
Reasoning About Temporal Constraints in RDF

Carlos Hurtado1 and Alejandro Vaisman2

1 Universidad de Chile
churtado@dcc.uchile.cl

2 Universidad de Buenos Aires
avaisman@dc.uba.ar

Abstract. Time management is a key feature needed in any query lan-
guage for web and semistructured data. However, only recently this has
been addressed by the Semantic Web community, through the study of
temporal extensions to RDF (Resource Description Framework). In this
paper we show that the ability of the RDF data model of handling un-
known resources by means of blank nodes, naturally yields a rich frame-
work for temporal reasoning in RDF. That is, even without knowing the
interval of validity of some statements we can still entail useful knowledge
from temporal RDF databases. To take advantage of this, we incorporate
a class of temporal constraints over anonymous timestamps. We show
that testing entailment in temporal graphs with constraints reduces to
closure computation and mapping discovery, that is, an extended form
of the standard approach for testing entailment in non-temporal RDF
graphs.

1 Introduction

The Resource Description Framework (RDF) [19] is a metadata model and lan-
guage recommended by the W3C in order to create an infrastructure that will
allow to build the so-called Semantic Web. In the RDF model, the universe to
be modeled is a set of resources, essentially anything that can have a univer-
sal resource identifier, URI. The language to describe them is a set of binary
predicates denoted properties. Descriptions are statements of the form subject-
predicate-object. Both subject and object can be anonymous objects, known as
blank nodes. In addition, the RDF specification includes a built-in vocabulary
with a normative semantics (RDFS) [6]. This vocabulary deals with inheritance
of classes and properties, as well as typing, among other features that allow de-
scribing the concepts and relationships that may exist in a community of people
and software agents. The RDF specification can be seen as a graph where each
subject-predicate-object triple is represented as a node-edge-node structure.

Time is present in almost any Web application. Thus, there is a clear need
of applying temporal database concepts to RDF in order to be able to represent
temporal knowledge. We illustrate this claim with the following motivating ex-
ample, where RDF data is used to describe a collection of web services. Web ser-
vices are software applications that interact using web standards. The Semantic

2

Web has been proposed as a tool for making applications able to automatically
discover or invoke web services. In this way, ontologies of services could be used
by service-seeking agents for representing a service profile (a mechanism for de-
scribing services offered by a web site). Our example is based in the web service
ontology introduced by Antoniou et al [5] for a non-temporal RDF model. In
order to keep track of the changes that can occur throughout the life cycle of
the web service we introduce temporal features to a standard RDF graph rep-
resenting the ontology, according to [15]. Figure 1 shows an example of an RDF
representation of an evolving ontology for a web service denoted Sport News,
first offered by the sports network ESPN, and later by another network, Fox
Sports. The web site delivers up-to-date articles about sports. As input, the ser-
vice receives a sports category and the customer’s credit card number; it returns
the requested articles. The arcs in the graph are labeled with their interval of
validity. 3 The interval [0,2] over the edge between ‘Sport News’ and ‘ESPN’
means that the triple (Sports News, provided by, ESPN) is valid from time in-
stant “0” to time instant “2”. Analogously, the interval [3,Now] over the edge
between ‘Sport News’ and ‘ESPN’ means that the triple (Sports News, provided
by, Fox Sports) is valid from time instant “3” to the current time. For the sake
of clarity, no temporal labels over an edge means that triple is valid in the in-
terval [0,Now]. There is also an anonymous node (of type “service provider”),
created at time “6”. The impact of blank nodes in a temporal setting deserved
an in-depth study in [15, 14].

1.1 Temporal RDF

In former work [14, 15] we studied the problem of adding the time dimension to
RDF documents, and we discussed the main problems and possibilities that arise
when we address the problem of keeping track of the changes occurring over an
RDF graph. We denoted this problem Temporal RDF. The work was based on
the theoretical framework provided by Gutierrez et al [13]

In a nutshell, a Temporal RDF graph is a set of temporal triples labeled
with their interval of validity. These triples are of the form (a, b, c)[t1, t2]. Figure
1 explained above is an example of a Temporal RDF graph. We showed that
temporal RDF can be implemented within the RDF specification, making use
of a simple additional vocabulary. We also defined constructs that allow moving
between point-based and interval-based representations of the time dimension.
An RDF graph can be regarded as a knowledge base from which new knowledge,
i.e., other graphs, may be entailed. In temporal RDF, entailment is slightly more
involved. We studied this problem, and called it temporal entailment. The main
issue here is the treatment of blank nodes. Defining the semantics of temporal
RDF in the presence of blank nodes turns out to be non-trivial, because we can-
not consider the temporal database as the union of all its snapshots (a snapshot

3 Note that the standard graph(ical) representation of an RDF graph is not the most
faithful to convey the idea of statements(triples) being labeled by a temporal element.

Technically, temporal labels should be attached to a whole subgraph u
p

→ v, and not
only to an arc.

3

output

[3,Now]

web page
web page

Fox Sports phone

ESPN

phone

www.espn.com

(5411) 4902-0462

www.foxsports.com

(5411) 4892-8939

output

input

provided by

article

customer ccard

sports category

input

input

parameter

[3,Now]

type
[6,Now]

sc

provided by

[0,2]

typetype

sportsNews

domain

domain

domain
domain

type
type

type

type

service provider

[0,2]

X

[0,2]
[3,Now]

offered service

service

provided by

Fig. 1. An RDF graph for web services profiling of Sports networks.

at time t of a temporal RDF graph G is the corresponding subgraph formed
by triples labeled by an instant t). This means that even though two temporal
graphs G1 and G2 are such that all snapshots of G1 entail a snapshot of G2, we
cannot say that G1 entails G2. We defined the notion of temporal entailment
based on the slice closure of a temporal graph G (scl(G)). This concept of clo-
sure extends the one defined in [13]. The slice closure of G, in short, is the union
of the temporalization of the closures of all the snapshots of G. We proved [14]
that G1 |=τ G2 if and only if there is map from G2 to scl(G1). Thus, testing
temporal entailment reduces to computing the slice closure and find a mapping
between two temporal graphs. We also proved that deciding temporal entailment
is NP-complete.

