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Abstract

A succinct full-text self-index is a data structure built on a text T = t1t2 . . . tn, which
takes little space (ideally close to that of the compressed text), permits efficient search for the
occurrences of a pattern P = p1p2 . . . pm in T , and is able to reproduce any text substring, so
the self-index replaces the text.

Several remarkable self-indexes have been developed in recent years. Many of those take
space proportional to nH0 or nHk bits, where Hk is the kth order empirical entropy of T . The
time to count how many times does P occur in T ranges from O(m) to O(m log n).

In this paper we present a new self-index, called RLFM index for “run-length FM-index”,
that counts the occurrences of P in T in O(m) time when the alphabet size is σ = O(polylog(n)).
The RLFM index requires nHk log σ + O(n) bits of space, for any k ≤ α log

σ
n and constant

0 < α < 1. Previous indexes that achieve O(m) counting time either require more than nH0

bits of space or require that σ = O(1). We also show that the RLFM index can be enhanced to
locate occurrences in the text and display text substrings in time independent of σ.

In addition, we prove a close relationship between the kth order entropy of the text and
some regularities that show up in their suffix arrays and in the Burrows-Wheeler transform of
T . This relationship is of independent interest and permits bounding the space occupancy of
the RLFM index, as well as that of other existing compressed indexes.

Finally, we present some practical considerations in order to implement the RLFM index,
obtaining two implementations with different space-time tradeoffs. We empirically compare
our indexes against the best existing implementations and show that they are practical and
competitive against those.

1 Introduction

The classical problem in string matching is to determine the occ occurrences of a short pattern
P = p1p2 . . . pm in a large text T = t1t2 . . . tn. Text and pattern are sequences of characters over
an alphabet Σ of size σ. Actually one may want to know the number occ of occurrences (this is
called a counting query), the text positions of those occ occurrences (a locating query), or also a
text context around them (a context query). Usually the same text is queried several times with
different patterns, and therefore it is worthwhile to preprocess it in order to speed up the searches.
The preprocessing builds an index structure on the text.
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To allow fast searches for patterns of any size, the index must allow access to all suffixes of
the text (the ith suffix of T is titi+1 . . . tn). These kind of indexes are called full-text indexes. The
suffix tree [Wei73, McC76, Ukk95, Apo85] is the best known full-text index, requiring O(m) time
for counting and O(occ) for locating queries.

The suffix tree takes much more memory than the text. In general, it takes O(n log n) bits,
while the text takes n log σ bits1. In practice the suffix tree requires about 20 times the text size.
A smaller constant factor, close to 4 in practice, is achieved by the suffix array [MM93]. Still, the
space complexity of O(n log n) bits does not change. Moreover, counting queries take O(m log n)
time with the suffix array. This can be improved to O(m+log n) by using twice the original amount
of space [MM93].

Since the last decade, several attempts to reduce the space of the suffix trees or arrays have been
made [Kär95, KU96a, KU96b, Kur98, AOK02, Mäk03], and other structures have been proposed
as well [BBH+87, ST96, KS98]. In some cases these attempts have obtained remarkable results in
space (for example, 1.6 times the text size in practice) at a small price in query time. Some of those
structures [KU96a, Mäk03] have the interesting property of requiring less space when the text is
compressible.

In parallel, intensive work on succinct data structures focused on the representation of basic
structures such as sequences and trees [Jac89, Mun96, MR97, Pag99, RRR02]. Those representa-
tions were able to approach the information theoretic minimum space required to store the struc-
tures. Based on those results, new succinct representations of suffix trees and arrays were proposed
[Cla96, CM96, MRR01, GV00, Rao02]. Yet, all of them still required the text separately available
to answer queries.

This trend evolved into the concept of self-indexing. A self-index is a succinct index that
contains enough information to reproduce any text substring. Hence a self-index that implements
such functionality can replace the text. The exciting possibility of an index that requires space
proportional to the compressed text, and yet replaces it, has been explored in recent years [FM00,
FM01, FM02, Sad00, Sad02, Nav04, GGV03, GGV04, MNS04, GMN04, FMMN04a, FMMN04b].

Table 1 compares the space requirements, counting time, and restrictions on the alphabet size
for those self-indexes. In the table, H0 stands for the zero-order entropy of T , while Hk stands for
the kth order entropy of T , for any k ≤ α logσ n, where 0 < α < 1 is any constant.2 The number
of bits of space required by the indexes ranges from proportional to nH0 to proportional to nHk.
A few of those require exactly nHk + o(n) bits, which is currently the lowest asymptotic space
requirement that has been achieved. Counting time ranges from O(m) to O(m log n). Finally,
some indexes achieve their results only on constant-size alphabets, while some others require that
σ = O(polylog(n)), and the rest works well for any σ = o(n/ log n).3

We also point out that O(m/ logσ n + polylog(n)) time has been achieved on a succinct (non-
self) index [GV00]. This time is optimal on the RAM model if the pattern is long enough compared
to the text (that is, the polylog(n) term has to be O(m/ logσ n)), yet not O(m) in general.

Table 1 shows the indexes in chronological order of their first publication, including the RLFM
index presented in this paper. This permits distinguishing the indexes that existed when the

1By log we mean log2 in this paper.
2It also holds for any constant k as long as σ = O(polylog(n)).
3This restriction is usually not explicit in those publications, but they store at least an array of integers in the

range [1, n] indexed by characters of Σ. Unless σ = o(n/ log n), that array alone requires σ log n = Ω(n) bits.
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Reference Space in bits Counting time Works for σ =

[FM00, FM01] 5nHk + o(n) O(m) O(1)
[Sad00] nH0 + O(n log log σ) O(m log n) o(n/ log n)
[Sad02] nH0 + O(n) O(m) O(polylog(n))
[Nav04] 4nHk + o(n) O(m3 log σ + m log n) o(n/ log n)
[GGV03, GGV04] nHk + o(n log σ) O(m log σ + polylog(n)) o(n/ log n)

This paper nHk log σ + O(n) O(m) O(polylog(n))

[MNS04] nHk(log σ + log log n) + O(n) O(m log n) o(n/ log n)
[GMN04] 2n(H0 + 1)(1 + o(1)) O(m log σ) o(n/ log n)
[FMMN04a] nHk + o(n log σ) O(m log σ) o(n/ log n)
[FMMN04b] nHk + o(n) O(m) O(polylog(n))

Table 1: Comparison of space, counting time, and restrictions on the alphabet size for the existing
self-indexes. We show the contributions ordered by the time when they first appeared.

RLFM index first appeared [MN04a, MN04c, MN04b], from those that appeared later, most of
them deriving in some aspect from the RLFM index ideas. The RLFM index was the first in
obtaining O(m) counting time and space proportional to nHk for any σ = O(polylog(n)). Inspired
by the results of this paper [MN04c], we started a joint work with the authors of the FM-index
[FM00, FM01] that ended up in new indexes [FMMN04a] that very recently superseded our original
results [FMMN04b]. Similarly, we applied our ideas in joint work with the author of the CSA index
[Sad00, Sad02] and obtained new CSA variants [MNS04]. Yet, our index is still unique in its
run-length-based approach to obtain space proportional to nHk, and still represents a relevant
space-time tradeoff among existing implementations.

Precisely, this paper presents the following contributions:

1. We show that there is a close relationship between the kth order entropy of T and (i) the
zones in the suffix array that appear replicated in another area with the values incremented
by 1, and (ii) the runs of equal letters that appear once T undergoes the Burrows-Wheeler
transform [BW94]. This proof has independent interest and not only permits analyzing some
existing succinct indexes [Mäk03, MN04a, MNS04], but also gives the baseline to develop new
indexes of size proportional to nHk.

