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uments ∗†Joaquín Adiego ‡ Gonzalo Navarro § Pablo de la Fuente‡Abstra
tWe des
ribe a novel Lempel-Ziv approa
h, 
alled LZCS, suitable for 
ompressing stru
tureddo
uments. LZCS takes advantage of repeated substru
tures that may appear in the do
uments,by repla
ing them with a ba
kward referen
e to their previous o

urren
e. The result of theLZCS transformation is still a valid stru
tured do
ument whi
h is human-readable and 
an betransmitted by ASCII 
hannels. Moreover, LZCS transformed do
uments are easy to sear
h,display, a

ess at random, and navigate. In a se
ond stage, the transformed do
uments 
anbe further 
ompressed using any semistati
 te
hnique, so that it is still possible to do all thoseoperations e�
iently, or with any adaptive te
hnique to boost 
ompression. LZCS is espe
iallye�
ient to 
ompress 
olle
tions of highly stru
tured data, su
h as XML forms, invoi
es, e-
ommer
e and web-servi
e ex
hange do
uments. The 
omparison against other stru
ture-awareand standard 
ompressors shows that LZCS is a 
ompetitive 
hoi
e for this type of do
uments,while the others are not well-suited to support navigation or random a

ess. When joined to anadaptive 
ompressor, LZCS obtains by far the best 
ompression ratios.Keywords: Lempel-Ziv, XML Data, Stru
tured Do
uments, Text Compression.1 Introdu
tionThe storage, ex
hange, and manipulation of stru
tured text as a devi
e to represent semistru
tureddata is spreading a
ross all kinds of appli
ations, ranging from text databases and digital librariesto web-servi
es and ele
troni
 
ommer
e. Stru
tured text, and in parti
ular the XML format, isbe
oming a standard to en
ode data with simple or 
omplex, �xed or varying stru
ture. AlthoughXML has been envisioned as a me
hanism to des
ribe stru
tured data from some time ago, ithas been the re
ent explosion of business-to-business appli
ations that has shown its potential todes
ribe all sorts of do
uments ex
hanged between organizations and stored inside an organization.Examples are invoi
es, re
eipts, orders, payments, a

ounting, and other forms.
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Although the information stored by an organization is usually kept in relational databases and/ordata warehouses, it is important to store digital sour
es, in XML format, of all the do
uments thathave been ex
hanged and/or produ
ed along time. A stru
tured text retrieval engine should providerandom a

ess to those stru
tured do
uments, so that they should be easily sear
hed, visualized,and navigated. On the other hand, as usual, we would like this repository to take as little spa
e aspossible.In this paper we fo
us on the 
ompression of stru
tured text. We aim spe
i�
ally at 
ompressionof highly stru
tured data, su
h as forms where there is little text in ea
h �eld. Colle
tions formedby those types of forms 
ontain a lot of redundan
y that is not 
aptured well enough by 
lassi
al
ompression methods. At the same time, we want the 
ompressed 
olle
tion to be easily a

essed,visualized and navigated in 
ompressed form. The most e�e
tive 
ompression methods do nota

ount for these 
apabilities: texts have to be un
ompressed before they 
an be a

essed.It is usually argued that disk spa
e is 
heap and thus 
ompression is not interesting. Compres-sion, however, does not only save spa
e. It saves disk and network transfer time, whi
h are highlyvaluable resour
es. Hen
e the interest of 
ompression by itself. Moreover, the types of texts weare fo
using on in this paper are highly 
ompressible: We will show that we 
an 
ompress themto 1% of their original size. With this 
ompression ratio, it is for example possible that we 
anload the 
ompressed text database in main memory, albeit we are unable to de
ompress it whollyin main memory. Hen
e the interest of manipulating and navigating the stru
ture in 
ompressedform, extra
ting only the do
uments we a
tually need.We develop a 
ompression method, Lempel-Ziv to Compress Stru
ture (LZCS), inspired inLempel-Ziv 
ompression, where repeated substru
tures are fa
tored out. That is, every time arepeated substru
ture is dete
ted, it is repla
ed by a ba
kward referen
e to its previous o

urren
e.The result of this LZCS transformation is a text that is still human-readable and well stru
tured.Thus, it 
an be seamlessly transmitted over ASCII 
hannels, handled by stru
tured text manage-ment tools, and visualized in 
ompressed form with 
onventional means. It is very fast and simpleto de
ompress, in whole or in parts, it 
an be sear
hed for the presen
e of words and phrases inthe text with 
onventional algorithms dire
tly in 
ompressed form (about 100 times faster thanthe original text), and it 
an be a

essed at random without need of de
ompressing the pre
edingtext. With little additional e�ort, the 
ompressed do
ument 
an be browsed and navigated withoutde
ompressing it.Compared to LZ77 [ZL77℄, whi
h 
an fa
tor out any repeated text substring, LZCS is restri
tedto 
onsider only whole substru
tures. As a result, LZ77 
ompresses more than the LZCS transfor-mation, yet the 
ompressed text la
ks all of the LZCS features des
ribed above, ex
ept for the fastde
ompression. It is interesting that we build on an adaptive 
ompressor (LZ77) not permittinglo
al de
ompression, and obtain a 
ompressor that does permit lo
al de
ompression, navigation,and many other features.To improve 
ompression, the LZCS transformed text 
an be further 
ompressed with a 
lassi
al
ompressor. The use of a semistati
 
ompressor retains fast de
ompression in whole or in parts, ran-dom a

ess, and the possibility of browsing and navigating the 
ompressed do
ument. Alternatively,an adaptive 
ompressor 
an boost the 
ompression ratio, yet losing all those features.In parti
ular, we show that the use of a semi-stati
 word-based Hu�man method to 
ompressthe LZCS transformed text yields very 
ompetitive 
ompression ratios, only beaten by adaptive2



s
hemes that do not permit any of the features we have des
ribed above. Adaptive s
hemes aresuitable to 
ompress an ar
hival 
olle
tion, but not a database of do
uments that must frequentlyretrieve individual do
uments. On the other hand, we show that the 
ombination of LZCS and anadaptive PPM 
ompressor is unbeaten in 
ompression ratio.We show how the LZCS transformation 
an be 
arried out in linear expe
ted time and in asingle pass over the text. This means that we 
an start produ
ing the transformed text shortly afterstarting reading the sour
e text. This makes LZCS suitable for use over a 
ommuni
ation networkwithout introdu
ing any delay in the transmission. For example, LZCS 
an be transparently used totransmit stru
tured do
uments, even over a plain ASCII 
hannel, in order to redu
e 
ommuni
ationtime. The re
eiver needs very little 
omputational power to un
ompress, and it 
an even navigateor display parts of the do
ument without un
ompressing all of it.The paper is organized as follows. In Se
tion 2 we 
over related work on 
ompression, bothfor plain and stru
tured text. In Se
tion 3 we des
ribe the LZCS transformation. In Se
tion 4we explain how the transformation 
an be 
arried out in linear expe
ted time. In Se
tion 5 weshow empiri
al results 
omparing the 
ompression ratio, as well as 
ompression and de
ompressionperforman
e, of LZCS 
ompared to other standard and stru
ture-aware 
ompressors. We 
on
ludein Se
tion 6 with future work dire
tions.2 Related Work2.1 Standard Text CompressionIn general, 
lassi
 text 
ompression methods [BCW90, MT02℄ do not take into a

