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Abstract

This work presents a new access method
(SESTL) that handles discrete change events
over objects’ spatial attributes. The ac-
cess method combines snapshots and events
in log structures associated with space par-
titions. The definition of this new ac-
cess method aims at extending capabilities
of current spatio-temporal access methods
to new types of queries (i.e., event-oriented
queries), while competing with current struc-
tures for traditional time-slice and time-
interval queries. The paper describes the
structure and presents favorable analytical
and experimental cost analysis of the struc-
ture.

1 Introduction

Spatio-temporal databases are composed of spatial ob-
jects that change their location or shape at different
time instants [16]. Their objective is to model and rep-
resent the dynamic nature of real world applications
[10]. Examples of these applications are transporta-
tion, monitoring, environmental, and multimedia sys-
tems.
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Related to window queries in spatial databases,
the most studied types of queries in spatio-temporal
databases are time-slice and time-interval queries [14].
Time-slice queries retrieve all objects that intersect
the query window at a particular time instant. Time-
interval queries extend the idea of time-slice queries
by considering consecutive time instants. All these
queries focus on the coordinate- or snapshot-based rep-
resentation of objects’ movements. Recent studies,
however, have emphasized the relevance of handling,
as complementary information, snapshots and events,
encouraging research in the integration of both types
of information [20, 5, 2].

Our previous work [6] defines a preliminary spatio-
temporal access method (SEST-Index) that handles
not only time-slice and time-interval queries, but also
event-based queries. In this paper, we present a new
access method (SESTL) that handles discrete changes
over objects’ spatial attributes using log structures
associated with space partitions. This new access
method improves and extends our previous results
[6] by optimizing the use of logs in the data struc-
ture and by giving experimental and analytical com-
parisons with state-of-the-art spatio-temporal access
methods. The work focuses on data about discrete
events that result in changes of objects’ locations; how-
ever, the results can be used in other application do-
mains, such as applications that deal with changes in
objects’ shapes. Although in this paper we treat events
and changes as synonyms, we point out some relevant
literature addressing the conceptual differences among
changes, events, and processes [20, 9, 4, 5].

The main contributions of this work are:

1. It presents a new spatio-temporal access method
that handles snapshots and events associated with
space partitions.

2. It compares the data structure against SEST-
Index [6] and MVR-tree [13, 14]. To the best
of our knowledge, SEST-Index is the only previ-



ous access method that addresses snapshots and
events, and MVR-tree is a structure that outper-
forms previous spatio-temporal access methods in
terms of time and space requirements.

3. It presents an analytical cost model of the struc-
ture that is compared with respect to experimen-
tally validated.

The organization of the paper is as follows. Section
2 reviews current spatio-temporal access methods for
applications that handle discrete changes. Section 3
describes the proposed access method in terms of its
data structure and operations. Section 4 gives exper-
imental evaluations with respect to SEST-Index and
MVR-tree, which is followed by Section 5 with the pre-
sentation and evaluation of the cost model. Section 6
considers incorporating global snapshots into SESTL.
Conclusions and future work are given in Section 7.

2 Related Work

This section gives a classification of the most im-
portant spatio-temporal access methods for answering
time-slice and time-interval queries. It focuses on the
SEST-Index and MVR-tree structures, against which
we compare the new proposed structure.

A classification of the previous spatio-temporal ac-
cess methods is the following:

1. Methods that treat time as another dimension.

2. Methods that incorporate the temporal informa-
tion in the node structure without considering
time as another dimension.

3. Methods based on overlapping of the structure.

4. Methods based on multiversion of the structure.

5. Methods based on snapshots and events.

The 3D R-tree [19] considers time as an-
other axis along with the spatial coordinates.
In a tree-dimensional space, two line segments
[(xi, yi, ti), (xi, yi, tj)) and [(xj , yj , tj), (xj , yj , tk))
model an object that initially remains at (xi, yi) dur-
ing time interval [ti, tj), and then, it locates at (xj , yj)
during time interval [tj , tk). Such line segments can
be indexed by a 3D R-tree. This idea works well if
all the final limits of the time intervals are known
in advance. The 3D R-tree structure is efficient in
space and in processing time-interval queries. It is,
however, inefficient for processing time-slice queries.

RT-tree [21] is a structure of the second category
where the temporal information is kept in the nodes of
the R-tree. This is an extension of the information con-
tent of a traditional R-tree. The temporal information
plays a secondary role because the search is guided by
the spatial information. In this way, queries with tem-
poral conditions cannot be efficiently processed [10].

HR-tree [11, 10] and MR-tree [21] are based on the
concept of overlapping. The basic idea is that, given
two trees, the most recent tree corresponds to an evo-
lution of the older tree and subtrees can be shared be-
tween the older and newer trees. The major advantage
of the HR-tree is its efficiency in processing time-slice
queries. The major disadvantage is the excessive space
that it requires to store the structure. For example, if
only an object of each leaf node moves at instant ti,
the tree is completely duplicated at instant ti+1.

