
Dynamic Entropy-Compressed Sequences

and Full-Text Indexes ⋆

Veli Mäkinen 1

Department of Computer Science, University of Helsinki, Finland.
vmakinen@cs.helsinki.fi

Gonzalo Navarro 2

Department of Computer Science, University of Chile.
gnavarro@dcc.uchile.cl

Abstract

We give new solutions to the Searchable Partial Sums with Indels problem.
Given a sequence of n k-bit numbers, we present a structure taking kn+o(kn) bits of
space, able of performing operations sum, search, insert, and delete, all in O(log n)
worst-case time, for any k = O(log n). This extends previous results by Hon et al.
[ISAAC 2003] achieving the same space and O(log n/ log log n) time complexities
for the queries, yet complexities for insert and delete are amortized and worse than
ours, and supported only for k = O(1). Our result matches an existing lower bound
for large values of k.

We also give new solutions to the Dynamic Sequence problem. Given a sequence
of n symbols in the range [1, σ] with binary zero-order entropy H0, we present a
dynamic data structure that requires nH0 +o(n log σ) bits of space, which is able of
performing rank and select, as well as inserting and deleting symbols at arbitrary
positions, in O(log n log σ) time. Our result is the first entropy-bound dynamic data
structure for rank and select over general sequences.

In the case σ = 2, where both previous problems coincide, we improve the dynamic
solution of Hon et al. in that we compress the sequence. The only previous result with
entropy-bound space for dynamic binary sequences is by Blandford and Blelloch
[SODA 2004], which has the same complexities as our structure, but does not achieve
constant 1 multiplying the entropy term in the space complexity.

Finally, we present a new dynamic compressed full-text self-index, for a collection
of texts over an alphabet of size σ, of overall length n and h-th order empirical
entropy Hh. The index requires nHh + o(n log σ) bits of space, for any h ≤ α logσ n
and constant 0 < α < 1. It can count the number of occurrences of a pattern of
length m in time O(m log n log σ). Reporting each such occurrence can be supported
in O(log2 n log log n) time, and displaying a context of length ℓ from a text takes time
O(log n(ℓ log σ + log n log log n)). Insertion/deletion of a text to/from the collection

Preprint submitted to Elsevier Preprint 12 July 2006



takes O(log n log σ) time per symbol. This largely improves the space of a previous
result by Chan et al. [CPM 2004] in exchange for a slight complexity penalty. We
achieve at the same time the first dynamic index requiring essentially nHh bits of
space, and the first construction of a compressed full-text self-index within that
working space. Previous results achieve at best O(nHh) space with constants larger
than 1 (Ferragina and Manzini [FOCS 2000], Arroyuelo and Navarro [ISAAC 2005])
and higher time complexities.

An important result we prove in this paper is that the wavelet tree of the Burrows-
Wheeler transform of a text, if compressed with a technique achieving zero-order
compression locally (e.g., Raman et al. [SODA 2002]), automatically achieves h-th
order entropy space for any h. This unforeseen relation is essential for the results of
the previous paragraph, but it also derives into significant simplifications on many
existing static compressed full-text self-indexes that build on wavelet trees.

1 Introduction and Related Work

The study of compressed data structures aims to represent classical structures
like trees, graphs, text indexes, etc., in the smallest possible space without
challenging the functionality of the structure; the original operations should
be supported efficiently without decompressing the whole structure.

The well-known Searchable Partial Sums problem consists of maintain-
ing a sequence A of nonnegative integers a1 . . . an, each of k bits, supporting
queries on the prefix sums and limited updates on the values. An extension
[22] called Searchable Partial Sums with Indels allows insertions and
deletions of values as well.

The restricted version where k = 1, and thus the numbers are actually bits, is
called the Dynamic Bit Vector problem. In this case the update operation
means flipping the bit. Also, queries on the prefix sums correspond to the
well-known rank and select queries on bit sequences. The extension to the
Dynamic Bit Vector with Indels problem is immediate.

Some recent articles deal with the problem of designing succinct dynamic data
structures, requiring kn + o(kn) bits of space, for these problems [31,22]. The
best current result for k = O(1) [22] requires kn+o(kn) bits of space, O(logb n)

⋆ A preliminary partial version of this paper appeared in Proc. CPM 2006, LNCS
4009.
1 Funded by the Academy of Finland under grant 108219.
2 Partially funded by Fondecyt Grant 1-050493, Chile.

2



time for rank and select, and O(b) time for flips, for any b ≥ log n/ log log n. 3

Insertions and deletions can be supported in O(b) amortized time, for b ≥
(log n/ log log n)2. These results scale well to larger k, obtaining the same
worst-case complexities for prefix sum queries as well as for updates, but in-
sertions and deletions are not supported anymore. The best time complexities
achieved for this problem are worst-case O(log n/ log(w/δ)), where updates
that add/subtract a number of δ bits are permitted [30]. They show that this
complexity is optimal, but insertions and deletions are not considered.

In this paper we extend this result by achieving kn + o(kn) bits of space
and O(log n) worst case time complexity for all the operations, for any k =
O(log n). For larger k = O(w), where w is the machine word size under the
RAM model of computation, our time complexity raises to O(w/ log1−ε n +
log n), for any constant ε > 0. Moreover, we refine this result for the case
of strictly positive numbers: the total space is not anymore kn bits, but the
sum of the exact number of bits necessary to represent each number. For the
case k = Θ(log n) = Θ(w) the obtained time complexity is optimal, given the
lower bound Ω(log n/ log(w/k)) = Ω(log n) for the more restricted problem
with (arbitrary) updates [30] 4 .

Let us return to the Dynamic Bit Vector with Indels problem. We go
further than representing them using n+o(n) bits, and achieve a representation
that uses nH0 + o(n) bits of space, where 0 < H0 ≤ 1 is the empirical zero-
order entropy of the sequence. This is an improvement over an O(nH0) result
by Blandford and Blelloch [4] since, although their results are more general,
they do not achieve constant 1 multiplying the entropy term in the space
complexity. The comparison of time complexities against partial sums with
k = 1 [22] stays as above, but now we compress the sequence. Our space
complexity has been only achieved in the static scenario [31], where no updates
are possible.

We further generalize this result to sequences of symbols over an alphabet
[1, σ], where operations rank and select generalize to ranka(A, i), counting
the occurrences of symbol a in A[1, i], and selecta(A, j), giving the position of
the j-th a in A. By using wavelet trees [17] we achieve nH0 + o(n log σ) bits
of space and O(log n log σ) time complexities. This space has been previously
achieved only for static data structures, with query time O(⌈log σ/ log log n⌉)
time for rank and select but no support for updates [32,15]. By using multiary
wavelet trees, we can reduce the query times to O(1

ǫ
log n⌈log σ/ log log n⌉) in

3 In this paper log stands for log2.
4 Note that, even if we wish to restrict our updates to δ < k bits, insertions and
deletions would permit simulating general updates, thus the stated lower bound
must hold anyway if insertions and deletions are permitted, unless we restrict these
in a rather unnatural way.

3



exchange for increasing the update times to O(1
ǫ
log1+ǫ n/ log log n), for any

ǫ > 0.

Moreover, all our results work under weaker assumptions on the RAM model
than many previous results on dynamic settings. Instead of assuming log n =
Θ(w) as it is frequent in the literature, we opt for the weaker condition
log n = O(w). We show that the results stay the same in terms of time and
space complexities, except for O(w) extra bits of space that are required for
a constant number of system pointers.

Let us now regard sequences of symbols with another semantics. The indexed
string matching problem is that of, given a long text T [1, n] over an alphabet
Σ of size σ, building a data structure called full-text index on it, to solve
two types of queries: (a) Given a short pattern P [1, m] over Σ, count the
occurrences of P in T ; (b) locate those occ positions in T . There are several
classical full-text indexes requiring O(n log n) bits of space which can answer
counting queries in O(m log σ) time (like suffix trees [1]) or O(m+ logn) time
(like suffix arrays [26]). Both locate each occurrence in constant time once the
counting is done. Similar complexities are obtained with modern compressed
data structures [12,17,15], requiring space nHh+o(n log σ) bits (for some small
h), where Hh ≤ log σ is the h-th order empirical entropy of T . These indexes
are often called compressed self-indexes refering to their space requirement
and to their ability to work without the text and even fully replace it, by
delivering any text substring without accessing T .

There exist dynamic self-indexes by Chan, Hon, and Lam [7]. One requires
O(nσ) bits of space, and it can count the number of occurrences of a pattern
of length m in time O(m log n). Insertions and deletions require O(σ log n)
and O((σ + log n) log n) time per character, respectively. The other requires
O(n log σ) bits of space and counts in time O(m log2 n). Insertions and dele-
tions take O(logn) time per character. In either case, each occurrence position
can be retrieved in O(log2 n) time. The structures can be combined so as to
get O(σn) bits of space, O(m logn) counting time, and O(σ log n) insertion
and deletion time per character.

The main building block in compressed self-indexes is function ranka. Ac-
tually, our dynamic compressed ranka structure can be used to implement a
dynamic compressed self-index that takes nHh+o(n log σ) bits of space, for any
h ≤ α logσ n and constant 0 < α < 1. This is obtained by plugging our struc-
ture for symbol sequences in the dynamic self-index of [7]. Our counting time is
O(m log n log σ). We can locate each occurrence in time O(log2 log log n), and
display a text context of length ℓ in time O(log n(ℓ log σ + log n log log n)).
Insertion and deletion of a text to the collection takes O(log n log σ) time
per symbol. Compared with the original indexes of Chan et al., we obtain a
significant space saving and, depending on the case, better update or better

4



counting times.

The fact that plugging our nH0-bits sequence representation into the self index
of [7] yields h-th order compression stems from the fact that the sequence we
are representing is the Burrows-Wheeler transform of the text collection [5,27].
This is a striking result we prove in this paper. For several years, much effort
has been spent in designing sophisticated (static) data structures on top of
the plain wavelet tree so as to reduce its nH0-bit size to nHh bits [17,15,24]. In
this paper we show that this is automatically achieved by the original wavelet
tree without any further effort! Thus, as a byproduct, we obtain a significant
simplification in the design of static data structures for this problem.

Ours is the first dynamic compressed self-index with space essentially equal to
the h-th order empirical entropy of the text collection, which in addition can
be built within this working space. We know only of two previous dynamic full-
text self-indexes. The older [12] requires O(nHh) bits of space (with constant
5 at least), O(m log3 n) counting time, O(log n) amortized insertion time per
character, and O(log2 n) amortized deletion time per character. A newer one
[6] requires O(n) bits of space, O(m log n) counting time, O(log2 n) locating
time per occurrence, and O(log n) insertion/deletion time per character.

As a plus, we obtain an O(n log n log σ) time construction algorithm for static
self-index requiring nHh + o(n log σ) bits working space during construction
(the same as the final structure). Previous construction algorithms within en-
tropy space achieve O(nH0) bits of space and O(n logn) time [21], or O(nHh)
bits of space (with constant larger than 4) and O(σn) time [2].

Several other compressed indexes can be obtained using our algorithm. More-
over, it is very easy to obtain the Burrows-Wheeler transform of T from the
index we build, within the same O(n logn log σ) time. A recent result [23]
achieves n log σ + O(n) bits and O(n log2 n) time.

2 Definitions

To simplify notation, we ignore roundings. When refering to number of bits,
we use simply log n to refer to ⌊(log n) + 1⌋. That is, log log n bits means
actually ⌊(log⌊(log n) + 1⌋) + 1⌋ bits. Similarly (log n)/2 is the integer nearest
to ⌊(log n) + 1⌋/2, and so on.

We assume our sequence A = a1 . . . an to be drawn from an alphabet {0, 1, . . .
σ − 1}. Let nc denote the number of occurrences of symbol c in A, i.e., nc =
|{i | ai = c}|. Then the zero-order empirical entropy is defined as H0(A) =
∑

0≤c<σ
nc

n
log n

nc
. This is the lower bound for the average code word length of

5



any compressor that fixes the code words to the symbols independently of the
context they appear in. A tighter lower bound for sequences is the h-th order
empirical entropy Hh(A), where the compressor can fix the code word based
on the h-symbol context following the symbol to be coded. 5 Formally, it can
be defined as Hh(A) =

∑

w∈Σh
nw

n
H0(A|w), where nw denotes the number of

occurrences of substring w in A and A|w denotes the concatenation of the
symbols appearing immediately before those nw occurrences [27]. Substring
w = A[i + 1, i + h] is called a h-context of symbol ai. We take A here as a
cyclic string, such that an precedes a1, and thus the amount of h-contexts is
exactly n.

We assume a random access machine with word size w; typical arithmetic
operations on w-bit integers are assumed to take constant time. We make
the minimal assumption that log n = O(w), instead of the common stronger
assumption log n = Θ(w).

We study the following problems in this paper:

The Dynamic Sequence with Indels problem is to maintain a (virtual)
sequence A = a1 . . . an, ai ∈ {0, 1, . . . , σ − 1}, supporting the operations:

• rankc(A, i) returns the number of occurrences of symbol c in a1 · · ·ai;
• selectc(A, j) returns the index i containing j-th occurrence of c;
• insert(A, c, i) inserts c ∈ {0, 1, . . . σ − 1} between ai−1 and ai; and
• delete(A, i) deletes ai from the sequence.

The Dynamic Bit Vector with Indels problem is a restriction of the
above to alphabet {0, 1} (i.e., σ = 2). Then we use short-hand notation
rank(A, i) = rank1(A, i) and select(A, i) = select1(A, i). Notice that rank0(A, i) =
i − rank1(A, i), but the same does not apply for select0(A, j); so both select
queries must be handled.

