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Abstract

Graph database models can be characterized as those where data
structures for the schema and instances are modeled as graphs or gen-
eralizations of them, and data manipulation is expressed by graph-
oriented operations and type constructors. These models flourished
in the eighties and early nineties in parallel to object oriented mod-
els and their influence gradually faded with the emergence of other
database models, particularly the geographical, spatial, semistructured
and XML.

Recently, the need to manage information with inherent graph-like
nature has brought back the relevance of the area. In fact, a whole
new wave of applications for graph databases emerged with the devel-
opment of huge networks (e.g. Web, geographical systems, transporta-
tion, telephones), and families of networks generated thanks to the
automation of the process of data gathering (e.g. social and biological
networks).

The main objective of this survey is to present in a single place
the work that has been done in the area of graph database model-
ing, concentrating in data structures, query languages and integrity
constraints.
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1 Introduction

The term data model has been used in the information management com-
munity with different meanings and in diverse contexts. In its most general
sense, a data[base] model (db-model)1 is a concept that describes a collection
of conceptual tools for representing real-world entities to be modeled and
the relationships among these entities [116]. Often this term denotes simply
a collection of data structure types, or even a mathematical framework to
represent knowledge [90].

From a database point of view, the conceptual tools defining a db-model
should address at least the structuring and description of the data, its main-
tainability and the form to retrieve or query the data. According to these
criteria, a db-model is defined as a combination of three components, first
a collection of data structure types, second a collection of operators or in-
ference rules and third a collection of general integrity rules [31]. Note that
several proposals of db-models define only the data structures, omitting
sometimes operators and/or integrity rules.

Due to the importance of modeling conceptually, philosophically and in
practice, db-models have become essential abstraction tools. Among the
purposes of a db-model are: Tool for specifying the kinds of data permis-
sible; general design methodology for databases; coping with evolution of
databases; development of families of high level languages for query and
data manipulation; focus in DBMS architecture; vehicle for research into
the behavioral properties of alternative organizations of data [31].

Since the emergence of database management systems, there has been an
ongoing debate about what the db-model for such a system should be. The
evolution and diversity of existent db-models show that there is no silver
bullet for data modeling. The parameters influencing their development are
manifold, and among the most important we can mention the characteris-
tics or structure of the domain to be modeled, the type of intellectual tools
that appeals the user, and of course, the hardware and software constraints
imposed. Additionally, each db-model proposal is grounded on certain the-
oretical tools, and serves as base for the development of related models.
Figure 1 sketches these influences.

1In the database literature the terms “data model” and “database model” (and some-
times even “model”) usually denote the same concept. In the scope of this survey we will
consider them as synonyms and use the abbreviated expression db-model.
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Figure 1: Evolution of database models. Rectangles denote models, arrows
indicate influences, and circles denote theoretical developments. On the left
hand side a time-line in years. (After a diagram by A. O. Mendelzon.)

Surveys and taxonomies of db-models are as manifold as db-models
themselves (e.g. [116, 93, 17, 72]). Following we briefly describe the most
representative and widely accepted and/or used db-models which are of gen-
eral purpose, i.e., although best suited for particular kinds of data, do not
have any particular application in mind.
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1.1 Database Models Evolution – Brief Historical Overview

In the beginnings of the design of db-models, physical (hardware) constraints
were one of the fundamental parameters to be considered. Before the advent
of the relational model, most db-model focused essentially in the specifica-
tion of the structure of data in actual file systems. Kerschberg et al.c̃ite50130
developed a taxonomy of db-models prior to 1976, comparing essentially
their mathematical structures and foundation, and the levels of abstraction
used.

Two representative db-models are the hierarchical [126] and network [122]
models, which emphasize the physical level, and offer the user the means to
navigate the database at the record level, thus providing low level operations
to derive more abstract structures.

The relational db-model was introduced by Codd [30, 32] and highlights
the concept of level of abstraction by introducing the idea of separation
between physical and logical levels. It is based on the notions of sets and
relations. Due to its simplicity of modeling, it gained a wide popularity
among business applications.

Semantic db-models [100] allow database designers to represent objects
and their relations in a natural and clear manner to the user (as opposed
to previous models). They intended to provide the user with tools that
could capture faithfully the semantics of the information to be modeled. A
well-known example is the entity-relationship model [28].

Object oriented db-models [75] appeared in the eighties, when most of the
research was concerned with so called “advanced systems for new types of ap-
plications [17]. These db-models are based on the object-oriented paradigm
and their goal is representing data as a collection of objects that are orga-
nized in classes and have complex values associated with them.

Semistructured db-models [23] are designed to model data with a flexi-
ble structure, e.g., documents and Web pages. Semistructured data (also
called unstructured data) is neither raw nor strictly typed as in conventional
database systems. Additionally, data is mixed with the schema, a feature
which allows extensible exchange of data. These db-models appeared in the
nineties and are currently in evolution.

The XML (eXtended Markup Language) [21] model did not originate in
the database community. Although originally introduced as a standard to
exchange and model documents, soon it became a general purpose model,
with focus on information with tree-like structure. Similar to semistructured
model, scheme and data are mixed. See Section 2.3 for a more in depth
comparison among these models.
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Other Models and Frameworks. There are other important db-models
designed for particular applications, as well as modeling frameworks not di-
rectly focusing in database issues, which indirectly concern graph database
modeling. Among the db-models are Spatial databases [43, 98, 109], Ge-
ographical Information Systems (GIS) [112, 15], Temporal db-models [121,
29], Multidimensional db-models [130]. Frameworks related to our topic, but
not directly focusing in database issues are Semantic Networks [119, 107, 56],
Conceptual Graphs [117, 118], and Knowledge Representation Systems: G-
Net Model [40], Topics Maps [101, 102, 1, 89], Hypertext [33]. Due to the
size limitations of this survey they are not covered here.

1.2 Graph Database Models – Brief Historical Overview

The notion of graph db-model made its appearance almost in parallel with the
object oriented db-models, as an alternative to the limitations of traditional
db-models for capturing the inherent graph structure of data appearing in
applications such as hypertext or geographic database systems, where the
interconnectivity of data is an important aspect.

Activity around graph databases flourished in the first half of the nineties
and then the topic almost disappeared. The reasons for this decline are
manifold: the database community moved toward semistructured data (a
research topic which did not have links to the graph database work in the
nineties); the emergence of XML captured all the attention of the work on
hypertext; people working on graph databases moved to particular appli-
cations like spatial data, web, documents; the tree-like structure is enough
for most applications. Figure 2 reflects this evolution by means of papers
published in main conferences and journals.

Graph db-models emerged with the objective of modeling information
whose structure is a graph. In an early approach, Roussopoulos and My-
lopoulos [107] facing the failure of current (at the time) systems to take into
account the semantics of the database, proposed a semantic network to store
data about the database. An implicit structure of graphs for the data itself
was presented in the Functional Data Model [115], whose goal was to provide
a “conceptually natural” database interface. A different approach proposed
the Logical Data Model [79], where an explicit graph db-model intended
to generalize the relational, hierarchical and network models. Years later
Kunii [78] proposed a graph db-model for representing complex structures
of knowledge called G-BASE.

In the late eighties, Lécluse et al. [82] introduced O2, an object oriented
db-model based on a graph structure. On the same lines, GOOD [59] is an
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GOQL [113], Gram [11], GRAS [73], GraphDB [58], GROOVY [85],
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ode3 [83], Hy+ [34], LDM [79, 80], OEM [97], O2 [82], PaMaL [48],
R&M [107], Simatic-XT [86], Tompa [125], W&S [132].
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influential graph-oriented object model, intended to be a theoretical basis
for a system in which manipulation as well as representation are transpar-
ently graph-based. Among the subsequent developments based on GOOD
are: GMOD [13] that proposes a number of concepts for graph-oriented
database user interfaces; Gram [11] which is an explicit graph db-model
for hypertext data; PaMaL [48] which extends GOOD with explicit rep-
resentation of tuples and sets; GOAL [69] that introduces the notion of
association nodes; G-Log [99] which facilitates working with end user inter-
faces; and GDM [68] that incorporates features from object-oriented, Entity-
Relationship and Semistructured models.

There were proposals that used generalization of graphs with data mod-
eling purposes. Levene and Poulovassilis [84] introduced a db-model based
on nested graphs, called the Hypernode Model, on which subsequent work
was developed [104, 83]. The same idea was used for modeling multi-scaled
networks [86] and genome data [54]. GROOVY [85] is an object oriented
db-model which is formalized using hypergraphs. This generalization was
used in other contexts: query and visualization in the Hy+ system [34];
modeling of data instances and access to them [132]; representation of user
state and browsing [125];

There are several other proposals that deal with graph data models.
With a motivation coming from managing information in transport net-
works, Güting proposed the model GraphDB [58] intended for modeling
and querying graphs in object-oriented databases. Another general pur-
pose project is Database Graph Views [57], that proposes an abstraction
mechanism to define and manipulate graphs stored in either relational ob-
ject oriented or file systems. The project GRAS [73] uses attributed graphs
for modeling complex information from software engineering projects. Fi-
nally, the well known OEM [97] model aims at providing integrated access
to heterogeneous information sources, focusing in information exchange.
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1.3 Scope and Organization of this Survey

The objective of this survey is to present in a single place the work that has
been done in the area of graph database modeling. We stress the fact that
the goal of the survey, rather than making a balance of the area, is to present
in a comprehensive way the different developments and relevant pointers to
facilitate a researchers to go to the sources. This obvious goal of a survey
is highlighted in our case by the fact that the area has been overlooked and
lately is quickly gaining relevance.

