
Lempel-Ziv Compression of Highly Stru
tured Do
uments ∗†Joaquín Adiego ‡ Gonzalo Navarro § Pablo de la Fuente‡Abstra
tWe des
ribe a novel Lempel-Ziv approa
h,
alled LZCS, suitable for
ompressing stru
tureddo
uments. LZCS takes advantage of repeated substru
tures that may appear in the do
uments,by repla
ing them with a ba
kward referen
e to their previous o

urren
e. The result of theLZCS transformation is still a valid stru
tured do
ument whi
h is human-readable and
an betransmitted by ASCII
hannels. Moreover, LZCS transformed do
uments are easy to sear
h,display, a

ess at random, and navigate. In a se
ond stage, the transformed do
uments
anbe further
ompressed using any semistati
 te
hnique, so that it is still possible to do all thoseoperations e�
iently, or with any adaptive te
hnique to boost
ompression. LZCS is espe
iallye�
ient to
ompress
olle
tions of highly stru
tured data, su
h as XML forms, invoi
es, e-
ommer
e and web-servi
e ex
hange do
uments. The
omparison against other stru
ture-awareand standard
ompressors shows that LZCS is a
ompetitive
hoi
e for this type of do
uments,while the others are not well-suited to support navigation or random a

ess. When joined to anadaptive
ompressor, LZCS obtains by far the best
ompression ratios.Keywords: Lempel-Ziv, XML Data, Stru
tured Do
uments, Text Compression.1 Introdu
tionThe storage, ex
hange, and manipulation of stru
tured text as a devi
e to represent semistru
tureddata is spreading a
ross all kinds of appli
ations, ranging from text databases and digital librariesto web-servi
es and ele
troni

ommer
e. Stru
tured text, and in parti
ular the XML format, isbe
oming a standard to en
ode data with simple or
omplex, �xed or varying stru
ture. AlthoughXML has been envisioned as a me
hanism to des
ribe stru
tured data from some time ago, ithas been the re
ent explosion of business-to-business appli
ations that has shown its potential todes
ribe all sorts of do
uments ex
hanged between organizations and stored inside an organization.Examples are invoi
es, re
eipts, orders, payments, a

ounting, and other forms.
∗This work was partially supported by CYTED VII.19 RIBIDI proje
t (all authors); TIC2003-09268 proje
t,MCyT, Spain (�rst and third authors); and Millennium Nu
leus Center for Web Resear
h, Grant P01-029-F, Mide-plan, Chile (se
ond author).
†A preliminary version of this arti
le appeared in Pro
. 14th IEEE Data Compression Conferen
e (DCC), pages112�121, 2004.
‡GRINBD, Departamento de Informáti
a, Universidad de Valladolid, Valladolid, Spain. {jadiego,pfuente}�infor.uva.es
§Center for Web Resear
h, Department of Computer S
ien
e, University of Chile, Santiago, Chile.gnavarro�d

.u
hile.
l 1

Although the information stored by an organization is usually kept in relational databases and/ordata warehouses, it is important to store digital sour
es, in XML format, of all the do
uments thathave been ex
hanged and/or produ
ed along time. A stru
tured text retrieval engine should providerandom a

ess to those stru
tured do
uments, so that they should be easily sear
hed, visualized,and navigated. On the other hand, as usual, we would like this repository to take as little spa
e aspossible.In this paper we fo
us on the
ompression of stru
tured text. We aim spe
i�
ally at
ompressionof highly stru
tured data, su
h as forms where there is little text in ea
h �eld. Colle
tions formedby those types of forms
ontain a lot of redundan
y that is not
aptured well enough by
lassi
al
ompression methods. At the same time, we want the
ompressed
olle
tion to be easily a

essed,visualized and navigated in
ompressed form. The most e�e
tive
ompression methods do nota

ount for these
apabilities: texts have to be un
ompressed before they
an be a

essed.It is usually argued that disk spa
e is
heap and thus
ompression is not interesting. Compres-sion, however, does not only save spa
e. It saves disk and network transfer time, whi
h are highlyvaluable resour
es. Hen
e the interest of
ompression by itself. Moreover, the types of texts weare fo
using on in this paper are highly
ompressible: We will show that we
an
ompress themto 1% of their original size. With this
ompression ratio, it is for example possible that we
anload the
ompressed text database in main memory, albeit we are unable to de
ompress it whollyin main memory. Hen
e the interest of manipulating and navigating the stru
ture in
ompressedform, extra
ting only the do
uments we a
tually need.We develop a
ompression method, Lempel-Ziv to Compress Stru
ture (LZCS), inspired inLempel-Ziv
ompression, where repeated substru
tures are fa
tored out. That is, every time arepeated substru
ture is dete
ted, it is repla
ed by a ba
kward referen
e to its previous o

urren
e.The result of this LZCS transformation is a text that is still human-readable and well stru
tured.Thus, it
an be seamlessly transmitted over ASCII
hannels, handled by stru
tured text manage-ment tools, and visualized in
ompressed form with
onventional means. It is very fast and simpleto de
ompress, in whole or in parts, it
an be sear
hed for the presen
e of words and phrases inthe text with
onventional algorithms dire
tly in
ompressed form (about 100 times faster thanthe original text), and it
an be a

essed at random without need of de
ompressing the pre
edingtext. With little additional e�ort, the
ompressed do
ument
an be browsed and navigated withoutde
ompressing it.Compared to LZ77 [ZL77℄, whi
h
an fa
tor out any repeated text substring, LZCS is restri
tedto
onsider only whole substru
tures. As a result, LZ77
ompresses more than the LZCS transfor-mation, yet the
ompressed text la
ks all of the LZCS features des
ribed above, ex
ept for the fastde
ompression. It is interesting that we build on an adaptive
ompressor (LZ77) not permittinglo
al de
ompression, and obtain a
ompressor that does permit lo
al de
ompression, navigation,and many other features.To improve
ompression, the LZCS transformed text
an be further
ompressed with a
lassi
al
ompressor. The use of a semistati

ompressor retains fast de
ompression in whole or in parts, ran-dom a

ess, and the possibility of browsing and navigating the
ompressed do
ument. Alternatively,an adaptive
ompressor
an boost the
ompression ratio, yet losing all those features.In parti
ular, we show that the use of a semi-stati
 word-based Hu�man method to
ompressthe LZCS transformed text yields very
ompetitive
ompression ratios, only beaten by adaptive2

s
hemes that do not permit any of the features we have des
ribed above. Adaptive s
hemes aresuitable to
ompress an ar
hival
olle
tion, but not a database of do
uments that must frequentlyretrieve individual do
uments. On the other hand, we show that the
ombination of LZCS and anadaptive PPM
ompressor is unbeaten in
ompression ratio.We show how the LZCS transformation
an be
arried out in linear expe
ted time and in asingle pass over the text. This means that we
an start produ
ing the transformed text shortly afterstarting reading the sour
e text. This makes LZCS suitable for use over a
ommuni
ation networkwithout introdu
ing any delay in the transmission. For example, LZCS
an be transparently used totransmit stru
tured do
uments, even over a plain ASCII
hannel, in order to redu
e
ommuni
ationtime. The re
eiver needs very little
omputational power to un
ompress, and it
an even navigateor display parts of the do
ument without un
ompressing all of it.The paper is organized as follows. In Se
tion 2 we
over related work on
ompression, bothfor plain and stru
tured text. In Se
tion 3 we des
ribe the LZCS transformation. In Se
tion 4we explain how the transformation
an be
arried out in linear expe
ted time. In Se
tion 5 weshow empiri
al results
omparing the
ompression ratio, as well as
ompression and de
ompressionperforman
e, of LZCS
ompared to other standard and stru
ture-aware
ompressors. We
on
ludein Se
tion 6 with future work dire
tions.2 Related Work2.1 Standard Text CompressionIn general,
lassi
 text
ompression methods [BCW90, MT02℄ do not take into a

ount the stru
tureof the do
uments they
ompress. Our aim is not to
over the whole area but just to fo
us on threefamilies of
ompressors that are relevant for this paper. Lempel-Ziv and k-th order modelling familiesare adaptive
ompressors, whi
h learn the statisti
al stru
ture of the text as they pro
ess it, updatingthe model on the �y. Hu�man family is semistati
, that is, it �rst obtains the statisti
s of the wholetext and then
ompresses all the text with the same model.Lempel-Ziv. At the end of the seventies, Lempel and Ziv designed new te
hnologies of data
ompression based on repla
ing text substrings by previous repeated o

urren
es. Their two mostfamous algorithms are
alled LZ77 [ZL77℄ and LZ78 [ZL78℄. A well-known variant of the latter is
alled LZW, by Wel
h [Wel84℄.LZ77 maintains a window of the last N pro
essed
hara
ters. In ea
h step, it reads the longestpossible string s from the input that also appears in the window. If s is of length ℓ, it is followedby
hara
ter a in the input, and it was found at window position p (
ounting right to left), thenthe
ompressor outputs the triple (p, ℓ, a). Thus input string sa is repla
ed by the triple, and
ompression is obtained if the triple needs less bits than the string itself. On
e this is done, thewindow is shifted forward by ℓ+1 positions and the algorithm resumes the s
anning just past string
sa. In prin
iple a longer window improves
ompression be
ause it is more likely to �nd longer stringsfor repla
ement. However, the representation of position p requires log2 N bits, whi
h worsens as
N grows. In pra
ti
e the most
onvenient window size is not very long (for example, 64 Kbytes).3