MVR-tree [13, 12, 14] is a type of structure that
handles multiversions. It is an extension of MVB-tree
[1], where the time varying attribute is of a spatial
type. Similar to the MVB-tree, each entry in the
MVR-tree is of the form 〈S, ts, te, pointer〉, where S
corresponds to its MBR. An entry is alive at instant t
if ts ≤ t < te.

MVR-tree imposes constraints on the number of en-
tries stored in its nodes. A constraint ensures that
there exist zero or at least b · pversion entries in any
non-leaf node at a time instant t, where pversion is a
parameter of the tree and b is the capacity of a node.
This condition groups alive entries at the same time
instant for processing time-slice queries. Other con-
straints ensure a good use of space in the algorithms
for insertion and deletion [13, 12, 14].

Figure 1 represents a 3D illustration of an example
of the MVR-tree. In the example, extracted from [13],
b = 3 and pversion = 1

3 . The objects A and G (thin
lines) were inserted in alphabetic order. The example
illustrates that when object C is inserted, node H be-
comes full so that a new node I is created. This new
node I stores a copy of object C (note that C is the
only object alive in node H). At the same time, the
value of te changes to t in entry H, closing the time
interval of the node. In Figure 1, nodes I, C and K
are alive at the current time instant and D,E, G and
F are dead nodes.

Like the MVB-tree, a MVR-tree has multiple R-
trees (logical trees) that organize the spatial infor-
mation for non-overlapping temporal windows. This
structure outperforms the HR-tree in space and pro-
cessing of short time-interval queries. As a modifica-
tion of MVR-tree, MV3R-tree [13] improves the perfor-
mance of the MVR-tree for long time-interval queries
by adding an auxiliary 3D R-tree for processing those
queries. Despite the improvement of MV3R-tree with
respect to queries of long time-intervals, MV3R-tree
violates a fundamental principle of multiversion struc-
tures, which establishes that dead nodes must not be
modified.

A recent work [6] proposes an access method SEST-
Index that belongs to the fifth category. A general
scheme of SEST-Index is shown Figure 2. The idea
of SEST-Index consists in maintaining the snapshots
of the database for certain time instants (by using an
R-tree) and a log to store the events occurred between



Figure 1: Example of a MVR-tree [13]

consecutive snapshots. The log is stored in time-order
and allows us to reconstruct whatever the state of the
database was between two consecutive snapshots. For
example, in Figure 2 the state of the objects in snap-
shot t0 are stored in R0, and the events that mod-
ify the geometry of objects in the temporal interval
(t0, ti), are stored in log L0. Thus, to recover the state
of the database at an instant t with t0 < t < ti, we
start from the R-tree at instant t0 and update objects’
attributes (i.e., location) with the information of log
L0.

Figure 2: General outline of SEST-Index

3 Proposed Method: SESTL

Similar to SEST-Index [6], the idea behind SESTL

consists in maintaining snapshots for some time in-
stants and storing the events that occur between con-
secutive snapshots. One of the main disadvantages of
SEST-Index is the rapid growth of its size (storage use)
as the number of changes increases. This disadvantage
is explained because each snapshot duplicates all the
objects, including those that have undergone no mod-
ification between consecutive snapshots. A solution to
this problem was proposed in [6], but it has two impor-
tant limitations: (1) the objects must be points and
(2) the region where the changes occur must be fixed.
SESTL overcomes these two limitations and maintains
a similar performance.

Using a unique R-tree [7], SESTL splits the space
into several regions at the leaf level and assigns a log
to each of these regions. In SESTL a log is a struc-
ture that stores (leaf) snapshots and events. Figure
3 presents a region A and its corresponding log with
three objects at instant t0. At instant ti, region A has
grown to include a fourth object, situation that is re-

flected on the corresponding snapshot. The changes
that occurred between t0 and ti are stored as events
in the log associated with A.

In SESTL, areas of both the regions to which the
logs are assigned and the MBRs of non-leaf nodes in
the R-tree are always growing along time. Due to this
situation, the overlapping area of non-leaf nodes in the
R-tree increases and the efficiency of query processing
decreases. To overcome this situation, it is possible to
define global snapshots (see Section 6), which creates
new R-trees and therefore, new space partitions for
each log at different time instants.

t jt i

 I

A

t 0

R1

A

snapshot snapshot
snapshot

changes/events changes/events changes/events

Log

Figure 3: General outline of SESTL

3.1 Structure description

The structure is an R-tree [7], where the leaves are
logs. The log is a linked list of blocks. A log has two
types of entries: event or change entries and snapshot
entries (the first entry is always a snapshot). These
entries in the log follow a temporal order.

