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1 Introduction

The Resource Description Framework (RDF) [16] is a metadata model and lan-
guage recommended by the W3C for building an infrastructure of machine-
readable semantics for the data on the Web, a long-term vision known as Se-
mantic Web. In the RDF model, the universe to be modeled is a set of resources,
essentially anything that can have a universal resource identifier, URI. The lan-
guage to describe them is a set of properties, technically binary predicates. De-
scriptions are statements very much in the subject-predicate-object structure.
Both subject and object can be anonymous objects, known as blank nodes. In
addition, the RDF specification includes a built-in vocabulary with a norma-
tive semantics (RDFS). This vocabulary deals with inheritance of classes and
properties, as well as typing, among other features [4]. RDFS allows to write
ontologies, i.e., descriptions of the concepts and relationships that can exist for
a community of people and software agents, enabling knowledge sharing and
reuse among them.

Although some studies exist about addressing changes in an ontology [17],
little attention has deserved the problem of representing, updating and querying
temporal information in RDF. Of course, time is present in almost any web and
e-business application. Indeed, as pointed out by Abiteboul [1] the modeling
of time is one of the key primitives needed in a query language for Web and
semistructured data. Thus, there is a clear need of applying temporal database
concepts to RDF to allow metadata navigation across time.

Consider an RDF graph describing information about a university, as of its
creation time, Figure 1 (left). Students were classified as technical, graduate or
undergraduate, and the only graduate programs offered were at the level of ‘Mas-
ter’ studies (like MBA or MSc); ‘Professional Diploma’ was the only program
offered at the technical level. As the university evolved, the Ph.D program was
created. Figure 1 (right) illustrates the new situation. Notice the dynamics of
this example: students (e.g., John) can enroll in one program (e.g., Undergrad-
uate), then shift to another one (e.g., Master), and so on. The figures show that
the impact of disregarding the time dimension is twofold: on the one hand, when
a change occurs, a new metadata document must be created (and the current
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Fig. 1. (left) Initial RDF graph. (Right) The RDF graph after some changes.

document dropped). On the other hand, queries asking for past states of the
metadata cannot be supported. For instance, we cannot ask for the programs of-
fered when the university was created; also we cannot track the programs taken
by John in different times as student.

1.1 Problem Statement: Introducing Time into RDF

Generally speaking, a temporal database is a repository of temporal information.
Although temporal databases were initially studied for adding the time dimen-
sion to relational databases, as new data models emerged, temporal extensions
to these models were also proposed (see Section 1.2). We next discuss main issues
that arise when extending RDF with temporal information.

Versioning vs. Time Labeling There are two mechanisms for adding the time
dimension to non-temporal RDF graphs: labeling and versioning . The former
consists in labeling the elements subject to changes (i.e. triples). The latter is
based on maintaining a snapshot of each state of the graph. For instance, each
time a triple changes, a new version of the RDF graph is created, and the past
state is stored somewhere. A variation of this strategy may consist in keeping the
initial graph, and store only the changes, by means, for example, of edit scripts.
We believe that for RDF data, labeling is better than versioning. On the one
hand, labeling –as opposed to versioning– preserves the spiritsed to versioning–
preserves the spirit of the distributed and extensible nature of RDF. On the other
hand, for scenarios where changes are frequent and only affect a few elements of
the document, labeling works better than versioning. In this situation, creating
a new physical version of the graph each time an update occurs may lead to
large overheads when processing temporal queries that span multiple versions.
Moreover, a version management approach accounts only for transaction time,
while our approach is apt for handling valid time too.

Timestamp vs. Snapshot Semantics The labeling approach for temporal database
representation considers the timestamp and the snapshot models. The former rep-
resents a temporal database as a function from a temporal domain to a database
state. The latter associates a time instant to an element in the database (e.g. a
tuple). Of course, both models are equivalent, but the snapshot representation
appears to be not suitable for queries of the form: “all time instants where Φ

holds in the database”. As a second temporal issue, at least two temporal dimen-
sions can be considered: valid time is the time when data is valid is the modeled
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Fig. 2. A temporal RDF graph that accounts for the evolution of the university on-
tology and its students. For example, John was undergraduate until time t = 10 and
then appears as master student from time t = 11 to t = 20, and since time t = 25 up
to now is a Ph.D. student.

world; transaction time is the time when data is actually stored in the database.
The snapshot representation captures transaction time, while timestamping is
mostly used when representing valid time.

