
Lempel-Ziv Compression of Highly Strutured Douments ∗†Joaquín Adiego ‡ Gonzalo Navarro § Pablo de la Fuente‡AbstratWe desribe a novel Lempel-Ziv approah, alled LZCS, suitable for ompressing strutureddouments. LZCS takes advantage of repeated substrutures that may appear in the douments,by replaing them with a bakward referene to their previous ourrene. The result of theLZCS transformation is still a valid strutured doument whih is human-readable and an betransmitted by ASCII hannels. Moreover, LZCS transformed douments are easy to searh,display, aess at random, and navigate. In a seond stage, the transformed douments anbe further ompressed using any semistati tehnique, so that it is still possible to do all thoseoperations e�iently, or with any adaptive tehnique to boost ompression. LZCS is espeiallye�ient to ompress olletions of highly strutured data, suh as XML forms, invoies, e-ommere and web-servie exhange douments. The omparison against other struture-awareand standard ompressors shows that LZCS is a ompetitive hoie for this type of douments,while the others are not well-suited to support navigation or random aess. When joined to anadaptive ompressor, LZCS obtains by far the best ompression ratios.Keywords: Lempel-Ziv, XML Data, Strutured Douments, Text Compression.1 IntrodutionThe storage, exhange, and manipulation of strutured text as a devie to represent semistrutureddata is spreading aross all kinds of appliations, ranging from text databases and digital librariesto web-servies and eletroni ommere. Strutured text, and in partiular the XML format, isbeoming a standard to enode data with simple or omplex, �xed or varying struture. AlthoughXML has been envisioned as a mehanism to desribe strutured data from some time ago, ithas been the reent explosion of business-to-business appliations that has shown its potential todesribe all sorts of douments exhanged between organizations and stored inside an organization.Examples are invoies, reeipts, orders, payments, aounting, and other forms.
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Although the information stored by an organization is usually kept in relational databases and/ordata warehouses, it is important to store digital soures, in XML format, of all the douments thathave been exhanged and/or produed along time. A strutured text retrieval engine should providerandom aess to those strutured douments, so that they should be easily searhed, visualized,and navigated. On the other hand, as usual, we would like this repository to take as little spae aspossible.In this paper we fous on the ompression of strutured text. We aim spei�ally at ompressionof highly strutured data, suh as forms where there is little text in eah �eld. Colletions formedby those types of forms ontain a lot of redundany that is not aptured well enough by lassialompression methods. At the same time, we want the ompressed olletion to be easily aessed,visualized and navigated in ompressed form. The most e�etive ompression methods do notaount for these apabilities: texts have to be unompressed before they an be aessed.It is usually argued that disk spae is heap and thus ompression is not interesting. Compres-sion, however, does not only save spae. It saves disk and network transfer time, whih are highlyvaluable resoures. Hene the interest of ompression by itself. Moreover, the types of texts weare fousing on in this paper are highly ompressible: We will show that we an ompress themto 1% of their original size. With this ompression ratio, it is for example possible that we anload the ompressed text database in main memory, albeit we are unable to deompress it whollyin main memory. Hene the interest of manipulating and navigating the struture in ompressedform, extrating only the douments we atually need.We develop a ompression method, Lempel-Ziv to Compress Struture (LZCS), inspired inLempel-Ziv ompression, where repeated substrutures are fatored out. That is, every time arepeated substruture is deteted, it is replaed by a bakward referene to its previous ourrene.The result of this LZCS transformation is a text that is still human-readable and well strutured.Thus, it an be seamlessly transmitted over ASCII hannels, handled by strutured text manage-ment tools, and visualized in ompressed form with onventional means. It is very fast and simpleto deompress, in whole or in parts, it an be searhed for the presene of words and phrases inthe text with onventional algorithms diretly in ompressed form (about 100 times faster thanthe original text), and it an be aessed at random without need of deompressing the preedingtext. With little additional e�ort, the ompressed doument an be browsed and navigated withoutdeompressing it.Compared to LZ77 [ZL77℄, whih an fator out any repeated text substring, LZCS is restritedto onsider only whole substrutures. As a result, LZ77 ompresses more than the LZCS transfor-mation, yet the ompressed text laks all of the LZCS features desribed above, exept for the fastdeompression. It is interesting that we build on an adaptive ompressor (LZ77) not permittingloal deompression, and obtain a ompressor that does permit loal deompression, navigation,and many other features.To improve ompression, the LZCS transformed text an be further ompressed with a lassialompressor. The use of a semistati ompressor retains fast deompression in whole or in parts, ran-dom aess, and the possibility of browsing and navigating the ompressed doument. Alternatively,an adaptive ompressor an boost the ompression ratio, yet losing all those features.In partiular, we show that the use of a semi-stati word-based Hu�man method to ompressthe LZCS transformed text yields very ompetitive ompression ratios, only beaten by adaptive2



shemes that do not permit any of the features we have desribed above. Adaptive shemes aresuitable to ompress an arhival olletion, but not a database of douments that must frequentlyretrieve individual douments. On the other hand, we show that the ombination of LZCS and anadaptive PPM ompressor is unbeaten in ompression ratio.We show how the LZCS transformation an be arried out in linear expeted time and in asingle pass over the text. This means that we an start produing the transformed text shortly afterstarting reading the soure text. This makes LZCS suitable for use over a ommuniation networkwithout introduing any delay in the transmission. For example, LZCS an be transparently used totransmit strutured douments, even over a plain ASCII hannel, in order to redue ommuniationtime. The reeiver needs very little omputational power to unompress, and it an even navigateor display parts of the doument without unompressing all of it.The paper is organized as follows. In Setion 2 we over related work on ompression, bothfor plain and strutured text. In Setion 3 we desribe the LZCS transformation. In Setion 4we explain how the transformation an be arried out in linear expeted time. In Setion 5 weshow empirial results omparing the ompression ratio, as well as ompression and deompressionperformane, of LZCS ompared to other standard and struture-aware ompressors. We onludein Setion 6 with future work diretions.2 Related Work2.1 Standard Text CompressionIn general, lassi text ompression methods [BCW90, MT02℄ do not take into aount the strutureof the douments they ompress. Our aim is not to over the whole area but just to fous on threefamilies of ompressors that are relevant for this paper. Lempel-Ziv and k-th order modelling familiesare adaptive ompressors, whih learn the statistial struture of the text as they proess it, updatingthe model on the �y. Hu�man family is semistati, that is, it �rst obtains the statistis of the wholetext and then ompresses all the text with the same model.Lempel-Ziv. At the end of the seventies, Lempel and Ziv designed new tehnologies of dataompression based on replaing text substrings by previous repeated ourrenes. Their two mostfamous algorithms are alled LZ77 [ZL77℄ and LZ78 [ZL78℄. A well-known variant of the latter isalled LZW, by Welh [Wel84℄.LZ77 maintains a window of the last N proessed haraters. In eah step, it reads the longestpossible string s from the input that also appears in the window. If s is of length ℓ, it is followedby harater a in the input, and it was found at window position p (ounting right to left), thenthe ompressor outputs the triple (p, ℓ, a). Thus input string sa is replaed by the triple, andompression is obtained if the triple needs less bits than the string itself. One this is done, thewindow is shifted forward by ℓ+1 positions and the algorithm resumes the sanning just past string
sa. In priniple a longer window improves ompression beause it is more likely to �nd longer stringsfor replaement. However, the representation of position p requires log2 N bits, whih worsens as
N grows. In pratie the most onvenient window size is not very long (for example, 64 Kbytes).3



