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Abstract. Let U be a set of elements and d a distance function defined
among them. Let NNk(u)d be the k elements in U − {u} which have
the smallest distance to u. The k-nearest neighbors graph (knng) is a
directed graph G(U, E) such that E = {(u, v, d(u, v)), v ∈ NNk(u)d}. We
focus on the metric space context, so d is a metric. Several knngs con-
struction algorithms are known, but they are not suitable to general met-
ric spaces. We present two practical algorithms to construct knngs that
exploit several features of metric spaces, obtaining time costs of the form
O(n1.63..2.24k0.02..0.59), and using O(n0.91..1.96k0.04..0.66) distance compu-
tations.

1 Introduction

Let U be a set of elements and d a distance function defined among them. Let
NNk(u)d be the k elements in U−{u} which have the smallest distance towards u
according to the function d. The k-nearest neighbors graph (knng) is a directed
graph connecting each element to its k nearest neighbors, that is, G(U, E) such
that E = {(u, v, d(u, v)), v ∈ NNk(u)d}. The knng is a direct generalization
of the well known all-nearest-neighbor (ann) problem, so ann can be seen as
the 1nng problem. knngs are central in many applications, for instance cluster
and outlier detection [13, 5], VLSI design, spin glass and other physical process
simulations [7], and pattern recognition [11].

On the other hand, a metric space is a pair (X, d), where X is an object set
and d is a function that measures the distance among them. The smaller the
distance between two objects, the more “similar” they are. Given a finite metric
space database U ⊆ X of size n, the goal is to index U such that, given a query
object q ∈ X, one can find the elements of U close to q with as few distance
computations as possible. See [8] for a comprehensive survey.

In some knn applications objects have no coordinates, but they belong to
abstract metric spaces. For instance in query or document recommendation sys-
tems, knn based techniques are used to find clusters, and later exploit their
properties to propose options to the final user [3, 4]. Unfortunately, most of the
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knng algorithms use object coordinates, so they are unsuitable to general met-
ric spaces. We face this problem proposing two knng construction algorithms
that exploit several features of metric spaces, obtaining time costs of the form
O(n1.63..2.24k0.02..0.59) and using O(n0.91..1.96k0.04..0.66) distance computations.

The knng G(U, E) can serve as an index for searching metric spaces as well,
as done in [16, 17]. In this case, each object in U is represented by a vertex in G,
and the index is composed by E, that is, all the edges from the objects towards
their k nearest neighbors.

1.1 A summary of metric spaces

Proximity/similarity queries can be formalized using the metric space model,
where a distance function d(x, y) is defined for every object pair in X. Objects
in X do not necessarily have coordinates (for instance, strings and images).

The distance function d satisfies the metric properties: d(x, y) ≥ 0 (posi-
tiveness), d(x, y) = d(y, x) (symmetry), d(x, y) = 0 iff x = y (reflexivity), and
d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality). The distance is considered ex-
pensive to compute (for instance, when comparing two documents).

The metric database is a finite set U ⊆ X, n = |U|. A similarity query is an
object q ∈ X, and can be of two basic types: (a) Range query (q, r)d: retrieve all
objects in U that are within distance r to q; and (b) k-Nearest neighbor query
NNk(q)d: retrieve the k objects in U closest to q. The covering radius is the
distance from q towards the farthest neighbor in NNk(q)d.

An index is a data structure built over U that permits solving the above
queries without comparing q against every element in U. There are two kinds
of indices: pivot based and compact partition based. Search algorithms use the
index and some distance evaluations to discard as many objects as they can
to produce a small candidate set that could be relevant to q. Later, they ex-
haustively check the candidate set computing distances from q towards each
candidate to obtain the query result. A k nearest neighbor query algorithm is
called range-optimal if it uses the same amount of distance evaluations than the
equivalent range query that retrieves exactly k objects [15].