De
ompression of LZ77 is extremely fast and simple. The
ompressed text is basi
ally a sequen
eof triples (p, ℓ, a). For ea
h su
h triple we must
opy ℓ
hara
ters starting p positions behind the
urrent output position, and then output a. Well-known representatives of LZ77
ompression areInfo-ZIP's zip and Gnu's gzip.Other variants, su
h as LZ78 and LZW, restri
t somehow whi
h previous strings
an be refer-en
ed. This is done for e�
ien
y reasons of di�erent type, for example to improve
ompression timeor to improve the
ompression ratio. The
hoi
e of strings that
an be referen
ed, however, doesnot take into a

ount the meaning of those strings. A well-known representative of LZW is Unix's
ompress.The Lempel-Ziv family is the most popular to
ompress text be
ause it
ombines a

eptable
ompression ratios (around 35% on plain English text1) with fast
ompression and de
ompression.However, being adaptive, Lempel-Ziv
ompressed text
annot be de
ompressed at random positions,be
ause one must pro
ess all the text from the beginning in order to learn the window that is usedto un
ompress the desired portion.Hu�man. Classi
al Hu�man
ompression [Huf52℄
onsists of
omputing the frequen
ies of thetext
hara
ters in a �rst pass, and then assign a variable-length bit-wise
ode to ea
h
hara
ter.Then, in a se
ond pass, ea
h
hara
ter is repla
ed by its
ode. Hu�man
ompression rea
hes thezero-order entropy of the text up to one extra bit per symbol, and being semistati
, it is easyto de
ompress the text starting at any position. Hu�man is said to be a statisti
al
ompressor,as it relies on text statisti
s, as opposed to the so-
alled di
tionary-based
ompressors whi
h, asLempel-Ziv,
onsist in repla
ing strings by identi�ers.Hu�man is not very popular in text
ompression be
ause it a
hieves poor
ompression ratios
ompared to other te
hniques. However, the situation
hanges drasti
ally when natural languagetext is
ompressed and one uses the text words, rather than the
hara
ters, as the text symbols[Mof89℄. The distribution of words is mu
h more skewed than that of symbols, and this permitsobtaining mu
h better
ompression ratios than Hu�man-based
ompressors. On English text, forexample,
hara
ter-based Hu�man obtains around 60%
ompression ratio, while word-based Hu�-man is around 25% [ZMNBY00℄. A
tually, similar
ompression ratios
an be obtained by usingLempel-Ziv on words [BSTW86, DPS99℄.Word-based Hu�man, however, has other advantages. Not only the text
an be
ompressedand de
ompressed e�
iently, as a whole or in parts, but it is also possible to sear
h it withoutde
ompressing, faster than when sear
hing the un
ompressed text [ZMNBY00℄. Another advantageis that this type of
ompression integrates very well with information retrieval systems, be
ause thesour
e alphabet is equivalent to the vo
abulary of the inverted index [WMB99, NMN+00, MW01℄.One of the best known systems in the publi
 domain relying on word-based Hu�man is the MGsystem [WMB99℄.
K-th order models. This family of statisti
al adaptive
ompressors
omprises both Predi
tionby Partial Mat
hing (PPM)
ompression and the Burrows-Wheeler Transform (BWT).PPM [CW84℄ is a statisti
al
ompressor that models the
hara
ter frequen
ies a

ording to the
ontext given by the k
hara
ters pre
eding it in the text (this is
alled a k-th order model), as1That is, the
ompressed text size is 35% of the un
ompressed text size.4

opposed to Hu�man that does not
onsider the pre
eding
hara
ters. Moreover, PPM is adaptive,so the statisti
s are updated as the
ompression progresses. The larger k, the more a

urate isthe statisti
al model and the better the
ompression, but more memory and time is ne
essary to
ompress and un
ompress.More pre
isely, PPM uses k + 1 models, of order 0 to k, in parallel. It usually
ompresses usingthe k-th order model, unless the
hara
ter to
ompress has never been seen in that model. In this
ases it swit
hes to a lower-order model until the
hara
ter is found. The
oding of ea
h
hara
teris done with an arithmeti

ompressor, a

ording to the
omputed statisti
s at that point.The BWT [BW94℄ is a reversible permutation of the text, whi
h puts together
hara
ters havingthe same k-th order
ontext (for any k). Lo
al optimization (for example, move-to-front followedby Hu�man) over the permuted text obtain results similar to k-th order
ompression.PPM and BWT usually a
hieve better
ompression ratios than other families (around 20%on English text), yet they are mu
h slower to
ompress and de
ompress, and
annot un
ompressarbitrary portions of the text
olle
tion. Well known representatives of this family are Seward'sbzip2, based on the BWT, and Shkarin/Cheney's ppmdi and Bloom/Tarhio's ppmz, two PPM-basedte
hniques.2.2 Stru
tured Text CompressionThere exist a few approa
hes spe
i�
ally designed to
ompress stru
tured text, taking advantage ofits stru
ture.XMill [LS00℄. Developed at AT&T Labs, XMill is an XML-spe
i�

ompressor designed to ex-
hange and store XML do
uments. Its
ompression approa
h is not intended for dire
tly supportingquerying or updating the
ompressed do
uments. XMill is based on the zlib library, whi
h
ombinesLempel-Ziv
ompression with a variant of Hu�man. Its main idea is to split the �le into three
omponents: elements and attributes, text, and stru
ture. Ea
h
omponent is
ompressed sepa-rately. Another
ompressor based Lempel-Ziv,
utting the stru
ture at some depth and using plainLempel-Ziv
ompression for the subtrees, is
ommer
ial XMLZip (http://www.xmls.
om).XMLPPM [Che01℄. This
ompressor uses a PPM-like
oder, where the
ontext is given by thepath from the root to the tree node that
ontains the
urrent text. This is an adaptive
ompressorthat does not permit random a

ess to individual do
uments. The idea is an evolution over XMill,as di�erent
ompressors are used for ea
h
omponent, and the XML hierar
hy information is usedto improve
ompression.XCQ [LW02℄ and Exalt [Tom04℄. These are
ompression methods based on separating stru
-ture from data, and using grammar-based
ompression for the stru
ture. In XCQ, the tree shape is
ompressed using the DTD information, while the text is
ompressed using a standard Lempel-Zivsoftware su
h as gzip. In Exalt, both elements are
ompressed using grammar-based methods. Inparti
ular, zero-order predi
tion depending on the stru
tural
ontext, plus arithmeti

oding, isused for the tags. Other grammar-based te
hniques
an be found in [Tar01℄, as well as in XML-Xpress, a
ommer
ial software (http://www.i
t
ompress.
om) that
ompresses well when the DTDis known. 5