ount the stru
tureof the do
uments they 
ompress. Our aim is not to 
over the whole area but just to fo
us on threefamilies of 
ompressors that are relevant for this paper. Lempel-Ziv and k-th order modelling familiesare adaptive 
ompressors, whi
h learn the statisti
al stru
ture of the text as they pro
ess it, updatingthe model on the �y. Hu�man family is semistati
, that is, it �rst obtains the statisti
s of the wholetext and then 
ompresses all the text with the same model.Lempel-Ziv. At the end of the seventies, Lempel and Ziv designed new te
hnologies of data
ompression based on repla
ing text substrings by previous repeated o

urren
es. Their two mostfamous algorithms are 
alled LZ77 [ZL77℄ and LZ78 [ZL78℄. A well-known variant of the latter is
alled LZW, by Wel
h [Wel84℄.LZ77 maintains a window of the last N pro
essed 
hara
ters. In ea
h step, it reads the longestpossible string s from the input that also appears in the window. If s is of length ℓ, it is followedby 
hara
ter a in the input, and it was found at window position p (
ounting right to left), thenthe 
ompressor outputs the triple (p, ℓ, a). Thus input string sa is repla
ed by the triple, and
ompression is obtained if the triple needs less bits than the string itself. On
e this is done, thewindow is shifted forward by ℓ+1 positions and the algorithm resumes the s
anning just past string
sa. In prin
iple a longer window improves 
ompression be
ause it is more likely to �nd longer stringsfor repla
ement. However, the representation of position p requires log2 N bits, whi
h worsens as
N grows. In pra
ti
e the most 
onvenient window size is not very long (for example, 64 Kbytes).3



De
ompression of LZ77 is extremely fast and simple. The 
ompressed text is basi
ally a sequen
eof triples (p, ℓ, a). For ea
h su
h triple we must 
opy ℓ 
hara
ters starting p positions behind the
urrent output position, and then output a. Well-known representatives of LZ77 
ompression areInfo-ZIP's zip and Gnu's gzip.Other variants, su
h as LZ78 and LZW, restri
t somehow whi
h previous strings 
an be refer-en
ed. This is done for e�
ien
y reasons of di�erent type, for example to improve 
ompression timeor to improve the 
ompression ratio. The 
hoi
e of strings that 
an be referen
ed, however, doesnot take into a

ount the meaning of those strings. A well-known representative of LZW is Unix's
ompress.The Lempel-Ziv family is the most popular to 
ompress text be
ause it 
ombines a

eptable
ompression ratios (around 35% on plain English text1) with fast 
ompression and de
ompression.However, being adaptive, Lempel-Ziv 
ompressed text 
annot be de
ompressed at random positions,be
ause one must pro
ess all the text from the beginning in order to learn the window that is usedto un
ompress the desired portion.Hu�man. Classi
al Hu�man 
ompression [Huf52℄ 
onsists of 
omputing the frequen
ies of thetext 
hara
ters in a �rst pass, and then assign a variable-length bit-wise 
ode to ea
h 
hara
ter.Then, in a se
ond pass, ea
h 
hara
ter is repla
ed by its 
ode. Hu�man 
ompression rea
hes thezero-order entropy of the text up to one extra bit per symbol, and being semistati
, it is easyto de
ompress the text starting at any position. Hu�man is said to be a statisti
al 
ompressor,as it relies on text statisti
s, as opposed to the so-
alled di
tionary-based 
ompressors whi
h, asLempel-Ziv, 
onsist in repla
ing strings by identi�ers.Hu�man is not very popular in text 
ompression be
ause it a
hieves poor 
ompression ratios
ompared to other te
hniques. However, the situation 
hanges drasti
ally when natural languagetext is 
ompressed and one uses the text words, rather than the 
hara
ters, as the text symbols[Mof89℄. The distribution of words is mu
h more skewed than that of symbols, and this permitsobtaining mu
h better 
ompression ratios than Hu�man-based 
ompressors. On English text, forexample, 
hara
ter-based Hu�man obtains around 60% 
ompression ratio, while word-based Hu�-man is around 25% [ZMNBY00℄. A
tually, similar 
ompression ratios 
an be obtained by usingLempel-Ziv on words [BSTW86, DPS99℄.Word-based Hu�man, however, has other advantages. Not only the text 
an be 
ompressedand de
ompressed e�
iently, as a whole or in parts, but it is also possible to sear
h it withoutde
ompressing, faster than when sear
hing the un
ompressed text [ZMNBY00℄. Another advantageis that this type of 
ompression integrates very well with information retrieval systems, be
ause thesour
e alphabet is equivalent to the vo
abulary of the inverted index [WMB99, NMN+00, MW01℄.One of the best known systems in the publi
 domain relying on word-based Hu�man is the MGsystem [WMB99℄.
K-th order models. This family of statisti
al adaptive 
ompressors 
omprises both Predi
tionby Partial Mat
hing (PPM) 
ompression and the Burrows-Wheeler Transform (BWT).PPM [CW84℄ is a statisti
al 
ompressor that models the 
hara
ter frequen
ies a

ording to the
ontext given by the k 
hara
ters pre
eding it in the text (this is 
alled a k-th order model), as1That is, the 
ompressed text size is 35% of the un
ompressed text size.4



opposed to Hu�man that does not 
onsider the pre
eding 
hara
ters. Moreover, PPM is adaptive,so the statisti
s are updated as the 
ompression progresses. The larger k, the more a

urate isthe statisti
al model and the better the 
ompression, but more memory and time is ne
essary to
ompress and un
ompress.More pre
isely, PPM uses k + 1 models, of order 0 to k, in parallel. It usually 
ompresses usingthe k-th order model, unless the 
hara
ter to 
ompress has never been seen in that model. In this
ases it swit
hes to a lower-order model until the 
hara
ter is found. The 
oding of ea
h 
hara
teris done with an arithmeti
 
ompressor, a

ording to the 
omputed statisti
s at that point.The BWT [BW94℄ is a reversible permutation of the text, whi
h puts together 
hara
ters havingthe same k-th order 
ontext (for any k). Lo
al optimization (for example, move-to-front followedby Hu�man) over the permuted text obtain results similar to k-th order 
ompression.PPM and BWT usually a
hieve better 
ompression ratios than other families (around 20%on English text), yet they are mu
h slower to 
ompress and de
ompress, and 
annot un
ompressarbitrary portions of the text 
olle
tion. Well known representatives of this family are Seward'sbzip2, based on the BWT, and Shkarin/Cheney's ppmdi and Bloom/Tarhio's ppmz, two PPM-basedte
hniques.2.2 Stru
tured Text CompressionThere exist a few approa
hes spe
i�
ally designed to 
ompress stru
tured text, taking advantage ofits stru
ture.XMill [LS00℄. Developed at AT&T Labs, XMill is an XML-spe
i�
 