There are three main components in the cost of computing a proximity query
using an index: the number of distance evaluations, the CPU cost of the side com-
putations (other than computing distances) and the number of I/O operations.
However, the cost of computing a distance is so significant in many applications
that it is customary to use the number of distance evaluations as the complexity
measure both for index construction and for object retrieving.

The proximity query cost worsens quickly as the dimension of the space
grows, which is called the curse of dimensionality. In R

D with points chosen
randomly, the dimension is simply D. In metric spaces or in R

D where points
are not uniformly distributed, the dimension can be defined using distance his-
togram properties [8]. In general terms, the dimension grows as the histogram
concentrates.



1.2 Previous work in k nearest neighbor graphs

The naive approach to build knngs uses n(n−1)
2 ∈ O(n2) distance computations

and uses O(kn) memory. For each u ∈ U we compute the distance towards all
the others, and select the k lowest distance objects. However, there are several
alternatives to speed up the procedure. The proximity properties of the Voronoi
diagram [2] or its dual, the Delaunay triangulation, allow solving the problem
more efficiently. ann can be optimally solved in O(n log n) time in the plane and
in R

D for any fixed D [9, 12, 18], but the constant depends exponentially on D.
In R

D, knng can be solved in O(nk log n) time [18] and even in O(n(k + log n))
time [6, 7, 9]. Approximation algorithms for the problem have also been proposed
[1]. Nevertheless, none of these alternatives, excepting the naive one, is suitable
for metric spaces, since all use coordinate information that is not necessarily
available in general metric spaces.

The generalization of ann for general metric spaces was first stated in [10],
where the problem is solved using randomization in O(n(log n)2(log Γ (U))2) ex-
pected time, with Γ (U) the ratio between the distances among the farthest and
closest pairs of points in U. The author argues that in practice Γ (U) = poly(n),
in which case the approach is O(n(log n)4) time. However, the analysis needs a
sphere packing bound in the metric space. Otherwise the cost must be multi-
plied by “sphere volumes”, that is, extra factors that are similar to those that,
in R

D, are exponential on D. Moreover, the algorithm needs Ω(n2) space for
high dimensions, which is too much space for practical applications.

In [14], another technique for general metric spaces is given. It uses a pivot-
based index in order to solve n range queries of decreasing radius. As it is
well known, the performance of pivot-based algorithms worsen quickly as the
dimension of the space grows, thus limiting the applicability of this technique.
Our pivot based algorithm (Section 4) is an improvement over this technique.

1.3 Our contribution at a glance

We are interested in knng construction for general metric spaces. In this context,
a natural approach to the knng construction has two stages. The first is to build

an index of U using less than n(n−1)
2 distance computations, which we call the

preindex. The second is to use the preindex to solve n k-nearest neighbor queries
to obtain each NNk(u)d subset for every u ∈ U. This basic scheme can be
improved if we take into account some observations:

– We can use the knng under construction to improve the second stage.
– We are solving queries for elements in U, not for general objects in X.
– We can solve the n queries jointly to share the costs through the whole

process.
– There are several metric indices to preindex the metric space.
– We can use range-optimal k nearest neighbor queries.

In this work, we propose two knng construction algorithms that use a small
preindex in order to decrease the number of distance computations. These are:



1. A recursive partition based algorithm: In the first stage, we build a preindex
by performing a recursive partition of the space. In the second stage, we
complete the k nearest neighbors using the order induced by the partitioning.

2. A pivot based algorithm: In the preindexing stage, we build a pivot index.
Later, we complete the k nearest neighbors by performing range-optimal
queries improved with metric and graph considerations.

Our algorithms use O(n(k + lg n)) space and are subquadratic in distance
evaluations. We evaluate them experimentally as a function of n, k, and the
dimension of the space. We are not aware of any other practical knng imple-
mentation for metric spaces. The experiments confirm that our algorithms are
efficient in CPU time and subquadratic in distance evaluations. For instance, in
the string metric space with edit distance we obtain empirical time costs of the
form O(n1.85..2.10k0.12..0.29) and O(n1.26..1.54k0.20..0.48) distance computations.

