
A note on the history of the document:
RDF Formalization, by Draltan Marin

Claudio Gutierrez
Computer Science Department,

Universidad de Chile

Santiago de Chile, May 2006

Draltan Marin, in 2004 a student of the Programmes Masters of the Ecole
Polytechnique, France, spent the (austral) winter 2004 at the Computer Sci-
ence Department of Universidad de Chile doing a Research Internship (Train-
ing Agreement 16/03/2004).

The topic of this research was: Applications de la Logique à la sémantique
du web, and was carried out by Draltan during the months of May to July
2004, under the supervision of Claudio Gutiérrez (Universidad de Chile) and
Gilles Dowek (Ecole Polytechnique).

The output of this research was the Report on the Formalization of RDF
that follows, which was presented at the Ecole Polytechnique by Draltan
Marin in September 2004. It contains a formalization in mathematical (logic)
language of the W3C Recommendation of 10 February 2004, RDF Semantics,
edited by P. Hayes, including suggestions and corrections.

The report circulated among some researchers, but was never published.
Visiting Bolzano in May 2006, and discussing missing rules of the RDF Se-
mantics document of the W3C based on this report, Enrico Franconi sug-
gested me to make it public. Thus, following his suggestion, I am making it
public as a Technical Report of the Year 2006.

1

RDF formalization

Draltan Marin
draltan.marin@polytechnique.org

August 25, 2004

Contents

1 Introduction 1

2 Formal syntax 2
2.1 Graph definitions . 2
2.2 Working with graphs . 3

3 Interpretations 4
3.1 Simple interpretation . 5
3.2 Interpreting RDF Vocabulary . 6

3.2.1 RDF Axiomatic triples . 6
3.2.2 RDF Interpretation . 7
3.2.3 Reification, Containers and Collections 7

3.3 Interpreting RDFS Vocabulary 9
3.3.1 RDFS Axiomatic triples 9
3.3.2 RDFS Interpretation . 11

3.4 Interpreting Datatypes . 12
3.4.1 D-Interpretation . 12
3.4.2 XSD Interpretation . 13

3.5 Alternative definition for a simple interpretation 14

4 Entailment rules 16
4.1 General: . 16
4.2 Instance: . 16
4.3 Rdf/Rdfs: . 17

4.3.1 Type: . 17
4.3.2 Properties: . 17
4.3.3 Classes: . 18

4.4 Validity of the entailment rules 18

5 Soundness and Completeness 20

6 RDF and First order logic 27

1

7 Conclusion and proposed corrections 29

1 Introduction

RDF stands for Resource Description Framework, and it is an assertional lan-
guage intended to provide the necessary means to express propositions about
almost any matter.

This framework was first created in 1998 and it was originally designed to
achieve goals such as describing properties and relationship between resources in
a machine-understandable way, thus permitting to make automated inferences
about these resources.

A resource can be practically anything, it can be an url as well as an object
such as a table, or as abstract as an idea or thought.

A proposition in RDF has a graph like structure. The meaning of one such
a proposition will be given by a formal semantic which will tell us what can be
inferred from it. RDF has a simple semantic which can be extended in order to
adapt this framework to a wide variety of uses.

This document pretends to present as formal as possible the syntactic and
semantic aspects of RDF, leaving apart the serialization or possible implemen-
tations of it. We have based this work on the documents presenting the formal
syntax [RDF-Concepts] and abstract semantics [RDF-Semantics] which are two
of the six documents which specify RDF. The last version at the time of writing
this document of these specifications are recommendations of the W3C of 10th
February 2004.

We will focus on section 2 on the basic definitions and structure of a propo-
sition in RDF. On sections 3, 4 and 5 we will define its semantics from two
different points of view, the first based on a model theory for RDF and some
of its possible extensions, the notion of entailment among rdf graphs will then
be introduced. The second based on a deductive system of rules which we will
prove to be equivalent to the previous definitions, in the sense of entailment.

On section 6 we will show why we think that RDF is a fragment of first
order logic.

During the creation of this document we have detected some problems in the
definitions and we think that there are some concepts which might be reviewed
in a next version of RDF specifications, these comments will be presented in the
last section.

2 Formal syntax

In this section we will present the formal syntax of an rdf graph.
Informally the nodes of an rdf graph can be either an URI (Uniform Resource

Identifier), a literal or a blank node. The arcs can only be URIs. Note that
since an URI can be both a node and an arc the structure of an rdf graph is
not exactly this of a normal graph. Intuitively an uri will represent a resource,

2

a blank node will represent an unidentified resource, and a literal will be a
character string or some other type of data.

The basic unit of a graph is a triple, which consists of a subject, a predicate
and an object. For example, a triple (s, p, o) can be seen as an oriented node arc
node structure in which s and o are the nodes and p is an arc going from s to o.
The intended meaning of one such a triple is that the binary property p holds
for the couple (s, o). A graph will be a set of triples, where the sets of nodes
and arcs will be the union of the nodes and arcs of each triple respectively.

However, this intended meaning is not important for the moment, and will
be formalized when defining the semantic of one such a graph. All the following
definitions are to be seen as formal objects only.

2.1 Graph definitions

Definition 1 (RDF URI reference) An RDF URI reference consist of a char-
acter string which produces a valid URI character sequence (according to [URI]).
Two RDF URI references are equal if and only if they compare as equal, char-
acter by character. We will note U the set of all RDF URI references.

Definition 2 (Datatype) A datatype d is defined by a set Ld of character
strings, called lexical space, an arbitrary set Vd called the value space and a
map φd : Ld → Vd called the lexical-to-value mapping.

Definition 3 (Literal) A lexical form is an Unicode character string. A literal
consist of either a lexical form ω combined with an optional language tag1 τ in
which case it is called a plain literal and we will note < ω, τ > (or simply ω
when there is no language tag); or a lexical form ω combined with an RDF URI
reference u in which case it is called a typed literal and we will note ω +u. The
set of all literals will be called L.

Literals are distinct and distinguishable from RDF URI references (U ∩ L = ∅).
Let B be an arbitrary infinite set disjoint from U ∪ L.

Definition 4 (Blank node) An element of B is called a blank node.

Definition 5 (RDF triple) An RDF triple is an element of U ∪B ×U ×U ∪
B ∪ L. Its first component is called the subject of the triple, the second the
predicate and the third the object.

Definition 6 (RDF graph) An RDF graph or simply graph is a set of RDF
triples. A subgraph (resp. proper subgraph) of a graph is a subset (resp. proper
subset) of triples in the graph.

Informally a datatype is identified by at least one RDF URI reference. This
identification will be better explained when defining the datatype interpretations
of an RDF graph.

RDF includes a built-in datatype XMLLiteral whose RDF URI reference is:
1A language tag may be used for identifying the language of a plain text when it’s a natural

language. Language tags are defined in [RFC-3066]

3

http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral

and is fully2 described in [RDF-Concepts].
The RDF URI reference in a typed literal is informally meant to be a

datatype RDF URI identification. Then a typed literal can be seen as a couple
(string, datatype), and will be well-typed if the string belongs to the lexical
space of the corresponding datatype, otherwise it will be called ill-typed.

2.2 Working with graphs

The following definitions are useful for stating syntactic relationship between
graphs, such as isomorphic graphs and instances of a graph. We will not treat
in detail every one of these notions and the importance they might have.

Definition 7 (Map) A map is a function µ : U ∪B∪L → U ∪B∪L such that
µ|U = IdU and µ|L = IdL. For any triple (s, p, o) define µ(s, p, o) as the triple
(µ(s), µ(p), µ(o)) and for a graph G, µ(G) the image by µ of the set of triples
G. A map µ is consistent with G if µ(G) is an RDF graph, that is, if for any
subject s in a triple of G we have µ(s) ∈ U ∪ B.

Definition 8 (Isomorphism) Two graphs G1, G2 are isomorphic (G1
∼= G2)

if and only if there exists a map µ such that µ(G1) = G2 and such that µ|BG1

is bijective where BG1 is the set of blank nodes that occur in G1.

Definition 9 (Ground graph) A triple with no blank nodes is a ground triple.
A graph whose triples are all ground is called a ground graph.

Definition 10 (Occurence) We say that x ∈ U ∪B ∪ L occur in a graph G if
x is the subject, the object or the predicate of any triple in G.

Definition 11 (Name, Vocabulary) A name is a literal or a RDF URI ref-
erence. A typed literal comprises two names: itself and the RDF URI reference
which is part of it.
A vocabulary is a set of names. The vocabulary of a graph is the set of all
names which occur in the graph.

Note that the RDF URI reference which is part of a typed literal does not
necessarily belong to the vocabulary of a graph G.

Definition 12 (Instance) G1 is an instance of G2 if there exist a map µ
consistent with G2 such that G1 = µ(G2). We say that G1 is an instance with
respect to a vocabulary V if µ(B) ⊆ V ∪ B, and G1 is a proper instance if
µ−1(BG1) (BG2 , where BG1 and BG2 are the sets of blank nodes which occur
in G1 and G2 respectively.

Note that any graph is an instance of itself, an instance of an instance of G
is an instance of G, and if H is an instance of G then every triple in H is an
instance of some triple in G.

2See comments on last section

4

Definition 13 (Lean graph) A graph is lean if it has no instance which is a
proper subgraph of it.

3 Interpretations

In this section we will add meaning to rdf graphs. In order to do so we will
follow the same construction of interpretations used in [RDF-Semantic] except
for the notation.