ompressor designed to ex-
hange and store XML do
uments. Its 
ompression approa
h is not intended for dire
tly supportingquerying or updating the 
ompressed do
uments. XMill is based on the zlib library, whi
h 
ombinesLempel-Ziv 
ompression with a variant of Hu�man. Its main idea is to split the �le into three
omponents: elements and attributes, text, and stru
ture. Ea
h 
omponent is 
ompressed sepa-rately. Another 
ompressor based Lempel-Ziv, 
utting the stru
ture at some depth and using plainLempel-Ziv 
ompression for the subtrees, is 
ommer
ial XMLZip (http://www.xmls.
om).XMLPPM [Che01℄. This 
ompressor uses a PPM-like 
oder, where the 
ontext is given by thepath from the root to the tree node that 
ontains the 
urrent text. This is an adaptive 
ompressorthat does not permit random a

ess to individual do
uments. The idea is an evolution over XMill,as di�erent 
ompressors are used for ea
h 
omponent, and the XML hierar
hy information is usedto improve 
ompression.XCQ [LW02℄ and Exalt [Tom04℄. These are 
ompression methods based on separating stru
-ture from data, and using grammar-based 
ompression for the stru
ture. In XCQ, the tree shape is
ompressed using the DTD information, while the text is 
ompressed using a standard Lempel-Zivsoftware su
h as gzip. In Exalt, both elements are 
ompressed using grammar-based methods. Inparti
ular, zero-order predi
tion depending on the stru
tural 
ontext, plus arithmeti
 
oding, isused for the tags. Other grammar-based te
hniques 
an be found in [Tar01℄, as well as in XML-Xpress, a 
ommer
ial software (http://www.i
t
ompress.
om) that 
ompresses well when the DTDis known. 5



XGrind [TH02℄. This 
ompressor is interesting be
ause it dire
tly supports queries over the
ompressed �les. An XML do
ument 
ompressed with XGrind retains the stru
ture of the orig-inal do
ument, permitting reuse of the standard XML te
hniques for pro
essing the 
ompresseddo
ument. Stru
ture tags are represented in numeri
 form, while the text is 
ompressed using
hara
ter-oriented Hu�man. A similar idea is explored in in XMillau [GS00℄.SCMHu� [ANdlF03℄ and SCMPPM [AdlFN04℄. SCM is a generi
 model used to 
ompresssemistru
tured do
uments, whi
h takes advantage of the 
ontext information usually impli
it in thestru
ture of the text. The idea is to use a separate model to 
ompress the text that lies insideea
h di�erent stru
ture type. SCMHu� uses a word-based Hu�man 
ompressor for ea
h di�erenttag, while SCMPPM uses a PPMDI 
ompressor. The former permits random a

ess to individualdo
uments, while the latter 
annot.3 The LZCS TransformationLZCS is a new te
hnique to 
ompress stru
tured text (su
h as XML or HTML). The main idea isbased on the Lempel-Ziv 
on
ept, so that repeating substru
tures and whole text blo
ks (that is,the whole text inside a stru
ture or between two stru
tural elements) are repla
ed by a ba
kwardreferen
e to their �rst o

urren
e in the pro
essed do
ument. The result is a valid stru
turedtext with additional spe
ial tags (ba
kward referen
e tags), whi
h 
an be transmitted, handled orvisualized in a 
onventional way, or further 
ompressed using some 
lassi
al 
ompressor.We start by formally des
ribing the LZCS transformation, then present an example, and �nallydis
uss its features.3.1 Formal De�nitionDe�nition 1 (Text Blo
k) A text blo
k is any maximal 
onse
utive 
hara
ter sequen
e not 
on-taining stru
ture or ba
kward referen
e tags.De�nition 2 (Stru
tural Element) A stru
tural element is any 
onse
utive 
hara
ter sequen
ethat begins with a start-tag and �nalizes with its 
orresponding end-tag.Observe that a text blo
k is either the whole text 
ontained in a stru
tural element whi
hdoes not have further internal stru
ture, or it is the whole text between two 
onse
utive stru
turalelements. On the other hand, a stru
tural element 
an 
ontain one or more text blo
ks, one ormore stru
tural elements and/or (after the LZCS transformation) one or more ba
kward referen
etags. For simpli
ity, other types of valid tags (su
h as, in XML, 
omment tags and self-
ontainedtags) will be treated as 
onventional text, and only start-tags and end-tags will be used to identifystru
tural elements. Furthermore, tags will be treated as atomi
 elements. This means that, forexample, the XML attributes and values inside a tag are part of the tag name, and do not formtext blo
ks.The stru
ture indu
es a hierar
hy that 
an be represented as a tree. Text blo
ks will be repre-sented by leaves, and stru
tural elements by subtrees rooted at internal nodes.6



De�nition 3 (Node) A node is either a text blo
k or a stru
tural element.The main point of LZCS is to repla
e some subtrees by referen
es to equivalent subtrees seenbefore.De�nition 4 (Equivalent Nodes) Let N1 and N2 be two nodes that appear in a 
olle
tion. Wewill say that node N1 is equivalent to node N2 i� N1 is textually equal to N2.We are ready to de�ne the LZCS transformation.De�nition 5 (LZCS Transformation) LZCS repla
es ea
h maximal node that is equivalent to aprevious node by a ba
kward referen
e to its �rst o

urren
e in the transformed text. Other elementsare left un
hanged. �Maximal� means that the node repla
ed does not des
end from another that 
anbe repla
ed.A ba
kward referen
e is represented by a spe
ial tag in the output. The spe
ial tag is 
onstru
tedby means of the delimiters "<�" and ">" that mark the beginning and end of the ba
kward referen
etag. The 
ontent of this tag will be formed by digits that express an unsigned integer indi
atingthe absolute position in the transformed text where the referen
ed element begins. For spa
eoptimization, this number will be expressed in base 62, using 0..9, A..Z and a..z as digits. Thisway, the transformed text is still ASCII and well-stru
tured. The referen
e tag has been 
hosen tovoid tag name 
lashes in XML, but it 
an be 
hanged.It may happen that a referen
ed text blo
k is smaller than the referen
e itself (for example, whenthe text blo
k is formed only by 
hara
ter '\n'). In these 
ir
umstan
es, repla
ing it by a referen
eis not a good 
hoi
e. Hen
e we do not repla
e text blo
ks that are shorter than a user-spe
i�edparameter l. The 
hoi
e of l in�uen
es 
ompression ratio, but not 
orre
tness.3.2 ExampleAssume that we are going to 
ompress a 
olle
tion of three do
uments using LZCS. The do
umentsare represented in Figure 1. In the �gure, there exist three di�erent stru
tural elements representedby 
ir
les. The stru
tural elements of type 1 (A, F, M) have their 
ir
le drawn with a solid line,those of type 2 (B, E, G, J, N) with a dashed line, and those of type 3 (the rest) with a dotted line.Text blo
ks are represented by squares. Letters and numbers in the �gure represent node identi�ers.To 
over all the possibilities, assume that text blo
ks numbered 1, 4, 7 and 9 in the �gureare equivalent. Also text blo
ks numbered 3 and 10 are equivalent, as well as those numbered 6and 8. As a result, the do
uments share repeating parts (that is, equal subtrees). Figure 2 showsgraphi
ally these 
orresponden
es and Figure 3 shows the 
olle
tion transformed with LZCS.Finally, Figure 4 shows a textual version of the original and transformed do
uments. Note thatthe LZCS transformed text is a valid stru
tured do
ument, provided we a

