
Updating Semantic Web Data

Claudio Gutierrezc Carlos Hurtadoc Alejandro Vaismanba

cDepartment of Computer Science, Universidad de Chile
{cgutierr,churtado}@dcc.uchile.cl

baDepartment of Computer Science, Universidad de Buenos Aires
avaisman@dc.uba.ar

ABSTRACT
The basic data model for the Semantic Web is the Resource
Description Framework (RDF). From a data management
point of view, it resembles a lightweight knowledge base. In
this paper we address updates in RDF. It is known that the
semantics of updates for data models becomes unclear when
the model turns, even slightly, more general than a simple
relational structure. Viewing RDF as a knowledge base,
and using the formalism of Katsuno-Mendelzon, we define
semantics for updates in RDF. Then we show that RDF as a
representation system does not have enough expressiveness
to state updates satisfying the Katzuno-Mendelzon frame-
work. Hence, we study the behavior of classical update op-
erations in the framework of RDF, and propose versions of
such updates based on approximations. Finally, we study
how to compute these operations, which for erase are par-
ticularly complex, and give complexity bounds for them.

1. INTRODUCTION
The Semantic Web is a proposal oriented to represent Web
content in an easily machine-processable way [30, 3]. The
basic layer of the data representation for the Semantic Web
recommended by the World Wide Web Consortium (W3C)
is the Resource Description Framework (RDF) [20]. From a
conceptual point of view, RDF resembles a fragment of the
binary first-order logic, including features like transitivity of
some predicates. From a database point of view, it can be
viewed as an extension of a representation system along the
lines of naive tables without negation [1].

In the RDF model, the universe to be modeled is a set
of resources (anything that can have a universal identifier,
URI), described by a language consisting basically in a set
of properties, technically binary predicates. Descriptions are
statements of the form subject-predicate-object. Subjects
and objects can be anonymous elements, called blank nodes.
The RDF specification also includes a built-in vocabulary,
namely (RDFS) [6], dealing essentially with typing and in-
heritance of classes and properties. The natural intercon-

nection produced by a set of RDF statements over a given
set resources makes that RDF data closely resemble labeled
graphs. A natural problem that arises in this context, due
to the huge volumes of data involved, is the management
of RDF data. In fact, in the last years we have seen in-
creasing activity in formalizing issues related to RDF data
management and in developing tools to process such data.

RDF allows describing the concepts and relationships that
may exist in a community of people and software agents.
Thus, RDF data is subject to changes. Some studies have
addressed changes in an ontology [22, 29]. More recently,
the representation and querying temporal information in
RDF [13] has been also studied. In this paper we concen-
trate on the important problem of updating RDF data. In
the last two years the semantic web community has shown
an increasing interest in this problem. However, the ex-
isting proposals have so far ignored the semantic problems
associated to the presence of blank nodes and of RDFS vo-
cabulary with built-in semantics [24, 27, 33, 23], and tackled
the subject from a syntactical point of view.

We will illustrate with an example the importance of ac-
counting for the changes that can occur throughout the life
cycle of the data and the problems that may appear when
there is RDF vocabulary involved. Let us consider a Web
music store. We wish to use Semantic Web technology in or-
der to make it easier for the user to find information about
artists depending on the music style they are looking for.
Thus, we will define an ontology using RDF in order to de-
scribe the components of the site. Figure 1 shows an RDF
representation of a portion of an ontology designed for a mu-
sic web site. There are three music styles (blues, rock and
jazz), defined as subclasses of genre. Each of these styles has
in turn other styles as subclasses. We have also included an
ontology for artists with properties (e.g. performs), and sub-
properties (e.g. plays guitar). A music web site is usually
a very dynamic environment. For example, if at a certain
point in time a new artist is added, say, Bee Gees, a triple
containing the new artist is added (Bee Gees, type, disco).
Other changes can be the addition of new artists, music
styles, relationships between objects, and so on. A possi-
ble new scenario is depicted in Figure 2, where changes are
indicated in dashed lines.

1.1 Problem Statement
Updates and Revision. The semantics of updates for data
models becomes difficult when the model turns –even slightly–

sc

sc
sc

sc
sc

sc
sc

Disco

Performs

Artist

Yardbirds

X

R & B Soul
Funk

Classic Jazz
JazzRockBlues

Genre

sc

type

member

J. Page

sp
Plays Guitar

domain

Guitar Player

sc

domain

type

type
British 60’s

Rolling Stones

sc

Performer

type

type

sc

sc

sc

Figure 1: RDF graph for a music web site. Label sc
indicates subclass, and sp subproperty.

sc

sc
sc

sc

sc
sc

sc
sc

sc
sc

Disco

Performs

Artist

Yardbirds

X

R & B Soul
Funk

Classic Jazz
JazzRockBlues

Genre

sc

type

type

type

J. Page

Bee Gees

Rolling Stones

member

Hip-Hop

sc
sc

sp

Sings

sp
Plays Guitar

domain

Guitar Player

sc

domain

type
British 60’s

sc

Performer

type

type

Figure 2: The music web site after some changes.

more general than a simple relational structure [11]. For
knowledge bases, the abstract general problem of updating
is: what should be the result of changing a theory T with a
sentence ϕ?. As Katsuno and Mendelzon [18] argued, the
answer to this problem depends on the application at hand.
There is a fundamental distinction between update (now in a
technical sense) and revision [19, 18]. Update means bringing
the knowledge base up to date when the world described by
it changes; revise means incorporating new information ob-
tained about a static world. This discussion is relevant when
facing updates in the RDF model. The RDF model is more
than a simple relational structure; its expressivity resembles
features of the existential conjunctive fragment of first or-
der logic plus transitivity of some predicates and inheritance
axioms. Thus, the distinction between update and revision
becomes of central importance. On the one hand, one of the
main design goals of the RDF model is allowing distributed
revisions of the knowledge base in the form of addition of
information in a monotonic way [31]. By some classic results
of Gardenförs [9], the notion of revision becomes trivial in
this setting. On the other hand, when viewing RDF from a
database point of view, the notion of update becomes rele-

vant. In this paper we concentrate in this latter notion, and
follow the approach of Katsuno and Mendelzon [18], which
we considered the best suited for RDF. In the last section of
the paper we discuss other possible approaches and compare
them with our work. The question that arise is under which
conditions we can express the notion of the ideal update op-
eration of Katzuno-Mendelzon in RDF, and when this is not
possible, what is a good approximation to such operation.

Updating RDF. Management, in particular maintainability,
of RDF data needs a well defined notion of update. The
problem becomes particularly relevant since the standard-
ization of a query language for RDF [25]. We will show that
the problem of characterizing these changes in RDF is far
from being trivial and raises interesting practical and theo-
retical issues. Consider for example the problem of deleting
all triples containing the value artist in Figure 3 (a). The re-
sult, clearly, is the one shown in Figure 3 (b), where dashed
lines indicate the deleted arcs and nodes. However, if we
want to delete the triple (guitarplayer, sc, artist), a reason-
able semantics for this operation must ensure that the triple
above cannot be deduced from the updated database. This
semantics yields two possible results, depicted in Figures 4
(a) and (b). Additionally, we have to decide what to do with
the triple (J.Page, type, artist): was it inserted directly, or
was deduced from the triples (J.Page, type, guitar player)
and (guitar player, sc, artist)? In the former case, it should
stay; in the latter it should be deleted. What is to be done?
This paper studies these and other issues regarding update
semantics in RDF.