Deompression of LZ77 is extremely fast and simple. The ompressed text is basially a sequeneof triples (p, ℓ, a). For eah suh triple we must opy ℓ haraters starting p positions behind theurrent output position, and then output a. Well-known representatives of LZ77 ompression areInfo-ZIP's zip and Gnu's gzip.Other variants, suh as LZ78 and LZW, restrit somehow whih previous strings an be refer-ened. This is done for e�ieny reasons of di�erent type, for example to improve ompression timeor to improve the ompression ratio. The hoie of strings that an be referened, however, doesnot take into aount the meaning of those strings. A well-known representative of LZW is Unix'sompress.The Lempel-Ziv family is the most popular to ompress text beause it ombines aeptableompression ratios (around 35% on plain English text1) with fast ompression and deompression.However, being adaptive, Lempel-Ziv ompressed text annot be deompressed at random positions,beause one must proess all the text from the beginning in order to learn the window that is usedto unompress the desired portion.Hu�man. Classial Hu�man ompression [Huf52℄ onsists of omputing the frequenies of thetext haraters in a �rst pass, and then assign a variable-length bit-wise ode to eah harater.Then, in a seond pass, eah harater is replaed by its ode. Hu�man ompression reahes thezero-order entropy of the text up to one extra bit per symbol, and being semistati, it is easyto deompress the text starting at any position. Hu�man is said to be a statistial ompressor,as it relies on text statistis, as opposed to the so-alled ditionary-based ompressors whih, asLempel-Ziv, onsist in replaing strings by identi�ers.Hu�man is not very popular in text ompression beause it ahieves poor ompression ratiosompared to other tehniques. However, the situation hanges drastially when natural languagetext is ompressed and one uses the text words, rather than the haraters, as the text symbols[Mof89℄. The distribution of words is muh more skewed than that of symbols, and this permitsobtaining muh better ompression ratios than Hu�man-based ompressors. On English text, forexample, harater-based Hu�man obtains around 60% ompression ratio, while word-based Hu�-man is around 25% [ZMNBY00℄. Atually, similar ompression ratios an be obtained by usingLempel-Ziv on words [BSTW86, DPS99℄.Word-based Hu�man, however, has other advantages. Not only the text an be ompressedand deompressed e�iently, as a whole or in parts, but it is also possible to searh it withoutdeompressing, faster than when searhing the unompressed text [ZMNBY00℄. Another advantageis that this type of ompression integrates very well with information retrieval systems, beause thesoure alphabet is equivalent to the voabulary of the inverted index [WMB99, NMN+00, MW01℄.One of the best known systems in the publi domain relying on word-based Hu�man is the MGsystem [WMB99℄.
K-th order models. This family of statistial adaptive ompressors omprises both Preditionby Partial Mathing (PPM) ompression and the Burrows-Wheeler Transform (BWT).PPM [CW84℄ is a statistial ompressor that models the harater frequenies aording to theontext given by the k haraters preeding it in the text (this is alled a k-th order model), as1That is, the ompressed text size is 35% of the unompressed text size.4



opposed to Hu�man that does not onsider the preeding haraters. Moreover, PPM is adaptive,so the statistis are updated as the ompression progresses. The larger k, the more aurate isthe statistial model and the better the ompression, but more memory and time is neessary toompress and unompress.More preisely, PPM uses k + 1 models, of order 0 to k, in parallel. It usually ompresses usingthe k-th order model, unless the harater to ompress has never been seen in that model. In thisases it swithes to a lower-order model until the harater is found. The oding of eah harateris done with an arithmeti ompressor, aording to the omputed statistis at that point.The BWT [BW94℄ is a reversible permutation of the text, whih puts together haraters havingthe same k-th order ontext (for any k). Loal optimization (for example, move-to-front followedby Hu�man) over the permuted text obtain results similar to k-th order ompression.PPM and BWT usually ahieve better ompression ratios than other families (around 20%on English text), yet they are muh slower to ompress and deompress, and annot unompressarbitrary portions of the text olletion. Well known representatives of this family are Seward'sbzip2, based on the BWT, and Shkarin/Cheney's ppmdi and Bloom/Tarhio's ppmz, two PPM-basedtehniques.2.2 Strutured Text CompressionThere exist a few approahes spei�ally designed to ompress strutured text, taking advantage ofits struture.XMill [LS00℄. Developed at AT&T Labs, XMill is an XML-spei� ompressor designed to ex-hange and store XML douments. Its ompression approah is not intended for diretly supportingquerying or updating the ompressed douments. XMill is based on the zlib library, whih ombinesLempel-Ziv ompression with a variant of Hu�man. Its main idea is to split the �le into threeomponents: elements and attributes, text, and struture. Eah omponent is ompressed sepa-rately. Another ompressor based Lempel-Ziv, utting the struture at some depth and using plainLempel-Ziv ompression for the subtrees, is ommerial XMLZip (http://www.xmls.om).XMLPPM [Che01℄. This ompressor uses a PPM-like oder, where the ontext is given by thepath from the root to the tree node that ontains the urrent text. This is an adaptive ompressorthat does not permit random aess to individual douments. The idea is an evolution over XMill,as di�erent ompressors are used for eah omponent, and the XML hierarhy information is usedto improve ompression.XCQ [LW02℄ and Exalt [Tom04℄. These are ompression methods based on separating stru-ture from data, and using grammar-based ompression for the struture. In XCQ, the tree shape isompressed using the DTD information, while the text is ompressed using a standard Lempel-Zivsoftware suh as gzip. In Exalt, both elements are ompressed using grammar-based methods. Inpartiular, zero-order predition depending on the strutural ontext, plus arithmeti oding, isused for the tags. Other grammar-based tehniques an be found in [Tar01℄, as well as in XML-Xpress, a ommerial software (http://www.itompress.om) that ompresses well when the DTDis known. 5