ept "<�...>" as a validself-
ontained tag.3.3 Properties of the LZCS Transformed TextAs mentioned in the Introdu
tion, the LZCS transformation has a number of attra
tive features,whi
h we des
ribe now more in depth. 7
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(C)(B)(A) Figure 2: Equivalent subtrees of the do
uments.Human readable: The output of the transformation is human-readable (see Figure 4). This meansthat the transformed �le 
an be read with any 
onventional text editor or terminal.ASCII 
ompliant: The only new 
hara
ters introdu
ed by LZCS are '<', '>', '�', letters anddigits. Therefore, and LZCS transformed do
ument 
an be transmitted by any ASCII 
han-nel. For example it 
an be sent by email without any 
on
ern. A
tually LZCS 
ould betransparently used by servers to transfer stru
tured do
uments to 
lients, even over ASCII
hannels.Well stru
tured: The LZCS transformed text is a well formed stru
tured do
ument. As su
h, it
an be handled with any tool that manages stru
tured do
uments (in XML, for example). Theonly ex
eption is that LZCS produ
es a spe
ial self-
ontained tag, "<�...>", whi
h must bedealt with as any other su
h tag. We 
ould perfe
tly use instead a 
onventional self-
ontainedtag to avoid any ex
eption, su
h as "<ref pos=.../>, but we 
hose otherwise to avoid anypossibility of 
lashing with the a
tual tags of the do
uments, and to have shorter referen
es.8
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(A) (B) (C)Figure 3: Example do
uments after applying the LZCS transformation. Ba
kward referen
es arerepresented by triangles.Dire
tly sear
hable: The LZCS transformed text 
ontains the same words and phrases of theoriginal do
uments. A phrase 
annot be split unless its words belong to di�erent stru
turalelements, in whi
h 
ase it is arguably not a phrase. Although the number of o

urren
es ofwords and phrases will 
hange between the original and the transformed do
uments, a wordor phrase is present in the original text if and only if it is present in the transformed text.Thus, the LZCS transformed text 
an be sear
hed for words and phrases with any 
onventionalstring mat
hing algorithm (su
h as Gnu's grep) to determine whether the phrase appears ornot. If the phrase appears, de
ompression is ne
essary to point out all the do
uments wherethey appear. Note in parti
ular that the sear
h on the LZCS transformed text will be fasterthan on the original text, as the latter is longer (in our experiments, 100 times longer).Fast to de
ompress: De
ompressing an LZCS transformed text is pretty mu
h as de
ompressingLZ77, and therefore, very fast and simple. An important di�eren
e is that LZ77 uses pointersto the un
ompressed �le, so it 
an just 
opy the referen
ed un
ompressed text to the output.LZCS, on the other hand, uses pointers to the 
ompressed �le, so it must re
ursively obtainthe output text from the 
ompressed �le. This makes LZCS de
ompression somewhat slower,but in ex
hange LZCS 
an navigate the 
ompressed �le and extra
t individual do
umentswithout un
ompressing the whole text.Easily navigable and visualizable: LZCS transformed do
uments 
an be navigated in the usualway (that is, going down and up in the hierar
hy as with a tree). Instead of relying on anykind of parent pointer asso
iated to nodes, we must use a sta
k to keep tra
k of the 
urrentan
estors of the 
urrent node. Every time we have to go down to a 
hild, it might be that the
hild is a ba
kward referen
e or not. In the former 
ase, we just move the 
urrent text positionto the appropriate point ba
k in the 
ompressed �le. All the rest is un
hanged. When movingupwards, we pop the 
orresponding �le position from the sta
k of an
estors.A

essible at random positions: With the same algorithm above we 
an produ
e the un
om-pressed text of any do
ument, by simply starting un
ompression at its start-tag and following9



A: <log>B: <entries>C: <event>1: Bug report</event>D: <event>2: Release announ
e</event></entries>E: <entries>3: No further events</entries></log>F: <log>G: <entries>H: <event>4: Bug report</event>I: <event>5: New version</event></entries>J: <entries>K: <event>6: Bug fix</event>L: <event>7: Bug report</event></entries></log>M: <log>N: <entries>O: <event>8: Bug fix</event>P: <event>9: Bug report</event></entries>Q: <event>10: No further events</event></log>

A: <log>B: <entries>C: <event>1: Bug report</event>D: <event>2: Release announ
e</event></entries>E: <entries>3: No further events</entries></log>F: <log>G: <entries>H: <�C>I: <event>5: New version</event></entries>J: <entries>K: <event>6: Bug fix</event>L: <�C></entries></log>M: <log>N: <�J>Q: <event>10: <�3></event></log>

Figure 4: The same example do
uments in textual form. The original do
ument is on the left andthe LZCS transformed do
ument on the right. For readability we write referen
es to line labels(upper
ase letters and numbers) instead of 
hara
ter o�sets. We remind that the referen
es areo�sets in the 
ompressed text, not in the original text.10



any referen
e as ne
essary.Thus, LZCS 
an be integrated into a stru
tured text retrieval system without loss (and in
ases large gains) of e�
ien
y in the sear
h or visualization of results. As demonstrated in ourexperiments, the 
ompression ratios are so good (1%) that it is feasible to maintain large 
olle
tions
ompressed in main memory, even when there is no enough main memory to un
ompress all of it.LZCS is perfe
t for this s
enario, as it 
an navigate, visualize and un
ompress individual do
umentwithout having to un
ompress the whole 
olle
tion.The LZCS transformed text 
an be further 
ompressed with any 
onventional method. Sin
ethe do
uments generated by LZCS are navigable, a good idea is to further 
ompress them using asemistati
 
ompression method, like word-based Hu�man. After this pro
ess, the do
uments 
annotanymore be handled as plain text (a word-wise de
ompression is needed), but they are still navigableand a

essible at random positions. Dire
t sear
h over word-based Hu�man is also possible andvery e�
ient. On the other hand, we 
an use an adaptive 
ompression to boost 
ompression ratio.LZCS 
an be seen as a prepro
essing stage that fa
tors out some types of redundan
ies, so that afurther adaptive 
ompressor takes mu
h less time and 
ompresses more than when applied over theoriginal text.4 E�
ient Implementation of the LZCS TransformationA 
hallenge with the LZCS transformation is how to implement it e�
iently, as we must dete
tsubstru
tures that have appeared in the past. The simplest way to implement the LZCS transfor-mation is by sear
hing all previously pro
essed text for ea
h new stru
tural element. This way, wehave a 
omplexity of O(n2), whi
h is una

eptable.We show now how to obtain O(n) average time. The idea is to maintain a hash table with allthe whole text blo
ks, as well as all the stru
tural elements, seen in the past. While hashing textblo
ks is straightforward, re
ognizing repeated stru
tural elements in linear expe
ted time requiresmore 
areful design.When a text blo
k is pro
essed, we �rst obtain its digital signature (for example, using MD5algorithm [Riv92℄). If the text blo
k is not equivalent to any previous text blo
k (its signaturedoes not 
oin
ide with previous ones), then the text blo
k is 
opied verbatim to the output and itssignature is added to the (hashed) set of signatures of original text blo
ks, together with the textposition of the blo
k (whi
h is the �rst o

urren
e of this blo
k in the output). Otherwise, if anequivalent text blo
k appears (their digital signatures 
oin
ide) a ba
kward referen
e to the �rsto

urren
e of the text blo
k is written to the output. (Sin
e digital signature algorithms do notensure that signatures are unique, texts are also dire
tly 
ompared when a 
oin
iden
e arises.)In order to apply hashing to stru
ture elements too, a node signature is generated and stored,along with its start position in the output, for nodes that have not appeared before. Node signaturesof parent nodes are produ
ed after those of 
hildren nodes.De�nition 6 (Node Signature) A node signature is formed by 
on
atenating its start-tag iden-ti�er and 
hildren identi�ers. These are either their start text positions in the output if they are notreferen
es, or their referen
ed positions otherwise.11