1.2 Problem Statement

The work described above [14] includes a first study of the problem of anonymous
time in temporal RDF graphs, i.e., graphs containing temporal triples labeled
with blanks. In this setting, we admit triples of the form (a, b, c)[X], where X is
an anonymous timestamp stating that the triple (a, b, c) is valid in some unknown
time, as shown in Figure 1 (in [14] we called these graphs general temporal graphs
to differentiate them from temporal graphs without blank timestamps).

Temporal blanks considerably extend the capabilities of the temporal RDF
model. First, they allow defining temporal constraints over the model. In this
way, a richer treatment of time, along the lines of constraint databases [8] is
possible (in relational constraint databases, the time of validity of a tuple can
be defined by a formula Φ). There has been a substantial amount of work from

4

the Artificial Intelligence community on temporal reasoning systems that use
constraint propagation. Thus, adding constraints to temporal RDF allows rea-
soning about RDF graphs in order to infer useful knowledge. However, as Allen
points out [2, 3], the point-based representation of time cannot naturally capture
some interval relationships used in reasoning about constraints. Thus, we also
include intervals with anonymous starting and/or ending points in our model
for representing anonymous time in temporal RDF graphs.

Example 1. From the following extended temporal graph:

(a, sc, b)[T1], (b, sc, c)[t1, t2], t1 ≤ t2, t1 ≤ T1, T1 ≤ t2.

our approach allows inferring the graph (a, sc, c)[T2].

Thus, even though our approach is close to temporal logics and constraint
databases, temporal reasoning about RDF and RDFS ontologies introduces ad-
ditional difficulties not present in the other settings.

A second property of anonymous time is that it allows representing incom-
plete temporal information [18]. This information can be represented by in-
definite timestamps that can be implemented as global conditions of the form
2004 ≤ k, where k is a kind of null value that may appear in some constraint.
We will denote a temporal graph with constraints a c-temporal graph.

The goal of this paper is to extend the temporal RDF model presented in
previous work [14, 15] with intervals and temporal constraints. We propose and
study in detail temporal graphs with constraints, extending our previous results
to these kinds of graphs. Temporal RDF graphs with constraints (and inter-
vals) expand the expressive power of the temporal RDF data model, allowing
to represent information about events occurring within some unknown intervals.
Without this capability, this information could not be represented in a natural
way, as the following example shows.

Example 2. Let us suppose that, in the example depicted in Figure 1, we are
not certain about the time when ‘Sport News’ was transferred from ESPN to
Fox Sports. A c-temporal graph for representing this situation is shown in Figure
2. The triple (Sports News, provided by, ESPN) is now labeled [0,T1] (instead
of [0,2]) , where T1 is a time variable. Analogously, (Sports News, provided by,
Fox Sports) is labeled [T2,Now] (instead of [3,Now]). There is also a constraint
stating that T2 is greater than T1. There are also other variables indicated in
the figure, and the constraints are specified in the Constraint box, at the bottom
right of the picture. We have also labeled with temporal blanks the triple (Sports
News, type, offered service). Also note the triple (X,type, service provider) has
been labeled with temporal blanks.

Although the addition of constraints enriches the model, it introduces some
problems that we study in the paper. The results obtained in [14] do not work
any more in the presence of temporal blank nodes and constraints. For example,
the notion of slice closure must be modified. Consequently, testing temporal
entailment must be modified accordingly, as well as the proofs that were obtained

5

type

type

service provider

X

output

web page
web page

Fox Sports phone

ESPN

phone

www.espn.com

(5411) 4902-0462

www.foxsports.com

(5411) 4892-8939

output

input

provided by

article

customer ccard

sports category

input

type

type

type [T0,Now]

T0 < T1

sc

T3 > T2

T2 > T1

Constraints

[T3,Now]

[0,T1]

[0,T1]

[T2,Now]

[T2,Now]

[T2,Now]

[0,T1]

provided by

type

sportsNews

domain

domain

domain
domain

type

input

parameter

offered service

service

provided by

Fig. 2. The RDF graph of Figure 1 with Anonymous Time.

under the assumption that the temporal labels were only concrete time instants.
The question that arises is whether testing temporal entailment in this new
setting reduces to computing an extended notion of slice closure and find a
mapping between two temporal graphs.

1.3 Related Work

The RDF model was introduced in 1998 by the World Wide Web Consortium
(W3C) [19]. Formal work includes the study of formal aspects of RDF data and
query languages [12, 13, 25], considering RDF features like entailment, the im-
pact of blank nodes, reification, premises in queries, and the RDFS vocabulary
with predefined semantics. Several query languages for RDF have been proposed
and implemented. Some of them along the lines of traditional database query
languages (e.g. SQL, OQL), others based on logic and rule languages. Good sur-
veys are [16, 20]. Temporal database management has been extensively studied,
including data models, mostly based on the relational model and query lan-
guages [23], leading to the TSQL2 language [22]. Chomicki [8] provides a com-
prehensive survey of temporal query languages. Beyond the relational model,
several works proposed temporal extensions for non-temporal models, like the
semistructured data model and XML [7, 4, 10, 11, 21].

Regarding temporal extensions to RDF, Visser et al [24] proposed a temporal
reasoning framework for the Semantic Web, which has been applied in BUSTER,
an ontology-based prototype developed at the University of Bremen, supporting
the so-called concept@location in time type of query. To the best of our knowl-
edge, our previous work [15, 14] constitutes the first formal study of temporality

6

issues in RDF graphs and RDF query languages. However, these previous works
do not include temporal constraints. I addition, although they consider intervals,
intervals are only finite sets of timestamps, and therefore intervals are syntax
inside a point-based modeling of time.

1.4 Contributions

In this paper we incorporate temporal constraints and intervals (with unknown
starting and/or ending time instants) to temporal RDF graphs, and denote the
resulting graphs c-temporal graphs.