We concentrate in presenting the main aspects of modeling, that is, data
structures, query languages and integrity constraints. Considering that the
area has not yet an identity by itself, we spend Section 2 surveying different
existing views on graph db-models, and the motivations and application
that drive this developments. Section 3 surveys the most relevant graph
db-models and describe in detail each of them.

There is a substantial amount of work dealing with query languages and
graph interfaces. In fact, we think that transformation and query languages
for graphs are topics that deserves a thorough survey by itself. On the
other hand, not all the db-models treated in Section 3 consider the topic
of constraints, and several of them do not define a proper query language.
Section 4 gives a brief overview of these topics with the sole purpose of giving
a flavor of the area while a survey comes up.

We would like to warn the reader that there are several related areas that
fall out of the scope of this survey. Among the most important we can men-
tion graph visualization, graph data structures and algorithms for secondary
memory, graph methods for databases, and in general graph database sys-
tem implementation. Table 19 indicates which models covered in this survey
were implemented.
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2 Graph Data Modeling

2.1 What is a Graph Data Model?

Although almost all papers on db-models cited in the previous section use
the term “graph data[base] model”, few of them define the notion explicitly.
Nevertheless their views on what a graph db-model is do not differ sub-
stantially. Usually the implicit definition is given by comparing the model
against other models where graphs are involved, like the semantic, object-
oriented and semi-structured models.

In what follows we will conceptualize the notion of graph db-model ac-
cording to the three basic components of a db-model, namely data struc-
tures, transformation language, and integrity constraints. A graph db-model
is characterized by:

• The data and/or the schema are represented by graphs, or by data
structures generalizing the notion of graph (hypergraphs, hypernodes,
hygraphs, etc.). Almost everybody coincide on this point modulo slight
variations.

Let us review different wordings of authors on this issue. The ap-
proach is to model the database directly and entirely as a graph [58].
A graph db-model is one whose single underlying data structure is a
labeled directed graph; the database consists of a single digraph [83].
A database schema in this model is a directed graph, where leaves
represent data and internal nodes represent connections between the
data [79]. Directed labeled graphs are used as the formalism to spec-
ify and represent database schemes, instances, and rules [99]. The
model is basically defined as a labeled directed graph. In this model,
a database is described in terms of a labeled directed graph called
schema graph [78]. A graph db-model formalizes the representation
of the data structures stored in the databases as a graph [54]. The
schema as well as the instance of an object database is represented
by a graph. The nodes of the instance graph represent the objects of
the database [59]. Database instances and databases schemes are de-
scribed by certain types of labeled graphs [68]. The model for data is
organized as graphs [11]. Labeled graphs are used to represent schemes
and instances [69].
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On top of these descriptions, one could add the fact that sometimes the
schema and the data (instances) are difficult to differentiate in these
models, a fact that resembles closely semi-structured models. But in
most cases the schema and the instances are separated.

• Data manipulation is expressed by graph transformations [59], or by
operations whose main primitives address directly typical features of
graphs, like paths, neighborhoods, subgraphs, graph patterns, connec-
tivity, and statistics about graphs (diameter, centrality, etc.). The
db-model defines a flexible collection of type constructors and opera-
tors which create and access the graph data structures [54], or in other
terms, the approach is to express all queries in terms of a few power-
ful graph manipulation primitives [58]. The operators of the language
can be based on pattern matching, i.e. finding of all occurrences of a
prototypical piece of an instance graph [69].

• The existence of integrity constraints enforcing the consistency of the
data, which are directly related to the graph data structure. For ex-
ample, labels with unique names [55], typing constraints on nodes [80],
functional dependencies [85], domain and range of properties [76].

Summarizing, a graph db-model is a model where the data structures
for the schema and/or instances are modeled as a (labeled)(directed) graph,
or generalizations of the graph data structure, where data manipulation
is expressed by graph-oriented operations and type constructors, and has
integrity constraints appropriate for the graph structure.

2.2 Why a Graph Data Model?

The application areas of graph db-model models are those were information
about the interconnectivity or the topology of the data is more important, or
as important as, the data itself. This is usually accompanied by the fact that
data and relations among data are at the same level. In fact, introducing
graphs as a modeling tool has several advantages for this type of data.

First, it leads to a more natural modeling: graph structures are visi-
ble to the user. They allow a natural way of handling data appearing in
applications (e.g. hypertext or geographic databases). Graphs have an im-
portant advantage: they can keep all the information about an entity in a
single node and show related information by arcs connected to it [99]. Graph
objects (like paths, neighborhoods) may have first order citizenship; a user
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Type of Abstract. Base data Main Data complex.
Model level structure Focus homogeneity.

Network physical point + rec. records simple/hom.

Relational logical relations data/attributes simple/hom.

Semantic user graphs schema/relations medium/hom.

Object-O logical/physical objects object/methods high/het.

Semistruct. logical tree data/components. medium/het.

Graph logical graph data/relations medium/het

Table 1: A coarse-granularity comparative view among different general-
purpose database models. The parameters are: abstraction level, base data
structure used, what are the types of information objects the db-model focus
in, complexity and homogeneity of the data items modeled.

can define some part of the database explicitly as a graph structure [58],
allowing encapsulation and context definition [84].

Second, queries can refer directly to this graph structure. Associated
with graphs are specific graph operations in the query language algebra,
such as finding shortest paths, determining certain subgraphs, and so forth.
Explicit graphs and graph operations allow a user to express a query at a
very high level. To some extent, this is in contrast to graph manipulation
in deductive databases, where often fairly complex rule programs need to
be written [58]. Last but not least, for purposes of browsing it may be
convenient to forget the schema [24].

Third, as far as implementation is concerned, graph databases may pro-
vide special storage graph structures for the representation of graphs and the
most efficient graph algorithms available for realizing specific operations [58].
Although the data may have some structure, the structure is not as rigid,
regular or complete as traditional DBMS. It is not important to require full
knowledge of the structure to express meaningful queries [4]. The system
can use efficient graph algorithms designed to utilize the special graph data
structures [58].

2.3 Comparison with other Database Models

In this section we compare the most influential db-models with graph db-
models. Table 1 presents a coarse granularity overview of the most influential
models. Below we present the details.
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Physical db-models. They were the first ones to offer the possibility
to organize large collections of data. Among the most important ones are
the hierarchical [126] and network [122] models. These models lack good
abstraction level and are very close to physical implementations. The data-
structuring is not flexible and not apt to model non-traditional applications.
For our discussion they do not have much relevance.

Relational db-model [30, 32] was introduced by Codd to highlight the
concept of level of abstraction by introducing a clean separation between
physical and logical levels. Gradually the focus shifted to modeling data as
seen by applications and users [93]. This is the emphasis and the achieve-
ment of the relational model, in a time where the domain of application were
basically simple data (banks, payments, commercial and administrative ap-
plications).

The relational model was a landmark development because it provided
a mathematical basis to the discipline of data modeling. It is based on the
simple notion of relation, which together with its associated algebra and
logic, made the relational model a primary model for database research. In
particular, its standard query and transformation language, SQL, became a
paradigmatic language for querying.

The differences between graph db-models and the relational db-model
are manifold. Among the most relevant ones are: the relational model was
directed to simple record-type data with a structure known in advance (air-
line reservations, accounting, inventories, etc.). The schema is fixed and
extensibility is a difficult task. Integration of different schemes is not easy
nor automatizable. The query language does not support paths, neighbor-
hoods and several other graph operations, like connectivity (an exception is
transitivity). There are no objects identifiers, but values.

Semantic db-models [100] have their origin in the necessity to provide
more expressiveness and incorporate a richer set of semantics into the database
from the user point of view. They allow database designers to represent ob-
jects and their relations in a natural and clear manner (similar to the way
the user view an application) by using high-level abstraction concepts such
as aggregation, classification and instantiation, sub- and super-classing, at-
tribute inheritance and hierarchies [93]. A well-known example is the entity-
relationship model [28]. It has become a basis for the early stages of database
design, but due to lack of preciseness cannot replace models like relational
or Object Oriented. Other examples of semantic db-models are IFO [3]
and SDM [63]. For graph db-models research, semantic db-models are rele-
vant because they are based on a graph-like structure which highlights the
relations between the entities to be modeled.
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Object oriented (O-O) db-models [75] appeared in the eighties, when the
database community realized that the relational model was inadequate for
data intensive domains (Knowledge base, engineering applications). O-O
databases were motivated by the emergence of non-conventional database
applications consisting of complex objects systems with many semantically
interrelated components as in CAD/CAM, computer graphics or information
retrieval. According to the O-O programming paradigm on which they are
based, their objective is representing data as a collection of objects that are
organized in classes and have complex values and methods associated with
them. Although O-O db-models permit much richer structures than the
relational db-model, they still require that all data conform to a predefined
schema [4].

O-O db-models have been related to graph db-models due to the explicit
or implicit graph structure in their definitions [85, 13, 59]. Nevertheless,
there remain important differences rooted in the form that each of them
models the world. O-O db-models view the world as a set of complex objects
having certain state (data) and interacting among them by methods. On
the contrary, graph db-models, view the world as a network of relations,
emphasizing the interconnection of the data, and the properties of these
relations. The emphasis of O-O db-models is on the dynamics of the objects,
their values and methods. In contrast, graph db-models emphasizes the
interconnection while maintaining the structural and semantic complexity
of the data. A detailed comparison between these db-models may be founded
in [17, 72, 93, 116].