The Searchable Partial Sums problem consists of maintaining a sequence
A of nonnegative integers a1 . . . an, each of k bits, so that we can perform the
following queries and operations on them:

• sum(A, i) returns
∑i

t=1 at;
• search(A, j) returns the smallest i such that sum(A, i) ≥ j; and
• update(A, i, ∆) increases ai by ∆, assuming ai + ∆ is within bounds and

∆ = O(polylog(n)).

5 It is more logical (and hence customary) to define the context as the h symbols
preceding a symbol, but we use the reverse definition for technical convenience. If
this is an issue, the sequences can be handled in reverse order to obtain results on
the more standard definition. It is anyway known that both definitions do not differ
by much [14].

6



A more general problem called Searchable Partial Sums with Indels

includes also the following operations:

• insert(A, i, x) inserts x between ai−1 and ai.
• delete(A, i) deletes ai from the sequence.

Notice that the Searchable Partial Sums with Indels problem with
k = 1 is equivalent to the Dynamic Bit Vector with Indels problem
(sum being rank, search being select).

A problem related to the Dynamic Sequence with Indels problem is
the Dynamic Text Collection problem, defined as follows: Maintain a
dynamic collection C of texts {T1, T2, . . . , Tm}, where each Ti ∈ {1, 2, . . . σ}∗,
supporting the following operations:

• count(C, P ) returns the number of times pattern P occurs as a substring in
the collection;
• locate(C, P ) returns the occurrence positions of P in the collection;
• substring(C, j, l, r) returns Tj [l, r];
• j = insert(C, T ) inserts text T into the collection, returning a handle j to

it (that is, from now on T = Tj); and
• delete(C, j) deletes text Tj from the collection.

3 Previous Results

Our new solutions build on top of various previous results. We explain part
of these previous results in detail, in order to present our contribution in self-
contained manner.

3.1 Static Entropy-Bound Structures for Bit Vectors

Raman et al. [32] proposed a data structure to solve rank and select queries
in constant time over a static bit vector A = a1 . . . an with binary zero-order
entropy H0. The structure requires nH0 + o(n) bits.

The idea is to split A into superblocks S1 . . . Sn/s of s = log2 n bits. Each
superblock Si is in turn divided into 2 log n blocks Bi(j), of t = (log n)/2 bits
each, thus 1 ≤ j ≤ s/t. Each such block Bi is said to belong to class c if it has

exactly c bits set, for 0 ≤ c ≤ t. For each class c, a universal table Gc of
(

t
c

)

entries is precomputed. Each entry corresponds to a possible block belonging
to class c, and it stores all the local rank answers for that block. Overall all
the Gc tables add up 2t =

√
n entries, and O(

√
n polylog(n)) bits.

7



Each block Bi(j) of the sequence is represented by a pair Di(j) = (c, o), where
c is its class and o is the index of its corresponding entry in table Gc. A block
of class c thus requires log(c + 1) + log

(

t
c

)

bits. The first term is O(log log n),

whereas all the second terms add up nH0 + O(n/ logn) bits. To see this, note

that log
(

t
c1

)

+log
(

t
c2

)

≤ log
(

2t
c1+c2

)

, and that nH0 ≥ log
(

t(n/t)
c1+...+cn/t

)

. The pairs

Di(j) are of variable length and are all concatenated into a single sequence.

Each superblock Si stores a pointer Pi to its first block description in the
sequence (that is, the first bit of Di(1)) and the rank value at the beginning
of the superblock, Ri = rank(A, (i − 1)s). P and R add up O(n/ log n) bits.
In addition, Si contains s/t numbers Li(j), giving the initial position of each
of its blocks in the sequence, relative to the beginning of the superblock. That
is, Li(j) is the position of Di(j) minus Pi. Similarly, Si stores s/t numbers
Qi(j) giving the rank value at the beginning of each of its blocks, relative
to the beginning of the superblock. That is, Qi(j) = rank(A, (i − 1)s + (j −
1)t) − Ri. As those relative values are O(log n), sequences L and Q require
O(n log log n/ log n) bits.

To solve rank(A, p), we compute the corresponding superblock i = 1 + ⌊p/s⌋
and block j = 1 + ⌊(p − (i − 1)s)/t⌋. Then we add the rank value of the
corresponding superblock, Ri, the relative rank value of the corresponding
block, Qi(j), and complete the computation by fetching the description (c, o)
of the block where p belongs (from bit position Pi + Li(j)) and performing a
(precomputed) local rank query in the universal table, rank(Gc(o), p − (i −
1)s− (j − 1)t).

The overall space requirement is nH0 + O(n log log n/ log n) bits, and rank is
solved in constant time. We do not cover select because it is not necessary to
follow this paper.

The scheme extends to sequences over small alphabets as well [15]. Let B =
a1 . . . at be the symbols in a block, and call na the number of occurences of
symbol a ∈ [1, q] in B. We call (n1, . . . , nq) the class of B. Thus, in our (c, o)
pairs, c will be a number identifying the class of B and o an index within
the class. A simple upper bound to the number of classes is (t + 1)q (as a
class is a tuple of q numbers in [0, t], although they have to add up t). Thus
O(q log log n) bits suffice for c (a second bound on the number of classes is
qt as there cannot be more classes than different sequences). Just as in the
binary case, the sum of the sizes of all o fields adds up nH0(A) + O(n/ logq n)
[15].

8



3.2 Static Wavelet Trees and Entropy-Bound Structures for Sequences

We now extend the result of the previous section to larger alphabets. The idea
is to build a wavelet tree [17] over sequences represented using rank and select
structures for small alphabets.

A binary wavelet tree is a balanced binary tree whose leaves represent the
symbols in the alphabet. The root is associated with the whole sequence A =
a1 · · ·an, its left child with the subsequence of A obtained by concatenating
all positions i having ai < σ/2, and its right child with the complementary
subsequence (symbols ai ≥ σ/2). This subdivision is continued recursively,
until each leaf contains a repeat of one symbol. The sequence at each node is
represented by a bit vector that tells which positions (those marked with 0) go
to the left child, and which (marked with 1) go to the right child. It is easy to
see that the bit vectors alone are enough to determine the original sequence:
To recover ai, start at the root and go left or right depending on the bit vector
value Bi at the root. When going to the left child, replace i ← rank0(B, i),
and similarly i ← rank1(B, i) when going right. When arriving at the leaf of
character c it must hold that the original ai is c. This requires O(log σ) rank
operations over bit vectors.

It also turns out that operations rank and select on the original sequence can
be carried out via O(log σ) operations of the same type on the bit vectors of
the wavelet tree [17]. For example, to solve rankc(A, i), start at the root and
go to the left child if c < σ/2 and to the right child otherwise. When going
down, update i as in the previous paragraph. When arriving at the leaf of c,
the current i value is the answer. For selectc(A, j), the algorithm starts at the
leaf of c and goes upwards until the root, updating j ← selectb(B, j) with
b = 0 or 1 depending on whether we descend from the parent (owning vector
B) from the left or right child.

A multiary wavelet tree, of arity q, is used in [15]. In this case the sequence
of each wavelet tree node ranges over alphabet [1, q], and symbol rank/select
queries are needed over those sequences. One needs logq σ operations on those
sequences to perform the corresponding operation on the original sequence.

Either for binary or general wavelet trees, it can be shown that the H0 entropies
in the representations of the sequences at each level add up to nH0(A) bits
[17,15]. However, as we have O(σ) bit vectors, the sublinear terms sum up to
o(σn). The space occupancy of the sublinear structures can be improved to
o(n log σ) by concatenating all the bit vectors of the same level into a single
sequence, and handling only O(log σ) such sequences 6 . It is straightforward
to do rank, as well as obtaining symbol ai, without any extra information [15].

6 Note that o(n log σ) is sublinear in the size of A measured in bits.

9



For select one still needs pointers to the parent of each node and its starting
position in the sequence of its level. This information adds up O(σ log n) bits
of space.

If we now represent the concatenated bit vectors of the binary wavelet tree by
the rank structures explained in the previous section, we obtain a structure
requiring nH0(A) + O(n log log n/ logσ n) = nH0(A) + o(n log σ) bits, solving
rank in O(log σ) time. Within the same bounds one can solve select as well
[32,17].

One can also use multiary wavelet trees and represent the sequences with al-
phabet size q using the techniques for small alphabets (see the end of previous
section). With a suitable value for q, one obtains a structure requiring the
same nH0(A)+o(n log σ) bits of space, but answering rank and select in con-
stant time when σ = O(polylog(n)), and O(⌈log σ/ log log n⌉) time in general
[15].

3.3 Dynamic Structures for Bit Vectors

Hon et al. [22] show how to handle a bit vector A = a1 . . . an in n+o(n) bits of
space, so that rank and select can be solved in O(logb n) time, while insertions
and deletions to the sequence can be handled in O(b) time, for any parameter
b ≥ log n/ log log n. Hence, they provide a solution to the Dynamic Bit

Vector with Indels problem. Their main structure is a weight-balanced
B-tree (WBB) [9,31].

Our goal is to obtain nH0 + o(n) bits of space and O(log n) time for all the
operations above. We build over a simplified version of their structure, which
uses standard balanced trees and achieves O(log n) time and O(n) bits of space
[7]. This is described below.

Consider a balanced binary tree on A whose leftmost leaf contains bits a1a2 · · ·
alog n, second left-most leaf contains bits alog n+1alog n+2 · · ·a2 log n, and so on.
Each node v contains counters p(v) and r(v) telling the number of positions
stored and the number of bits set in the subtree rooted at v, respectively. Note
that this tree, with all its log n-size pointers and counters, requires O(n) bits.

To perform rank(A, i), we enter the tree to find the leaf containing position i.
We start with rank ← 0. If p(left(v)) ≥ i we enter the left subtree, otherwise
we enter the right subtree with i ← i − p(left(v)) and rank ← rank +
r(left(v)). In O(log n) time we reach the desired leaf and complete the rank
query in O(logn) time by scanning the bit sequence corresponding to that
node. For select we proceed similarly, except that the roles of p() and r() are
reversed. For select0 the computation is analogous.

10



Insertions and deletions are handled by entering to the correct leaf as in rank,
and replacing its bit sequence with the new content. Then the p(v) and r(v)
counters in the path from the leaf to the root are changed accordingly. When a
leaf is updated to contain 2 log n bits, it is split into two leaves, each containing
log n bits. When a leaf is updated to contain (log n)/2 bits, it is merged with
its sibling. If this merging produces a leaf with more than 2 log n−1 bits, this
leaf is again split into two equal-size halves. After splitting and merging, the
tree needs to be rebalanced and the counters updated in the nodes on the way
to the root.

3.4 Dynamic Entropy-Bound Structures for Bit Vectors

Blandford and Blelloch [4] design a general scheme to convert a space-demanding
data structure into one that requires O(nH0) bits of space. The data struc-
tures considered can solve a subset of a wide range of problems related to
ordered sets, and the main idea is to represent such sets using gap encoding
(see next). In particular, if one applies the idea to the structure described
above for solving bit vector rank, select, insert, and delete in O(logn) time,
the only difference is that bit vectors are represented in compressed form in
the leaves of the binary tree.

We note that gap encoding has also been used to achieve zero-order entropy
in static schemes. In [19] they explore the idea of inserting some information
into the encoding so as to permit solving rank and select queries in logarith-
mic time via binary searches. In [20] they improve this result and reach time
o((log log n)2), close to the lower bound on the predecessor problem when the
space depends on the number of bits set and only logarithmically on the total
number of bits. In [25] they achieve constant time on gap encoding, yet they
have a higher o(n)-type dependence on the total number of bits.

3.4.1 Gap Encoding

Let A = 0g010g11 . . . 0gℓ−110gℓ, where 0gi represents a sequence of gi 0-bits
(called a gap). Gap encoding represents A as δ(g0)δ(g1) . . . δ(gℓ−1)δ(gℓ), where
δ(x) is an encoding for the nonnegative integer x. This encoding must satisfy
two properties: (i) |δ(x)| = log x + o(log x); (ii) we can univocally distinguish
x and D from δ(x)D, being D any bit sequence.

A well-known encoding satisfying the above properties is Elias’ δ [10,3]. To
represent x, let l = ⌈log(x + 1)⌉ be the number of bits necessary to encode x,
and let ll = ⌈log(l + 1)⌉ be the number of bits necessary to code l. Then δ(x)
is formed by three parts: (a) ll 0-bits followed by a 1-bit, (b) the ll − 1 least
significant bits of the binary representation of l (this part is empty if l < 2),

11



and (c) the l − 1 least significant bits of the binary representation of x (this
part is empty if x < 2). For example, for x = 0, we have l = 0 and ll = 0,
thus δ(0) = 1; for x = 1, l = 1 and ll = 1, thus δ(1) = 01; for x = 2, l = 2
and ll = 2, thus δ(2) = 001 0 0; whereas δ(3) = 001 0 1; δ(4) = 001 1 00 since
l = 3 and ll = 2; and so on.

It is clear that |δ(x)| = log x + 2 log log x + O(1) = log x + o(log x). The total
length of this representation of A is therefore

ℓ
∑

i=0

log gi + o(log gi) ≤
ℓ
∑

i=0

log
n− ℓ

ℓ + 1
+ o(log

n− ℓ

ℓ + 1
)

≤ (ℓ + 1) log
n

ℓ
+ (ℓ + 1)o(log

n

ℓ
),

where we have used the fact that
∑ℓ

i=0 gi = n− ℓ, and thus the summation of
those convex functions achieves its maximum value when all gi = n−ℓ

ℓ+1
. As the

binary entropy of A is H0 = ℓ
n

log n
ℓ
+ n−ℓ

n
log n

n−ℓ
, the first term of the result is

ℓ log n
ℓ
+O(log n) ≤ nH0 +O(log n). The second term is O(ℓ) if ℓ = Θ(n), and

o(nH0 +log n) otherwise. Therefore, the total size of the gap representation is
n′ = nH0(1 + o(1)) + O(ℓ + log n) bits. For Elias’ representation, this is more
precisely n′ = ℓ log n

ℓ
+ O(ℓ log log n

ℓ
+ log n).