We extend temporal graphs in a stepwise manner. First, we include intervals
and study the inference problem for temporal graphs with intervals. Then, we
generalize the former framework incorporating temporal constraints. We formal-
ize c-temporal graphs, allowing modeling anonymous timestamps, anonymous
intervals, and constraints over them. We define and study a notion of entail-
ment for c-temporal graphs. Further, a new notion of closure is proposed for
c-temporal graphs, and temporal entailment is characterized in terms of this
notion of closure. In particular, we show that testing entailment for temporal
graphs with constraints, reduces to closure computation and mapping discovery,
that is, an extended form of the standard approach for testing entailment in
non-temporal RDF graphs. This yields a procedure for testing entailment and
leads to complexity bounds for the problem of testing entailment of c-temporal
graphs. Finally, we provide an RDF vocabulary to represent c-temporal graphs
using standard RDF data, and sketch a syntax for this.

1.5 Outline

The remainder of the article is organized as follows. Section 2 presents pre-
liminary notation related to RDF and RDFS and temporal RDF graphs from
previous work [13, 15, 14]. Section 3 studies temporal graphs with intervals. Sec-
tion 4 introduces constraints to temporal graphs and their semantics, presents
the notion closure, and characterizes entailment in terms of them. Finally, in
Section 5 we conclude and outline some prospects for future work.

2 Preliminaries

2.1 RDF Notation

The following is an excerpt of notation introduced in [6, 13, 17] that will be used
subsequently in this paper.

In this paper we work with RDF graphs whith RDFS vocabulary. An RDF
graph is a set of triples (v1, v2, v3) ∈ (U∪B)×U×(U∪B∪L), where U is a set of
URIs, B is a set of blank nodes, and L is a set of litereals (the sets are pairwise
disjoint). An RDF term is a URI, a blank, or a literal. We consider RDF graphs
that can mention the RDFS vocabulary. The RDFS vocabulary defines Classes

7

as sets of resources. Elements of a class are known as instances of that class.
To state that a resource is an instance of a class, the property rdf:type may be
used. The following are the most important classes (in brackets the name we will
use in this paper) rdfs:Resource [res], rdfs:Class [class], rdfs:Literal [literal],
rdfs:Datatype [datatype], rdf:XMLLiteral [xmlLit], rdf:Property [property].
Properties are binary relations between subject resources and object resources.
The built-in properties are: rdfs:range [range], rdfs:domain [dom], rdf:type [type],
rdfs: subClassOf [sc], rdfs:subPropertyOf [sp].

In this paper, we work with a characterization of entailment of RDF graphs
in term of the notions of map and closure.

A map is a function µ : (U ∪ B ∪ L) → (U ∪ B ∪ L) preserving URIs and
literals, i.e., µ(u) = u and µ(l) = l for all u ∈ U and l ∈ L. Given a graph G,
we define µ(G) as the set of all (µ(s), µ(p), µ(o)) such that (s, p, o) ∈ G. We will
overload the meaning of map and speak of a map µ : G1 → G2 if there is a map
µ such that µ(G1) is a subgraph of G2. A map µ is consistent with G if µ(G) is
an RDF graph, i.e., if s is the subject of a triple, then µ(s) ∈ U ∪ B, and if p

is the predicate of a triple, then µ(p) ∈ U . In this case, we say that the graph
µ(G) is an instance of the graph G. An instance of G is ground if µ(G) does not
mention blanks.

A closure of a graph G, denoted cl(G), is a maximal set of triples G′ over
universe(G) plus the RDFS vocabulary such that G ⊆ G′ and G |= G′.

Theorem 1 (cf. [17, 13]). G1 |= G2 if and only if there is a map from G2 to
a closure of G1.

2.2 Temporal Graphs

In this section, we present in a compressed form relevant notation and results
for temporal graph from previous work [15, 14].

A temporal triple is an RDF triple (a, b, c) with a temporal timestamp t,
which is a positive real number. We will use the notation (a, b, c)[t]. Usually
for a temporal graph G we will apply the same notions used for standard RDF
graphs, for example, we will say “G is ground” meaning that u(G) is ground,
write µ(G) for {(µ(a), µ(b), µ(c))[t] : (a, b, c)[t] ∈ G}, and so on.

Definition 1 (Entailment (c.f. [14])). Let G1, G2 be RDF temporal graphs.
(1) For ground temporal RDF graphs G1, G2 define G1|=τG2 if and only if
G1(t) |= G2(t) for each t; (2) For temporal RDF graphs, define G1|=τG2 if and
only if for every ground instance µ1(G1) there exists a ground instance µ2(G2)
such that µ1(G1)|=τµ2(G2).

Temporal entailment can be characterized in terms of a notion of clousure
of temporal graphs, denoted slice closure. Given a temporal graph G and a
timestamp t: the snapshot of G at t, is defined as the graph G[t] = {(a, b, c) | (a, b, c)[t] ∈
G}. For an RDF graph H and a time stamp t, define Ht as the temporalization of
all its triples by a temporal mark t, that is, Ht = {(a, b, c)[t] | (a, b, c) ∈ H}. The
slice closure of G, denoted scl(G), is a temporal graph defined by the expression⋃

t(cl(G[t]))t, where cl(G[t]) is any closure of the RDF graph G[t].

8

Theorem 2 (c.f. [15]). Let G1, G2 be temporal RDF graphs. Then G1 |=τ G2

if and only if there is a map from G2 to scl(G1).

This result yields an algorithm for testing temporal entailment. Indeed, the
slice closure can be obtained by computing the closures of the snapshots of the
temporal graph.

3 Temporal Graphs with Time Intervals

In this section we extend temporal graphs introduced in Section 2.2 to model
time intervals defined by timestamps, that is, intervals whose extremes are pos-
itive real numbers.