2. We use the previous idea to develop a new self-index based on the runs of equal letters that
result from the Burrows-Wheeler transform of T . The index, called run-length FM-index
(RLFM), requires nHk log σ + O(n) bits of space, and it is able to answer counting queries
in O(m) time, for any σ = O(polylog(n)). We show different ways to answer locating queries
and displaying text.

3. We focus on a practical RLFM implementation, and develop simpler versions that perform
better in practice. In passing we obtain an implementation of an existing proposal [Sad02],
that we call SSA for “succinct suffix array”. We compare our implementations against the
best existing ones for alternative indexes and show that the RLFM and SSA are competitive
in practice and achieve space-time tradeoffs that are not reached by others.
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2 Basic Concepts

Let us first recall some definitions. A string S = s1s2 . . . sn is a sequence of characters (also called
symbols or letters) from an alphabet Σ. The size of the alphabet is σ, and for clarity of exposition,
we sometimes assume that Σ = {1, . . . , σ}. The length of S is |S| = n, and its individual characters
are S[i] = si. A substring of S is denoted by S[i, j] = sisi+1 . . . sj. An empty string is denoted ǫ. If
i > j, then S[i, j] = ǫ. A suffix of S is any substring S[i, n]. A prefix of S is any substring S[1, i]. A
cyclic shift of S is any string sisi+1 . . . sns1s2 . . . si−1. The lexicographic order of two strings is the
natural order induced by the alphabet order: If two strings have the same first k letters, then their
order depends on the order of their (k + 1)th letter. We denote by T = t1t2 . . . tn our text string.
We assume that a special endmarker tn = $ has been appended to T , such that the endmarker is
smaller than any other text character. We denote by P = p1p2 . . . pn our pattern string, and seek
to find the occurrences of P in T , that is, the positions in T where P appears as a substring of T .

We now survey some existing results used in our paper.

2.1 Empirical kth Order Entropy

We recall some basic facts and definitions related to the empirical entropy of texts [Man01]. Let
nc denote the number of occurrences in T of symbol c ∈ Σ. The zero-order empirical entropy of
string T is

H0(T ) = −
∑

c∈Σ

nc

n
log

nc

n
,

where 0 log 0 = 0. If we use a fixed codeword for each symbol in the alphabet, then nH0(T ) bits is
the smallest encoding we can achieve for T .

If the codeword is not fixed, but it depends on the k symbols that follow the character in T ,
then the smallest encoding one can achieve for T is nHk(T ) bits, where Hk(T ) is the kth order
empirical entropy of T . This is defined as

Hk(T ) =
1

n

∑

W∈Σk

|WT |H0(WT ), (1)

where WT is the concatenation of all symbols tj (in arbitrary order) such that tjW is a substring
of T . String W is the k-context of each such tj.

4 Note that the order in which the symbols tj are
permuted in WT does not affect H0(WT ).

We use H0 and Hk as shorthands for H0(T ) and Hk(T ) in this paper. We note that empir-
ical entropies can be o(n) for compressible texts. As an extreme example, consider the family
{(ab)n, n ≥ 0}, where H0 = 1 and H1 = O(log n/n). This is in contrast with the classical notion
of entropy, which is applied to infinite streams and is always constant [BCW90]. By expressing the
space requirement of indexes in terms of empirical entropies, we relate their size with compressibility
bounds of each particular text.

4Note that our contexts are the characters following each text position tj . This has been chosen for technical
convenience. Alternatively one can choose Wtj , that is, the characters preceding tj . Should this be problematic for
the generality of our results, we can index the reversed text and search it for the reversed patterns to obtain the other
definition.
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2.2 The Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT) [BW94] of a text T produces a permutation of T , denoted
by T bwt. Recall that T is assumed to be terminated by the endmarker “$”. String T bwt is the result
of the following transformation: (1) Form a conceptual matrix M whose rows are the cyclic shifts
of the string T , call F its first column and L its last column; (2) sort the rows ofM in lexicographic
order; (3) the transformed text is T bwt = L.

The BWT is reversible, that is, given T bwt we can obtain T . Note the following properties
[BW94]:

a. Given the ith row ofM, its last character L[i] precedes its first character F [i] in the original
text T , that is, T = . . . L[i]F [i] . . ..

b. Let L[i] = c and let ri be the number of occurrences of c in L[1, i]. Take the rowM[j] as the
rith row ofM starting with c. Then the character corresponding to L[i] in the first column F
is located at F [j] (this is called the LF mapping : LF (i) = j). This is because the occurrences
of character c are sorted both in F and L using the same criterion: by the text following the
occurrences.

The BWT can then be reversed as follows:

1. Compute the array C[1, σ] storing in C[c] the number of occurrences of characters {$, 1, . . . , c−
1} in the text T . Notice that C[c] + 1 is the position of the first occurrence of c in F (if any).

2. Define the LF mapping as follows: LF (i) = C[L[i]] + Occ(L,L[i], i), where Occ(L, c, i) is the
number of occurrences of character c in the prefix L[1, i].

3. Reconstruct T backwards as follows: set s = 1 (since M[1] = $t1t2 . . . tn−1) and, for each
n− 1, . . . , 1 do T [i]← L[s] and s← LF [s]. Finally put the endmarker T [n] = $.

The BWT transform by itself does not compress T , it just permutes its characters. However,
this permutation is more compressible than the original T . Actually, it is not hard to compress
T bwt to O(nHk + σk) bits, for any k ≥ 0 [Man01].

2.3 Suffix Arrays

The suffix array A[1, n] of text T is an array of pointers to all the suffixes of T in lexicographic order.
Since T is terminated by the endmarker “$”, all lexicographic comparisons are well defined. The ith
entry of A points to text suffix T [A[i], n] = tA[i]tA[i]+1 . . . tn, and it holds T [A[i], n] < T [A[i + 1], n]
in lexicographic order.

Given the suffix array, the occurrences of the pattern P = p1p2 . . . pm can be counted in
O(m log n) time. The occurrences form an interval A[sp, ep] such that suffixes tA[i]tA[i]+1 . . . tn,
for all sp ≤ i ≤ ep, contain the pattern P as a prefix. This interval can be searched for using two
binary searches in time O(m log n). Once the interval is obtained, a locating query is solved simply
by listing all its pointers in O(occ) time.

We note that the suffix array A is essentially the matrixM of the BWT (Section 2.2), as sorting
the cyclic shifts of T is the same as sorting its suffixes given the endmarker “$”: A[i] = j if and
only if the ith row of M contains the string tjtj+1 . . . tn−1$t1 . . . tj−1.
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A feature of suffix arrays that is essential for their compression is that they (may) contain
self-repetitions. A self-repetition in A is an interval A[j . . . j + ℓ] that appears elsewhere, say in
A[i . . . i + ℓ], so that all values are displaced by 1. This is, for any 0 ≤ r ≤ ℓ, it holds A[j + r] =
A[i + r] + 1. Self-repetitions were one of the first tools used to compact suffix arrays [Mäk03].

2.4 The FM-Index

The FM-index [FM00, FM01] is a self-index based on the Burrows-Wheeler transform. It solves
counting queries by finding the interval of A that contains the occurrences of pattern P . The
FM-index uses the array C and function Occ(L, c, i) defined in Section 2.2. Figure 1 shows the
counting algorithm. Using the properties of the BWT, it is easy to see that the algorithm maintains
the following invariant [FM00]: At the ith phase, variables sp and ep point, respectively, to the
first and last row of M prefixed by P [i,m]. The correctness of the algorithm follows from this
observation. Note that P is processed backwards, from pm to p1.

Algorithm FMcount(P [1, m],T bwt[1, n])
(1) i← m;
(2) sp← 1; ep← n;
(3) while (sp ≤ ep) and (i ≥ 1) do

(4) c← P [i];
(5) sp← C[c] + Occ(T bwt, c, sp− 1)+1;

(6) ep← C[c] + Occ(T bwt, c, ep);
(7) i← i− 1;
(8) if (ep < sp) then return “not found” else return “found (ep− sp + 1) occurrences”.