As we show in Lemma 2, a node signature is unique within a 
olle
tion. For ea
h new stru
tureelement, its node signature is generated and sear
hed for among the existing ones. If a 
oin
iden
eis found then the 
urrent stru
ture element is equivalent to a previous one, and it 
an be repla
ed.Next lemma is useful to prove the 
orre
tness of this hashing s
heme.Lemma 1 Let N and N ′ be two nodes that appear in a 
olle
tion transformed with LZCS up tonode N ′, N pre
eding N ′. Then, N is equivalent to N ′ i� N ′ is a ba
kward referen
e to N , or Nand N ′ are equal ba
kward referen
es.Proof: We prove the equivalen
e in both dire
tions.1. If N is equivalent to N ′ then the LZCS transformation repla
es N ′ by a ba
kward referen
eto its �rst o

urren
e:(a) If N is the �rst o

urren
e then N ′ is repla
ed by a ba
kward referen
e to N .(b) Otherwise, let N0 be the �rst o

urren
e of N ′, then N ′ is repla
ed by a ba
kwardreferen
e to N0, but also N was repla
ed by a ba
kward referen
e to N0.Thus, it holds that either N ′ is a ba
kward referen
e to N , or N and N ′ are equal ba
kwardreferen
es.2. If N ′ is a ba
kward referen
e to N , or N ′ and N are equal ba
kward referen
es, then N isequivalent to N ′, be
ause in both 
ases it holds that N and N ′ 
ontents are textually equal.
2Bearing in mind Lemma 1, we show next that the node signature is unique and works 
orre
tly.Lemma 2 Nodes N and N ′ are equivalent i� their node signature are equal.Proof: We observe that a node only 
an repeat if all its 
hildren repeat as well. Therefore, a node

N , parent of N1. . .Nk, is textually equal to a later node N ′, parent of N ′
1. . .N ′

k
, i� tag identi�ersof N and N ′ are equal and ∀i ∈ 1..k,N ′

i
is equivalent to Ni. By Lemma 1, the latter means thateither N ′

i
points to Ni, or N ′

i
points to some N0 and Ni points to N0. A

ording to De�nition 6, inthe �rst 
ase both 
hildren identi�ers are Ni, and in the se
ond both are N0. These 
onditions arene
essary and su�
ient for the node signatures of N and N ′ being equal. 2We are now ready to explain the LZCS transformation algorithm. When an end-tag appears its
orresponding node signature is obtained and sear
hed for in the (hashed) set of node signatures.If the 
urrent node signature is present in the set, then it 
an be repla
ed by a ba
kward refer-en
e. However, at this point we are not sure that the 
urrent node is a maximal repeated subtree.Therefore the substitution is done only in memory, but nothing is yet written to the output. Onthe other hand, if the 
urrent node signature is not present in the set, then the 
urrent subtree isnot equivalent to any previous one and, therefore, nonwritten 
hildren and 
urrent node must bewritten to the output. Also, the 
urrent node signature is added to the set of node signatures.12



LZCS TransformationNodeSigSet ← ∅TextSigSet ← ∅PreviousSubtree ← 〈 〉while there are more nodes do
urrent_node ← get_node() // in postorderif (
urrent_node is a Text Blo
k)then 
urrent_signature ← MD5(
urrent_node)if (
urrent_signature ∈ TextSigSet)then referen
e ← TextSigSet.referen
e(
urrent_signature)PreviousSubtree.add(referen
e)else 
urrent_position ← StartPosition(
urrent_node)TextSigSet.add(
urrent_signature , 
urrent_position)Write PreviousSubtree to the outputWrite 
urrent_node to the outputPreviousSubtree ← 〈 〉�else 
urrent_signature ← NodeSignature(
urrent_node)if (
urrent_signature ∈ NodeSigSet)then referen
e ← NodeSigSet.referen
e(
urrent_signature)PreviousSubtree.erase_
hildren(
urrent_node)PreviousSubtree.add(referen
e)else 
urrent_position ← StartPosition(
urrent_node)NodeSigSet.add(
urrent_signature , 
urrent_position)Write PreviousSubtree to the outputWrite 
urrent_node to the outputPreviousSubtree ← 〈 〉��odWrite PreviousSubtree to the outputFigure 5: LZCS transformation algorithm.13



Figure 5 des
ribes the basi
 LZCS transformation. List PreviousSubtree 
ontains the elementsthat have been 
onverted to referen
es but are not yet output be
ause we do not know whetherthey are maximal. If we are 
urrently pro
essing some tree node, then PreviousSubtree may 
ontainsiblings to the left of the node and of an
estors of the node. By adding new nodes at the end ofthe set we know that, on
e we go ba
k to the parent node, the latter elements of the set are allthe 
hildren of that parent node. This permits implementing PreviousSubtree.erase_
hildren easily,just by knowing the arity of 
urrent node.Also note that, if a subtree is not repeated, then no an
estor of it 
an be repeated. As all theelements in PreviousSubtree have not yet been sent to the output just be
ause it might be that theirparent (an an
estor of the 
urrent node) might be repeated, as soon as we know that the 
urrentnode is not repeated we send all PreviousSubtree to the output. This is not stri
tly ne
essary (one
ould only send the 
hildren of the 
urrent node to the output, and previous elements would waitthat their parent sends them) but it simpli�es the algorithm, as the list to maintain is shorter andalways 
omposed of referen
es.De
ompression is very simple. It begins by writing the text to the output. When a ba
kwardreferen
e tag is found, we re
ursively start de
ompression from the referen
ed position in the 
om-pressed text. If the text at that position begins with a start-tag, the re
ursive 
all will �nish whenthe 
orresponding end-tag is written. Otherwise, it will �nish when the �rst start-tag appears.Upon returning from the re
ursive 
all, the main pro
ess resumes de
ompression from past theba
kward referen
e tag. Re
ursion is ne
essary be
ause further ba
kward referen
es may appearwhen pro
essing the text referen
ed by the �rst one.Figure 6 gives the pseudo
ode. This is simpli�ed, for example it is impli
it that mat
hing the�
orresponding end-tag� that �nishes a referen
e involves keeping tra
k of the 
urrent depth in thestru
ture tree.Note also that un
ompression 
ould be faster and simpler if we stored pointers to referen
es inthe untransformed �le, rather than in the transformed �le. In this way, there would be no re
ursionbe
ause the referen
ed text would be already untransformed. We re
all that this, however, preventsnavigating in the transformed �le without de
ompressing it.About memory usage, both the 
ompression and de
ompression algorithm work better if theymaintain all the 
ompressed text in main memory (although they 
ould work with the text on disk).In addition, the 
ompressor needs to maintan the hash tables for text blo
k and node signatures.Note that items are inserted into those tables only when they do not be
ome referen
es but pass tothe output, so the spa
e required for those tables is also proportional to the size of the 
ompressedtext. The size of PreviousSubtree and sta
ks is negligible. Just like other 
ompressors, LZCS 
an
lean up all its stru
tures and start afresh when the memory 
onsumption ex
eeds some prede�nedlimit. This would only a�e
t 
ompression ratio, but not 
orre
tness.4.1 ExampleLet us go ba
k to the do
uments shown in the example of Se
tion 3.2. The do
uments will bepro
essed left to right, as they appear in Figure 1. In the �rst do
ument no substitution is 
arriedout, sin
e there are no equivalent nodes in the do
ument. At this moment, the output will 
ontainan exa
t 
opy of the �rst do
ument. Then the se
ond do
ument is pro
essed. Sin
e text blo
k 4is equivalent to 1, it is repla
ed by a ba
kward referen
e, represented by triangles in Figure 7-A.14