2 Some ingredients of the recipe

We explain here some elements that are common to our algorithms.

Two stages algorithm: We split the process into two stages: the first is the
preindexing, and the second is to use the preindex to solve all the k nearest
neighbor queries.

Neighbor Heap Array: Along all the algorithm, for each u ∈ U we maintain
a priority queue NHAu of size k. At any point in the process, NHAu will
contain the k elements closest to u known up to then, and their distances to u.
Formally, NHAu = {(xi1 , d(u, xi1 )), . . . , (xik

, d(u, xik
))} sorted by decreasing

d(u, xij
) (ij is the j-th neighbor identifier). For each u ∈ U, we initialize

NHAu = {(⊥,∞), . . . , (⊥,∞)}, |NHAu| = k. Let curCovRu = d(u, xik
) be

an alias for the distance value towards the current farthest element of NHAu,
that is, the covering radius of the current k nearest neighbors of u.
We have to ensure that |NHAu| = k after successive additions. To achieve
this, when we add some object v such that d(u, v) < curCovRu, before ac-
tually adding (v, d(u, v)) to NHAu we extract its farthest object. This will
progressively reduce curCovRu from its initial value ∞ to the real NNk(u)d

covering radius. We first populate all the NHAu queues with whatever el-
ements u was compared to. Later, we will add more and more elements to
them as the algorithm progresses, making their respective curCovRu radii
decrease. At the end, in NHA we have the knng of U.

Using NHA as a graph: Once we calculate d(u, v), if d(u, v) ≥ curCovRu we
can discard v as a candidate for NHAu, and moreover, we can discard all
objects w such that d(v, w) ≤ d(u, v) − curCovRu because of the triangle
inequality. Unfortunately, we do not necessarily have stored d(v, w). How-
ever, we can compute shortest paths over NHA from v to all w ∈ U, and
due to the triangle inequality, the sum of the edges traversed in this path,
dNHA(v, w), is an upper bound to d(v, w). So, if d(u, v) ≥ curCovRu, we also
discard all objects w such that dNHA(v, w) ≤ d(u, v) − curCovRu.



Exploiting the symmetry of d: Since d is a symmetric function, every time
a d(u, v) is computed, we check both d(u, v) < curCovRu to add (v, d(u, v))
to NHAu, and d(u, v) < curCovRv to add (u, d(u, v)) to NHAv. This can
reduce curCovRv , and can cheapen the future query for v.

Check Order Heap: When the second stage begins we create a priority queue
COH = {(u, curCovRu), u ∈ U} to process objects as they are extracted
from COH in increasing curCovRu order. The goal is to solve the easiest
queries first, both to reduce the CPU time and to increase the chance of re-
ducing other curCovRv. This is because a small radius query has larger dis-
criminative power and produces candidates v that are closer to the query u,
so it is also possible that these candidates reduce their respective curCovRv.

U is fixed: Suppose that we are solving u, we are going to check a solved object
v, and curCovu ≤ curCovv. Then, if u /∈ NNk(v)d ⇒ d(u, v) ≥ curCovRv ,
so, necessarily v /∈ NNk(u)d. On the other hand, if u ∈ NNk(v)d, then we
already computed d(u, v). Therefore, in both cases we avoid to compute
d(u, v).

Limiting the space to store distances: We allow that our algorithms use at
most O(n log n) extra memory to index U.

3 Recursive partition based algorithm

This algorithm uses all the common ingredients, and some others. We use a
cache of computed distances, CD, so that, every time we have to compute a
distance, we check if it is present in CD, in which case we return the stored
value. CD ⊂ U

2 × R
+ can be seen as the graph of all stored distances. In the

first stage, CD is an undirected graph since for each distance we store both
directed edges. In the second stage, if a distance is sufficiently small so as to
belong to NHA, we store it in CD, but only for unsolved nodes. However, adding
distances to CD could increase its size beyond control, so we limit |CD| < 8n lnn,
and as soon as we finish the query for some node, we delete its adjacency list
from CD. Therefore, in the second stage CD becomes a directed graph. The
memory limitation comes from an estimation of how many edges we store in CD
during the division procedure, which is explained soon.