Semistructured db-models [23, 2]. The need for semistructured data (also
called unstructured data) was motivated by: the increased existence of un-
structured data, data exchange and, data browsing [23]. In semistructured
data the structure is irregular, implicit and partial; the schema does not
restrict the data, only describes it, is very large and rapidly evolving; the
information associated with a schema is contained within the data (data con-
tains data and its description, so it is self-describing) [2]. Among the most
representative models are OEM [97], Lorel [4], UnQL [24], ACeDB [120]
and Strudel [44]. Generally, semistructured data is represented by a tree-
like structure. Nevertheless cycles between data are possible, establishing in
this way a structural relation with graph db-models. Some authors charac-
terize semistructured data as rooted directed connected graphs [24].
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2.4 Graph Data Model Motivations and Applications

Graph db-models are motivated by real-life applications where information
about interconnectivity of its pieces is a salient feature. We will divide these
application areas in Classical and Complex networks.

Classical Applications. The applications that motivated the introduction
of the notion of graph databases were manifold:

1. Generalizations of classical db-models [79]. Classical models were crit-
icized for their lack of semantics, the flat structure of the data they
allow, the difficulties for the user to “see” the connectivity of the data,
and the difficult to model complex objects [84].

2. On the same direction, the observation that graphs have been integral
part of the database design process in semantic and object-oriented
db-models, brought the idea of introducing a model in which both,
data manipulation and data representation were graph based [59].

3. Limitations of expressive power of languages for complex applications
motivated also the search for models that resemble more closely such
applications [99].

4. Limitations (at the time) of knowledge representation systems [78],
and the need for intricate but flexible knowledge representation and
derivation techniques [99].

5. The need for improving functionalities of object-oriented db-models [104].
In this direction the application in mind were CASE, CAD, image pro-
cessing, and scientific data analysis.

6. Graphical and visual interfaces, geographical, pictorial and multimedia
systems [61, 34, 113].

7. Applications where data complexity exceeded the relational db-model
capabilities also motivated graph databases. For instance, managing
transport networks (train, plane, water, telecommunications) [87], spa-
tially embedded networks like highway, public transport [58]. Several
of these applications are now in the field of Geographical information
systems and spatial databases.

8. There are other applications who motivated graph db-models: software
systems, integration [73].
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9. Lately, the emergence of hypertext on-line made evident the need for
other db-models [125, 132, 11]. Together with hypertext, the Web
created the need for a model more apt than classical ones for informa-
tion exchange. This was one of the main motivation of semistructured
models.

Complex Networks. Several areas have witness the emergence of huge
networks of data which share some particular mathematical parameters,
called complex networks [95, 9, 42]. The need for database management for
some classes of these networks has been recently highlighted [96, 71, 127, 55].
Although it is not evident yet if from the point of view of databases one
can treat them as a whole, we will describe them together for presentation
purposes. After the survey of Newman [95], we will group them in four
categories: social networks, information networks, technological networks
and biological networks. Following we describe specific examples for each of
them.

In social networks [64], nodes are people and groups while links show
relationships or flows between the nodes. Some examples are friendship,
business relationships, patterns of sexual contacts, research networks (col-
laboration, co-authorship), communication records (mail, telephone calls,
email), Computer networks [134], National security [114]. There is growing
activity in the area of Social Network analysis [20], visualization and data
processing in such networks.

In information networks occur relations such as citations between aca-
demic papers [39], World Wide Web (hypertext, hypermedia) [47, 77, 22],
peer-to-peer networks [94], relations between word classes in a thesaurus,
preference networks.

In technological networks the structure is mainly governed by space and
geography. Some examples are Internet (as network of computers), Electric
power grids, airline routes, telephone networks, delivery network (post of-
fice). The area of Geographic Information Systems (GIS) is today covering
a big part of this area (roads, railways, pedestrian traffic, rivers) [112, 91].

Biological networks represent biological information whose volume, man-
agement and analysis has become an issue due to the automation of the
process of data gathering. Good example is the area of Genomics, where
networks occur in gene regulation, metabolic pathways, chemical structure,
map order and homology relationships between species [51]. There other
kinds of biological networks, such as food webs, neural networks, etc. The
area has a tremendous growth-rate. The reader can consult database pro-
posals for genomics [55, 51, 62], an overview of models for biochemical path-
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ways [41], a tutorial on Graph Data Management for Biology [96], and a
model for Chemistry [18].

It is important to stress that classical query languages offer little help
when dealing with the type of query needed in the above areas. As exam-
ples, data processing in GIS include geometric operations (area or boundary,
intersection, inclusions, etc), topological operations (connectedness, paths,
neighbors, etc) and metric operations (distance between entities, diameter
of the network, etc). In genetic regulatory networks examples of measures
are connected components (interactions between proteins) and degrees of
nearest neighbors (strong pair correlations). In social networks, distance,
neighborhoods, clustering coefficient of a vertex, clustering coefficient of a
network, betweenness, size of giant connected components, size distribution
of finite connected components [42]. Similar problems arise in the Semantic
Web, where querying RDF data increasingly needs graph features [14].
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3 Representative Graph Database Models

In this section we describe in some detail the most representative graph
db-models, choosing those that define and use explicitly graph structures
or generalizations of them. Additionally we describe other related models
that use graphs, do not fit properly as graph db-models. In them, graphs
are used, for example, for navigation, for defining views, or as language
representation.

For each proposal, we present their data structures and, when available,
their query languages and integrity constraint rules. In general, there are few
implementations and no standard benchmarks, hence we avoid surveying this
issue. For information about the existence of implementations see Figure 19.
To give a flavor of the modeling in each proposal, we will run the following
example about a toy genealogy shown in Figure 3.

NAME LASTNAME

Ana
Julia
James
David
Mary

George

Deville
Deville
Deville
Jones
Stone
Jones

PERSON PARENT

George
Ana

Julia
James

James
Mary
Mary

Julia
Julia
David
David

Julia

Julia Jones

Ana StoneGeorge Jones

parentparent

parent parentparentparent

Mary DevilleDavid Deville

James Deville

Figure 3: A genealogy diagram (right-hand side) represented as two tables
(left-hand side) NAME-LASTNAME and PERSON-PARENT. (Children in-
herit the lastname of the father just for modeling purposes.)
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LN

1  George
2  Ana
3  Julia
4  James
5  David
6  Mary

l   val ( l ) 

I (N)

7  Jones

9  Deville
8  Stone

l   val ( l ) 

I (L)

10  (1,7)
11  (2,8)
12  (3,7)
13  (4,9)
14  (5,9)
15  (6,9)

l   val ( l ) 

I (NL)

16  (12,10)
17  (12,11)
18  (14,13)
19  (14,12)
20  (15,13)
21  (15,12)

I (PP)

Schema

NL

LastnamesNames

Instance
PP

Name−Lastname

Person−Parent
l   val ( l ) 

Figure 4: Logical Data Model. The schema (on the left) uses two basic type
nodes for representing data values (N and L), and two product type nodes
(NL and PP) to establish relations between data values in a relational style.
The instance (on the right) is a collection of tables, one for each node of the
schema. Note that internal nodes use pointers (names) to make reference to
basic and set data data values defined by other nodes.

3.1 Logical Data Model (LDM)

Motivated by the lack of semantics in the relational db-model, Kuper and
Vardi [79] proposed a db-model that generalizes the relational, hierarchical
and network models. The model describes mechanisms to restructure data,
a logical query language and an algebraic query language.

In LDM a schema is an arbitrary directed graph where each node has
one of the following types: The Basic type ¤ describes a node that contains
the data stored; the Composition type TEX describes a node that contains
tuples whose components are taken from the children of it; the Collection
type © describes a node that contains sets, whose elements are taken from
children of it. Summarizing, internal nodes are of type ⊗ or ⊛ representing
structured data, terminal nodes are of type ¤ and represent atomic data,
and edges represent connections between data.

A second version of the model [80], besides renaming the nodes ⊗ and
⊛ as product and power respectively, incorporates a new type, the Union
type ∪©, intended to represent a collection whose domain is the union of the
domains of its children (see example in Figure 4).

A LDM database instance consists of an assignment of values to each
node of the schema. In this sense, the instance of a node is a set of elements
from the underlying domain (for basic type nodes) and tuples or sets taken
from the instance of the node’s children (for ⊗ , ⊛ and types).
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With the objective of avoiding cyclicity at the instance level, the model
proposes to keep a distinction between memory locations and their content.
Thus, instances consist of a set of l-values (the address space), plus an r-

value (the data space) assigned to each of them. These features allow to
model transitive relations like hierarchies and genealogies.

Over this structure a first order many-sorted language is defined. With
this language, a query language and integrity constraints are defined. Fi-
nally, and algebraic language –equivalent to the logical language– is pro-
posed, providing operations for node and relation creation, transformation
and reduction of instances, and other operations like union, difference and
projection.

LDM is a complete db-model (i.e. data structures plus query languages
and integrity constraints) The model supports modeling of complex relations
(e.g. hierarchies, recursive relations). The notion or virtual records (pointers
to physical records) proves useful to avoid redundancy of data by allowing
cyclicity at the schema and instance level. Due to the fact that the model is a
generalization of other models (like the relational model), their techniques or
properties can be translated into the generalized model. A relevant example
is the definition of integrity constraints.