Time Points vs. Time Intervals We will work with the point-based temporal
domain for defining our data model and query language, but we will encode time-
points in intervals when possible, for the sake of clarity. We will consider time as
a discrete, linearly ordered domain, as usual in virtually all temporal database
applications. An ordered pair [a, b] of time points, with a ≤ b, denotes the closed
interval from a to b. Figure 2 shows a temporal RDF graph for the university
example above.3 The edges in the graph are labeled with their interval of validity.
For example, the interval [0,Now] says that the triple (technical,sc,student) is
valid from the document’s creation time to the current time. There is a blank
node saying that there was one resource of type ‘Master’ in the interval [0,20],
and another one in the interval [25,Now]. Also, Figure 2 shows that John was
first an undergrad student, then a master student, and, after some time, a Ph.D
student. We will see that blank nodes introduce many interesting problems is
temporal RDF.

Vocabulary for Temporal Labeling Temporal labeling can be implemented within
the RDF specification, making use of reification plus some simple additional
vocabulary, as Figure 3 shows. As we adopted the point-based, discrete and
linearly ordered temporal domain, the left and right hand sides of Figure 3 are

3 Note that the graph(ical) representation of an RDF graph is not the most faithful
to convey the the idea of a triple (not only the edge) being labeled by a temporal
element. Technically in the picture the temporal element should be attached to the

whole subgraph a
b
→ c, not only to the edge.
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equivalent. We will use both representations indistinctly. Moreover, we define
constructs that allow moving between intervals and time instants as follows: the
instants depicted in Figure 3 (left) can be encoded in an interval as shown in
Figure 3 (right). Both alternatives will be used in the query language.

Fig. 3. (left) Point-based labeling. (right)Interval-based labeling.

Temporal Entailment An RDF graph can be regarded as knowledge base from
which new knowledge, i.e., other graphs, may be entailed. As an example, Figure
4 shows a simple example of a temporal entailment. In the graph of the left hand
side of Figure 4, a snapshot at t = 2 entails the graph in the right hand side
of the same figure, since the latter is a subgraph of the former. A problem that
arises when defining entailment in the temporal setting, refers to the impact of
blank nodes in the entailment of RDF graphs. In principle, one may be tempted
to define the semantics as in temporal relational databases, i.e., defining the
temporal database as the union of all of its snapshots. Blank nodes impose some
constraints to this approach. Each of the three snapshots of Figure 5 (right)
entails the corresponding snapshots of Figure 5 (left). However, the temporal
graph of Figure 5 (left) cannot be entailed by the temporal graph of Figure 5
(right). The former has more information than the latter. Indeed, the graph of
Figure 5 (left) states that there is an anonymous object called X , which is in
the triple (a, b, X) at times 3 and 4, which is not the case for the other graph.

Temporal Query Language Regarding query languages in temporal databases,
basically two choices for defining the temporal domains exist: the point-based
and the interval based temporal domains, yielding different query languages [22,
3]. In the point-based approach, temporal variables in query languages refer to
individual time instants, while in the interval-based domain, variables in the
queries range over intervals, making queries more complicated and unnatural.
Anyway, one can move easily between these two domains.

1.2 Related Work

The RDF model was introduced five years ago as a W3C recommendation [16].
Formal work in RDF includes the study of formal aspects of RDF data and
query languages [12, 23], considering RDF features like the entailment, presence
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Fig. 4. Temporal entailment
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Fig. 5. Two temporal RDF graphs.

of blank nodes, reification, premises in queries, and the RDFS vocabulary with
predefined semantics. Several languages for querying RDF data have been pro-
posed and implemented. Some of them in the lines of traditional database query
languages (e.g. SQL, OQL), others based on logic and rule languages. Good
surveys are [15, 18].