Figure 1: FM-index algorithm for counting the number of occurrences of P [1,m] in T [1, n].

Note that while array C can be explicitly stored in little space, implementing Occ(T bwt, c, i)
is problematic. The first solution [FM00] implemented Occ(T bwt, c, i) by storing a compressed
representation of T bwt plus some additional tables. With this representation, Occ(T bwt, c, i) could
be computed in constant time and therefore the counting algorithm required O(m) time.

The representation of T bwt required O(nHk) bits of space, while the additional tables required
space exponential in σ. Assuming that σ is constant, the space requirement of the FM-index is
5nHk + o(n). In a practical implementation [FM01] this exponential dependence on σ was avoided,
but the constant time guarantee for answering Occ(T bwt, c, i) was no longer valid.

Let us now consider how to locate the positions in A[sp, ep]. The idea is that T is sampled at
regular intervals, so that we explicitly store the positions in A pointing to the sampled positions in
T (note that the sampling is not regular in A). Hence, using the LF mapping, we move backward
in T until finding a position that is known in A. Then it is easy to infer our original text position.
Figure 2 shows the pseudocode.

We note that, in addition to C and Occ, we need access to characters T bwt[i′] as well. In the
original paper [FM00] this is computed in O(σ) time by linearly looking for the character c such
that Occ(T bwt, c, i′) 6= Occ(T bwt, c, i′ − 1). Finally, if we sample one out of log1+ε n positions in
T , for any constant ε > 0, and use log n bits to represent each corresponding known A value, we
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Algorithm FMlocate(i,T bwt [1, n])
(1) i′ ← i, t← 0;
(2) while A[i′] is not known do

(3) i′ ← LF (i′) = C[T bwt[i′]] + Occ(T bwt, T bwt[i′], i′);
(4) t← t + 1;
(5) return “text position is A[i′] + t”.

Figure 2: FM-index algorithm for locating the occurrence A[i] in T .

require O(n/ logε n) = o(n) additional bits of space and can locate the occ occurrences of P in
O(occ σ log1+ε n) time.5

Finally, let us consider displaying text contexts. To retrieve T [l1, l2], we first find the position
in A that points to l2, and then issue ℓ = l2 − l1 + 1 backward steps in T , using the LF mapping.
Starting at the lowest marked text position that follows l2, we perform O(log1+ε n) steps until
reaching l2. Then we perform ℓ additional LF steps to collect the text characters. The resulting
complexity is O(σ (ℓ + log1+ε n)).

2.5 The Compressed Suffix Array (CSA)

The compressed suffix array (CSA) [Sad00] is a self-index based on an earlier succinct data structure
[GV00]. In the CSA, the suffix array A[1, n] is represented by a sequence of numbers Ψ(i), such
that A[Ψ(i)] = A[i] + 1.6 The sequence Ψ is differentially encoded, Ψ(i + 1)−Ψ(i).

Note that if there is a self-repetition A[j . . . j + ℓ] = A[i . . . i + ℓ] + 1 (recall Section 2.3), then
Ψ(i . . . i + ℓ) = j . . . j + ℓ, and thus Ψ(i + 1)−Ψ(i) = 1 in all that area. This property was used to
represent Ψ using run-length compression in space proportional to nHk [MN04b, MN04a, MNS04],
using ideas from this paper.

Yet, the original CSA achieved space proportional to nH0 by different means. Note that the Ψ
values are increasing in the areas of A where the suffixes start with the same character c, because
cX < cY if and only if X < Y in lexicographic order. It is enough to store those increasing
values differentially with a method like Elias coding to achieve O(nH0) overall space [Sad00]. Some
additional information is stored to permit constant time access to Ψ. This includes the same C
array used by the FM-index. Considering all the structures, the CSA takes n(H0 + O(log log σ))
bits of space.

A binary search on A is simulated by extracting strings of the form tA[i]tA[i]+1tA[i]+2 . . . from
the CSA, for any index i required by the binary search. The first character tA[i] is easy to obtain
because all the first characters of suffixes appear in order when pointed from A, so tA[i] is the
character c such that C[c] < i ≤ C[c + 1]. This is found in constant time by using small additional
structures. Once the first character is obtained, we move to i′ ← Ψ(i) and go on with tA[i′] = tA[i]+1.

5Actually, if one insists in that σ = O(1), and thus the locate time is O(occ log1+ε n), then it is possible to achieve
O(occ logε n) time by enlarging the alphabet. This is not a choice if σ = ω(1).

6Since A[1] = n because T [n, n] = $ is the smallest suffix, it should hold A[Ψ(1)] = n+1. For technical convenience
we set Ψ(1) so that A[Ψ(1)] = 1, which makes Ψ a permutation of [1, n].
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We continue until the result of the lexicographical comparison against the pattern P is clear. The
overall search complexity is the same as with the original suffix array, O(m log n).

The method to locate occurrences could have been the same as for the FM-index (Section 2.4),
using Ψ to move forward in the text instead of using the LF mapping to move backward. Note
that the times are not multiplied by σ, so they can locate the occ occurrences in O(occ log1+ε n)
time and display a text substring of length ℓ in O(ℓ + log1+ε n) time, for any constant ε > 0. The
reason behind the independence of σ is that the CSA encodes Ψ explicitly (albeit compressed),
whereas the FM-index does not encode the LF mapping but it needs to compute it using T bwt[i],
so it needs to know the current character in order to move.

Yet, the CSA does it even faster (in O(logε n) steps) with a more complicated structure: the
inverse of A. This inverse permits moving by more than one text position at a time, and is
implemented in succinct space using ideas in previous work [GV00]. The price is that the main
term of the space complexity is actually nH0(1 + 1/ε).

A more recent variant of the CSA [Sad02] achieves O(m) counting time if σ = O(polylog(n)), by
means of simulating an FM-index-like backward search (Section 2.4). This is interesting because it
shows a deep connection between the FM-index and the CSA structures. Even more important for
this paper is that they solve the problem of computing Occ(T bwt, c, i) of the FM-index in constant
time using |T |H0(T )+O(|T |) bits of space, provided the alphabet size of T is σ = O(polylog(|T |)).
This is done by storing σ bit arrays Bc such that Bc[i] = 1 if and only if T bwt[i] = c, and thus
Occ(T bwt, c, i) = rank1(Bc, i) (Section 2.6). They manage to use a succinct representation for the
Bc arrays [RRR02] so as to get the desired space bounds.

2.6 Succinct Data Structures for Binary Sequences

Binary sequences are among the most basic data structures, and they are intensively used by
succinct full-text indexes. Hence their succinct representation is of interest for these applications.
In particular, rank and select queries over the compressed sequence representations are the most
interesting ones.

Given a binary sequence B = b1b2 . . . bn, we denote by rankb(B, i) the number of times bit b
appears in the prefix B[1, i], and by selectb(B, i) the position in B of the ith occurrence of bit b.
By default we assume rank(B, i) = rank1(B, i) and select(B, i) = select1(B, i).

There are several already classical results [Jac89, Mun96, Cla96] that show how B can be
represented using n + o(n) bits so as to answer rank and select queries in constant time. The best
current results [Pag99, RRR02] are able to answer those queries in constant time, yet using only
nH0(B)+o(n) bits of space. More precisely, the former [Pag99] uses nH0(B)+O(n log log n/ log n)
bits, and it answers in constant time all rank and select queries, also retrieving any bit bi. The
latter [RRR02], on the other hand, has a more limited functionality answering rank0(B, i) and
rank1(B, i) only if bi = 1, only select1(B, i) but not select0(B, i), and retrieving any bit bi. In
exchange, it needs less space: nH0(B) + o(ℓ) + O(log log n) bits, where ℓ is the number of bits set
in B.