An event entry is a tuple with the structure
〈t, Geometry, Oid,Op〉, where t corresponds to the
time when the change occurred, and Oid is the ob-
ject identifier. Geometry corresponds to the spatial
component of the object, which depends of the geo-
metric type (i.e., point, line, polygon or MBR) and
dimension (2D or 3D). Finally, Op indicates the type
of operation (i.e., type of event or change).

This work considers only two types of events:
move in (i.e, an object moves to a new location) and
move out (i.e., an object leaves its current location).
Thus an object creation is modeled as a move in, an
object deletion is modeled as a move out, and an ob-
ject movement is modeled as a move out followed by a
move in. One could think in storing just one move
event instead of two events for the change of loca-
tion of objects. This decreases the storage cost of the
structure, at the price of increasing the time cost for
processing event-based queries. Later, in Section 4.4,
we will analyze how much space can be saved if the
structure is designed to support only time-slice and
time-interval queries.



The second type of entries, a snapshot entry, stores
the snapshot of a leaf node, with one entry for each
object alive at the time instant when the snapshot is
created.

Similar to SEST-Index [6], SESTL also considers a
parameter d, equal for all logs in the structure, which
defines the maximum number of events that are pos-
sible to store between consecutive snapshots.

3.2 Operations

3.2.1 time-slice queries

In order to process a time-slice query (Q, t), the first
step is to find all leaves that intersect the query win-
dow (rectangle Q). Next, for the log of each leaf, the
process obtains the corresponding snapshot according
to the time instant t of the query. This snapshot is
the one built for the latest time instant tr such that
tr ≤ t. The spatial objects stored in the selected snap-
shot which intersect the query window form an ini-
tial answer. Finally, this answer is updated with the
changes stored in the event entries of the log within
the time interval (tr, t] (Algorithm 1). The whole an-
swer is the union of those computed for each involved
leaf.

Algorithm 1 Algorithm to process a time-slice query
1: time-sliceQuery(Rectangle Q, Time t, R-tree R)
2: let B = SearchRtree(Q, R). {B is the set of leaves (logs)

that intersect Q}
3: G = ∅ {G is the set of objects that belong to the answer}
4: for each log b ∈ B do
5: let tr be the time of the latest snapshot in b such that

tr ≤ t.
6: let A be the set of all objects alive in the snapshot created

at the time instant tr in the log b.
7: for each event entry c ∈ b such that tr < c.t ≤ t do
8: if c.Geometry intersects Q then
9: if c.Op = move in then

10: A = A ∪ {c.Oid}
11: else
12: A = A− {c.Oid}
13: end if
14: end if
15: end for
16: G = G ∪A
17: end for

18: return G

3.2.2 Time-Interval queries

Processing time-interval queries, (Q, [ti, tf ]) requires
to find the set of spatial objects that intersect the
query window (Q) at the initial instant ti. This is
equivalent to a time-slice query at instant ti. Then,
objects are updated based on the changes occurred
within the interval (ti, tf ] (Algorithm 2).

3.2.3 Event queries

One of the novelties of the SESTL structure is its ca-
pability for processing not only time-slice and time-

Algorithm 2 Algorithm to process a time-interval
query
1: IntervalQuery(Rectangle Q, Time ti, tf , R-tree R)
2: let B = SearchRtree(Q, R). {B is the set of leaves (logs)

that intersect Q}
3: G = ∅ {G is the set of objects that belong to the answer}
4: for each log b ∈ B do
5: let tr be the time of the latest snapshot in b such that

tr ≤ t.
6: let A be the set of all objects alive in the snapshot created

at the time instant tr in log b.
7: update A with the changes stored in b occurred between

(tr, ti]. {like a time-slice query}
8: ts = Next(ti) {Next(x) returns the next instant after x

when changes have been stored in log b}
9: while ts ≤ tf∧ there exist event entries in log b do

10: for each event entry c ∈ b such that ts = c.t do
11: if c.Geometry intersects Q then
12: if c.Op = move in then
13: A = A ∪ {c.Oid}
14: else
15: A = A− {c.Oid}
16: end if
17: end if
18: end for
19: end while
20: G = G ∪A
21: ts = Next(ts)
22: end for

23: return G

interval, but also event queries. For example, given a
region Q and an instant t, an event query may be to
find the number of objects that moved in or out from
region Q at instant t. These types of queries are possi-
ble and useful in applications that aim to analyze the
pattern of objects’ movements [20, 5].

Processing event queries with SESTL (see Algo-
rithm 3) is simple and efficient, since the structure
explicitly stores the changes over objects’ geometries.
Algorithms for these types of queries are similar to
those for time-slice and time-interval queries.