3.4.2 A Dynamic Structure based on Gap Encoding

Consider the balanced binary search tree of Section 3.3 built on the gap en-
coded bit vector A: The encoded bit vector δ(g0)δ(g1) . . . δ(gℓ−1)δ(gℓ) of length
n′ is partitioned into blocks of approximately log n bits, each block containing
as many full δ(gi) codes as can be accommodated into log n bits. These blocks
form the leaves of the binary search tree. To answer rank and select queries
one can proceed just like in the uncompressed case, except that the final scan-
ning in the leaves requires decoding the gap encoding. The time complexity
remains O(logn).

To support insert and delete on this gap-encoded sequence one can proceed
as in the uncompressed case, splitting and merging leaves when necessary.
To insert a bit a preceding position i inside a block, we sequentially look for
the gap where a should be inserted. Say that a must be inserted at relative
position i′ within 0gk1, 1 ≤ i′ ≤ gk + 1. If a = 1 we must replace δ(gk) by
δ(i′ − 1)δ(gk − i′ + 1). Otherwise, if a = 0 we must replace δ(gk) by δ(gk + 1).
All the δ-codes that follow must be shifted to make room for the new code.
The replacement and shifting can be easily done in O(logn) time if there
is enough empty space left in the block. If not, the block needs to be split
into two. Notice that on a single insert the space needed can at most double.
Deletions are handled analogously.

12



Space is improved from O(n) to O(nH0) bits. The gap encoding itself takes
essentially nH0 bits, the unused empty space in the leaves occupies in the
worst case other nH0 bits, as blocks can be half-full 7 , and the tree pointers
occupy (nH0/ log n)×O(log n) = O(nH0) bits.

3.5 Static Full-Text Self-Indexes

Many static full-text self-indexes are based on representing the Burrows-
Wheeler transform [5] of a text using wavelet trees to support efficient sub-
string searches. We will later consider dynamic wavelet trees to solve the Dy-

namic Text Collection problem, hence we introduce the basic concepts
here. We follow closely the description given in [24].

3.5.1 The Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT) [5] of a text T produces a permuta-
tion of T , denoted by T bwt. We assume that T is terminated by an endmarker
“$” ∈ Σ, smaller than other symbols. String T bwt is the result of the following
transformation: (1) Form a conceptual matrix M whose rows are the cyclic
shifts of the string T , call F its first column and L its last column; (2) sort
the rows of M in lexicographic order; (3) the transformed text is T bwt = L.

The BWT is reversible, that is, given T bwt we can obtain T . Note the following
properties [5]:

a. Given the i-th row of M, its last character L[i] precedes its first character
F [i] in the original text T , that is, T = . . . L[i]F [i] . . ..

b. Let L[i] = c and let ri be the number of occurrences of c in L[1, i]. LetM[j]
be the ri-th row ofM starting with c. Then the character corresponding to
L[i] in the first column F is located at F [j] (this is called the LF mapping :
LF (i) = j). This is because the occurrences of character c are sorted both
in F and L using the same criterion: by the text following the occurrences.

The BWT can then be reversed as follows:

(1) Compute the array C[1, σ] storing in C[c] the number of occurrences of
characters {$, 1, . . . , c − 1} in the text T . Notice that C[c] + 1 is the
position of the first occurrence of c in F (if any).

(2) Define the LF mapping as follows: LF (i) = C[L[i]] + rankL[i](L, i).
(3) Reconstruct T backwards as follows: set s = 1 (sinceM[1] = $t1t2 . . . tn−1)

and, for each i ∈ n− 1, . . . , 1 do T [i]← L[s] and s← LF [s]. Finally put

7 As described blocks could be 25% full, but it is easy to force them to be half-full.

13



the endmarker T [n] = $.

The BWT transform by itself does not compress T , it just permutes its char-
acters. However, this permutation is more compressible than the original T .
Actually, it is not hard to compress T bwt to O(nHh + σh) bits, for any h ≥ 0
[27]. The idea is as follows (we will reuse it in Section 7.3): Partition L into
minimum number of pieces L1L2 · · ·Lℓ such that the symbols inside each piece
Lk = L[ik, jk] have the same h-context. Note that the h-context of a sym-
bol L[i] is M[i][1, h]. By the definition of h-th order entropy, it follows that
|L1|H0(L

1) + |L2|H0(L
2) + · · · + |Lℓ|H0(L

ℓ) = nHh. That is, if one is able
to compress each piece upto its zero-order entropy, then the end result is h-
th order entropy. Using, say, arithmetic coding on each piece, one achieves
nHh +σh+1 log n bits encoding of T . The latter term comes from the encoding
of the symbol frequences in each piece separately.

3.5.2 Suffix Arrays

The suffix array A[1, n] of text T is an array of pointers to all the suffixes
of T in lexicographic order. Since T is terminated by the endmarker “$”, all
lexicographic comparisons are well defined. The i-th entry of A points to text
suffix T [A[i], n] = tA[i]tA[i]+1 . . . tn, and it holds T [A[i], n] < T [A[i + 1], n] in
lexicographic order.

Given the suffix array, the occurrences of the pattern P = p1p2 . . . pm can be
counted in O(m log n) time. The occurrences form an interval A[sp, ep] such
that suffixes tA[i]tA[i]+1 . . . tn, for all sp ≤ i ≤ ep, contain the pattern P as
a prefix. This interval can be searched for using two binary searches in time
O(m log n). Once the interval is obtained, a locating query is solved simply by
listing all its pointers in constant time each.

We note that the suffix array A is essentially the matrix M of the BWT
(Section 3.5.1), as sorting the cyclic shifts of T is the same as sorting its
suffixes given the endmarker “$”: A[i] = j if and only if the i-th row of M
contains the string tjtj+1 . . . tn−1$t1 . . . tj−1.

3.5.3 Backward Search

The FM-index [12] is a self-index based on the Burrows-Wheeler transform.
It solves counting queries by finding the interval of A that contains the occur-
rences of pattern P . The FM-index uses the array C and function rankc(L, i)
of the LF mapping to perform backward search on the pattern. Fig. 1 shows
the counting algorithm. Using the properties of the BWT, it is easy to see
that the algorithm maintains the following invariant [12]: At the i-th phase,
variables sp and ep point, respectively, to the first and last row ofM prefixed

14



by P [i, m]. The correctness of the algorithm follows from this observation.
Note that P is processed backwards, from pm to p1.

Algorithm FMCount(P [1,m],L[1, n])
(1) i← m;
(2) sp← 1; ep← n;
(3) while (sp ≤ ep) and (i ≥ 1) do

(4) c← P [i];
(5) sp← C[c] + rankc(L, sp− 1)+1;
(6) ep← C[c] + rankc(L, ep);
(7) i← i− 1;
(8) if (ep < sp) then return 0 else return ep − sp + 1;

Fig. 1. FM-index algorithm for counting the number of occurrences of P [1,m] in
T [1, n].

Note that array C can be explicitly stored in little space, and for rankc(L, i)
we can directly use the wavelet tree as explained in Section 3.2. The space
usage is nH0 + o(n log σ) bits and the m steps of backward search take overall
O(m log σ) time [24].

Let us now consider how to locate the positions in A[sp, ep]. The idea is that
T is sampled at regular intervals, so that we explicitly store the positions in A
pointing to the sampled positions in T (note that the sampling is not regular
in A). Hence, using the LF mapping, we move backward in T until finding a
position that is known in A. Then it is easy to infer our original text position.
Fig. 2 shows the pseudocode.

Algorithm FMlocate(i,L[1, n])
(1) i′ ← i, t← 0;
(2) while A[i′] is not known do

(3) i′ ← LF (i′) = C[L[i′]] + rankL[i′](L, i′);

(4) t← t + 1;
(5) return “text position is A[i′] + t”.

Fig. 2. FM-index algorithm for locating the occurrence A[i] in T .

We note that, in addition to C and rank, we need access to characters L[i′] as
well. These can be found using the same wavelet tree built for rank. Finally,
if we sample one out of log1+ε n positions in T , for any constant ε > 0, and
use log n bits to represent each corresponding known A value, we require
O(n/ logε n) = o(n) additional bits of space and can locate each occurrence of
P in O(log σ log1+ε n) time.

Finally, let us consider displaying text contexts. To retrieve T [l, r], we start
at the position in A that points to the lowest marked text position following

15



r. This position in A is known from the sampling. From there, we perform
O(log1+ε n) steps, using the LF mapping, until reaching r. Then we perform
ℓ = r − l additional LF steps to collect the desired text characters. The
resulting complexity is O(logσ (ℓ + log1+ε n)).

All the O(log σ) terms in the time complexities can be made O(⌈log σ/ log log n⌉)
(which is constant if σ = O(polylog(n))), by using multiary wavelet trees.

3.6 Dynamic Full-Text Self-Indexes

Chan, Hon, and Lam [7] show how to use a solution to Dynamic Sequence

with Indels problem to obtain a solution to the Dynamic Text Col-

lection problem. One of the ideas is to simulate the above backward search
algorithm: They use A = bwt(C) on a text collection C (seen as a concatena-
tion of texts over [0, σ], where alphabet symbol 0 is reserved for separating
contiguous texts and somehow plays the role of “$”).

They show that one can dynamically maintain a collection of texts, by keeping
a data structure supporting rank, insert and delete on A, in addition to a
dynamic version of table C of Section 3.5. Adding new text T (preceded by 0)
triggers |T | insertions to A: The insertion points can be found in O(|T |g(|C|))
time, where g(n) is the time to access C and to answer rank on a collection of
length n. The process consists of inserting the suffixes of T = t1 . . . t|T | one by
one in backward fashion. The initial insertion point, for t|T |, can be at C[t|T |]+1
(note that, as there might be repeated suffixes, the position is not unique; this
does not affect the correctness of the BWT-based scheme), thus we have to
insert symbol t|T |−1 (preceding t|T |) at aC[t|T |]+1 (that is, position C[t|T |] + 1
in A). In general, once we have inserted ti at position j in A corresponding
to Ti+1,|T |, we use the LF mapping to find the next insertion point (that is,
the A position corresponding to Ti,|T |). This is done with an access to C and
a rank operation. At the end, the symbol 0 preceding t1 is inserted and we
move to insert t|T | at the position in A corresponding to suffix 0 · T (T is seen
as a circular string).

Deleting a text T triggers |T | deletions from A: The deletion points can be
found in O(|T |g(|C|) log |C|) time. In principle one would mimic the very same
insertion process, this time doing deletions. The problem is that the operation
receives the text T to delete but cannot know which of the 0’s of A correspond
to it. Thus they search backwards for T in A, and assuming it is unique, they
find the position in A corresponding to t1. Then they have to find t2 and so
on using the inverse of LF , which can be computed in O(log |C|) time.

If we call n = |C|, their original structure (called COUNT) takes O(nσ) bits of
space, and supports rank, insert, and delete in g(n) = O(log n) time. They

16



give another structure that uses O(n log σ) bits of space in exchange of an
O(log n) penalty factor in all time complexities. Using both structures they
still have O(σn) bits and can handle both insertion and deletion in O(|T | logn)
time. Searches for P cost O(|P | logn) time.

Their index is extended to support locating of occurrences using a structure
called MARK, which samples one out of log n collection positions and stores
the position in A that corresponds to the sampled collection position. This
requires O(log n) bits per sample, for a total of O(n) further bits. To locate an
occurrence at A[i], they look for it in MARK. If it is not present, they use the LF
mapping repeatedly (which traverses C backwards) until a marked position is
found. Then the original value A[i] is the sampled one plus the number of LF
steps performed. This takes overall O(log2 n) time.

Finally, to recover a substring of some text T in the collection, the user must
somehow know the lexicographic position of T within the other texts (this is
a strong assumption as it would solve the problem of the extra O(log n) factor
for deletions!). The lexicographically j-th text has its character t|T | at aj

8 .
By locating t|T | in C they can translate a relative position within a text into
an absolute position in C. Then they take the next sampled position in C and
use the LF mapping to discover the desired characters backward from there.
This takes O(log n(ℓ + log n)) time, where ℓ is the length of the text piece to
display.

4 Dynamic Succinct Structures for Bit Vectors and Partial Sums

In this section we design a data structure to represent a bit sequence A =
a1 . . . an using n + o(n) bits of space and performing operations rank, select,
insert and delete all in O(log n) time. This already improves previous results
[22], and serves as a basis for the entropy-bound structures developed in the
next sections.

4.1 High-Level Hierarchy

Section 3.3 shows how to obtain the desired time complexities using O(n) bits
of space. To achieve n + o(n) bits, we use the same tree organization, except
that it is built on ω(logn)-size leaves. Thus the tree has o(n/ log n) internal
nodes which, with all their pointers, require only o(n) bits of space. The two

8 To see this, note that t|T | in aj = L[j] of the BWT corresponds to F [j] = 0. The
0’s of all the texts are in the beginning of F , sorted lexicographically by the texts.

17



problems to solve are (i) we cannot process the leaves bitwise in O(log n)
time; (ii) we cannot store (1 + ǫ)s bits for leaves and use only s bits from
those. This is essentially the technique used in Section 3.3 to ensure that bit
insertions/deletions are handled with O(1) tree node updates.