XGrind [TH02℄. This ompressor is interesting beause it diretly supports queries over theompressed �les. An XML doument ompressed with XGrind retains the struture of the orig-inal doument, permitting reuse of the standard XML tehniques for proessing the ompresseddoument. Struture tags are represented in numeri form, while the text is ompressed usingharater-oriented Hu�man. A similar idea is explored in in XMillau [GS00℄.SCMHu� [ANdlF03℄ and SCMPPM [AdlFN04℄. SCM is a generi model used to ompresssemistrutured douments, whih takes advantage of the ontext information usually impliit in thestruture of the text. The idea is to use a separate model to ompress the text that lies insideeah di�erent struture type. SCMHu� uses a word-based Hu�man ompressor for eah di�erenttag, while SCMPPM uses a PPMDI ompressor. The former permits random aess to individualdouments, while the latter annot.3 The LZCS TransformationLZCS is a new tehnique to ompress strutured text (suh as XML or HTML). The main idea isbased on the Lempel-Ziv onept, so that repeating substrutures and whole text bloks (that is,the whole text inside a struture or between two strutural elements) are replaed by a bakwardreferene to their �rst ourrene in the proessed doument. The result is a valid struturedtext with additional speial tags (bakward referene tags), whih an be transmitted, handled orvisualized in a onventional way, or further ompressed using some lassial ompressor.We start by formally desribing the LZCS transformation, then present an example, and �nallydisuss its features.3.1 Formal De�nitionDe�nition 1 (Text Blok) A text blok is any maximal onseutive harater sequene not on-taining struture or bakward referene tags.De�nition 2 (Strutural Element) A strutural element is any onseutive harater sequenethat begins with a start-tag and �nalizes with its orresponding end-tag.Observe that a text blok is either the whole text ontained in a strutural element whihdoes not have further internal struture, or it is the whole text between two onseutive struturalelements. On the other hand, a strutural element an ontain one or more text bloks, one ormore strutural elements and/or (after the LZCS transformation) one or more bakward referenetags. For simpliity, other types of valid tags (suh as, in XML, omment tags and self-ontainedtags) will be treated as onventional text, and only start-tags and end-tags will be used to identifystrutural elements. Furthermore, tags will be treated as atomi elements. This means that, forexample, the XML attributes and values inside a tag are part of the tag name, and do not formtext bloks.The struture indues a hierarhy that an be represented as a tree. Text bloks will be repre-sented by leaves, and strutural elements by subtrees rooted at internal nodes.6



De�nition 3 (Node) A node is either a text blok or a strutural element.The main point of LZCS is to replae some subtrees by referenes to equivalent subtrees seenbefore.De�nition 4 (Equivalent Nodes) Let N1 and N2 be two nodes that appear in a olletion. Wewill say that node N1 is equivalent to node N2 i� N1 is textually equal to N2.We are ready to de�ne the LZCS transformation.De�nition 5 (LZCS Transformation) LZCS replaes eah maximal node that is equivalent to aprevious node by a bakward referene to its �rst ourrene in the transformed text. Other elementsare left unhanged. �Maximal� means that the node replaed does not desend from another that anbe replaed.A bakward referene is represented by a speial tag in the output. The speial tag is onstrutedby means of the delimiters "<�" and ">" that mark the beginning and end of the bakward referenetag. The ontent of this tag will be formed by digits that express an unsigned integer indiatingthe absolute position in the transformed text where the referened element begins. For spaeoptimization, this number will be expressed in base 62, using 0..9, A..Z and a..z as digits. Thisway, the transformed text is still ASCII and well-strutured. The referene tag has been hosen tovoid tag name lashes in XML, but it an be hanged.It may happen that a referened text blok is smaller than the referene itself (for example, whenthe text blok is formed only by harater '\n'). In these irumstanes, replaing it by a refereneis not a good hoie. Hene we do not replae text bloks that are shorter than a user-spei�edparameter l. The hoie of l in�uenes ompression ratio, but not orretness.3.2 ExampleAssume that we are going to ompress a olletion of three douments using LZCS. The doumentsare represented in Figure 1. In the �gure, there exist three di�erent strutural elements representedby irles. The strutural elements of type 1 (A, F, M) have their irle drawn with a solid line,those of type 2 (B, E, G, J, N) with a dashed line, and those of type 3 (the rest) with a dotted line.Text bloks are represented by squares. Letters and numbers in the �gure represent node identi�ers.To over all the possibilities, assume that text bloks numbered 1, 4, 7 and 9 in the �gureare equivalent. Also text bloks numbered 3 and 10 are equivalent, as well as those numbered 6and 8. As a result, the douments share repeating parts (that is, equal subtrees). Figure 2 showsgraphially these orrespondenes and Figure 3 shows the olletion transformed with LZCS.Finally, Figure 4 shows a textual version of the original and transformed douments. Note thatthe LZCS transformed text is a valid strutured doument, provided we aept "<�...>" as a validself-ontained tag.3.3 Properties of the LZCS Transformed TextAs mentioned in the Introdution, the LZCS transformation has a number of attrative features,whih we desribe now more in depth. 7



