine-grain conclusions can then be remarked.

_ Defintion/Intuition

Several authors have recently revisited the definition of the term model
and its related terms. These definitions are tending to a unified version as
most of them comment, mention or focus on similar aspects. We analyze
thoroughly the aspects we consider relevant and, as a result of this analysis,
we build a definition for the term.

Such definition is close to those presented in the bibliography. Our in-
tention was not to innovate, we look forward to do some housekeeping
work.

_ Foundation

To build the foundation of something implies to map the intuition we have
of it into a well-understood and more basic and formal concept. The use of
graphs, extended with types and data, provides such required framework.

In addition to it, the fact that our approach is equivalent to different known
techniques, such as Abstract Semantics Graphs and to the four-layer ar-
chitecture of the OMG, helps on validating our foundation. Moreover, this
fact shows that actual approaches are equivalent and also that they follow
our intuition.

_ Multidimensional Framework

· The multidimensional framework positions as a well-suited tool for un-
derstanding the applicability of models and to contextualize software de-
velopment techniques. The first fact is upheld by noticing that we provide
six main aspects involved in the conception of a model, namely the time

32



or process, the stakeholder viewpoint or perspective, the level of abstrac-
tion, correctness and completeness, and the different concerns of interest
of a software system. These aspects are somehow treated in the bibliog-
raphy, but to the best of our knowledge, no thorough exposition has been
done. The second fact is noticed as we were able to state how different
process models can be depicted in the framework, and we have considered
how different paradigms as object- and aspect-orientation and multidi-
mensional separation of concerns are involved or influence the treated
dimensions. Although we have also mentioned model-driven approaches,
final conclusions on this sense are given next. In what follows, we state
further conclusions on the framework.
· More dimensions. The proposed framework can be extended by incor-
porating addiotional dimensions to it. Even though the six dimensions
already exposed provide a fine-grain classification of models and permits
to identify how different models are related, to add more dimensions may
provide even further understanding, unfortunately at the price of more
complexity. One of the most clear candidate is a dimension which sepa-
rate among static and dynamic models. This dimension can be binary and
would allow us to state the intention of a model, either static (structural)
aspects or dynamic (behavioral) aspects, or both.
Another dimension that was suggested previously refer to specification
vs. realization models. This dimension is quite controversial as it seems
to be very much tied to the level of abstraction (specifications at high
levels and realizations at low levels). However, this is not necessarily the
case as we might build an specification model at the implementation level.
For example, it can be argued that a testing model consisting of unitary
testing routines is an specification model at the implementation level as
it aids measuring the correctness of the implementation of the system.
Together with this one, several issues should be attended when trying to
append such a dimension to the framework.
· Coping the framework. Providing that the framework is a six-dimensional
artifact, and hence, models are to be catalogued from these six dimensions
at the same time, it is a difficult framework to cope with. First, it may
be not easy for a developer to clearly identify where a model is located;
recall that some dimensions are related to aspects of models we generally
deal with qualitatively more than quantitatively. Second, it is a very hard
task to depict things graphically, not only when what needs to be depicted
involves more than three dimensions, but also simply considering three of
them. Recall Figure 4 where we depicted the iterative & incremental pro-
cess model in the context of three dimensions; in such case it is difficult
to cope with the perspective of the figure. To overcome this problems,
a computer-tool for aiding on manipulating and visualizing models is re-
quired. Such a tool, however, may be difficult to conceive due to the issues
stated above.
Nevertheless, the framework throw light upon existing aspects of models

33



and hence, required features that should be somehow handled by any tool
working on models. Without the framework, several aspects are merged
(or confused) and then less benefits are obtained from the modeling ac-
tivity.

_ Model-Driven Approaches

· Languages. The formal foundation for models we have built helps on
clarify certain facts and decisions that are present in the scope of model-
driven approaches.