3.1 First stage: Preindex construction

The first stage consists in partitioning the space recursively. During the partition
we symmetrically populate NHA and CD with all the computed distances. The
goal is to construct the Division Control Tree, DCT .

DCT is a binary tree that represents the shape of the partitioning and gives
the partition radius for each node. The partition radius is the distance from
the node towards the farthest node of its partition. The DCT node structure
is {p, l, r, pr}, which represents the node parent, its left and right children, and
its partition radius, respectively. For simplicity we use the same name for the
node u ∈ U and for its representative in DCT . Then, given a node u ∈ U, up,



ul, and ur, refer to the nodes that are the parent, left child, and right child of
u in DCT , respectively, and also to their representative nodes in U. Finally, upr

refers to the partition radius of u.

DCT is constructed by the division procedure. This procedure receives an
object set S, a root node, and DCT . To split S, we take two far away objects,
u and v, and then generate two subsets: Su, objects nearer to u, and Sv, objects
nearer to v. Later, we compute the u and v partition radii, and finally we update
the root in the children and their partition radii in DCT . To choose u and v, we
take a sample of |S|/2 object pairs at random and pick the farthest pair. Later,
the recursion follows with (u, Su) and (v, Sv), and it finishes when |S| < 2. Once
we finish the division, leaves in DCT have partition radii 0. The DCT root is a
fictitious node: it is the only one that does not have an equivalent in U, it has
partition radius ∞, and its children are the two nodes of the first division.

Since the DCT has n nodes, its expected height is 2 lnn (the DCT construc-
tion is statistically identical to populate a binary search tree). For each DCT
level, each node computes two distances towards splitting nodes, which accounts
for 2n distances per level. So, we expect to compute 4n lnn distances in the par-
titioning. As we store 2 edges per distance, we have the 8n lnn space limitation.
Therefore, in this algorithm we use the extra O(n log n) space to store both the
DCT and CD.

3.2 Using the DCT in the second stage

The DCT allows us to save distance evaluations in the second stage. Assume we
are checking whether v is relevant to u. If d(u, v) ≥ curCovRu + vpr we discard
all the descent of v, because there is no intersection between the space region
centered in u with radius curCovRu and the one centered in v with radius vpr .

Furthermore, the DCT gives us a mechanism to complete the k nearest
neighbor query. Due to the division procedure, we are sure that u has already
computed distances to all of its ancestors, its ancestor’s siblings, and its parent
descent. Then, to finish the query for u, we need to verify whether there exist
relevant objects in the ancestor’s sibling descents. Figure 1(a) illustrates this.
However, since the DCT allows us to discard whole descents, it is enough with
managing the set of ancestor’s sibling children. This set is composed by u’s
cousins, u’s parent cousins, and so on, and we call it CS (cousin set). Actually,
we store u’s ancestor siblings, not cousins, and if it is not possible to discard the
sibling (and its descent), then we add its children (the cousins).

Note that, when we start processing CS, partition radii of u’s cousins are
likely to be the smallest of CS, and it is also probable that these cousins, or
their descendants, are relevant to u, since these nodes share most of u’s branch
in DCT , and the partitioning is made according to node closeness. Thus, we
process CS using a priority queue sorted by increasing partition radius.

We also avoid distance evaluations using CD ∪ NHA as a graph. If d(u, v) ≥
curCovRu, we discard all objects such that dCD∪NHA(v, w) ≤ d(u, v)−curCovRu.
We do this by marking them as EXTRACTED. This task is performed by ex-
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Fig. 1. Using DCT to finish the query (left). The pivot discard condition (right).

tractFrom, which is a shortest paths algorithm with propagation limited to
d(u, v) − curCovRu.