A

B

C D

E

1 2

3

M

N

O P

Q

98

10

F

G

H I

J

K L

4 5 6 7

(A) (B) (C)Figure 1: Three example douments.
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(C)(B)(A) Figure 2: Equivalent subtrees of the douments.Human readable: The output of the transformation is human-readable (see Figure 4). This meansthat the transformed �le an be read with any onventional text editor or terminal.ASCII ompliant: The only new haraters introdued by LZCS are '<', '>', '�', letters anddigits. Therefore, and LZCS transformed doument an be transmitted by any ASCII han-nel. For example it an be sent by email without any onern. Atually LZCS ould betransparently used by servers to transfer strutured douments to lients, even over ASCIIhannels.Well strutured: The LZCS transformed text is a well formed strutured doument. As suh, itan be handled with any tool that manages strutured douments (in XML, for example). Theonly exeption is that LZCS produes a speial self-ontained tag, "<�...>", whih must bedealt with as any other suh tag. We ould perfetly use instead a onventional self-ontainedtag to avoid any exeption, suh as "<ref pos=.../>, but we hose otherwise to avoid anypossibility of lashing with the atual tags of the douments, and to have shorter referenes.8
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(A) (B) (C)Figure 3: Example douments after applying the LZCS transformation. Bakward referenes arerepresented by triangles.Diretly searhable: The LZCS transformed text ontains the same words and phrases of theoriginal douments. A phrase annot be split unless its words belong to di�erent struturalelements, in whih ase it is arguably not a phrase. Although the number of ourrenes ofwords and phrases will hange between the original and the transformed douments, a wordor phrase is present in the original text if and only if it is present in the transformed text.Thus, the LZCS transformed text an be searhed for words and phrases with any onventionalstring mathing algorithm (suh as Gnu's grep) to determine whether the phrase appears ornot. If the phrase appears, deompression is neessary to point out all the douments wherethey appear. Note in partiular that the searh on the LZCS transformed text will be fasterthan on the original text, as the latter is longer (in our experiments, 100 times longer).Fast to deompress: Deompressing an LZCS transformed text is pretty muh as deompressingLZ77, and therefore, very fast and simple. An important di�erene is that LZ77 uses pointersto the unompressed �le, so it an just opy the referened unompressed text to the output.LZCS, on the other hand, uses pointers to the ompressed �le, so it must reursively obtainthe output text from the ompressed �le. This makes LZCS deompression somewhat slower,but in exhange LZCS an navigate the ompressed �le and extrat individual doumentswithout unompressing the whole text.Easily navigable and visualizable: LZCS transformed douments an be navigated in the usualway (that is, going down and up in the hierarhy as with a tree). Instead of relying on anykind of parent pointer assoiated to nodes, we must use a stak to keep trak of the urrentanestors of the urrent node. Every time we have to go down to a hild, it might be that thehild is a bakward referene or not. In the former ase, we just move the urrent text positionto the appropriate point bak in the ompressed �le. All the rest is unhanged. When movingupwards, we pop the orresponding �le position from the stak of anestors.Aessible at random positions: With the same algorithm above we an produe the unom-pressed text of any doument, by simply starting unompression at its start-tag and following9



A: <log>B: <entries>C: <event>1: Bug report</event>D: <event>2: Release announe</event></entries>E: <entries>3: No further events</entries></log>F: <log>G: <entries>H: <event>4: Bug report</event>I: <event>5: New version</event></entries>J: <entries>K: <event>6: Bug fix</event>L: <event>7: Bug report</event></entries></log>M: <log>N: <entries>O: <event>8: Bug fix</event>P: <event>9: Bug report</event></entries>Q: <event>10: No further events</event></log>

A: <log>B: <entries>C: <event>1: Bug report</event>D: <event>2: Release announe</event></entries>E: <entries>3: No further events</entries></log>F: <log>G: <entries>H: <�C>I: <event>5: New version</event></entries>J: <entries>K: <event>6: Bug fix</event>L: <�C></entries></log>M: <log>N: <�J>Q: <event>10: <�3></event></log>

Figure 4: The same example douments in textual form. The original doument is on the left andthe LZCS transformed doument on the right. For readability we write referenes to line labels(upperase letters and numbers) instead of harater o�sets. We remind that the referenes areo�sets in the ompressed text, not in the original text.10



any referene as neessary.Thus, LZCS an be integrated into a strutured text retrieval system without loss (and inases large gains) of e�ieny in the searh or visualization of results. As demonstrated in ourexperiments, the ompression ratios are so good (1%) that it is feasible to maintain large olletionsompressed in main memory, even when there is no enough main memory to unompress all of it.LZCS is perfet for this senario, as it an navigate, visualize and unompress individual doumentwithout having to unompress the whole olletion.The LZCS transformed text an be further ompressed with any onventional method. Sinethe douments generated by LZCS are navigable, a good idea is to further ompress them using asemistati ompression method, like word-based Hu�man. After this proess, the douments annotanymore be handled as plain text (a word-wise deompression is needed), but they are still navigableand aessible at random positions. Diret searh over word-based Hu�man is also possible andvery e�ient. On the other hand, we an use an adaptive ompression to boost ompression ratio.LZCS an be seen as a preproessing stage that fators out some types of redundanies, so that afurther adaptive ompressor takes muh less time and ompresses more than when applied over theoriginal text.4 E�ient Implementation of the LZCS TransformationA hallenge with the LZCS transformation is how to implement it e�iently, as we must detetsubstrutures that have appeared in the past. The simplest way to implement the LZCS transfor-mation is by searhing all previously proessed text for eah new strutural element. This way, wehave a omplexity of O(n2), whih is unaeptable.We show now how to obtain O(n) average time. The idea is to maintain a hash table with allthe whole text bloks, as well as all the strutural elements, seen in the past. While hashing textbloks is straightforward, reognizing repeated strutural elements in linear expeted time requiresmore areful design.When a text blok is proessed, we �rst obtain its digital signature (for example, using MD5algorithm [Riv92℄). If the text blok is not equivalent to any previous text blok (its signaturedoes not oinide with previous ones), then the text blok is opied verbatim to the output and itssignature is added to the (hashed) set of signatures of original text bloks, together with the textposition of the blok (whih is the �rst ourrene of this blok in the output). Otherwise, if anequivalent text blok appears (their digital signatures oinide) a bakward referene to the �rstourrene of the text blok is written to the output. (Sine digital signature algorithms do notensure that signatures are unique, texts are also diretly ompared when a oinidene arises.)In order to apply hashing to struture elements too, a node signature is generated and stored,along with its start position in the output, for nodes that have not appeared before. Node signaturesof parent nodes are produed after those of hildren nodes.De�nition 6 (Node Signature) A node signature is formed by onatenating its start-tag iden-ti�er and hildren identi�ers. These are either their start text positions in the output if they are notreferenes, or their referened positions otherwise.11