We divide A into blocks and superblocks, as in Section 3.1. Each superblock S
will maintain s = f(n) log n bits (for some f(n) = O(log n) to be determined
later), and will be stored in a tree leaf, without any extra bits of space. Each
superblock will hold exactly 2f(n) whole blocks of t = (log n)/2 bits each. All
the s bits of the superblock will thus be stored contiguously in plain form,
without any extra structure in principle (later we add a few pointers per leaf).
From now on we will use the term “leaf” and “superblock” interchangeably.

4.2 Queries Inside a Superblock

A rank(S, i) query inside a superblock is handled in O(logn) time by using a
universal table R, which receives a t-bit sequence and gives the total number
of 1-bits in it. Thus we traverse the superblock in a blockwise manner, adding
1-bits until we reach the block that contains position i. Within that block we
count the 1-bits one by one until reaching the i-th position. The whole process
takes O(f(n) + t) = O(log n) time. More formally, if a1 . . . as are the bits of
the leaf, then b = 1 + ⌊i/t⌋ is the block i belongs to, and we compute

∑

1≤q<b

R[a(q−1)t+1 . . . aqt] +
∑

(b−1)t+1≤q≤i

aq.

A select(S, j) query is solved similarly: We add up successive R values until we
exceed j at some block b. Then we rescan block b bitwise until reading the j′-th
1-bit, where j′ = j−∑1≤q<b R[a(q−1)t+1 . . . aqt]. This also takes O(f(n)+log n)
time. We remark that table R is universal and does not depend on the sequence
A nor on the particular leaf; just on t. Moreover, table R is very small, requiring
just O(

√
n log log n) bits.

4.3 Updates Inside a Superblock

To insert a bit a at position i of S, we simply shift to the right the bit
vector ai . . . as, to make room for ai = a. This shift can be done by chunks
of Θ(log n) bits under a RAM model that permits bit shifts, or multiplication
and division (as, say, dividing by two is equivalent to shifting the bits to the
right). Otherwise, it is easy to build a small universal table to perform the
shifts by chunks of t bits. Thus the new bit is accomodated within the leaf in
O(f(n)) time.

18



We note that, after the shift, former bit as overflows to the next leaf. We now
insert as at the beginning of the next leaf, which causes a new overflow, and
so on. This brings two problems: (i) doing the propagation efficiently within
a leaf, and (ii) limiting the propagation to a reasonable number of leaves.

To achieve efficiency within each leaf, we redefine them as circular arrays
of bits. A pointer telling the position of the first bit in the leaf is stored
within the leaf, and it requires O(log log n) bits. This amounts to O(n log log n/
(f(n) log n)) = o(n/f(n)) wasted space. The advantage is that, if leaves are
circular arrays, then inserting the overflown bit at their beginning and taking
out their last bit that overflows to the next leaf is easily done in constant time.

To limit the propagation of overflows across leaves, every f(n) leaves we per-
mit the formation of a partial leaf, which reserves f(n) log n bits but might
be partially full. Those partial leaves amount to n/f(n) wasted bits overall.
Partial leaves are not circular, so the pointer of the previous paragraph can
be reused to store their current number of bits. An additional bit, stored for
each leaf, tells whether it is full or partial.

Partial leaves ensure that we never traverse more than f(n) leaves in the
overflow propagation process. Thus the overall insertion time (considering just
the work within leaves) is O(f(n)) in the leaf that receives the insertion, plus
O(1) per leaf to propagate the overflow across O(f(n)) full leaves, plus O(f(n))
to insert the overflown bit in the partial leaf (as it is not circular, it is necessary
to shift its values). This adds up O(f(n)).

To ensure the desired density of partial leaves, we first check whether there is
a partial leaf among the next 2f(n) leaves. If there is one, we carry out the
propagation up to it. Otherwise, we propagate f(n) leaves and create a new
empty partial leaf. In both cases we work over O(f(n)) leaves, and guarantee
that every partial leaf is f(n) leaves away from any other. We note that partial
leaves may end up overflowing, at which point they are not considered partial
anymore.

For deletions we proceed similarly, bringing back the first bit of the next leaf
and propagating the underflow. If there is a partial leaf within the next 2f(n)
leaves, we propagate the underflow until there. Otherwise, we propagate the
underflow for f(n) leaves, and declare the f(n)-th leaf partial. A partial leaf
that gets empty should be removed. Thus deletions are also handled in O(f(n))
time.

19



4.4 Operations in the Tree

Section 3.3 shows how to perform rank and select up to the leaves in O(log n)
time. We have shown in Section 4.2 how to manage inside the leaves in time
O(f(n) + log n) time. The wasted space is O(n/f(n)) within the leaves, and
also O(n/f(n)) for the internal tree nodes. By choosing f(n) = log n we obtain
O(log n) time for both query operations, and O(n/ logn) = o(n) wasted bits
of space. This completes the solution for those queries.

The update time within leaves is O(log n + f(n)) = O(log n) according to
Section 4.3. Let us now consider the tree adjustments required upon updates.

Inserting and deleting bits requires rewriting the p() and r() values from the
affected superblock(s) through the root. Creation and deletion of leaves and
internal tree nodes is easily handled together with the maintenance of r() and
p(). We note, however, that although each bit insertion/deletion can produce
at most one tree leaf insertion/deletion, it can affect the bits of O(f(n)) leaves,
as well as all their r() and p() values upwards the root. Yet, we note that those
O(f(n)) leaves are contiguous in the tree and therefore their total number of
ancestors do not exceed O(f(n)) + O(log n) = O(log n). It is not hard to
organize those updates so as to work O(log n) time overall. Thus we achieve
O(log n) overall time complexity for insertions and deletions as well.

4.5 Changing log n

Our result so far assumes that log n stays constant during the operations. This
value fixes the superblock/block hierarchy and the global preprocessed tables.
This assumption can be removed in two ways: (1) performing a global rebuild
whenever log n changes; (2) maintaining partial structures ready for values
(log n) −1, log n, and (log n) + 1 (which we call the previous, current, and
next).

Approach (1) is easy to implement. We can rebuild all structures in O(n) time
when necessary to accommodate the new value of log n. Amortized over all
insertions and deletions, this costs only O(1) time per operation.

Approach (2) is more complex but is inspired on a standard mechanism to
convert amortized complexity into worst-case complexity. The idea is to split
the current elements among the previous, current, and next structures, so that
the first elements are in previous, the last are in next, and current holds the
middle elements. It is trivial to run rank and select queries on this split
structure. When n is zero or a power of 2, all the elements are in current, and
the other two are empty. Upon an insertion, the size of next must grow by

20



2 unless it is already full, and previous must shrink by 1 unless it is already
empty; a deletion must cause the opposite effect; and current acts as a variable-
size buffer.

To achieve this, let us denote x → y or x ← y the movement of one element
among structures, for x, y ∈ {p, c, n}, e.g. p ← c means moving the first
element of current to previous. If the source structure is empty, the movement
is just ignored. Then, we insert (delete) in the proper structure and then,
depending on where the insertion (deletion) point lies, we move elements as
follows:

• previous: p→ c, p→ c, c→ n, c→ n (c← n, c← n, p← c, p← c).
• current: p→ c, c→ n, c→ n (c← n, c← n, p← c).
• next: p→ c, c→ n (c← n, p← c).

It is easy to see that, after n net insertions, next will hold all the 2n elements,
and that after n/2 net deletions, previous will hold all the n/2 remaining
elements. This is true even if the insertions and deletions are intermixed.
When next holds all the elements, it becomes current and the new previous
and next structures are empty; similarly when previous holds all the elements.
At those points, precisely, n is a new power of 2 and log n has changed its
value. The space requirement is still n + o(n), even when the tree pointers of
next require log(2n) bits.

Note, however, that we do not have time to build the right R table corre-
sponding to the new next or previous structures, as we need it immediately.
The solution is to maintain tables R ready for 5 values of log n, from (log n)−2
to (log n)+2. Thus, upon a change in log n, we have the new R table we need
immediately available. For example, if log n increases, we have ready the 3
tables for log n, (log n) + 1 and (log n) + 2. Yet, to maintain the invariant, we
should now build the R table for (log n) + 3, but we have plenty of time to
build it in parallel with the new operations: After O(

√
n) operations we have

managed to build the new R table (as there are O(
√

n) cells and each is easily
built in O(log n) time). This is much less than the time necessary for log n
to change again. If, on the other hand, log n shrinks back before we build the
new R table, we can just discard the partial work done.

Finally, note that we have only two types of nodes, so memory can be easily
managed in constant time per allocation or deallocation request. We obtain
the following result, where we recall that w is the number of bits in the word
of the RAM model.

Theorem 1 The Dynamic Bit Vector with Indels problem under RAM
model with constraint log n = Θ(w) can be solved using n+O(n/ log n) bits of
space supporting the operations rank, select, insert, and delete, in O(log n)
worst-case time.

21



4.6 Handling the Case log n = o(w)

In Section 4.5 we assumed that log n = Θ(w). This permits us using the
system memory, with w-bit pointers, and assume that each such pointer takes
O(log n) bits. This is a common assumption in the literature, but we find it
too restrictive in the dynamic setting. In this section we extend our result to
the case where log n = o(w). We use different solutions for the internal tree
nodes and for the leaves.

Let us start with the tree nodes. Assume our tree has u internal nodes and
holds n bits. Each time tree next becomes current in Section 4.5, we allocate
u′ = 2n/(f(2n) log(2n)) cells of space for the new next tree (those cells require
(log u′)-bit pointers). This ensures that, when the number of bits we handle
reaches 2n, all the tree will be in next, next will become current, and thus
the new current memory area will be completely full. Similarly, when previous
becomes current, we allocate space for u′′ = (n/2)/(f(n/2) log(n/2)) cells in
the new previous tree. Note also that, according to the rules to move elements
in Section 4.5, current never increases its size after it is created. Thus, there
is no flaw in creating it with exactly the number of cells to hold its current
number of elements. Overall, we are using O(n/f(n)) bits of space (more
precisely, about 3.5 n/f(n) bits) for all the trees, plus 3w bits necessary for
the pointers to the three memory areas.

Within each memory area, we must provide a mechanism to manage tree node
insertions and deletions in constant time. This is very easy because all the
nodes have the same size within each area. An implicit list of free cells, where
the list pointers use the same free space they mark, is sufficient for memory
management within each area. The above paragraph shows that overflows do
not occur within these areas.

We must use a different mechanism for the tree leaves, as they add up n bits
and thus we cannot afford allocating 3.5 n bits of space. Let us focus in one
individual structure (say, current). Each leaf takes f(n) log n bits of space. A
separate memory area will store all those leaves in array form, so an O(log n)-
bits index into the array suffices as a pointer from an internal tree node to a
leaf. This array must be kept in compact form upon insertions and deletions,
which is easily achieved by storing the parent of each leaf in the array area
(this permits moving the last leaf to the hole left by a deletion and updating
the tree node that points to that leaf).

The problem is how to allocate memory when this array grows. We divide

the whole memory for the leaves into
√

n/w chunks of
√

nw bits each 9 . All

chunks will be full except for the last one, costing us O(
√

wn) extra bits. As

9 This partitioning does not change along the lifetime of the structure, that is, we

22



they are all of the same size, it is easy to allocate and deallocate chunks from
system memory in constant time. Any pointer to a leaf is composed of two
parts: the first 1

2
log n

w
bits indicate the chunk number, and the other 1

2
log(nw)

bits give the offset within the chunk. To achieve constant-time access from a
pointer, we need a global array of the chunk addresses in system memory,

requiring O(w
√

n/w) = O(
√

nw) bits. The overall extra space for the chunk

mechanism is O(
√

nw), which is o(n) unless n is very small, n = O(w). In
this case

√
nw = O(w), and as we are already paying O(w) bits for a constant

number of system memory pointers, we can spend the same space as if we had
w bits in our structure (using a single chunk).

Thus we can reexpress the result of Theorem 1 under our weaker model of
computation as follows:

Theorem 2 The Dynamic Bit Vector with Indels problem under RAM
model with constraint log n = O(w) can be solved using n+O(n/ logn+

√
nw+

w) = n + o(n) + O(w) bits of space, supporting the operations rank, select,
insert, and delete, in O(log n) worst-case time.

We note that the only price we are finally paying is O(w) extra bits of space.
This is asymptotically optimal if we assume that at least it is necessary to
have a single system pointer to any dynamic structure.

4.7 Searchable Partial Sums with Indels

Assume now that our sequence A = a1 . . . an is formed by k-bit numbers.
Now the length of A in bits is kn. Over this sequence we wish to support the
operations sum, search, insert, and delete.

We can apply essentially the same technique as for bits (case k = 1), by
choosing blocks of t = (log n)/(2k) numbers, so that we can handle (log n)/2
bits in constant time (let us for now assume k ≤ (log n)/2). We maintain
s = f(n) log(n)/k numbers (that is, f(n) log(n) bits) in a superblock, so we
can still handle it in O(f(n)) time. Now table R receives a sequence of t
numbers and delivers their sum. Table R still requires O(

√
n polylog(n)) bits.

The process to compute sum within a leaf is completely analogous to rank
in Section 4.2: we add up R values until reaching the block, and then add
up O(log(n)/k) k-bit numbers. Likewise, search is analogous to select. Both
operations are carried out in O(f(n)) time within a block.

For k > (log n)/2 (but still k = Θ(log n)), we do not use table R, but simply
add up the numbers in the leaf one by one. This still solves sum and search

have to interpret n as 2⌊log n⌋ here.

23



in O(f(n)) time.