To the best of our knowledge, there is still no formal study of temporality
issues in RDF graphs and RDF query languages. The closest research done is
in the area of Web and semistructured data. We end this section by surveying
related work on temporal data models for Web and semistructured data.

Temporal database management has been extensively studied, including data
models, mostly based on the relational model [21], and query languages [8], lead-
ing to the TSQL2 language [20]. Beyond the relational model, managing histor-
ical semistructured data was first proposed by Chawathe et al [7], who extended
the Object Exchange Model (OEM) with the ability to represent updates and
to keep track of them by means of “deltas.” Later, Dyreson et al [9] allowed
annotations on the edges of the database graph. In the XML world, Amagasa
et al [2] introduced a temporal data model based on XPath for the first time.
Dyreson [10] proposed an extension of XPath with support for transaction time
by means of the addition of several temporal axes for specifying temporal direc-
tions, focusing on document versioning over the web in the absence of explicit
time stamps. Chien et al [5] proposed update and versioning schemes for XML
through an edit-based schema in which the most current version of the docu-
ment is maintained, and reverse edit scripts allow moving backward in version
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time. In a sequel of this work [6], they moved to a scheme where version man-
agement is performed by keeping references to the maximal unchanged subtree
in the previous version sharing unchanged elements among versions. Gao et al
[11] introduced τXQuery, an extension to XQuery supporting valid time while
maintaining the data model unchanged. Finally, Mendelzon et al [19] proposed a
temporal model for XML, a temporal extension to XPath, and a novel indexing
strategy for temporal XML documents. Like in our approach, they use labeling,
and a point-based temporal domain and query language.

1.3 Contributions

In this paper we present a framework to incorporate temporal reasoning into
RDF, yielding temporal RDF graphs. In particular, we present the following
contributions:

– A semantics for temporal RDF graphs in terms of the semantics of non-
temporal RDF and RDFS graphs.

– A study of properties of temporal RDF graphs, such as normal forms, and
the interplay between timestamp and snapshot semantics in temporal RDF
graphs.

– A syntax to incorporate this framework into standard RDF graphs, which in-
cludes a vocabulary and rules. The syntax uses the standard RDF reification
vocabulary plus temporal labels.

– A sound and complete inference system for temporal RDF graphs.
– Complexity bounds which show that entailment in temporal RDF graphs

does not yield extra asymptotic time complexity with respect to standard
RDF graphs.

– A sketch for a temporal query language for RDF. We show use cases, and
complexity of query processing.

For the sake of space, we do not include proofs in this version of the paper.

2 RDF Preliminaries

In this section we present a streamlined formalization of the RDF model following
the W3C documents [16, 14, 4], along the lines of [12].

2.1 RDF Graphs.

Assume there is an infinite set U (RDF URI references); an infinite set B =
{Nj : j ∈ N} (Blank nodes); and an infinite set L (RDF literals). A triple
(v1, v2, v3) ∈ (U ∪B)×U × (U ∪B ∪L) is called an RDF triple. In such a triple,
v1 is called the subject, v2 the predicate and v3 the object. We often denote by
UBL the union of the sets U , B and L.

An RDF graph (just graph from now on) is a set of RDF triples. A subgraph is
a subset of a graph. The universe of a graph G, universe(G), is the set of elements
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of UBL that occur in the triples of G. The vocabulary of G is the set universe(G)∩
(U ∪ L). We will use letters N, X, Y, . . . to denote blank nodes, and a, b, c, . . .

for URIs and literals. A graph is ground if it has no blank nodes. Graphically we
represent RDF graphs as follows: each triple (a, b, c) is represented by the labeled

graph a
b
→ c. Note that the set of arc labels can have non-empty intersection

with the set of node labels.
A map is a function µ : UBL → UBL preserving URIs and literals, i.e.,

µ(u) = u and µ(l) = l for all u ∈ U and l ∈ L. Given a graph G, we define
µ(G) as the set of all (µ(s), µ(p), µ(o)) such that (s, p, o) ∈ G. A map µ is
consistent with G if µ(G) is an RDF graph, i.e. , if s is the subject of a triple,
then µ(s) ∈ UB, and if p is the predicate of a triple, then µ(p) ∈ U . In this case,
we say that the graph µ(G) is an instance of the graph G. An instance of G is
proper if µ(G) has fewer blank nodes than G. This means that either µ sends a
blank node to an URI or a literal, or identifies two blank nodes of G. We will
overload the meaning of map and speak of a map µ : G1 → G2 if there is a map
µ such that µ(G1) is a subgraph of G2.