Depending on the meaning we want to give to a certain graph we will consider
different kinds of interpretations (e.g. simple, rdf, rdfs, xsd, etc.). For each one
of them there will be some special semantic conditions.

Intuitively, an interpretation will represent a possible configuration of the
world, such that we can verify wether or not what is said on a graph G is true
on this world. This leads us to think of a graph as something which restricts
the possible worlds we are looking at (those in which G is true), thus providing
some information.

Now, given two graphs, G and H, if all the worlds in which G is true are
such that H is also true we will say that H is entailed by G. In terms of
information we can think of this notion as: All the information provided by
H is already provided by G. Another way of thinking of this is that H is a
semantic consequence of G, in that case we can say that from G we can ”infer”
H.

The same reasoning applies to any kind of interpretation, and this will be
the departure point to describe semantic relationship among rdf graphs.

As described in [RDF-Semantic] any interpretation is relative to a certain
vocabulary, so we will in general speak of an interpretation of the vocabulary
V . However, at the end of this section, we will show that in terms of entailment
this is not relevant, only the semantic conditions which describe the kind of
interpretation are.

As we announced earlier, a triple (s, p, o) can be thought of as stating that
a certain binary predicate associated to p holds for the couple (s, o). An inter-
pretation will give us this association, and given a graph, it will be true if none
of its triples state something false.

Blank nodes will play a special role when evaluating the value of truth of
a given graph, because every one of them represents a priori some unknown
element of the world. To interpret a blank node we will have the freedom of
choosing an arbitrary element in the domain of the interpretation as long as it
is the same element for all the occurrences of the same blank node.

3.1 Simple interpretation

Definition 14 A simple interpretation I of a vocabulary V is defined by:
IR 6= ∅: the set of resources, called the domain or universe of I.
IP : the set of properties of I.
LV ⊆ IR: the set of literal values which contains all plain literals in V .

5

Γ : IP 7→ P(IR × IR)
|[·]|I : (U∪L)∩V → IR ∪IP such that if x is a plain literal then |[x]|I = x, and
if it is a typed literal |[x]|I ∈ IR.

Given an interpretation I = {IR, IP ,LV , Γ, |[·]|I} consider the function |[·]|I
defined by:

If t is a ground triple (s, p, o):

|[t]|I =
{

true if s, p, o ∈ V, |[p]|I ∈ IP and (|[s]|I , |[o]|I) ∈ Γ(|[p]|I)
false otherwise

If E is a ground graph:

|[E]|I =
{

false if ∃t ∈ E such that |[t]|I = false
true otherwise

Let A : B′ → IR be a mapping from a set of blank nodes (B′ ⊆ B) to the
domain of I. Consider the extension |[·]|I+A of |[·]|I defined by |[b]|I+A = A(b)
when b is a blank node in B′. Then we can naturally define |[·]|I+A for triples
and graphs as we did before. Now we can extend the definition of |[·]|I for
non-ground graphs as:

If E is an RDF graph let BE be the set of blank nodes in E:

|[E]|I =
{

true if there exists A : BE → IR such that |[E]|I+A = true
false otherwise

Note that blank nodes work as if they were existential variables, and prop-
erties can be assigned both a binary predicate and an element of the domain of
the interpretation.

Definition 15 (Entailment) I satisfies G if |[G]|I = true, in that case we
will note I |= G otherwise I 2 G. Let S be a set of graphs, and G a graph,
then S simply entails G if and only if for every interpretation3 I we have:
(∀H ∈ S, I |= H) ⇒ I |= G.
In that case we note S |= G.

Note that if I |= E then I |= E′ for every E′ ∼= E. This is, if we rename
the blank nodes of E to obtain E′, since there exists A : BE 7→ IR such that
|[E]|I+A = true we can find A′ : BE′ → IR satisfying |[E′]|I+A′ = true, in fact
we can choose A′ = A◦µ−1, where µ is a bijective map which makes E′ = µ(E).
We can see also that the restriction of the blank nodes mapping A to a certain
subset B′ of B is not necessary, because since IR 6= ∅ we can always extend A
to the whole set of blank nodes B.

Definition 16 (Validity) Any process which constructs a graph G from some
other graph(s) S is said to be (simply) valid if S entails G in every case, other-
wise invalid.

3In fact, for this definition to be correct we should say: for every vocabulary V , for every
interpretation of V ...

6

3.2 Interpreting RDF Vocabulary

In the rest of this document the prefix rdf: is an abbreviation for:
http://www.w3.org/1999/02/22-rdf-syntax-ns#

The RDF vocabulary rdfV is the following set of URI references:

• rdf:type rdf:Property rdf:XMLLiteral rdf:value

• (Reification vocabulary:) rdf:Statement rdf:subject rdf:predicate
rdf:object

• (Container vocabulary:) rdf:Seq rdf:Bag rdf:Alt rdf: 1 rdf: 2 ...

• (Collection vocabulary:) rdf:nil rdf:List rdf:first rdf:rest

3.2.1 RDF Axiomatic triples

The following set of triples is called RDF axiomatic triples:

• (rdf:type,rdf:type,rdf:Property)

• (rdf:subject,rdf:type,rdf:Property)

• (rdf:predicate,rdf:type,rdf:Property)

• (rdf:object,rdf:type,rdf:Property)

• (rdf:first,rdf:type,rdf:Property)

• (rdf:rest,rdf:type,rdf:Property)

• (rdf:value,rdf:type,rdf:Property)

• (rdf: 1,rdf:type,rdf:Property)

• (rdf: 2,rdf:type,rdf:Property)

• . . .

• (rdf:nil,rdf:type,rdf:List)

3.2.2 RDF Interpretation

Let LXMLlit,VXMLlit and φXMLlit be the lexical space, value space and lexical
to value mapping of the XMLLiteral datatype.

Definition 17 (RDF interpretation) An rdf-interpretation of V is a simple
interpretation I of (V ∪ rdfV) which satisfies the extra conditions:

• x ∈ IP ⇔ (x, |[rdf:Property]|I) ∈ Γ(|[rdf:type]|I)

7

• If l is the typed literal: ω+rdf:XMLLiteral ∈ V then:
if ω ∈ LXMLlit then: |[l]|I = φXMLlit(ω), |[l]|I ∈ LV and (|[l]|I , |[rdf:XMLLiteral]|I) ∈
Γ(|[rdf:type]|I)
otherwise |[l]|I /∈ LV and (|[l]|I , |[rdf:XMLLiteral]|I) /∈ Γ(|[rdf:type]|I)

• I satisfies the RDF axiomatic triples.

Definition 18 (RDF-entailment) Let S be a set of graphs, and G a graph,
then S rdf-entails G if and only if for every rdf-interpretation I we have: (∀H ∈
S, I |= H) ⇒ I |= G.
In that case we note S |=rdf G.

3.2.3 Reification, Containers and Collections

Note that there are no special semantic conditions to restrict the meaning of
this vocabulary. However there is an intended meaning for those names. We
will not treat in detail this subject because it is not relevant for the purposes of
this document. In fact finding an appropriate way to give semantic conditions
for this vocabulary is not easy and may be a subject of further research. Instead
we would like to point out the following aspects:

Reification vocabulary is intended to be used when talking about rdf triple
like statements. For example, the statement which has a subject u a predicate x
and an object v can be represented by the following graph (b is a blank node):

G = {(b,rdf:type,rdf:Statement),
(b,rdf:subject, u),
(b,rdf:predicate, x),
(b,rdf:object, v)}
It is important to note that in general neither does this graph entail the

graph:
H = {(u, x, v)}
nor does H entails G.
In fact G only states that there is an element b which is of type statement

and has u, x and o as subject, predicate and object respectively, but H states
that a certain property associated to x holds for the couple (u, v).

About container vocabulary we can say that its intended use is to represent
sets of elements. There are different types of containers: rdf:Seq is considered
to be an ordered set, rdf:Alt is considered to represent a set of alternatives, and
rdf:Bag is considered to represent an unordered set which may have repeated
elements.

Here there is an example to illustrate the intended use of this vocabulary:
G = {(b,rdf:type,rdf:Alt),
(b,rdf: 1, u),
(b,rdf: 2, v),
(b,rdf: 3, w)}
In this example b represents a container of type rdf:Alt whose first element

is u, its second v and its third w. However nothing prevents us to have the
following graph:

8

G′ = {(b,rdf:type,rdf:Alt),
(b,rdf: 1, u),
(b,rdf: 1, v),
(b,rdf: 4, w)}
Note that the first element of b is both u and v. Note also that this second

graph does not entails that there exist a second or third element of this container.
In fact there is no way of stating how many elements a container may have.
Similar problems arise when using rdf:Bag or rdf:Seq.

Collection vocabulary is used to describe list structures. An example of this
is:

G′ = {(x,rdf:type,rdf:List),
(x,rdf:first, u),
(x,rdf:rest, v),
(v,rdf:first, w),
(v,rdf:rest,rdf:nil)}
Even thought rdf:nil is meant to represent the empty list and is used to

mark the end of the list, nothing prevents us to have a list without an end, or
a list with multiple endings, etc. For example:

G′ = {(x,rdf:type,rdf:List),
(x,rdf:first, u),
(x,rdf:rest, v),
(v,rdf:first, w),
(v,rdf:rest,rdf:nil)
(v,rdf:rest, z),
(z,rdf:first, u)
(z,rdf:rest,rdf:nil)}
All these pathological cases we have just seen are perfectly possible and the

lack of semantic conditions for these vocabularies requires us to be careful when
using it.