XGrind [TH02℄. This
ompressor is interesting be
ause it dire
tly supports queries over the
ompressed �les. An XML do
ument
ompressed with XGrind retains the stru
ture of the orig-inal do
ument, permitting reuse of the standard XML te
hniques for pro
essing the
ompresseddo
ument. Stru
ture tags are represented in numeri
 form, while the text is
ompressed using
hara
ter-oriented Hu�man. A similar idea is explored in in XMillau [GS00℄.SCMHu� [ANdlF03℄ and SCMPPM [AdlFN04℄. SCM is a generi
 model used to
ompresssemistru
tured do
uments, whi
h takes advantage of the
ontext information usually impli
it in thestru
ture of the text. The idea is to use a separate model to
ompress the text that lies insideea
h di�erent stru
ture type. SCMHu� uses a word-based Hu�man
ompressor for ea
h di�erenttag, while SCMPPM uses a PPMDI
ompressor. The former permits random a

ess to individualdo
uments, while the latter
annot.3 The LZCS TransformationLZCS is a new te
hnique to
ompress stru
tured text (su
h as XML or HTML). The main idea isbased on the Lempel-Ziv
on
ept, so that repeating substru
tures and whole text blo
ks (that is,the whole text inside a stru
ture or between two stru
tural elements) are repla
ed by a ba
kwardreferen
e to their �rst o

urren
e in the pro
essed do
ument. The result is a valid stru
turedtext with additional spe
ial tags (ba
kward referen
e tags), whi
h
an be transmitted, handled orvisualized in a
onventional way, or further
ompressed using some
lassi
al
ompressor.We start by formally des
ribing the LZCS transformation, then present an example, and �nallydis
uss its features.3.1 Formal De�nitionDe�nition 1 (Text Blo
k) A text blo
k is any maximal
onse
utive
hara
ter sequen
e not
on-taining stru
ture or ba
kward referen
e tags.De�nition 2 (Stru
tural Element) A stru
tural element is any
onse
utive
hara
ter sequen
ethat begins with a start-tag and �nalizes with its
orresponding end-tag.Observe that a text blo
k is either the whole text
ontained in a stru
tural element whi
hdoes not have further internal stru
ture, or it is the whole text between two
onse
utive stru
turalelements. On the other hand, a stru
tural element
an
ontain one or more text blo
ks, one ormore stru
tural elements and/or (after the LZCS transformation) one or more ba
kward referen
etags. For simpli
ity, other types of valid tags (su
h as, in XML,
omment tags and self-
ontainedtags) will be treated as
onventional text, and only start-tags and end-tags will be used to identifystru
tural elements. Furthermore, tags will be treated as atomi
 elements. This means that, forexample, the XML attributes and values inside a tag are part of the tag name, and do not formtext blo
ks.The stru
ture indu
es a hierar
hy that
an be represented as a tree. Text blo
ks will be repre-sented by leaves, and stru
tural elements by subtrees rooted at internal nodes.6

De�nition 3 (Node) A node is either a text blo
k or a stru
tural element.The main point of LZCS is to repla
e some subtrees by referen
es to equivalent subtrees seenbefore.De�nition 4 (Equivalent Nodes) Let N1 and N2 be two nodes that appear in a
olle
tion. Wewill say that node N1 is equivalent to node N2 i� N1 is textually equal to N2.We are ready to de�ne the LZCS transformation.De�nition 5 (LZCS Transformation) LZCS repla
es ea
h maximal node that is equivalent to aprevious node by a ba
kward referen
e to its �rst o

urren
e in the transformed text. Other elementsare left un
hanged. �Maximal� means that the node repla
ed does not des
end from another that
anbe repla
ed.A ba
kward referen
e is represented by a spe
ial tag in the output. The spe
ial tag is
onstru
tedby means of the delimiters "<�" and ">" that mark the beginning and end of the ba
kward referen
etag. The
ontent of this tag will be formed by digits that express an unsigned integer indi
atingthe absolute position in the transformed text where the referen
ed element begins. For spa
eoptimization, this number will be expressed in base 62, using 0..9, A..Z and a..z as digits. Thisway, the transformed text is still ASCII and well-stru
tured. The referen
e tag has been
hosen tovoid tag name
lashes in XML, but it
an be
hanged.It may happen that a referen
ed text blo
k is smaller than the referen
e itself (for example, whenthe text blo
k is formed only by
hara
ter '\n'). In these
ir
umstan
es, repla
ing it by a referen
eis not a good
hoi
e. Hen
e we do not repla
e text blo
ks that are shorter than a user-spe
i�edparameter l. The
hoi
e of l in�uen
es
ompression ratio, but not
orre
tness.3.2 ExampleAssume that we are going to
ompress a
olle
tion of three do
uments using LZCS. The do
umentsare represented in Figure 1. In the �gure, there exist three di�erent stru
tural elements representedby
ir
les. The stru
tural elements of type 1 (A, F, M) have their
ir
le drawn with a solid line,those of type 2 (B, E, G, J, N) with a dashed line, and those of type 3 (the rest) with a dotted line.Text blo
ks are represented by squares. Letters and numbers in the �gure represent node identi�ers.To
over all the possibilities, assume that text blo
ks numbered 1, 4, 7 and 9 in the �gureare equivalent. Also text blo
ks numbered 3 and 10 are equivalent, as well as those numbered 6and 8. As a result, the do
uments share repeating parts (that is, equal subtrees). Figure 2 showsgraphi
ally these
orresponden
es and Figure 3 shows the
olle
tion transformed with LZCS.Finally, Figure 4 shows a textual version of the original and transformed do
uments. Note thatthe LZCS transformed text is a valid stru
tured do
ument, provided we a

ept "<�...>" as a validself-
ontained tag.3.3 Properties of the LZCS Transformed TextAs mentioned in the Introdu
tion, the LZCS transformation has a number of attra
tive features,whi
h we des
ribe now more in depth. 7

A

B

C D

E

1 2

3

M

N

O P

Q

98

10

F

G

H I

J

K L

4 5 6 7

(A) (B) (C)Figure 1: Three example do
uments.

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

A

B

C D

E

1 2

3

M

N

O P

Q

98

10

F

G

H I

J

K L

4 5 6 7

(C)(B)(A) Figure 2: Equivalent subtrees of the do
uments.Human readable: The output of the transformation is human-readable (see Figure 4). This meansthat the transformed �le
an be read with any
onventional text editor or terminal.ASCII
ompliant: The only new
hara
ters introdu
ed by LZCS are '<', '>', '�', letters anddigits. Therefore, and LZCS transformed do
ument
an be transmitted by any ASCII
han-nel. For example it
an be sent by email without any
on
ern. A
tually LZCS
ould betransparently used by servers to transfer stru
tured do
uments to
lients, even over ASCII
hannels.Well stru
tured: The LZCS transformed text is a well formed stru
tured do
ument. As su
h, it
an be handled with any tool that manages stru
tured do
uments (in XML, for example). Theonly ex
eption is that LZCS produ
es a spe
ial self-
ontained tag, "<�...>", whi
h must bedealt with as any other su
h tag. We
ould perfe
tly use instead a
onventional self-
ontainedtag to avoid any ex
eption, su
h as "<ref pos=.../>, but we
hose otherwise to avoid anypossibility of
lashing with the a
tual tags of the do
uments, and to have shorter referen
es.8

A

B

C D

E

1 2

3

F

G

I

J

K

5 6

C C

M

QJ

3

(A) (B) (C)Figure 3: Example do
uments after applying the LZCS transformation. Ba
kward referen
es arerepresented by triangles.Dire
tly sear
hable: The LZCS transformed text
ontains the same words and phrases of theoriginal do
uments. A phrase
annot be split unless its words belong to di�erent stru
turalelements, in whi
h
ase it is arguably not a phrase. Although the number of o

urren
es ofwords and phrases will
hange between the original and the transformed do
uments, a wordor phrase is present in the original text if and only if it is present in the transformed text.Thus, the LZCS transformed text
an be sear
hed for words and phrases with any
onventionalstring mat
hing algorithm (su
h as Gnu's grep) to determine whether the phrase appears ornot. If the phrase appears, de
ompression is ne
essary to point out all the do
uments wherethey appear. Note in parti
ular that the sear
h on the LZCS transformed text will be fasterthan on the original text, as the latter is longer (in our experiments, 100 times longer).Fast to de
ompress: De
ompressing an LZCS transformed text is pretty mu
h as de
ompressingLZ77, and therefore, very fast and simple. An important di�eren
e is that LZ77 uses pointersto the un
ompressed �le, so it
an just
opy the referen
ed un
ompressed text to the output.LZCS, on the other hand, uses pointers to the
ompressed �le, so it must re
ursively obtainthe output text from the
ompressed �le. This makes LZCS de
ompression somewhat slower,but in ex
hange LZCS
an navigate the
ompressed �le and extra
t individual do
umentswithout un
ompressing the whole text.Easily navigable and visualizable: LZCS transformed do
uments
an be navigated in the usualway (that is, going down and up in the hierar
hy as with a tree). Instead of relying on anykind of parent pointer asso
iated to nodes, we must use a sta
k to keep tra
k of the
urrentan
estors of the
urrent node. Every time we have to go down to a
hild, it might be that the
hild is a ba
kward referen
e or not. In the former
ase, we just move the
urrent text positionto the appropriate point ba
k in the
ompressed �le. All the rest is un
hanged. When movingupwards, we pop the
orresponding �le position from the sta
k of an
estors.A

essible at random positions: With the same algorithm above we
an produ
e the un
om-pressed text of any do
ument, by simply starting un
ompression at its start-tag and following9