The updates and the tree work exactly as for bits, using circular arrays. For
the tree, the r() values in the nodes are now the sums of the numbers in the
node subtree, and all the management is exactly analogous. We thus achieve
O(log n + f(n)) time for the operations, and O(nk/f(n)) bits of extra space.
We can choose f(n) = log n as before. (Note that the r() values also fit in
O(log n) bits, as we have n numbers of k bits, which add up at most n2k, and
log(n2k) = k + log n = O(log n) bits.)

Changing log n can be handled smoothly, just as when dealing with bits. Note
that, when log n changes, we may switch from using R to not using it, or vice
versa. If we assume that log n = Θ(w), we have the following result.

Theorem 3 The Searchable Partial Sums with Indels problem under
RAM model with constraint log n = Θ(w) with k-bit numbers, k = O(log n),
can be solved using kn + o(kn) bits of space, supporting the operations sum,
search, insert, and delete, in O(log n) worst-case time.

The best current result permitting indels [22] works only for k = O(1), and
also requires kn + o(kn) bits of space. It needs O(logb n) time for sum and
search, and O(b) amortized time for insert and delete, for b = Ω(polylog(n)).
For example they can achieve O(log n/ log log n) time for the queries, yet the
updates seem to require at least amortized time Θ((log n/ log log n)2). Our
result achieves slightly worse complexity for queries and better complexity for
updates. In addition, all of our complexities are worst-case and we can handle
any k = O(logn) value.

A final point is to consider the case log n = O(w). We use the same memory
arrangement of Section 4.6 to achieve the same time complexities and only
O(w) extra space (the same analysis applies verbatim with nk instead of n
bits). Yet, we could like to handle k values as large as k = Θ(w). In this
case the tree requires O(w · kn/(f(n) log n)) bits of space for the r() values
(the r values are now sums of O(n) w-bit numbers, and thus they require
O(w + log n) = O(w) bits). We must choose f(n) = ω(w/ logn) to achieve
sublinear extra space. Let us choose f(n) = w/ log1−ε n, for any constant
ε > 0. The time complexity raises to O(w/ log1−ε n + log n).

Theorem 4 The Searchable Partial Sums with Indels problem under
RAM model with constraint log n = O(w) with k-bit numbers, k = O(w), can
be solved using kn+o(kn)+O(w) bits of space, supporting the operations sum,
search, insert, and delete, in O(w/ log1−ε n + log n) worst-case time, for any
constant ε > 0.

24



5 Dynamic Entropy-Bound Structures for Bit Vectors

We design two data structures to represent a bit sequence A = a1 . . . an of bi-
nary zero-order entropy H0, using essentially nH0 bits of space and performing
operations rank, select, insert and delete in O(log n) time.

Our two solutions differ in the extra space they achieve on top of the nH0

bits. Their common parts are as follows. Both use balanced trees with leaves
reserving s = f(n) log n bits of space, where O(log n) bits can be wasted
within each leaf. Both share the O(log n)-time mechanism for the operations
in the tree, differing only on how they manage within the leaves. Both use
the mechanism of propagation to partial leaves to ensure that most leaves are
almost full, and at most one out of f(n) leaves is partial, so O(f(n)) leaves are
affected by an insertion or a deletion. Both use precomputed tables to process,
in constant time, Θ(log n) bits within leaves.

We note that, since now the sequence is not directly available, we must provide
a way to retrieve any bit ai from A. In a binary sequence this is easy, as
ai = rank(A, i)−rank(A, i−1), so we can do it also in O(log n) time. Actually,
in our second solution, we can retrieve an O(log2 n)-bit chunk from A within
the same O(log n) time.

5.1 Gap Encoding

The first mechanism is suitable for sequences where 1-bits are sparse (the
complementary technique can be used when 0-bits are sparse). Let ℓ be the
number of 1-bits in A, then the space we require with this method is essentially
ℓ log n

ℓ
(1 + o(1)) + O(ℓ) ≤ nH0(1 + o(1)) + O(ℓ) bits.

Recall from Section 3.4 the structure by Blandford and Blelloch [4]. We show
how to improve its constant in the entropy term in space requirement to 1.

5.1.1 Operations Inside a Superblock

We maintain as many complete gaps (δ-codes) as possible within each leaf of
s bits, and assume that the 1-bit after the last encoded gap belongs to the leaf
(thus the last gap of A requires special treatment). This representation may
leave up to log n + O(log log n) unused bits at the end of the leaf because the
next δ-code does not fit in it, and thus it is written at the next leaf. We also
need O(log log n) bits to record the number of bits used in the leaf, as well
as to mark the beginning of the circular array. We do not use the concept of
block in this solution, just superblocks (that is, leaves) formed by gaps.

25



Note that a leaf of s = f(n) log n bits may represent as many as O(s) gaps,
and as few as f(n)(1+o(1)). In order to process a whole leaf in O(f(n)) time,
we need universal tables that let us process it by chunks of Θ(log n) bits. Let G
be a table that receives t = (log n)/2 bits as follows: G(x) = (b, r, l) indicates
that it is possible to decode the first l bits of x (that is, the final t − l bits
do not make up a complete δ-code), and that in those l bits there are r gaps
that add up b. Note that it is possible that a δ-code is longer than t bits. If x
is the prefix of such a δ-code, then G(x) = (0, 0, 0) indicates that G is unable
to decode it. Table G requires O(

√
n log n) bits of space.

To decode δ-codes longer than t bits we use a different table which decodes
only parts (a) and (b) of the δ-code (see Section 3.4.1). U(x) = (d, l) means
that the first δ-code represented in x (or of which x is a prefix) represents
a number of d bits, and that parts (a) and (b) of its representation require
l bits. A further access for the next d ≤ log n bits (once we skip the first l
bits of x) completes the decoding of the long gap. Table U handles entries of
O(log log n) bits, and thus it needs O(polylog(n)) bits of space. Using G and
U we can, in a constant number of accesses, decode at least one gap and at
least t = Θ(log n) bits from the leaf.

A rank(S, i) query inside a leaf is handled in O(f(n)+logn) time by decoding
successive gaps using G (and occasionally U) and adding the r values (that is,
1-bits), as long as the sum of the b + 1 values (that is, gap lengths plus their
terminating 1-bit) does not exceed i. The l values delivered by G are used
to advance in the δ-encoded sequence. Once the next G access exceeds i, we
reread those bits code-wise, using U (even for short codes) and adding 1 per
gap to the result, until we read the gap where position i is exceeded. Overall
we spend O(f(n)) time with G and O(log n) time with U .

Similarly select(S, j) is solved by adding values b + 1 until the sum of the r
values exceeds j, and then rereading the last argument of G code-wise until j
is reached. For select0(S, j) we must add values b + 1 until the sum of the b
values exceeds j, and the rest is straightforward.

To insert a bit a preceding position i in S, we sequentially look for the gap
where a should be inserted (using G and U as before). Say that a must be
inserted at relative position i′ within 0gk1, 1 ≤ i′ ≤ gk + 1. If a = 1 we must
replace δ(gk) by δ(i′−1)δ(gk−i′+1) (see Section 3.4.2). Otherwise, if a = 0 we
must replace δ(gk) by δ(gk +1). All the δ-codes that follow must be shifted to
make room for the new code. The replacement can be easily done in O(log n)
time and the shifting can be carried out in O(f(n)) time as in Section 4.2.
Deletion of a bit is analogous.

We note that insertion of a new bit can expand the code sequence within the
leaf by O(log n) bits, which may overflow and require that (other) O(log n) bits

26



formed by whole overflowing codes be moved to the next leaf. This propagation
is identical to that of Section 4. The fact that we move O(log n) bits instead of
one bit changes nothing under the RAM model: To copy O(log n) bits from the
previous leaf, one first makes room for them by taking out O(log n) bits from
the end of the circular array; then the desired bits are copied just before the
beginning of the circular array; and the bits that were moved out overflow to
the next leaf. All this is handled in a constant amount of Θ(log n)-bit moves.
Thus the insertion of a bit is handled in O(log n + f(n)) time. Deletion is
analogous.

5.1.2 Changing log n and Handling the Case log n = o(w)

Case log n = o(w) can be treated analogously to Sections 4.5 and 4.6. We must
have tables G and U ready for 5 values of log n, from (log n)−2 to (log n)+2,
and have plenty of time to build them for the next change of log n. The way
to handle the case log n = o(w) is analogous too.

We note that the extra space of the tree and partially full leaves adds up
n′/f(n), not n/f(n). Also, the

√
nw space complexity of Section 4.6 is actually√

n′w. By choosing again f(n) = log n we achieve the following result.

Theorem 5 The Dynamic Bit Vector with Indels problem under RAM
model with constraint log n = O(w) can be solved using nH0(1+ o(1))+O(ℓ+√

n polylog(n) + w) = nH0 + o(n) + O(ℓ + w) bits of space supporting the
operations rank, select, insert, and delete, in O(log n) worst-case time. Here,
H0 ≤ 1 is the empirical zero-order entropy of the sequence and ℓ the number
of bits set.

To compare the extra space against the (static) structure of [20], we rewrite
nH0 + O(ℓ) into the more precise form ℓ log n

ℓ
+ O(ℓ log log n

ℓ
). Our 1 + o(1) is

actually 1 + O(1/ logn), so the product of both is still ℓ log n
ℓ
+ O(ℓ log log n

ℓ
),

just as in [20]. In addition we have a dependence on the uncompressed stream
size, yet this is mild, O(

√
n polylog(n)). In Section 5.2 this dependence be-

comes stronger, but in exchange the extra space O(ℓ) is removed, which is
relevant if ℓ = Θ(n).

5.1.3 Searchable Partial Sums Revisited

Consider again the problem of managing a sequence A of k-bit positive num-
bers ai, 1 ≤ ai ≤ 2k. Assume we represent it as a binary sequence A′ of
∑n

i=1 ai bits. In A′ we set bits sum(A, i) for all i. Then, it holds sum(A, i) =
select(A′, i) and search(A, j) = 1+ rank(A′, j−1). Inserting a number a into
A is equivalent to inserting a whole gap δ(a− 1). This can be done in a form
completely analogous as how we inserted individual bits (and even slightly

27



simpler). The same holds for deletion.

Thus all the operations are supported in O(logn) time. As for the space,
calling n′ =

∑n
i=1 log ai ≤ kn, the number of bits in A′ is upper bounded by

n′ + o(n′) + O(n). The following result is immediate (for the details related to
w recall Section 4.7).

Theorem 6 The Searchable Partial Sums with Indels problem under
RAM model with constraint log n = O(w) with k-bit positive numbers can be
solved using n′ + o(n′) + O(n + w) bits of space, where n′ ≤ kn adds up the
exact number of bits needed to represent each number in the sequence. This
representation supports the operations sum, search, insert, and delete, in
O(w/ log1−ε n + log n) worst-case time for any constant ε > 0. In particular,
this is O(log n) if log n = Θ(w).

Note that this result is similar to that of Theorem 4 if all the numbers are at
least 2k−1. Yet, when there are small and large numbers together, this theorem
achieves a more compact representation.

5.2 Block Identifier Encoding

The second mechanism to compress bit sequences is slightly more complex,
yet it removes the O(ℓ) term from the space complexity. This is important
when the sequence is sufficiently dense of 1-bits.

The solution in this section uses a scheme close to the one described in Sec-
tion 3.1, albeit simplified because we do not need to achieve constant time
within a leaf. We divide A into blocks and superblocks, where superblocks
(the tree leaves) reserve s = f(n) log n bits of space and maintain as many
complete blocks as possible. Each block represents t = (log n)/2 bits, but it is
stored in fewer bits using its (c, o) identifier. We do not represent the L and
Q sequences of Section 3.1, just the D sequence of block identifiers. Each leaf
has at most t + O(log log n) wasted bits, for the unused space at the end and
to store the exact length of the D sequence within the block. This amounts
to O(n/f(n)) wasted bits overall.

5.2.1 Queries Inside a Superblock

A table G, similar in spirit to that of Section 5.1, is used to decode Θ(log n) bits
from the leaf in constant time. G(x) = (b, r, l) indicates that it could decode
up to l ≤ t bits from x (since the rest did not encode a whole block), where it
found b encoded blocks, adding up r 1-bits overall. When G(x) = (0, 0, 0), we
are in presence of a long code (of length > t), which is decoded in constant

28



time as follows. We first read the O(log log n) bits of c in constant time. Then,

a small universal table C(c) =
⌈

log
(

t
c

)⌉

tells us the number of bits of the o

entry. We read in constant time the next C(c) bits, which gives us o. Finally, a
table U(c, o) = (x, r) gives us the explicit t-bit content x of the block encoded
as (c, o), and its total number r of 1-bits. Thus, in constant time we decode
Θ(log n) bits from the leaf, and at least one entry. Tables G and U require
O(
√

n polylog(n)) bits of space, whereas C requires O(polylog(n)) bits.

A rank(S, i) query inside a leaf is handled in O(f(n)+logn) time by decoding
successive blocks using G and adding up the r values (that is, 1-bits), as long
as the sum of the t·b values (that is, processed block lengths) does not exceed i.
The l values delivered by G are used to advance in the encoded sequence. Once
the sum of tb values exceeds i after a G access, we reread those bits block-wise
using C and U (even for short codes), and add up the r values given by U ,
until we read the block that contains position i. This last block is reprocessed
bitwise using the x value given by U . Overall we spend O(f(n) + log n) time.

Similarly select(S, j) is solved by adding values tb until the sum of the r values
exceeds j, then rereading the last argument of G block-wise until r is exceeded
again, and finally processing the last block bit-wise. For select0(S, j) we must
add values tb until the sum of tb− r values exceeds j.