Two graphs G1, G2 are isomorphic, denoted G1
∼= G2, if there are maps

µ1, µ2 such that µ1(G1) = G2 and µ2(G2) = G1.
We define two operations on graphs. The union of G1, G2, denoted G1 ∪G2,

is the set theoretical union of their sets of triples. The merge of G1, G2, denoted
G1 + G2, is the union G1 ∪G′

2, where G′
2 is an isomorphic copy of G2 whose set

of blank nodes is disjoint with that of G1. Note that G1 + G2 is unique up to
isomorphism.

2.2 RDFS Vocabulary

There is a set of reserved words defined in the RDF vocabulary description
language, RDF Schema [4], –just rdfs-vocabulary for us– that may be used to de-
scribe properties like attributes of resources (traditional attribute-value pairs),
and also to represent relationships between resources. It defines classes and prop-
erties that may be used for describing groups of related resources and relation-
ships between resources.4 Classes are sets of resources. Elements of a class are
known as instances of that class. To state that a resource is an instance of a class,
the property rdf:type may be used. The following are the most important classes
(in brackets the name we will use in this paper) rdfs:Resource [res], rdfs:Class
[class], rdfs:Literal [literal], rdfs:Datatype [datatype], rdf:XMLLiteral [xmlLit],
rdf:Property [property]. Properties are binary relations between subject re-
sources and object resources. The built-in properties are: rdfs: range [range],
rdfs:domain [dom], rdf:type [type], rdfs:subClassOf [sc], rdfs:subPropertyOf [sp].

In what follows will be important the reification vocabulary, which was de-
signed to allow making statements about statements. It consists of rdf:Statement

4 We omit in this paper vocabulary intended to describe lists, collections, some varia-
tions on these, as well as vocabulary to help document and describe other function-
alities for which there is no normative semantics. The complete vocabulary can be
consulted in [4].
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[stat], rdf:subject [subj], rdf:predicate [pred], and rdf: object [obj]. The reifica-
tion vocabulary has no standard semantics. Reification of a triple is not unique
(can be different reifications of the same triple) and the reification of a triple
does not follow from the triple itself.

3 Temporal RDF Graphs

In this paper we extend RDF graphs by allowing temporal elements to label
triples. A temporal label is a temporal element t labeling a triple (a, b, c). For
simplicity, without loss of generality, we will work with single intervals instead
of temporal elements. In an RDF graph, given a triple (a, b, c), the temporal
element t represents the time period when the triple was valid, i.e. the valid
time of the triple. At this time we do not deal with transaction time, which can
be addressed in an analogous way.

3.1 Basic Definitions

In this section we define the notion of temporal RDF at a conceptual level.

Definition 1 (Temporal graph).

1. A temporal triple is an RDF triple with a temporal label (a natural number).
We will use the notation (a, b, c) : [t]. The expression (a, b, c) : [t1, t2] is a
notation for {(a, b, c) : [t] | t1 ≤ t ≤ t2}.

2. A temporal graph is a set of temporal triples. A subgraph is a subset of the
graph.

For a temporal graph G, define the snapshot at time t as the RDF graph

G(t) = {(a, b, c) | (a, b, c) : [t] ∈ G}

The underlying RDF graph of a temporal RDF graph G, denoted u(G), is
⋃

t G(t),
the union of the graphs G(t).

For an RDF graph, define Gt as the temporalization of all its triples by a
temporal mark t, that is, Gt = {(a, b, c) : [t] | (a, b, c) ∈ G}.

The above definitions give the following elementary consequences about the
relationship between RDF graphs and temporal RDF graphs.