We remark that these space bounds include that for representing B itself, so the binary sequence
is being compressed, yet it allows those queries to be answered in optimal time.

8



2.7 Wavelet Trees

Sequences S = s1s2 . . . sn on general alphabets of size σ can also be represented using nH0(S) +
o(n log σ) bits by using a wavelet tree [GGV03]. Queries rank and select can be defined equivalently
on general sequences. The wavelet tree takes O(log σ) time to answer those queries, as well as to
retrieve character si.

The wavelet tree is a perfectly balanced binary tree where each node corresponds to a subset
of the alphabet. The children of each node partition the node subset into two. A bitmap at the
node indicates to which children does each sequence position belong. Each child then handles the
subsequence of the parent’s sequence corresponding to its alphabet subset. The leaves of the tree
handle a single letter of the alphabet and require no space.

More formally, the root partition puts characters in [1, ⌊σ/2⌋] on the left child, and characters
in [⌊σ/2⌋+1, σ] on the right child. A bitmap Broot[1, n] is stored at the root node, so that B[i] = 0
if and only if 1 ≤ S[i] ≤ ⌊σ/2⌋ (that is, if the ith character of S belongs to the left child) and 0
otherwise. The two children are processed recursively. However, each of them considers the text
positions whose character belongs to their subset. That is, the bitmap of the left child of the root
will have only n1 + . . . + n⌊σ/2⌋ bits and that of the right child only n⌊σ/2⌋+1 + . . . + nσ, where nc

is the number of occurrences of c in S.
To answer query rankc(S, i), we first determine to which branch of the root does c belong. If

it belongs to the left, then we recursively continue at the left subtree with i ← rank0(Broot, i).
Otherwise we recursively continue at the right subtree with i← rank1(Broot, i). The value reached
by i when we arrive at the leaf that corresponds to c is rankc(S, i). To answer selectc(S, i) the
process is bottom-up, starting at the leaf that corresponds to c and updating i← select0(Bnode, i)
and i← select1(Bnode, i) depending on whether the current node is a left or right child. Finally, to
find out si we go left or right in the tree depending on whether Broot[i] = 0 or 1, and we end up at
the leaf that corresponds to si. All those queries take O(log σ) time.

If every bitmap in the wavelet tree is represented using a data structure that takes space
proportional to its zero-order entropy (Section 2.6), then it can be shown that the whole wavelet
tree requires nH0(S) + o(n log σ) bits of space [GGV03].

When σ = O(polylog(n)), a generalization of wavelet trees takes nH0(S)+o(n) bits and answers
all those queries in constant time [FMMN04b].

3 Relating the kth Order Entropy with Self-Repetitions

In this section we prove a relation between the kth order entropy of a text T and both the number
of self-repetitions in its suffix array (Section 2.3) and the number of runs of equal letters in the
Burrows-Wheeler transformed text T bwt (Section 2.2). In this proof we use some techniques already
presented in a much more complete analysis [Man01]. Our analysis can be regarded as a simplified
version that turns out to be enough for our purposes.

The concept of self-repetition has been used [Mäk03] to compact suffix arrays, essentially by
replacing the areas A[i . . . i+ℓ] that appear elsewhere as A[j . . . j+ℓ] = A[i . . . i+ℓ]+1, by pointers
of the form (j, ℓ). Let us define the minimum number of self-repetitions necessary to cover a suffix
array.
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Definition 1 Given a suffix array A, nsr is the minimum number of self-repetitions necessary to
cover the whole A. This is the minimum number of nonoverlapping intervals [is, is + ℓs] that cover
the interval [1, n] such that, for any s, there exists [js, js + ℓs] such that A[js + r] = A[is + r] + 1
for all 0 ≤ r ≤ ℓs. (Note that Ψ(is + r) = js + r for 0 ≤ r ≤ ℓs.)

We show now that, in a cover of minimum size of self-repetitions, these have to be maximal,
and that if self-repetitions are maximal, then the cover is of minimum size.

Lemma 1 Let [is, is + ℓs] be a cover of [1, n] using nonoverlapping self-repetitions. Assume them
to be sorted, thus is+1 = is + ℓs + 1. If some self-repetition [is, is + ℓs] is not maximal, then the
cover is not of minimum size.

Proof. Let js be such that A[js] = A[is] + 1. Assume that the interval [is, is + ℓs] can be extended
to the right, that is, A[js + ℓs + 1] = A[is + ℓs + 1] + 1. Then, since js is unique for each is
(actually js = Ψ(is)), and since is + ℓs + 1 = is+1, we have js+1 = Ψ(is+1) = js + ℓs + 1. Moreover,
A[js + ℓs + 1 + r] = A[js+1 + r] = A[is+1 + r] + 1 = A[is + ℓs + 1 + r] + 1 for 0 ≤ r < ℓs+1.
Thus, intervals [is, is + ℓs] and [is+1, is+1 + ℓs+1] can be merged into one. The argument is similar
if [is, is + ℓs] can be extended to the left. 2

Lemma 2 Let [is, is + ℓs] be a cover of [1, n] using nonoverlapping maximal self-repetitions. Then
the cover is of minimum size.

Proof. We simply note that there is only one possible cover where self-repetitions are maximal.
Consider again that the intervals are sorted. Thus i1 = 1 and ℓ1 is maximal. Thus i2 is fixed at
i2 = i1 + ℓ1 + 1 and ℓ2 is maximal, and so on. 2

The size of the compact suffix array [Mäk03] is actually O(nsr log n). No useful bound on nsr

was obtained before. Our results in this section will permit bounding the size of the compact suffix
array in terms of the kth order entropy of T .

Let us first define more conveniently the number of self-repetitions nsr in a suffix array A. As
explained in Section 2.5, a self-repetition A[j . . . j+ℓ] = A[i . . . i+ℓ]+1 translates into the condition
Ψ(i . . . i + ℓ) = j . . . j + ℓ. The following definition is convenient.

Definition 2 A run in Ψ is any maximal interval [i, i+ℓ] in sequence Ψ such that Ψ(r+1)−Ψ(r) = 1
for all i ≤ r < i + ℓ. Note that the number of runs in Ψ is n minus the number of positions r such
that Ψ(r + 1)−Ψ(r) = 1.

The following lemma gives us an alternative definition of self-repetitions, which will be more
convenient for us and is interesting in its own right to analyze the CSA.

Lemma 3 The number of self-repetitions nsr to cover A is equal to the number of runs in Ψ.

Proof. As explained in Section 2.5, there exists a self-repetition A[j . . . j + ℓ] = A[i . . . i + ℓ] + 1 if
and only if Ψ(i . . . i + ℓ) = j . . . j + ℓ, that is, if Ψ(r + 1)−Ψ(r) = 1 for all i ≤ r < i + ℓ. Therefore,
each maximal self-repetition is also a (maximal) run in Ψ and vice versa. 2
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Let us now consider the number of equal-letter runs in T bwt = L. The following definition and
theorem permit us bounding nsr in terms of those runs.

Definition 3 Given a Burrows-Wheeler transformed text T bwt[1, n], nbw is the number of equal-
letter runs in T bwt, that is, n minus the number of positions j such that T bwt[j + 1] = T bwt[j].

Theorem 1 The following relation between nsr and nbw holds: nsr ≤ nbw ≤ nsr + σ, where σ is
the alphabet size of T .