3.3 Second stage: The whole picture

We use all of these ideas in the second stage in order to complete the k nearest
neighbors for all nodes u ∈ U. To do this, we create the priority queue COH
to process objects by picking them from COH in increasing curCovR order.
For each node u, we add the edges of NHAu to CDu (note that, due to the
CD size limitation, it is possible that we do not already have all the current
neighbors in CDu). Second, we call extractFrom for all u’s ancestors, marking
as EXTRACTED as many objects as we can. Then, we finish the query using the
procedure neighborComplete. Finally, we delete CDu.

The neighborComplete procedure receives the node u to be processed.
First, we build the priority queue CS with all u’s ancestor siblings. Later, we
take objects c from CS in increasing order of cpr, and process c according to the
following rules:

1. If c was already marked as EXTRACTED, we add its children to CS, and con-
tinue with the next cousin.

2. If c was already solved, curCovRc ≥ curCovRu, and d(u, c) /∈ CD, we add
its children to CS, and continue with the next cousin.

3. If we have d(u, c) precomputed in CD, we retrieve it, else we compute it.
If d(u, c) < curCovRu + cpr, we have region intersection, so we add the c’s
children to CS. Later, if d(u, c) > curCovRu, we call extractFrom to mark
objects as EXTRACTED from c limited to d(u, c) − curCovRu.

Note that, if we calculate the amount of distance we could insert in NHA,
we obtain an upper bound for the expected size of |CD|. The initial memory
is used to store the first k distances. Later, with probability n−k

n
, a random

distance is greater than the k-th shortest one, and, with probability k
n

it is
lower. We only store distances in the second case, using one cell for each distance.



Then, the recurrence for the average case of edge insertions for each NHAu is:
T (n, k) = T (n−1, k)+1· k

n
, T (k, k) = k. So, we obtain that T (n, k) = k(1+lg n

k
) ∈

O(k lg n
k
). As we have n priority queues, we have O(nk lg n

k
) memory. As can be

seen, we really need to limit the size of CD to a reasonable one.

4 Pivot based algorithm

Pivot based algorithms have good performance in low dimensional spaces, but
their performance worsens quickly as the dimension grows. So we use all the
common ingredients to compensate this failure in medium and high dimensions.
In this algorithm we use the whole extra O(n lg n) space to store a pivot index.

Pivot algorithms select a set of objects, the pivots, P = {p1, . . . , p|P|} ⊆ U,
and store a table of |P|n distances d(pj , u), j ∈ {1 . . . |P|}, u ∈ U. Then, in the
first stage we build the pivot table. To determine |P|, we give the same space
in bytes to the table as that of the cache of computed distances of the recursive
based algorithm, so |P|n = |CD| + |DCT |. Therefore, |P| is O(log n).

Since pivots compute distances towards all the objects, once we compute the
table, they have solved their k nearest neighbors. On the other hand, due to the
symmetry of d, objects in U−P already have candidates to k nearest neighbors
in NHA, then we complete n− |P| range-optimal queries for them in the second
stage.

We want to solve first the objects which have the lowest curCovRu, so we
sort objects u ∈ U − P in COH according to their curCovRu. Note that the k
nearest neighbor candidate sets are refined as the algorithm computes more and
more distances, so we reposition objects u in COH during the algorithm upon
any distance computation that modifies some NHAu. Even though this does not
save distance computations, it reduces the CPU time.

To perform a range-optimal query for u, we need an array, Diff , and a
priority queue, SortDiff . Because of the triangle inequality, for each v ∈ U,
|d(v, pj) − d(u, pj)| is a lower bound of d(u, v). Let Diffv be the maximum
lower bound of d(u, v) using all the pivots, then Diffv = maxp∈P{|d(v, p) −
d(u, p)|}. We can discard v if Diffv ≥ curCovRu. Figure 1(b) shows the concept
graphically. In this case Diffv = max{|d(v, p1) − d(u, p1)|, |d(v, p2) − d(u, p2)|}
= |d(v, p2) − d(u, p2)| > r, thus v is discarded by p2. Later, we create a priority
queue SortDiff = {(v, Diffv), v ∈ U− (P∪NHAu ∪ {u})} sorted by increasing
order of Diffv to process each object v. Upon SortDiff is created, we start to
pick objects v from SortDiff from smaller to larger Diffv. For each object v
we compute the distance d(u, v) and if d(u, v) < curCovRu we add v to NHAu.
If Diffv > curCovRu we stop processing SortDiff and are done with u.