Lemma 1. Let G be an RDF graph, and G′ be a temporal RDF graph. Then:
(1) Gt(t) = G; (2) (G′(t))t ⊆ G′, and (3) G′ =

⋃
t(G

′(t))t.

Several issues on the definition of temporal RDF graph are in order:

– Recall we use a temporal model where an interval [a, b] is of the form [a, a +
1, . . . , b] for a given unit of time that we will assume to be universal in this
paper. The natural way to approach this issue is to specify, together with
the temporal mark, the unit of time it represents. All the results given here
extend without difficulties to this setting.
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– Temporal triples do not belong to the RDF syntax. In the next section we
introduce an RDF-complying syntax for temporal triples, using reification
plus a small temporal vocabulary.

– Source of a temporal statement: Due to the extensible nature of the RDF
model, it is possible to include the source of a temporal statement (i.e. who
is the author of the temporal statement), and other properties that apply.
Although our model (see next section) allows this, we will not study the
semantic consequences of this extra information in this paper, but rather
stay in the classic setting of temporal models.

3.2 Semantics

In what follows, we present the semantics for the notion of entailment for tem-
poral graphs based on the corresponding notion for RDF graphs.

Definition 2 (Temporal Entailment). Let G1, G2 be RDF temporal graphs.
Define

– For ground temporal RDF graphs G1, G2 define G1 |=t G2 as G1(t) |= G2(t)
for each t;

– For general graphs, G1 |=t G2 iff there exist ground instances µ1(G1) and
µ2(G2) such that (µ1(G1))(t) |= (µ2(G2))(t) for each t.

Note that the definition for ground graphs resembles classical temporal defi-
nitions:

Proposition 1. Let G1, G2 be temporal graphs. Then, G1 |=t G2 implies G1(t) |=t

G2(t) for all t, and the converse is true for ground graphs.

In fact, the problems for general graphs are introduced by blank nodes and
the notion of entailment. For example, G1(t) |=t G2(t) for all t does not imply
G1 |=t G2 (see Figure 5). We have the following issues:

– Existential variables (blank nodes) make the behavior of temporal marks in
Temporal RDF different from the classical setting. Temporal marks here –
contrary to temporal XML for example– are not only a relation among fixed
objects, but also among time-varying objects, the blank nodes. See example
in Figure 5.

– The notion of entailment for temporal RDF needs a basic arithmetic of inter-
vals in order to combine the notion of temporality and deductive properties.
For example if we have (a, , c) : [2, 3], (c, , d) : [2], then we should be able to
derive (a, , d) : [2], but not (a, , d) : [3].

In the rest of this section, we show that the notions of closure, lean graph, core
–fundamental to define notions of normalization of this data– can be extended
without difficulty to the temporal setting. (Compare discussion in [12]).

The closure of a temporal graph G, denoted tcl(G), is a maximal set of
temporal triples G′ over universe of G plus the RDF vocabulary such that G′

contains G and is equivalent to it.
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Proposition 2 (Entailment for Temporal graphs).
Let G, G1, G2 be temporal RDF graphs. Then

1. tcl(G) =
⋃

t(cl(G(t)))t;
2. G1 |=t G2 iff tcl(G1) |=t G2.

A temporal graph G is lean iff there is no proper temporal subgraph G′ of G

such that G |=t G′. The core of G is a lean subgraph of G equivalent to it.
The computational complexities of computing the core and testing whether a

graph is lean, are asymptotically the same as the case of standard RDF graphs.

Proposition 3. Let G, G′ be graphs.
1. The problem of deciding if G′ is the closure of G is DP-complete.
2. The problem of deciding if G′ is the normal form of G is DP-complete.
3. The problem of deciding if G′ is the reduction of G is DP-complete.

For a temporal RDF graph G, as in the case of RDF graphs, we can define
a notion of normal form, denoted by nft(G), as follows: nft(G) = coret(G) for a
temporal closure (as in Definition 4) G′ of G.

4 Syntax and Deductive System for Temporal Graphs

We present a deductive system for temporal RDF. It is based on a sound and
complete set of rules given in [14], plus three rules capturing temporal issues.