Proof. Let L = T bwt be the last column in matrix M of the BWT. If L[j] = L[j + 1] = c, then
T [A[j] − 1] = cX, T [A[j + 1] − 1] = cY , T [A[j]] = X, and T [A[j + 1]] = Y . Let i be such that
j = Ψ(i) and i′ such that j + 1 = Ψ(i′), then A[j] = A[i] + 1 and A[j + 1] = A[i′] + 1. Hence
T [A[i]] = cX and T [A[i′]] = cY . Since X < Y , it follows that cX < cY and therefore i < i′.
Moreover, there cannot be any suffix cZ such that cX < cZ < cY because in this case X < Z < Y ,
and thus the pointer to suffix Z should be between j and j + 1. Since there is no such suffix, it
follows that i′ = i+ 1, that is, Ψ(i′)−Ψ(i) = Ψ(i + 1)−Ψ(i) = (j + 1)− j = 1, and therefore i and
i + 1 belong to the same maximal self-repetition.

Recall that nbw is n minus the number of cases where L[j] = L[j + 1], and similarly nsr is n
minus the number of cases where Ψ(i + 1) − Ψ(i) = 1. Since there is a bijection Ψ between i and
j, and thus every j such that L[j] = L[j + 1] induces a different i such that Ψ(i + 1)−Ψ(i) = 1, it
follows immediately that nsr ≤ nbw. Actually, the inverse of the above argument is also true except
for the possibility of a self-repetition spanning an area where the first character of the suffixes
changes. As this happens at most σ times, we have nsr ≤ nbw ≤ nsr + σ. 2

We have established the relation between the runs in Ψ, the self-repetitions in A, and the runs
in T bwt. We now prove that the number of equal-letter runs in T bwt is nbw ≤ nHk + σk, for any
k ≥ 0.

Definition 4 Let rle(S) be the run-length encoding of string S, that is, sequence of pairs (si, ℓi)
such that si 6= si+1 and S = sℓ1

1 sℓ2
2 . . ., where sℓi

i denotes character si repeated ℓi times. The length
|rle(S)| of rle(S) is the number of pairs in it.

Hence, we want to bound nbw = |rle(T bwt)|. An important observation for our development
follows:

Observation 1 For any partition of S into consecutive substrings S = S1S2 . . . Sp, it holds |rle(S)| ≤
|rle(S1)| + |rle(S2)| + . . . + |rle(Sp)|, as the runs are the same except in the frontiers between Si

and Si+1, where a run in S can be split into two.

Recall string WT as defined in Section 2.1 for a k-context W of string T . Note that we can
apply any permutation to WT so that Eq. (1) still holds. Now, characters in T bwt = L are sorted
by the text suffix that follows them (that is, by their row in M), and thus they are ordered by
their k-context, for any k. This means that all the characters in WT , for any W ∈ Σk, appear
consecutively in T bwt. Thus, T bwt is precisely the concatenation of all the strings WT for W ∈ Σk,
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if we take the order of characters inside each WT according to how they appear in T bwt [Man01].
As a consequence, we have that

nbw = |rle(T bwt)| ≤
∑

W∈Σk

|rle(WT )|, (2)

where the permutation of each WT is now fixed by T bwt. In fact, Eq. (2) holds also if we fix the
permutation of each WT so that |rle(WT )| is maximized. This observation gives us a tool to upper
bound |rle(T bwt)| by the sum of code lengths when zero-order entropy encoding is applied to each
WT separately. We next show that |rle(WT )| ≤ 1 + |WT |H0(WT ).

Let us call σS the alphabet size of S. First notice that if σWT
= 1 then |rle(WT )| = 1 and

|WT |H0(WT ) = 0, so our claim holds. Let us then assume that σWT
= 2. Let x and y (x ≤ y)

be the number of occurrences of the two letters, say a and b, in WT , respectively. It is easy to see
analytically that

H0(WT ) = − (x/(x + y)) log(x/(x + y))− (y/(x + y)) log(y/(x + y)) ≥ 2x/(x + y). (3)

The permutation of WT that maximizes |rle(WT )| is such that there is no run of symbol a longer
than 1. This makes the number of runs in rle(WT ) to be 2x + 1. By using Eq. (3) and since
|WT | = x + y we have that

|rle(WT )| ≤ 2x + 1 = 1 + 2|WT |x/(x + y) ≤ 1 + |WT |H0(WT ). (4)

We are left with the case σWT
> 2. This case splits into two sub-cases: (i) the most frequent

symbol occurs at least |WT |/2 times in WT ; (ii) all symbols occur less than |WT |/2 times in WT .
Case (i) becomes analogous to case σWT

= 2 once x is redefined as the sum of occurrences of
symbols other than the most frequent. In case (ii) |rle(WT )| can be |WT |. On the other hand,
|WT |H0(WT ) must also be at least |WT |, since it holds that − log(x/|WT |) ≥ 1 for x ≤ |WT |/2,
where x is the number of occurrences of any symbol in WT . Therefore we can conclude that Eq. (4)
holds for any WT .

Combining Eqs. (1), (2) and (4) we get the following result:

Theorem 2 The length nbw of the run-length encoded Burrows-Wheeler transformed text T bwt[1, n]
is at most nHk(T ) + σk, for any k ≥ 0. In particular, this is nHk(T ) + o(n) for any k ≤ α logσ n,
for any constant 0 < α < 1.

This theorem has two immediate applications to existing compressed indexes, all valid for any
k ≤ α logσ n, for any constant 0 < α < 1. Note that of course nbr ≤ n, so Hk actually stands for
min(1,Hk).

1. The size of the compact suffix array [Mäk03] is O(nHk log n) bits. This is because the compact
suffix array stores a constant number of pointers for each maximal self-repetition of the text,
and there are nsr ≤ nbw self-repetitions. No previous useful analysis existed for this structure.

2. A run-length compression of array Ψ permits storing the compressed suffix array (CSA)
[Sad00] in nHk(log σ + log log n) + O(n) bits. It is still possible to search that CSA in
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O(m log n) time. This was already shown [MNS04] using the ideas from this paper [MN04a].
Yet, an extra constant 2 appeared in that case [MNS04] due to our unnecessarily pessimistic
previous analysis [MN04a].

3. A combination of the compact suffix array and the CSA, called CCSA for “compressed com-
pact suffix array” [MN04a] is a self index using O(nHk log n) bits. Actually, this analysis was
first presented in that paper to analyze the CCSA.

In the next section we use the result to design a new compressed index.

4 RLFM: A Run-Length-based FM-Index

In Section 3, we have shown that the number of runs in the BWT transformed text is nHk + o(n)
for k ≤ α logσ n, 0 < α < 1. We aim in this section at indexing only the runs of T bwt, so as to
obtain an index, called run-length FM-index (RLFM), whose space is proportional to nHk.

We exploit run-length compression to represent T bwt as follows. An array S contains one
character per run in T bwt, while an array B contains n bits and marks the beginnings of the runs.

Definition 5 Let string T bwt = cℓ1
1 cℓ2

2 . . . c
ℓnbw
nbw

consist of nbw runs, so that the ith run consists of
ℓi repetitions of character ci. Our representation of T bwt consists of the string S = c1c2 . . . cnbw

of
length nbw, and of the bit array B = 10ℓ1−110ℓ2−1 . . . 10ℓnbw

−1.

It is clear that S and B contain enough information to reconstruct T bwt: T bwt[i] = S[rank(B, i)].
Since there is no useful entropy bound on B, we assume that rank is implemented in constant time
using some succinct structure that requires n + o(n) bits [Jac89, Cla96, Mun96]. Hence, S and B
give us a representation of T bwt that permit us accessing any character in constant time.

The problem, however, is not only how to access T bwt, but also how to compute C[c] +
Occ(T bwt, c, i) for any c and i (recall Figure 1). This is not immediate, because we want to add up
all the run lengths corresponding to character c up to position i.

In the following we show that the above can be computed by means of a bit array B′, obtained
by reordering the runs of B in lexicographic order of the characters of each run. Runs of the same
character are left in their original order. The use of B′ will add other n + o(n) bits to our scheme.
We also use CS , which plays the same role of C, but it refers to string S.