A: <log>B: <entries>C: <event>1: Bug report</event>D: <event>2: Release announ
e</event></entries>E: <entries>3: No further events</entries></log>F: <log>G: <entries>H: <event>4: Bug report</event>I: <event>5: New version</event></entries>J: <entries>K: <event>6: Bug fix</event>L: <event>7: Bug report</event></entries></log>M: <log>N: <entries>O: <event>8: Bug fix</event>P: <event>9: Bug report</event></entries>Q: <event>10: No further events</event></log>

A: <log>B: <entries>C: <event>1: Bug report</event>D: <event>2: Release announ
e</event></entries>E: <entries>3: No further events</entries></log>F: <log>G: <entries>H: <�C>I: <event>5: New version</event></entries>J: <entries>K: <event>6: Bug fix</event>L: <�C></entries></log>M: <log>N: <�J>Q: <event>10: <�3></event></log>

Figure 4: The same example do
uments in textual form. The original do
ument is on the left andthe LZCS transformed do
ument on the right. For readability we write referen
es to line labels(upper
ase letters and numbers) instead of
hara
ter o�sets. We remind that the referen
es areo�sets in the
ompressed text, not in the original text.10

any referen
e as ne
essary.Thus, LZCS
an be integrated into a stru
tured text retrieval system without loss (and in
ases large gains) of e�
ien
y in the sear
h or visualization of results. As demonstrated in ourexperiments, the
ompression ratios are so good (1%) that it is feasible to maintain large
olle
tions
ompressed in main memory, even when there is no enough main memory to un
ompress all of it.LZCS is perfe
t for this s
enario, as it
an navigate, visualize and un
ompress individual do
umentwithout having to un
ompress the whole
olle
tion.The LZCS transformed text
an be further
ompressed with any
onventional method. Sin
ethe do
uments generated by LZCS are navigable, a good idea is to further
ompress them using asemistati

ompression method, like word-based Hu�man. After this pro
ess, the do
uments
annotanymore be handled as plain text (a word-wise de
ompression is needed), but they are still navigableand a

essible at random positions. Dire
t sear
h over word-based Hu�man is also possible andvery e�
ient. On the other hand, we
an use an adaptive
ompression to boost
ompression ratio.LZCS
an be seen as a prepro
essing stage that fa
tors out some types of redundan
ies, so that afurther adaptive
ompressor takes mu
h less time and
ompresses more than when applied over theoriginal text.4 E�
ient Implementation of the LZCS TransformationA
hallenge with the LZCS transformation is how to implement it e�
iently, as we must dete
tsubstru
tures that have appeared in the past. The simplest way to implement the LZCS transfor-mation is by sear
hing all previously pro
essed text for ea
h new stru
tural element. This way, wehave a
omplexity of O(n2), whi
h is una

eptable.We show now how to obtain O(n) average time. The idea is to maintain a hash table with allthe whole text blo
ks, as well as all the stru
tural elements, seen in the past. While hashing textblo
ks is straightforward, re
ognizing repeated stru
tural elements in linear expe
ted time requiresmore
areful design.When a text blo
k is pro
essed, we �rst obtain its digital signature (for example, using MD5algorithm [Riv92℄). If the text blo
k is not equivalent to any previous text blo
k (its signaturedoes not
oin
ide with previous ones), then the text blo
k is
opied verbatim to the output and itssignature is added to the (hashed) set of signatures of original text blo
ks, together with the textposition of the blo
k (whi
h is the �rst o

urren
e of this blo
k in the output). Otherwise, if anequivalent text blo
k appears (their digital signatures
oin
ide) a ba
kward referen
e to the �rsto

urren
e of the text blo
k is written to the output. (Sin
e digital signature algorithms do notensure that signatures are unique, texts are also dire
tly
ompared when a
oin
iden
e arises.)In order to apply hashing to stru
ture elements too, a node signature is generated and stored,along with its start position in the output, for nodes that have not appeared before. Node signaturesof parent nodes are produ
ed after those of
hildren nodes.De�nition 6 (Node Signature) A node signature is formed by
on
atenating its start-tag iden-ti�er and
hildren identi�ers. These are either their start text positions in the output if they are notreferen
es, or their referen
ed positions otherwise.11

As we show in Lemma 2, a node signature is unique within a
olle
tion. For ea
h new stru
tureelement, its node signature is generated and sear
hed for among the existing ones. If a
oin
iden
eis found then the
urrent stru
ture element is equivalent to a previous one, and it
an be repla
ed.Next lemma is useful to prove the
orre
tness of this hashing s
heme.Lemma 1 Let N and N ′ be two nodes that appear in a
olle
tion transformed with LZCS up tonode N ′, N pre
eding N ′. Then, N is equivalent to N ′ i� N ′ is a ba
kward referen
e to N , or Nand N ′ are equal ba
kward referen
es.Proof: We prove the equivalen
e in both dire
tions.1. If N is equivalent to N ′ then the LZCS transformation repla
es N ′ by a ba
kward referen
eto its �rst o

urren
e:(a) If N is the �rst o

urren
e then N ′ is repla
ed by a ba
kward referen
e to N .(b) Otherwise, let N0 be the �rst o

urren
e of N ′, then N ′ is repla
ed by a ba
kwardreferen
e to N0, but also N was repla
ed by a ba
kward referen
e to N0.Thus, it holds that either N ′ is a ba
kward referen
e to N , or N and N ′ are equal ba
kwardreferen
es.2. If N ′ is a ba
kward referen
e to N , or N ′ and N are equal ba
kward referen
es, then N isequivalent to N ′, be
ause in both
ases it holds that N and N ′
ontents are textually equal.
2Bearing in mind Lemma 1, we show next that the node signature is unique and works
orre
tly.Lemma 2 Nodes N and N ′ are equivalent i� their node signature are equal.Proof: We observe that a node only
an repeat if all its
hildren repeat as well. Therefore, a node

N , parent of N1. . .Nk, is textually equal to a later node N ′, parent of N ′
1. . .N ′

k
, i� tag identi�ersof N and N ′ are equal and ∀i ∈ 1..k,N ′

i
is equivalent to Ni. By Lemma 1, the latter means thateither N ′

i
points to Ni, or N ′

i
points to some N0 and Ni points to N0. A

ording to De�nition 6, inthe �rst
ase both
hildren identi�ers are Ni, and in the se
ond both are N0. These
onditions arene
essary and su�
ient for the node signatures of N and N ′ being equal. 2We are now ready to explain the LZCS transformation algorithm. When an end-tag appears its
orresponding node signature is obtained and sear
hed for in the (hashed) set of node signatures.If the
urrent node signature is present in the set, then it
an be repla
ed by a ba
kward refer-en
e. However, at this point we are not sure that the
urrent node is a maximal repeated subtree.Therefore the substitution is done only in memory, but nothing is yet written to the output. Onthe other hand, if the
urrent node signature is not present in the set, then the
urrent subtree isnot equivalent to any previous one and, therefore, nonwritten
hildren and
urrent node must bewritten to the output. Also, the
urrent node signature is added to the set of node signatures.12