3.2.4 Updating the structure

These operations update the structure upon changes
that occur in each time instant. Let us assume that
changes are stored in a list. When an object moves,
two events, move out and move in, are created. Event
move in include all attribute values t, Geometry and
Oid at the incoming object. Event move out, in con-
trast, only contains the attribute values t and Oid. A
simple way to know the value of Geometry is to keep a
hash table (〈Oid, Geometry〉) with the last Geometry
value for each object. Another alternative is also use to
a hash table, with a reference to the current log where
the object was located just before the move out event.
For each move in event, we choose the corresponding
log where it should be inserted according to the clasi-
cal R-tree insertion policy [7] (called chooseleaf() in the
pseudocode). move out events are slightly more com-
plicated because we have to ensure they are recorded
in the same log of their corresponding move in event.



Algorithm 3 Algorithm to process an event query
1: EventQuery(Rectangle Q, Time t, R-tree R)
2: let B = SearchRtree(Q, R). {B is the set of regions that

intersect Q}
3: oi = 0 {number of objects that moved in to Q at instant t}
4: oo = 0 {number of objects that moved out from Q at instant

t}
5: for each log b ∈ B do
6: let tr be the time of the latest snapshot in b such that

tr ≤ t.
7: find the first event entry c ∈ b such that c.t = t.
8: while c.t = t do
9: if c.Geometry intersects Q then

10: if c.Op = move in then
11: oi = oi + 1
12: else
13: oo = oo + 1
14: end if
15: end if
16: c = NextChange(c) {NextChange(x) returns the

event entry following x in log b}
17: end while
18: end for

19: return (oi, oo)

As the R-tree shape may have changed since the time
of the move in event, chooseleaf() is not guaranteed
to find the same log again. The solution is to carry
out a spatial search for the Geometry corresponding
to the Oid of the move out event. This may involve
following several paths in the R-tree. Note that this is
complication does not arise if we record the log where
each Oid is located (second hashing scheme discussed
above). We call chooseleafA() this procedure in the
pseudocode. In both cases, the new change is inserted
as an event entry after the last snapshot that was
stored in the corresponding log. If, at the instant of
insertion, the number of changes exceeds a parame-
ter d, a new snapshot is created (Algorithm 4). The
insertion of a move in event may require updates to
the MBRs of the leaf as well as ancestor nodes whose
MBRs must now include the Geometry of the arriving
object.

4 Experimental Evaluation

A first experimental evaluation compares SESTL with
SEST-index under the same conditions (i.e., data set
and parameters) used in [6]. It considers that both
structures use the minimum value for parameter d,
when d is capable of storing all changes occurred at
a time instant. This value of parameter d produces
the best results in terms of efficiency to answer time-
slice or time-interval queries given a known change
frequency (percentage of objects that change from an
instant to the next). In all cases, SESTL outperforms
SEST-Index, not only in storage cost, but also in time
cost. In the evaluations, SESTL uses between 15%
and 50% of the storage used by SEST-Index, and the
time to process a query was reduced to values between
20% and 46% of the time needed by SEST-Index. The
unfavourable performance of SEST-Index with respect

Algorithm 4 Algorithm to update the structure
1: InsertChanges(Time t, Changes C, R-tree R, Inte-

ger d) {t is the time instant when a change or event occurs,
C is the list of changes at t, and d is the capacity of a log
to store event entries between snapshots}

2: for each c ∈ C do
3: if c.Op = move in then
4: b = chooseleaf(R, c.Geometry)
5: else
6: b = chooseleafA(R, c.Geometry).
7: end if
8: let L be the list of events occurred in b after the last

snapshot.
9: let l be the number of changes stored in L.

10: if l > d ∨ c is the first event entry that is inserted in b
then

11: create a new snapshot S
12: create a new list L and assign it to S
13: end if
14: insert c at the end of L
15: if c.Op = move in then
16: update the MBRs of all event entries in the path fol-

lowed by chooseleaf() to reach b.
17: end if

18: end for

to SESTL can be explained because SEST-Index du-
plicates in each snapshot all objects, even those ob-
jects that have not moved, and because the logs in
SEST-Index group changes by time and not by time
and space.

Subsequently, a second experimental evaluation
compares SESTL against MVR-tree under several sce-
narios. MVR-tree is considered to be the best al-
ternative structure for answering time-slice and time-
interval queries [13, 14, 12], outperforming the previ-
ous well-known HR-tree structure [11]. We tested the
structures in terms of storage and time costs for for a
database with 23,268 objects (points) that move along
200 time instants, and different types of queries. The
change frequencies were 1%, 5%, 10%, 15%, 20% and
25%. We tested SESTL with values for parameter d of
2, 4 and 8 disk blocks, with a block size of 1024 bytes.
Storage cost was measured by the number of blocks
needed after inserting the objects and their changes.
Access time (i.e., time cost) was defined as the aver-
age number of blocks read for performing 100 random
queries.