LZCS Inverse Transformation
word← get_word()while not end of transformed text doif (word is a referen
e tag)then position← get_position(word)SolveReferen
e(position)else write word to the output�

word← get_word()odpro
edure SolveReferen
e(position)do go to position in input �le
word← get_word()if (word is a start-stru
ture tag)then end_word← 
orresponding end-stru
ture tagelse end_word← any start-stru
ture tag�while word 6= end_word doif (word is a referen
e tag)then position← get_position(word)SolveReferen
e(position)else write word to the output�

word← get_word()odod Figure 6: LZCS inverse transformation algorithm.
15



As the stru
tural elements that 
ontain blo
ks 4 and 1 also 
oin
ide (nodes are equivalent), theprevious ba
kward referen
e is repla
ed again with another that 
ontains the stru
tural element(Figure 7-B). The same happens to text blo
k 7 (Figures 7-C and 7-D).
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(A) (B) (C) (D)Figure 7: Substitutions performed in the se
ond do
ument.Finally, the third do
ument is pro
essed. First, the substitutions of text blo
ks 8 and 9 are
arried out, as well as those for their 
orresponding stru
tural elements (Figures 8-A to 8-D). Whenstru
tural element N has just been pro
essed, it is veri�ed that it 
an be 
ompletely repla
ed bya ba
kward referen
e to J, be
ause they are equivalent elements: They have the same number of
hildren and 
hildren are equivalent one by one left to right (Figure 8-E). Finally, text blo
k 10 isrepla
ed by a ba
kward referen
e sin
e it is equivalent to text blo
k 3 (Figure 8-F). In this 
ase,stru
tural element Q is not substituted be
ause it is not equivalent to E.The 
rux of Lemma 2 is illustrated at this point. Note that we dete
t that the subtree rootedat N in Figure 8-D is a repetition of the subtree rooted at J in Figure 7-D. The left subtree of nodeJ is not a ba
kward referen
e, so its signature is the very same position of K in the 
ompressed text(let us 
all it k). The left subtree of node N is a ba
kward referen
e pointing pre
isely to k. Theright subtrees of J and N are both a ba
kward referen
e equal to c, the position of node C in the
ompressed text. A

ording to De�nition 6, both signatures are equal to (type-1:k:c) and thus theequivalen
e is dete
ted.5 Experimental EvaluationLZCS 
ompression was tested using di�erent XForms 
olle
tions, whi
h 
orrespond to real do
u-ments in use in small and medium Chilean 
ompanies. XForms (http://www.w3.org/MarkUp/Forms),an XML diale
t, is a W3C Candidate Re
ommendation for a spe
i�
ation of Web forms that 
learlyseparate semanti
 from presentation aspe
ts. In parti
ular, XForms is be
oming quite 
ommon inthe representation and ex
hange of information and transa
tions between 
ompanies.For priva
y reasons we 
annot use a
tual XForms databases, but we 
an get rather 
lose. Wehave obtained �ve di�erent types of forms (e.g., invoi
es). Ea
h su
h form has several �elds. Ea
h�eld has a 
ontrolled vo
abulary (e.g., names of parts) we have a

ess to. Hen
e, we have generateda
tual forms by randomly 
hoosing the 
ontents of ea
h �eld from their 
ontrolled vo
abulary. We16
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(D) (E) (F)Figure 8: Substitutions 
arried out in the third do
ument.remark that this is pessimisti
, sin
e a
tual data may 
ontain more regularities than randomlygenerated data.A brief des
ription of the �ve types of forms used follows.
• XForms type 1: Centralization of Remunerations. It represents the a

ounting of the monthlyremunerations, both for total quantities and with itemization. This is a frequently useddo
ument.
• XForms type 2: Sales Invoi
e. It is a legal Chilean do
ument.
• XForms type 3: Pur
hase Invoi
e. It is a legal Chilean do
ument, similar to the previous one.
• XForms type 4: Work Order. It is the do
ument used in 
ompanies that install heatingsystems, to register the a

ount detail of 
ontra
ted work.
• XForms type 5: Work Budget. It is the do
ument used in 
ompanies that build signs andpubli
ity by request, to determine the parts and 
osts of works to 
arry out. Constru
tion
ompanies use a similar do
ument.For the experiments we sele
ted di�erent size sub
olle
tions of XForms types 1, 2, and 3. Col-le
tions of XForms types 4 and 5 were smaller so we used them as a whole.17



5.1 Optimizing the Choi
e of lWe tested LZCS with di�erent l values. Value l = 0 means that all possible substitutions are made,whereas l =∞ means that no text blo
k is repla
ed, just stru
tural elements.Figure 9 shows how 
ompression ratios evolve when di�erent values for l are used, for XFormstype 3. Other XForms 
olle
tions give similar results. We remind that �
ompression ratio� refersto the size of the 
ompressed text divided by the size of the un
ompressed. We do not yet applyfurther 
ompression after the LZCS transformation.
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Figure 9: Compression ratios using di�erent values for l, for XForms type 3. On the right we showa zoom of the left plot. By �lz
s(stru
ture)� we refer to the setting l =∞.As it 
an be seen, the worst 
ompression has been obtained in all 
ases for l = 0, this is, whenall possible text blo
ks are repla
ed. Compression for l = ∞ has obtained intermediate results,obtaining on large 
olle
tions size redu
tions of 28% 
ompared to the option l = 0. However, 
hoi
e
l =∞ is still mu
h worse than intermediate 
hoi
es. Di�erent intermediate values for l yield similar
ompression, with very small variations. Their 
ompression improves upon l =∞ by 18% and upon
l = 0 by 42% for large 
olle
tion sizes. This shows that most reasonable intermediate values of lare almost optimal and thus �ne-tuning of l is not an issue.We note that our XForms 
olle
tions are highly 
ompressible, as expe
ted from this denselystru
tured data.5.2 Comparison against Classi
al CompressorsWe �rst 
ompared LZCS against the basi
 word-based Hu�man method [Mof89℄ (Word Hu�man,from the MG system, http://www.
s.mu.oz.au/mg). We separate this 
omparison from the restbe
ause word-based Hu�man is one of the methods we use for the se
ond step after the LZCStransformation, and be
ause word-based Hu�man 
ompression still permits random a

ess to the
ompressed text. For LZCS, we use the best l value for ea
h 
olle
tion.Figure 10 shows the 
ompression ratio obtained for ea
h method and for ea
h do
ument type.Column �LZCS� indi
ates the 
ompression obtained when the LZCS transformation is applied alone,18