5.2.2 Inserting and Deleting Bits

To insert a bit a preceding position i in S we sequentially find, using G, C,
and U , the block b where the insertion is to take place, b = 1 + ⌊i/t⌋. All the
D(1 . . . b − 1) entries are direcly copied into a new memory area where the
updated representation of S is to be built. On a RAM machine this copying
can be done in O(f(n)) time.

The block D(b) = (c, o) to modify is obtained in constant time with tables
C and U . Let B = a1 . . . at be the bits of this block, and let i′ = i − (b −
1)t be the position to insert the bit a within B. Thus we compute B′ =
a1 . . . ai′−1aai′ . . . at−1 and save at for later. Again, B′ can be computed in
constant time using bit shifts. To compress B′ we use a universal table H ,
which given a t-bit block gives its (c, o) representation. H requires O(

√
n log n)

bits, and gives H(B′) = (c′, o′) in constant time. This description D(b)′ =
(c′, o′) is appended at the updated copy of S we are constructing.

We must now take care of the remaining blocks to the right. We have a bit
at that fell off B. To perform all this propagation in O(f(n)) time, we use
yet another universal table J(a, x), where a is a bit to insert at the beginning
of the next block and x is the sequence of the first (compressed) t bits of
D(b + 1 . . .). J(a, x) = (D′, a′) means that, if we decode from x as many

29



integral blocks as we can, append bit a at the beginning, and reencode them,
we obtain sequence D′ and bit a′ falls off at the end of D′. Another table
V (x) = r tells us how many bits we could use from x, so we can advance
in the processing of sequence D by r bits after having copied D′ to the new
version of S we are constructing. If V (x) = 0, this means that x starts a long
block (that is, whose compressed representation occupies more than t bits). In
this case we treat the block individually: We decode it using C and U , insert
bit a at its beginning, call a′ the bit that overflows at its end, and recompress
it using H . Therefore, in constant time we process Θ(log n) bits from the leaf,
and at least one entry. The process continues until we complete the leaf and
then replace S by its updated version. Note we still have one overflown bit.

Tables J and V require O(
√

n polylog(n)) bits. With the occasional help of
C, U , and H , they process the leaf in O(f(n)) time, plus the time necessary
to write the modified leaf by Θ(log n)-bit chunks.

Let us consider how much can the superblock grow by the insertion of a single
bit. If a new block is started (which can occur only in a partial leaf), we need
O(log log n) more bits. In addition, the D entry of a block may grow because

its (c, o) descriptor changes. The maximum value of
⌈

log
(

t
c+1

)⌉

−
⌈

log
(

t
c

)⌉

is

⌈log t⌉, achieved when c = 0. Propagated over at most O(f(n) log n/ log log n)
blocks, the sequence of D values might be increased by O(f(n) logn) bits.
This is as large as a whole superblock, and means that a single bit insertion
might double the size of the superblock in some extreme cases. For example,
if the sequence is (0t1t)r, all the c values will be 0 or t, and the o indexes will
be empty, thus we will store f(n) log n/ log log n blocks in the superblock. If
we now insert a 1 at the beginning of the sequence, each o descriptor becomes
log t = O(log log n) bits wide, which adds up f(n) log n extra bits. Still, the
new superblock is also O(f(n) logn) size and can be output using J and V in
O(f(n)) time.

5.2.3 Overflow to the Next Superblock

At the end of the operation, it might be that the new sequence does not fit
within the s bits allocated to the leaf. If so, we take out as many blocks as
necessary from the end of the leaf, so as to move them to the beginning of the
next leaf. We have seen that we might have to move up to O(f(n) logn) bits.
In addition we must insert the excess bit at the next leaf (after the blocks we
are moving, if any).

The circular array mechanism is not useful this time. The process completely
rewrites the next leaf S ′. We move the overflowing D entries to the beginning
of S ′. Then we must insert the carry bit at the beginning of the original entries
of S ′. This can be carried out in O(f(n)) time using tables J and V . Yet, this

30



bit insertion may produce another O(f(n) logn)-bits overflow, in addition to
the original O(f(n) log n) bits. We can create a new leaf as soon as we have
enough overflown bits. This ensures that at most s bits are ever propagated
to the next leaf. The propagation can thus be carried out in O(f(n)) time per
leaf rewritten/created. Moreover, as a leaf of s bits can grow up to size O(s),
each leaf can trigger the creation of O(1) further leaves. The mechanism of
partial leaves (Section 4.3) limits the propagation among leaves: only O(f(n))
leaves are rewritten or created in the process.

For deletions we proceed similarly, using a table J ′ very similar to J : J ′(x, a)
deletes the first bit of the blocks represented by x and adds bit a at their end.
The bit a we give to J ′ is obtained in constant time using C and U , as the
first bit of the block encoded in D at offset V (x) from the current position.
Also, we ensure that leaves are as full as possible. If some space is left at the
end of the leaf, we check that the first blocks from the next leaf can be moved
back, and propagate the underflow similarly as the overflows. Partial leaves
are handled as before upon deletions. Note that, just as whole leaves can be
created due to an insertion, up to O(f(n)) whole leaves can disappear due to a
deletion (as their contents can shrink so as to be packed within fewer leaves).

Note that, because of the changes in |o| widths, an insertion can actually
produce an underflow and a deletion can produce an overflow. This is not
problematic. Overall (still not considering how to manage leaves), we have
O(1/f(n)) extra space per bit and O(f(n)2) insertion/deletion time.

5.2.4 Final Global Aspects

Creation and deletion of leaves and internal tree nodes is easily handled to-
gether with the maintenance of r() and p() in the tree, as in Section 4.4. We
note, however, that we permit that a single update affects O(f(n)) leaves,
and it creates/deletes O(f(n)) leaves. At this point, we opt for a red-black
tree as our balanced tree structure. Once the leaf to be inserted or deleted
is located, the red-black tree needs constant time to rebalance, so this adds
up O(f(n)) time per insertion or deletion. As for propagating the red-black
coloring upwards the root, the same reasoning used for blocked r() and p()
updates (Section 4.4) applies. Thus the total work in the tree is O(log n).

Handling changes in log n is totally analogous to Section 5.1.2. We must have
tables G, U , C, H , J , J ′ and V ready for 5 values of log n, and we have plenty
of time to build them for the next change of log n. The way to handle the case
log n = o(w) is analogous too.

In this case it is also true that the extra space of the tree and partially full
leaves adds up n′/f(n), not n/f(n) (where n′ is the compressed sequence
length). Since now times are up to O(f(n)2), we have to choose f(n) =

√
log n

31



to obtain O(log n) time and O(n′/
√

log n) space.

Theorem 7 The Dynamic Bit Vector with Indels problem under RAM
model with constraint log n = O(w) can be solved using nH0(1 + o(1)) +
O(n log log n/ log n + w) = nH0 + o(n) + O(w) bits of space supporting the
operations rank, select, insert, and delete, in O(log n) worst-case time. Here,
H0 ≤ 1 is the empirical zero-order entropy of the sequence.

6 Handling Sequences of Symbols

We show now how our last result on bit sequences (Section 5.2) can be ex-
tended to sequences of symbols over a general alphabet [1, q]. Note that this
looks similar to the k-bit version of Section 4.7, but the operations to support
here are quite different.

6.1 Queries Inside a Superblock

We use the general scheme of Section 5.2, adapting it to handle larger al-
phabets. We use superblocks of s = f(n) log n bits (or f(n) logq n symbols).
Blocks are of t = (logq n)/2 symbols, and thus span (log n)/2 bits. We use the
encoding of [15], where the (c, o) pairs of Section 5.2 are extended to handle
non-binary sequences (recall end of Section 3.1).

A table G similar to that of Section 5.2 decodes Θ(log n) bits from the leaf
in constant time. G(x) = (b, r1, . . . , rq, l) indicates that it could decode up to
l ≤ t log q bits from x (since the rest did not encode a whole block), where
it found b encoded blocks, adding up ra occurrences of each symbol a ∈ [1, q]
overall. When b = 0, we are in presence of a long code (of more than t log q
bits), which is decoded in constant time as follows. We first read the bits of c in
constant time (those are at most (log n)/2 bits according to the second bound
at the end of Section 3.1). Then, the rest is handled with tables analogous
to C and U of Section 5.2.1: now C(c) tells the length of o entries of class c,
and U(c, o) = (x, r1, . . . , rq) gives the explicit t-symbol content of class (c, o)
and all the ra values within the block. Thus, in constant time we decode
Θ(log n) bits from the leaf, and at least one entry. All these tables require
O(
√

n (log n + q log log n)) bits of space.

Queries ranka(S, i) and selecta(S, j) inside a leaf are handled in O(f(n) +
log n) time just as in Section 5.2, adding up ra values. We can also retrieve
ai within the same complexity, by just locating the right block and using U
to obtain the explicit symbols of it. Actually we can obtain, within the same

32



time complexity, any chunk of log2 n/ log q consecutive symbols.

6.2 Inserting and Deleting Symbols

The mechanism is totally analogous to Section 5.2. Table H that recompresses
the new block B′ in constant time still requires O(

√
n log n) bits. Propagation

of symbols to next leaves is analogous as well. Tables J and V also require
O(
√

n polylog(n)) bits.

Let us consider how much can the superblock grow by the insertion of a single
bit. If a new block is started in a partial leaf, we need O(log n) bits for its
c entry 10 . On the other hand, the growth of the D entries is still limited by
log t = O(log log n) bits. The upper bound of f(n) log n/ log log n blocks per
superblock still holds, as the entries c require at least of Θ(log log n) bits as in
the binary case. Thus, added over all possible blocks, we have that the block
expansion is limited by O(f(n) logn), of the same order of the current block
size. All the rest on handling overflows is as in Section 5.2. For deletions we
use table J ′, of the same size of J .

Overall (not yet considering how to manage the tree) we have, on top of nH0,
O((n log q)/f(n) + (n log q)q log log n/ log n) extra space. The first term is the
sequence length divided by the overhead due to partial leaves and unused space
at full leaves. The second is due to the c entries, (n/t)q log log n (first bound at
the end of Section 3.1). All the operations are handled within O(log n+f(n)2)
time. We can choose, as before, f(n) =

√
log n to obtain O(log n) time and

O(n log q/
√

log n) extra space for the first term. The second term is o(n log q)
for q = o(log n/ log log n).

6.3 Managing the Tree

In each internal node of the tree we must now store the total occurrences
of each symbol within the node subtree, ra(). This requires O(qnH0/f(n))
additional bits of space. This is o(n log q) as long as q = o(

√
log n).

The search time within the tree is still O(log n), as in all cases only one ra()
value is involved. Updates, however, are more complicated. A single symbol
insertion/deletion may involve moving many symbols to the next leaf, and this

10 This comes from the second bound at the end of Section 3.1. A natural question
is which is the point of compressing b = (log n)/2 bits into (c, o) if just c takes so
much space. Yet, this is just a brutal bound that is sometimes convenient. The other
bound we are using is O(q log log n) bits.

33



in turn involves updating many ra() values upwards. Although those move-
ments to the next leaf cancel out at their common ancestor, it is not hard
to build examples where we need to update Θ(q log n) values of ra() (imagine
moving a block from the last leaf of the left root child to the first leaf of the
right root child: since q < t we can have q updates whose common ancestor is
log n nodes away). Therefore, insertions and deletions cost O(q log n).

6.4 Changing log n

This is analogous to Section 5.2.4. We must have tables G, U , C, H , J , J ′ and
V ready for 5 values of log n. As long as those tables take sublinear space, we
have time to build them for the next change of log n (as this requires Θ(n)
operations, among which we can deamortize the construction of the small
tables). The way to handle the case log n = o(w) is analogous too.

In this case it holds again that the extra space of the tree and partially full
leaves adds up O(nH0/f(n)), not O(n/f(n)). By choosing again f(n) =

√
log n

we achieve the following result.

Theorem 8 The Dynamic Sequence with Indels problem under RAM
model with constraint log n = O(w) and symbols in [1, q], for q = o(

√
log n),

can be solved using nH0 + o(n log q) + O(w) bits of space, supporting the op-
erations rank and select in O(logn) worst-case time, and insert and delete
in O(q log n) worst-case time. Here, H0 ≤ log q is the empirical zero-order
entropy of the sequence.

6.5 Handling Larger Alphabets

We now extend the result of the previous section to alphabets of size σ, larger
than q = o(

√
log n). The idea is to build a wavelet tree [17] (recall Section 3.2)

over sequences represented using Theorem 8 [15].

Let us assume we represent the sequence for each wavelet tree level using the
dynamic solution of Theorem 8. We have the restriction q = o(

√
log n). The

wavelet tree has O(logq σ) levels. Time complexities for the operations is the
number of levels times the cost per level. This is O(log n logq σ) for the query
operations, and O(q log n logq σ) for the update operations.

Changes in log n occur simultaneously in all symbol sequences, and they are
smoothly encapsulated within the tree of each level. Handling the case log n =
o(w) is also analogous. We share a single memory area for all the O(log σ)
sequences, so that we still need only O(1) w-bit pointers.

34



Theorem 9 The Dynamic Sequence with Indels problem under RAM
model with constraint log n = O(w) and symbols in [1, σ] can be solved using
nH0+o(n log σ)+O(w) bits of space, supporting the operations rank and select
in O(log n logq σ) worst-case time, and insert and delete in O(q log n logq σ)
worst-case time, for any q = o(

√
log n). Here, H0 ≤ log σ is the empirical

zero-order entropy of the sequence, and we assume σ = o(n).