The dataset was obtained with the spatio-temporal
data generator GSTD [17] following a uniform distri-
bution. We used the cost model for MVR-tree [14]
to obtain the storage cost and the time cost for the
queries. For SESTL, in contrast, we used an experi-
mental evaluation with the same input and variables.

4.1 Storage cost

Figure 4 shows that SESTL uses less disk space than
MVR-tree, and this behavior becomes clearer as the
change frequency increases. SESTL requires only 62%
to 75% of the space needed by MVR-tree. We ob-
served that, as the value of d increases, SESTL needs
less storage than MVR-tree, which is explained by the



lower frequency of snapshots.
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Figure 4: Space usage

4.2 time-slice and time-interval queries

Figure 5 shows that, for queries with time interval
greater than 30 time units and query window formed
by 6% of the dimension in each axis, SESTL shows a
better performance than MVR-tree for all number of
blocks used to store events (i.e., 2, 4 and 8 blocks for
the parameter d); however, when the time interval is
less than 10 units, MVR-tree outperforms SESTL.
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Figure 5: Blocks read by queries, 10% change fre-
quency, query window formed by 6% of the dimension
in each axis

Figures 6 and 7 show the behavior of both MVR-
tree and SESTL with time-interval queries using two
fixed time-interval lengths (i.e. 10 and 40 units), and
with a varying query window of 2%, 4%, 6%, 8%, 10%
and 12% of the space in each dimension. Figure 6 re-
flects a similar time cost for SESTL with respect MVR-
tree, when the value of parameter d is equal to 2 blocks.
The storage used by SESTL, however, is less than the
storage used by the MVR-tree for change frequency of
10% (Figure 4). SESTL outperforms MVR-tree for all
values of parameter d analyzed when the length of the
time interval of the query is 40 time units (Figure 7).

These results indicate that, for time-interval queries
over 30 time instants, SESTL has better performance
than MVR-tree. For time-slice queries, that is, time-
interval queries with interval length equal to 1 unit,
MVR-tree should overcome SESTL.

SESTL pays an important initial cost at retriev-
ing objects until the initial instant of the query’s time
interval, which includes traversing the R-tree and pro-
cessing the changes until such instant. Thereafter, the
total time cost of the query is low, since it only re-
quires to apply the changes until the final instant of
the query’s time interval. In the case of the MVR-tree,
the portion of the R-tree that needs to be checked
for a query increases with the length of the query’s
time interval. This explains why MVR-tree outper-
forms SESTL in short intervals and SESTL outper-
forms MVR-tree otherwise. Figure 8 shows the area
where each structure dominates.
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4.3 Queries about events

As we explained in Section 3.2.3, SESTL allows an-
swering event queries that occur at particular time in-
stants. The cost of processing such types of queries is
the same than of processing time-slice or time-interval
queries. MVR-tree, in contrast, is an access method
oriented to answer time-slice and time-interval queries
and, therefore, it does not provide algorithms for event
queries. Actually the current structure of the MVR-
tree does not allow the processing of event queries,
since the constraints imposed on the nodes of the tree
(weak version, overflow and underflow), and the algo-
rithms for maintaining the structure, make it possible
to have entries with time intervals created artificially.
For example, in Figure 1 an entry for object C in node
H indicates an elimination time t with t = te, even
when the object’s location has not changed. Likewise,
an entry in node I indicates an insertion time t, with
ts = t. Both entries are created with the purpose of
keeping the condition of the weak version [13]. The ex-
istence of these artificial intervals makes it impossible
to process event queries with the MVR-tree.

4.4 Adjusting the SESTL structure

SESTL is an event-oriented access method that aims
to efficiently answer not only events, but also time-slice
and time-interval queries. To fulfill the performance
requirements for all queries, the structure maintains
some data that can be eliminated if only time-slice or
time-interval are of interest. In particular, the experi-
mental evaluations considers the structure proposed in
section 3.1, where a movement or change of location
is represented by two events: move out and move in.
In this section, we optimize the structure when only
time-slice or time-interval queries are processed.

The optimization is a simple modification in the
structure by eliminating the attribute Geometry in
the move out event. Figure 9 shows 30% of space
savings by applying the modification of the structure.
Likewise, this modification produces time savings for
query processing as there is less data to read from disk
(Figure 10). This indicates that, by adjusting SESTL

to process only time-slice or time-interval queries, the

advantages of SESTL increase with respect to storage
and time requeriments.
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Figure 10: Time savings of ajusted SESTL (23,268
points, 200 time instants, 10% change frequency, d = 4
and 6% in each dimension for the query window)

5 A cost model for SESTL

This section presents a cost model for SESTL, which
allows us to predict its storage and time costs for
spatio-temporal queries. The cost model is compared
with the actual experimental behavior to demostrate
its prediction capability. Finally, SESTL and MVR-
tree are compared using their corresponding cost mod-
els [14].