As we show in Lemma 2, a node signature is unique within a olletion. For eah new strutureelement, its node signature is generated and searhed for among the existing ones. If a oinideneis found then the urrent struture element is equivalent to a previous one, and it an be replaed.Next lemma is useful to prove the orretness of this hashing sheme.Lemma 1 Let N and N ′ be two nodes that appear in a olletion transformed with LZCS up tonode N ′, N preeding N ′. Then, N is equivalent to N ′ i� N ′ is a bakward referene to N , or Nand N ′ are equal bakward referenes.Proof: We prove the equivalene in both diretions.1. If N is equivalent to N ′ then the LZCS transformation replaes N ′ by a bakward refereneto its �rst ourrene:(a) If N is the �rst ourrene then N ′ is replaed by a bakward referene to N .(b) Otherwise, let N0 be the �rst ourrene of N ′, then N ′ is replaed by a bakwardreferene to N0, but also N was replaed by a bakward referene to N0.Thus, it holds that either N ′ is a bakward referene to N , or N and N ′ are equal bakwardreferenes.2. If N ′ is a bakward referene to N , or N ′ and N are equal bakward referenes, then N isequivalent to N ′, beause in both ases it holds that N and N ′ ontents are textually equal.
2Bearing in mind Lemma 1, we show next that the node signature is unique and works orretly.Lemma 2 Nodes N and N ′ are equivalent i� their node signature are equal.Proof: We observe that a node only an repeat if all its hildren repeat as well. Therefore, a node

N , parent of N1. . .Nk, is textually equal to a later node N ′, parent of N ′
1. . .N ′

k
, i� tag identi�ersof N and N ′ are equal and ∀i ∈ 1..k,N ′

i
is equivalent to Ni. By Lemma 1, the latter means thateither N ′

i
points to Ni, or N ′

i
points to some N0 and Ni points to N0. Aording to De�nition 6, inthe �rst ase both hildren identi�ers are Ni, and in the seond both are N0. These onditions areneessary and su�ient for the node signatures of N and N ′ being equal. 2We are now ready to explain the LZCS transformation algorithm. When an end-tag appears itsorresponding node signature is obtained and searhed for in the (hashed) set of node signatures.If the urrent node signature is present in the set, then it an be replaed by a bakward refer-ene. However, at this point we are not sure that the urrent node is a maximal repeated subtree.Therefore the substitution is done only in memory, but nothing is yet written to the output. Onthe other hand, if the urrent node signature is not present in the set, then the urrent subtree isnot equivalent to any previous one and, therefore, nonwritten hildren and urrent node must bewritten to the output. Also, the urrent node signature is added to the set of node signatures.12



LZCS TransformationNodeSigSet ← ∅TextSigSet ← ∅PreviousSubtree ← 〈 〉while there are more nodes dourrent_node ← get_node() // in postorderif (urrent_node is a Text Blok)then urrent_signature ← MD5(urrent_node)if (urrent_signature ∈ TextSigSet)then referene ← TextSigSet.referene(urrent_signature)PreviousSubtree.add(referene)else urrent_position ← StartPosition(urrent_node)TextSigSet.add(urrent_signature , urrent_position)Write PreviousSubtree to the outputWrite urrent_node to the outputPreviousSubtree ← 〈 〉�else urrent_signature ← NodeSignature(urrent_node)if (urrent_signature ∈ NodeSigSet)then referene ← NodeSigSet.referene(urrent_signature)PreviousSubtree.erase_hildren(urrent_node)PreviousSubtree.add(referene)else urrent_position ← StartPosition(urrent_node)NodeSigSet.add(urrent_signature , urrent_position)Write PreviousSubtree to the outputWrite urrent_node to the outputPreviousSubtree ← 〈 〉��odWrite PreviousSubtree to the outputFigure 5: LZCS transformation algorithm.13



Figure 5 desribes the basi LZCS transformation. List PreviousSubtree ontains the elementsthat have been onverted to referenes but are not yet output beause we do not know whetherthey are maximal. If we are urrently proessing some tree node, then PreviousSubtree may ontainsiblings to the left of the node and of anestors of the node. By adding new nodes at the end ofthe set we know that, one we go bak to the parent node, the latter elements of the set are allthe hildren of that parent node. This permits implementing PreviousSubtree.erase_hildren easily,just by knowing the arity of urrent node.Also note that, if a subtree is not repeated, then no anestor of it an be repeated. As all theelements in PreviousSubtree have not yet been sent to the output just beause it might be that theirparent (an anestor of the urrent node) might be repeated, as soon as we know that the urrentnode is not repeated we send all PreviousSubtree to the output. This is not stritly neessary (oneould only send the hildren of the urrent node to the output, and previous elements would waitthat their parent sends them) but it simpli�es the algorithm, as the list to maintain is shorter andalways omposed of referenes.Deompression is very simple. It begins by writing the text to the output. When a bakwardreferene tag is found, we reursively start deompression from the referened position in the om-pressed text. If the text at that position begins with a start-tag, the reursive all will �nish whenthe orresponding end-tag is written. Otherwise, it will �nish when the �rst start-tag appears.Upon returning from the reursive all, the main proess resumes deompression from past thebakward referene tag. Reursion is neessary beause further bakward referenes may appearwhen proessing the text referened by the �rst one.Figure 6 gives the pseudoode. This is simpli�ed, for example it is impliit that mathing the�orresponding end-tag� that �nishes a referene involves keeping trak of the urrent depth in thestruture tree.Note also that unompression ould be faster and simpler if we stored pointers to referenes inthe untransformed �le, rather than in the transformed �le. In this way, there would be no reursionbeause the referened text would be already untransformed. We reall that this, however, preventsnavigating in the transformed �le without deompressing it.About memory usage, both the ompression and deompression algorithm work better if theymaintain all the ompressed text in main memory (although they ould work with the text on disk).In addition, the ompressor needs to maintan the hash tables for text blok and node signatures.Note that items are inserted into those tables only when they do not beome referenes but pass tothe output, so the spae required for those tables is also proportional to the size of the ompressedtext. The size of PreviousSubtree and staks is negligible. Just like other ompressors, LZCS anlean up all its strutures and start afresh when the memory onsumption exeeds some prede�nedlimit. This would only a�et ompression ratio, but not orretness.4.1 ExampleLet us go bak to the douments shown in the example of Setion 3.2. The douments will beproessed left to right, as they appear in Figure 1. In the �rst doument no substitution is arriedout, sine there are no equivalent nodes in the doument. At this moment, the output will ontainan exat opy of the �rst doument. Then the seond doument is proessed. Sine text blok 4is equivalent to 1, it is replaed by a bakward referene, represented by triangles in Figure 7-A.14