LZCS TransformationNodeSigSet ← ∅TextSigSet ← ∅PreviousSubtree ← 〈 〉while there are more nodes do
urrent_node ← get_node() // in postorderif (
urrent_node is a Text Blo
k)then
urrent_signature ← MD5(
urrent_node)if (
urrent_signature ∈ TextSigSet)then referen
e ← TextSigSet.referen
e(
urrent_signature)PreviousSubtree.add(referen
e)else
urrent_position ← StartPosition(
urrent_node)TextSigSet.add(
urrent_signature ,
urrent_position)Write PreviousSubtree to the outputWrite
urrent_node to the outputPreviousSubtree ← 〈 〉�else
urrent_signature ← NodeSignature(
urrent_node)if (
urrent_signature ∈ NodeSigSet)then referen
e ← NodeSigSet.referen
e(
urrent_signature)PreviousSubtree.erase_
hildren(
urrent_node)PreviousSubtree.add(referen
e)else
urrent_position ← StartPosition(
urrent_node)NodeSigSet.add(
urrent_signature ,
urrent_position)Write PreviousSubtree to the outputWrite
urrent_node to the outputPreviousSubtree ← 〈 〉��odWrite PreviousSubtree to the outputFigure 5: LZCS transformation algorithm.13

Figure 5 des
ribes the basi
 LZCS transformation. List PreviousSubtree
ontains the elementsthat have been
onverted to referen
es but are not yet output be
ause we do not know whetherthey are maximal. If we are
urrently pro
essing some tree node, then PreviousSubtree may
ontainsiblings to the left of the node and of an
estors of the node. By adding new nodes at the end ofthe set we know that, on
e we go ba
k to the parent node, the latter elements of the set are allthe
hildren of that parent node. This permits implementing PreviousSubtree.erase_
hildren easily,just by knowing the arity of
urrent node.Also note that, if a subtree is not repeated, then no an
estor of it
an be repeated. As all theelements in PreviousSubtree have not yet been sent to the output just be
ause it might be that theirparent (an an
estor of the
urrent node) might be repeated, as soon as we know that the
urrentnode is not repeated we send all PreviousSubtree to the output. This is not stri
tly ne
essary (one
ould only send the
hildren of the
urrent node to the output, and previous elements would waitthat their parent sends them) but it simpli�es the algorithm, as the list to maintain is shorter andalways
omposed of referen
es.De
ompression is very simple. It begins by writing the text to the output. When a ba
kwardreferen
e tag is found, we re
ursively start de
ompression from the referen
ed position in the
om-pressed text. If the text at that position begins with a start-tag, the re
ursive
all will �nish whenthe
orresponding end-tag is written. Otherwise, it will �nish when the �rst start-tag appears.Upon returning from the re
ursive
all, the main pro
ess resumes de
ompression from past theba
kward referen
e tag. Re
ursion is ne
essary be
ause further ba
kward referen
es may appearwhen pro
essing the text referen
ed by the �rst one.Figure 6 gives the pseudo
ode. This is simpli�ed, for example it is impli
it that mat
hing the�
orresponding end-tag� that �nishes a referen
e involves keeping tra
k of the
urrent depth in thestru
ture tree.Note also that un
ompression
ould be faster and simpler if we stored pointers to referen
es inthe untransformed �le, rather than in the transformed �le. In this way, there would be no re
ursionbe
ause the referen
ed text would be already untransformed. We re
all that this, however, preventsnavigating in the transformed �le without de
ompressing it.About memory usage, both the
ompression and de
ompression algorithm work better if theymaintain all the
ompressed text in main memory (although they
ould work with the text on disk).In addition, the
ompressor needs to maintan the hash tables for text blo
k and node signatures.Note that items are inserted into those tables only when they do not be
ome referen
es but pass tothe output, so the spa
e required for those tables is also proportional to the size of the
ompressedtext. The size of PreviousSubtree and sta
ks is negligible. Just like other
ompressors, LZCS
an
lean up all its stru
tures and start afresh when the memory
onsumption ex
eeds some prede�nedlimit. This would only a�e
t
ompression ratio, but not
orre
tness.4.1 ExampleLet us go ba
k to the do
uments shown in the example of Se
tion 3.2. The do
uments will bepro
essed left to right, as they appear in Figure 1. In the �rst do
ument no substitution is
arriedout, sin
e there are no equivalent nodes in the do
ument. At this moment, the output will
ontainan exa
t
opy of the �rst do
ument. Then the se
ond do
ument is pro
essed. Sin
e text blo
k 4is equivalent to 1, it is repla
ed by a ba
kward referen
e, represented by triangles in Figure 7-A.14

LZCS Inverse Transformation
word← get_word()while not end of transformed text doif (word is a referen
e tag)then position← get_position(word)SolveReferen
e(position)else write word to the output�

word← get_word()odpro
edure SolveReferen
e(position)do go to position in input �le
word← get_word()if (word is a start-stru
ture tag)then end_word←
orresponding end-stru
ture tagelse end_word← any start-stru
ture tag�while word 6= end_word doif (word is a referen
e tag)then position← get_position(word)SolveReferen
e(position)else write word to the output�

word← get_word()odod Figure 6: LZCS inverse transformation algorithm.
15

As the stru
tural elements that
ontain blo
ks 4 and 1 also
oin
ide (nodes are equivalent), theprevious ba
kward referen
e is repla
ed again with another that
ontains the stru
tural element(Figure 7-B). The same happens to text blo
k 7 (Figures 7-C and 7-D).
F

G

H I

J

K L

5 6 71

F

G

I

J

K L

5 6 7

C

F

G

I

J

K L

5 6

C

1

F

G

I

J

K

5 6

C C

(A) (B) (C) (D)Figure 7: Substitutions performed in the se
ond do
ument.Finally, the third do
ument is pro
essed. First, the substitutions of text blo
ks 8 and 9 are
arried out, as well as those for their
orresponding stru
tural elements (Figures 8-A to 8-D). Whenstru
tural element N has just been pro
essed, it is veri�ed that it
an be
ompletely repla
ed bya ba
kward referen
e to J, be
ause they are equivalent elements: They have the same number of
hildren and
hildren are equivalent one by one left to right (Figure 8-E). Finally, text blo
k 10 isrepla
ed by a ba
kward referen
e sin
e it is equivalent to text blo
k 3 (Figure 8-F). In this
ase,stru
tural element Q is not substituted be
ause it is not equivalent to E.The
rux of Lemma 2 is illustrated at this point. Note that we dete
t that the subtree rootedat N in Figure 8-D is a repetition of the subtree rooted at J in Figure 7-D. The left subtree of nodeJ is not a ba
kward referen
e, so its signature is the very same position of K in the
ompressed text(let us
all it k). The left subtree of node N is a ba
kward referen
e pointing pre
isely to k. Theright subtrees of J and N are both a ba
kward referen
e equal to c, the position of node C in the
ompressed text. A

ording to De�nition 6, both signatures are equal to (type-1:k:c) and thus theequivalen
e is dete
ted.5 Experimental EvaluationLZCS
ompression was tested using di�erent XForms
olle
tions, whi
h
orrespond to real do
u-ments in use in small and medium Chilean
ompanies. XForms (http://www.w3.org/MarkUp/Forms),an XML diale
t, is a W3C Candidate Re
ommendation for a spe
i�
ation of Web forms that
learlyseparate semanti
 from presentation aspe
ts. In parti
ular, XForms is be
oming quite
ommon inthe representation and ex
hange of information and transa
tions between
ompanies.For priva
y reasons we
annot use a
tual XForms databases, but we
an get rather
lose. Wehave obtained �ve di�erent types of forms (e.g., invoi
es). Ea
h su
h form has several �elds. Ea
h�eld has a
ontrolled vo
abulary (e.g., names of parts) we have a

ess to. Hen
e, we have generateda
tual forms by randomly
hoosing the
ontents of ea
h �eld from their
ontrolled vo
abulary. We16

M

N

O P

Q

9

10

6

M

N Q

10
K C

M

N

P

Q

9

10
K

M

Q

10

J

M

N

P

Q

10
K

1

M

QJ

3

(A) (B) (C)

(D) (E) (F)Figure 8: Substitutions
arried out in the third do
ument.remark that this is pessimisti
, sin
e a
tual data may
ontain more regularities than randomlygenerated data.A brief des
ription of the �ve types of forms used follows.
• XForms type 1: Centralization of Remunerations. It represents the a

ounting of the monthlyremunerations, both for total quantities and with itemization. This is a frequently useddo
ument.
• XForms type 2: Sales Invoi
e. It is a legal Chilean do
ument.
• XForms type 3: Pur
hase Invoi
e. It is a legal Chilean do
ument, similar to the previous one.
• XForms type 4: Work Order. It is the do
ument used in
ompanies that install heatingsystems, to register the a

ount detail of
ontra
ted work.
• XForms type 5: Work Budget. It is the do
ument used in
ompanies that build signs andpubli
ity by request, to determine the parts and
osts of works to
arry out. Constru
tion
ompanies use a similar do
ument.For the experiments we sele
ted di�erent size sub
olle
tions of XForms types 1, 2, and 3. Col-le
tions of XForms types 4 and 5 were smaller so we used them as a whole.17