The case q = 2 corresponds to bit sequences, thus the wavelet tree is built
directly over the representation of Section 5.2. In this case the wavelet tree
has O(log σ) levels and all the operations cost O(log n log σ). Another inter-
esting choice is q = logǫ n, for 0 < ǫ < 1

2
. The height of the wavelet tree is

O(1
ǫ
log σ/ log log n). The time complexities are O(1

ǫ
log n log σ/ log log n) for

the query operations, and O(1
ǫ
log1+ǫ n log σ/ log log n) for the update opera-

tions.

7 Dynamic Full-Text Indexes

In this section we extend the result of Chan, Hon, and Lam [7] for Dynamic

Text Collection problem (recall Section 3.6) in several aspects. The most
important is a considerable reduction in space. We also change the model of
operation and simplify some structures.

7.1 Reducing Space and Increasing Time

The most immediate improvement to [7] is to replace their COUNT structure
by the one of Theorem 9 (with q = 2 in principle, although other tradeoffs
could be interesting too). This converts the time for rank, insert and delete
into O(logn log σ), and requires only nH0 + o(n log σ) bits of space. Note that
H0 refers to the zero-order entropy of A, but this coincides with the zero-
order entropy of C as they are a permutation of each other. We immediately
obtain an entropy-bound index for counting pattern occurrences on a dynamic
collection of texts.

To locate occurrences and display text substrings, we can use their same MARK

structure, yet sampling one out of logσ n log log n text positions, so as to
have o(n log σ) extra bits of space for it. With this sampling and our rank
structure we can report each occurrence in time O(log2 n log log n). Display-
ing a text substring of length ℓ can be carried out in time O(log n(ℓ log σ +
log n log log n)).

We obtain, almost automatically, the following compressed version of their

35



structure.

Theorem 10 The Dynamic Text Collection problem can be solved with
a data structure of size nH0(C)+o(n log σ)+O(w) bits supporting counting of
occurrences of a pattern P in O(|P | logn log σ) time, and inserting and delet-
ing a text T in O(|T | logn log σ) time. After counting, any occurrence can be
located in time O(log2 n log log n). Any substring of length ℓ from any T in
the collection can be displayed in time O(log n(ℓ log σ + log n log log n)). Dele-
tion and displaying times assume that we know the lexicographic position of T
within the other texts in the collection. Here n is the length of the concatena-
tion C = 0 T10 T2 · · · 0 Tm, and we assume σ = o(n).

Note that we have already used the fact, pointed out in Section 3.6, that
knowing the lexicographic position j of T within the others is sufficient to
locate its last character in A[j]. We also point out that the restriction σ = o(n)
comes from structure C, which needs O(σ log n) bits. This is o(n log σ) as long
as σ = o(n).

It is good time to give simple descriptions for C and MARK. We note that
C[c] is the number of occurrences of characters smaller than c in T . Let us
consider K[c] as the number of occurrences of c in T , and build a Searchable

Partial Sums structure for it. Now C[c] =
∑

c′<c K[c], which is a sum query,
and upon text insertions/deletions we must increase/decrease by 1 some entry
in K. Using Theorem 3, we require σ log n(1+o(1)) bits for K and can answer
C[c] and perform the updates in O(logn) time. This does not affect the given
time complexities.

For MARK, we will maintain a text sampling so that the distance between
consecutive samples is between (log n)/2 and log n. There are two queries to
handle. The first is, given a position in A, know whether it is sampled or not,
and if it is, know the corresponding value. We maintan an array SA with the
differences between consecutive sampled positions in A (starting with an arti-
ficial 1), and a Searchable Partial Sums with Indels structure over SA.
To know whether A[i] is sampled, we ask whether sum(SA, search(SA, i)) = i.
If it is, then it is the search(A, i)-th sample in the set. The sampled A[i] values
are stored in a balanced tree in order of increasing i so that they can easily
be found by position.

The second query to handle is for displaying. Given a text position, we wish
to know which is the nearest sampled position following it in C. For this sake
we maintain array SC , storing differences between consecutive samples in C,
and also processed for Searchable Partial Sums with Indels. The text
sample following j is thus sum(SC , search(SC, j)). We also use search(SC , j)
to access a balanced tree storing the samples in text position order and storing
the corresponding A position.

36



Upon a character insertion in A[i], corresponding to position j in C, we must
increase SA[search(SA, i)] and SC [search(SC , j)] by 1. If the latter exceeds
log n, we must insert a new sample within it. This corresponds to deleting the
SC entry and inserting 2 new entries replacing it. In this case, a corresponding
entry must be inserted in SA, thus replacing the mentioned SA entry by two.
The balanced trees that contain the samples are updated too. Similarly, when
a character is removed from the collection, entries are decremented and might
have to be merged if an SC entry falls below (log n)/2.

All these operations are carried out in O(log n) time and o(n log σ) bits of
space, which does not affect time nor space complexities. This description for
MARK is simpler than the one in [7].

7.2 An Improved Model for Handling the Collection

We find that asking the users of the data structure to know the lexicographic
position of their texts within the collection is delegating a problem the same
data structure should solve. In this section we give a more friendly model
that maintains the same time complexities and requires O(m log n) additional
bits of space. This extra space should be irrelevant unless the texts are very
short 11 .

When the user inserts a new text T into C, we return a handle for it. The
handle is a log m-bits number, where m is the current number of texts in
the collection. To delete T later, we only require its original handle. Pattern
occurrences are given in the form (i, j), where i is the handle of the text where
the occurrence lies and j is the position within that text. Finally, to retrieve
text substrings we only need the handle of the text to display and the positions
within it.

To implement this we store a balanced tree HANDLE, where the handles are the
keys and are stored at the leaves, and another balanced tree LEX where the
leaves store the same handles in lexicographical order of their corresponding
texts. Associated to each key in HANDLE we store a pointer to the leaf cor-
responding to it in LEX. Each internal node in LEX contains the size of its
subtree, which together with parent pointers, easily permits discovering the
lexicographic position of a leaf in LEX by an upwards traversal (adding up the
size of left subtrees of parent nodes we arrive at from the right child).

11 Removing this term was the explicit goal in [7], precisely for the case of many short
texts, so we are addressing different situations. Yet, as mentioned in Section 3.6,
they could have converted their O(log2 n) deletion time into O(log n) within their
model, and without resorting to Ψ.

37



Together, both trees permit determining the lexicographic position of a text
given its handle in O(logm) = O(logn) time, and require O(m logn) bits of
space.

After a new text T is inserted in the collection, we must determine its lexico-
graphical position among the other texts, so as to insert a new corresponding
leaf at the correct position in LEX. This is easy, as the lexicographic position
corresponds to the position where t|T | was inserted in A. Once we do this, we
insert the new text handle in HANDLE and point to the newly created LEX leaf.
All the operations in LEX take O(log m) time.

Let us now switch our attention to HANDLE. Upon a text insertion we find the
smallest unused handle number (this guarantees that the handle will require
log m bits as promised). This is easily achieved by storing in each internal
node of HANDLE the subtree size and the maximum handle value stored within:
When the numbers in the left subtree differ (as there are holes in there) we
descend to the left, otherwise to the right. These data at internal nodes are
easy to maintain upon tree updates, all in O(log m) time.

Still, note that there is a potential problem with the handle numbers we man-
age. It is possible to insert m collections and then delete all but the last one, so
that we have only one collection but maintain a handle of log m bits. The only
way to fix this is to permit the structure to modify handles upon deletions,
even those for texts that do not participate in the operations. That is, upon a
deletion, we should inform that the largest existing handle has been renamed
to use the value of the deleted handle. This ensures that all handles are within
[1, m]. Otherwise the space required by the structure is O(m log(n + M)),
where M is the largest number of texts in the collection we have ever had.

The only missing piece is how to report occurrence positions in the format
(handle, local position) instead of absolute position in the collection. A new
balanced tree POS stores the handles in text position order. Each handle stores
the distance in C to the previous leaf, and internal nodes accumulate these
distances. Then it is immediate that the absolute position obtained using MARK

can be converted into its handle plus relative position in a root-to-leaf traversal
on the tree. Similarly, a display request for Tj [l, r] is converted using POS into
a display request for C[l′, r′], by having a pointer from HANDLE leaves to their
corresponding leaves in POS, and traversing POS from the leaf to the root. Tree
POS can easily be maintained in O(log m) time for each text insertion and
deletion.

Finally, we must consider the case of log n changing. In this case we can
use a standard method: We maintain three copies of all the extra structures
(including those for MARK and the dynamic C table of [7]), for (log n)−1, log n,
and (log n)+1. When the change occurs we switch to the new structures, and

38



have sufficient time to build new structures for (log n)+1 or (log n)−1 before
log n changes again. The case log n = o(w) is handled essentially as for the
tree in Section 4.6, as we can afford a constant factor in the space overhead
of these structures.

Theorem 11 The Dynamic Text Collection problem can be solved with
a data structure of size nH0(C) + o(n log σ) + O(m logn + w) bits supporting
counting of occurrences of a pattern P in O(|P | logn log σ) time, and inserting
and deleting a text T in O(|T | logn log σ) time. After counting, any occurrence
can be located in time O(log2 n log log n). Any substring of length ℓ from any
T in the collection can be displayed in time O(log n(ℓ log σ + log n log log n)).
Here n is the length of the concatenation C = 0 T10 T2 · · · 0 Tm, and we
assume σ = o(n).

Note that we have assumed that the method of modifying the handles is
acceptable, otherwise the O(m log n) extra space is O(m log(n + M)) as ex-
plained. The time complexities do not change.

7.3 Space is Actually h-th Order Entropy

Recall the partitioning of L into ℓ pieces L1L2 · · ·Lℓ according to the h-
contexts (end of Section 3.5.1): It is sufficient to achieve zero-order entropy
within each partition to obtain h-th order entropy overall. Previous work [15]
on a static setting made use of this property by building wavelet trees over
the partitions, so as to obtain h-th order entropy from the sum of zero-order
entropies of the wavelet trees. Trying to maintain such an optimal partitioning
under a dynamic setting seems to be very difficult because the partitioning
can change abruptly due to a single character insertion. It is still possible to
maintain a dynamic partition for a given fixed context length h, by keeping
a trie of the existing contexts with a local wavelet tree at each trie leaf. In
this section, however, we prove a much more striking result: We show that the
solution obtained in the previous section, with just a single wavelet tree for
all the text, is indeed an nHh-bits space solution.

For the proof, let us first state formally a couple of results reviewed earlier in
the paper. The first is mentioned in Section 3.2, and the second in Section 3.5.1.

Lemma 1 ([17]) Let L be a string and Bv the corresponding binary sequence
for each node v of the wavelet tree of L. Then

∑

v |Bv|H0(Bv) = |L|H0(L).

Lemma 2 ([27]) Let L = L1L2 . . . Lℓ be a partition of L, the BWT of T ,
according to contexts of length h in M. Then

∑

1≤i≤ℓ |Lj|H0(L
j) = nHh(T ).

We are now ready to prove our main Lemma.

39



Lemma 3 Let L = L1L2 · · ·Lℓ be any partition of L, the BWT of T . The
number of bits used by a partition Lj in the wavelet tree of L is upper bounded
by |Lj |H0(L

j) + O(|Lj| log σ/ log n + σ log n).

Proof. The bits corresponding to Lj form a substring of the bit vectors at
each node of the wavelet tree, as their positions are mapped to the left and
right child using rank0 or rank1, thus order is preserved. Let us consider a
particular node of the wavelet tree and call B its bit sequence. Let us also
call Bj the substring of B corresponding to partition Lj , and assume Bj has
lj bits set. Consider the blocks of b bits that compose B, according to the
partitioning of [32] (Section 3.1). Let Bj

blk = Bj
1B

j
2 . . . Bj

t be the concatenation
of those bit blocks that are fully contained in Bj , so that Bj

blk is a substring of
Bj of length b · t. Assume Bj

i has lji bits set, so that Bj
blk has lj1 + . . . + ljt ≤ lj

bits set. The space the o fields of the (c, o) representations of blocks Bi
j take

in the compressed Bj
blk is

t
∑

i=1

⌈

log

(

b

lji

)⌉

≤ log

(

b · t
lj1 + . . . ljt

)

+ t ≤ log

(

|Bj |
lj

)

+ t ≤ |Bj |H0(B
j) + t

where all the inequalities hold by simple combinatorial arguments [29] and
have been reviewed in Section 3.1.

Note that those Bj bit vectors are precisely those that would result if we
built the wavelet tree just for Lj . According to Lemma 1, adding up those
|Bj|H0(B

j) over all the O(σ) wavelet tree nodes gives |Lj |H0(L
j). To this we

must add two space overheads. The first is the extra t bits above, which add
up O(|Lj| log σ/ log n) over the whole wavelet tree because b · t ≤ |Bj| and the
|Bj| lengths add up |Lj | at each wavelet tree level. The second overhead is the
space of the blocks that overlap with Bj and thus were not counted: As Bj is
a substring of B, there can be at most 2 such blocks per wavelet tree node.
At worst they can take O(log n) bits each, adding up O(σ log n) bits over the
whole wavelet tree. �

The above lemma lets us split the wavelet tree “horizontally” into pieces.
Let us add up all the zero-order entropies for the pieces. If we partition
L according to contexts of length h in M, and add up all the space due
to all partitions in the wavelet tree, we get

∑

1≤j≤ℓ |Lj|H0(L
j) = nHh(T )

(Lemma 2). To this we must add (i) O(|Lj| log σ/ log n), which sums up to
O(n log σ/ log n) = o(n log σ) bits over all the partitions; and (ii) O(σ log n)
bits per partition, which gives O(ℓσ log n). In the partitioning we have cho-
sen we have ℓ ≤ σh, thus the upper bound nHh + o(n log σ) + O(σh+1 log n)
holds for the total number of bits spent in the wavelet tree. The next theorem
immediately follows.