Model Driven Engineering is about building models in domain specific
languages, and repeatedly transforming them in order to obtain a final
working system. We have state two important aspects in this work: first,
a model needs to be expressed in a language and such language determines
and limits what can be expressed by its models, and second, several aspects
(dimensions) must be considered when building a model. Then, the need
for specific languages that permit to build models in the required points
(in the context of this framework) is obvious. Then, this explains why
domain specific languages (DSLs) have reemerged in the context of model-
driven approaches. Besides, detecting that the foundation built on graphs
can be somehow mapped to the four-layer architecture, mainly based on
the object-oriented paradigm, elucidate why the initiatives similar to the
one of the OMG are gaining acceptance and are gathering most major
research on the subject. Additionally, the way transformations can be
understood, and to identify the existence of a language to express them
all, somehow explain why several authors have proposed extensions of
the OMG’s Object Constraint Language (OCL) to express them. OCL
is a declarative language which allow to express properties on models
expressed following the object-oriented paradigm. As models are being
stated in languages following this paradigm, the OCL has positioned as a
well-suited option.

· Future directions. The framework we propose can help on identifying
the future directions that model-driven approaches might transit in the
following years.

To begin with, it is important to gather together what we have state
about the model corresponding to the final working software system. Such
model is placed at the last point in the time/process dimension, satisfies
most viewpoints, is expressed at the lowest level of abstraction, is totally
complete and correct, and embraces all concerns. Such a model cannot be
built from scratch, and thus, software development process models try to
specify how to reach such a model.

Then, it is also important to identify which models would be desired to
build. Such models satisfy several viewpoints, but are at the highest levels
of abstraction, are complete and correct, and embraces all concerns. Then,
the main difference with the final system is the abstraction gap. In addi-
tion, it should be notice that an important effort must be done so as to

34



avoid building lots of models at the higher level of abstraction, instead to
reuse models should be the desired scenario, mainly those involved in the
concerns related to non-functional requirements; DSLs can help in this di-
rection as a DSL can provide abstract enough construct whose semantics
provide such reuse (of knowledge).

Then, our personal opinion is that model-driven approaches will transit
the following lines. First, effort should be directed towards identifying the
set of required models at the highest levels of abstraction which are enough
for obtaining the final working system by means of automatic transforma-
tions. Second, an together with the previous one, several domain specific
languages should be defined which encapsulate the knowledge in different
concerns and allow developers to express models accurately. Third, more
patterns and techniques should be developed in order to simplify the cod-
ification of model transformations; these patterns and techniques should
provide the realization of those constructs available at the domain specific
languages in use, but resolving them at lower levels of abstraction (either
design or implementation).

Further work. Several lines of research are suggested from this work, mainly
in the two latter directions we explore. • First, even though we present a simple
and accurate formalization, it is important to take such formalization a step
further. In order to do so, apart from revisiting it so as to improve its precision,
it is desired to identify general properties of models that can be stated and
derived from the formalization. Besides, it is of major interest to explore how
an isomorphism to the four-layer architecture can be stated. Such task would
also help on improving the developed foundation. • Second, many ideas related
to the framework deserve to be explored. Among others, we can enumerate the
followings: to identify an (carefully) incorporate additional dimensions to the
framework, to plan and prototype a computer-assisted tool to aid managing,
manipulating, visualizing and editing models in the context of the framework,
identifying the set of models which suffices to reach a final working system by
means of transformations, and studying patterns and techniques which enable
automatic transformations from models at high levels of abstraction into models
at lower levels.

35



References

[1] IBM. Rational unified process. http://www-306.ibm.com/software/
awdtools/rup/, August 2006.

[2] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model
Driven Architecture—Practice and Promise. Addison-Wesley, 2003.

[3] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA Distilled:
Principles of Model-Driven Architecture. Addison-Wesley, Boston, 2004.

[4] OMG. Mda guide 1.0.1. Technical Report omg/2003-06-01, OMG, June
2003.

[5] OMG. Common warehouse metamodel. http://www.omg.org/cwm, Au-
gust 2006.

[6] OMG. Meta object facility. http://www.omg.org/mof, August 2006.

[7] OMG. Model driven architecture. http://www.omg.org/mda, August 2006.

[8] OMG. Object management group. http://www.omg.org/, August 2006.

[9] OMG. Unified modeling language. http://www.omg.org/uml, August
2006.

[10] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Object Technology. Addison-Wesley, second
edition, 2005.

[11] Wikipedia. The free encyclopedia. http://en.wikipedia.org/, August
2006.

36