3.3 Interpreting RDFS Vocabulary

In the rest of this document the prefix rdfs: is an abbreviation for:
http://www.w3.org/2000/01/rdf-schema#

The RDFS vocabulary rdfsV is the following set of URI references:

• rdfs:domain rdfs:range

• rdfs:Resource rdfs:Literal rdfs:Datatype

• rdfs:Class rdfs:subClassOf rdfs:subPropertyOf

• rdfs:member rdfs:Container rdfs:ContainerMembershipProperty

• rdfs:comment rdfs:seeAlso rdfs:isDefinedBy rdfs:label

9

3.3.1 RDFS Axiomatic triples

The following set of triples is called RDFS axiomatic triples:

• (rdf:type, rdfs:domain, rdfs:Resource)

• (rdfs:domain, rdfs:domain, rdf:Property)

• (rdfs:range, rdfs:domain, rdf:Property)

• (rdfs:subPropertyOf, rdfs:domain, rdf:Property)

• (rdfs:subClassOf, rdfs:domain, rdfs:Class)

• (rdf:subject, rdfs:domain, rdf:Statement)

• (rdf:predicate, rdfs:domain, rdf:Statement)

• (rdf:object, rdfs:domain, rdf:Statement)

• (rdfs:member, rdfs:domain, rdfs:Resource)

• (rdf:first, rdfs:domain, rdf:List)

• (rdf:rest, rdfs:domain, rdf:List)

• (rdfs:seeAlso, rdfs:domain, rdfs:Resource)

• (rdfs:isDefinedBy, rdfs:domain, rdfs:Resource)

• (rdfs:comment, rdfs:domain, rdfs:Resource)

• (rdfs:label, rdfs:domain, rdfs:Resource)

• (rdf:value, rdfs:domain, rdfs:Resource)

• (rdf:type, rdfs:range, rdfs:Class)

• (rdfs:domain, rdfs:range, rdfs:Class)

• (rdfs:range, rdfs:range, rdfs:Class)

• (rdfs:subPropertyOf, rdfs:range, rdf:Property)

• (rdfs:subClassOf, rdfs:range, rdfs:Class)

• (rdf:subject, rdfs:range, rdfs:Resource)

• (rdf:predicate, rdfs:range, rdfs:Resource)

• (rdf:object, rdfs:range, rdfs:Resource)

• (rdfs:member, rdfs:range, rdfs:Resource)

• (rdf:first, rdfs:range, rdfs:Resource)

10

• (rdf:rest, rdfs:range, rdf:List)

• (rdfs:seeAlso, rdfs:range, rdfs:Resource)

• (rdfs:isDefinedBy, rdfs:range, rdfs:Resource)

• (rdfs:comment, rdfs:range, rdfs:Literal)

• (rdfs:label, rdfs:range, rdfs:Literal)

• (rdf:value, rdfs:range, rdfs:Resource)

• (rdf:Alt, rdfs:subClassOf, rdfs:Container)

• (rdf:Bag, rdfs:subClassOf, rdfs:Container)

• (rdf:Seq, rdfs:subClassOf, rdfs:Container)

• (rdfs:ContainerMembershipProperty, rdfs:subClassOf, rdf:Property)

• (rdfs:isDefinedBy, rdfs:subPropertyOf, rdfs:seeAlso)

• (rdf:XMLLiteral, rdf:type, rdfs:Datatype)

• (rdf:XMLLiteral, rdfs:subClassOf, rdfs:Literal)

• (rdfs:Datatype, rdfs:subClassOf, rdfs:Class)

• (rdf: 1, rdf:type, rdfs:ContainerMembershipProperty)

• (rdf: 1, rdfs:domain, rdfs:Resource)

• (rdf: 1, rdfs:range, rdfs:Resource)

• (rdf: 2, rdf:type, rdfs:ContainerMembershipProperty)

• (rdf: 2, rdfs:domain, rdfs:Resource)

• (rdf: 2, rdfs:range, rdfs:Resource)

• ...

3.3.2 RDFS Interpretation

Definition 19 (RDFS interpretation) An rdfs-interpretation of V is an rdf-
interpretation I of (V ∪rdfV ∪rdfsV) plus a set IC ⊂ IR and a map ΓC : IC →
P(IR) which satisfy the extra conditions:

• x ∈ ΓC(y) ⇔ (x, y) ∈ Γ(|[rdf:type]|I)
• IC = ΓC(|[rdfs:Class]|I)
• IR = ΓC(|[rdfs:Resource]|I)

11

• LV = ΓC(|[rdfs:Literal]|I)
• (x, y) ∈ Γ(|[rdfs:domain]|I) and (u, v) ∈ Γ(x) ⇒ u ∈ ΓC(y)

• (x, y) ∈ Γ(|[rdfs:range]|I) and (u, v) ∈ Γ(x) ⇒ v ∈ ΓC(y)

• Γ(|[rdfs:subPropertyOf]|I) is reflexive and transitive on IP

• (x, y) ∈ Γ(|[rdfs:subPropertyOf]|I) ⇒ x, y ∈ IP and Γ(x) ⊂ Γ(y)

• x ∈ IC ⇒ (x, |[rdfs:Resource]|I) ∈ Γ(|[rdfs:subClassOf]|I)
• (x, y) ∈ Γ(|[rdfs:subClassOf]|I) ⇒ x, y ∈ IC and ΓC(x) ⊂ ΓC(y)

• Γ(|[rdfs:subClassOf]|I) is reflexive and transitive on IC

• x ∈ ΓC(|[rdfs:ContainerMembershipProperty]|I) ⇒ (x, |[rdfs:member]|I) ∈
Γ(|[rdfs:subPropertyOf]|I)

• x ∈ ΓC(|[rdfs:Datatype]|I) ⇒ (x, |[rdfs:Literal]|I) ∈ Γ(|[rdfs:subClassOf]|I)
• I satisfies the RDFS axiomatic triples.

Note that since an rdfs interpretation is an rdf interpretation then for an ill
typed XML literal l, this is a typed literal whose uri is rdf:XMLLiteral and
such that its lexical form does not belong to the lexical space of the XMLLiteral
datatype, we must have that |[l]|I /∈ LV .

Now by the first, fourth and sixth conditions of an rdfs interpretation we
have that a graph such as:

G = {(a,rdfs:range,rdfs:Literal), (x, a, l)}
has no interpretation if l is an ill typed XML literal.
In that case, this is when there is no rdfs interpretation which satisfies a

graph, we will say that it is an XML clash. Note that since this is the only
negative condition all the XML clashes are product of stating in a graph that
an ill typed literal is of type literal.

For rdf interpretations this problem does not arise because there is no pos-
sibility of stating one such a thing.

Definition 20 (RDFS-entailment) Let S be a set of graphs, and G a graph,
then S rdfs-entails G if and only if for every rdfs-interpretation I we have:
(∀H ∈ S, I |= H) ⇒ I |= G.
In that case we note S |=rdfs G.

3.4 Interpreting Datatypes

As we said earlier, every datatype is ”identified” by at least one URI, and
a typed literal is intended to represent an element of the value space of the
datatype identified by the URI given in it. In order to give a formal definition
for this ”identification” we need to have a function which associates URIs to
datatypes. One such a function will be called a datatype map. Then, by means

12

of this map we will be able to interpret typed literals. There will be then the
notion of well and ill typed literals. A well typed literal will correspond to a
typed literal l whose character string belongs to the lexical space of the datatype
corresponding to the URI included in l, otherwise it will be an ill typed literal.
However this notion will change if we change the map we are considering.

So, when interpreting datatypes, we will need to specify which is the map
we are considering. There will be only one restriction to one such a datatype
map: the datatype XML Literal, which is intended to be the built in datatype
of rdf will have to be always identified by rdf:XMLLiteral. So for the special
case of a typed literal whose URI is rdf:XMLLiteral there will be no confusion
possible to determine wether it is or not a well typed literal. In general we will
speak of a well/ill typed XML Literal when this is the case.

Formally:

Definition 21 (Datatype map) Let D be a set of datatypes containing the
XML Literal datatype (which we will note dxmlLit) and U a set of RDF URI
references containing rdf:XMLLiteral, then a datatype map D is a map D :
U →.D such that D(rdf:XMLLiteral) = dxmlLit.
For each datatype d we will note respectively Ld, Vd and φd the lexical space,
the value space and the lexical to value mapping of d.

3.4.1 D-Interpretation

Definition 22 (D-interpretation) Let D be a datatype map, then a D-interpretation
of a vocabulary V is an rdfs-interpretation I of (V ∪ U) which satisfies the fol-
lowing extra conditions:

• |[u]|I = D(u)

• If D(u) = d then IC(d) = Vd and IC(d) ⊆ LV

• If D(u) = d then for any typed literal ω + v, if |[v]|I = d: if ω ∈ Ld then
|[ω + v]|I = φd(ω) otherwise |[ω + v]|I /∈ LV

• If D(u) = d then |[u]|I ∈ ΓC(|[rdfs:Datatype]|I)

Definition 23 (Well / ill -typed literal) A typed literal ω + u is called a
well-typed literal in a D interpretation I if u ∈ U and ω ∈ LD(u). If u ∈ U and
ω /∈ LD(u) it is called an ill-typed literal.