Theorem 12 The space required by the wavelet tree of L, the BWT of T , if
the bitmaps are compressed using [32], is nHh(T ) + o(n log σ) + O(σh+1 log n)

40



bits for any h ≥ 0. This is nHh(T ) + o(n log σ) bits for any h ≤ α logσ n − 1
and any constant 0 < α < 1. Here n is the length of T and σ its alphabet size.

Note that this holds automatically and simultaneously for any h, and we do not
even have to care about h in the index. The next improvement over Theorem 11
is now immediate.

Theorem 13 The Dynamic Text Collection problem can be solved with
a data structure of size nHh(C)+ o(n log σ)+O(σh+1 log n+m log n+w) bits,
simultaneously for all h. It supports all the operations of Theorem 11 with the
same time complexities. For h ≤ α logσ n− 1, for any constant 0 < α < 1, the
space complexity simplifies to nHh(C) + o(n log σ) + O(m log n + w) bits.

Something striking about the above result is that it holds for the static full-text
self-indexes in the literature that build on the wavelet tree of the BWT of the
text [24,15], but this has gone unnoticed and more complicated arrangements
have been made to reach h-th order entropy. In [24], they first run-length
compress the BWT in order to reduce its length to O(nHh) and then apply
the BWT. In [15] they explicitly cut the BWT into pieces Lj so that the sum
of nH0 sizes of the pieces adds up nHh. In both papers, the simpler version
they build on (just the wavelet tree of the BWT) would have been sufficient.
Thus, we have achieved a significant simplification in the design of static full-
text indexes as well. (There are other results in those papers, some of which
we have used here.)

In [13] they propose an algorithm to cut A optimally, so as to minimize the sum
of local zero-order entropies plus the overheads of maintaining the separate
structures. The optimum partitioning might not correspond to any fixed h
value, but rather use longer contexts in some parts of A and shorter in others.
What we have shown is that the space produced by any splitting of A into
pieces is achieved in the simple arrangement having just one wavelet tree,
without the need of finding such an optimal partitioning. Their technique, on
the other hand, is more general as it works for any zero-order compressor.

Also the paper where the wavelet tree is originally proposed [17] as an internal
tool to design one of the most space-efficient compressed full-text indexes,
would benefit from our simplification. They cut A into a table of lists (columns)
and contexts (rows). All the entries across a row correspond to a contiguous
piece of A, that is, some context Lj . A wavelet tree is built over each table
row so as to ensure, again, that the sum of zero-order entropies over the rows
adds up to global h-th order entropy. Our finding implies that all rows could
have been concatenated into a single wavelet tree and the same space would
have been achieved. This would greatly simplify the original arrangement and
possibly expose the deep relationship with the BWT-based approaches [28].

41



Interestingly, in [18] they find out that, if they use gap encoding over the
successive values along a column, and they then concatenate all the columns,
the total space is O(nHh) without any table partitioning as well. Both findings
share the same source: the sum of zero-order entropies of the table cells, no
matter the order, adds up to nHh.

Finally, it is interesting to point out that, in a recent paper [11], the possibility
of achieving h-th order compression when applying wavelet trees over the
BWT is explored (among many other results), yet they resort to run-length
compression to achieve this. Once more, our finding is that this is not really
necessary to achieve h-th order compression if the levels of the wavelet tree
are represented using the technique of block identifier encoding [31].

Another consequence of our result is that we obtain an O(n log n log σ) time
construction algorithm for a compressed self-index requiring nHh + o(n log σ)
bits working space during construction: This is obtained by just inserting text
T into an empty collection. This index can be easily converted into a more
efficient static self-index, where a static wavelet tree requires the same space
and reduces the O(log n log σ) time complexities to O(⌈log σ/ log log n⌉) [15].

Therefore, we have obtained the first compressed self-index with space essen-
tially equal to the h-th order empirical entropy of the text collection, which in
addition can be built within this working space. Alternative dynamic indexes
or constructions of self-indexes [12,22,2,6] achieve at best O(nHh) bits of space
(with constants larger than 4), and in many cases worse time complexities, as
explained in the Introduction.

Note also that, from the dynamic index just built, it is very easy to obtain
the BWT of T . It is a matter of finding the characters of A one by one. This
takes O(n logn log σ) time, just as the construction, and gives an algorithm
to build the BWT of a text within entropy bounds. The best result we know
of, in terms of space complexity [23], achieves O(n log2 n) time (O(n log n) on
average) using O(n) bits in addition to the n log σ bits of the text.

8 Final Remarks

We have introduced a technique to maintain a dynamic bit sequence of length
n using nH0 + o(n) bits of space, where 0 ≤ H0 ≤ 1 is the zero-order entropy
of the sequence. The structure answers rank and select queries and permits
insertions and deletions of bits, in worst-case logarithmic time. This is the first
dynamic data structure achieving this space. Closely related lower bounds [30]
suggest that the time complexities are optimal, yet a proof is missing for this
particular set of operations.

42



From this central result we have uncovered many connections with other prob-
lems and derived a surprising number of results in their dynamic setups,
using less space and/or time compared to the best existing solutions. We
have obtained improved update times and slightly better space for searchable
partial sums with indels; the first results on dynamic sequences over alpha-
bets of size σ (achieving zero-order entropy space with times of the form
O(log n log σ) per operation); compressed dynamic full-text self-indexes and
compressed construction of full-text self-indexes (achieving high-order entropy
space and O(log n log σ) worst-case time per character in all the operations).

All our results are worst-case and support varying log n, being valid even for
the case log n = o(w), where w is the size of the machine word. The traditional
techniques to support varying log n cannot be directly adapted because we
cannot afford the extra space to maintain several copies of the data structure.

Some of the results we have achieved match existing lower bounds. Yet, others
seem to be improvable. In particular, it should be possible to improve the
O(log n log σ) time complexity for accessing and updating dynamic wavelet
trees, perhaps with a fractional cascading mechanism. This would immediately
affect several other results we achieved.

Finally, we have shown that wavelet trees, when built over the BWT of a text,
automatically achieve high-order entropy. This translates into a significant
simplification to many existing self-indexes that achieve high-order entropy
(e.g., [24,15]), by showing that the base technique they build on naturally
achieves the result without need of any further engineering. Our finding also
impact several other works that use this technique in one form or ahother
[17,13,11].

Still, the results in [24,15] have practical value. In their actual implementation
(http://pizzachili.dcc.uchile.cl or http://pizzachili.di.unipi.it),
zero-order entropy is achieved by using uncompressed bit streams over a Huffman-
shaped wavelet tree, as this requires less space overhead and implementation
effort than using the technique of [32] over balanced wavelet trees. In this
case the locality property does not hold, and h-th order entropy would not be
achieved if just the simple wavelet tree of the BWT was used. Now, our find-
ings suggest that implementing the technique of [32] over a balanced wavelet
tree is indeed promising, as in exchange for its (sublinear) space overhead and
implementation effort, it would need no extra data structure to achieve higher
order compression. Thus we expect it to constitute a simple and competitive
alternative in practice.

This, in particular, would immediately derive into a simple and powerful prac-
tical algorithm to build, within entropy bounds, different compressed self-
indexes, the BWT of a text, and so on. Moreover, this can have a noticeable

43



practical impact on difficult real-life problems such as building indexes for
texts that do not fit in main memory, even compressed. In practice, one of the
best algorithms for this problem [8] is still a multi-pass technique with I/O
complexity O(n2/M) [16], where M is the maximum text size that can be in-
dexed in main memory. The use of our compressed construction technique on
main memory translates into much larger values of M , and thus fewer passes
over the disk, in exchange for (much less important) higher CPU times within
each pass.

This is connected with possibly the most important current challenge for com-
pressed data structures, and for compressed full-text self-indexes in particular.
Compressed data structures mainly aim at avoiding the use of disk whenever
possible, usually in exchange for slower operation in main memory. This pays
off by far because main memory is much faster than secondary memory (and
this happens at any level of the memory hierarchy, e.g., one can achieve better
cache usage just because more compressed data fit in the cache, even if the ac-
cess patterns are not particularly cache-friendly). Yet, when the data does not
fit in main memory anyway, one wishes to have a compressed data structure
with good locality of reference, so as to minimize the I/O complexity. This is
challenging because better space usage does not automatically translate into
fewer block accesses. Indeed, many of the existing solutions suffer from poor
locality of reference.

References

[1] A. Apostolico. The myriad virtues of subword trees. In Combinatorial
Algorithms on Words, NATO ISI Series, pages 85–96. Springer-Verlag, 1985.

[2] D. Arroyuelo and G. Navarro. Space-efficient construction of LZ-index. In Proc.
ISAAC’05, LNCS 3827, pages 1143–1152, 2005.

[3] T. Bell, J. Cleary, and I. Witten. Text Compression. Prentice Hall, Englewood
Cliffs, New Jersey, 1990.

[4] D. Blandford and G. Blelloch. Compact representations of ordered sets. In
Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 11–19, 2004.

[5] M. Burrows and D. Wheeler. A block sorting lossless data compression
algorithm. Technical Report Technical Report 124, Digital Equipment
Corporation, 1994.

[6] H.-L. Chan, W.-K. Hon, T.-W. Lam, and K. Sadakane. Compressed indexes for
dynamic text collections. ACM Transactions on Algorithms, 2006. To appear.

44



[7] W.-L. Chan, W.-K. Hon, and T.-W. Lam. Compressed index for a dynamic
collection of texts. In Proc. 15th Annual Symposium on Combinatorial Patter
Matching (CPM), LNCS 3109, pages 445–456, 2004.

[8] A. Crauser and P. Ferragina. A theoretical and experimental study on the
construction of suffix arrays in external memory. Algorithmica, 32(1):1–35,
2002.

[9] P. Dietz. Optimal algorithms for list indexing and subset rank. In Proc.
WADS’89, pages 39–46, 1989.

[10] P. Elias. Universal codeword sets and representation of the integers. IEEE
Transactions on Information Theory, 21(2):194–20, 1975.

[11] P. Ferragina, R. Giancarlo, and G. Manzini. The myriad virtues of wavelet
trees. In Proc. 33rd International Colloquium on Automata, Languages and
Programming (ICALP), 2006. To appear.

[12] P. Ferragina and G. Manzini. Opportunistic data structures with applications.
In Proc. FOCS’00, pages 390–398, 2000.

[13] P. Ferragina and G. Manzini. Compression boosting in optimal linear time using
the Burrows-Wheeler transform. In Proc. 15th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 655–663, 2004.

[14] P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM,
52(4):552–581, 2005.

[15] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed
representation of sequences and full-text indexes. ACM Transactions on
Algorithms, 2006. To appear. Preliminary versions in Proc. SPIRE 2004
and Tech. Rep. TR/DCC-2004-5, Dept. of Computer Science Univ. of Chile,
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/sequences.ps.gz.

[16] G. Gonnet, R. Baeza-Yates, and T. Snider. Information Retrieval: Data
Structures and Algorithms, chapter 3: New indices for text: Pat trees and Pat
arrays, pages 66–82. Prentice-Hall, 1992.

[17] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text
indexes. In Proc. SODA’03, pages 841–850, 2003.

[18] R. Grossi, A. Gupta, and J. Vitter. When indexing equals compression:
Experiments with compressing suffix arrays and applications. In Proc. 15th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 636–
645, 2004.

[19] R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM Journal on
Computing, 35(2):378–407, 2006.

[20] A. Gupta, W.-K. Hon, R. Shah, and J. Vitter. Compressed data structures:
dictionaries and data-aware measures. In Proc. 5th International Workshop on
Experimental Algorithms (WEA), pages 158–169, 2006.

45



[21] W.-K. Hon, T.-W. Lam, K. Sadakane, and W.-K. Sung. Constructing
compressed suffix arrays with large alphabets. In Proc. 14th Annual
International Symposium on Algorithms and Computation (ISAAC), pages 240–
249, 2003.

[22] W.-K. Hon, K. Sadakane, and W.-K. Sung. Succinct data structures for
searchable partial sums. In Proc. ISAAC’03, LNCS 2906, pages 505–516, 2003.

[23] J. Kärkkäinen. Fast BWT in small space by blockwise suffix sorting. In Proc.
DIMACS Working Group on the Burrows-Wheeler Transform: Ten Years Later,
2004.

[24] V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length
encoding. Nordic Journal of Computing, 12(1):40–66, 2005.

[25] V. Mäkinen and G. Navarro. Rank and select revisited and extended.
Theoretical Computer Science, 2006. To appear.

[26] U. Manber and G. Myers. Suffix arrays: a new method for on-line string
searches. SIAM Journal on Computing, pages 935–948, 1993.

[27] G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the
ACM, 48(3):407–430, 2001.

[28] G. Navarro and V. Mäkinen. Compressed full-text indexes. Technical
Report TR/DCC-2006-6, Dept. of Computer Science, University of Chile, April
2006. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/survcompr2.ps.gz.
Submitted to a journal.

[29] R. Pagh. Low redundancy in dictionaries with O(1) worst case lookup
time. In Proc. 26th International Colloquium on Automata, Languages and
Programming (ICALP), pages 595–604, 1999.

[30] M. Patrascu and E. Demaine. Tight bounds for the partial-sums problem. In
Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 20–29, 2004.

[31] R. Raman, V. Raman, and S. Srinivasa Rao. Succinct dynamic data structures.
In Proc. WADS’01, pages 426–437, 2001.

[32] R. Raman, V. Raman, and S. Srinivasa Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets. In Proc. SODA’02,
pages 233–242, 2002.

46