while 
olumn �LZCS+Hu�� indi
ates the 
ompression obtained after applying word-based Hu�manto the output of the �rst stage.Colle
tion / Method Word Hu�man LZCS LZCS+Hu�XForms 1 9.6935% 0.1760% 0.05867%XForms 2 12.646% 4.3111% 0.92209%XForms 3 11.550% 6.0872% 1.32940%XForms 4 13.994% 4.8861% 0.89281%XForms 5 12.441% 3.6245% 0.83933%Figure 10: Compression ratios for LZCS versus Word Hu�man.In all 
ases the 
ompression obtained by LZCS transformation alone is remarkably good. Letus remind that the output obtained by the transformation is still a plain text do
ument, and thisalready halves the spa
e needed by Word Hu�man, at the very least. When word-based Hu�man
oding is applied over the LZCS transformed text the 
ompression is still better, redu
ing the LZCStransformed text to 20%�25% of its size.We now 
ompare LZCS against other 
lassi
al 
ompression systems that allow neither navigationnor random a

ess in the 
ompressed �le. Be
ause of this, we 
onsider three variants: LZCS+Hu�,LZCS+ppmdi, and LZCS+ppmz. These 
onsist in applying, respe
tively, word-based Hu�man,PPMDI, and PPMZ 
ompression (see next) to the LZCS transformed text. We use l = 5 in all thefollowing experiments.Standard systems used to 
ompare against LZCS are (1) gzip v.1.3.5 (http://www.gnu.org),whi
h use LZ77 plus a variant of Hu�man algorithm (we also tried zip with almost identi
al results);(2) UNIX's 
ompress v.4.2.4, whi
h implements LZW algorithm; (3)bzip2 v.1.0.2 (http://www.bzip.org), whi
h uses the Burrows-Wheeler blo
k sorting text 
ompression algorithm, plus Hu�man 
od-ing; (4)ppmdi (extra
ted from XMLPPM 0.98.2, http://sourgeforge.net/proje
ts/xmlppm) andppmz v.9.1 (Linux port, http://www.
s.hut.fi/~tarhio/ppmz), two PPM 
ompressors. We usedstandard options for all (yet, letting them use mu
h more memory did not signi�
antly a�e
t theresults).Compression ratios are shown in Figure 11. Ppmz 
ompresses mu
h better than ppmdi, but itis mu
h slower. For example, it took from 4.5 to 10 hours to 
ompress 5 megabytes of text withppmz. For this reason, we show ppmz 
ompression only for the �rst 5 Mb of XForms 1, 2, and3, and for the whole XForms 4 and 5. On the other hand, LZCS+ppmz is mu
h faster be
auseppmz is applied over the already transformed text, whi
h is mu
h smaller. As we see in the results,LZCS+ppmz obtains the best 
ompression ratios. It even outperforms ppmz alone in many 
ases,at least for short texts. For longer texts, ppmz is simply not a 
hoi
e. This shows that LZCS servesas a prepro
essing stage that maintains (and even improves) the performan
e of ppmz, at the sametime dramati
ally redu
ing the time needed for 
ompression, at the point of making it a viablealternative for text sizes where ppmz alone is not.The worst performing 
ompressor is 
ompress, with 
ompression ratios around 10% in all thetexts. This is similar toWord Hu�man (whi
h in ex
hange permits random a

ess) and not 
ompet-itive in this experiment (it is ex
luded from the plots of XForms types 1, 2, and 3 for readability).19
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Figure 11: Comparison between LZCS and 
lassi
al 
ompressors.This is followed by gzip and ppmdi (with signi�
ant di�eren
es among them depending on the 
ol-le
tion), and then by LZCS+Hu� and bzip2. These have similar 
ompression ratio, although thereare again signi�
ant di�eren
es depending on the 
olle
tion. Re
all, however, that LZCS+Hu� isthe only method in the group permitting random a

ess and navigation in the 
olle
tion. Finally,the best 
ompression ratios are a
hieved by LZCS+ppmdi, LZCS+ppmz and ppmz, whi
h are very
lose. LZCS+ppmdi usually loses to the others and ppmz usually loses to LZCS+ppmz. Moreover,ppmz is so slow that it 
annot be applied ex
ept in small 
olle
tions. These results show that takingadvantage of the stru
ture yields signi�
ant gains in 
ompression.5.3 Comparison against Stru
ture-Aware MethodsWe now 
ompare LZCS against other stru
ture-aware methods: (1)XMill v.0.8 (http://sour
eforge.net/proje
ts/xmill), (2)XMLPPM v.0.98.2 (http://sour
eforge.net/proje
ts/xmlppm), (3)SCMHu� (http://www.infor.uva.es/~jadiego), and (4)SCMPPM (same page).XGrind, (http://
vs.sour
eforge.net/view
vs.py/xmill/xmill/XGrind) was ex
luded fromthis 
omparison be
ause we 
ould not make it work properly on our dataset. To be sure that thisex
lusion was not important, we altered our 
olle
tion (in a statisti
ally insigni�
ant way) until20



produ
ing 1 Mb of text where XGrind �nally worked. The resulting 
ompression ratio was 32.63%,whi
h is not 
ompetitive at all in this experiment. XCQ was also ex
luded be
ause we 
ould not�nd the 
ode, yet results reported in [LWL03℄ indi
ate that the 
ompression ratios a
hieved aresimilar to those of XMill, whi
h we show to be not 
ompetitive in our experiments either. The samehappens with Exalt, a

ording to the results in [Tom04℄.Compression ratios are shown in Figure 12. We used default settings for all (yet, letting themuse mu
h more memory did not a�e
t the results).SCMHu� is, apart from LZCS+Hu�, the only method permitting navigation and random a

ess.SCMHu� 
ompression, however, is not 
ompetitive, being only slightly superior to Word Hu�man.We omitted the results of SCMHu� for XForms 1, 2, and 3 for readability, where its 
ompressionratio was within 7%-12%. SCMPPM is within bounds but still not 
ompetitive in most 
ases.With few ex
eptions, LZCS+Hu� is signi�
antly better than XMill and SCMPPM in all suf-�
iently large 
olle
tions, produ
ing 
ompressed texts from just 5% smaller to as mu
h as 25times smaller than XMill. XMLPPM, on the other hand, obtains 
learly better 
ompression thanLZCS+Hu� in most 
ases, ex
ept for the notable ex
eption of XForms type 1, where all the LZCSfamily is by far unbeaten. However, XMLPPM uses adaptive 
ompression, and hen
e it is notsuitable for navigation or random a

ess on the 
ompressed text.If we 
onsider the LZCS variants that do not permit navigation and random a