The first condition ensures that I interprets the URI reference according
to the datatype map provided. Note that this does not prevent other URI
references from also denoting the datatype.

The second condition ensures that the datatype URI reference, when used
as a class name, refers to the value space of the datatype, and that all elements
of a value space must be literal values.

The third condition ensures that typed literals in the vocabulary respect the
datatype lexical-to-value mapping. The condition also requires that an ill-typed

13

literal, where the literal string is not in the lexical space of the datatype, not
denote any literal value. Intuitively, such a name does not denote any value, but
in order to avoid the semantic complexities which arise from empty names, the
semantics requires such a typed literal to denote an ’arbitrary’ non-literal value.
An ill-typed literal does not in itself constitute an inconsistency, but a graph
which entails that an ill-typed literal has rdf:type rdfs:Literal, or that an
ill-typed XML literal has rdf:type rdf:XMLLiteral, would be inconsistent.

Note that this third condition applies only to datatypes in the range of D.
Typed literals whose type is not in the datatype map of the interpretation are
treated as before, i.e. as denoting some unknown thing. The condition does not
require that the URI reference in the typed literal be the same as the associated
URI reference of the datatype; this allows semantic extensions which can express
identity conditions on URI references to draw appropriate conclusions.

The fourth condition ensures that the class rdfs:Datatype contains the
datatypes used in any satisfying D-interpretation. Notice that this is a neces-
sary, but not a sufficient, condition; it allows the class |[rdfs:Datatype]|I to
contain other datatypes.

Definition 24 (D-entailment) Let S be a set of graphs, and G a graph, then
S D-entails G if and only if for every D-interpretation I we have: (∀H ∈ S, I |=
H) ⇒ I |= G.
In that case we note S |=D G.

3.4.2 XSD Interpretation

In the rest of this document the prefix xsd: is an abbreviation for:
http://www.w3.org/2001/XMLSchema#

The following are the XSD datatypes defined in XML Schema Part 2: Datatypes
[XML-Schema2] and are referred to as XSD Datatypes:

xsd:string, xsd:boolean, xsd:decimal, xsd:float, xsd:double, xsd:dateTime,
xsd:time, xsd:date, xsd:gYearMonth, xsd:gYear, xsd:gMonthDay, xsd:gDay,
xsd:gMonth, xsd:hexBinary, xsd:base64Binary, xsd:anyURI, xsd:normalizedString,
xsd:token, xsd:language, xsd:NMTOKEN, xsd:Name, xsd:NCName, xsd:integer,
xsd:nonPositiveInteger, xsd:negativeInteger, xsd:long, xsd:int, xsd:short,
xsd:byte, xsd:nonNegativeInteger, xsd:unsignedLong, xsd:unsignedInt,
xsd:unsignedShort, xsd:unsignedByte, xsd:positiveInteger

Note that here we have denoted each datatype with its respective RDF URI
reference.

Definition 25 A datatype map which maps each one of the above RDF URI
references as the respective XSD datatype is called an XSD datatype map. A D
interpretation where D is an XSD datatype map is called an XSD interpretation.

14

3.5 Alternative definition for a simple interpretation

In terms of entailment we can see that the restriction of an interpretation to
a certain vocabulary is not necessary. In fact, we could consider a definition
of interpretation independent of the vocabulary and even when the notion of
satisfaction would change, the notion of entailment remains the same.

For sake of clarity we will note, during this paragraph, a simple interpreta-
tion of a vocabulary a v-interpretation. We will also note the satisfaction and
entailment of a graph with the |=v symbol.

Definition 26 A β-interpretation I is defined by:
IR 6= ∅: the set of resources, called the domain or universe of I.
IP : the set of properties of I.
LV ⊆ IR: the set of literal values which contains all plain literals in L.
Γ : IP 7→ P(IR × IR)
|[·]|I : U∪L → IR ∪ IP such that if x is a plain literal then |[x]|I = x, and if it
is a typed literal |[x]|I ∈ IR.

Here we have changed the previous restriction of |[·]|I to the whole space of
URI references and Literals (U∪L). Note that a β-interpretation is always a
v-interpretation where the vocabulary is U∪L.

The definition of |[·]|I for ground triples and graphs is the same, except that
now the condition ”s, p, o ∈ V ” for a ground triple is not necessary and can be
omitted.

In order to interpret blank nodes we will consider maps of the form A : B →
IR and the same construction used earlier to define |[·]|I+A and |[·]|I+A, which
leads to the following definition of |[·]|I for a graph E:

Given a map A : B → IR :

|[x]|I+A =
{ |[x]|I if x ∈ U∪L

A(x) if x ∈ B
If t is a triple (s, p, o):

|[t]|I+A =
{

true if |[p]|I+A ∈ IP and (|[s]|I+A, |[o]|I+A) ∈ Γ(|[p]|I+A)
false otherwise

If E is a graph:

|[E]|I+A =
{

false if ∃t ∈ E such that |[t]|I+A = false
true otherwise

|[E]|Iβ =
{

true if there exists A : B → IR such that |[E]|I+A = true
false otherwise

Definition 27 Given a β-interpretation I, we say that I β-satisfies G if |[G]|Iβ =
true, in that case we will note I |=β G, otherwise I 2β G.

Definition 28 Let S be a set of graphs, and G a graph, then S β-entails G if
and only if for every β-interpretation I we have: (∀H ∈ S, I |=β H) ⇒ I |=β G.
In that case we note S |=β G.

Proposition 1 Let S be a set of graphs, and G a single graph, then (S |=β

G) ⇔ (S |=v G).

15

Proof. It is easy to see that (S |=v G) ⇒ (S |=β G), because we know that a
β-interpretation can be seen as a v-interpretation of the vocabulary U∪L.

We will now prove ¬(S |=v G) ⇒ ¬(S |=β G). This means that if there
exist a v-interpretation I = {IR, IP ,LV ,Γ, |[·]|I} such that ∀H ∈ S, I |=v H
and I 2v G then there exists a β-interpretation I ′ such that ∀H ∈ S, I ′ |=β H
and I ′ 2β G. If the vocabulary V of I is U ∪ L, then I is also a β-interpretation
and we can consider I ′ = I.

Assume now that V (U ∪ L, and consider the case when the vocabulary of
G is a subset of V (VG ⊆ V). Then the β-interpretation I ′ defined by:
I ′R = IR ∪ Lplain where Lplain is the set of all plain literals in L.
I ′P = IP

L′V = Lplain ∪ LV

Γ′ = Γ

|[·]|I′(x) =

|[x]|I if x ∈ V
x if x is a plain literal
x0 otherwise.

where x0 is a fixed element in IR.

trivially satisfies ∀H ∈ S, I ′ |=β H. If we had I ′ |=β G then there would be a
map A′ : B → I ′R such that: |[G]|I′+A′ = true, this means that for every triple
t ∈ G : |[t]|I′+A′ = true, but then we would have that since the interpretations
I and I ′ give the same value of truth for every triple in G then I would also
satisfy G as a v-interpretation which is a contradiction.

In the case when VG * V we have that VG 6= ∅ and therefore G 6= ∅.
Moreover, since there exist x′ in VG not in V there is a triple t′ in which x′ occur.
One such a triple can’t be in any H ∈ S. We will construct a β-interpretation in
which the triple t′ will always be false. Let I ′ be a β-interpretation satisfying
∀H ∈ S, I ′ |=β H. Then redefine I ′ as follows:

If t′ = (a, x′, b) then |[x′]|I′ ∈ I ′P and Γ′(|[x′]|I′) = ∅.
If t′ = (x′, a, b) then |[a]|I′ ∈ I ′P and ∀c ∈ IR, (|[x′]|I′ , c) /∈ Γ′(|[a]|I′)
If t′ = (b, a, x′) then |[a]|I′ ∈ I ′P and ∀c ∈ IR, (c, |[x′]|I′) /∈ Γ′(|[a]|I′)
None of these conditions can affect the value of truth given to any H ∈ S

by |[·]|Iβ and they guarantee that the interpretation obtained doesn’t β-satisfy
G.

4 Entailment rules

In this section we will introduce a set of rules with which we will be able to
prove entailment between graphs. Each one of these rules consists of two parts:
A
B . The upper part is a set (possibly infinite) of clauses of the form Σ : K ` G
in which K and G are rdf graphs, and Σ is a mapping from a subset of B to
BK ∪ VK ∪ rdfsV ∪ rdfV . The lower part is a clause of the same form.

Informally a proof will be a tree whose nodes are labeled by a set of clauses
and for each one of these clauses we will apply a rule. The out-arcs from a node
will then be the rules applied to these clauses. We will show that if a proof tree
whose root is the clause ∅ : K ` G where K and G are graphs with no blank
nodes in common and whose leafs are all an empty inference, then K |= G.

16

Inversely, if K |= G we will show that it is possible to construct one such a
proof tree.

Note that in order to ”apply” a rule certain conditions must be satisfied,
which will be exposed with each rule.

Definition 29 (Proof tree) Is a rooted labeled tree. Each node of the tree is
a set of clauses A, and for each clause C of this set there is exactly one out-arc
labeled by one of the rules of the form X

C . For each node A different from the
root there is exactly one in-arc labeled by a rule of the form A

X .

Note that a triple (s, p, o) represents the graph containing only this triple
and Axioms means the set of rdf and rdfs axiomatic triples.