1.2 Contributions
In this paper, we study the problem of updating RDF data
(which seems to have been overlooked by the RDF commu-
nity), treating the problem in the framework of updating
knowledge bases, but also considering the limited expres-
siveness of RDF.

We introduce a sound semantics for RDF update and erase
operations based on solid grounds, using a model-theoretic
characterization based on the Katsuno-Mendelzon approach.

We investigate RDF as a representation system, concluding
that it cannot express the erase operation as classically de-
fined. To overcome this limitation, we define a notion of
erase expressible in RDF, which is an approximation of the
standard erase operator for knowledge bases. In particular,
we prove that this approximation is the best approxima-
tion expressible in RDF for the notion of erase given in the
framework Katsuno-Mendelzon.

We give operational procedures for calculating erase opera-
tions, based on simple proof-theoretic notions of RDF. We
investigate the theoretical complexity issues associated to
the operations of update and erase in RDF. In particular,
we study the connection of the erase problem with the prob-
lem of finding minimal multicuts in directed graphs. This
connection leads us to prove complexity bounds and char-
acterize well-behaved subclasses.

The remainder of the paper is organized as follows. In Sec-
tion 2 we review RDF concepts and present a formalization
of RDF apt to develop the subsequent logical and mathemat-

artist

J. Page

guitar player

performer

type

type

sc

sc

sc

artist

J. Page

guitar player

performer

type

type

sc

sc

sc

(b)(a)

Figure 3: Deleting all triples containing “artist”.

guitar player

performer

type

type

sc

sc

sc

(b)

artist

J. Page

guitar player

performer

type

type

sc

sc

sc

(a)

J. Page

artist

Figure 4: Deleting the triple (guitarplayer, sc, artist).

ical framework. In Section 3 we introduce and discuss our
semantics for updates in RDF and the necessary background
on the Katsuno-Mendelzon approach. Section 4 presents our
proposal to overcome the limitations of RDF to express the
erase operator. Section 5 studies the complexity of the up-
date and erase operations proposed. Finally, in Section 6
we give a thorough account of related work in the field and
their relation with our approach. We conclude in Section 7.

2. PRELIMINARIES
2.1 An abstract formalization of RDF
We present here a streamlined version of RDF. The material
of this subsection can be found in [12] with more detail.

Assume there is an infinite set U (RDF URI references); an
infinite set B = {Nj : j ∈ N} (Blank nodes); and an infinite
set L (RDF literals). A triple (v1, v2, v3) ∈ (U ∪ B) × U ×
(U ∪ B ∪ L) is called an RDF triple. In such a triple, v1

is called the subject, v2 the predicate and v3 the object. We
often denote UBL the union of the sets U , B and L.

Definition 1. An RDF graph (just graph from now on) is
a set of RDF triples. A subgraph is a subset of a graph. The
universe of a graph G, universe(G), is the set of elements of
UBL that occur in the triples of G. The vocabulary of G,
denoted voc(G), is the set universe(G) ∩ (U ∪ L). A graph
is ground if it has no blank nodes.

We will use letters N, X, Y, . . . to denote blank nodes, and
a, b, c, . . . for URIs and literals. Graphically we represent
RDF graphs as follows: each triple (a, b, c) is represented by

a
b→ c. Note that the set of arc labels can have non-empty

intersection with the set of node labels.

We will need some technical definitions. A map is a function
µ : UBL → UBL preserving URIs and literals, i.e., µ(u) = u
and µ(l) = l for all u ∈ U and l ∈ L. A map is ground if its
image does not intersect B. Given a graph G, we define µ(G)
as the set of all (µ(s), µ(p), µ(o)) such that (s, p, o) ∈ G. A
map µ is consistent with G if µ(G) is an RDF graph, i.e. ,
if s is the subject of a triple, then µ(s) ∈ UB, and if p is
the predicate of a triple, then µ(p) ∈ U . In this case, we
say that the graph µ(G) is an instance of the graph G. An
instance of G is proper if µ(G) has fewer blank nodes than G.
This means that either µ sends a blank node to an URI or a
literal, or identifies two blank nodes of G. We will overload
the meaning of map and speak of a map µ : G1 → G2 if
there is a map µ such that µ(G1) is a subgraph of G2.

Two graphs G1, G2 are isomorphic, denoted G1
∼= G2, if

there are maps µ1, µ2 such that µ1(G1) = G2 and µ2(G2) =
G1.

We define two operations on graphs. The union of G1, G2,
denoted G1 ∪G2, is the set theoretical union of their sets of
triples. The merge of G1, G2, denoted G1 +G2, is the union
G1 ∪G′2, where G′2 is an isomorphic copy of G2 whose set of
blank nodes is disjoint with that of G1. Note that G1 + G2

is unique up to isomorphism.

RDFS Vocabulary. There is a set of reserved words defined
in the RDF vocabulary description language, RDF Schema
[6], –just rdfs-vocabulary for us– that may be used to describe
properties like attributes of resources (traditional attribute-
value pairs), and also to represent relationships between re-
sources. It defines classes and properties that may be used
for describing groups of related resources and relationships
between resources.

In this paper –following [12]– we will restrict to a fragment
of this vocabulary which represents the essential features
of RDF. It is constituted by the classes rdfs:Class [class]
and rdf:Property [prop], and by the properties rdfs: range
[range], rdfs:domain [dom], rdf:type [type], rdfs: subClassOf
[sc] and rdfs:subPropertyOf [sp].

2.2 A deductive system for RDF
We present a semantics for our fragment based on a set of
rules. The set of rules is arranged in four groups. Group
A describes the semantics of blank nodes, which is essen-
tially the semantics of RDF graphs without rdfs vocabulary.
Group B describes the semantics of sp, stating that it is a
transitive relation. Group C describes similar semantics for
sc. Group D states the semantics of dom and range, the
domain and range of a relation.

GROUP A (Existential) For a map µ : G′ → G:

G

G′

GROUP B (Subproperty)

(a, type, prop)

(a, sp, a)

(a, sp, b) (b, sp, c)

(a, sp, c)

(a, sp, b) (x, a, y)

(x, b, y)

GROUP C (Subclass)

(a, type, class)

(a, sc, a)

(a, sc, b) (b, sc, c)

(a, sc, c)

(a, sc, b) (x, type, a)

(x, type, b)

GROUP D (Typing)

(a, dom, c) (x, a, y)

(x, type, c)

(a, range, d) (x, a, y)

(y, type, d)

The following deductive system is based on standard rules
defined in [15].

Definition 2 (Deductive System). Let G be a graph.
For each rule r : A

B
above, define G `r G ∪ µ(B) iff there is

a map µ : A → G. Also define G `s G′ iff G′ is a subgraph
of G.

Define G ` G′ if there is a finite sequence of graphs G1, . . . , Gn

such that (1) G = G1; (2) G′ = Gn; and (3) for each i, ei-
ther, Gi `r Gi+1 for some r, or Gi `s Gi+1.

2.3 Semantics and model theory of RDF
The model theory of RDF (given in [15]) follows standard
classical treatment in logic with the notions of model, inter-
pretation, entailment, etc. plus some non-standard features
arising from the fact that predicates can also be elements of
the universe.