ess, thenLZCS+ppmdi and LZCS+ppmz 
ome into play, beating by far all other 
ompetitors.We note the interesting fa
t that, sin
e it produ
es stru
tured do
uments, LZCS 
an in prin
iplebe 
omposed with stru
ture-aware methods, su
h as SCMPPM, instead of plain text 
ompressors.We have tried some 
ombinations, but the results were no better than those already obtained withthe basi
 PPM 
ompresors.5.4 Compression and De
ompression Performan
eFigure 13 shows 
ompression and de
ompression speed for all the softwares involved. The times weshow are averaged over all the 
olle
tions, as variations were small among these. For the reasonsexplained, ppmz speed is measured only over the �rst 5 Mb of the larger 
olle
tions. The tests were
arried out on the SuSE Linux 9.1 operating system, running on a 
omputer with a Pentium IVpro
essor at 1.2 GHz and 384 Mb of RAM.The fastest at 
ompression/de
ompression are gzip and XMill (both based on LZ77), followedby 
ompress (based on LZ78). This is expe
ted as this family of 
ompressors is fast, espe
iallyat de
ompression. Shortly after in de
ompression performan
e is the LZCS family (also based onLempel-Ziv), ex
ept LZCS+ppmz for obvious reasons. Compression is mu
h slower with the LZCSfamily, yet not slower than bzip2, for example. All other 
ompressors are several times slower tode
ompress. Other fast options to 
ompress are ppmdi and XMLPPM.At 
ompression time, LZCS is not very fast be
ause it has to parse the stru
ture and usethe linear time, yet 
omplex, 
ompression algorithm we have explained in Se
tion 4. However,we have managed to make it 
ompetitive against start-of-the art 
ompressors. At de
ompression,LZCS is mu
h faster, bene�ting from its Lempel-Ziv nature. Yet, to allow navigability, re
ursivede
ompression is ne
essary, and this slows it down 
ompared to other Lempel-Ziv methods. When
ombined with other 
ompressors, their overhead must be added to that of LZCS. Yet, this is not assigni�
ant as it 
ould be be
ause the other 
ompressors a
t over the mu
h smaller LZCS transformed21
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Figure 12: Comparison between LZCS and other stru
ture-aware methods.text.We note that none of the 
ompressors that signi�
antly outperform LZCS in time get even 
loseto it in 
ompression ratios a
hieved. Observe also that 
ompression ratios of LZCS stabilize afterpro
essing 10�20 Mb of text, so we 
an pro
ess texts in 
hunks of that size without signi�
antlya�e
ting 
ompression ratio. In pra
ti
e, the amount of memory we need to 
ompress is 35�45times the size of the 
ompressed text (whi
h is 1�3 times the size of the original text). In our
olle
tions, we need about 25 Mb of main memory to obtain the same 
ompression performan
e wehave shown, by means of partitioning the text. Even when this is rather reasonable, we note thatour implementation is not optimized in this aspe
t, whi
h 
ould be signi�
antly improved.6 Con
lusions and Future WorkWe have presented LZCS, a 
ompression s
heme based on Lempel-Ziv whi
h is aimed at 
ompressinghighly stru
tured data. The main idea of LZCS is to repla
e whole substru
tures by previous o

ur-ren
es thereof. The main advantages of LZCS are (1) very good 
ompression ratios, outperformingmost 
lassi
al and stru
ture-aware methods; (2) easy random a

ess, visualization and navigation22



Program Compression De
ompressionLZCS 0.385 30.262LZCS+Hu� 0.376 21.634LZCS+ppmdi 0.387 19.200LZCS+ppmz 0.154 0.779Word Hu�man 0.388 5.438gzip 17.858 112.212
ompress 4.400 43.368bzip2 0.351 3.746ppmdi 5.073 4.990ppmz 0.0002 0.0002XMill 12.751 103.038XMLPPM 4.943 3.855SCMHu� 0.187 4.169SCMPPM 0.964 1.310Figure 13: Compression and de
ompression speeds, in megabytes per se
ond.of 
ompressed 
olle
tions; (3) fast and one-pass 
ompression and de
ompression. Only PPM-basedmethods 
ompressed better than LZCS in our experiments, but random a

ess to a parti
ular do
-ument is impossible with PPM, sin
e it is adaptive and needs to de
ompress �rst all the do
umentsthat pre
ede the desired one. This is adequate for ar
hival purposes but unsuitable for use in a
ompressed text database s
enario. On the other hand, if we 
ombine LZCS with PPM 
ompressionwe obtain the best 
ompression ratio among all the PPM-related 
ompressors.One of the most 
hallenging problems fa
ed was the e�
ien
y problem of the LZCS 
ompressionstage, whi
h is quadrati
 if implemented naively. We over
omed this problem by designing a linearaverage-time 
ompression algorithm, by using an ad-ho
 hashing s
heme. The algorithm turns outto be 
ompetitive in pra
ti
e.We have 
onsidered 
ompression of stati
 
olle
tions in this paper. In many s
enarios, newdo
uments are added to the do
ument 
olle
tion, but these are never deleted or modi�ed. Thisis the 
ase, for example, when XML forms are used to keep tra
k of all the transa
tions made bya 
ompany along time (even modi�
ations to previous transa
tions are expressed by means of a
ompensating transa
tion, but the past 
annot be 
hanged). LZCS 
an easily 
ope with insertionof new do
uments, as it is a matter of resuming the 
ompression at the point it was left whenpro
essing of the previous 
olle
tion �nished. It is a tradeo� de
ision how mu
h of the data in thehash tables 
an be maintained to improve 
ompression of future additions to the 
olle
tion, but thisdoes not a�e
t 
orre
tness.In other 
ases, for example des
riptions of sto
k, do
uments may also be updated and deleted.More resear
h is needed in order to a

ommodate su
h operations in a text 
olle
tion 
ompressedwith LZCS. The main problem is, of 
ourse, that the do
uments we wish to delete 
ould be referen
edelsewhere. One possibility is to maintain a referen
e 
ount per stru
ture indi
ating how manyreferen
es point to it, so the stru
ture 
an be physi
ally deleted when this 
ounter be
omes zero.23



An update would 
onsist of inserting the new value and 
hanging the old one by a forward pointer tothe new one, so that the old one 
ould be deleted or not depending on its referen
e 
ount. Periodi
alremoval of unused text areas and remapping of pointers would be ne
essary to avoid the presen
eof too many gaps due to eliminated do
uments. Several other alternatives are possible.The most important future work is to permit sear
hing the 
ompressed stru
tured text. We haveseen that the existen
e of words and phrases in the 
ompressed do
ument 
an be easily establishedas their �rst o

urren
e 
annot appear in 
ompressed form. Yet, this is the most elementary sear
hproblem.A more 
hallenging problem is to answer stru
tural queries, for example XPath queries, on theLZCS 
ompressed 
olle
tion. One 
an use the navigation approa
h to essentially ignore that thetext has repeated substru
tures, and apply any sequential XPath sear
h algorithm. Yet, mu
h moreinteresting is being able of reusing the results of the sear
h over repeated substru
tures to avoidworking on them again. The �nal goal is to sear
h in time proportional to the size of the 
ompressedtext, not the original text, as would be the 
ase if we ignored the 
ompression. Some approa
hes tothis problem are brie�y presented in [LWL03℄.Another interesting problem is indexed sear
hing. On very large 
olle
tions, sequential sear
hingis una

eptable. Index data stru
tures largely improve the sequential sear
h time, at a 
ost in extraspa
e. For example, a sort of inverted index storing positions of words and stru
tural elements hasshown to be useful to solve 
ombined textual and stru
tural queries [NBY97, BYN02℄. Althoughwe 
ould, again, build the indexes over the un
ompressed text, it would be mu
h better to designindexes that redu
e their size when the text is 
ompressible, so that we exploit repetitions in thetext to fa
tor out the 
orresponding repetitions in the indexes.A
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