4.1 RDF syntax of temporal triples

Definition 3 (Temporal vocabulary). The temporal vocabulary is the follow-
ing: temporal (abbreviated as tpl), instant,interval, initial and final, all
of type property, and now of type plain literal. The range of instant, initial
and final is the set of natural numbers.

We will use the following notation shortcuts: reif(a, b, c, X): reification of the
triple (a, b, c) with variable X , i.e. the set of triples (X, subj, a), (X, pred, b),
(X, obj, c), (X, type, stat).

Definition 4 (Temporal triples and graphs). Temporal triples are the fol-
lowing graphs using the temporal vocabulary.

– (a, b, c), reif(a, b, c, X), (X, tpl, Y ), (Y, instant, n) where n is a natural num-
ber; we will summarize this as (a, b, c) : [X, Y, n];

– (a, b, c), reif(a, b, c, X), (X, tpl, Y ), (Y, interval, Z), (Z, initial, I),
(Z, final, F ); where I, F are natural number; we will summarize this as
(a, b, c) : [X, Y, I, F ];

– A temporal graph will be defined as a merge of a set of temporal triples.
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Because RDF is extensible, nothing prevents the use of the blank nodes
included in the definition as target or source of other properties beyond the
temporal vocabulary. We want to have a definition of temporal triple independent
of the blank nodes occurring in the proposed syntactic definition of temporal
triples, e.g., we would like that (a, b, c) : [X, Y, n] be essentially equivalent to
(a, b, c) : [n]. Both previous issues are overcome in our syntax by adding certain
rules, which regulate the temporal vocabulary.

4.2 Rules

The set of rules is arranged in four groups. Groups A, B, C, and D are intended
to describe the classical RDFS semantics, and we follow the approach in [12].
We omit another group of rules that has to do with internal relationships of the
RDF model itself and that we do not consider in this paper.

The novelty here is Group T (temporal rules), whose main objective is to be
able to standardize the interval version and the instant version as well as help
defining “absolute” temporal marks.

GROUP A (Existential) For a map µ : G′ → G:

G

G′
(1)

GROUP B (Subproperty)

(a, type, property)

(a, sp, a)
(2)

(a, sp, b) (b, sp, c)

(a,sp, c)
(3)

(a, sp, b) (x, a, y)

(x, b, y)
(4)

GROUP C (Subclass)

(a, type, class)

(a, sc, a)
(5)

(a, sc, b) (b, sc, c)

(a,sc, c)
(6)

(a, sc, b) (x,type, a)

(x, type, b)
(7)

GROUP D (Typing)

(a, dom, c) (x, a, y)

(x, type, c)
(8)

(a, range, d) (x, a, y)

(y, type, d)
(9)

GROUP T (Temporal)
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(i2t)
{(X, tpl, Y ), (Y, instant, n) : n ∈ [t1, t2]}

(X, tpl, Y ), (Y, int, Z), (Z, initial, t1), (Z, final, t2)
(10)

(t2i)
(X, tpl, Y ), (Y, int, Z), (Z, initial, t1), (Z, final, t2)

{(X, tpl, Y ), (Y, instant, n)
, n ∈ [t1, t2] (11)

(abs)
(a, b, c) : [X1, Y1, n1], (a, b, c) : [X2, Y2, n2]

(a, b, c) : [X1, Y1, n1], (a, b, c) : [X1, Y1, n2]
(12)

Rules (i2t) (interval to instants) and (t2i) are needed to standardize the
interval version and the instant version, by making them equivalent. Rule (abs)
essentially says that marks (instants) can be collected in a single node. This
permit to concentrate on temporal marks independent of other contexts in which
the variables involving temporal vocabulary are immersed.

The definition behaves well in the sense of the following lemma.

