
O(mn log σ) Time Transposition Invariant
LCS Computation

Szymon Grabowski1 and Gonzalo Navarro2⋆

1 Computer Engineering Department, Technical University of Lódź, Poland.
2 Center for Web Research, Department of Computer Science, University of Chile.

Abstract. Given strings A and B of lengths m and n over a finite alpha-
bet Σ ⊂ Z of size O(σ), the length of the longest common transposition
invariant subsequence is LCTS(A, B) = maxt∈Z{LCS(A + t, B)}, where
A + t = (a1 + t)(a2 + t) . . . (am + t) and LCS(A + t, B) is the length
of the longest common subsequence between A + t and B. LCTS(A, B)
can be computed naively in O(mn σ) time. We present a simple and
easy to implement algorithm obtaining O(mn log σ) time. We also show
that transposition invariant Levenshtein distance can be computed in
O(mn

√
σ) time.

1 Introduction

Transposition invariant string matching is the problem of matching two strings
when all the characters of either of them can be “shifted” by some amount t.
By “shifting” we mean that the strings are sequences of numbers and we add or
subtract t from each character of one of them.

Interest in transposition invariant string matching problems has recently
arisen in the field of music information retrieval (MIR) [2, 8, 9]. In music analysis
and retrieval, one often wants to compare two music pieces to test how similar
they are. A reasonable way of modeling music is to consider the pitches and du-
rations of the notes. The durations are however often omitted, since it is usually
possible to recognize the melody from a sequence of pitches. In general, edit dis-
tance measures can be used for matching two pitch sequences. One of the most
widely accepted similarity measures for matching music is the longest common
subsequence (LCS) among the pitch sequences. This is the longest string that
can be obtained by removing characters from each of the two sequences. A sec-
ond measure (actually a dissimilarity measure) is Levenshtein distance, which
permits substituting characters by others apart from removing them.

A particular feature of music retrieval is transposition invariance: The same
melody is perceived even if the pitch sequence is shifted from one key to another.
This is equivalent to adding a constant to all the pitch values of one sequence.
This paper focuses on computing LCS under transposition invariance, that is,
finding the longest common subsequence that can be obtained after the best
possible shifting of one sequence.

⋆ Supported by Millenium Nucleus Center for Web Research, Grant P01-029-F, Mide-
plan, Chile.

2 Problem Statement and Our Contribution

Let Σ ⊂ Z be a finite numerical alphabet. For simplicity we consider Σ =
{0, . . . , σ} in this paper, although any subset of Z can be handled with little extra
overhead. Let A = a1a2 . . . am and B = b1b2 . . . bn be two strings over Σ∗, that
is, characters ai, bj of the two strings belong to Σ for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
String A′ is a subsequence of A, denoted by A′ ⊑ A, if A′ = ai1ai2 . . . ai|A′|

for
some indexes 1 ≤ i1 < i2 < · · · < i|A′| ≤ m. The length of the longest common
subsequence (LCS) of A and B is LCS(A, B) = max{|S|, S ⊑ A, S ⊑ B}.

A transposed copy of a string A, denoted by A + t for some t ∈ Z, is A + t =
(a1 + t)(a2 + t) · · · (am + t). Our goal is to compute the length of the longest
common transposition invariant subsequence of A and B:

LCTS(A, B) = max
t∈Z

LCS(A + t, B) = max
t∈[−σ,σ]

LCS(A + t, B),

where the latter equality owes to the fact that transpositions t outside the range
[−σ, σ] will not match any character of A to B, and thus LCS(A + t, B) = 0 for
those t. The computation of LCS(A, B) can be carried out in O(mn) time using
the well-known recurrence (e.g. [5])

M(i, 0) = M(0, j) = 0, (1)

M(i, j) = if ai = bj then 1 + M(i − 1, j − 1)

else max(M(i − 1, j), M(i, j − 1)), (2)

so that LCS(A, B) = M(m, n).
The computation of LCTS(A, B) can be done naively in O(mn σ) time [9] by

considering all transpositions t ∈ [−σ, σ]. A more sophisticated algorithm, based
on the idea that only some characters of A and B match for each transposition t,
resorts to sparse dynamic programming to obtain O(mn log log min(m, n)) time
[12]. Most recently [7], an algorithm that backtracks over the set of possible
transpositions obtains a best case of O((mn + log log σ) log σ) and a worst case
of O((mn + log σ)σ).