3.1 Basic Definitions

We extend temporal triples to triples of the form (a, b, c)[ti, tf], where ti, tf are
timestamps (positive real numbers) such that ti ≤ tf , yielding temporal graphs
with intervals. For the case where ti = tf a triple (a, b, c)[ti, tf] is equivalent to
temporal triple (a, b, c)[ti], as defined in Section 2.2, therefore temporal graphs
with intervals subsume temporal graphs. Given a temporal graph with intervals
G, we denote by I(G) the intervals mentioned in G, and denote by T (G) the set
of timestamps mentioned in G. Given an interval [ti, tf] ∈ I(G), we denote by
G[li, lj], the set containing RDF triples (a, b, c) such that (a, b, c)[ti, tf] ∈ G.

A temporal graph with intervals represents a (possibly infinite) temporal
graph, that is, each triple p[ti, tj] represents the set of temporal triples {p[t] :
ti ≤ t ≤ tj}. Given a temporal graph with intervals G, we denote by G+ the
temporal graph that represent G, and call it the underlying temporal graph of
G.

3.2 Reasoning

The notion of entailment from Definition 1 can be naturally extended to tem-
poral graph with intervals. Formally, we write G|=τH iff G+|=τH+. Therefore,
Theorem 2 also characterizes entailment for temporal graphs with intervals (just
consider the underlying temporal graphs involved). However, the theorem has no
practical application, since underlying graphs (and therefore mappings) may be
infinite. In this section, we propose a characterization of entailment that yields
a procedure for the testing entailment of temporal graphs with intervals.

We will use a basic relationship between intervals (see Allen’s well-known
work on interval operations [2]). Given two intervals [ti, tf], [tu, tv], we write
that [ti, tf] ⊑ [tu, tv] iff tu ≤ ti and tf ≤ tv. Given an interval [ti, tf] and a set of
intervals S, we denote by ContainSet([ti, tf], S) the set of intervals [tu, tv] ∈ S

such that [tu, tv] ⊑ [ti, tf]. As notation, we usually write tj ∈ [ti, tf], meaning
that ti ≤ tj ≤ tf .

The following definition extends the notion of slice closure (Section 2.2) to
temporal graphs with intervals.

9

Definition 2. Let G be a temporal graph with intervals. The slice closure of G,
denoted iscl(G), is a temporal graph with intervals H defined as follows:

1. Let H ′ be the following temporal graph with intervals. For each pair of
timestamps ti, tf ∈ T (G), H ′[ti, tf] = cl(

⋃
[tu,tv]∈ContainSet([ti,tf],I(G)) G[tu, tv]).

2. Then, for each set of intervals S = {[t1, t2], [t2, t3], . . . , [tn−1, tn]} ⊆ I(H ′),
we have H [t1, tn] =

⋂
[ti,ti+1]∈S H ′[ti, ti+1].

Example 3. Figure 3 shows a the temporal graph with constraints G and its slice
closure iscl(G). First, we illustrate condition 1 of Definition 2. As an example,
consider the pair of timestamps 2, 3 ∈ I(G). Then ContainSet([1, 2], I(G)) =
{[1, 3], [2, 3]}. Therefore, H ′[2, 3] = cl((a, sc, b), (b, sc, c)}), which is {(a, sc, b),
(b, sc, c), (a, sc, c)}. Now, in order to explain condition 1 of Definition 2, consider
the set of intervals {[2, 4], [4, 5]}. We have that H [2, 5] = H ′[2, 4]∩H ′[4, 5], which
is {(a, sc, c)}. Only the triples in the last file of the table of Figure 3 are derived
from condition 2 of Definition 2.

Original Graph (G) Slice Closure (iscl(G))

(a,sc, b)[1, 3], (b, sc, c)[2, 4], (a, sc, c)[3, 5] (a,sc, b)[1, 3], (b, sc, c)[2, 4], (a,sc, c)[3, 5]
(a,sc, b)[2, 3], (b, sc, c)[2, 3], (a, sc, c)[2, 3]
(b, sc, c)[3, 4], (a,sc, c)[3, 4], (a,sc, c)[4, 5]
(a,sc, c)[2, 4], (a,sc, c)[2, 5]

Fig. 3. Slice closure of a temporal graph with intervals.

For simplicity, the previous example and others presented in this paper use
only the subclass property (sc). The examples could be easily turned much
more complex if we include in the graphs RDFS built-in-properties, such as rdfs:
range [range], rdfs:domain [dom], rdf:type [type], rdfs: subClassOf [sc], rdfs:sub-
PropertyOf [sp]. We refer the reader to [13] for examples and details on RDFS
entailment.

Observe that G ⊆ iscl(G). The following lemma states other important
properties of the slice closure.

Lemma 1. Let G be a temporal graph with intervals.
(1) scl(G+) = (iscl(G))+.
(2) G ≡τ iscl(G).
(3) Given a timestamp t ∈ [ti, tf], and a triple (a, b, c) ∈ scl(G+)[t], then there
is an interval [tu, tv] ∈ I(iscl(G)) such that [ti, tf] ⊑ [tu, tv] and (a, b, c) ∈
iscl(G)[tu, tv].

Proof. (1) Follows from Condition 1 of Definition 2. Let H = iscl(G)+. Con-
sider a timestamp t, let S be the set containing intervals [to, tp] ∈ I(G) such

10

that t ∈ [to, tp]. We have that G+[t] =
⋃

[tu,tv]∈S G[tu, tv]. Hence, scl(G+)[t] =

cl(
⋃

[tu,tv]∈S G[tu, tv]). Now, let [ti, tf] be the smallest interval (among all the

intervals defined with timestamps in T (G)) that contains t. It is easily ver-
ified that S = ContainSet([ti, tf], I(G)). Then, we have that scl(G+)[t] =
cl(

⋃
[ti,tf]∈ContainSet([ti,tf],I(G)) G[ti, tf]), and hence scl(G+) = H .

(2) We have that G ≡τ iscl(G) iff G+ ≡τ iscl(G)+. But G+ ≡τ scl(G+), and
from (1) we derive the lemma.
(3) Then there should be timestamps t1, t2, . . . , tn−1, tn ∈ T (G) such that t1 ≤
ti, tf ≤ tn, t1 ≤ t2 ≤ . . . ≤ tn, and for each interval [ti, ti+1], (a, b, c) ∈
cl(

⋃
[tu,tv]∈ContainSet([ti,ti+1],I(G)) G[tu, tv]). Therefore, from condition 1 of Defi-

nition 2, it follows that (a, b, c) ∈ H ′[ti, ti+1]. And by condition 2 of Definition 2,
(a, b, c) ∈ iscl(G)[t1, tn].