Lemma 2. 1. G |=t ∃X∃Y (a, b, c) : [X, Y, t1, t2] if and only if
G |=t ∃X∃Y

∧
t1≤j≤t2

(a, b, c) : [X, Y, tj]
2. G |=t ∃X1∃Y1(a, b, c) : [X1, Y1, t1] ∧ ∃X2∃Y2(a, b, c) : [X2, Y2, t2] if and only

if G |=t ∃X∃Y ((a, b, c) : [X, Y, t1] ∧ (a, b, c) : [X, Y, t2])

For a temporal RDF graph G, define G∗ as the RDF graph {(a, b, c) :
[Xt, Yt, t] | (a, b, c) : [t] ∈ G}, where Xt, Yt are free blank variables, different for
each t. Conversely, for each RDF graph G with temporal vocabulary, define G∗

as the temporal graph defined as {(a, b, c) : [t] | ∃X∃Y (a, b, c) : [X, Y, t] ∈ G}.

Theorem 1. 1. Let G1, G2 be temporal RDF graphs. Then G1 |=t G2 implies
G∗

1 |= G∗
2.

2. Let G1, G2 be RDF graphs with temporal vocabulary. Then G1 |= G2 implies
(G1)∗ |=t (G2)∗.

3. Let G be a temporal RDF graph, and G′ an RDF graph with temporal vocab-
ulary. Then (G∗)∗ = G and G′ |= (G′

∗)
∗.

Now we can show that the syntax introduced captures the semantics of tem-
poral RDF. The following deductive system based on the rules presented, is
sound and complete for entailment of RDF graphs with rdfs vocabulary.

Definition 5. Let G be a graph. For each rule r : A
B

above, define G ⊢r G∪µ(B)
iff there is a map µ : A→ G. Also define G ⊢s G′ if and only if G′ is a subgraph
of G.

Define G ⊢ G′ if there is a finite sequence of graphs G1, . . . , Gn such that (1)
G = G1; (2) G′ = Gn; and (3) for each i, either, Gi ⊢r Gi+1 for some r, or
Gi ⊢s Gi+1.

The following theorem shows that one can give a syntactic characterization
over RDF graphs with temporal vocabulary for entailment of temporal RDF
graphs:
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Theorem 2. For any pair of temporal RDF graphs G1, G2:
G1 |=t G2 if and only if G∗

1 ⊢ G∗
2

Note that that due to the examples presented in a previous Note, we cannot
establish the theorem in its complete generality, namely, prove that if G1 ⊢ G2

then (G1)∗ |=t (G2)∗.
The previous theorem permits to concentrate for the following sections in

temporal RDF (instead of diving into syntactic issues).

5 Query language

In this section we present query language for temporal RDF graphs, along with
its semantics. We also present a brief study of the complexity of query processing.

5.1 The Query Language by Example

We will give the flavor of the query language using our running example, the
database of Figure 2. Let us begin with a simple query: “Students taking Master
courses between t1 and t2” (i.e. starting and completing their studies within this
interval); the query can be expressed as:

(?X, type, Student)←

(?X, takes, ?C) : [?T ], (?C, type, Master) : [?T ], t1 ≤?T, ?T ≤ t2.

This example query illustrates the need of a built-in arithmetic language in
order to reason about time and intervals. Another important observation is that
temporal queries may output non-temporal RDF graph, as the previous query
does.

For the query asking for a snapshot of the graph at t1, we have:

(?X, ?Y, ?Z)← (?X, ?Y, ?Y ) : [t1].

Now consider the query “Students taking Ph.D courses together, and the time
instants when this occurred.” For simplicity we expressed this as a point-based
query. The translation of the result into intervals is straightforward.

(?X, together, ?Y)[?T ]← (?X, type, Ph.D) : [?T ], (?Y, type, Ph.D) : [?T ].

Next, we give examples of queries that use temporal triples with intervals.
The query “Time intervals when the IT Master was offered” can be expressed

as follows:

(X, interval, Y ), (Y, initial, ti), (Y, final, tf )←

(ITMaster, sc, P rof.Master) : [ti, tf ].
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Observe that the previous query returns a set of intervals. In order to retrieve
maximal intervals we need a more subtle query, since their computation do not
follows directly from the temporal rules. For the query “Compute the maximal
interval when the triple (a, b, c) holds”, we need aggregate operators MAX and
MIN.