5.1 Optimizing the Choi
e of lWe tested LZCS with di�erent l values. Value l = 0 means that all possible substitutions are made,whereas l =∞ means that no text blo
k is repla
ed, just stru
tural elements.Figure 9 shows how
ompression ratios evolve when di�erent values for l are used, for XFormstype 3. Other XForms
olle
tions give similar results. We remind that �
ompression ratio� refersto the size of the
ompressed text divided by the size of the un
ompressed. We do not yet applyfurther
ompression after the LZCS transformation.
 6

 7

 8

 9

 10

 11

 5 10 15 20 25 30 35 40

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

lzcs (0)
lzcs (4)
lzcs (5)
lzcs (6)
lzcs (7)
lzcs (8)

lzcs (structure)

 6.1

 6.12

 6.14

 6.16

 6.18

 6.2

 20 25 30 35 40

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

lzcs (0)
lzcs (4)
lzcs (5)
lzcs (6)
lzcs (7)
lzcs (8)

lzcs (structure)

Figure 9: Compression ratios using di�erent values for l, for XForms type 3. On the right we showa zoom of the left plot. By �lz
s(stru
ture)� we refer to the setting l =∞.As it
an be seen, the worst
ompression has been obtained in all
ases for l = 0, this is, whenall possible text blo
ks are repla
ed. Compression for l = ∞ has obtained intermediate results,obtaining on large
olle
tions size redu
tions of 28%
ompared to the option l = 0. However,
hoi
e
l =∞ is still mu
h worse than intermediate
hoi
es. Di�erent intermediate values for l yield similar
ompression, with very small variations. Their
ompression improves upon l =∞ by 18% and upon
l = 0 by 42% for large
olle
tion sizes. This shows that most reasonable intermediate values of lare almost optimal and thus �ne-tuning of l is not an issue.We note that our XForms
olle
tions are highly
ompressible, as expe
ted from this denselystru
tured data.5.2 Comparison against Classi
al CompressorsWe �rst
ompared LZCS against the basi
 word-based Hu�man method [Mof89℄ (Word Hu�man,from the MG system, http://www.
s.mu.oz.au/mg). We separate this
omparison from the restbe
ause word-based Hu�man is one of the methods we use for the se
ond step after the LZCStransformation, and be
ause word-based Hu�man
ompression still permits random a

ess to the
ompressed text. For LZCS, we use the best l value for ea
h
olle
tion.Figure 10 shows the
ompression ratio obtained for ea
h method and for ea
h do
ument type.Column �LZCS� indi
ates the
ompression obtained when the LZCS transformation is applied alone,18

while
olumn �LZCS+Hu�� indi
ates the
ompression obtained after applying word-based Hu�manto the output of the �rst stage.Colle
tion / Method Word Hu�man LZCS LZCS+Hu�XForms 1 9.6935% 0.1760% 0.05867%XForms 2 12.646% 4.3111% 0.92209%XForms 3 11.550% 6.0872% 1.32940%XForms 4 13.994% 4.8861% 0.89281%XForms 5 12.441% 3.6245% 0.83933%Figure 10: Compression ratios for LZCS versus Word Hu�man.In all
ases the
ompression obtained by LZCS transformation alone is remarkably good. Letus remind that the output obtained by the transformation is still a plain text do
ument, and thisalready halves the spa
e needed by Word Hu�man, at the very least. When word-based Hu�man
oding is applied over the LZCS transformed text the
ompression is still better, redu
ing the LZCStransformed text to 20%�25% of its size.We now
ompare LZCS against other
lassi
al
ompression systems that allow neither navigationnor random a

ess in the
ompressed �le. Be
ause of this, we
onsider three variants: LZCS+Hu�,LZCS+ppmdi, and LZCS+ppmz. These
onsist in applying, respe
tively, word-based Hu�man,PPMDI, and PPMZ
ompression (see next) to the LZCS transformed text. We use l = 5 in all thefollowing experiments.Standard systems used to
ompare against LZCS are (1) gzip v.1.3.5 (http://www.gnu.org),whi
h use LZ77 plus a variant of Hu�man algorithm (we also tried zip with almost identi
al results);(2) UNIX's
ompress v.4.2.4, whi
h implements LZW algorithm; (3)bzip2 v.1.0.2 (http://www.bzip.org), whi
h uses the Burrows-Wheeler blo
k sorting text
ompression algorithm, plus Hu�man
od-ing; (4)ppmdi (extra
ted from XMLPPM 0.98.2, http://sourgeforge.net/proje
ts/xmlppm) andppmz v.9.1 (Linux port, http://www.
s.hut.fi/~tarhio/ppmz), two PPM
ompressors. We usedstandard options for all (yet, letting them use mu
h more memory did not signi�
antly a�e
t theresults).Compression ratios are shown in Figure 11. Ppmz
ompresses mu
h better than ppmdi, but itis mu
h slower. For example, it took from 4.5 to 10 hours to
ompress 5 megabytes of text withppmz. For this reason, we show ppmz
ompression only for the �rst 5 Mb of XForms 1, 2, and3, and for the whole XForms 4 and 5. On the other hand, LZCS+ppmz is mu
h faster be
auseppmz is applied over the already transformed text, whi
h is mu
h smaller. As we see in the results,LZCS+ppmz obtains the best
ompression ratios. It even outperforms ppmz alone in many
ases,at least for short texts. For longer texts, ppmz is simply not a
hoi
e. This shows that LZCS servesas a prepro
essing stage that maintains (and even improves) the performan
e of ppmz, at the sametime dramati
ally redu
ing the time needed for
ompression, at the point of making it a viablealternative for text sizes where ppmz alone is not.The worst performing
ompressor is
ompress, with
ompression ratios around 10% in all thetexts. This is similar toWord Hu�man (whi
h in ex
hange permits random a

ess) and not
ompet-itive in this experiment (it is ex
luded from the plots of XForms types 1, 2, and 3 for readability).19

 0

 0.5

 1

 1.5

 2

 5 10 15 20 25 30 35 40

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

XForms type 1

LZCS+Huff
LZCS+ppmdi
LZCS+ppmz

gzip
bzip2

ppmdi
ppmz

 0

 1

 2

 3

 4

 5

 5 10 15 20 25 30 35 40 45

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

XForms type 2

LZCS+Huff
LZCS+ppmdi
LZCS+ppmz

gzip
bzip2

ppmdi
ppmz

 0

 1

 2

 3

 4

 5

 5 10 15 20 25 30 35 40 45

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

XForms type 3

LZCS+Huff
LZCS+ppmdi
LZCS+ppmz

gzip
bzip2

ppmdi
ppmz

Method / Size T.4 (7.19 Mb) T.5 (5.74 Mb)LZCS+Hu� 0.8967% 0.8463%LZCS+ppmdi 0.1716% 0.1787%LZCS+ppmz 0.1482% 0.1366%gzip 2.1040% 4.4331%
ompress 10.300% 10.396%bzip2 0.9528% 0.8430%ppmdi 2.2115% 2.1375%ppmz 0.1669% 0.1132%
Figure 11: Comparison between LZCS and
lassi
al
ompressors.This is followed by gzip and ppmdi (with signi�
ant di�eren
es among them depending on the
ol-le
tion), and then by LZCS+Hu� and bzip2. These have similar
ompression ratio, although thereare again signi�
ant di�eren
es depending on the
olle
tion. Re
all, however, that LZCS+Hu� isthe only method in the group permitting random a