Throughout this paper we will work with Herbrand models.
On these lines, the models of RDF are special types of RDF
graphs themselves.

Definition 3. A (Herbrand) model m of G is a ground
RDF graph m closed under ` such that there is a map µ
with µ(G) ⊆ m. We denote this as m |= H. Usually if the
map is known, we will write m |= G[µ].

We define an entailment relationship between RDF graphs
as follows: G |= H iff for every model m, if m |= G then
m |= H.

Two graphs are equivalent, denoted G1 ≡ G2, if G1 |= G2

and G2 |= G1. Note that isomorphism is a purely syntactic
relation among graphs, but equivalence relies on the seman-
tic notion of entailment.

The following theorem establishes the relation between the
deductive system and the entailment relation. The proof
follows the same lines of similar results in [15, 12] with slight
modifications.

Theorem 1. The deductive system of Definition 2 is sound
and complete for |=. That is, G1 ` G2 if and only if G1 |=
G2.

Definition 4. Let G be an RDF graph.
1. G is lean if there is no map µ such that µ(G) is a proper
subgraph of G.
2. A closure of G is a maximal set of triples G′ over universe(G)
plus the rdfs vocabulary such that G′ contains G and is
equivalent to it.
3. The normal form of G, denoted nf(G), is defined as
lean(G′) for a closure G′ of G.

It turns out that although there could be several different
closures for a graph G, its normal form is unique [12].

Theorem 2 (cf. [15, 12]). G1 |= G2 if and only if there is
a map from G2 to cl(G1).

Minimal models also will play a role in what follows. The
minimal model checking problem for RDF is the following
problem: Given an RDF graph G and a ground assignment
µ, is cl(µ(G)) a minimal model for G?

Proposition 1. 1. Let G |=min H iff for all minimal mod-
els m of G, m |= H. Then G |=min H iff G |= H.
2. The minimal model checking problem for RDF is co-NP
complete.
3. The minimal model checking problem for ground RDF
graphs can be solved in polynomial time.

3. SEMANTICS OF UPDATE AND ERASE
3.1 An example as motivation
Consider the simplest problem related to the erase opera-
tion that we can find in RDF, and the semantic issues and
complexity associated to it:

Problem: Delete the tuple t from the graph G.

To be more concrete, let G = {(a, sc, b), (b, sc, c), (X, sc, c)},
and consider the following problems:

Problem 1: Erase (a, sc, c) from G. Result: should (a, sc, c)
be derivable from G after the deletion?. If not, should we
delete (a, sc, b) or (b, sc, c)?.

Problem 2: Erase (a, sc, b) from G. Result: before deletion,
(a, sc, c) was implicit in G (it was entailed by G). Should
it still be in G after deletion?. Should deletion be syntax-
independent?.

Problem 3: Erase {(a, sc, b), (b, sc, c)} from G. Result: is it
the empty set?. Either (a, sc, b) or (b, sc, c)?. Again, should
(a, sc, c) be in the result. And (X, sc, c)?.

Problem 4: Erase {(X, sc, c)} from G. Result: G again?.
Or {(a, sc, b)}?.

Some complexity issues. A standard approach in KB is to
ensure that, after deletion, the statement t should not deriv-
able from G, and that the deletion should be minimal. The
decision problem: “Is G′ a subgraph of G maximal such that
t is not entailed?” is highly complex, more precisely DP-
complete. Nevertheless, the previous problem can be solved
in polynomial time if we keep graphs in normal form, i.e.,
instead of G we keep nf(G). But, calculating normal forms
is as complex as the above problem. Another source of com-
plexity is that the number of the “candidates” for erase can
be exponential, even when deleting only one tuple.

Language Expressiveness. In general, when deleting parts of
the graph G to avoid entailment of t, one has to delete more
than it would be strictly necessary. In general, the result
should be expressed by another formula. For example, if in
G above we erase (a, sc, c), the “faithful” result should be
something like (a, sc, b) ∨ (b, sc, c). The problem is that we
do not have disjunction in RDF.

3.2 Katsuno-Mendelzon approach
The K-M approach to updates can be characterized as fol-
lows from a model-theoretic point of view: for each model
M of the theory to be changed, find the set of models of the
sentence to be inserted that are “closest” to M . The theory
that describes all models obtained in this way is the result
of the change operation. Choosing an update operator then
reduces to choosing a notion of closeness of models [11].

Definition 5. The update of G with H is the logical ex-
pression whose models are

Mod(G ◦H) =
[

m∈Mod(G)

min(Mod(H),≤m) (1)

where min(Mod(H),≤m) is the set of models of H minimal
under ≤m, which is a partial order depending on m.

We will use the following notion of distance between models,
which gives us an order.

Definition 6 (Order). Let G, G1, G2 be models of RDF
graphs with voc(G) ⊆ voc(G2), voc(G1), and let G be a set
of models of RDF graphs.

1. The symmetric difference between two models G1 and
G2, denoted as G1 ⊕G2, is (G1 \G2) ∪ (G2 \G1).

2. Define a relation ≤G such that G1 ≤G G2 (G1 is
“closer” to G than G2) if and only if G2⊕G |= G1⊕G.
(This notion is a little bit weaker than the traditional
G1 ⊕G ⊆ G2 ⊕G.)

3. G1 is ≤G-minimal in G if G1 is in G, and if G2 ∈ G
and G2 ≤G G1 then G2 = G1.

It is not difficult to check that ≤G is a partial order.

3.3 The notion of Update
Working with positive theories, the problem of update is
fairly straightforward. The only concern is keeping the prin-
ciple of irrelevance of syntax, i.e., the update should not
depend on the particular syntax of the sentences involved.

Definition 7 (Update). Let G be a database and H a
graph. Define the update of G with H, G ◦ H, as G + H
(recall that + is the merge operation).

Theorem 3. The update operation defined above satisfies
the K-M approach, that is: m ∈ Mod(G ◦H) if and only if
m ∈ Mod(H) and there exists a model mG ∈ Mod(G) such
that m is ≤mG -minimal.

Proof. If m ∈ Mod(G + H) then m ∈ Mod(G) and
m ∈ Mod(H). Then mG = m is the model in Mod(G)
such that m is ≤mG -minimal in Mod(H). Conversely, let
m ∈ Mod(H) and mG ∈ Mod(G) such that m is ≤mG -
minimal. Then mG ⊆ m: otherwise, (m ∪ mG) <mG m,
contradiction. Hence m |= (G + H).

Proposition 2. Let D, G, H be RDF graphs. Then the def-
inition of update satisfies the following statements, the frag-
ment of the K-M postulates for update not involving negation
nor disjunction:

1. D ◦G |= G,

2. If D |= G then D ◦G ≡ D,

3. (Irrelevance of syntax) If G1 ≡ G2 and H1 ≡ H2 then
G1 ◦H1 ≡ G2 ◦H2,

4. (D ◦G) + H |= D ◦ (G + H),

5. If D ◦G |= H and D ◦H |= G then D ◦G ≡ D ◦H.

3.4 The notion of Erase
Erasing a statement from G means adding models to Mod(G).
In the original K-M approach, G erase H, denoted G •H, is
defined as G∨(G◦¬H), where ◦ is the update operator [18].
Another way of formulating this statement in terms of mod-
els is:

Lemma 1. The erase of G•H is the logical sentence whose
set of models is Mod(G) ∪ (G−H), where

G−H =
[

m∈Mod(G)

min((Mod(H))c,≤m) (2)

and ()c denotes complement. In words, (G − H) is the
collection of models mH 6|= H such that there is a model
m |= G for which mH is ≤m-minimal among the elements
of Mod(H)c. Compare identity (1).