In this paper we present an algorithm that computes LCTS(A, B) in worst
case time O(mn log σ). The main idea is to reduce the problem to the naive
computation over small submatrices of M , so that few transpositions are rel-
evant inside each submatrix. The algorithm is practical and simple to imple-
ment. In terms of complexity, it compares favorably against the naive algorithm
[9], against the best case of the backtracking algorithm [7] and, for moderate
σ < log min(m, n), against the sparse dynamic programming algorithm [12].

At the end, we show how the techniques we developed for LCTS can be used
to compute transposition invariant Levenshtein distance in O(mn

√
σ) time. We

defer the formal definitions for this case to Section 6.

3 A Basic O(mn
√

σ) Time Algorithm for LCTS

We compute a dynamic programming matrix Mt(0 . . .m, 0 . . . n) for each trans-
position t ∈ −σ . . . σ, which corresponds to LCS(A + t, B). The main idea is

not to compute all the cells of all the matrices. We divide each matrix Mt into
O(mn/k2) blocks of k × k cells. Blocks will be labeled (i, j), for 0 ≤ i < ⌈m/k⌉
and 0 ≤ j < ⌈n/k⌉, corresponding to M(ki + 1 . . . ki + k, kj + 1 . . . kj + k). The
bottom and rightmost blocks may not be full but we ignore that for simplicity.

Inside each block, there are at most k2 relevant transpositions t such that
LCS(Aki+1...ki+k + t, Bkj+1...kj+k) > 0. That is, only those transpositions t =
bkj+s − aki+r , where 0 < r, s ≤ k, yield at least one match inside block (i, j).
All the other (at least) 2σ + 1− k2 irrelevant transpositions yield a null longest
common subsequence.

According to Eq. (2), matrices Mt can be computed in any order, as long as
cell (r, s) is computed after cells (r−1, s) and (r, s−1). We choose to compute all
the Mt matrices simultaneously, row by row of blocks, each row from left to right.
All the different transpositions for each block (i, j) are computed simultaneously.

Let us focus on the computation of a single block (i, j). The idea is to treat
the (at most) k2 relevant transpositions differently from the other irrelevant (at
least) 2σ + 1 − k2 ones. First, we compute array S(−σ . . . σ) so that S(t) = 1
iff transposition t is relevant for the current block (i, j). Array S is trivially
computed in O(σ + k2) time. Now, for each relevant transposition t, we fully
compute Mt(ki + 1 . . . ki + k, kj + 1 . . . kj + k) in O(k2) time.

A problem to compute the first row and column values Mt(ki + 1, kj + s)
and Mt(ki + r, kj + 1), for 0 < r, s ≤ k, for a relevant transposition t, is that we
need to know the bottom and rightmost values of neighboring blocks, Mt(k(i −
1) + k, kj + s) and Mt(ki + r, k(j − 1) + k), so as to apply Eq. (2). Yet, t might
not be relevant on those neighboring blocks and hence those values might not be
known. Therefore, previously to computing Mt in block (i, j), we must fill the
bottom row of block (i − 1, j) and the rightmost column of block (i, j − 1).

Let us focus on computing Mt(k(i − 1) + k, kj + s), as the case of Mt(ki +
r, k(j − 1) + k) is symmetric. Let (i− p, j) be the last block where transposition
t was relevant. That is, we have computed value Mt(k(i−p)+k, kj + s), and we
know that transposition t is not relevant for blocks (i − p + 1, j), . . . , (i − 1, j).
Thus ak(i−p+1)+r′ + t 6= bkj+s, for 0 < r′ ≤ k(p−1). The following property tells
us how to compute Mt(k(i − 1) + k, kj + s) directly.

Property 1. If ar 6= bs for all i < r ≤ i′ and j < s ≤ j′, then Eq. (2) implies

M(i′, j′) = max(M(i, j′), M(i′, j)).

Proof. It is easy to see by induction on Eq. (2) that

M(i′, j′) = max

(

max
i<r≤i′

M(r, j), max
j<s≤j′

M(i, s)

)

= max(M(i′, j), M(i, j′)),

where the second step obeys to the obvious monotonocity property LCS(Aa, B) ≥
LCS(A, B), and therefore Mt(r + 1, s) ≥ Mt(r, s) for any r, s. See also [1]. �

Therefore, we have

Mt(k(i−1)+k, kj+s) = max(Mt(k(i−1)+k, kj+s−1), Mt(k(i−p)+k, kj+s)),
(3)

which solves our problem but brings in other two subproblems: (i) for the case
s = 1 we must compute corner values Mt(ki + k, kj + k) for all i, j and all
transpositions, not only for the relevant ones; (ii) we must determine i − p in
constant time.