LZCS Inverse Transformation
word← get_word()while not end of transformed text doif (word is a referene tag)then position← get_position(word)SolveReferene(position)else write word to the output�

word← get_word()odproedure SolveReferene(position)do go to position in input �le
word← get_word()if (word is a start-struture tag)then end_word← orresponding end-struture tagelse end_word← any start-struture tag�while word 6= end_word doif (word is a referene tag)then position← get_position(word)SolveReferene(position)else write word to the output�

word← get_word()odod Figure 6: LZCS inverse transformation algorithm.
15



As the strutural elements that ontain bloks 4 and 1 also oinide (nodes are equivalent), theprevious bakward referene is replaed again with another that ontains the strutural element(Figure 7-B). The same happens to text blok 7 (Figures 7-C and 7-D).
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(A) (B) (C) (D)Figure 7: Substitutions performed in the seond doument.Finally, the third doument is proessed. First, the substitutions of text bloks 8 and 9 arearried out, as well as those for their orresponding strutural elements (Figures 8-A to 8-D). Whenstrutural element N has just been proessed, it is veri�ed that it an be ompletely replaed bya bakward referene to J, beause they are equivalent elements: They have the same number ofhildren and hildren are equivalent one by one left to right (Figure 8-E). Finally, text blok 10 isreplaed by a bakward referene sine it is equivalent to text blok 3 (Figure 8-F). In this ase,strutural element Q is not substituted beause it is not equivalent to E.The rux of Lemma 2 is illustrated at this point. Note that we detet that the subtree rootedat N in Figure 8-D is a repetition of the subtree rooted at J in Figure 7-D. The left subtree of nodeJ is not a bakward referene, so its signature is the very same position of K in the ompressed text(let us all it k). The left subtree of node N is a bakward referene pointing preisely to k. Theright subtrees of J and N are both a bakward referene equal to c, the position of node C in theompressed text. Aording to De�nition 6, both signatures are equal to (type-1:k:c) and thus theequivalene is deteted.5 Experimental EvaluationLZCS ompression was tested using di�erent XForms olletions, whih orrespond to real dou-ments in use in small and medium Chilean ompanies. XForms (http://www.w3.org/MarkUp/Forms),an XML dialet, is a W3C Candidate Reommendation for a spei�ation of Web forms that learlyseparate semanti from presentation aspets. In partiular, XForms is beoming quite ommon inthe representation and exhange of information and transations between ompanies.For privay reasons we annot use atual XForms databases, but we an get rather lose. Wehave obtained �ve di�erent types of forms (e.g., invoies). Eah suh form has several �elds. Eah�eld has a ontrolled voabulary (e.g., names of parts) we have aess to. Hene, we have generatedatual forms by randomly hoosing the ontents of eah �eld from their ontrolled voabulary. We16
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(D) (E) (F)Figure 8: Substitutions arried out in the third doument.remark that this is pessimisti, sine atual data may ontain more regularities than randomlygenerated data.A brief desription of the �ve types of forms used follows.
• XForms type 1: Centralization of Remunerations. It represents the aounting of the monthlyremunerations, both for total quantities and with itemization. This is a frequently useddoument.
• XForms type 2: Sales Invoie. It is a legal Chilean doument.
• XForms type 3: Purhase Invoie. It is a legal Chilean doument, similar to the previous one.
• XForms type 4: Work Order. It is the doument used in ompanies that install heatingsystems, to register the aount detail of ontrated work.
• XForms type 5: Work Budget. It is the doument used in ompanies that build signs andpubliity by request, to determine the parts and osts of works to arry out. Construtionompanies use a similar doument.For the experiments we seleted di�erent size subolletions of XForms types 1, 2, and 3. Col-letions of XForms types 4 and 5 were smaller so we used them as a whole.17



5.1 Optimizing the Choie of lWe tested LZCS with di�erent l values. Value l = 0 means that all possible substitutions are made,whereas l =∞ means that no text blok is replaed, just strutural elements.Figure 9 shows how ompression ratios evolve when di�erent values for l are used, for XFormstype 3. Other XForms olletions give similar results. We remind that �ompression ratio� refersto the size of the ompressed text divided by the size of the unompressed. We do not yet applyfurther ompression after the LZCS transformation.
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Figure 9: Compression ratios using di�erent values for l, for XForms type 3. On the right we showa zoom of the left plot. By �lzs(struture)� we refer to the setting l =∞.As it an be seen, the worst ompression has been obtained in all ases for l = 0, this is, whenall possible text bloks are replaed. Compression for l = ∞ has obtained intermediate results,obtaining on large olletions size redutions of 28% ompared to the option l = 0. However, hoie
l =∞ is still muh worse than intermediate hoies. Di�erent intermediate values for l yield similarompression, with very small variations. Their ompression improves upon l =∞ by 18% and upon
l = 0 by 42% for large olletion sizes. This shows that most reasonable intermediate values of lare almost optimal and thus �ne-tuning of l is not an issue.We note that our XForms olletions are highly ompressible, as expeted from this denselystrutured data.5.2 Comparison against Classial CompressorsWe �rst ompared LZCS against the basi word-based Hu�man method [Mof89℄ (Word Hu�man,from the MG system, http://www.s.mu.oz.au/mg). We separate this omparison from the restbeause word-based Hu�man is one of the methods we use for the seond step after the LZCStransformation, and beause word-based Hu�man ompression still permits random aess to theompressed text. For LZCS, we use the best l value for eah olletion.Figure 10 shows the ompression ratio obtained for eah method and for eah doument type.Column �LZCS� indiates the ompression obtained when the LZCS transformation is applied alone,18