ess and navigation in the
olle
tion. Finally,the best
ompression ratios are a
hieved by LZCS+ppmdi, LZCS+ppmz and ppmz, whi
h are very
lose. LZCS+ppmdi usually loses to the others and ppmz usually loses to LZCS+ppmz. Moreover,ppmz is so slow that it
annot be applied ex
ept in small
olle
tions. These results show that takingadvantage of the stru
ture yields signi�
ant gains in
ompression.5.3 Comparison against Stru
ture-Aware MethodsWe now
ompare LZCS against other stru
ture-aware methods: (1)XMill v.0.8 (http://sour
eforge.net/proje
ts/xmill), (2)XMLPPM v.0.98.2 (http://sour
eforge.net/proje
ts/xmlppm), (3)SCMHu� (http://www.infor.uva.es/~jadiego), and (4)SCMPPM (same page).XGrind, (http://
vs.sour
eforge.net/view
vs.py/xmill/xmill/XGrind) was ex
luded fromthis
omparison be
ause we
ould not make it work properly on our dataset. To be sure that thisex
lusion was not important, we altered our
olle
tion (in a statisti
ally insigni�
ant way) until20

produ
ing 1 Mb of text where XGrind �nally worked. The resulting
ompression ratio was 32.63%,whi
h is not
ompetitive at all in this experiment. XCQ was also ex
luded be
ause we
ould not�nd the
ode, yet results reported in [LWL03℄ indi
ate that the
ompression ratios a
hieved aresimilar to those of XMill, whi
h we show to be not
ompetitive in our experiments either. The samehappens with Exalt, a

ording to the results in [Tom04℄.Compression ratios are shown in Figure 12. We used default settings for all (yet, letting themuse mu
h more memory did not a�e
t the results).SCMHu� is, apart from LZCS+Hu�, the only method permitting navigation and random a

ess.SCMHu�
ompression, however, is not
ompetitive, being only slightly superior to Word Hu�man.We omitted the results of SCMHu� for XForms 1, 2, and 3 for readability, where its
ompressionratio was within 7%-12%. SCMPPM is within bounds but still not
ompetitive in most
ases.With few ex
eptions, LZCS+Hu� is signi�
antly better than XMill and SCMPPM in all suf-�
iently large
olle
tions, produ
ing
ompressed texts from just 5% smaller to as mu
h as 25times smaller than XMill. XMLPPM, on the other hand, obtains
learly better
ompression thanLZCS+Hu� in most
ases, ex
ept for the notable ex
eption of XForms type 1, where all the LZCSfamily is by far unbeaten. However, XMLPPM uses adaptive
ompression, and hen
e it is notsuitable for navigation or random a

ess on the
ompressed text.If we
onsider the LZCS variants that do not permit navigation and random a

ess, thenLZCS+ppmdi and LZCS+ppmz
ome into play, beating by far all other
ompetitors.We note the interesting fa
t that, sin
e it produ
es stru
tured do
uments, LZCS
an in prin
iplebe
omposed with stru
ture-aware methods, su
h as SCMPPM, instead of plain text
ompressors.We have tried some
ombinations, but the results were no better than those already obtained withthe basi
 PPM
ompresors.5.4 Compression and De
ompression Performan
eFigure 13 shows
ompression and de
ompression speed for all the softwares involved. The times weshow are averaged over all the
olle
tions, as variations were small among these. For the reasonsexplained, ppmz speed is measured only over the �rst 5 Mb of the larger
olle
tions. The tests were
arried out on the SuSE Linux 9.1 operating system, running on a
omputer with a Pentium IVpro
essor at 1.2 GHz and 384 Mb of RAM.The fastest at
ompression/de
ompression are gzip and XMill (both based on LZ77), followedby
ompress (based on LZ78). This is expe
ted as this family of
ompressors is fast, espe
iallyat de
ompression. Shortly after in de
ompression performan
e is the LZCS family (also based onLempel-Ziv), ex
ept LZCS+ppmz for obvious reasons. Compression is mu
h slower with the LZCSfamily, yet not slower than bzip2, for example. All other
ompressors are several times slower tode
ompress. Other fast options to
ompress are ppmdi and XMLPPM.At
ompression time, LZCS is not very fast be
ause it has to parse the stru
ture and usethe linear time, yet
omplex,
ompression algorithm we have explained in Se
tion 4. However,we have managed to make it
ompetitive against start-of-the art
ompressors. At de
ompression,LZCS is mu
h faster, bene�ting from its Lempel-Ziv nature. Yet, to allow navigability, re
ursivede
ompression is ne
essary, and this slows it down
ompared to other Lempel-Ziv methods. When
ombined with other
ompressors, their overhead must be added to that of LZCS. Yet, this is not assigni�
ant as it
ould be be
ause the other
ompressors a
t over the mu
h smaller LZCS transformed21

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

XForms type 1

LZCS+Huff
LZCS+ppmd
LZCS+ppmz

XMill
XMLPPM
SCMPPM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 5 10 15 20 25 30 35 40 45

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

XForms type 2

LZCS+Huff
LZCS+ppmd
LZCS+ppmz

XMill
XMLPPM
SCMPPM

 0

 0.5

 1

 1.5

 2

 2.5

 5 10 15 20 25 30 35 40 45

C
om

pr
es

si
on

 r
at

io
 (

%
)

Collection size (Mbytes)

XForms type 3

LZCS+Huff
LZCS+ppmd
LZCS+ppmz

XMill
XMLPPM
SCMPPM

Method / Size T.4 (7.19 Mb) T.5 (5.74 Mb)LZCS+Hu� 0.8967% 0.8463%LZCS+ppmdi 0.1716% 0.1787%LZCS+ppmz 0.1482% 0.1366%XMill 0.9426% 0.9242%XMLPPM 0.7124% 0.5530%SCMHu� 10.971% 12.055%SCMPPM 1.3655% 1.3525%
Figure 12: Comparison between LZCS and other stru
ture-aware methods.text.We note that none of the
ompressors that signi�
antly outperform LZCS in time get even
loseto it in
ompression ratios a
hieved. Observe also that
ompression ratios of LZCS stabilize afterpro
essing 10�20 Mb of text, so we
an pro
ess texts in
hunks of that size without signi�
antlya�e
ting
ompression ratio. In pra
ti
e, the amount of memory we need to
ompress is 35�45times the size of the
ompressed text (whi
h is 1�3 times the size of the original text). In our
olle
tions, we need about 25 Mb of main memory to obtain the same
ompression performan
e wehave shown, by means of partitioning the text. Even when this is rather reasonable, we note thatour implementation is not optimized in this aspe
t, whi
h
ould be signi�
antly improved.6 Con
lusions and Future WorkWe have presented LZCS, a
ompression s
heme based on Lempel-Ziv whi
h is aimed at
ompressinghighly stru
tured data. The main idea of LZCS is to repla
e whole substru
tures by previous o

ur-ren
es thereof. The main advantages of LZCS are (1) very good
ompression ratios, outperformingmost
lassi
al and stru
ture-aware methods; (2) easy random a

ess, visualization and navigation22

Program Compression De
ompressionLZCS 0.385 30.262LZCS+Hu� 0.376 21.634LZCS+ppmdi 0.387 19.200LZCS+ppmz 0.154 0.779Word Hu�man 0.388 5.438gzip 17.858 112.212
ompress 4.400 43.368bzip2 0.351 3.746ppmdi 5.073 4.990ppmz 0.0002 0.0002XMill 12.751 103.038XMLPPM 4.943 3.855SCMHu� 0.187 4.169SCMPPM 0.964 1.310Figure 13: Compression and de
ompression speeds, in megabytes per se
ond.of
ompressed
olle
tions; (3) fast and one-pass
ompression and de
ompression. Only PPM-basedmethods
ompressed better than LZCS in our experiments, but random a

ess to a parti
ular do
-ument is impossible with PPM, sin
e it is adaptive and needs to de
ompress �rst all the do
umentsthat pre
ede the desired one. This is adequate for ar
hival purposes but unsuitable for use in a
ompressed text database s
enario. On the other hand, if we
ombine LZCS with PPM
ompressionwe obtain the best
ompression ratio among all the PPM-related
ompressors.One of the most
hallenging problems fa
ed was the e�
ien
y problem of the LZCS
ompressionstage, whi
h is quadrati
 if implemented naively. We over
omed this problem by designing a linearaverage-time
ompression algorithm, by using an ad-ho
 hashing s
heme. The algorithm turns outto be
ompetitive in pra
ti
e.We have
onsidered
ompression of stati

olle
tions in this paper. In many s
enarios, newdo
uments are added to the do
ument
olle
tion, but these are never deleted or modi�ed. Thisis the
ase, for example, when XML forms are used to keep tra
k of all the transa
tions made bya
ompany along time (even modi�
ations to previous transa
tions are expressed by means of a
ompensating transa
tion, but the past
annot be
hanged). LZCS
an easily
ope with insertionof new do
uments, as it is a matter of resuming the
ompression at the point it was left whenpro
essing of the previous
olle
tion �nished. It is a tradeo� de
ision how mu
h of the data in thehash tables
an be maintained to improve
ompression of future additions to the
olle
tion, but thisdoes not a�e
t
orre
tness.In other
ases, for example des
riptions of sto
k, do
uments may also be updated and deleted.More resear
h is needed in order to a

ommodate su
h operations in a text
olle
tion
ompressedwith LZCS. The main problem is, of
ourse, that the do
uments we wish to delete
ould be referen
edelsewhere. One possibility is to maintain a referen
e
ount per stru
ture indi
ating how manyreferen
es point to it, so the stru
ture
an be physi
ally deleted when this
ounter be
omes zero.23