20



PERSON
Name
Lastname
Parent

Julia

Jones

PERSON_3

Parent

Name
Lastname
Parent

James

Deville

PERSON_4

String

Name
Lastname
Parent

Mary

Deville

PERSON_6
Lastname

Name
Lastname
Parent

David

Deville

PERSON_5

Name

Name
Lastname
Parent

George

Jones

PERSON_1

Instance

Name
Lastname
Parent

Ana

Stone

PERSON_2

Schema

PERSON

Figure 5: Hypernode Model. The schema (left) defines a person as a complex
object with the properties name and lastname of type string, and parent of
type person (recursively defined). The instance (on the right) shows the
relations in the genealogy among different instances of person.

3.2 Hypernode Model

The Hypernode db-model was described in a sequence of papers [84, 104, 83].
An hypernode is a data structure allowing nesting of graphs: is a direct graph
whose nodes can themselves be graphs (or hypernodes). Hypernodes can be
used to represent simple (flat) and complex objects (hierarchical, composite,
and cyclic) as well as mappings and records. A key feature is its inherent
ability to encapsulate information. An example is presented in Figure 5.

The hypernode model was introduced Levene and Poulovassilis [84], who
define the model and a declarative logic-based language structured as se-
quence of instructions (“hypernode programs”), used for querying and up-
dating hypernodes. The implementation of a storage system based on the
hypernode model is presented in [128].

In a second version [104], the notion of schema and type checking is
introduced via the idea of types (primitive and complex), that are also rep-
resented by nested graphs. The model is completed with entity and referen-
tial integrity constraints over an hypernode repository. Moreover presents a
rule-based query language called Hyperlog, which can support both querying
and browsing with derivations and database updates.

A third version of the model [83] discusses a set of constraints (entity,
referential and semantic) over hypernode databases and introduces the con-
cept of Hypernode functional dependency (HDF), denoted by A → B, where
A and B are sets of attributes, and the set of attributes A determines the
value of the set of attributes B in all hypernodes of the database. In ad-
dition it presents another query and update language called HNQL, which
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use compounded statements to produce HNQL programs.
The Hypernode is a complete db-model. It has a unique basic data struc-

ture which is simple and extensible allowing different levels of abstraction
(nesting levels) and modularity. It allows representation of flat, hierarchical,
composite, and cyclic objects, as well as functions (mappings) and relations
(records). Has a simple representation of multi-valued attributes. Has a
simple and intuitive representation of nested and composition relations, in
the form of complex objects and sets of objects (objects represented as hy-
pernodes). The hypernode model can also be regarded an object-oriented
db-model supporting object identity (unique labels), complex objects, en-
capsulation (nesting of graphs), inheritance (structural), query completeness
and persistence.

On the less positive aspects, there are some issues that deserve mention.
Redundancy of data that can be generated by its basic value labels. The
restrictions in the scheme level are limited, for example the specification of
restrictions for missing information or multivalued relations is not possible.
Nesting levels increase complexity of processing. Hyperlog programs are
intractable in the general case.
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PERSON_1

PERSON_3
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Stone

Julia

lastname

name

lastname

lastname

lastname

name

lastname

parentparent

parent parent

parent

parent

parent

parent

Figure 6: Simatic-XT. Here schema and instance are mixed. The relations
Name-Lastname and Person-Parent are represented in two abstraction lev-
els. In the first level (the most general), the graph contains the relations
name and lastname to identify people (P1, ..., P6 ). In the second level we
use the abstraction of Person, to compress the attributes name and lastname
and represent only the relation parent between people.

3.3 Simatic-XT: A Data Model to Deal with Multi-scaled
Networks

Motivated by modeling of transport networks (train, plane, water, telecom-
munications), Mainguenaud [86] proposed a graph (object-oriented) db-
models that merges the concepts of graph and object oriented paradigm,
focusing in the (graph) structure of the data but not on the behavior of
entities to be modeled. An example is presented in Figure 6.

The model can be represented as a labeled directed multi-graph, defining
three basic types: Node type, Edge type, and Network type (representing a
graph). Additionally, the model introduces the notion of Master Nodes and
Master Edges, to support levels of abstraction of sub-networks and paths
respectively. Each object in the model has assigned an object identifier
(OID), that permits identification and referencing. The level of abstraction
is given by the nested level of Master Nodes and Edges Nodes. The model
defines the attribute in edges to represent the set of edges arriving in the
subgraph (resp. path) that the Master Node (resp. Master Edge) represents.
In the same form out edges represent the set of edges leaving the Master node
or Master Edge.
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A sequel paper [81] presents a set of graph operators divided into three
classes: Basic operators, managing the notion of abstraction (the Develop
and Undevelop operators); Elementary operators, managing the notion of
graph and sub-graph (Union, Concatenation, Selection and, Difference) and;
high level operators (Paths, Inclusions and Intersections).

This proposal allows simple modeling and abstraction of complex objects
and paths, and encapsulation at node and edge levels. It improves the
representation and querying of paths between nodes, and the visualization
of complex nodes and paths. At its current state, it lacks definition of
integrity constraints.
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Person1
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George Julia David
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parent

parent

Instance

name lastname
Person

Stone

name lastname
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Jones

name lastname
Person

Jones

name lastname
Person

name lastname
Person

name lastname
Person

DevilleMary

Deville

James DevilleAna

parent

parent Person5

Figure 7: GGL. Schema and instances are mixed. Packaged graph vertices
(Person1, Person2, ...) are used to encapsulate information about the graph
defining a Person. Relations between these packages are established using
edges labeled with parent.

3.4 Graph Database System for Genomics (GGL)

This db-model comes from the biology community and highlights the ad-
vantage of storing Genome maps as graphs. GGL includes a graph-theoretic
db-model [54], a genome graph language [55], and query operators for the
model [53, 52].

The model is based on binary relationships between objects. This model
extends the basic notion of a graph by including vertices that represent
edges types which allow specify relations between relations (higher-order
relations), and encapsulated graphs as vertices. An example is presented in
Figure 7.

A graph in GGL is basically a collection of: Simple vertices which model
simple concepts and can be labeled or unlabeled; Symbols that define nodes
without outgoing edges; Edges that connect two vertices and are labeled with
a relation name; Packaged graph vertices that represent graphs which are
packaged (encapsulated) into vertices; and Relation type vertices which are
used to represent relations between relations (higher-order relations). Ac-
cording to this definition, the graph data structure consists of a directed la-
beled, possibly cyclic, graph which maintains hierarchically-ordered graphs.

For querying data in this model, two methods are proposed: The first [53]
restrict the form of the query graph to be rooted directed acyclic graphs with
equality constraints. The strategy is based in following the paths specified
by the query-graph and returning the values that correspond to the end
of the paths. The second, is a declarative programming language called
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WEB [52], that defines queries as graphs with the same structures of the
model and return the graphs in the database which match the query-graph.

Finally, the model defines two database-independent integrity constraints:
Labels in a graph are uniquely named, and edges are composed of the labels
and vertices of the graph in which the edge occurs.

The model was designed to support the requirements to model genome
data, but also is generic enough to support complex interconnected struc-
tures. The distinction between schema and instance are blurred. Its nesting
levels increase the complexity of modeling and processing.
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David Deville
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VAL(4)

Figure 8: GROOVY. At the schema level (left), we model an object
PERSON as an hypergraph that relates the attributes NAME, LAST-
NAME and PARENTS. Note the value functional dependency (VDF)
NAME,LASTNAME → PARENTS logically represented by the directed
hyperedge ({NAME,LASTNAME} {PARENTS}). This VFD asserts that
NAME and LASTNAME uniquely determine the set of PARENTS.

3.5 Hypergraph-Based Data Model (GROOVY)

GROOVY (Graphically Represented Object-Oriented data model with Val-
ues [85]) is a proposal of object-oriented db-model which is formalized using
hypergraphs, that is, a generalized notion of graph where the notion of edge is
extended to hyperedge, which relates an arbitrary set of nodes [19]. The fea-
tures of hypergraphs are used in several directions, e.g. to define functional
dependencies. An example of hypergraph schema and instance is presented
in Figure 8.

The model defines a set of structures for an object data model: (a)
Value Schema, that define the attributes (or elements) that contain a class of
objects. Attributes can be atomic or multi-valued (set or tuples). Attributes
in value schemes can be themselves value schemas, allowing representation
of complex objects and encapsulation of information. (b) Instance: Defines
a set of valid objects over the value schema. An object is a pair O=< i, v >

where i is the object-ID (identity) and v is the object value (properties). (c)
Value Functional Dependencies: Are used at the value schema level to assert
that the value of a set of attributes uniquely determines the value of other
attribute. The determined attribute can be single-valued or multi-valued.
(d) Object schema: Is as triple < N, F, S >, where N is a value schema, F
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is a set of value functional dependencies over N , and S is a set of subsets of
N (sub-object schemas) including N itself.

The previous structure is defined in terms of hypergraphs, establish-
ing a one-to-one correspondence between each object schema < N, F, S >

and a hypergraph interpreting N as nodes, F as directed hyperedges, and
S as undirected hyperedges. Note that at the instance level, objects over
object and class schemas can be represented as labeled hypergraphs.led hy-
pergraphs.

In addition, class schemas are defined to introduce the notions of class
and inheritance. A class schema corresponding to an object schema <

N, F, S > is an hypergraph < N, F, H >, where the H component indi-
cates all the super-class schemas of the class-schema. A class over a class
schema is just an instance of an object schema.

An hypergraph manipulation language (HML) for querying and updating
hypergraphs is presented. It has two operators for querying hypergraphs by
identifier or by value, and eight operators for manipulation (insertion and
deletion) of hypergraphs and hyperedges.