Proposition 3. Let D, G, H be RDF graphs. Then the def-
inition of erase satisfies the following statements, the frag-
ment of the K-M postulates for erase not involving negation
nor disjunction:

1. D |= D •G,

2. If D 6|= H then D •G ≡ D,

3. D •G 6|= G,

4. (Irrelevance of Syntax) If G1 ≡ G2 and H1 ≡ H2 then
G1 •H1 ≡ G2 •H2,

5. (D •G) + G |= D.

4. A PROPOSAL FOR RDF
Representing faithfully in the RDF language the notions of
update and erase defined above is not possible in the general
case. The Update operator presents no difficulties, and it
is in fact an RDF graph (formula). However, the Erase
operator presents problems, arising from the fact that we
have neither negation nor disjunction in RDF. The issue of
expressiveness of representation systems when dealing with
update has been extensively studied for several systems (see
Section 6.1). To the best of our knowledge, there is no such
work for RDF.

A solution to the above limitation is to express the Erase by
means of the best possible approximation using the expres-
siveness of the RDF language. The best scenario is when
G •H is expressible in RDF. It turns out that this happens
rarely. In fact, when | nf(H)| ≥ 2, there is no RDF formula
equivalent to G•H, unless G is trivial. Even if | nf(H)| = 1,
there are few favorable cases (see Theorem 4 below).

If G •H is not expressible in RDF, then we need to approx-
imate it. The following section deals with this approach.

4.1 Approximating the Erase Operator
The approach we are going to follow can be delineated as
minimalist, in the sense that we eliminate the minimum in-
formation necessary to satisfy the user request.

Definition 8 (Erase Candidates). Let G and H be RDF
graphs. Then the set of erase candidates of G and H, de-
noted ecand(G, H), is defined as the set of maximal sub-
graphs G′ of nf(G) such that G′ 6|= H.

Theorem 4. If ecand(G, H) = {E}, then (G •H) ≡ E.

The theorem follows from the following proposition, that ad-
ditionally states that ecand(G, H) defines a partition in the
set of models defined by G • H, and each such set is “rep-
resented” by the RDF graph E. Note that the smaller the
size of ecand(G, H), the better the approximation to G •H
of each element in ecand(G, H), being the limit Theorem 4.

Proposition 4. Let G, H be models and G |= H. If m ∈
(G−H), then there is a unique E ∈ ecand(G, H) with m |=
E.

Proof. Let m 6|= H and mG |= G such that m is ≤mG -
minimal. Assume mG |= nf(G)[µ]. Consider the subgraph
E = µ−1(m ∩ mG) of nf(G). Clearly m |= E (via µ) and
hence and E 6|= H. Claim: E ∈ ecand(G, H). Assume
E ⊆ nf(G) is not maximal with the property of not entailing
H. Then there is t ∈ (nf(G) \ E) with E ∪ {t} 6|= H. Then
consider m′ = cl(m ∪ µ(t)). We have that m′ 6|= H and
m′ <mG m, a contradiction. The uniqueness of E follows
from its maximality.

Next, we will prove that the set of erase candidates is the
best approximation when considering sets of RDF graphs as
formulas for Mod(G • H). In fact, there is no set of RDF
graphs whose set of models is closer to the set of models of
G •H than ecand(G, H):

Theorem 5. There is no set S of RDF graphs such that
Mod(G •H) ⊆ Mod(S) ⊂ Mod(ecand(G, H)).

Proof. First, from Proposition 4 and an easy check fol-
lows that Mod(G • H) ⊆ Mod(ecand(G, H). So, assume
there is a set S = {G1, ...G2} as in the statement of the the-
orem. Then there is at least one E ∈ ecand(G, H) such
that there is no map from any Gi to nf(E). Now con-
sider the free model e of E, that is the model of nf(E)
which replaces every blank X by a fresh constant cX . Hence
e 6∈ Model(S). Claim: e ∈ (G − H). First e ∈ Modc(H),
otherwise E |= H, a contradiction. Now, consider the free
model g of G such that each variable X is map to the same
constant cX to which X was mapped in e. From the maxi-
mality of E follows that e is ≤g-minimal in Modc(H). Hence
e ∈ G−H ⊆ Mod(S), contradiction.

4.2 Computing Erase Candidates
From the discussion in the previous section, it follows the
relevance of computing erase candidates to approximate G•
H.

We will need the notion of proof sequence based on the de-
ductive system from Secc 2.2.

Definition 9 (Proof Sequence). Let G, H be RDF graphs.
Then a proof sequence of H from G is a sequence of RDF
graphs H1, . . . , Hn such that:

1. H1 ⊆ G and H ⊆ Hn.

2. For each pair Hi+1 and Hi it holds one of the following:

(a) (Standard rules) Hi+1 = Hi ∪ {t}, for t1, t2 ∈ Hi

and t1 t2
t

is the instantiation of a rule (see rules
in Secc 2.2).

(b) (Mapping rule) µ(Hi+1) = Hi for a mapping µ.

Because of Theorem 1, proof sequences are sound and com-
plete for testing entailment.

The first element in a proof sequence P will be called base(P).
base(P) is a minimal base for the graphs G, H iff it is min-
imal under set inclusion among the bases of proofs of H
from G, that is, for every proof P ′ of H from G, base(P) ⊆
base(P ′). We refer to the set of minimal bases of G, H as
minbases(G, H).

We use the following notion of a cover for a collection of
sets. A cover for a collection of sets C1, . . . , Cn is a set C
such that C ∩ Ci is non-empty for every Ci.

Lemma 2. Let G, H be RDF graphs. C is a cover for the
set minbases(G, H) iff (G \ C) 6|= H.

Proof. (If) If C is not a cover, then there is a minimal
base B ∈ (G \ C). Then there is a proof P for H from
G\P , where base(P) = B, contradicting that (G\C) 6|= H.
(Only If) Suppose not. Then there is a proof P for H from
G \ C. We have that there is no minimal base B such that
B ⊆ base(P). Hence base(P) is a minimal base for G, H,
contradicting that C is a cover for all minimal bases.

Theorem 6. Let G, H, D be RDF graphs. Then C is a
minimal cover for the collection of sets minbases(G, H) iff
(i) (C \C) 6|= H and (ii) G \C is a maximal subgraph G′ of
G such that G′ 6|= H.

Proof. Follows from Lemma 2. It can be easily verified
that the minimality of C implies the maximality of G \ C
and vice versa.

Corollary 1. Let G, H, D be RDF graphs. E ∈ ecand(G, H)
if and only if E = nf(G) \ C for C a minimal cover for the
collection of sets minbases(nf(G), H).

5. COMPLEXITY
In this section we study the complexity of computing an
erase operation (computing update operations is straightfor-
ward). We show that computing erase candidates reduces to
finding cuts in a class of directed graphs that encode RDF
graphs. In Section 5.1 we explain such directed graphs. In
Section 5.2 we study the complexity of erase operations for
ground graphs. In Section 5.3 we present the complexity for
the general case.