The rules are the following:

4.1 General:

1.
Σ : K ` (s, p, o)

init only if (s, p, o) ∈ K

2.
{Σ : K ` t; t ∈ E}

Σ : K ` E
break only if BE ⊂ dom(Σ)

4.2 Instance:

1.
Σ : K ` E

∅ : K ` E
alloc only if BE ⊂ dom(Σ)

2.
Σ : K ` (s, p, x)
Σ : K ` (s, p, b)

ins1 only if Σ(b) = x

3.
Σ : K ` (x, p, o)
Σ : K ` (b, p, o)

ins2 only if Σ(b) = x

4.
Σ : K ` (s, p, b)
Σ : K ` (s, p, x)

gl only if Σ(b) = x ∈ L

4.3 Rdf/Rdfs:

4.3.1 Type:

1.
Σ : K ` (s, p, o)

Σ : K ` (p, rdf:type, rdf:Prop)
rdf1

2.
Σ : K ` (x, rdf:type, rdf:Res)

rdfs4

only if x ∈ BK ∪ VK ∪ rdfsV ∪ rdfV

3.
Σ : K ` (b, rdf:type, rdf:Res)

rdfs4l

only if Σ(b) = x ∈ L∩VK

17

4.
Σ : K ` (b, rdf:type, rdf:XMLLit)

rdf2

only if Σ(b) = l is a well-typed XMLLiteral and l ∈ VK .

5.
Σ : K ` (b, rdf:type, rdfs:Literal)

rdfs1

only if Σ(b) = l is a plain literal and l ∈ VK .

6.
Σ : K ` (a, rdf:domain, b),Σ : K ` (x, c, y), Σ : K ` (c, rdfs:sp, a)

Σ : K ` (x, rdf:type, b)
rdfs2

7.
Σ : K ` (a, rdf:range, b), Σ : K ` (x, c, y), Σ : K ` (c, rdfs:sp, a)

Σ : K ` (y, rdf:type, b)
rdfs3

8.
Σ : K ` (a, rdfs:sc, b), Σ : K ` (x, rdf:type, a)

Σ : K ` (x, rdf:type, b)
rdfs9

4.3.2 Properties:

1.
Σ : K ` (a, rdfs:sp, b), Σ : K ` (x, a, y)

Σ : K ` (x, b, y)
rdfs7

2.
Σ : K ` (a, rdfs:sp, b), Σ : K ` (b, rdfs:sp, c)

Σ : K ` (a, rdfs:sp, c)
rdfs5

3.
Σ : K ` (a, rdf:type, rdf:Prop)

Σ : K ` (a, rdfs:sp, a)
rdfs6

4.
Σ : K ` (a, rdf:type, rdfs:ContMemProp)

Σ : K ` (a, rdfs:sp, rdf:Member)
rdfs12

4.3.3 Classes:

1.
Σ : K ` (a, rdf:type, rdfs:Class)

Σ : K ` (a, rdfs:sc, rdf:Res)
rdfs8

2.
Σ : K ` (a, rdfs:sc, b), Σ : K ` (b, rdfs:sc, c)

Σ : K ` (a, rdfs:sc, c)
rdfs11

3.
Σ : K ` (a, rdf:type, rdfs:Class)

Σ : K ` (a, rdfs:sc, a)
rdfs10

4.
Σ : K ` (a, rdf:type, rdfs:Datatype)
Σ : K ` (a, rdfs:sc, rdfs:Literal)

rdfs13

4.4 Validity of the entailment rules

We will now show that if there exists a finite height proof tree whose root is
Σ : K ` E then K |=rdfs E. Moreover, we will show that for every interpretation
I such that I |= K, for every A such that |[K]|I+A = true there exist a mapping

18

σ : B → IR satisfying σ(x) = |[Σ(x)]|I+A for every blank node x in dom(Σ) such
that |[G]|I+σ = true.

In more simple words this means that every blank node in G can be identified
to a node in K, which can be an uri or literal as well as a blank node and the
function Σ is the mean to manage this identification during the proof.

For sake of clarity we will note Σ : K |= E the following proposition: ∀I, ∀A :
|[K]|I+A = true ⇒ ∃σ : B → IR such that σ(x) = |[Σ(x)]|I+A for every x in
dom(Σ) and |[E]|I+σ = true.

We can restrict this notation for rdf or rdfs interpretations only to have
Σ : K |=rdf E and Σ : K |=rdfs E respectively. Note that Σ : K |= E ⇒ K |= E.

Proposition 2 Given two rdf graphs K and E such that and there exist a
proof tree of finite height and whose root is Σ : K ` E, where Σ is such that
dom(Σ) ∩ img(Σ) = ∅ and dom(Σ) ∩ BK = ∅ then Σ : K |=rdfs E.
Proof. We will prove this by induction over the height of the tree. There
are however many cases for which the proof is practically the same, so we will
only present the most significant cases. Note that we will only consider rdfs
interpretations.

For every case when the root of the tree is Σ : K ` E we will consider, given
I and A such that |[K]|I+A = true, the following definition of σ:

σ(x) =
{ |[Σ(x)]|I+A if x ∈ dom(Σ)

A(x) otherwise
If the height of the tree is 1 we have the following cases:

•
Σ : K ` (s, p, o)

init:

Since to apply this rule we must have that (s, p, o) ∈ K, we know that
neither s nor o belong to dom(Σ). Then |[(s, p, o)]|I+σ = |[(s, p, o)]|I+A =
true.

•
Σ : K ` (x, rdf:type, rdf:Res)

rdfs4:

In order to apply this rule x must belong to BK ∪ VK ∪ rdfsV ∪ rdfV
so for every rdfs interpretation I for every A we know that |[x]|I+σ =
|[x]|I+A ∈ IR and by the semantic conditions of an rdfs interpretation
IR = ΓC(|[rdf:Res]|I) which means that (|[x]|I+A, |[rdf:Res]|I) ∈ Γ(|[rdf:type]|I).

•
Σ, : K ` (b, rdf:type, rdf:Res)

rdfs4l:

Since x ∈ L∩VK and we have that |[b]|I+σ = |[x]|I the proof is the same
as in the previous case.

•
Σ : K ` (b, rdf:type, rdf:XMLLit)

rdf2

We know that l is a well typed XML literal and l ∈ VK so for any I an rdf
interpretation we have that |[l]|I ∈ ΓC(|[rdf:XMLLit]|I), so (|[l]|I , |[rdf:XMLLit]|I) ∈
Γ(|[rdf:type]|I). Besides we know that |[l]|I = |[b]|I+σ which concludes
the proof.

19

•
Σ : K ` (b, rdf:type, rdfs:Literal)

rdfs1:

The proof is the same as in the previous case except that we use the se-
mantic conditions for rdfs interpretations.

For the rest of the cases we will only prove the following (because the proof
is practically the same for the others):

• Σ : K ` E

∅ : K ` E
alloc:

We know that there exists a proof tree whose root is Σ : K ` E by hy-
pothesis of induction we know that ∀I, ∀A such that |[K]|I+A = true there
exists σ such that |[E]|I+σ = true

• Σ : K ` (s, p, x)
Σ : K ` (s, p, b)

ins1:

We know that Σ(b) = x so ∀I, ∀A we have that |[b]|I+σ = |[x]|I+A and
then, since Σ : K |= (s, p, x) we conclude Σ : K |= (s, p, b). (The proof is
almost the same for the cases ins2 and gl)

• {Σ : K ` t; t ∈ E}
Σ : K ` E

break:

This means that for every t ∈ E we have Σ : K |= t. In other words
∀t ∈ E, ∀I, ∀A, ∃σt such that ∀x ∈ dom(Σ) : σt(x) = |[Σ(x)]|I+A and
|[K]|I+A ⇒ |[t]|I+σt .
Since dom(Σ) contains every blank node in E then for every triple t the
restriction of σt to the set of blank nodes BE is the same function, name
it σE. Then we can choose for every triple t the same σE which leads to
the following:
∀I, ∀A, ∃σE such that ∀x ∈ dom(Σ) : σE(x) = |[Σ(x)]|I+A and |[K]|I+A ⇒
∀t ∈ E : |[t]|I+σE

Which is exactly Σ : K |= E.

For all the rest of the cases the proof is straightforward from the semantic
conditions of an rdf or rdfs interpretation.

5 Soundness and Completeness

The main result of this section is that the deductive system of the previous
entailment rules is complete for rdfs entailment. It is easy to prove the soundness
of these rules, in fact, in order to do so we must only prove for each one of these
rules that they are valid. This follows directly from the definitions.

If we are in the case of simple and rdf entailment not all the rules are valid.

Theorem 3 (Simple entailment) Given K and E two finite rdf graphs where
BK ∩ BE = ∅ then K |= E if and only if there exist a proof tree whose root is
∅ : K ` E and the arcs can only be labeled by one of the following rules: init,
break, alloc, ins1, ins2.

20

Proof. Since E has an instance which is a subgraph of K there exist a mapping
µ satisfying µ(E) ⊆ K. We apply then the alloc rule to get µ : K ` E followed
by the break rule and then for each one of the branches the ins1 and ins2 rules
when necessary. Then the init rule to finish the proof tree.
The proof of the ”if” we have to prove that all these rules are valid, which is
the same proof we did earlier.

Theorem 4 (RDF Entailment) Given K and E two finite rdf graphs where
BK ∩BE = ∅ then K |=rdf E if and only if there exist a proof tree whose root is
∅ : K ` E and the arcs can only be labeled by one of the following rules: init,
break, alloc, ins1, ins2, rdf1, rdf2.