The use of hypergraphs has several advantages. Introduces a single
formalism for both sub-object sharing and structural inheritance, avoid-
ing redundancy of data (values of common sub-objects are shared by their
super-objects). Hypergraphs allow the definition of complex objects (using
undirected hyperedges) and functional dependencies (using directed hyper-
edges). Allows supports for object-ID and (multiple) structural inheritance.
Value functional dependences establish semantic integrity constraints for
object schemas.

The notion of hypergraphs is also used in other proposals:

• Consens and Mendelzon [34] present a query and visualization system
based on the concept of hygraphs, a version of hypergraphs. Their
model defines an special type of edge called Blob, which relates a node
with a set of nodes.

• Tompa [125] proposes a model for hypertext where nodes represent
web pages and hyperedges represent user state and browsing.

• Watters and Shepherd [132] use hypergraphs to model data instances
(in an existent database) and access to them. The model represents
data instances as nodes in a hypergraph, and perform operations over
both hyperedges and nodes representing data.
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Figure 9: GOOD. In the schema, we use printable nodes N and L to rep-
resent names and lastnames respectively and non-printable nodes Pe(rson)
and CP to represent relations Name-Lastname and Child-Parent respec-
tively. The double arrow indicates relationship, and the simple arrow in-
dicates functional relationship. The instance is got by assigning values to
printable nodes and instantiating the CP and PE nodes.

3.6 Graph Object Oriented Data Model (GOOD)

The Graph Object Oriented Data Model [59] is a proposal oriented mainly to
develop database end-user graphical interfaces [61]. In GOOD, schema and
instances are represented by directed labeled graphs, and the data manipu-
lation is expressed by graph transformations. An example of its application
is the database management system presented in [49].

The model permits only two types of nodes, non-printable nodes (de-
noted by squares) and printable nodes (denoted by circles). There is not
distinction between atomic, composed and set objects. There are two types
of edges, functional (have a unique value, denoted by →) and non-functional
(multi-valued and denoted by ։). In a more detailed version [60] were added
node and edges for representing set containment, object composition, gen-
eralization, and specialization. The GOOD schema and instance for the
general example is presented in Figure 9.

GOOD includes a data transformation language with graphical syntax
and semantics. It contains five basic graph transformation operations, four
corresponding to elementary manipulation of graphs: addition of nodes and
edges, deletion of nodes and edges. The fifth operation called abstraction,
is used to group nodes on the basis of common functional or non-functional
properties. The specification of all these operations relies on the notion of
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pattern to describe subgraphs in a object base instance.
GOOD presents other features like macros (for more succinct expression

of frequent operations), computational-completeness of the query language,
and simulation of object-oriented characteristics like encapsulation and in-
heritance.

The model presented introduced several useful features. The notion of
printable and non-printable nodes is relevant for design of graphical inter-
faces, although introduces additional information obscuring the semantics
of relations. It has a simple definition of multivalued relations and allows
recursive relations. Solves in a balanced way the redundancy of data prob-
lem. Nevertheless, the db-model is incomplete, currently lacking integrity
constraints.
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Figure 10: GMOD. In the schema, nodes represent abstract objects (Person)
and labeled edges establish relations with primitive objects (properties name
and lastname) and other abstract objects (parent relation). For building an
instance, we instantiate the schema for each person by assigning values to
oval nodes.

3.7 Graph-oriented Object Manipulation (GMOD)

GMOD [13] is a proposal of a general model for object database concepts ori-
ented towards graph-oriented database user interfaces. Schema and instance
are labeled digraphs. An example is presented in Figure 10.

The schema graph has two class of nodes, abstract objects (rectangular
shape) representing class names and, primitive objects (oval shape) repre-
senting basic types. Edges represent properties of abstract objects. Distinc-
tion between single-value and multi-value properties is not considered.

The instance graph contains the data and includes instance nodes for
abstract and primitive objects (represented like in the schema level). The
latter have an additional label indicating their value (according to the prim-
itive object domain). The same edges defined in the schema are used to
represent the properties of instance objects, but their use is not necessar-
ily required (incomplete information is allowed). Formally, there is a graph
morphism from the graph instance (without the labels indicating value) to
the schema.

The model uses graph pattern matching as a uniform object manipula-
tion primitive for querying, specification, updating, manipulation, viewing
and browsing.

The model allows a simple representation of objects and relations, hence
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simple modeling. Also it allows incomplete information, and permits avoid-
ing redundancy of data. The issue of property-dependent identity and a not
completely transparent notion of object-ID incorporates some complexities.
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Figure 11: PaMaL. The example shows all the nodes defined in PaMaL:
basic type (string), class (Person), tuple (⊗), set (⊛) nodes for the schema
level, and atomic (George, Ana, etc.), instance (P1, P2, etc), tuple and set
nodes for the instance level. Note the use of edges ∈ to indicate elements
in a set, and the edge typ to indicate the type of class Person (these edges
are changed to val in the instance level).

3.8 Object Oriented Pattern Matching Language (PaMaL)

PaMaL is a graphical data manipulation language that uses patterns (repre-
sented as graphs) to specify the parts of the instance on which the operation
has to be executed. Gemis and Paredaens [48] proposed this pattern-based
query language based on a graphical object-oriented db-model as an exten-
sion of GOOD by an explicit representation of tuples and sets. An example
is presented in Figure 11.

The schema defines four types of Nodes: © class nodes (upper-case
labels), © basic-type nodes (lower-case labels), ⊗ tuple nodes, and ⊛ set
nodes. There are four kinds of edges, indicating attribute of a tuple, type
of the elements in a set (labeled with ∈), type of the classes (labeled with
typ), and hierarchical relationship (labeled with isa).

An instance graph may contain atomic, instance, tuple and set nodes
(they are determined by the schema). Atomic objects are labeled with values
from their domains and instance objects are labeled with object-ID’s. tuple
and set objects are identified by their outgoing edges, motivating the notion
of reduced instance graph to merge nodes that represent the same set or
tuple. To refer to the node that describes the properties (or content) of
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an object, an edge labeled val is used and represents the edge typ in the
schema.

PaMaL presents operators for addition, deletion (of nodes and edges)
and an special operation that reduces instance graphs. It incorporates loop,
procedure and program constructs that makes it a computationally complete
language. Among the highlights of the model are the explicit definition of
sets and tuples, the multiple inheritance, and the use of graphics to describe
queries.
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Figure 12: GOAL: The schema presented in the example shows the use of the
object node Person with properties Name and Lastname. The association
node Parent and the double headed edges parent and child allow to express
the relation Person-Parent. At the instance level, we assign values to value
nodes (string) and create instances for object and association nodes. Note
that nodes with same value were merged (e.g. Deville).

3.9 Graph-based Object and Association Language (GOAL)

Motivated by the introduction of more complex db-models like object-oriented
ones, and directed to offer the user a consistent graphical interface, Hidders
and Paredaens [69] proposed a graph based db-model for describing schemes
and instances of object databases. GOAL extends the model of GOOD by
adding the concept of association nodes (similar to the entity relationship
model). The main difference between associations and objects is that the
identity of objects is independent of their properties, whereas associations
are considered identical if they have the same properties. An example is
presented in Figure 12.

Schema and instances in GOAL are represented as finite directed labeled
graphs. A schema allows to define three types of nodes: object nodes that
represent objects (rectangular nodes); value nodes that represent printable
values such as string, integers or booleans (round nodes) and; association
nodes that represent associations or relations among more than two nodes
(diamond shape nodes). Objects and associations may have properties that
are represented by edges. The model allows representation of functional
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properties (single headed edges) and multi-valued properties (double headed
edges), as well as ISA relations (double unlabeled arrows). An instance in
GOAL assigns values to value nodes and creates instances for object and
association nodes.

GOAL introduces the notion of consistent schema to enforce that ob-
jects only belong to the class they are labeled with and its super-classes.
In addition GOAL presents a graph data manipulation language with oper-
ations for addition and deletion based on pattern matching. The addition
(deletion) operation adds (deletes) nodes and/or edges at the instance level.
A finite sequence of additions and deletions is called a transformation.

There are several novelties introduced by this model. Association nodes
allow simple definition of multi-attribute and multi-valued relations. In con-
trast to the Entity Relationship model, GOAL supports relations between
associations. Properties are optional, therefore it is possible to model incom-
plete information. Additionally, GOAL defines restrictions that introduce
notions of consistent scheme and weak instance.

36



string

Person

parent

name lastname

string
"George"

string

string

"Julia"

string
"Stone"

Person

Person

Person

string
"Deville"

string

"Mary"

string
"James"

string
"David"Person

Person

Person

string
"Ana"

Schema Instance

"Jones"

parent

parent

name

name

name

name

name

lastname

lastname

lastname

lastname

name
parent

parent parent

lastname

lastname

parent

Figure 13: G-Log. The schema defines people as objects Person, each one
identified by their properties name, lastname and parent. The latter estab-
lishes the relation child-parent. The instance is got in a similar way as in
GMOD.

3.10 G-Log: A Graph-Based Query Language

G-Log [99] is a proposal of a declarative query language for graphs, which
defines a graph-based db-model oriented to end-user interfaces dealing with
complex objects. Schemes, instances and rules can be viewed as directed
labeled graphs. An example is presented in Figure 13.

A schema in G-Log is a directed graph that contains nodes represent-
ing classes of objects and edges representing classes of relationships between
objects. As in GOOD, we can distinguish between Printable objects rep-
resenting objects with an atomic value (string, integer, reals, dates, text,
images, sound) and Non-printable objects representing composite objects.
Relationships can be mono-valued or multi-valued.