The problem of finding erase candidates reduces to comput-
ing RDF graph we call delta candidates. We introduce the

notion of delta candidates because delta candidates corre-
spond to minimal cuts, which makes the presentation in
this section simpler. We denote dcand(G, H) the set of
RDF graphs {(nf(G) \ G′) : G′ ∈ ecand(G, H)}. Each of
the graphs in dcand(G, H) will be called a delta candidate
for G, H. Notice that the delete candidates can be alter-
natively defined as minimal graphs D ⊆ nf(G) such that
(nf(G) \D) 6|= H.

5.1 Minimal Cuts
We will need the following standard notation related to cuts
in graphs. Let (V, E) be a directed graph. A set of edges
C ⊆ E disconnects two vertices u, v ⊆ V iff each path
from u to v in the graph passes through a vertex in C.
In this case C is called a cut. This cut is minimal if the
removal of any node from C does not yield another cut.
We also generalize cuts for sets of pairs of vertices yielding
multicuts. A minimal multicut for a set of pairs of nodes
(u1, v1), (u2, v2), . . . , (un, vn) is a minimal set of edges that
disconnects ui and vi. Given a graph G and a set of pairs
of nodes N , we denote by MinCuts(N, G) the set of minimal
multicuts of N in G. Notice that when N has a single pair
MinCuts(N, G) is a set of cuts.

We will show that, in general, a delta candidate in dcand(G, H)
is the union of two cuts. One is defined in a directed graph
we will denote as G[sc], and the other in a graph denoted
G[sp].

Given an RDF graph G, denote by G[sc] = (N, V, λ) the
labeled directed graph defined in Table 1 (above). For each
triple of the form specified in the first column of the table,
we have the corresponding edge in V . The set of nodes N
consists of all the nodes mentioned in the edges given in the
table. The function λ : E → G maps each edge in E to
a triple in G, according to Table 1 (above). The labeled
directed graph G[sp] is defined similarly in Table 1 (below).
As notation, we use the letters n and m to refer distinctly
to nodes in G[sc] and G[sp], respectively.

Triple Edge in G[sc]
(a, sc, b) (na, nb)
(a, type, b) (na, nb)
(a, type, class) (na, na)

Edges in G[sp]
(p, sp, q) (mp, mq)
(a, p, b) (ma,b, mp) (mb,a, mp)
(p, dom, c) (mp, mc,dom)
(p, range, c) (mp, mc,range)

Table 1: Description of the graphs G[sc] (above) and
G[sp] (below).

For an RDF triple t we define a set of pairs of nodes that
specified the cut problems related to the erase of the triple
t from an RDF graph G. The set t[sc, G] will contain pairs
of nodes in the graph G[sc] and the set t[sp, G] will contain
pairs of nodes in G[sp]. Formally, we denote by t[sc, G]
the pairs of nodes (u, v), u, v nodes in G[sc] as described
in Table 2 (second column). Analogously, we define t[sp, G]
using Table 2 (third column). As an example, for a triple
of the form (a, sc, b) in a graph G, (a, b, c)[sc, G] contains

the single pair of nodes (na, nb), where both nodes na, nb

belong to G[sc]. Notice that there is always a single pair of
nodes in t[sc, G], and the only case where t[sc, G] may have
several pairs of nodes is when t is of the form (a, type, b).

For an RDF graph U , U [sc, G] is the union of the sets
ti[sc, G], for the triples ti in U .

Triple t ∈ G t[sc, G] t[sp, G]
(a, sc, b) (na, nb) –
(a, sp, b) – (ma, mb)
(a, p, b) – (mab, mp)
(a, type, c) (na, nc) pairs (ma,x, mc,dom) for all x

pairs (mx,a, mc,range) for all x

Table 2: Pair of nodes t[sc, G] and t[sp, G] associated
to a triple t in a graph G.

5.2 Ground Graphs
We first study the case where the graph to erase has a single
triple. Then we study erase operations for ground graphs
with several triples.

A delta dcand(G, t), will be defined with two sets of graphs,
denoted dcandsc(G, t) and dcandsp(G, t). For each D ∈
dcand(G, t), D = D1 ∪ D2, for of any two RDF graphs
D1 ∈ dcandsc(G, t) and D2 ∈ dcandsp(G, t).

Proposition 5. Let G be an RDF graph, G′ = nf(G), and
consider a triple t. Then the following holds:
(i) dcandsc(G, t) = MinCuts(G′[sc], t[sc, G′]).
(ii) dcandsp(G, t) = MinCuts(G′[sp], t[sp, G′]).

Proof. (Sketch) First we express Corollary 1 in terms of
delta candidates as follows. Let G, H, D be RDF graphs.
Then D ∈ dcand(G, H) iff D is a minimal cover set for
minbases(nf(G), H).

We sketch the proof for the case where t is of the form
(a, sc, b). In this case we can verify that the set minbases(G′, H)
corresponds to the RDF triples associated to the simple
paths (paths with no cycles) from na to nb in G[sc]. There-
fore, it follows that the minimal cuts MinCuts(G′[sc], t[sc, G′]
are exactly the delete candidates dcand(G, t). Notice that
in the case where t is of the form (a, sc, b), dcand(G, t) =
dcandsc(G, t), because, in this case dcandsp(G, t) is empty.

Theorem 7. Let G, H be ground RDF graphs, and t be
a ground a triple. The problem of deciding whether E ∈
ecand(G, t) is in PTIME.

Proof. (Sketch) From Proposition 5 it follows that the
problem reduces to determine if D = nf(G)\E is a delta can-
didate in dcand(G, t). Let G′ = nf(G), G′ can be computed
in polytime. The triples in D yield two sets of edges dcandsc

and dcandsp in the graphs G′[sc] and G′[sp], respectively.
Thus we have to test (i) whether t[sc, G′] is a minimal cut in
G′[sc] and (ii) whether t[sp, G′] is a minimal (multi)cut in
G′[sp]. In both cases cases the test can be done in PTIME by
simple reachability analysis in the graphs G′[sc] and G′[sp],
respectively. Testing whether a set of edges S is a mini-
mal cut for (v1, u1) in a graph GR = (V, E) can be done

by performing simple polytime reachability analysis in the
graph as follows. To test whether S is a cut, we eliminate
the edges in S from E, and then test whether v1 reaches u1

in this new graph. To test minimality, do the same test for
each set of edges S′ ⊂ S resulting from removing a single
edge from S. S is minimal iff all of the S′s are not cuts. We
proceed similarly for testing that a set of edges is a minimal
multicut.

Next, we study the problem of computing erase candidates
ecand(G, H) for the case where H has several triples. We
need the following intermediate results.

Lemma 3. Let G, H be ground RDF graphs in normal form.
(i) If E ∈ ecand(G, H), then there exists a triple ti ∈ H such
that E ∈ ecand(G, {ti}). (ii) If D ∈ dcand(G, H), then
there exists a triple ti ∈ H such that D ∈ dcand(G, {ti}).

Proof. (i) Suppose G 6|= H, then there is a triple ti ∈
H such that G 6|= ti, which yields ecand(G, H) = {G} =
ecand(G, {ti}). Now we assume that G |= H. That is H ⊆
nf(G). Let T = (H \I). T is non-empty because I 6|= H and
nf(E) = E. Now if T has more than one triple, then we add
one triple of T to I and obtain I ′ ∈ ecand(G, H) which is
greater than I contradicting that E is maximal. Therefore
T must have exactly one triple, say tj . In this case can be
easily verified that E = ecand(G, {tj}). (ii) Follows directly
from (ii).