The cost model of SESTL assumes that the initial
locations of moving objects and the subsequent ob-
jects’ movements distribute uniformly. Figure 11 de-
scribes the variables used in the cost model of SESTL.

5.1 Storage cost of the R-tree

Let N be the number of objects stored in an R-tree
with fanout f . The height h of an R-tree is given by



Symbol Description

ai Width of the time interval of a query
c Changes per block
D Initial density of the set of objects

DA Average number of nodes in an R-tree
accessed for a spatial query

f Average capacity of a node in an R-tree
(fanout)

h Height of an R-tree
il Number of times instants that can be

stored in a log between consecutive
snapshots

l Total number of changes stored be-
tween consecutive snapshots

N Total number of objects
nl Number of changes stored in a log ad-

justed to an integer number of time in-
stants

nt Time instants stored in the structure
p Change percentage between time in-

stants (change frequency)
q = (q1, . . . , qn) Query rectangle

TN Total number of blocks used by an R-
tree

NB Number of logs
DAts Number of blocks accessed for a time-

slice query
DAin Number of blocks accessed for a time-

interval query
TBtotal Total number of blocks needed to store

the SESTL structure

Figure 11: Definition of variables

the equation h = 1 +
⌈
logf

N
f

⌉
[3].

Since the number of entries in a node is approx-
imately f , it is possible to assume that the number
of leaf nodes is N1 =

⌈
N
f

⌉
and that the number of

non-leaf nodes at the level immediately superior to the
leaves is N2 =

⌈
N1
f

⌉
. Considering that the level h is

at the root and that the level 1 is at the leaves, the av-
erage number of nodes at level j is given by equation
Nj =

⌈
N
fj

⌉
[15]. Thus the average number of nodes

used (i.e., storage cost) for an R-tree is determined by
Eq.(1).

TN =
h∑

j=1

⌈
N

f j

⌉
≈ h +

⌊
N · (fh − 1)

fh · (f − 1)

⌋
(1)

5.2 Time cost of the R-tree

Based on [18, 15], the number of nodes accessed (i.e.,
time cost) by an R-tree in window queries with n-
dimensional spatial objects (DAn) is given by Eq.(2)
(see next for Dj).

DAn = 1 +
h∑

j=1

{
N

f j
.

n∏

i=1

((
Dj .

f j

N

) 1
n

+ qi

)}
(2)

Given that our experiments consider 2-dimensional

objects, our DA is defined by Eq.(3), with n = 2 and
assuming a square query window, q = q1 = q2.

DA = 1 +
h∑

j=1





(
√

Dj + q ·
√

N

f j

)2


 (3)

In Eq.(3), Dj corresponds to the density of spatial
objects at level j [18, 15], which is obtained by Eq.(4)
with D0 being the density of spatial objects that need
to be indexed in the R-tree1.

Dj =

(
1 +

√
Dj−1 − 1√

f

)2

, 1 ≤ j ≤ h (4)

An important property of the Eqs.(2) and (3) is that
they depend only on f , N , q and D0 and, therefore,
there is no need to construct the R-tree to estimate
the performance of the query.

5.3 Storage cost of SESTL

Two data describe the storage cost (number of blocks)
used by the SESTL: the number of logs and the space
needed per log. The number of logs is equal to the
number of leaves in the R-tree, which is expressed by
equation NB =

⌈
N
f

⌉
.

The number of time instants (il) that are possible
to store between snapshots is determined by Eq.(5).

il =
⌈

l

p · f
⌉

(5)

Using Eq.(5), it is possible to calculate the value
nl (Eq.(6)) such that all events occurred at the same
time instant are stored between the same snapshots.

nl = p · f · il (6)

With il and nl, the number of blocks used for each
log is given by Eq.(7). In this equation, the first term
of the sum corresponds to the number of blocks that
store all snapshots in each log, assuming that the live
objects fit, on average, in a disk block. The second
term represents the number of blocks required, on av-
erage, for each log to store all changes or events oc-
curred in all time instants. The last term is used to
obtain the number of blocks occupied for storing the
changes or events occurred after the last snapshot.

TBlog =
⌈

nt

il

⌉
+

⌊
nt

il

⌋
·
⌈

nl

c

⌉
+

⌈
nt− bnt

il c · il
il

· nl

c

⌉

(7)
Finally, the number of blocks used by the SESTL is

given by Eq.(8).

TBtotal = (TN −NB) + NB · TBlog (8)

1In this paper we have used D0 = 0, as we index points



5.4 Time cost of SESTL

The time cost of the SESTL structure can be estimated
by adding the time cost of accessing the R-tree without
leaves and the time cost of processing all logs that
intersect the query window. In the following, Rp-tree
refers to the R-tree without leaf nodes. The leaf nodes
of the Rp-tree contain the MBRs for each of the leaf
nodes in the R-tree.