We define interval mappings as follows. Given two sets of intervals S, S′ an
interval mapping is a function γ : S → S′, such that for each interval [ti, tf] ∈
S, [tu, tv] = γ([ti, tf]) satisfies tu ≤ ti, tf ≤ tv. When we apply an interval
mapping to a temporal graph with intervals G, we obtain the temporal graph
with interval G′ containing the triples (a, b, c)γ([ti, tj]) such that (a, b, c)[ti, tf] ∈
G. In addition, we extend maps between temporal graphs to maps between
temporal graphs with intervals.

Theorem 3. Let G, H be temporal RDF graphs with intervals. Then G |=τ H

if and only if there is an interval mapping γ : I(H) → I(G), and a mapping µ

from γ(H) to iscl(G).

Proof. We will prove that (*) there is a map µ from H+ to scl(G+) iff there is
an interval map γ : I(H) → I(G), such that µ is a map from γ(H) to iscl(G).
The theorem follows from (*) and Theorem 2. It remains to prove (*). (If) It
is easy to show that µ is a map from H+ to (iscl(G))+. But from Lemma 1,
scl(G+) = (iscl(G))+. Therefore, µ is a map from H+ to scl(G+). (Only If)
Consider an interval [ti, tj] ∈ I(H), and let P = H [ti, tj]. We have that for all
t ∈ [ti, tf], P ∈ H+[t]. Therefore, µ(P) ∈ scl(G+)[t] for all t ∈ [ti, tf]. Then,
by Lemma 1 (3), we have that there should be an interval [tu, tv] ∈ I(iscl(G))
such that [ti, tf] ⊑ [tu, tv] and µ(P) ∈ iscl(G)[tu, tv]. We let γ([ti, tj]) = [tu, tv].
Therefore, we have µ(γ(H [ti, tj])) ∈ iscl(G). By the same procedure we define
γ(r) for each interval r ∈ I(H), and we have µ(γ(H)) ⊆ iscl(G).

Theorem 3 yields a two-steps procedure for testing implication for temporal
graphs with intervals, which requires to first compute a slice closure and then an
interval mapping. In Section 4.4, we study the complexity of testing entailment.

4 Temporal Graphs with Temporal Constraints

In this section, we define temporal graphs with temporal constraints (c-temporal
graphs in short), which generalize temporal graphs with intervals introduced in
Section 3.

11

4.1 Temporal Constraints

In this paper, we focus on a class of temporal constraints, which is common in the
literature on temporal logic (see e.g., [8]). These constraints are also equivalent
to a basic class of inequality constraints studied in databases [1].

Temporal constraints will be used to state relationships between time la-
bels. Time labels may be timestamps (positive real numbers) or anonymous
timestamps, which are temporal variables. As notation, we use T1, T2, . . . for
anonymous timestamps, t1, t2, . . . for timestamps, and l1, l2, . . . for temporal la-
bels. In our model RDF terms and temporal labels belong to different frame-
works: time labels and triples, and are therefore disjoint.

Temporal labels are interpreted as points in the temporal domain. We model
time as a temporal domain (R, <,≤, >,≥, =, 6=), where R is the set of positive
real numbers, and <,≤, >,≥, =, and 6= are the standard arithmetic comparison
predicates. So we assume a dense temporal domain isomorphic to the real num-
bers. By a temporal constraint we refer to an expression of the form liωlj, where
ω is an arithmetic comparison predicate. Given a set of temporal constraints Σ

we denote L(Σ) the temporal labels mentioned in Σ. A map for a set of temporal
constraints Σ is a function γ : L(Σ) → R preserving timestamps. Given a set of
temporal constraints Σ and a map γ we denote by γ(Σ) the set of constraints
resulting from Σ by replacing each time label l by γ(l).

An instance for a set of temporal constraints Σ = {α1, . . . , αn} is a map µ

such that µ(Σ) is ground and each γ(αi) holds in the temporal domain. If Σ is
empty the emptyset is its unique ground instance. Σ is consistent iff it has at
least one instance. Notice that an empty set of constraints is consistent. Given
two sets of temporal constraints Σ1, Σ2, define Σ1|=constrΣ2 if and only if for
each instance γ of Σ1, there is also and instance of γ(Σ2).

Testing entailment and consistency for temporal constraints can be done in
polynomial time. An algorithm to efficiently implement the test can be found
in [1]. We next show the central ideas of it. Following standard results in in-
equality constraints (e.g. [3, 1]), we can “close” a set of temporal constraints Σ

as follows. We build the inequality graph for the constraints (which is a partic-
ular case of a temporal constraint network [9]), that is, a directed graph with a
node for each temporal label, and an edge (li, lj) for each constraint liωlj ∈ Σ,
were ω ∈ {≤, <,≤} (we can transform the constraints to have them expressed
in these predicates). The edge (li, lj) is labeled with the predicate ω. The graph
has also edges (ti, tj) that capture the natural ordering between timestamps.
As an example, if the timestamps 3 and 7 are mentioned in the constraints, we
place an edge associated to the constraint 3 < 7. We assume a set K containing
real numbers mentioned in the constraints. The constraints can be propagated
in the graph by simple transitive closure computation. Finally, the closure of Σ,
denoted ccl(Σ, K) are the constraints associated to the edges in the resulting
graph. The closure of the inequality graph can be used for testing entailment
and consistency of a set of constraints.

The following are standard results. Let Σ be a set of constraints. Σ is con-
sistent iff its inequality graph does not have cycles. Let α be another set of

12

constraints such that L(α) ⊆ L(Σ), then Σ|=constrα iff α ∈ ccl(Σ, K), where
K is the set of timestamps mentioned in both Σ and α. For the case where
L(α) 6⊆ L(Σ), we need to perform basic quantifier elimination, that is, we need
to delete the variables in L(α) \ L(Σ) from ccl(α, K), and test whether the
resulting set of constraints is contained in ccl(Σ, K).