A G-Log instance contains instances of nodes and edges defined in the
schema. The model requires that all node and edge labels occurring in the
instance must occur in the schema. Each non-printable object represents
a distinct complex object that is identified by their relations (property-
dependent identity). Atomic values can occur only once in an instance, thus
avoiding data redundancy.

Queries in G-log are expressed by programs which consist of a number
of rules and use patterns (denoted as graphs with variables in the nodes and
predicates in the edges) to match subgraphs in the instance.
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Figure 14: GDM. In the schema each entity Person (object node repre-
sented as a square) has assigned the attributes name and lastname (basic
value nodes represented round and labeled str). We use the composite-value
node PC to establish the relationship child-Parent. Note the redundancy in-
troduced by the node PC. The instance is built by instantiating the schema
for each person.

3.11 Graph Data Model (GDM)

GDM [68, 67] is a graph-based db-model based on GOOD, that adds explicit
complex values, inheritance and n-ary symmetric relationships. Schema and
instances in GDM are described by labeled graphs called instance graph and
schema graph. An example is presented in Figure 14.

A schema graph contains nodes that represent classes and edges labeled
with attribute names indicating that entities in that class may have that
attribute. Three types of class nodes are allowed: object, composite-value
and, basic value. An edge denoted by a double-line arrow defines an ISA
relation between class nodes.

In an instance graph, nodes represent entities and edges represent at-
tributes of these entities. We can have object nodes (depicted squared),
composite-value nodes (round empty) and basic value nodes (round labeled
with a basic-type name). An object node is labeled with zero o more class
names indicating their membership to certain classes. If several edges with
the same label leave a node, then it is a single set-valued attribute.

GDM introduces the concept of well-formed graph defining four con-
straints: (I-BVA) no edge leaves from a basic-value node; (I-BVT) each
basic value node has assigned a real value that is in the domain of the basic-
type of the node; (I-NS) for each class-free node n there is a path that
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ends in n and starts in a class-labeled node; and (I-REA) composite-value
nodes have either exactly one incoming edge or are labeled with exactly
one class name, but not both. In addition the model considers the notion
of consistency defining extension relations which are many-to-many rela-
tions between the nodes in the data graph and nodes in the schema graph,
indicating correspondence between entities and classes.

The proposal includes a graph-based update language called GUL, that is
based on pattern matching. GUL permits addition and deletion operations,
plus a reduction operation that reduces well-formed data graphs to instance
graphs by merging similar basic-value nodes and similar composite-value
nodes.

The GDM model presents the following benefits. The independence of
the definition of the notions of schema and instance permits that instances
can exist without a schema, allowing representation of semi-structured data.
Permits the explicit representation of complex values, inheritance (using ISA
edges) and definition of n-ary symmetric relationships. The composite-value
nodes allow simple definition of multi-attribute and multi-valued relations.
Finally, let us remark that this model introduces notions of consistency and
well-formed graphs.
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Figure 15: Gram. At the scheme level we use generalized names for definition
of entities and relations. At the instance level, we create instance labels (e.g.
PERSON 1) to represent entities, and use the edges (defined in the schema)
to express relations between data and entities.

3.12 Gram: A Graph Data Model and Query Language

Motivated by hypertext querying, Amann and Scholl [11] introduce Gram,
a graph db-model where data is organized as a graph. A schema in Gram
is a directed labeled multigraph, where each node is labeled with a symbol
called a type, which has associated a domain of values. In the same way,
each edge has assigned a label representing a relation between types (see
example in Figure 15). A feature of Gram is the use of special objects for
explicit definition of paths called walks. An alternating sequence of nodes
and edges represent and walk, which combined with other walks conforms
other special objects called hyperwalks.

For querying the model (particularly path-like queries), an algebraic lan-
guage based on regular expressions is proposed. For this purpose a hyper-
walk algebra is defined, which presents unary operations (projection, selec-
tion, renaming) and binary operations (join, concatenation, set operations),
all closed under the set of hyperwalks.

The proposal Gram does not define integrity constraints.
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3.13 Related Data Models

Besides the models reviewed, there are other proposals that present graph-
like features, although not explicitly designed to model the structure and
connectivity of the information. In this section we will describe the most
relevant of these.

3.13.1 GraphDB

Güting [58] proposes an explicit model named GraphDB, which allows simple
modeling of graphs in an object oriented environment. The model permits
an explicit representation of graphs by defining object classes whose objects
can be viewed as nodes, edges and explicitly stored paths of a graph (which
is the whole database instance).

A database in GraphDB is a collection of object classes partitioned into
three kinds of classes: simple, link and path classes. Also there are data
types, object types and tuple types. A simple class object has an object
type, object identity and attributes whose values are either of a datatype
(e.g. integer, string) or of an object type. An attribute may contain a
reference to another object. Object classes are organized in a hierarchy of
classes and there are related notions of subtyping among tuple, object and
data types.

There are four types of operators to query GraphDB data: Derive state-
ments: selection, join, projection and function operators; Rewrite operations:
allow to replace objects or subsequences by other (new) objects; Union op-
erator: designed for transforming heterogeneous sets of objects into a ho-
mogeneous one; Graph operations: Shortest path search.

The idea of modeling graphs using object oriented concepts is presented
in other proposals, generically called object-oriented graph models. A typical
example is GOQL [113], a proposal of graph query language for modeling
and querying of multimedia application graphs (represented as DAGs). This
proposal defines a object oriented db-model (similar to GraphDB) that de-
fines four types of objects: node, edge, path and graph. GOQL uses an
SQL-like syntax for construction, querying and manipulation of such ob-
jects.

3.13.2 Database Graph Views

A database graph view [57] provides a functional definition of graphs over
data that can be stored in either relational, object oriented or file systems. In
other words, the model proposes the definition of personalized graph views
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Figure 16: Object Exchange Model (OEM). Schema and instance are mixed.
The data is modeled beginning in a root node &pp, with children person
nodes, each of them identified by an Object-ID (e.g. &p2). These nodes
have children that contain data (name and lastname) or references to other
nodes (parent). Referencing permits to establish relations between distinct
hierarchical levels. Note the tree structure obtained if one forgets the point-
ers to OIDs, a characteristic of semistructured data.

of the data with management and querying purposes, and independent of
its implementation.

In brief the model define underlying graphs over the database and pro-
poses a set of primitives called derivation operators for definition and query-
ing of graph views. Unary derivation operators allow selection of nodes and
edges. Binary derivation operators are used to build new graph views re-
sulting from the union, intersection or difference of two graph views.

3.13.3 Object Exchange Model (OEM)

OEM [97] is a semistructured db-model that allows simple and flexible mod-
eling of complex features of a source using the ideas of nesting and object
identity from object oriented db-models (features such as classes, methods
and inheritance are omitted). The main motivation of OEM was the in-
formation integration problem. Therefore it defines a syntax that is well
suited for information exchange in heterogeneous dynamic environments.
The data in OEM can be represented as a rooted directed connected graph.
An example of OEM graph and syntax is presented in Figure 16.
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OEM define objects with the structure < OID, Label, Type, V alue >,
where: OID is an unique identifier for the object (or null), Label is a
character string that describes the object (expected to be human under-
standable), Type is the datatype of the object’s value (atomic or set type)
and, Value is a variable-length value for the object (either an atomic value
or a set of objects). Data represented in OEM can be thought of as a
graph with Object-IDs representing node-labels and OEM-labels represent-
ing edge-labels. Atomic objects are leaf nodes where the OEM-value is the
node value.

The main feature of OEM data is that is self-describing, in the sense
that it can be parsed without recurring to an external schema and uses
human understandable labels that add semantic information about objects.
Due to the fact that there is no notion of schema or object class (although
each object defines its own schema), OEM offers the flexibility needed in
heterogeneous dynamic environments.

OEM-QL is a declarative query language design to request OEM objects.
The basic construct in OEM-QL is an SQL-like SELECT-FROM-WHERE
expression.

3.13.4 eXtended Markup Language (XML)

The XML [21] model did not originate in the database community. It was
introduced as an standard for exchanging information between Web appli-
cations. XML is an extensible version of HTML allowing annotating data
with information about its meaning rather than just its presentation [131].
From an abstract point of view, XML data are labeled ordered trees (with
labels on nodes), where internal nodes define the structure and leaves the
data (scheme and data are mixed.).

Compared to graph data db-models, XML has a ordered-tree-like struc-
ture, which is a restricted type of graph. Nevertheless, XML additionally
provides a referencing mechanism among elements that allows simulating
arbitrary graphs. In this sense XML can simulate semistructured data.

In XML, the information about the hierarchical structure of the data
is part of the data (in other words XML is self-describing); in contrast,
in graph db-models this information is described by the scheme graph in
a more flexible fashion using relations between entities. From this point of
view, graph db-models use connections to explicitly represent generalization,
compositions, hierarchy, classification, and any/other type of relations.
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Figure 17: RDF. Schema and instance are mixed together. In the example,
the edges labeled type disconnect the instance from the schema. The instance
is built by the subgraphs obtained by instantiating the nodes of the schema,
and establishing the corresponding parent edges between these subgraphs.

3.13.5 Resource Description Framework (RDF)

The Resource Description Framework (RDF) [76] is a recommendation of
the W3C designed originally to represent metadata. The broad goal of RDF
is to define a mechanism for describing resources that makes no assumptions
about a particular application domain, nor defines (a priori) the semantics
of any application domain. RDF is domain neutral and models information
with graph-like structure.