The number of objects handled by the Rp-tree is
Np = N

f . Let hp = 1 +
⌈
logf

Np

f

⌉
be the height of the

Rp-tree. The number of nodes accessed in the tree is
given by Eq.(9).

DARp−tree = 1 +
hp∑

j=1





(
√

Dj + q ·
√

Np

f j

)2


 (9)

For Dj we use Eq.(4), where D0 is the density of
leaves (i.e., D1 in the original R-tree). The number
of logs to be processed in a query corresponds to the
density formed by the leaves’ MBR and query’s MBR.
This number of logs is defined in Eq.(10), where D1 =(

1 +
√

D0−1√
f

)2

.

NL = 1 +

(√
D1 + q ·

√
N

f

)2

(10)

Therefore, the number of blocks accessed in a time-
slice query is defined by Eq.(11).

DAts = DARp−tree + NL ·
(

1 +
⌈

nl

2 · c
⌉)

(11)

Likewise, the average number of blocks accessed in
a time-interval query is given by Eq.(12).

DAin = DAts + NL ·
⌈

(ai− 1) · p · f
c

⌉
(12)

5.5 Experimental evaluation of the cost model

In order to evaluate the cost model, new experimen-
tal evaluations were conducted with synthetic data ob-
tained from GSTD [17]. These experiments use 23,268
objects (points) and 200 time instants with change fre-
quencies of 1%, 5%, 10%, 15%, 20% and 25%. They
also consider values of parameter d equal to 2, 4 and 8
blocks. The value f of the R-tree was set to 34 (68% of
the capacity [15] of a node in an R*-tree that is able to
hold 50 entries). Figures 12, 13 and 14 show the pre-
diction capability of the cost model for both storage
and time requeriments. Figure 12 indicates that the
storage cost predicted by the model and the one ob-
tained with the experiments are similar for all values
of d analyzed, with a relative average error of 15%.
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Figure 12: Estimation of the storage usage

Figures 13 and 14 show that the prediction in the
time cost of query processing is very good, with a rel-
ative average error of 8%.
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Figure 13: Estimation of the time cost of queries (10%
change frequency and 6% in each dimension for query
window)

5.6 Comparing MVR-tree and SESTL in new
scenarios

The cost models for MVR-tree [14] and SESTL

were compared by using the same number of objects
(23,268) and snapshots (200) used in Section 5.5. Fig-
ure 15 shows the number of blocks accessed for a query
that considers 12% of size along each dimension of the
whole space for the query window. The parameter d
was set to 4. Figure 15 indicates that SESTL over-
comes MVR-tree from a length of the query time in-
terval that is greater than 30 units. The advantage of
SESTL over MVR-tree is larger when the change fre-
quency increases. We can see in Figure 15 that when
the change frequency is around 40% and the time in-
terval is superior to 60 units of time, SESTL requires
to access only 60% of the number of nodes accessed by
MVR-tree.
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6 SESTL with global snapshots

A potential problem of SESTL is that the query per-
formance can deteriorate as the size of the logs increase
along time. When the size of the logs and, therefore,
the density of the objects stored in the leaves of the
Rp-tree (D1 in Section 5.4) increase, the number of
logs that are accessed to answer a query of later time
instants is larger than the number of logs for queries
at earlier time instants.

The value of the density (realDen) is defined by
Eq.(13), where M is the set of all MBRs that are lo-
cated at level 1 of the R-tree (i.e., at the leaves of the
Rp-tree), and TotalArea is the total area used by the
objects.

realDen =
∑

i∈M Areai

TotalArea
(13)

Figure 17 ((1) Uniform distribution) shows the
growth of realDen for 23,268 objects with uniform
distribution until reaching an approximated value of
1. When the initial distribution is not uniform (Fig-
ure 16), however, realDen is larger than the value for
a uniform distribution (Figure 17). This degrades the
performance of queries over time.

A solution to this problem is to define SESTL with
global snapshots. A global snapshot is an R-tree that
considers the position of all objects at a particular time
instant. Such R-tree allows us to redefine the sub-
regions associated with logs and, therefore, to decrease
the density value (realDen) (Eq.(13)).

We propose to use the density value realDen to
determine the time instant for creating a new global
snapshot. The process of creating a new global snap-
shot is described in Algorithm 5. This algorithm
checks that realDen after inserting new change events
does not exceed the threshold (1 + ls) · lastDensity,
where lastDensity is the density of the last global
snapshot. When realDen exceeds the threshold, a new
R-tree is created. Let newDensity be the density of
the R-tree just created. We ensure that newDensity <
li · realDen before actually creating the new R-tree,
otherwise the improvment is not worth the extra space.
Here 0 < ls, li < 1 are parameters (see Algorithm 5).