The inequality graph can be transformed by deleting equal nodes, yielding a
minimal inequality graph [1]. That is, if the constraints imply Y = X , we just
rewrite the constraints by substituting X by Y . However, in order to prevent in-
formation lost, we preserve timestamps in the substitutions. In this form, we can
transform a c-temporal graph into another equivalent c-temporal graph whose
constraint set is free of equalities. In the sequel, without loss of generality, we
assume that constraint sets are free of equalities.

4.2 Basic Definitions

We extend the notion of temporal graph to handle anonymous labels in timestamps
and interval. We extend intervals to be pairs of temporal labels [l1, l2]. So we
consider a temporal triple to be an element of the form p[l1, l2], where p is an
RDF triple and l1, l2 are temporal labels. The temporal graphs we next define
can represent two main situations relating anonymous time: (i) a triple holds
in an interval but we do not know it (this is the case where l1 = l2); and (ii)
the triple holds in an interval, but one or both of the start or the ending time
instants of the interval are unknown. When, l1 = l2 we denote p[l1, l2] simply as
p[l1].

Definition 3. A temporal graph with temporal constraints (subsequently called
a c-temporal graph) is a pair C = (G, Σ), where G is a graph with temporal
triples of the form p[l1, l2], p is an RDF triple, and l1, l2 temporal labels, and Σ

is a set of temporal constraints over time labels in G. For each temporal triple
p[l1, l2] ∈ G, Σ should contain the constraint l1 ≤ l2.

For simplicity, we sometimes write the temporal constraints and the temporal
triples in a single set. Given a c-temporal graph C = (G, Σ), we denote I(C)
the intervals that appear in the triples in G.

We extend an interval map γ to consider intervals defined with temporal
labels. An interval mapping is a function from a set of intervals to a set of
intervals. If we apply γ to a c-temporal graph C, we obtain another c-temporal
graph, denoted µ(C), by renaming each interval r with µ(r). A time-ground
instance of a c-temporal graph C = (G, H) is a temporal graph with intervals
µ(C) (i.e., µ maps each interval to an interval defined by timestamps) such that
µ(Σ) is consistent.

Definition 4 (Entailment). Let C1 = (G1, Σ1) and C2 = (G2, Σ2) be c-
temporal graphs. Define C1|=τ(constr)C2 if and only if for each time-ground in-
stance ν1(C1) of C1 there is a time ground instance ν2(C2) of C2 such that
ν1(C1)|=τν2(C2).

13

Example 4. Let C1 be the c-temporal graph

{(a, sc, b)[T1], (b, sc, c)[t1, t2], t1 ≤ t2, t1 < T1, T1 < t2}.

In this graph, t1 ≤ t2 is the constraint associated to the interval [t1, t2]. The
following entailment holds: C1|=τ(constr){(a, sc, c)[T2]}.

Example 5. Let C1 be the c-temporal graph

{(a, sc, b)[T1, T2], (b, sc, c)[T3, T4], T1 ≤ T2, T3 ≤ T4, T1 ≤ T3 ≤ T2}.

The first two constraints T1 ≤ T2, T3 ≤ T4 are the constraints associated to the
intervals [T1, T2], [T3, T4], respectively. The last constraint shows that an “over-
lap” between the two intervals can be entailed. From this overlap and the transi-
tivity of the subclass relationship, we obtain the entailment C1|=τ(constr){(a, sc, c)[T5]}.

The following lemma can be easily verified.

Lemma 2. Let C1 = (G1, Σ1) and C2 = (G2, Σ2) be c-temporal graphs. If
C1|=τ(constr)C2, then C1|=τ(constr)(G2, ∅).

4.3 Reasoning

First, we extend the interval containment relationship of Section 3.2 to inter-
vals over anonymous timestamps restricted by constraints. Given two intervals
[l1, l2], [l3, l4] and a set of temporal constraints Σ, we write that [l1, l2] ⊑Σ [l3, l4]
iff Σ |= l3 ≤ l1, l2 ≤ l4. Given an interval [li, lf] and a set of intervals S,
we denote by ContainSetΣ([li, lf], S) the set of intervals [lu, lv] ∈ S such that
[lu, lv] ⊑Σ [li, lf].

The following definition extends the notion of slice closure (Definition 2) to
c-temporal graphs.

Definition 5. Let C = (E, Σ) be a c-temporal graph. The slice closure of C,
denoted cscl(C), is a c-temporal graph (F, Σ), where F is defined as follows:

1. Let F ′ be the following c-temporal graph. For each pair of labels li, lf ∈ L(C),
F ′[li, lf] = cl(

⋃
[lu,lv]∈ContainSetΣ([li,lf],I(C)) E[lu, lv]).

2. Then, for each set of intervals S = {[l1, l2], [l2, l3], . . . , [ln−1, ln]} ⊆ I(F ′),
we have F [l1, ln] =

⋂
[li,li+1]∈S F ′[li, li+1].

Given a c-temporal graph C = (G, Σ) we define a representative instance of
C, as the ground-temporal instance ν(C) such that: (i) each time label l ∈ L(Σ)
goes to a unique fresh timestamp ν(l); and for all labels l1, l2, l3, l4 ∈ L(Σ)
if [l1, l2] 6⊑Σ [l3, l4], then [ν(l1), ν(l2)] 6⊑ [ν(l3), ν(l4)]. It can be verified that
consistent c-temporal graph always has a representative instance; just properly
instantiate the inequality graph to satisfies properties (i) and (ii). In particular,
property (i) can be accomplished because C is assumed to be free of equalities.