We will not prove this theorem since the proof follows the same principle of
the proof for rdfs entailment.

The following theorem says that this deductive system is sound and complete
for rdfs entailment.

Theorem 5 (RDFS Entailment) Given K and E two rdf graphs where BK∩
BE = ∅ and such that neither K nor E are XML clash, then K |=rdfs E if and
only if there exist a proof tree whose root is ∅ : K ` E and the arcs can only be
labeled by any of the following rules: general rules, instance rules, or rdf/rdfs
rules.

To prove this theorem we will need to define an rdfs Herbrand interpretation,
in order to do so, let’s consider the following construction:

Let K be an rdf graph such that there exist at least one rdfs interpretation
satisfying K. This means that it is not an XML clash. Then we define I0 as:

• IR =
{x;x ∈ U ∪ BK and x occur in K}∪
{x;x is a plain literal or ill typed XML literal}∪
{φXML(x); x is a well typed XML literal}∪
rdfV ∪ rdfsV

• |[x]| =
{

φXML(x) if x is a well typed XML literal
x otherwise

• IP = {|[p]|; (s, p, o) ∈ K ∪ Axioms} ∪ {p|(p,rdf:type,rdf:Prop) ∈ K ∪
Axioms}

• Lv =
{|[x]|; x is a plain literal}∪
{|[x]|; x is a well typed XML literal}∪
{|[x]|; (x, rdf:type, rdf:Literal) ∈ K}∪
{|[x]|; (x, rdf:type, rdf:XMLLit) ∈ K}

21

• Γ0(|[rdf:type]|) =
{(|[x]|, |[rdf:Literal]|); x is a plain literal}∪
{(|[x]|, |[rdf:XMLLit]|); x is a well typed XML literal}∪
{(|[x]|, |[rdf:Prop]|); (u, x, v) ∈ K}∪
{(|[x]|, |[rdf:Res]|; |[x]| ∈ IR}∪
{(|[x]|, |[y]|); (x, rdf:type, y) ∈ K}

• if p is different from rdf:type:
Γ0(|[p]|) = {(|[x]|, |[y]|); (x, p, y) ∈ K}

Now for each i ∈ N+ consider Ii defined inductively as:

• IR,i = IR

• |[x]|i = |[x]|
• IP,i = IP,i−1 ∪ {x; (x, |[rdf:Prop]|) ∈ Γi−1(|[rdf:type]|)}
• Lv,i = Lv,i−1 ∪ {x; (x, |[rdf:Literal]|) ∈ Γi−1(|[rdf:type]|)}
• Γi(|[rdf:type]|) =

Γi−1(|[rdf:type]|)∪
{(u, v); (u, v) ∈ Γi−1(x) ∧ (x, |[rdf:type]|) ∈ Γi−1(|[rdfs:sp]|)}
{(u, y); (u, v) ∈ Γi−1(x) ∧ (x, y) ∈ Γi−1(|[rdfs:domain]|)}
{(v, y); (u, v) ∈ Γi−1(x) ∧ (x, y) ∈ Γi−1(|[rdfs:range]|)}
{(u, y); (u, x) ∈ Γi−1(|[rdf:type]|) ∧ (x, y) ∈ Γi−1(|[rdfs:sc]|)}

• Γi(|[rdfs:sc]|) =
Γi−1(|[rdfs:sc]|)∪
{(u, v); (u, v) ∈ Γi−1(x) ∧ (x, |[rdf:sc]|) ∈ Γi−1(|[rdfs:sp]|)}∪
{(x, |[rdfs:Res]|); (x, |[rdfs:Class]|) ∈ Γi−1(|[rdf:type]|)}∪
{(x, x); (x, |[rdfs:Class]|) ∈ Γi−1(|[rdf:type]|)}∪
{(x, y); (x, z) ∈ Γi−1(|[rdfs:sc]|) ∧ (z, y) ∈ Γi−1(|[rdfs:sc]|)}∪
{(x, |[rdf:Literal]|); (x, |[rdfs:Datatype]|) ∈ Γi−1(|[rdf:type]|)}

• Γi(|[rdfs:sp]|) =
Γi−1(|[rdfs:sp]|)∪
{(u, v); (u, v) ∈ Γi−1(x) ∧ (x, |[rdf:sp]|) ∈ Γi−1(|[rdfs:sp]|)}∪
{(x, x); (x, |[rdf:Prop]|) ∈ Γi−1(|[rdf:type]|)}∪
{(x, y); (x, z) ∈ Γi−1(|[rdfs:sp]|) ∧ (z, y) ∈ Γi−1(|[rdfs:sp]|)}∪
{(x, |[rdf:Member]|); (x, |[rdfs:ContMemProp]|) ∈ Γi−1(|[rdf:type]|)}

• Γi(p) =
Γi−1(p)∪
{(u, v); (u, v) ∈ Γi−1(x) ∧ (x, p) ∈ Γi−1(|[rdfs:sp]|)}∪

Clearly I0 simply entails K, and so for all the other simple interpretations
Ii.

Now, given a set of interpretations M such that ∀I, I ′ ∈ M we have: IR,I =
IR,I′ = IR and |[·]|I = |[·]|I′ = |[·]| we can define:

22

I∗ =
⋃

I∈M

I as:

IR,∗ = IR

|[x]|∗ = |[x]|
IP,∗ =

⋃
I∈M

IP,I

Lv,∗ =
⋃

I∈M

Lv,I

Γ(p) =
⋃

I∈M

ΓI(p)

All this leads us to the following definition:

Definition 30 (RDFS Herbrand Interpretation) The rdfs Herbrand inter-
pretation IH of K is defined by:⋃
i∈N

Ii

and ΓC(y) = {x; (x, y) ∈ Γ(|[rdf:type]|IH)}

It is easy to verify that IH is an rdfs interpretation of K. In fact IH is such
that |[K]|IH+id = true where id is the identity function over blank nodes. And
it satisfies all the rdfs semantic conditions.

Moreover, given a triple t and a function over blank nodes A if |[t]|IH+A =
true there exists i ∈ N such that |[t]|Ii+A = true. And K |=rdfs E ⇔ IH |= E.

Lemma 6 Let E, K be rdf graphs such that BE ∩BK = ∅ and such that neither
K nor E are XML clash, then there exist Σ such that dom(Σ) = BE and Σ :
K `rdfs E if and only if K |=rdfs E.

Proof (of the lemma). As we said earlier if there exist one such Σ, satisfying
Σ : K ` E then clearly we have K |= E. The opposite way requires a more
delicate treatment:

The idea is to identify by means of the Herbrand model of K all the blanks
in E to nodes of K. Then, with this identification Σ we will see that for every
triple in E the condition Σ : K ` (s, p, o) holds. Since for every triple in E which
doesn’t contain any blank this Σ function won’t change anything the proof is
over, for the rest of the triples we show that the value of truth of the triple will
be given by the Herbrand model because it satisfies only those triples which are
true in every interpretation of K.

Assume K |= E then we know that for every interpretation I which makes
|[K]|I true also makes |[E]| true. Let’s take the rdfs Herbrand interpretation of
K.

We know that IH |=rdfs E which means that there exist A : BE → IR such
that |[E]|IH+A = true. But since there exist a bijection between IR and the set
of nodes of K (the identity except for well typed XML literals) we can construct
a function Σ : BE → BK ∪ VK ∪ rdfsV ∪ rdfV as follows:

Σ(x) =
{

φ−1
XML(A(x)) if A(x) ∈ VXMLlit

A(x) otherwise
We must now prove that this Σ satisfies Σ : K ` E.

23

Let I be an rdfs interpretation of K and A′ be such that |[K]|I+A′ = true.
Consider σ defined as σ(x) = |[Σ(x)]|I+A′ then, for every triple (s, p, o) ∈ E we
have that exactly one of the following cases occur:

1. neither s nor o are blank nodes

2. only s is a blank node:

3. only o is a blank node:

4. both s and o are blank nodes:

Clearly for the first case we have |[(s, p, o)]|I+σ = |[(s, p, o)]|I = true, which
is exactly what we have to prove.

For the rest of the cases the proof is quite similar so we will only prove this
for case 2:

|[(s, p, o)]|I+σ = true ⇔ (σ(s), |[o]|I) ∈ Γ(|[p]|I) ⇔ (|[Σ(x)]|I+A′ , |[o]|I) ∈
Γ(|[p]|I)

if b = Σ(x) ∈ BK we have to prove: (A′(b), |[o]|I) ∈ Γ(|[p]|I) which is true
because (b, |[o]|IH) ∈ ΓIH (p) in the Herbrand model. In fact this assertion
means that the pair formed by the interpretation of the blank node b and the
interpretation of o belongs to the set which ΓIH

associates to the interpretation
of p and the only way for this to be true is that this is true in every model of K
because IH only satisfies the conditions that every interpretation must satisfy
(and identifying every interpretation uniquely to the node it represents).

On the other hand if y = Σ(x) /∈ BK we have by doing a similar reasoning
that (|[y]|I , |[o]|I) ∈ Γ(|[p]|I).

Finally we have that for every triple (s, p, o) ∈ E the evaluation |[(s, p, o)]|I+σ =
true then |[E]|I+σ = true which concludes the demonstration.
Proof (of the theorem). Assume that K |= E, where BK ∩ BE = ∅ and
such that neither K nor E are XML clash, then by the previous lemma we know
that there exists Σ such that Σ : K ` E. For this proof we will extend this Σ
function in order to have at least one blank node associated to each literal.