Definition 6 Let S = c1c2 . . . cnbw
of length nbw, and B = 10ℓ1−110ℓ2−1 . . . 10ℓnbw

−1. Let d1d2 . . . dnbw

be the permutation of [1, nbw] such that, for all 1 ≤ i < nbw, either cdi
< cdi+1

, or cdi
= cdi+1

and di < di+1. Then, bit array B′ is defined as B′ = 10ℓd1
−110ℓd2

−1 . . . 10
ℓdnbw

−1
. Let also

CS [c] = |{i, ci < c, 1 ≤ i ≤ nbw}|.

We now prove our main results. We start with two general lemmas.

Lemma 4 Let S and B′ be defined for a string T bwt. Then, for any c ∈ Σ it holds

C[c] + 1 = select(B′, CS [c] + 1).
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Proof. CS [c] is the number of runs in T bwt that represent characters smaller than c. Since in B′

the runs of T bwt are sorted in lexicographic order, select(B′, CS [c] + 1) indicates the position in B′

of the first run belonging to character c, if any. Therefore, select(B′, CS [c] + 1) − 1 is the sum of
the run lengths for all characters smaller than c. This is, in turn, the number of occurrences of
characters smaller than c in T bwt, C[c]. Hence select(B′, CS [c] + 1)− 1 = C[c]. 2

Lemma 5 Let S, B, and B′ be defined for a string T bwt. Then, for any c ∈ Σ and 1 ≤ i ≤ n, such
that i is the final position of a run in B, it holds

C[c] + Occ(T bwt, c, i) = select(B′, CS [c] + 1 + Occ(S, c, rank(B, i))) − 1.

Proof. Note that rank(B, i) gives the position in S of the run that finishes at i. Therefore,
Occ(S, c, rank(B, i)) is the number of runs in T bwt[1, i] that represent repetitions of character c.
Hence it is clear that CS [c] < CS [c] + 1 + Occ(S, c, rank(B, i)) ≤ CS[c + 1] + 1, from which
follows that select(B′, CS [c] + 1 + Occ(S, c, rank(B, i))) points to an area in B′ belonging to char-
acter c, or to the character just following that area. Inside this area, the runs are ordered as in
B because the reordering in B′ is stable. Hence select(B′, CS [c] + 1 + Occ(S, c, rank(B, i))) is
select(B′, CS [c] + 1) plus the sum of the run lengths representing character c in T bwt[1, i]. That
sum of run lengths is Occ(T bwt, c, i). The argument holds also if T bwt[i] = c, because i is the
last position of its run and therefore counting the whole run T bwt[i] belongs to is correct. Hence
select(B′, CS [c] + 1 + Occ(S, c, rank(B, i))) = select(B′, CS [c] + 1) + Occ(T bwt, c, i), and then, by
Lemma 4, select(B′, CS [c] + 1 + Occ(S, c, rank(B, i))) − 1 = C[c] + Occ(T bwt, c, i). 2

We now prove our two fundamental lemmas that cover different cases in the computation of
C[c] + Occ(T bwt, c, i).

Lemma 6 Let S, B, and B′ be defined for a string T bwt. Then, for any c ∈ Σ and 1 ≤ i ≤ n, such
that T bwt[i] 6= c, it holds

C[c] + Occ(T bwt, c, i) = select(B′, CS [c] + 1 + Occ(S, c, rank(B, i))) − 1.

Proof. Let i′ be the last position of the run that precedes that of i. Since T bwt[i] 6= c in
the run i belongs to, we have Occ(T bwt, c, i) = Occ(T bwt, c, i′) and also Occ(S, c, rank(B, i)) =
Occ(S, c, rank(B, i′)). Then the lemma follows trivially by applying Lemma 5 to i′. 2

Lemma 7 Let S, B, and B′ be defined for a string T bwt. Then, for any c ∈ Σ and 1 ≤ i ≤ n, such
that T bwt[i] = c, it holds

C[c] + Occ(T bwt, c, i) = select(B′, CS [c] + Occ(S, c, rank(B, i)))

+ i − select(B, rank(B, i)).

Proof. Let i′ be the last position of the run that precedes that of i. Then, by Lemma 5 we have C[c]+
Occ(T bwt, c, i′) = select(B′, CS [c]+1+Occ(S, c, rank(B, i′)))−1. Now, rank(B, i′) = rank(B, i)−1,
and since T bwt[i] = c, it follows that S[rank(B, i)] = c. Therefore, Occ(S, c, rank(B, i′)) =
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Occ(S, c, rank(B, i) − 1) = Occ(S, c, rank(B, i)) − 1. On the other hand, since T bwt[i′′] = c for
i′ < i′′ ≤ i, we have Occ(T bwt, c, i) = Occ(T bwt, c, i′) + (i− i′). Thus, the outcome of Lemma 5 can
now be rewritten as C[c] + Occ(T bwt, c, i) − (i− i′) = select(B′, CS [c] + Occ(S, c, rank(B, i))) − 1.
The only remaining piece to prove the lemma is that i− i′ − 1 = i− select(B, rank(B, i)), that is,
select(B, rank(B, i)) = i′ + 1. But this is clear, since the left term is the position of the first run i
belongs to and i′ is the last position of the run preceding that of i. 2

Since functions rank and select can be computed in constant time, the only obstacle to complete
the RLFM using Lemmas 6 and 7 is the computation of Occ over string S. We use the idea explained
at the end of Section 2.5 [Sad02]. Instead of representing S explicitly, we store one bitmap Sc per
text character c, so that Sc[i] = 1 if and only if S[i] = c. Hence Occ(S, c, i) = rank(Sc, i). It is still
possible to determine in constant time whether T bwt[i] = c or not (so as to know whether to apply
Lemma 6 or 7): T bwt[i] = c if and only if Sc[rank(B, i)] = 1. Thus the RLFM can answer counting
queries in O(m) time.

From the space analysis of the original article [Sad02], we have that the bit arrays Sc can be
represented in |S|H0(S) + O(|S|) bits. The length of sequence S is |S| = nbw ≤ nHk + σk, which
is nHk + o(n) for k ≤ α logσ n, for any constant 0 < α < 1. So the space for the Sc arrays
is (nHk + o(n))(H0(S) + O(1)). Since run-length compression removes some redundancy, it is
expected that H0(S) ≥ H0(T ) (although this might not be the case). Yet, the only simple bound
we know of is H0(S) ≤ log σ. Thus the space can be upper bounded by (nHk + o(n))(log σ +O(1)).
Note that the o(n) term comes from Theorem 2, and it is in fact O(nα) for some α < 1, so it is
still o(n) after multiplying it by log σ = O(log n). Thus, the space requirement can be written as
nHk(log σ + O(1)) + o(n).

In addition to arrays Sc, the representation of our index needs the bit arrays B and B′, plus the
sublinear structures to perform rank and/or select over them, and finally the small array CS . These
add 2n + o(n) bits, for a grand total of n(Hk(log σ + O(1)) + 2) + o(n) bits. As Hk actually stands
for min(1,Hk) (see the end of Section 3), we can simplify the space complexity to nHk log σ +O(n)
bits.

We recall that the solution we build on [Sad02] works only for σ = O(polylog(|S|)). This is
equivalent to the condition σ = O(polylog(n)) if, for example, nbw ≥ nβ for some 0 < β < 1. In
the unlikely case that the text is so compressible that nbw = o(nβ) for any 0 < β < 1, we can still
introduce nβ artificial cuts in the runs so as to ensure that polylog(n) and polylog(nbw) are of the
same order.7 This increases the space by a small o(n) factor that does not affect the main term.
In exchange, the RLFM index works for any σ = O(polylog(n)).