An atomic RDF expression is a triple consisting of a subject (the resource
being described), a predicate (the property) and an object (the property
value). Each triple represents a statement of a relationship between the
things that it links. A general RDF expression is a set of such triples, which
can be intuitively considered as a labeled graph, called an RDF Graph [76],
which formally is not a graph [65] (see example in Figure 17).

One of the main advantages (features) of the RDF model is its ability
to interconnect resources in an extensible way. Thus, basic notions of graph
theory like node, edge, path, neighborhood, connectivity, distance, degree,
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etc., play a central role in this model.
Currently there is research work on storing information expressed in

RDF, but none of these works define a graph db-model or even a db-model.
In addition several languages for querying RDF data has been proposed and
implemented, which follow the lines of database query languages like SQL,
OQL, and XPath. A discussion of aspects related to querying RDF from a
graph database perspective is presented in [14].

SPARQL [105] is a proposal of Protocol and Query Language designed
for easy access to RDF stores. It defines a query language with a SQL-like
style, where a simple query is based on query patterns, and query processing
consists of binding of variables to generate pattern solutions (graph pattern
matching).
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4 Query Languages and Integrity Constraints

4.1 Graph Query Languages

A query language is a collection of operators or inferencing rules which can
be applied to any valid instances of the data structure types of the model,
with the objective of manipulating and querying data in those structures in
any combinations desired [31].

A great deal of papers discuss the problems concerning the definition of a
query language for a db-model [129, 70, 106, 66, 2, 5]. Also a variety of query
languages and formal frameworks for studying them have been proposed and
developed, including the relational db-model [27], semantic databases [16,
12], object-oriented databases [74], semistructured data [24, 2, 4] and the
Web [5, 47].

Among graph db-models, there is substantial work focused in query lan-
guages, the problem of querying graphs and the visual presentation of re-
sults. Particular emphasis has been given to graphical query languages (See
Figure 18 for an example). Following, we describe the most representative
graph query languages.

• The Logical Database Model [79, 80] presents a logic very much in the
spirit of relational tuple calculus, which uses fixed sort variables and
atomic formulas to represent queries over a schema using the power of
full first order languages. The result of a query consists of those objects
over a valid instance that satisfy the query formula. In addition the
model presents an alternative algebraic query language proven to be
equivalent to the logical one.

• Cardelli et al. [26] introduced a spatial logic for reasoning about graphs
and define a query language based in pattern matching and recursion.
This Graph Logic combines first-order logic with additional structural
connectives. A query ask for a substitution of variables such that a
satisfaction relation determines which graph satisfy which formulae.
The query language is based on queries that build new graphs from
old and transducers that relates input graphs with output graphs.

• The proposal G-Log [99] includes a declarative language for complex
objects with identity. It uses the expressive power of logic through
the notion or rule satisfaction, to evaluate queries which are expressed
as G-Log programs. These G-Log programs are sets of graph-based
rules, which specify how the schema an instance of the database will
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Figure 18: Example of a graphical query language. The figure shows a G-
Log query for the instance in Figure 13. Query A asks for the names of
Mary’s grandparents (fixed path query). Query B asks for the name of the
maternal grandmother of Mary (tree-like query). Query C calculates Mary’s
Ancestors (transitive closure).

change. G-Log is a graph-based, declarative, nondeterministic, and
computationally complete query language that does not suffer from
the copy-elimination problem.

• Oriented to search the Web, Flesca and Greco [45] show how to use
partially ordered languages to define path queries to search databases
and present results on their computational complexity. In addition, a
query language based on the previous ideas is proposed in [46].

• In the context of graph-oriented object models, there are query lan-
guages that regard database transformations as graph transformations
(which can be interpreted as database queries and updates). They are
based on graph-pattern matching and allow the user to specify node
insertions and deletions in a graphical way. GOOD [59] presented
a graph-based language that is shown to be able to express all con-
structive database transformations. This language was followed by the
proposals GMOD [13], PaMaL [48], GOAL [69], and GUL [68].
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Additionally, GOAL includes the notion of fixpoints in order to han-
dle the recursion derived from a finite list of additions and deletions.
PaMaL proposed the inclusion of Loop, Procedure and Programs con-
structs, and PaMaL and GUL presented an operator that reduces in-
stance graphs by deleting repeated data. Note that graph-oriented
manipulation formalisms based on patterns allow a syntax-directed
way of working much more natural than text-based interfaces.

• The query languages G, G+ y GraphLog integrate a family of related
graphical languages defined over a general simple graph model.

The graphical query language G [36] is based on regular expressions
that allow simple formulation of recursive queries. A graphical query
in G is a set of labeled directed multigraphs where nodes may be
either variables or constants, and edges can be labeled with regular
expressions. The result of a query is the union of all query graphs
which match subgraphs from the instance.

G evolved into a more powerful language called G+ [37] where a query
graph remains as the basic building block. A simple query in G+ has
two elements, a query graph that specifies the class of patterns to
search and a summary graph that represent how to restructure the
answer obtained by the query graph.

GraphLog [35] is a query language for hypertext that extends G+ by
adding negation and unifying the concept of a query graph. A query is
now only one graph pattern containing one distinguished edge, which
corresponds to the restructured edge of the summary graph in G+.
The effect of the query is to find all instances of the pattern that
occur in the database graph and for each one of them define a virtual
link represented by the distinguished edge. GraphLog includes an
implicit transitive closure operator, which replaces the usual recursion
mechanism. The algorithms used in the GraphLog implementation are
discussed in [92].

• Glide [50] is a graph query language where queries are expressed using
a linear notation formed by labels and wild-cards (regular expressions).
Glide use a method called GraphGrep based on subgraph matching to
solve the queries.

• GROOVY [85] introduces a Hypergraph Manipulation Language (HML)
for querying and updating labeled hypergraphs. It defines two basic
operators for querying hypergraphs by identifier or by value, and eight
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operators for manipulation (addition an deletion) of hypergraphs and
hyperedges. Watters and Shepherd [132] presents a framework for
general data access based in hypergraphs that include operators for
creation of edges and set operators like intersection, union and differ-
ence. In a different context, Tomca [125] introduces basic operations
over hypergraph structures representing user state and views in page-
oriented hypertext data.

• The literature also include proposals of query languages that deal with
hypernode structures. The Hypernode model [84] defines a logic-based
query and update language, which is based in the expression of queries
as sets of hypernode rules (h-rules) that are called an hypernode pro-
gram. The query language defines an operator which infers new hyper-
nodes from the instance using the set of rules in a hypernode program.

This query language was extended by Hyperlog [104, 103] including
deletions as well as insertions, and discussing in more detail the im-
plementation issues. A full Turing-machine capability is obtained by
adding composition, conditional constructs and iteration.

In a procedural style, HNQL [83] defines a set of operators for declara-
tive querying and updating of hypernodes. It also includes assignment,
sequential composition, conditional (for making inferences), for loop,
and while loop constructs.

• In the area of Geographic information Systems, the Simatic-XT model [81]
defines a query language. It includes basic operators that deal with
encapsulate data (nesting of hypernodes), set operators (union, con-
catenation, selection and difference) and high level operators (paths,
inclusion and intersections).

• WEB [52, 53] is a declarative programming language based on a graph
logic and oriented to querying genome data. WEB programs de-
fine graph templates for creating, manipulating and querying objects
and relationships in the database. These operations are answered by
matching graphs in valid instances.

• Models like Gram [11] and GOQL [113] propose SQL-Style query lan-
guages with explicit path expressions. Gram presents a query algebra
where regular expressions over data types are used to select walks
(paths) in a graph. It uses a data model where walks are the ba-
sic objects. A walk expression is a regular expression without union,
whose language contains only alternating sequences of node and edge
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types, starting and ending with a node type. The query language is
based on a hyperwalk algebra with operations closed under the set of
hyperwalks.

• Models like DGV [57] and GraphDB [58] define special operators for
functional definition and querying of graphs. For example, a query in
GraphDB consists of several steps, each of one computes operations
that specify argument subgraphs in the form of regular expressions
over edges that extend or restrict dynamically the database graph.
GraphDB includes a class of objects called path class, which are used
to represent several paths in the database.

One of the most fundamental graph problems in graph query languages is
to compute reachability of information, which is traduced in path problems
characterized and expressed by recursive queries. For example, path queries
are relevant in GraphLog, Gram, Simatic-XT, DGV, GOQL, Flesca and
Grego, Cardelli et al., and in less degree treated in Hypernode, GOAL,
Hyperlog, GraphDB, G-Log, and HNQL. The notion of shortest path is
considered in Flesca and Greco, G+, GraphLog, and DGV. Path and other
relevant graph queries for RDF are discussed in [14].

The importance and computational complexity of path-based queries is
studied in several works [8, 7, 6, 108]. Finding simple paths with desired
properties in direct graphs is difficult, and essentially every nontrivial prop-
erty gives rise to an NP-complete problem [111]. Yannakakis [135] surveyed
a set of paths problems relevant to the database area including computing
transitive closures, recursive queries and the complexity of path searching.
Mannino and Shapiro [88] present a survey of extensions to database query
languages for solve graph traversal problems.

4.2 Integrity Constraints

Integrity constraints are general statements and rules, which implicitly or
explicitly define the set of consistent database states or changes of state
or both [31]. Integrity Constraints are a relevant component in the design
of db-models. While their primary role is to restrict the allowed instances
of the schema (acting as a filter of invalid data), they are also useful in
query optimization, schema design, and choice of efficient storage and access
methods. Constraints are used to express database semantics like domain
restrictions, specify relationships between components and state database
behavior [124].
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The utilization, specification, and complexity of constraints is deter-
mined by the richness of the db-model. Integrity constraints have been
studied for the relational [38, 123], semantic [133, 124], object oriented [110],
and semistructured [25, 10] db-models. Thalheim [124] presents a unifying
framework for integrity constraints.