To solve subproblem (i), we must compute corner values for irrelevant trans-
positions too. These are easily computed given previous corners since, by the
same Property 1,

Mt(ki + k, kj + k) = max(Mt(k(i− 1) + k, kj + k), Mt(ki + k, k(j − 1) + k)).

To solve subproblem (ii) in constant time we will maintain, for every trans-
position t, vectors

Rt(s) = Mt(max{r′, Mt(r
′, s) has been computed}, s),

Ct(r) = Mt(r, max{s′, Mt(r, s
′) has been computed}).

Note that row and column zero of matrices Mt are always zero by Eq. (1), so we
initialize Rt(s) = Ct(r) = 0 for all 1 ≤ r ≤ m, 1 ≤ s ≤ n. Later, every time a
new matrix value Mt(r, s) is written, we update Rt(s) = Ct(r) = Mt(r, s). The
next time we try to compute Mt(r

′, s) or Mt(r, s
′), for r′ > r or s′ > s, the latest

value Mt(r, s) we require will be in Rt(s) and Ct(r)
1.

Hence, Eq. (3) is implemented using Rt(kj + s) = Mt(k(i − p) + k, kj + s),
and Mt(ki + r, k(j − 1) + k) is filled similarly:

Mt(k(i − 1) + k, kj + s) = max(Mt(k(i − 1) + k, kj + s − 1), Rt(kj + s)),

Mt(ki + r, k(j − 1) + k) = max(Mt(ki + r − 1, k(j − 1) + k), Ct(ki + r)).

Adding all the computation costs per block, we have O(σ + k2) to compute
S, O(σ) to compute the corners Mt(ki + k, kj + k), and O(k4) to compute the
block of size O(k2) for all the O(k2) relevant transpositions. This is

O
(

mn/k2
(

σ + k2 + σ + k4
))

= O
(

mn
(

σ/k2 + k2
))

,

which is optimized for k = σ1/4 to yield overall complexity O(mn
√

σ). To this we
must add the cost to initialize R and C, so overall we have O(mn

√
σ+(m+n)σ).

Note that we assumed min(m, n) ≥ σ1/4 to optimize the block size. This will be
true when we use this algorithm as a building block for Section 4.

Let us consider space. For each new row i of blocks computed we only need
array S for the current block, all Rt(s) values for 0 < s ≤ n, values Ct(r) for
the rows ki + 1 ≤ r ≤ ki + k in the current block, and corner values Mt(k(i −
1) + k, kj + k) for 0 < j ≤ ⌈n/k⌉ in the previous row. Thus overall we need
O(min(m, n)σ) space (since A and B can be exchanged if n > m).

1 We could have saved some work by defining R and C block-wise rather than cell-wise.
However, we need such finer-grained version for Section 4.

4 Recursing for Improved Complexity

The basic method of Section 3 demonstrates that all the LCS(A + t, B) values,
where the strings are of length m and n and there are O(σ) relevant transposi-
tions to consider, can be computed in T1(m, n, σ) = O(mn

√
σ) time if we exclude

initialization of R and C. We use that basic algorithm to compute the results for
the k2 relevant transpositions inside a block, instead of computing them naively.
Hence the cost for relevant transpositions would drop from T0(k, k, k2) = O(k4)
to T1(k, k, k2) = O(k3).

It is necessary, however, to consider that in the previous section we assumed
a contiguous alphabet of the form −σ . . . σ, which will not hold when we use
the algorithm on a subset of the alphabet of size k2. We redefine S(−σ . . . σ)
as a mapping that indexes into an array U(1 . . . k2) holding the relevant trans-
positions of the block, so U(S(t)) = t, while S(t) = 0 for the irrelevant trans-
positions. Arrays S and U are computed in O(σ + k2) time and passed to the
basic procedure for a k × k block. The basic procedure takes U as the universe
of valid transpositions, and uses S to find the place in U of a given transposition
t = bs − ar. To further recurse with k′ × k′ blocks, the invoked procedure can
reuse the same S array and a new universe U ′. Array S is reinitialized in O(|U |)
time by setting S(U(u)) = 0 for 1 ≤ u ≤ |U |, and then the mapping onto U ′ is
computed in O(k′2+|U ′|) time. After the invocation, S is restored in O(|U |) time
by setting S(U(u)) = u for 1 ≤ u ≤ |U |. Therefore, we have T1(k, k, k2) = O(k3)
obliviously to the universe Σ.