An update would
onsist of inserting the new value and
hanging the old one by a forward pointer tothe new one, so that the old one
ould be deleted or not depending on its referen
e
ount. Periodi
alremoval of unused text areas and remapping of pointers would be ne
essary to avoid the presen
eof too many gaps due to eliminated do
uments. Several other alternatives are possible.The most important future work is to permit sear
hing the
ompressed stru
tured text. We haveseen that the existen
e of words and phrases in the
ompressed do
ument
an be easily establishedas their �rst o

urren
e
annot appear in
ompressed form. Yet, this is the most elementary sear
hproblem.A more
hallenging problem is to answer stru
tural queries, for example XPath queries, on theLZCS
ompressed
olle
tion. One
an use the navigation approa
h to essentially ignore that thetext has repeated substru
tures, and apply any sequential XPath sear
h algorithm. Yet, mu
h moreinteresting is being able of reusing the results of the sear
h over repeated substru
tures to avoidworking on them again. The �nal goal is to sear
h in time proportional to the size of the
ompressedtext, not the original text, as would be the
ase if we ignored the
ompression. Some approa
hes tothis problem are brie�y presented in [LWL03℄.Another interesting problem is indexed sear
hing. On very large
olle
tions, sequential sear
hingis una

eptable. Index data stru
tures largely improve the sequential sear
h time, at a
ost in extraspa
e. For example, a sort of inverted index storing positions of words and stru
tural elements hasshown to be useful to solve
ombined textual and stru
tural queries [NBY97, BYN02℄. Althoughwe
ould, again, build the indexes over the un
ompressed text, it would be mu
h better to designindexes that redu
e their size when the text is
ompressible, so that we exploit repetitions in thetext to fa
tor out the
orresponding repetitions in the indexes.A
knowledgmentWe thank Pablo Palma, from Hypernet Ltd. (Chile), for providing us with massive samples ofalmost-real data for the experiments.Referen
es[AdlFN04℄ J. Adiego, P. de la Fuente, and G. Navarro. Merging predi
tion by partial mat
hingwith stru
tural
ontexts model. In Pro
. 14th IEEE Data Compression Conferen
e(DCC'04), page 522, 2004.[ANdlF03℄ J. Adiego, G. Navarro, and P. de la Fuente. SCM: Stru
tural
ontexts model forimproving
ompression in semistru
tured text databases. In Pro
. 10th Intl. Symp. onString Pro
essing and Information Retrieval (SPIRE'03), LNCS 2857, pages 153�167.Springer, 2003.[BCW90℄ T. Bell, J. Cleary, and I. Witten. Text Compression. Prenti
e Hall, Englewood Cli�s,N.J., 1990.[BSTW86℄ J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A lo
ally adaptive data
ompressions
heme. Communi
ations of the ACM, 29:320�330, 1986.24

[BW94℄ M. Burrows and D. Wheeler. A blo
k sorting lossless data
ompression algorithm.Te
hni
al Report 124, Digital Equipment Corporation, 1994.[BYN02℄ R. Baeza-Yates and G. Navarro. XQL and proximal nodes. J. of the Ameri
an So
ietyof Information Systems and Te
hnology (JASIST), 53(6):504�514, 2002.[Che01℄ J. Cheney. Compressing XML with multiplexed hierar
hi
al PPM models. In Pro
.11th IEEE Data Compression Conferen
e (DCC'01), pages 163�172, 2001.[CW84℄ J. Cleary and I. Witten. Data
ompression using adaptive
oding and partial stringmat
hing. IEEE Trans. on Communi
ation, 32:396�402, 1984.[DPS99℄ J. Dvorský, J. Pokorný, and V. Snásel. Word-based
ompression methods and indexingfor text retrieval systems. In Pro
. 2nd East European Symp. on Advan
es in Databasesand Information Systems (ADBIS'99), LNCS 1691, pages 75�84. Springer, 1999.[GS00℄ M. Girardot and N. Sundaresan. Millau: An en
oding format for e�
ient representa-tion and ex
hange of XML do
uments over the WWW. In Pro
. 9th Intl. World WideWeb Conf. on Computer Networks, pages 747�765, 2000.[Huf52℄ D.A. Hu�man. A method for the
onstru
tion of minimum-redundan
y
odes. Pro
.Inst. Radio Engineers, 40(9):1098�1101, 1952.[LS00℄ H. Liefke and D. Su
iu. XMill: an e�
ient
ompressor for XML data. In Pro
. Intl.ACM Conf. on Management of Data (SIGMOD'00), pages 153�164, 2000.[LW02℄ M. Levene and P. Wood. XML stru
ture
ompression. In Pro
. 2nd Intl. Workshopon Web Dynami
s, 2002.[LWL03℄ W. Lam, P. Wood, and M. Levene. XCQ: XML
ompression and querying system. InPro
. 12th Intl. Conf. on the World Wide Web (WWW'03), 2003. Poster.[Mof89℄ A. Mo�at. Word-based text
ompression. Software - Pra
ti
e and Experien
e,19(2):185�198, 1989.[MT02℄ A. Mo�at and A. Turpin. Compression and Coding Algorithms. Kluwer A
ademi
Publishers, 2002.[MW01℄ A. Mo�at and R. Wan. RE-store: A system for
ompressing, browsing and sear
h-ing large do
uments. In Pro
. 8th Intl. Symp. on String Pro
essing and InformationRetrieval (SPIRE'01), pages 162�174. IEEE CS Press, 2001.[NBY97℄ G. Navarro and R. Baeza-Yates. Proximal nodes: A model to query do
umentdatabases by
ontent and stru
ture. ACM Trans. on Information Systems, 15(4):400�435, 1997.[NMN+00℄ G. Navarro, E. Silva de Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding
ompression to blo
k addressing inverted indexes. Information Retrieval, 3(1):49�77,2000. 25

[Riv92℄ R. Rivest. The MD5 message-digest algorithm. RFC 1321. MIT Laboratory for Com-puter S
ien
e and RSA Data Se
urity, In
., April 1992.[Tar01℄ J. Tarhio. On
ompression of parse trees. In Pro
. 8th Intl. Symp. on String Pro
essingand Information Retrieval (SPIRE'01), pages 205�211. IEEE Computer So
iety, 2001.[TH02℄ P. Tolani and J. Haritsa. XGRIND: A query-friendly XML
ompressor. In Pro
. 18thIntl. Conf. of Data Engineering (ICDE'02), pages 225�234, 2002.[Tom04℄ V. Toman. Synta
ti
al
ompression of XML data. Presented at 16th Intl. Conf.on Advan
ed Information Systems Engineering (CAiSE'04), Riga, Latvia, June 7�11,2004.[Wel84℄ T. Wel
h. A te
hnique for high-performan
e data
ompression. IEEE Computer,17(6):8�19, 1984.[WMB99℄ I. Witten, A. Mo�at, and T. Bell. Managing Gigabytes. Morgan Kaufmann Publishers,se
ond edition, 1999.[ZL77℄ J. Ziv and A. Lempel. An universal algorithm for sequential data
ompression. IEEETrans. on Information Theory, 23(3):337�343, 1977.[ZL78℄ J. Ziv and A. Lempel. Compression of individual sequen
es via variable-rate
oding.IEEE Trans. on Information Theory, 24(5):530�536, 1978.[ZMNBY00℄ N. Ziviani, E. Moura, G. Navarro, and R. Baeza-Yates. Compression: A key for next-generation text retrieval systems. IEEE Computer, 33(11):37�44, November 2000.

26