The intuition of Lemma 3 is that each delete candidate in
dcand(G, H) is also a delete candidate of dcand(G, {ti}) for
some triple ti in H. Therefore, the problem of computing
delete candidates reduces to finding the minimal sets among
the delete candidates associated to each triple in H. The
following proposition formalizes this idea. For a set S of
RDF graphs, we denote by Max(S) and by Min(S) the sets
of graphs in S that are maximal and minimal, respectively.

Proposition 6. Let G and H be ground RDF graphs. Then
(i) ecand(G, H) = Max(

S
ti∈H ecand(G, {ti}).

(ii) dcand(G, H) = Min(
S

ti∈H dcand(G, {ti}).

Proof. (Sketch) Follows from Lemma 3(ii) and from the
condition that ecand(G, H) and dcand(G, H) contains max-
imal and minimal graphs, respectively.

Proposition 6 yields a basic procedure for computing delete
candidates. Find the minimal cuts for ecand(G, {ti}) for
each triple ti ∈ H, and then find the minimum among them.
The following theorem gives the complexity of the related
decision problem.

Theorem 8. Let G, H, E be ground RDF graphs. (The
problem of deciding whether E ∈ ecand(G, H) is in PTIME.

Proof. (Sketch) Follows from Theorem 7 and Proposi-
tion 6. First, from Theorem 7 find in polytime whether E
is an erase candidate in a set ecand(G, {ti}) for some triple
ti ∈ H. If not E 6∈ ecand(H). Otherwise, test whether E
is minimal among S =

S
ti∈H ecand(G, {ti}. In order to do

so, for each triple t′ ∈ E, test whether E \ {t′} is not in the
set S, which can be done by a set of |H| polynomial tests,
one for each triple in H.

5.3 General Graphs
We start this section by giving the complexity for the general
case.

Theorem 9. Let G, H, I be RDF graphs. (i)The problem of
deciding whether I ∈ ecand(G, H) is DP-complete. (ii) If G
is in normal form the problem is coNP-hard and is in DP.

Proof. (i) (DP-hard) Consider the following problem:
given two RDF graphs without RDFS vocabulary G1, G2

test whether G1 is the core of G2. In [12] we proved that
this problem is DP-complete. Consider the case where the
graphs G, H do not mention RDFS vocabulary and also
G 6|= H. In this case it is easily verified that I is an erase
candidate of G, H iff I is the core of G. Indeed, in this case
I should be nf(G), which is equal to the core of G when
G does not mention RDFS vocabulary. Therefore, testing
whether I is an erase candidate of G, H is DP-hard. (DP)
The test is equivalent to testing the following two conditions:
(a) there is no mapping from H to I; and (b) I is maximal.
Testing (a) is coNP, since the complement implies finding a
mapping from H to I, which is NP. For testing (b), we have
that I is maximal iff (c) for all triple t ∈ G \ I, there is a
mapping from H to I ∪ {t}. Testing (c) is in NP. Therefore
the problem is also in DP.
(ii) (coNP-hard) If E = G the problem is equivalent to test-
ing that there are no mappings from H to G, which is coNP-
complete [12]. Membership in DP can be proved using the
argument of prove (i)(DP).

Given an RDF graph G, define G∗ (the free graph of G) as
the Herbrand model of G. And given a Herbrand model H
of G, we denote by H∗ the graph G.

Proposition 7. Let G, H be RDF graphs. If G = nf(G) we
have ecand(G, H) = (ecand(G∗, H))∗.

Proof. If G = nf(G) we have nf(G∗) = nf(G)∗. Now,
if E is an erase candidate for G, H, then E is the maximal
subgraph of nf(G) such that there is no map from H to E.
Then E∗ is the maximal subgraph of nf(G)∗ = nf(G∗) such
that there is no map from H to E∗. Therefore E∗ is an
erase candidate of G∗, H. The converse can be verified by
a similar argument, that is, if E∗ is an erase candidate of
G∗, H, E is an erase candidate of G, H.

Next, we reduce the problem of computing the erase candi-
dates ecand(G, t), where G is a ground graph and t a single
triple, to computing erase candidates for ground graphs.

Proposition 8. Let G be a ground RDF graph, t be an
RDF triple (t may have blanks), and let G′ = nf(G), and let
A =

S
mi:t→G′(µi(t)). Then:

(i) dcandsc(G, H) = MinCuts(A[sc, G′], G′[sc]).
(ii) dcandsp(G, H) = MinCuts(A[sp, G′], G′[sp])

Proof. (Sketch) For simplicity, we consider that all delta
candidates are of the form D =⊆ dcandsc(G, t). The proof
can be extended easily for the general case. We express
Corollary 1 in terms of delta candidates is as follows. Let
G, t, D be RDF graphs. Then D ∈ dcand(G, t) iff D is a min-
imal cover set for minbases(nf(G), t). The set minbases(nf(G), t)

contains all the triples associated to simple paths between
pairs of nodes (u,vi) in A[sc, G′]. So, the minimal covers for
the collection minbases(nf(G), t) are minimal multicuts in
MinCuts(A[sc, G′], G′[sc]), and vice versa.

Theorem 10. Let G, E be RDF graphs. G is in normal
form, and let H be a single triple. The problem of deciding
whether E ∈ ecand(G, H) is in PTIME.

Proof. Follows from Theorem 8 and propositions 7 and
8. From Proposition 7 the problem is equivalent if we replace
G by G∗, that is G is ground. The problem is also equivalent
to testing whether D = (G \ E) is in dcand(G, t). Let ND

be the set of edges associated to D in the graph G[sc], we
define MD similarly, but for the graph G[sp]. From proposi-
tion 8, we have to prove that ND ∈ MinCuts(A[sc, G], G[sc])
and that MD ∈ MinCuts(A[sp, G], G[sp]). Each of the tests
can be done in polytime, by reachability analysis on the re-
spective graphs, in a similar manner to the test explained in
the proof of Theorem 7. Just note that A[sc, G] cannot be
greater than G, because t is a single triple pattern.

5.4 Further Approximations
We have so far studied the decision problem related to com-
pute the set of erase candidates ecand(G, H). The set ecand(G, H)

(respectively dcand(G, H) requires time Θ(2|G|) to be com-
puted, even for the case where all the graphs are ground and
H has a single triple. Indeed, the number of cuts is expo-
nential, and so is the lower bound. Standard algorithms on
cut enumeration for directed graphs can be adapted for our
setting [21], but require exponential time.

We could further approximate the set of erase candidates
by considering a more restricted notion of maximality, such
a sets of maximal cardinality. In this case the problem of
finding erase candidates, in some of the settings we have
studied in this section, is equivalent to finding minimum k-
edge cuts in directed graphs. A minimum k-edge cut is a
multicut that separates each node vi from ui in each of k
pairs of nodes (vi, ui). The problem has been thoroughly
studied in [10]. For k ≤ 2, the problem is in polytime by
the applications of standard max-flow algorithms. For k > 2
the problem of deciding whether a given set is a minimum
k-edge cut is co-NP complete.