We will now show how to construct a proof tree. To do so we will first apply
the alloc rule with Σ and then the break rule in order to construct a proof
tree from clauses of the form Σ : K ` (s, p, o) where (s, p, o) ∈ E. Then, by
induction we will show how to construct the proof tree corresponding to each
of these clauses.

We know that |[K]|IH+id = true so for each triple t in E we have |[t]|IH+Σ =
true. By construction of the Herbrand model we also know that for each one of
these triples there exists i ∈ N such that |[t]|Ii+Σ = true. Now, we will prove
that if there exists i ∈ N such that |[(s, p, o)]|Ii+Σ = true holds then we can
construct a finite proof tree for the following clause: Σ : K ` (s, p, o).

From now on s′ = Σ(s) if s is a blank node or s′ = s otherwise and o′ = Σ(o)
if o is a blank node or o′ = o otherwise

If |[(s, p, o)]|I0+Σ = true then (|[s′]|I0+id, |[o′]|I0+id) ∈ Γ0(|[p]|I0) This can
only be possible in one of the following cases:

24

• either (s′, p, o′) ∈ K:
Then we apply the ins1 and ins2 rules if necessary and finally the init
rule to finish the proof tree.

• or p =rdf:type and:

– s′ is a plain literal and o′ =rdf:Literal:
Then we apply the ins1 rule if necessary and then we finish the proof
tree by the rdfs1 rule.

– or s′ is a well typed XML literal and o′ =rdf:XMLLit:
Then again we apply the ins1 rule if necessary and then we finish
the proof tree by the rdf2 rule.

– or o′ =rdf:Prop and there exist u, v such that (u, s′, v) ∈ K:
Then we apply the ins1 and ins2 rule if necessary, then the rdf1
rule to get Σ : K ` (u, s′, v) (note that s′ must be an uri because
(u, s′, v) ∈ K) and the proof tree finishes by the init rule.

– or o′ =rdfs:Res and s′ ∈ BK ∪ VK ∪ rdfsV ∪ rdfV :
Then we apply the ins1 rule if necessary, if s′ isn’t a literal we ap-
ply the ins2 rule and then the rdfs4 rule to finish the proof three.
Otherwise we apply the rdfs4l rule.

We have just seen the base case, now by induction we will see that given
i ∈ N if ∀j < i, |[(s, p, o)]|Ij+Σ = true ⇒ there is a finite proof tree whose root
is Σ : K ` (s, p, o) then so this holds for i.

Let’s assume that |[(s, p, o)]|Ii+Σ = true. In other words (|[s′]|, |[o′]|) ∈
Γi(|[p]|) (note that since there is no possible confusion we have omitted the
index). Again there are several different cases for this to occur:

• either p =rdfs:sp and:

– either s′ = o′ and (|[s′]|, |[rdf:Prop]|) ∈ Γi−1(|[rdf:type]|):
The idea is to get Σ : K ` (s′,rdfs:sp, s′), but this is not always
possible since s′ might be a literal. So we will see in detail each one
of the possible cases:
In the case s′ is not a literal or s and o are not blank nodes we
will have (after eventually applying the ins1 or ins2 rules) Σ : K `
(s′,rdfs:sp, s′). Now, by applying the rdfs6 rule we get Σ : K `
(s′,rdf:type,rdf:Prop).
On the other hand, if s′ is the literal l: if o is a blank node we
apply the ins1 rule to get Σ : K ` (s,rdfs:sp, l) otherwise we do
have already this. Note that s must be a blank node because there
are no literals in the subject. We can now apply the gl rule to get
Σ : K ` (s,rdfs:sp, s). And here again, by applying the rdfs6 rule
we get Σ : K ` (s,rdf:type,rdf:Prop).
In both cases we can finish the demonstration with the proof tree for
Σ : K ` (x,rdf:type,rdf:Prop), where x is either s or s′ depending

25

on the case. This tree is finite because |[(x,rdf:type,rdf:Prop)]|Ii−1+Σ =
true.

– or there exists z such that (|[s′]|, |[z]|) ∈ Γi−1(|[rdfs:sp]|) and (|[z]|, |[o′]|) ∈
Γi−1(|[rdfs:sp]|):
We apply the rdfs5 rule to get Σ : K ` (s,rdfs:sp, z), Σ : K `
(z,rdfs:sp, o) then we finish with the proof tree of each one of the
branches. Note that we can always choose z as to be either a blank
node or an uri because if it was a literal l, we know that there is at
least one blank node which satisfies Σ(b) = l.

– or o′ =rdf:Member and (|[s′]|, |[rdfs:ContMemProp]|) ∈ Γi−1(|[rdf:type]|):
First we apply the ins1 rule to get Σ : K ` (s,rdfs:sp,rdfs:member)
(if o is a blank node) and then the rdfs12 rule to get Σ : K `
(s,rdf:type,rdfs:ContMemProp) and we finish with the proof tree
for this clause.

• or p =rdfs:sc and:

– either o′ =rdfs:Res and (|[s′]|, |[rdfs:Class]|) ∈ Γi−1(|[rdf:type]|):
Again we first apply the ins1 rule to get Σ : K ` (s,rdfs:sc,rdfs:Res)
(if o is a blank node) and then the rdfs8 rule to get Σ : K `
(s,rdf:type,rdfs:Class). And the proof finish with the proof tree
for this clause.

– or s′ = o′ and (|[s′]|, |[rdfs:Class]|) ∈ Γi−1(|[rdf:type]|):
The idea is to get Σ : K ` (s′,rdfs:sc, s′), but again this is not
always possible since s′ might be a literal. So as we did before:
In the case s′ is not a literal or s and o are not blank nodes we
will have (after eventually applying the ins1 or ins2 rules) Σ : K `
(s′,rdfs:sc, s′). Now, by applying the rdfs10 rule we get Σ : K `
(s′,rdf:type,rdfs:Class).
On the other hand, if s′ is the literal l: if o is a blank node we
apply the ins1 rule to get Σ : K ` (s,rdfs:sc, l) otherwise we do
have already this. Note that s must be a blank node because there
are no literals in the subject. We can now apply the gl rule to get
Σ : K ` (s,rdfs:sc, s). And here again, by applying the rdfs10 rule
we get Σ : K ` (s,rdf:type,rdfs:Class).
In both cases we can finish the demonstration with the proof tree
for Σ : K ` (x,rdf:type,rdfs:Class), where x is either s or s′

depending on the case.

– or there exists z such that (|[s′]|, |[z]|) ∈ Γi−1(|[rdfs:sc]|)∧(|[z]|, |[o′]|) ∈
Γi−1(|[rdfs:sc]|):
We apply the rdfs11 rule to get Σ : K ` (s,rdfs:sc, z),Σ : K `
(z,rdfs:sc, o) then we finish with the proof tree of each one of the
branches. Note that we can always choose z as to be either a blank
node or an uri because if it was a literal l, we know that there is at
least one blank node which satisfies Σ(b) = l.

26

– or o′ =rdf:Literal and (|[s′]|, |[rdfs:Datatype]|) ∈ Γi−1(|[rdf:type]|):
First we apply the ins1 rule to get Σ : K ` (s,rdfs:sc,rdfs:Literal)
(if o is a blank node) and then the rdfs13 rule to get Σ : K `
(s,rdf:type,rdfs:Datatype) and we finish with the proof tree for
this clause.

• or p =rdf:type and:

– either there exist x, y such that (|[s′]|, |[y]|) ∈ Γi−1(|[x]|) and (|[x]|, |[o′]|) ∈
Γi−1(|[rdfs:domain]|):
We will consider two cases: either x is an uri or it’s a blank node.
In the first case we have that |[(s, x, y)]|Ii−1+Σ = true, and then
|[(x,rdfs:sp, x)]|Ii+Σ = true which is already proved to have a proof
tree. Then we can apply the rdfs2 rule to get Σ : K ` (x,rdfs:domain, o),Σ :
K ` (s, x, y),Σ : K ` (x,rdfs:sp, x) and we finish by the proof tree
for each one of these branches.
On the second case we know that x is a blank node, so we must prove
that there exist at least one uri c which satisfies both (|[s′]|, |[y]|) ∈
Γi−1(|[c]|) and (|[x]|, |[c]|) ∈ Γi−1(|[rdfs:sp]|). We will do so by in-
duction:
if i = 2 then the only way to have (|[s′]|, |[y]|) ∈ Γ1(|[x]|) is that there
exists one such c.
Now if i > 2 we have two cases: either (|[s′]|, |[y]|) ∈ Γi−2(|[x]|) or
there exists c′ such that (|[s′]|, |[y]|) ∈ Γi−2(|[c′]|) and (|[c′]|, |[x]|) ∈
Γi−2(|[rdfs:sp]|). On the first case we know by induction that there
exists one such c. For the second suppose that c′ isn’t an uri then we
can assume that it is a blank node. By hypothesis of induction we
know that there exists an uri c such that (|[s′]|, |[y]|) ∈ Γi−3(|[c]|) and
(|[c]|, |[c′]|) ∈ Γi−2(|[rdfs:sp]|). But then we have that (|[c]|, |[x]|) ∈
Γi−1(|[rdfs:sp]|) and so we have an uri which satisfies what we need.
Then we can apply the rdfs2 rule to get Σ : K ` (x,rdfs:domain, o), Σ :
K ` (s, c, y),Σ : K ` (c,rdfs:sp, x) and we finish by the proof tree
for each one of these branches.