14

Lemma 3. Let C = (G, Σ) be a c-temporal graph.
(1) For each time-ground instance γ(C) of C, γ(cscl(C)) ⊆ iscl(γ(C)).
(2) cscl(C)≡τ(constr)C.
(3) For a representative instance ν(C) of C, ν(cscl(C)) = iscl(ν(C))

Proof. (1) Consider H ′, H and G = γ(C) in Definition 2. Let r ∈ I(C). observe
that if r ∈ ContainSetΣ(r, I(C)), then γ(r) ∈ ContainSet(γ(r), I(G)). There-
fore, γ(ContainSetΣ(r, I(C))) ⊆ ContainSet(γ(r), I(G)) (we assume that in
the left-hand part of the expression we apply the mapping γ to a set of inter-
vals obtaining a set of ground intervals). Because of this, we have γ(F ′)[γ(r)] ⊆
H ′[γ(r)] for all r ∈ I(C), and hence γ(F ′) ⊆ H ′. By a similar argument, we
prove that γ(F) ⊆ H , and hence γ(cscl(C)) ⊆ iscl(γ(C)).
(2) Because C ⊆ cscl(C), it is direct that cscl(C)|=τ(constr)C. Now, we prove
that C|=τ(constr)cscl(C). Consider an time-ground instance γ(C) of C. We have
that γ(cscl(C)) is also a time-ground instance of cscl(C). But from (1), it fol-
lows that γ(cscl(C)) ⊆ iscl(γ(C)). Therefore, γ(C)|=τγ(cscl(C)). Therefore,
C|=τ(constr)cscl(C).
(3) Consider H ′, H and G = γ(C) in Definition 2. Let r ∈ I(C). In this case
we have γ(ContainSetΣ(r, I(C))) = ContainSet(γ(r), I(G)). From this we can
verified that H ′ = F ′ and H = F .

A c-temporal graph is consistent if it has at least one temporal-ground in-
stance. Since we can entail anything from a inconsistent c-temporal graph, we
will study entailment from consistent graphs. In order to simplify the presenta-
tion, we subsequently assume that c-temporal graphs C = (G, Σ) are consistent.

We define interval mappings between c-temporal graphs. Let C1 = (G1, Σ1)
and C2 = (G2, Σ2) be two independent c-temporal graphs. An interval mapping
from C2 to C2 is a function µ : I(C2) → I(C1), which satisfies Σ1|=constr(Σ2 ∪
Σu), where Σu has the constraints {l3 ≤ l1, l2 ≤ l4 : µ([l1, l2]) = [l3, l4]}.

Theorem 4. Let C1 = (G1, Σ1), C2 = (G2, Σ2) be c-temporal RDF graphs.
Then G1|=τ(constr)G2 if and only if there exist an interval map γ from C2 to C1

and a map µ from γ(C2) to cscl(C1).

Proof. (IF) Consider a time-ground instance γ1(C1) of C1. Let γ2 = γ ◦ γ1.
Now, because γ1(C1) is a time-ground instance, γ2 maps intervals to ground
intervals. Because Σ1|=constr(Σ2 ∪ Σu), γ2(Σ2) is consistent. Therefore γ2(C2)
is a time ground instance of C2. It remains to prove that γ1(C1)|=τγ2(C2). But
we have µ(γ(C2)) ⊆ cscl(C1). We apply γ1 to both sides and obtain µ(γ2(C2)) ⊆
µ(γ1(cscl(C1)). But from Lemma 3 (1), it follows that µ(γ1(cscl(C1)) ⊆ µ(iscl(γ1(C1))).
Hence µ(γ2(C2)) ⊆ µ(iscl(γ1(C1))). Then, from Theorem 3, we obtain γ1(C1)|=τγ2(C2).
(Only If) Let γ1(C1) be the representative instance of C1. by Lemma 3 (3),
we have that γ1(cscl(C1)) = iscl(γ1(C2)). From Definition 4 it follows that
there exists a temporal-ground instance γ2(C2) of C2 such that γ1(C1)|=τγ2(C2).
Then, from Theorem 3, there is an interval mapping γ′ and a mapping ν from
γ′((γ2(C2))) to iscl(γ1(C1)). Then ν is a mapping from γ′((γ2(C2))) to γ1(cscl(C1)).
Let γ = γ2◦γ′◦γ−1

1 (notice that γ1 is 1-1 because it is a representative instance).
Then we have that Then ν is a mapping from γ(C2) to cscl(C1).

15

4.4 Complexity

A standard result regarding RDFS entailment is that the closure cl(G) of an
RDF G graph is of polynomial size in |G|; computing the closure also takes
polynomial time (an upper bound for both is O(n3), where n is the number
of RDF terms mentioned in G). We consider a polynomial p(|G|) that bounds
the size of the closure and the time it takes to compute it. We also consider a
polynomial q(|Σ|) that bounds the time of computing an implication of temporal
constraints.

Lemma 4. Let C = (G, Σ) be a temporal graph with intervals and let (E, Σ) =
cscl(C). (1) The graph E is of size O(N2p(|G|)), where N = |L(C)|. (2) The
slice closure can be computed in time O(N4(q(|Σ| + p(|G|))).

Proof. (1) Notice in Definition 5 that H ′ has at most N2 intervals, and for
each interval r of them the size of H ′[r] is in O(p(|G|)). Therefore, H ′ is of
size O(N2p(|G|)). In the second condition of Definition 5, the number of triples
added are at most O(N2p(|G|)), because there are at most N2 sequences of
valid intervals [l1, l2], [l2, l3], . . . [lk−1, lk]. Hence, the size of the slice closure is in
O(N2p(|G|)).
(2) For an interval [li, lj], the computation of H ′[li, lj] takes O(N2q(|Σ|)+p(|G|))
steps, hence the computation of H ′ takes O(N4q(|Σ|)+ p(|G|)) steps. The com-
putation involved in condition (2) of Definition 5 takes O(N3p(|G|)) steps. We
can do it by finding paths in the inequality graphs and performing intersection
operations for each of them. There are at most N2 paths and for each of them the
intersection operations takes O(Np(|G|)) steps. Hence, the overall computation
is dominated by the computation of H ′.

Better complexity bounds for computing the slice closure could be certainly
obtained by developing more efficient algorithms, an issue we do not address in
this paper. We next show that the decision problem of entailment for c-temporal
graphs is NP-complete, thus maintaining the complexity of temporal graphs (and
also of the non-temporal case).