Setting Max-set Max-card
G, H grounds, |H| = 1 PTIME PTIME
G, H grounds PTIME PTIME
G = nf(G), |H| = 1 PTIME coNP-complete
G = nf(G) coNP-hard, DP coNP-hard, DP
General case DP-complete DP-complete

Table 3: Summary of the complexity of the problem
of deciding whether E ∈ ecand(G, H).

Table 3 (first column) shows a summary of complexity re-
sults for the decision problem given in this section when
the erase candidates are maximal under set inclusion (max-
set). The last column shows the complexity of the decision
problem if we approximate erase candidates using maximal-
ity under set cardinality (max-card). For the first two set-
tings, the problem is equivalent to 1-edge cut and 2-edge

cut (the 2-edge cut arises for the erase of triples of the form
(a, type, b)). In this cases, the complete set of erase candi-
dates can be computed in polytime. This contrasts with the
max-set case where, even though the decision problem is also
in polytme, there is an exponential number of minimal cuts.
For the third setting, from Proposition 8, it follows that the
problem is equivalent to testing whether the associated delta
candidate is k-edge minimal in each of the graphs G[sc] and
G[sp], where in general k > 2. Therefore, for the max-card
case, the problem is coNP-complete. The last two columns
show the results of Theorem 9, which apply for the max-set
and max-card cases.

6. RELATED WORK
Even though in this paper we have studied updates on RDF
data, a complete review of related work must address up-
dates on other data models closely related to RDF. For
the sake of clarity, our discussion will be divided in three
parts: (a) updates in knowledge bases and representation
systems; (b) updates in graph databases; (c) updates in web
databases: XML and RDF.

6.1 Updates in knowledge bases and represen-
tation systems

Relevant to our work is the problem of updating incomplete
databases, that is, updating relational databases containing
incomplete information and updates that are not completely
specified. The semantics of an incomplete database is the
set of all of its possible states. Updates are then defined over
this interpretation. Thus, a deletion would consist in elim-
inating a tuple from every possible database state. Analo-
gously, an insertion must be applied to all possible states.
The notion of representation system comes in to determine
the degree in which the system is capable of expressing the
new state of the database. In short, a representation system
is a triple < S, rep, Ω > where S is a set of tables, rep is a
mapping from S to sets of complete instances, and Ω is a
set of allowed operations (like insertion, join, and so on)

Abiteboul and Grahne [1], based on work of Imielinsky and
Lipski [17], address strong and weak representation systems
and generalize their notions for handling updates. If the
exact result of all allowed expressions can be computed, we
have a strong representation system. Otherwise, we may
limit to obtain approximate answers. We are then in the
presence of a weak representation system. The authors
study three kinds of representation systems: Codd, naive,
and the so-called C-tables (conditional tables). A Codd table
is the usual relation with unknown (null) values. A naive
table is a relation containing variables and constants. C-
tables are tables with global and local conditions. A result
by Imielinsky and Lipski [17] states that representation sys-
tems based on naive tables are weak if the set Ω includes
standard relational operations but does not include negative
selection nor set difference. In [1] this result is extended to
consider updates. They show that for naive tables, when Ω
is the same as above plus insertion, we have a weak repre-
sentation system. However, if Ω contains positive selection,
projection, and deletion, we do not have a weak representa-
tion system. This result is explained by the fact that naive
tables do not handle disjunction. The conclusion is that
naive tables are adequate for querying but not for updates.

The relationship of the above theory with the problem ad-
dressed in this paper is that RDF can be considered an ex-
tension of a representation system based on the notion of
naive tables without negation. Thus, in order to be ap-
propriate for handling update and erase, RDF would need
negation and disjunction.

6.2 Updates in graph databases
Updates have been also studied in the context of graph
databases. This is relevant to our work because RDF rep-
resents graph-like data, and its model is closely related to
graph data models [2]. Many proposals address querying
graph databases [8, 14, 7]. Using labeled graphs as repre-
sentation of a database schema an instance allows thinking
database updates as transformations that can be expressed
using pattern matching. This is the idea of the Graph-based
data model (GDM) and its update language introduced by
Hidders [16]. In GDM, an instance graph nodes represent
object, composite values and values, while in a schema graph
they represent classes. GDM supports inheritance through
special edges labeled isa. Instance graphs where composite
and value nodes are not unique are called weak. GUL, the
update for GDM, is based on pattern matching. Two basic
operations are defined: addition and deletion. Addition is
specified using a base pattern that has to be matched, and
an extension pattern indicating what nodes, edges and class
names should be added when the base pattern is matched.
For deletion there is a base pattern which contains a core
pattern. The nodes, edges and class names that are not in
core pattern are deleted for every matching of the base pat-
tern. These operations may result in weak instance graphs.
The author solves this problem performing a reduction, an
operation that merges nodes and yields an instance graph.
The operations proposed in GUL have a syntactic flavor.
From this point of view, the approach is a promising line to
implement in RDF the semantic notions presented in this
paper.

6.3 Updates in web databases: XML and RDF
XML Updates have been extensively addressed in the XML
world. Tatarinov et al [28] proposed an XQuery extension
that has been the first step leading to the proposal cur-
rently under study at the W3C [32]. In order to analyze the
kinds of update operators needed in RDF, it is relevant to
know what has been stated as necessary in XML. The W3C
specified that update operators in XML MUST,SHOULD
and MAY have some properties, like node deletion, inser-
tion, and modification. For instance, the MUST properties
for the XQuery Update Facility are: (a) be able to delete
nodes; (b) be able to insert new nodes in specified positions;
(c) be able to replace a node (d) be able to iterate over nodes
to perform updates; (e) be able to compose update opera-
tors with other update operators; (f) be compositional with
respect to XQuery expressions, that is, it may be possible
to use an update wherever an XQuery expression is used.

RDF Updates have recently attracted the attention of the
RDF community. Nevertheless, all proposals have so far
ignored the semantic problems arising for updates associated
to the existence of blank nodes and the presence of RDFS
vocabulary with built-in semantics.

Sarkar [27] proposed five update operators, also based on

[28]. These operators are: (a) Add: applies to nodes (sub-
jects) as well as edges (predicates); (b) InsertAfter: ap-
plies to the rdf:Seq type container element only; (c) Delete:
deletes all details about a resource (applies to nodes as well
as edges); (d) Remove: applies only to a blank node that
has a user-supplied blank node identifier, and slightly dif-
fers from the Delete operation;(e) Replace: replaces an old
URI value, blank node identifier or a literal with a new URI
value, blank node identifier or a literal respectively.

Zhan [33] proposed an extension to RQL. The operators
considered are: (a) Insert, that includes edges (indicating
properties, domains, and so on) or nodes. (b) Delete, which
eliminates a triple from the existing model. This may imply
removing an edge (property) or a node (if the deleted edge
disconnects the node from the graph). (c) Update an exist-
ing triple. Updates are defined in an operational fashion,
and semantic issues are considered to a very limited extent
(e.g. if the inserted elements belong to a certain domain).
Besides, the proposal does not account for blank nodes.

Another approach was proposed by Ognyanov and Kiryakov
[24]. The main statement of this approach is that the two
basic types of updates in an RDF repository are the ad-
dition and the removal of a statement (triple). Then, the
work turns simply into a description of a graph updating
procedure, where labels indicate a version of the graph at a
certain moment in time.