– or there exist x, y such that (|[y]|, |[s′]|) ∈ Γi−1(|[x]|) and (|[x]|, |[o′]|) ∈
Γi−1(|[rdfs:range]|):
The proof is the same as in the previous case.

– or there exist x, y such that (|[s′]|, |[x]|) ∈ Γi−1(|[rdf:type]|) and
(|[x]|, |[o′]|) ∈ Γi−1(|[rdfs:sc]|):
We can apply the rdfs9 rule to get Σ : K ` (x,rdfs:sc, o),Σ : K `
(s,rdf:type, x) and finally the proof tree for each clause.

• or p is any uri and:

– either (|[s′]|, |[o′]|) ∈ Γi−1(p):
Then, by hypothesis of induction, we already have a proof tree.

27

– or there exists p′ such that (|[s′]|, |[o′]|) ∈ Γi−1(|[p′]|) and (|[p′]|, |[p]|) ∈
Γi−1(|[rdfs:sp]|):
We apply the rdfs7 rule to get Σ : K ` (s, p′, o), Σ : K ` (p′,rdfs:sp, p).
Now by induction we know that for each one of these branches there
is a proof tree which finish the demonstration in both cases. Note
that p′ can be chosen as to be an uri, (Why?).

We have shown how to construct a proof tree if we have |[E]|IH+Σ = true.
Otherwise, this is when |[E]|IH+Σ = false we know that K |= E is false because
the Herbrand model doesn’t satisfy E (see the construction of Σ in the previous
lemma), and since the rules are all valid we can’t construct a proof tree. This
finish the demonstration of the theorem.

6 RDF and First order logic

In this section we will try to show a parallel between RDF and First order logic.
We will do so by showing how to translate the an rdf graph into a first order
logic formula, and we will try to expose some results on interpretations and
entailment. We will focus this discussion on rdfs graphs and on how to prove
rdfs entailment.

Since formulas in FOL are finite we will restrict this analysis to finite rdf
graphs.

The language over which we will write our formulas will be formed by an
infinite set of constants, containing one symbol for each uri, literal and blank
node, a 3-ary predicate symbol st and two unary predicates Lit and XMLLit.

Definition 31 The translation t̃ of a triple t = (s, p, o) will be defined as:
if o is a plain literal then: t̃ = st(s, p, o) ∧ Lit(o)
if o is a well typed literal then: t̃ = st(s, p, o) ∧XMLLit(o)
otherwise: t̃ = st(s, p, o)
And given an rdf graph K, we will define the translation of K as:
K̃ =

∧
t∈K∪Axioms

t̃

In order to provide this formulas with a semantic meaning we will consider
the following set of formulas which we will call rdfsA:

• ∀s, ∀p, ∀o, st(s, p, o) ⇒ st(p, type, prop)∧ st(s, type, res)∧st(p, type, res)∧
st(o, type, res)

• ∀l, Lit(l) ⇔ st(l, type, literal)

• ∀l,XMLLit(l) ⇔ st(l, type, xmlliteral)

• ∀s, ∀p, ∀o, ∀p′, st(s, p, o) ∧ st(p, sp, p′) ⇒ st(s, p′, o)

• ∀s, st(s, type, prop) ⇒ st(s, sp, s)

28

• ∀s, ∀x, ∀o, st(s, sp, x) ∧ st(x, sp, o) ⇒ st(s, sp, o)

• ∀s, st(s, type, ContMemP) ⇒ st(s, sp, member)

• ∀s, st(s, type, Class) ⇒ st(s, sc, s) ∧ st(s, sc, res)

• ∀s, ∀x, ∀o, st(s, sc, x) ∧ st(x, sc, o) ⇒ st(s, sc, o)

• ∀s, st(a, type, Datatype) ⇒ st(a, sc, literal)

• ∀u, ∀v, ∀x, ∀y, st(x, domain, y) ∧ st(u, x, v) ⇒ st(u, type, y)

• ∀u, ∀v, ∀x, ∀y, st(x, range, y) ∧ st(u, x, v) ⇒ st(v, type, y)

Instead of considering only the translation of an rdf graph K we will consider
the theory of the set formed by this formula K̃ and rdfsA. Note that there are
no restrictions in the theory as to prevent a blank node to be in the position
of a predicate, nor to a literal to be in the position of a subject, so there are
in this theory many formulas which can’t be translated back into rdfs graphs,
however we will see that if a translation of another graph G is a formula of this
theory, then K |=rdfs G.

We will announce without giving a proof the following proposition:

Proposition 7 (translation) Given two rdfs graphs K and E such that nei-
ther of them is an XML clash, K |=rdfs E ⇔ ∃σ such that K̃ |=1st Ẽ[σ(x)/x],
where σ is a map from the set of blank nodes of E to blank nodes, uris and
literals, and Ẽ[σ(x)/x] is the translation of E in which we have replaced all the
occurrences of x for σ(x), for all x ∈ dom(σ).

7 Conclusion and proposed corrections

We have presented the formal aspects of syntax and semantics of RDF following
as much as possible the specifications of this language. However, there are
some points that might be reviewed. Some concerning the definitions, other
concerning the rules of entailment.

1. First of all we would like to point out that the definition of instance of
an rdf graph given in the specifications is quite ambiguous. The proposed
definition for an instance is:
“Suppose that M is a mapping from a set of blank nodes to some set of
literals, blank nodes and URI references; then any graph obtained from a
graph G by replacing some or all of the blank nodes N in G by M(N) is
an instance of G”.
Note that G2 is an instance of G2 depending on the map which is being
considered. For example:
If M is the map defined by M(b1) = x and M(b2) = y ,G1 and G2 defined
as:
G1 = {(x, u, b1), (b2, v, x)}

29

G2 = {(x, u, x), (y, v, x)}
then G2 is an instance of G1. Now, if M is defined as M(b2) = x and
M(b1) = y then, is G2 an instance of G1?
Moreover, in the first example, there is no guarantee that G2 was ”ob-
tained” by replacing the blank nodes of G1.
Clearly this is not a serious problem, but we think that this concept should
be well defined.

2. The concept of equivalence defined in the specifications is the following:
“Two RDF graphs G and G′ are equivalent if there is a bijection M
between the sets of nodes of the two graphs, such that:

• M maps blank nodes to blank nodes.

• M(lit) = lit for all RDF literals lit which are nodes of G.

• M(uri) = uri for all RDF URI references uri which are nodes of G.

• The triple (s, p, o) is in G if and only if the triple (M(s), p, M(o)) is
in G′.”

We think that a more suitable world for that is ”isomorphism”, and ”equiv-
alence” should be reserved for semantic equivalence only, this is when given
two graphs, each one entails the other.

Some other notions which may be useful and frequently used would be
formalized, such as maps of rdf graphs, map consistent with a graph,
morphisms, or nodes of a graph (in order to extend the vocabulary to the
whole set of nodes occurring on a graph).

3. The definition of well/ill typed literals is not correct unless a datatype
map is defined (see comment on section 3.4). The only definition which
could be proposed without a previous definition of a datatype map is
the well/ill typed XML literal. However the XML literal datatype is not
completely defined in the specifications, its lexical-to-value mapping is not
precised. The only thing it is said about it is that it is a bijective map. We
think that the scope of the possible consequences this may have should be
treated more carefully, in fact, depending on the lexical-to-value map we
are considering, a graph can be either true or false in a given interpretation.

4. When defining entailment among graphs, the vocabulary should be quan-
tified. In fact, since one should speak of an interpretation of a vocabulary
V , talking about every interpretation is meaningless unless we specify of
which vocabulary. Entailment can then be defined either as:

• G |= E ⇔ ∀V vocabulary, ∀I interpretation of V, (I |= G ⇒ I |= E)
or:

• G |= E ⇔ ∀I interpretation of VG, (I |= G ⇒ I |= E), where VG is
the vocabulary of G.
Note that both definitions are equivalent.

30

5. Finally, and most important of all, we have noticed that the rdfs entail-
ment lemma is not true. In fact if we consider the following graph:
G = {(a,rdfs:sp, b), (b,rdfs:range, c), (x, a, y)}
where b is a blank node and the rest are all URIs, we can see that G en-
tails the triple (y,rdf:type, c). However there are no rules which permit
to deduce this triple.
When looking at the demonstration we can see that the definition of the
rdfs Herbrand interpretation is far from being complete. Note the follow-
ing:

If x is in IPRH then IEXTRH(x) = {¡s,o¿: D contains the triple sur(s) x
sur(o) . }
The semantic conditions would force that:

IEXTRH(x) = {¡s,o¿: D contains the triple sur(s) x sur(o) or there exists
y such that IEXTRH(y) contains ¡s,o¿ }
This semantic condition is supposed to be guaranteed by applying rule
rdfs7, but it can only be applied if the resulting triple is well formed, this
is, its predicate cannot be a blank node.

We have proposed a set of rules which corrects this problem by changing
rules rdfs2 and rdfs3. These rules also formalize the notion of blank node
”allocated” to x.

References

[URI] http://www.isi.edu/in-notes/rfc2396.txt

[RDF-Concepts] http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

[RDF-Semantics] http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

[XML-Schema2] http://www.w3.org/TR/xmlschema-2/

[RFC-3066] http://www.isi.edu/in-notes/rfc3066.txt

31