In the case of graph db-models, examples of integrity constraints include
identity and referential integrity constraints, functional and inclusion depen-
dencies, and schema-instance consistency. Next we describe some notions of
integrity constraints defined in graph database models.

LDM [80] defines a logic that use variables to express well-formed formu-
las over a schema. Integrity constraints are expressed in terms of satisfaction
of these LDM formulas.

The Hypernode Model [104] defines two integrity constraints: Entity
Integrity enforces that each hypernode is a unique real world entity identified
by their content; Referential Integrity requires that only existing entities be
referenced. In [83] the notion of semantic constraints were considered. The
concept of Hypernode functional dependency, denoted by A → B, where
A and B are sets of attributes, leave us express that the set of attributes
A determines the value of the set of attributes B in all hypernodes of the
database.

GGL [54] defines two integrity constraints: (1) labels in a graph are
uniquely named; (2) edges are composed of the labels and vertices of the
graph in which the edge occurs. These constraints are similar to primary key
and foreign key (referential) integrity constraints in the relational db-model.

GROOVY [85] uses directed hyperedges to represent Value Functional
Dependencies (VFDs), which are used in the value schema level to establish
semantic integrity constraints. A VFD asserts that the value of a set of
attributes uniquely determines the value of other attribute.

DGM [68] defines conditions enforcing that primitive nodes are only
leaves, the real value of a node depends of its domain, and two constraints
regarding edges with class nodes (these were described in Section 3).

The notion of Schema-Instance consistency is explicitly considered in
GOAL [69], G-Log [99], and GDM [68]. In the case of graph-based ob-
ject oriented db-models this notion is translated into the creation of Valid
Instances, for example GMOD [13] and PaMaL [48].
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Figure 19: Main proposals on Graph Database Models and their characteristics (“
√

” indicates support and “±”
partial support). LDM [79, 80], Hypernode [84], GOOD [59, 60], GROOVI [85], GMOD [13], Simatic-XT [86],
Gram [11], PaMaL [48], GOAL [69], Hypernode2 [104], Hypernode3 [83], GGL [54], G-Log [99], GDM [68].
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[18] G. Benkö, C. Flamm, and P. F. Stadler. A Graph-Based Toy Model of
Chemistry. Journal of Chemical Information and Computer Sciences
(JCISD), 43(1):1085–1093, Jan 2003.

[19] C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.

[20] U. Brandes. Network Analysis. Number 3418 in LNCS. Springer-
Verlag, 2005.

[21] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup
Language (XML) 1.0, W3C Recommendation 10 February 1998.
http://www.w3.org/TR/1998/REC-xml-19980210.

[22] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener. Graph structure in the Web. In
Proc. of the 9th Int. World Wide Web conference on Computer net-
works : the international journal of computer and telecommunications
networking, pages 309–320. North-Holland Publishing Co., 2000.

[23] P. Buneman. Semistructured Data. In Proc. of the 16th Symposium on
Principles of Database Systems (PODS), pages 117–121. ACM Press,
May 1997.

54



[24] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A Query Lan-
guage and Optimization Techniques for Unstructured Data. SIGMOD
Record., 25(2):505–516, 1996.

[25] P. Buneman, W. Fan, and S. Weinstein. Path Constraints in
Semistructured and Structured Databases. In Proc. of the 17th Sym-
posium on Principles of Database Systems (PODS), pages 129–138.
ACM Press, June 1998.

[26] L. Cardelli, P. Gardner, , and G. Ghelli. A Spatial Logic for Querying
Graphs. In Proc. of the 29th Int. Colloquium on Automata, Lan-
guages, and Programming (ICALP), LNCS, pages 597–610. Springer,
July 2002.

[27] A. K. Chandra. Theory of Database Queries. In Proc. of the 7th
Symposium on Principles of Database Systems (PODS), pages 1–9.
ACM Press, March 1988.

[28] P. P.-S. Chen. The Entity-Relationship Model - Toward a Unified View
of Data. ACM Transactions on Database Systems (TODS), 1(1):9–36,
1976.

[29] J. Chomicki. Temporal Query Languages: A Survey. In Proc. of the
First Int. Conf. on Temporal Logic (ICTL), pages 506–534. Springer-
Verlag, 1994.

[30] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6):377–387, 1970.

[31] E. F. Codd. Data Models in Database Management. In Proc. of
the 1980 Workshop on Data abstraction, Databases and Conceptual
Modeling, pages 112–114. ACM Press, 1980.

[32] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 26(1):64–69, 1983.

[33] J. Conklin. Hypertext: An Introduction and Survey. IEEE Computer,
20(9):17–41, 1987.

[34] M. Consens and A. Mendelzon. Hy+: a Hygraph-based query and
visualization system. SIGMOD Record, 22(2):511–516, 1993.

[35] M. P. Consens and A. O. Mendelzon. Expressing Structural Hypertext
Queries in Graphlog. In Proc. of the 2th Conf. on Hypertext, pages
269–292. ACM Press, 1989.

55



[36] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A Graphical Query Lan-
guage Supporting Recursion. In Proc. of the Association for Comput-
ing Machinery Special Interest Group on Management of Data, pages
323–330. ACM Press, May 1987.

[37] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. G+: Recursive Queries
without Recursion. In Proc. of the 2th Int. Conf. on Expert Database
Systems (EDS), pages 645–666. Addison-Wesley, April 1989.

[38] C. J. Date. Referential Integrity. In Proc. of the 7th Int. Conf. on
Very Large Data Bases (VLDB), pages 2–12. IEEE Computer Society,
Sept 1981.

[39] D. J. de S. Price. Networks of Scientific papers. Science, 149:510–515,
1965.

[40] Y. Deng and S.-K. Chang. A G-Net Model for Knowledge Represen-
tation and Reasoning. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 2(3):295–310, Dec 1990.

[41] Y. Deville, D. Gilbert, J. van Helden, and S. J. Wodak. An Overview of
Data Models for the Analysis of Biochemical Pathways. In Proc. of the
First Int. Workshop on Computational Methods in Systems Biology,
page 174. Springer-Verlag, 2003.

[42] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of Networks - From
Biological Nets to the Internet and WWW. Oxford University Press,
2003.

[43] M. Erwig and R. Güting. Explicit Graphs in a Functional Model
for Spatial Databases. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 6(5):787–804, 1994.

[44] M. Fernández, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching
the boat with Strudel: Experiences with a Web-site Management Sys-
tem. In Proc. of the 1998 ACM SIGMOD Int. Conf. on Management
of Data, pages 414–425. ACM Press, June 1998.

[45] S. Flesca and S. Greco. Partially Ordered Regular Languages for
Graph Queries. In Proc. of the 26th Int. Colloquium on Automata,
Languages and Programming (ICALP), volume 1644 of LNCS, pages
321–330. Springer, July 1999.

56



[46] S. Flesca and S. Greco. Querying Graph Databases. In Proc. of the 7th
Int. Conf. on Extending Database Technology - Advances in Database
Technology (EDBT), volume 1777 of LNCS, pages 510–524. Springer,
March 2000.

[47] D. Florescu, A. Levy, and A. O. .Mendelzon. Database Techniques for
the World-Wide Web: A Survey. SIGMOD Record, 27(3):59–74, 1998.

[48] M. Gemis and J. Paredaens. An Object-Oriented Pattern Matching
Language. In Proc. of the First JSSST Int. Symposium on Object
Technologies for Advanced Software, pages 339–355. Springer-Verlag,
1993.

[49] M. Gemis, J. Paredaens, I. Thyssens, and J. V. den Bussche. GOOD:
A Graph-Oriented Object Database System. In Proc. of the 1993 ACM
SIGMOD Int. Conf. on Management of Data, pages 505–510. ACM
Press, 1993.

[50] R. Giugno and D. Shasha. GraphGrep: A Fast and Universal Method
for Querying Graphs. In Proc. of the IEEE Int. Conf. in Pattern
recognition (ICPR), Aug 2002.

[51] M. Graves. Graph Data Models for Genomics. Submitted to ACM
Transactions on Database Systems (TODS).

[52] M. Graves. Theories and Tools for Designing Application-Specific
Knowledge Base Data Models. PhD thesis, University of Michigan,
1993.

[53] M. Graves, E. R. Bergeman, and C. B. Lawrence. Querying a Genome
Database using Graphs. In In Proc. of the 3th Int. Conf. on Bioinfor-
matics and Genome Research, 1994.

[54] M. Graves, E. R. Bergeman, and C. B. Lawrence. A Graph-Theoretic
Data Model for Genome Mapping Databases. In Proc. of the 28th
Hawaii Int. Conf. on System Sciences (HICSS), page 32. IEEE Com-
puter Society, 1995.

[55] M. Graves, E. R. Bergeman, and C. B. Lawrence. Graph Database
Systems for Genomics. IEEE Engineering in Medicine and Biology.
Special issue on Managing Data for the Human Genome Project, 11(6),
1995.

57



[56] R. L. Griffith. Three Principles of Representation for Semantic Net-
works. ACM Transactions on Database Systems (TODS), 7(3):417–
442, 1982.

[57] A. Gutiérrez, P. Pucheral, H. Steffen, and J.-M. Thévenin. Database
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