while olumn �LZCS+Hu�� indiates the ompression obtained after applying word-based Hu�manto the output of the �rst stage.Colletion / Method Word Hu�man LZCS LZCS+Hu�XForms 1 9.6935% 0.1760% 0.05867%XForms 2 12.646% 4.3111% 0.92209%XForms 3 11.550% 6.0872% 1.32940%XForms 4 13.994% 4.8861% 0.89281%XForms 5 12.441% 3.6245% 0.83933%Figure 10: Compression ratios for LZCS versus Word Hu�man.In all ases the ompression obtained by LZCS transformation alone is remarkably good. Letus remind that the output obtained by the transformation is still a plain text doument, and thisalready halves the spae needed by Word Hu�man, at the very least. When word-based Hu�manoding is applied over the LZCS transformed text the ompression is still better, reduing the LZCStransformed text to 20%�25% of its size.We now ompare LZCS against other lassial ompression systems that allow neither navigationnor random aess in the ompressed �le. Beause of this, we onsider three variants: LZCS+Hu�,LZCS+ppmdi, and LZCS+ppmz. These onsist in applying, respetively, word-based Hu�man,PPMDI, and PPMZ ompression (see next) to the LZCS transformed text. We use l = 5 in all thefollowing experiments.Standard systems used to ompare against LZCS are (1) gzip v.1.3.5 (http://www.gnu.org),whih use LZ77 plus a variant of Hu�man algorithm (we also tried zip with almost idential results);(2) UNIX's ompress v.4.2.4, whih implements LZW algorithm; (3)bzip2 v.1.0.2 (http://www.bzip.org), whih uses the Burrows-Wheeler blok sorting text ompression algorithm, plus Hu�man od-ing; (4)ppmdi (extrated from XMLPPM 0.98.2, http://sourgeforge.net/projets/xmlppm) andppmz v.9.1 (Linux port, http://www.s.hut.fi/~tarhio/ppmz), two PPM ompressors. We usedstandard options for all (yet, letting them use muh more memory did not signi�antly a�et theresults).Compression ratios are shown in Figure 11. Ppmz ompresses muh better than ppmdi, but itis muh slower. For example, it took from 4.5 to 10 hours to ompress 5 megabytes of text withppmz. For this reason, we show ppmz ompression only for the �rst 5 Mb of XForms 1, 2, and3, and for the whole XForms 4 and 5. On the other hand, LZCS+ppmz is muh faster beauseppmz is applied over the already transformed text, whih is muh smaller. As we see in the results,LZCS+ppmz obtains the best ompression ratios. It even outperforms ppmz alone in many ases,at least for short texts. For longer texts, ppmz is simply not a hoie. This shows that LZCS servesas a preproessing stage that maintains (and even improves) the performane of ppmz, at the sametime dramatially reduing the time needed for ompression, at the point of making it a viablealternative for text sizes where ppmz alone is not.The worst performing ompressor is ompress, with ompression ratios around 10% in all thetexts. This is similar toWord Hu�man (whih in exhange permits random aess) and not ompet-itive in this experiment (it is exluded from the plots of XForms types 1, 2, and 3 for readability).19
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Figure 11: Comparison between LZCS and lassial ompressors.This is followed by gzip and ppmdi (with signi�ant di�erenes among them depending on the ol-letion), and then by LZCS+Hu� and bzip2. These have similar ompression ratio, although thereare again signi�ant di�erenes depending on the olletion. Reall, however, that LZCS+Hu� isthe only method in the group permitting random aess and navigation in the olletion. Finally,the best ompression ratios are ahieved by LZCS+ppmdi, LZCS+ppmz and ppmz, whih are verylose. LZCS+ppmdi usually loses to the others and ppmz usually loses to LZCS+ppmz. Moreover,ppmz is so slow that it annot be applied exept in small olletions. These results show that takingadvantage of the struture yields signi�ant gains in ompression.5.3 Comparison against Struture-Aware MethodsWe now ompare LZCS against other struture-aware methods: (1)XMill v.0.8 (http://soureforge.net/projets/xmill), (2)XMLPPM v.0.98.2 (http://soureforge.net/projets/xmlppm), (3)SCMHu� (http://www.infor.uva.es/~jadiego), and (4)SCMPPM (same page).XGrind, (http://vs.soureforge.net/viewvs.py/xmill/xmill/XGrind) was exluded fromthis omparison beause we ould not make it work properly on our dataset. To be sure that thisexlusion was not important, we altered our olletion (in a statistially insigni�ant way) until20



produing 1 Mb of text where XGrind �nally worked. The resulting ompression ratio was 32.63%,whih is not ompetitive at all in this experiment. XCQ was also exluded beause we ould not�nd the ode, yet results reported in [LWL03℄ indiate that the ompression ratios ahieved aresimilar to those of XMill, whih we show to be not ompetitive in our experiments either. The samehappens with Exalt, aording to the results in [Tom04℄.Compression ratios are shown in Figure 12. We used default settings for all (yet, letting themuse muh more memory did not a�et the results).SCMHu� is, apart from LZCS+Hu�, the only method permitting navigation and random aess.SCMHu� ompression, however, is not ompetitive, being only slightly superior to Word Hu�man.We omitted the results of SCMHu� for XForms 1, 2, and 3 for readability, where its ompressionratio was within 7%-12%. SCMPPM is within bounds but still not ompetitive in most ases.With few exeptions, LZCS+Hu� is signi�antly better than XMill and SCMPPM in all suf-�iently large olletions, produing ompressed texts from just 5% smaller to as muh as 25times smaller than XMill. XMLPPM, on the other hand, obtains learly better ompression thanLZCS+Hu� in most ases, exept for the notable exeption of XForms type 1, where all the LZCSfamily is by far unbeaten. However, XMLPPM uses adaptive ompression, and hene it is notsuitable for navigation or random aess on the ompressed text.If we onsider the LZCS variants that do not permit navigation and random aess, thenLZCS+ppmdi and LZCS+ppmz ome into play, beating by far all other ompetitors.We note the interesting fat that, sine it produes strutured douments, LZCS an in priniplebe omposed with struture-aware methods, suh as SCMPPM, instead of plain text ompressors.We have tried some ombinations, but the results were no better than those already obtained withthe basi PPM ompresors.5.4 Compression and Deompression PerformaneFigure 13 shows ompression and deompression speed for all the softwares involved. The times weshow are averaged over all the olletions, as variations were small among these. For the reasonsexplained, ppmz speed is measured only over the �rst 5 Mb of the larger olletions. The tests werearried out on the SuSE Linux 9.1 operating system, running on a omputer with a Pentium IVproessor at 1.2 GHz and 384 Mb of RAM.The fastest at ompression/deompression are gzip and XMill (both based on LZ77), followedby ompress (based on LZ78). This is expeted as this family of ompressors is fast, espeiallyat deompression. Shortly after in deompression performane is the LZCS family (also based onLempel-Ziv), exept LZCS+ppmz for obvious reasons. Compression is muh slower with the LZCSfamily, yet not slower than bzip2, for example. All other ompressors are several times slower todeompress. Other fast options to ompress are ppmdi and XMLPPM.At ompression time, LZCS is not very fast beause it has to parse the struture and usethe linear time, yet omplex, ompression algorithm we have explained in Setion 4. However,we have managed to make it ompetitive against start-of-the art ompressors. At deompression,LZCS is muh faster, bene�ting from its Lempel-Ziv nature. Yet, to allow navigability, reursivedeompression is neessary, and this slows it down ompared to other Lempel-Ziv methods. Whenombined with other ompressors, their overhead must be added to that of LZCS. Yet, this is not assigni�ant as it ould be beause the other ompressors at over the muh smaller LZCS transformed21
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Method / Size T.4 (7.19 Mb) T.5 (5.74 Mb)LZCS+Hu� 0.8967% 0.8463%LZCS+ppmdi 0.1716% 0.1787%LZCS+ppmz 0.1482% 0.1366%XMill 0.9426% 0.9242%XMLPPM 0.7124% 0.5530%SCMHu� 10.971% 12.055%SCMPPM 1.3655% 1.3525%
Figure 12: Comparison between LZCS and other struture-aware methods.text.We note that none of the ompressors that signi�antly outperform LZCS in time get even loseto it in ompression ratios ahieved. Observe also that ompression ratios of LZCS stabilize afterproessing 10�20 Mb of text, so we an proess texts in hunks of that size without signi�antlya�eting ompression ratio. In pratie, the amount of memory we need to ompress is 35�45times the size of the ompressed text (whih is 1�3 times the size of the original text). In ourolletions, we need about 25 Mb of main memory to obtain the same ompression performane wehave shown, by means of partitioning the text. Even when this is rather reasonable, we note thatour implementation is not optimized in this aspet, whih ould be signi�antly improved.6 Conlusions and Future WorkWe have presented LZCS, a ompression sheme based on Lempel-Ziv whih is aimed at ompressinghighly strutured data. The main idea of LZCS is to replae whole substrutures by previous our-renes thereof. The main advantages of LZCS are (1) very good ompression ratios, outperformingmost lassial and struture-aware methods; (2) easy random aess, visualization and navigation22