(a, b, c) : [?T1, ?T2] ← (a, b, c) : [?Ti, ?Tf ], ?T1 = MIN(?Ti), ?T2 = MAX(?Tf )

For a query asking for “Students taking Ph.D courses after completing a
master program” we have:

(?X, type, Ph.D)←

(X, type, Ph.D) : [?T ], (?X, type, Master) : ‖ti, tf‖ , tf <?T.

Here, the notation (?X, type, Master) : ‖ti, tf‖ stands that ti and tf match
with the maximal interval for the triple (?X, type, Master), computed with the
query given above.

Finally, consider the query “Students enrolled in the Professional Master
program, exactly the time when the Professional Master program becomes rec-
ognized as a Graduate program.”

(?X, type, P rof.Master)← (?X, type, P rof.Master) : [?T ],

(Prof.Master, sc, Graduate) : ‖?T, tf‖ .

5.2 Semantics and Complexity

Let V be a set of variables (disjoint from UBLT). Individual variables will be
denoted ?X , ?Y , ?Z, etc. There is also a set of temporal variables Vt ⊂ V .

The query language we define is analogous to the one presented by Gutierrez
et al. [13]. A query is a temporal tableau, which is a pair (H, B ∪ A), where H

and B are a temporal RDF graphs with some UBLs replaced by variables in V ,
and with some Ts replaced with variables in Vt, B has no blank nodes and all
the variables in H occur also in B. The set A has the usual arithmetic built-in
predicates such as <, >, =,. over elements in Vt and T .

We adopt the usual notion of safe rule from Datalog to prevent operations
on infinite predicates. A rule is safe is all its variables are limited. A variable
is limited if one of the following hold: a variable appears as an argument in a
non-built-in predicate of the body; the variable X appears in a subgoal X = t

(or t = X), where t is a constant in T ; or the variable X appears in a subgoal
X = Y (or Y = X), where Y is limited.

The semantics is the usual in these cases. Given a temporal tableau (H, B∪A)
and a temporal RDF graph G, for each matching of the graph pattern B in G,
pick up the values of the variables and check whether they satisfy the built-in
predicates in A. If this is the case, construct a pre-answer, which is the graph
resulting by substituting the values of the variables in the head. Finally, the
answer of the query is the union of all pre-answers.
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We end this section by showing that the additional time dimension in our
model does not play any relevant role in the complexity of query answering, that
is, the query language preserves the tractability of answer. In order to do this,
we consider the simpler problem of testing emptiness of the query answer set in
the following forms: (1) Query complexity version: For a fixed database D, given
a query q, is q(D) non-empty? (2) Data complexity version: For a fixed query q,
given a database D, is q(D) non-empty?

Theorem 3. The evaluation problem is NP-complete for the query complexity
version, and polynomial for the data complexity version.

The previous result shows that the temporal labeling over the triples does
not introduce any complexity overhead. This is consistent with previous works
in temporal databases. As Toman [22] showed, a point-based temporal query
language has the same properties than a First Order query language, in spite of
the temporal variable.

6 Conclusions

We have proposed an RDF vocabulary to assert the times when triples are
valid in RDF graphs. This allows an explicit treatment of time inside RDF. We
have also offered a complete and sound inference procedure for temporal RDF
graphs, and a query language for them. Our framework allows to browse, query,
and reason across different versions of RDF graphs.

As future work, we consider the definition of a built-in arithmetic language
to reason about intervals in queries. This language should include at least basic
set theoretical operations with intervals. As an example, we may need to capture
the extremes of a time interval when a triple holds, or the intersection interval
when a set of triples are valid.

Other issue is to handle anonymous times. For example, we may want to
say that a triple holds in sometime inside an interval, but do not know the
exact valid time of the triple. Anonymous times may help in the specification of
triples without temporal labels, which is a form to specify incomplete temporal
information, i.e. for the case when one cannot deduce any positive temporal
statement about RDF triples. Another issue is the output of the answer. Usually
there are two kinds of answers: temporal ones, and plain ones. A unified semantic
for these two classes of answers would allow closeness and full query composition
in a temporal query language for RDF.
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