We can use the same marking strategy of the FM-index to locate occurrences and display text.
Furthermore, to access T bwt[i] we can use the equivalence T bwt[i] = S[rank(B, i)], so the problem
of accessing T bwt[i] becomes the problem of accessing S[j]. Just as in the FM-index, we can use
the same Occ function to find out S[j] in O(σ) time, which yields the same FM-index complexities
in all cases.

Note, however, that in this case we can afford the explicit representation of S in addition to
the bit arrays Sc, at the cost of nHk log σ + o(n) more bits of space. This gives us constant time
access to T bwt and thus completely removes σ from all RLFM index time complexities.

7This can be done because we never used the fact that consecutive runs must correspond to different characters.
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Theorem 3 The RLFM index, of size n min(Hk, 1) log σ + O(n) = nHk log σ + O(n) bits for any
k ≤ α logσ n, for any constant 0 < α < 1, can be built on a text T [1, n] whose alphabet is of size
σ = O(polylog(n)), so that the number of occurrences of any pattern P [1,m] in T can be counted in
time O(m) and then each such occurrence can be located in time O(σ log1+ε n), for any constant
ε > 0 determined at index construction time. Also, any text substring of length ℓ can be displayed
in time O(σ (ℓ + log1+ε n)). By letting it use 2n min(Hk, 1) log σ + O(n) bits of space, the RLFM
index can count in O(m) time, locate occurrences in time O(log1+ε n), and display text substrings
of length ℓ in O(ℓ + log1+ε n) time.

Binary Alphabets. It is interesting to consider the case of a text T over a binary alphabet,
say Σ = {a, b}. In this case, since the runs alternate, we have S[2i] = a and S[2i + 1] = b
or vice versa depending on the first value S[1]. One has also to consider the only j for which
S[j] = $, as the even/odd rule may change after j. Thus, it should be clear that we do not need
to represent S at all, and that, moreover, it is easy to answer Occ(S, c, i) in constant time without
any storage: For example, if S[1] = a and S[j +1] = a, then Occ(S, a, i) = ⌊(i+1)/2⌋ for i < j and
Occ(S, a, i) = ⌊j/2⌋+⌊(i− j +1)/2⌋ for i ≥ j. Similar rules can be derived for the other three cases
of S[1] and S[j + 1]. Therefore, on a binary alphabet the RLFM index requires only arrays B and
B′, which take 2n + o(n) bits of space, and maintains the complexities of Theorem 3. This result
almost matches some recent developments [HMR05], albeit for this case the FM-index [FM00] still
obtains better results.

5 Practical Considerations

Up to now we have considered only theoretical issues. In this section we focus on practical consider-
ations on the implementation of the RLFM index. Several theoretical developments in this area re-
quire considerable work in order to turn them into practical results [FM01, Sad00, Nav04, GGV04].

The most problematic aspect of our proposal (and of several others) is the heavy use of a
technique to represent sparse bitmaps in a space proportional to its zero-order entropy [RRR02,
Sad02]. This technique, albeit theoretically remarkable, is not so simple to implement. Yet, previous
structures supporting rank in n + o(n) bits [Jac89, Mun96, Cla96] are considerably simpler.

The problem is that, if we used the simpler techniques for our sparse bitmaps Sc, we would need
nbw(1 + o(1)) bits for each of them, and would require nHkσ bits at least for the RLFM index, far
away from the theoretical nHk log σ. This can be improved by using a wavelet tree (Section 2.7)
built on the S string of the RLFM index (that is, the run heads), instead of the individual bitmaps
Sc. The wavelet tree is simple to implement, and if it uses structures of n + o(n) bits to represent
its binary sequences, it requires overall nbw log σ(1 + o(1)) = nHk log σ(1 + o(1)) bits of space to
represent S. This is essentially the same space used by the individual bit arrays (in a worst-case
sense, as the real space complexity of Section 4 is nHkH0(S)).

With the wavelet tree, both the O(1) time to compute Occ(S, c, i) = rankc(S, i) and the O(σ)
time to compute S[i], become O(log σ). Therefore, a RLFM index implementation based on wavelet
trees counts in O(m log σ) time, locates each occurrence in O(log σ log1+ε n) time, and displays
any text substring of length ℓ in O(log σ (ℓ + log1+ε n)), for any constant ε > 0.

The same idea can also be applied on the structure that uses sparse bit arrays without run-length
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compression [Sad02]. Let us call SSA (for “succinct suffix array”) this implementation variant of
the original structure [Sad02]. Since in the SSA the bit arrays Bc are built over the whole T (not
only over the heads of runs), the SSA index requires n log σ(1 + o(1)) space, which is at least as
large as the plain representation of T .

We propose now another simple wavelet tree variant that permits us representing the SSA using
n(H0 + 1)(1 + o(1)) bits of space, and obtains on average O(H0) rather than O(log σ) time for the
queries on the wavelet tree.

Imagine that instead of a balanced binary tree, we use the Huffman tree of T to define the
shape of the wavelet tree. Then, every character c ∈ Σ will have its corresponding leaf at depth hc,
so that

∑
c∈Σ hcnc ≤ H0 + 1 is the number of bits of the Huffman compression of T (recall from

Section 2.1 that nc is the number of times character c occurs in T ).
Let us now consider the size of the Huffman-shaped wavelet tree. Note that each text occurrence

of each character c ∈ Σ appears exactly in hc bit arrays (those found from the root to the leaf that
corresponds to c), and therefore it takes hc bits spread over the different bit arrays. Summed over
all the occurrences of all the characters we obtain the very same length of the Huffman-compressed
text,

∑
c∈Σ hcnc. Hence the overall space is n(H0 + 1)(1 + o(1)) bits.

Note that the time to retrieve T bwt[i] is proportional to the length of the Huffman code for
T bwt[i], which is O(H0) if i is chosen at random. In the case of Occ(T bwt, c, i) = rankc(T

bwt, i), the
time corresponds again to T bwt[i] and is independent of c. Under reasonable assumptions, one can
say that on average this version of the SSA counts in O(H0m) time, locates an occurrence in time
O(H0 log1+ε n), and displays a text substring of length ℓ in time O(H0(ℓ+log1+ε n)). It is possible
(but not good in practice) to force the Huffman tree to have O(log σ) height and still have average
depth limited by H0 + 2, so we can ensure the same worst case factor O(log σ) instead of O(H0)
[GMN04].

Finally, we note that the Huffman-shaped wavelet tree can be used instead of the balanced
version for the RLFM index. This lowers its space requirement again to nHkH0(S), just like the
theoretical version. It also reduces the average time to compute rankc(S, i) or S[i] to O(H0(S)),
which is no worse than O(log σ).

6 Experiments

In this section we compare our SSA, CCSA8 and RLFM implementations against other succinct
index implementations we are aware of, as well as other more classical solutions. All these are listed
below .

FM [FM00, FM01]: The original FM-index (Section 2.4) implementation by the authors. The
executables can be downloaded from http://www.mfn.unipmn.it/~manzini/fmindex.

FM-Nav [Nav02]: An implementation of the FM-index by G. Navarro, downloadable from
http://www.dcc.uchile.cl/~gnavarro/software. This implementation is faster than the
original but uses more space, as it represent the Burrows-Wheeler transformed text as such.

8The CCSA belongs to the development that finished with the RLFM index [MN04a]. We have excluded it from
this paper because it is superseded by the RLFM index. Yet, it is interesting to show its relative performance.
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CSA [Sad00]: The Compressed Suffix Array (Section 2.5) implementation by the author. The
code can be downloaded from http://www.dcc.uchile.cl/~gnavarro/software.

LZ [Nav04]: The Lempel-Ziv self-index implementation by the author. The code can be down-
loaded from http://www.dcc.uchile.cl/~gnavarro/software. The implementation has
been improved since the original publication.

CompactSA [Mäk03]: The Compact Suffix Array implementation by the author. This is not
a self-index but a succinct index based on suffix array self-repetitions, useful to show which
is the price of not having the text directly available. The code can be downloaded from
http://www.cs.helsinki.fi/u/vmakinen/software.