Note that, it is possible that curCovRu will decrease during the SortDiff
reviewing. We can improve the CPU time if we take into account two facts.
First, it is not always necessary to calculate the maximum difference for each
node v. In practice to discard v, it is enough to find some lower bound greater
than curCovRu, not necessarily the maximum. Thus we can learn that Diffu >
curCovRv without fully compute the maximum of Diffu formulae. Second, it



is not necessary to add all objects in U − (P ∪ NHAu ∪ {u}) to SortDiff , if
Diffv ≥ curCovRu we already know that v will not be reviewed.

During the reviewing of SortDiff , we use the fact that U is fixed to avoid
some distance computations. On the other hand, if we cannot avoid the computa-
tion, for the objects v that we evaluate the distance d(u, v), we use the symmetry
of d to update NHAv and replace v in COH if applicable, and later, in extract-

From we use NHA as a graph to discard from SortDiff all the objects w such
that dNHA(v, w) ≤ d(u, v) − curCovRu.

5 Experimental results

We have tested our algorithms on synthetic and real-world metric spaces. The
first synthetic set is formed by 65,536 points uniformly distributed in the metric
space of [0, 1]D (that is, the unitary real D-dimensional cube). This space al-
lows us to measure the effect of the space dimension D on our algorithms. The
second set is formed by 65,536 points in a 20-dimensional space with Gaussian
distribution forming 256 clusters randomly placed in [0, 1]20. We consider three
standard deviations to make more crisp or more fuzzy clusters (σ = 0.1, 0.2,
0.3). We use the Euclidean distance in both spaces. Of course, we have not used
the fact that objects from both spaces have coordinates, but have treated them
as abstract objects. Despite that Euclidean distance is cheap to compute, we use
these spaces to simulate real-world situations.

The real-world set is the string metric space using the edit distance (a discrete
function that measures the minimum number of character insertions, deletions
and replacements needed to make the strings equal). The strings come from an
English dictionary, where we index a random subset of 65,536 words.

The experiments were run on an Intel Pentium IV of 2 GHz and 512 MB of
RAM. We measure distance evaluations and CPU time for each algorithm. For
shortness we have called KNN0 the basic knng construction algorithm, KNN1
the recursive partition based algorithm, and KNN2 the pivot based algorithm.

We summarize our experimental results for the three metric spaces in Figure 2
and Table 1. Figure 2 shows distance computations per element. Table 1 shows
our least squares fittings using the models DistEval = O(nαkβ) and time =
O(nαkβ).

Figures 2(a), 2(b) and 2(c) show experimental results for R
D. Figure 2(a)

shows that for all dimensions KNN1 and KNN2 are subquadratic in distance
evaluations, instead of KNN0 which is always O(n2). For low and medium di-
mensions, D < 16, they have better performance than KNN0 for all dimensions
D < 20. Moreover, for lower dimensions, D < 8, they are only slightly superlin-
eal. For all dimensions D ≤ 20 KNN2 has better performance than the others.
Figure 2(b) shows a sublinear dependency on k for all dimension for both algo-
rithms, however, KNN2 is more sensitive to k than KNN1. Also, it shows that
for k ≤ 4, our algorithms behave better than KNN0. Figure 2(c) shows that,
as D grows, the performance of KNN1 and KNN2 degrades. This phenomenon
is known as the curse of dimensionality. For instance, for D = 4, KNN2 is
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Gauss space: Distance evaluations per element vs n, k = 16
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(e) In Gaussian space, dependency on n.
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Gauss space: Distance evaluations per element vs k, n = 65536
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(f) In Gaussian space, dependency on k.

Fig. 2. Distance evaluations during construction per node as a function of database
size n, nearest neighbor set size k and the dimension D.