Program Compression DeompressionLZCS 0.385 30.262LZCS+Hu� 0.376 21.634LZCS+ppmdi 0.387 19.200LZCS+ppmz 0.154 0.779Word Hu�man 0.388 5.438gzip 17.858 112.212ompress 4.400 43.368bzip2 0.351 3.746ppmdi 5.073 4.990ppmz 0.0002 0.0002XMill 12.751 103.038XMLPPM 4.943 3.855SCMHu� 0.187 4.169SCMPPM 0.964 1.310Figure 13: Compression and deompression speeds, in megabytes per seond.of ompressed olletions; (3) fast and one-pass ompression and deompression. Only PPM-basedmethods ompressed better than LZCS in our experiments, but random aess to a partiular do-ument is impossible with PPM, sine it is adaptive and needs to deompress �rst all the doumentsthat preede the desired one. This is adequate for arhival purposes but unsuitable for use in aompressed text database senario. On the other hand, if we ombine LZCS with PPM ompressionwe obtain the best ompression ratio among all the PPM-related ompressors.One of the most hallenging problems faed was the e�ieny problem of the LZCS ompressionstage, whih is quadrati if implemented naively. We overomed this problem by designing a linearaverage-time ompression algorithm, by using an ad-ho hashing sheme. The algorithm turns outto be ompetitive in pratie.We have onsidered ompression of stati olletions in this paper. In many senarios, newdouments are added to the doument olletion, but these are never deleted or modi�ed. Thisis the ase, for example, when XML forms are used to keep trak of all the transations made bya ompany along time (even modi�ations to previous transations are expressed by means of aompensating transation, but the past annot be hanged). LZCS an easily ope with insertionof new douments, as it is a matter of resuming the ompression at the point it was left whenproessing of the previous olletion �nished. It is a tradeo� deision how muh of the data in thehash tables an be maintained to improve ompression of future additions to the olletion, but thisdoes not a�et orretness.In other ases, for example desriptions of stok, douments may also be updated and deleted.More researh is needed in order to aommodate suh operations in a text olletion ompressedwith LZCS. The main problem is, of ourse, that the douments we wish to delete ould be referenedelsewhere. One possibility is to maintain a referene ount per struture indiating how manyreferenes point to it, so the struture an be physially deleted when this ounter beomes zero.23



An update would onsist of inserting the new value and hanging the old one by a forward pointer tothe new one, so that the old one ould be deleted or not depending on its referene ount. Periodialremoval of unused text areas and remapping of pointers would be neessary to avoid the preseneof too many gaps due to eliminated douments. Several other alternatives are possible.The most important future work is to permit searhing the ompressed strutured text. We haveseen that the existene of words and phrases in the ompressed doument an be easily establishedas their �rst ourrene annot appear in ompressed form. Yet, this is the most elementary searhproblem.A more hallenging problem is to answer strutural queries, for example XPath queries, on theLZCS ompressed olletion. One an use the navigation approah to essentially ignore that thetext has repeated substrutures, and apply any sequential XPath searh algorithm. Yet, muh moreinteresting is being able of reusing the results of the searh over repeated substrutures to avoidworking on them again. The �nal goal is to searh in time proportional to the size of the ompressedtext, not the original text, as would be the ase if we ignored the ompression. Some approahes tothis problem are brie�y presented in [LWL03℄.Another interesting problem is indexed searhing. On very large olletions, sequential searhingis unaeptable. Index data strutures largely improve the sequential searh time, at a ost in extraspae. For example, a sort of inverted index storing positions of words and strutural elements hasshown to be useful to solve ombined textual and strutural queries [NBY97, BYN02℄. Althoughwe ould, again, build the indexes over the unompressed text, it would be muh better to designindexes that redue their size when the text is ompressible, so that we exploit repetitions in thetext to fator out the orresponding repetitions in the indexes.AknowledgmentWe thank Pablo Palma, from Hypernet Ltd. (Chile), for providing us with massive samples ofalmost-real data for the experiments.Referenes[AdlFN04℄ J. Adiego, P. de la Fuente, and G. Navarro. Merging predition by partial mathingwith strutural ontexts model. In Pro. 14th IEEE Data Compression Conferene(DCC'04), page 522, 2004.[ANdlF03℄ J. Adiego, G. Navarro, and P. de la Fuente. SCM: Strutural ontexts model forimproving ompression in semistrutured text databases. In Pro. 10th Intl. Symp. onString Proessing and Information Retrieval (SPIRE'03), LNCS 2857, pages 153�167.Springer, 2003.[BCW90℄ T. Bell, J. Cleary, and I. Witten. Text Compression. Prentie Hall, Englewood Cli�s,N.J., 1990.[BSTW86℄ J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A loally adaptive data ompressionsheme. Communiations of the ACM, 29:320�330, 1986.24
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