Algorithm 5 Algorithm that controls the creation of
global snapshots
1: newSnapShot(R-tree R, float lastDensity, Changes

C, float ls, float li, Integer d, Time t) { R is the last
R-tree created in SESTL, lastDensity corresponds to the
value of realDen for R when the last global snapshot was
create, C is a list with changes to insert in SESTL that
occurred in the last time instant t, ls and li are fractions of
lastDensity }

2: InsertChanges(t, C, R, d) {Inset changes in SESTL using
Algorithm 4}

3: Let newDensity be the new value of realDen for R after
inserting the changes

4: if newDensity > (1 + ls) · lastDensity then
5: Let newR-tree be the new R-tree created with the posi-

tions of objects at instant t.
6: Let tmpDensity the value of realDen for newR-tree
7: if tmpDensity < li · newDensity then
8: R = newR-tree
9: lastDensity = tmpDensity

10: end if
11: end if

12: return (R, lastDensity)

6.1 Evaluation of SESTL with global snap-
shots

This section compares SESTL with global snapshots
against MVR-tree by using the same objects (23,268
point objects and 10% of change frequency) that were
considered in the experimental evaluation of the cost
model of MVR-tree [14]. In this experiment, objects
have a non-uniform initial distribution and move the
next 199 time instants until reaching the final distri-
bution described in Figure 16. We refer to this set
of objects as NUD. The storage and time costs of
MVR-tree were directly obtained from the data pub-
lished in [14], whereas the storage and time costs of
the SESTL were experimentally obtained with our im-
plementation, considering 4 blocks for the parameter
d.



(a) (b) (c)

Figure 16: Evolution of moving objects: (a) instant 0, (b) instant 100 and (c) instant 200

Figure 17 shows the values of density realDen un-
der five different scenarios: (1) the density obtained
with SESTL, 23,268 objects (points), and an ini-
tial uniform distribution, (2) the density of SESTL

with the set of objects NUD without global snap-
shots, (3), (4) and (5) densities of SESTL when con-
sidering the set of objects NUD and the thresholds
1.3·lastDensity, 1.6·lastDensity and 1.8·lastDensity,
respectively.

The space used by SESTL when considering thresh-
olds 1.3 · lastDensity, 1.6 · lastDensity and 1.8 ·
lastDensity were 33Mb, 29Mb and 28Mb, respec-
tively, against 38 Mb required by MVR-tree and 24 Mb
required by plain SESTL. Figure 17 indicates that,
when considering a threshold 1.6 · lastDensity, two
global snapshots are created (approximately at time
instants 10 and 50), which produces an important im-
provement on the density, reaching values that are sim-
ilar to the values of density in scenario (1). Similar re-
sults are obtained with a threshold 1.3 · lastDensity.
With a threshold 1.8·lastDensity in scenario (5), how-
ever, the density continues being larger than the den-
sity in scenario (1), negatively affecting the time cost
of SESTL.
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Figure 17: Density for logs of SESTL

Figure 18 shows the query performance of MVR-
tree and SESTL in scenarios (2), (3), (4) and (5). It
indicates that, with the thresholds 1.3 · lastDensity or
1.6 · lastDensity, SESTL outperforms MVR-tree when
the length of the query’s time interval exceeds 15 time
units. The results of these two scenarios are similar to
those of in scenario (1) (Figure 4), with an additional

storage cost that is still less than the space required
by MVR-tree.
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Figure 18: Query performance of SESTL with global
snapshots

7 Conclusion and future work

This work proposes a new spatio-temporal access
method, SESTL, that handles events and snapshot as-
sociated with space partitions. Based on the experi-
mental results, SESTL requires between 62% and 85%
of the space used by MVR-tree. SESTL also outper-
forms MVR-tree for processing queries with time in-
terval over 15 time units(this is an absolute number,
which may be rather small or not depending on the ap-
plication). Unlike other access methods, SESTL can
also answer event-oriented queries efficiently. In addi-
tion, SESTL could be used for other types of queries,
such as queries that specify a spatio-temporal pattern
as a sequence of distinct spatial predicates in tempo-
ral order [8], called spatio-temporal pattern queries
(STP). SESTL can efficiently process STP queries be-
cause a log in the structure keeps the information
about the moment in which an object enters and leaves
its assigned space partition.

This paper has also presented and validated a cost
model that allows us to evaluate the method without
running experiments. The cost model has a good pre-
diction property, having a relative average error of 15%
and 8% for storage and time costs, respectively.

As future work, we are developing a method to ob-
tain the values of the parameters of SESTL such that
the structure is optimized with respect to pre-defined
constraints of storage or time cost. We will also in-



corporate global snapshots into the cost model and
study new algorithms for join and closest-neighboring
queries. Finally, we will evaluate the performance of
SESTL for processing STP queries.
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