O(n1.10k0.13) distance evaluations, but, for D = 24, it is O(n1.96k0.04) distance
evaluations.

Figures 2(e) and 2(f) show that for crisp clusters (σ = 0.1) the performance
of our algorithms improves significantly even for high values of k. It is interesting
to note that for k ≤ 8 our algorithms are more efficient than KNN0 for the three
variances. They also show that KNN2 has the best performance.



Space KNN1 KNN1 KNN2 KNN2
Dist. evals. CPU time Dist. evals. CPU time

[0, 1]4 O(n1.32k0.25) O(n2.24k0.23) O(n1.10k0.13) O(n2.01k0.59)

[0, 1]8 O(n1.38k0.30) O(n2.12k0.17) O(n1.06k0.48) O(n1.70k0.40)

[0, 1]12 O(n1.59k0.19) O(n2.03k0.15) O(n1.27k0.55) O(n1.79k0.36)

[0, 1]16 O(n1.77k0.10) O(n2.14k0.08) O(n1.64k0.27) O(n1.97k0.18)

[0, 1]20 O(n1.89k0.06) O(n2.18k0.03) O(n1.87k0.10) O(n2.10k0.07)

[0, 1]24 O(n1.96k0.03) O(n2.16k0.02) O(n1.96k0.04) O(n2.16k0.04)

Gaussian σ = 0.1 O(n1.33k0.20) O(n2.07k0.18) O(n0.91k0.66) O(n1.63k0.48)

Gaussian σ = 0.2 O(n1.71k0.13) O(n2.10k0.09) O(n1.60k0.31) O(n1.94k0.22)

Gaussian σ = 0.3 O(n1.85k0.07) O(n2.17k0.04) O(n1.81k0.14) O(n2.06k0.10)

String O(n1.54k0.20) O(n2.10k0.12) O(n1.26k0.48) O(n1.85k0.29)

Table 1. KNN1 and KNN2 empirical models for distance evaluations and CPU time
for the three metric spaces.

Figure 2(d) shows the results in the string space. The graphic shows that
both KNN1 and KNN2 are subquadratic for all k ∈ [2, 32]. For instance, for
n = 65536, KNN1 costs 28% of KNN0 to build the 32nng, and KNN2 just 8%
of KNN0. This shows that our algorithm is also practical in real-world situations.
Again, KNN2 shows better performance than KNN1.

All of these conclusions (for three spaces) are confirmed in Table 1. We remark
that in some practical conditions: vectors in [0, 1]D with D ≤ 8 and k ≤ 32 and
Gaussian vectors with σ = 0.01 and k ≤ 8, KNN2 has better performance than
KNN0 in CPU time. This is important since the Euclidean distance is very cheap
to compute.

6 Conclusions

We have presented two knngs construction algorithms that consider and ex-
ploit several features of metric spaces. Our algorithms have two stages: the first
indexes the space through a recursive partition of the space (KNN1) or a ba-
sic pivot technique (KNN2), and the second completes the k nearest neighbors
using the indices and some metric and graph optimizations.

We have shown experimental results that confirm the practical efficiency of
our algorithms in metric spaces of wide dimensional spectrum (2 ≤ D ≤ 20).
For low dimensions (D ≤ 8) our algorithms are slightly superlineal in distance
evaluations. For higher dimensions they are subquadatics. For instance, in the
space of vectors in [0, 1]12, KNN1 is O(n1.59) distance evaluations and KNN2
is O(n1.27) distance evaluations. We also have this performance in crisp and
medium cluster Gaussian spaces and in the metric space of strings.

We have to remark that most of the KNN2 improvements to overcome
the curse of dimensionality are by-products of the KNN1 development. Even
though both of our algorithms are by far better than the naive one, KNN2
shows more promise for our future work, which involves using knngs to solve



proximity queries. Another challenge is to enhance the data structure to allow
insertions/deletions in reasonable time, so as to maintain an up-to-date set of k
nearest neighbors for each element in the database.
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