SA [MM93]: The classical suffix array structure, using exactly n⌈log n⌉ bits. We use it to test
how much the above succinct structures lose in query times to the simple O(m log n) binary
search algorithm.

BMH [Hor80]: Our implementation of the classical sequential search algorithm, requiring only
the plain text. This is interesting to ensure that there is some value in indexing versus
sequentially scanning the text. Yet, note that just the plain text requires more space than
several self-indexes.

The codes for the SSA, CCSA and RLFM index used in this experiments can be downloaded
from http://www.cs.helsinki.fi/ u/vmakinen/software. We made use of the practical con-
siderations of Section 5. In particular, we use Huffman-shaped wavelet trees in both cases. Another
complicated and time-critical part were the rank and select structures, as our indexes make heav-
ier use of them compared to other implementations. Although the existing theoretical solutions
[Jac89, Mun96, Cla96] are reasonably efficient in practice, we needed to engineer them further to
make them faster and less space consuming [GGMN04]. Those optimized variants were also used
to improve other existing structures that used them, namely LZ and CCSA.

Our experiments were run over an 87 MB text collection obtained from the “ZIFF-2” disk of
TREC-3 [Har95]. The tests ran on a Pentium IV processor at 2.6 GHz, 2 GB of RAM and 512 KB
cache, running Red Hat Linux 3.2.2-5. We compiled the code with gcc 3.2.2 using optimization
option -O3. Times were averaged over 10,000 search patterns. As we work only in main memory,
we only consider CPU times. The search patterns were obtained by pruning random text lines to
their first m characters, but we avoided lines containing tags and non-visible characters.

We prepared the following test setups to compare different indexes.

Count settings: We tuned the indexes so that they only support counting queries. This usually
means that they take the minimum possible space to operate.

Same sample rate: For reporting queries most of the compared indexes use the same text
tracking mechanism. It is thus interesting to see what happens when exactly the same number
of suffixes are sampled (one out of 28 in our experiment).

Same size: We tuned all indexes to use about the same size (1.6 times the text size) by adjusting
the space-time tradeoff for locating queries.
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Control against other solutions: It is interesting to see how our compressed indexes behave
against classical full-text indexes, plain sequential search, or non-self indexes.

Table 2 shows the index sizes under the different settings, as a fraction of the text size. Recall
that these are self-indexes that replace the text. For consistency we have added the text size (that
is, 1.00) to the options CompactSA, SA and BMH, as they need the text separately available.

Only the CSA has a space-time tradeoff on counting queries. For this reason we ran the counting
experiment on several versions of it. These versions are denoted by CSAX in the table, where X is
the tradeoff parameter (sample rate in Ψ array). For reporting queries (row labeled CSA), we used
the default value X = 128. Other cells are missing because we could not make FM take that much
space in the “same size” setting, or because alternative structures cannot take that little space, or
because some structures have no concept of sampling rate.

Table 2: Sizes of the indexes tested under different settings.

index count same sample rate same size

FM 0.36 0.41 —
FM-Nav 1.07 1.21 1.57

CSA 0.44 0.58 1.59
CSA10 1.16 — —
CSA16 0.86 — —
CSA32 0.61 — —
CSA256 0.39 — —

LZ 1.49 — 1.49

SSA 0.87 1.33 1.58
CCSA 1.65 — 1.65
RLFM 0.63 1.09 1.60

CompactSA 2.73 — —
SA 4.37 — —
BMH 1.00 — —

Figure 3 (left) shows the times to count pattern occurrences of length m = 5 to m = 60. To
avoid cluttering the plot we omit CSA10 and CSA16, whose performace is very similar to CSA32.
It can be seen that FM-Nav is the fastest alternative, but it is closely followed by our SSA, which
needs 20% less space (0.87 times the text size). The next group is formed by our RLFM and
the CSA, both needing around 0.6 times the text size. Actually RLFM is faster, and to reach
its performance we need CSA10, which takes 1.16 times the text size. For long patterns CCSA
becomes competitive in this group, yet it needs as much as 1.65 times the text size.

On the right of Figure 3 we chose m = 30 and plot the times as a function of the space. This
clearly shows which indexes represent an interesting space-time tradeoff for counting. SSA and
RLFM indexes are among the relevant ones. Note for example that the SSA is the fastest counting
index among those that take less space than the text. Also, the RLFM index counts faster than a
CSA of the same size.
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Figure 3: Query times for counting the number of occurrences. On the left, time versus m. On the
right, time versus space for m = 30.

Figure 4 shows the times to locate all the pattern occurrences. On the left we consider the same
sampling rate for all applicable indexes. That is, all indexes make about the same number of steps
to traverse the text until finding the occurrence position. It can be seen that FM-Nav is the best
choice, albeit closely followed by SSA.

On the right of Figure 4 we show the fairer comparison that gives about the same space to all
structures. The space was chosen to be around 1.6 times the text size because this is close to the
space requirement of LZ, an index that is relevant for this task and whose size cannot be tuned.
The other indexes were tuned by increasing their sampling rate.
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Figure 4: Times for locating the pattern occurrences. On the left, under the same sample rate
setting. On the right, all indexes using about the same space.

In this case LZ shows up as the fastest structure for locating, followed by FM-Nav, which takes
over as soon as there are less occurrences to locate and the high counting times of LZ render it
non-competitive. Our indexes perform reasonably well but are never the best for this task. Figure 5

20



shows the space-time tradeoffs for locating times, illustrating our conclusions. Note that RLFM
gives more interesting locating tradeoffs than SSA.
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Figure 5: Comparison of locating performance versus space requirement, for m = 5. We show the
time per occurrence, not per pattern as in the rest of the experiments.

Our final experiment is to compare how our new structures compare against some alternative
structures such as the original suffix array and the (succinct but not self-index) compact suffix
array. It is also interesting to see how much slower or faster is sequential search compared to our
indexes. The results are shown in Figure 6.
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Figure 6: Our self-index implementations against suffix array, compact suffix array and sequential
search. We show counting times on the left and locating times on the right (with self indexes taking
around 1.6 times the text size).

It can be seen that the self-indexes are considerably fast for counting, especially for short
patterns. For longer ones, their small space consumption is paid in a 10X slowdown for counting.
Yet, this is orders of magnitude faster than a sequential search, which still needs more space as
the text has to be in uncompressed form for reasonable performance. For locating, the slowdown
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is closer to 1000X and the times get closer to those of a sequential scan, albeit they are still
much better in space and time. Some succinct indexes support output-sensitive locating queries
[GV00, FM02, Nav04, HMR05]. The technique, as described in [HMR05], can be plugged into our
indexes as well (or into any other index supporting efficient backward search mechanism). As a
further experimental study, it would be interesting to see how this technique works in practice.

7 Conclusions

In this paper we have explored the interconnection between the empirical kth order entropy of a
text and the regularities that appear in its suffix array, as well as in the Burrows-Wheeler transform
of the text. We have shown how this connection lies at the heart of several existing compressed
indexes for full-text retrieval.

Inspired by the relationship between the kth order empirical entropy of a text and the runs of
equal letters in its Burrows-Wheeler transform, we have designed a new index, the RLFM index,
that answers the mentioned counting queries in time linear in the pattern length for any alphabet
whose size is polylogarithmic on the text length. The RLFM index was the first in achieving this.

We have also considered practical issues of implementing the RLFM index, obtaining an effi-
cient implementation. We have in passing presented another index, the SSA, which is a practical
implementation of an existing proposal [Sad02]. The SSA is larger and faster than the RLFM
index. We have compared both indexes against the existing implementations, showing that ours
are competitive and obtain practical space-time tradeoffs that are not reached by any other imple-
mentation.
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