Finally, Magiridou et al [23] recently proposed RUL, a declar-
ative update language for RDF. They define three oper-
ations, insert, delete and modify. The proposal is based
on RQL and RVL. The language has three main features:
(a) fine-grained granularity of the supported update prim-
itives; (b) deterministic behavior of a sequence of update
statements; (c) smooth integration with an underlying RDF
query language. The main drawback of this work is that
it does not consider blank nodes and schema updates, i.e.,
the issues that raise the most interesting theoretical issues.
Leaving these issues out turns the problem trivial. Thus, the
authors basically end up dealing with changes to instances
of classes.

7. CONCLUSIONS
In this paper we considered an RDF database as a knowl-
edge base, and treated the problem of updating the database
in the framework of the traditional proposals of knowledge
base updating. We showed that our approach provides syn-
tax independence in the sense of [11]. We characterized the
update of a graph G with a graph H within the framework of
the Katsuno-Mendelzon approach, and defined the meaning
of the update and erase operations in RDF over a solid foun-
dation. In the latter case, as we do not have negation nor
disjunction in RDF, we provided an approximation to the
Katsuno-Mendelzon postulates. Furthermore, we provided
algorithms for calculating the update and erase operations
and their approximations, including a detailed complexity
analysis. Thus, we thoroughly studied the foundations of
the semantics for updating RDF data.

Future work includes developing an update language for
RDF, probably along the lines of transaction logic [5, 4],
which seems a promising basis for the kinds of updates stud-

ied in this paper, given their transactional nature; extend-
ing our study to more expressive languages for the semantic
web, like OWL; investigating other notions of distance (this
notions, for example, may give give weight to triples based
on their levels of trust).

8. REFERENCES
[1] S. Abiteboul and G. Grahne. Update semantics for

incomplete databases. In Proceedings of the 11th
International Conference on Very Lagre
Databases(VLDB’85), Stockholm, Sweden, 1985.

[2] R. Angles and C. Gutierrez. Querying RDF data from
a graph database perspective. In European Conference
on the Semantic Web (ECSW’05), pages 346–360,
2005.

[3] G. Antoniou and F. van Harme. A Semantic Web
Primer. MIT Press, London, England, 2004.

[4] A. Bonner and M. Kifer. An overview of transaction
logic. Theoretical Computer Science, 1994.

[5] A. Bonner, M. Kifer, and M. Consens. Database
programming in transaction logic. In Proceedings of
the Fourth International Workshop on Database
Programming Languages (DBPL), pages 309–337, New
York City, USA, 1993.

[6] D. Brickley and R.V.(Eds.) Guha. RDF vocabulary
description language 1.0: RDF schema. W3C Working
Draft 23 January 2003.

[7] M. P. Consens and A. O. Mendelzon. Graphlog: A
visual formalism for real life recursion. In Proceedings
of the Ninth ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, pages 404–416, 1990.

[8] I. Cruz, A. Mendelzon, and P. Wood. A graphical
query language supporting recursion. In Proceedings of
SIGMOD Conference, pages 323–330, San Francisco,
USA, 1987.

[9] P. Gardenförs. Conditionals and changes of belief.
Acta Philosophica Fennica, Vol. XX, pages 381–404,
1978.

[10] N. Garg. Multicommodity flows and approximation
algorithms. Ph.D. Thesis. Department of Computer
Science and Engineering, Indian Institute of
Technology, Delhi, 1994.

[11] G. Grahne, A.O. Mendelzon, and P. Z. Revesz.
Knowledgebase transformations. Journal of Computer
and System Sciences, Vol 54(1), pages 98–112, 1997.

[12] C. Gutierrez, C. Hurtado, and A.O. Mendelzon.
Foundations of semantic web databases. In 23rd.
Symposium on Principles of Database Systems
(PODS’04), pages 95–106, 2004.

[13] C. Gutierrez, C. Hurtado, and A. Vaisman. Temporal
RDF. In European Conference on the Semantic Web
(ECSW’05) (Best paper award), pages 93–107, 2005.

[14] M. Gyssens, J. Paredaens, and D. Van Gucht. A
graph-oriented object database model. In Proceedings
of the Ninth ACM Symposium on Principles of
Database Systems, pages 417–424, 1990.

[15] Patrick Hayes(Ed.). RDF semantics. W3C Working
Draft, October 1st., 2003.

[16] A.J.H. Hidders. A graph-based update language for
object-oriented data models. Doctoral Thesis,
Technische Universiteit Eindhoven, The Netherlands,
2001.

[17] T. Imielinski and W. Lipski. Incomplete information
in relational databases. Journal of ACM, 31(4), pages
761–791, 1984.

[18] H Katsuno and A. O. Mendelzon. On the difference
between updating knowledge base and revising it. In
Proceedings of the 2nd International Conference on
Principles of Knowledge Representation and
Reasoning, pages 387–394, Cambridge, MA, 1991.

[19] A.M. Keller and M. Winslett. On the use of extended
relational model to handle changing incomplete
information. IEEE Trans. on Software Engineering,
SE-11:7, pages 620–633, 1985.

[20] O. Lassila and R.(Eds.) Swick. Resource description
framework (RDF) model and syntax specification.
W3C Working Draft, 1998.

[21] Hung-Yau Lin, Sy-Yen Kuo, and Fu-Min Yeh.
Minimal cutset enumeration and network reliability
evaluation by recursive merge and bdd. In Proceedings
of the Eighth IEEE Symposium on Computers and
Communications (ISCC 2003), 30 June - 3 July,
Kiris-Kemer, Turkey, 2003.

[22] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and
R. Volz. Establishing the semantic web 11: An
infrastructure for searching, reusing, and evolving
distributed ontologies. In Proceedings of the 12th.
International Conference on World Wide Web, pages
439–448, 2003.

[23] M. Magiridou, S. Sahtouris, S. Christophides, and
M Koubarakis. Rul: A declarative update language for
rdf. In International Semantic Web Conference, pages
506–521, 2005.

[24] D. Ognyanov and A. Kiryakov. Tracking changes in
rdf(s) repositories. In EKAW’02, pages 373–378,
Siguenza, Spain, 2002.

[25] E. Prud’Hommeaux and A. Seaborne (Eds.). SPARQL
query language for rdf. W3C Working Draft, July,
2005.

[26] R. Reiter. On specifying database updates. Journal of
Logic Programming 25(1), pages 53–91, 1995.

[27] S. Sarkar and H.C. Ellis. Five update operations for
rdf. Rensselaer at Hartford Technical Report,
RH-DOES-TR 03-04, 2003.

[28] I. Tatarinov, G. Ives, A. Halevy, and D. Weld.
Updating XML. In Proceedings of ACM SIGMOD
Conference, pages 413–424, Santa Barbara, California,
2001.

[29] U. Visser. Intelligent information integration for the
semantic web. Lecture Notes in Artificial Intelligence
(3159), 2004.

[30] World Wide Web Consortium. Semantic Web, 2001.
http://www.w3.org/2001/sw/.

[31] World Wide Web Consortium. RDF semantics, 2004.
http://www.w3.org/TR/rdf-mt.

[32] World Wide Web Consortium. XQuery Update Facility
Requirements (working draft), 2005.
http://www.w3.org/TR/2005/WD-xquery-update-
requirements-20050603/.

[33] Y. Zhan. Updating rdf. In 21st Computer Science
Conference, Rensselaer at Hartford, 2005.