Theorem 5. (1) Given two temporal c-temporal graphs C1, C2, the problem of
deciding whether C1|=τ(constr)C2 is NP-complete. (1) Given two temporal graphs
with intervals G1, G2, the problem of deciding whether G1|=τG2 is NP-complete.

Proof. (1) Membership in NP-hard follows from the fact that testing the impli-
cation H1|=τH2, for two temporal graphs H1, H2, is equivalent to testing the
implication for the temporal graphs with intervals resulting from H1, H2 by re-
placing each triple (a, b, c)[t] by (a, b, c)[t, t]. Proof of membership in NP is as
follows. A witness for G1|=τG2 is a pair of mappings that satisfies condition of
Theorem 4, which can be tested in polytime since cscl(G1) is of polysize and
can be computed in polytime (Lemma 4).
(2) It is direct by a similar argument.

16

5 Conclusion

In this paper we have extended temporal RDF graphs with temporal constraints
and intervals. In this way, temporal reasoning about these constructs is enabled.
First, taking advantage of the support of blank nodes in RDF, we introduced
intervals such that one and/or both boundaries are anonymous timestamps. We
developed a notion of closure for temporal RDF graphs with intervals. Then,
we introduced c-temporal graphs (temporal graphs with constraints and the
intervals previously defined), and gave a notion of closure for these temporal
graphs. We also proved that entailment from such graphs reduces to finding
mappings to the “closed” version of the graphs. These results also show that
query processing for temporal graphs with constraints also reduces to computing
a matching between the query and the closed graphs.

Open problems are the modeling of more expressive classes of temporal con-
straints [8] in temporal graphs. As an example, an interesting generalization
would be to model constraints expressed via simple temporal networks [9], which
allow to state upper an lower bounds for the distance of pairs of time labels. We
are also beginning to work on an implementation of the theoretical framework
presented here, which comprises the design and implementation of algorithms
and heuristics for computing the slice closure and testing entailment.

References

1. F. Afrati, C. Li, and P. Mitra. On containment of conjunctive queries with arith-
metic comparisons. In UCIISC Technical Report, 2003.

2. J. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), pages 832–843, 1983.

3. J. Allen. Time and time again: The many ways to represent time. International
Journal of Intelligent Systems, 6(4), pages 341–355, 1990.

4. T. Amagasa, M. Yoshikawa, and S. Uemura. A temporal data model for XML
documents. In Proceedings of DEXA Conference, pages 334–344, 2000.

5. G. Antoniou and F. van Harme. A Semantic Web Primer. MIT Press, London,
England, 2004.

6. D. Brickley and R.V.(Eds.) Guha. RDF vocabulary description language 1.0: RDF
schema. W3C Working Draft 23 January 2003.

7. S. Chawathe, S. Abiteboul, and J. Widom. Managing historical semistructured
data. In Theory and Practice of Object Systems, Vol 5(3), pages 143–162, 1999.

8. J. Chomicki. Temporal query languages: a survey. In Proceedings of First Interna-
tional Conference on Temporal Logic. Lecture Notes in Artificial Intelligence 827,
Springer-Verlag, Bonn, Germany, 1994.

9. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. In Artificial
Intelligence 40:61, pages 49: 61–95, 1991.

10. C.E. Dyreson. Observing transaction-time semantics with TTXPath. In Proceed-
ings of WISE 2001, pages 193–202, 2001.

11. C. Gao and R. Snodgrass. Temporal slicing in the evaluation of XML queries. In
Proceedings of the 29th International Conference on Very Large Data Bases, pages
632–643, Berlin, Germany, 2003.

17

12. C. Gutierrez, C. Hurtado, and A.O. Mendelzon. Formal aspects of querying RDF
databases. In Proceedings of SWDB, pages 293–307, 2003.

13. C. Gutierrez, C. Hurtado, and A.O. Mendelzon. Foundations of semantic web
databases. In 23rd. Symposium on Principles of Database Systems (PODS’04),
pages 95–106, 2004.

14. C. Gutierrez, C. Hurtado, and A. Vaisman. Incorporing time into RDF. In In-
ternal Technical Report, Department of Computer Science, Universidad de Chile
(submitted for journal review), 2005.

15. C. Gutierrez, C. Hurtado, and A. Vaisman. Temporal RDF. In European Confer-
ence on the Semantic Web (ECSW’05) (Best paper award), pages 93–107, 2005.

16. P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A comparison of RDF query
languages. In International Semantic Web Conference, 2004.

17. Patrick Hayes(Ed.). RDF semantics. W3C Working Draft, October 1st., 2003.
18. M. Koubarakis. Temporal query languages: a survey. Information Systems,

19(2):141-174, 1993.
19. O. Lassila and R.(Eds.) Swick. Resource description framework (RDF) model and

syntax specification. W3C Working Draft, 1998.
20. A. Magkanaraki, G. Karvounarakis, T.T. Anh, V. Christophides, and D. Plex-

ousakis. Ontology storage and querying. Technical Report No. 308 Foundation
for Research and Technology Hellas, Institute of Computer Science, Information
System Laboratory, 2002.

21. F. Rizzolo, A.O. Mendelzon, and A. Vaisman. Indexing temporal XML documents.
In Proceedings of the 30th International Conference on Very Large Databases, pages
216–227, Toronto, Canada, 2004.

22. Richard Snodgrass. The TSQL2 Temporal Query Language. Kluwer Academic
Publishers, 1995.

23. A. Tansel, J. Clifford, and S. Gadia (eds.). Temporal Databases: Theory, Design
and Implementation. Benjamin/Cummings, 1993.

24. U. Visser. Intelligent information integration for the semantic web. Lecture Notes
in Artificial Intelligence (3159), 2004.

25. G. Yang and M. Kifer. On the semantics of anonymous identity and reification.
In Proceedings of the First International Conference on Ontologies, Databases and
Applications of Semantics (ODBASE), pages 1047–1066, 2002.