The invoked procedures will share global R and C vectors retaining the last
value assigned to the global Mt matrix. Hence a recursive computation for a
block reads the last values written by a previous recursive computation of an-
other block. This works correctly because the top border cells (r, s) are filled
considering only that transposition t is not relevant in column s since the last
time Rt(s) was assigned. The same holds for the leftmost border and Ct(r).

By using T1(k, k, k2) instead of the naive O(k4) algorithm, the complexity
becomes

O
(

mn/k2
(

σ + k2 + k3
))

= O
(

mn
(

σ/k2 + k
))

,

which is optimized for k = σ1/3 to yield overall complexity T2(m, n, σ) =
O(mn σ1/3). By using this T2(k, k, k2) = O(k2+2/3) time procedure instead of
T1 we obtain a lower complexity, and so on.

To generalize the analysis to h levels of recursion we must consider the con-
stant factors, which grow with the depth of the recursion. In this case, derivation
is necessary to find the optimum k.

With h levels of recursion we obtain complexity O
(

(h + 1)mn σ
1

h+1

)

, thus

Th(k, k, k2) = O
(

(h + 1)k2+ 2
h+1

)

. This is clearly true for h = 0, while for general

h we have by induction the complexity

O
(

mn/k2
(

σ + k2 + Th−1(k, k, k2)
))

= O
(

mn
(

σ/k2 + h k
2
h

))

,

which, by deriving with respect to k, is optimized for k = σ
h

2h+2 to yield overall

complexity O((h + 1)mn σ
1

h+1) as promised.
This complexity is optimized after h = ln(σ) − 1 levels of recursion, to yield

O(mn log σ) complexity. Yet, we still have the additional cost O((m + n)σ)
to initialize vectors R and C. In the next section we get rid of this addi-
tional complexity. Note, however, that this is important only for large alphabets,
σ/ log σ > min(m, n).

A second possible problem resulting from small min(m, n) is that the choice
of optimum k assumes min(m, n) ≥ √

σ. This is a result of having used square
blocks for simplicity. However, we could perfectly use blocks of k1 × k2, and the

optimization for level h would simply state k1k2 = σ
h

h+1 . Say that m ≤ n. Then

we could use k1 = k2 = σ
h

2h+2 except when m < σ
h

2h+2 , in which case we could

use k1 = m and k2 = σ
h

2h+2 /m. (Since k2 has to be an integer, we could use

k1 = αm and k2 = σ
h

2h+2 /(αm), for any 0 < α ≤ 1 to get closer to the desired
k1k2.)

It is possible, however, that now k2 = σ
h

2h+2 /m > n, which means that
mn <

√
σ. In this case it is better to collect all the mn transpositions bs − ar

into a balanced tree and work only with these. This effectively reduces σ to mn
and the problem cannot occur anymore. The cost to collect the transpositions is
O(mn log(mn)) = O(mn log σ), so the complexity does not change (actually the
complexity improves to O(mn log max(m, n))). In order to map transpositions
bs − ar into the compact set we are using, we must use vectors S and U as
described in the beginning of this section for the top-level procedure too. We
only have to avoid initializing S fully, but just for the existing transpositions
bs − ar.

5 Reducing Initialization Time

In this section we show how the O((m + n)σ) cost to initialize vectors Rt and
Ct can be reduced to O(mn). The idea is to initialize those vectors only for the
transpositions that appear in the matrix. That is, for each cell (r, s), 1 ≤ r ≤ m
and 1 ≤ s ≤ n, we only initialize Rt(s) = Ct(r) = 0 for transposition t = bs−ar.
This clearly makes initialization time O(mn). However, we must ensure that
Rt(s) will be accessed only when t is relevant for some cell (r′, s), 1 ≤ r′ ≤ m,
and similarly Ct(r) for (r, s′), 1 ≤ s′ ≤ n.

For this sake, we will replace the basic O(k4) algorithm that computes the
relevant transpositions inside a block by a more sophisticated O(k3) one. The
improved complexity is not important, as in Section 4 we have shown that re-
cursion permits obtaining O(mn log σ) independently of the quality of the basic
procedure. What is important of the new procedure is that it will only access
Mt(r, s) when t is relevant somewhere in row r, and somewhere in column s.

Consider the computation for the relevant transpositions in a single block.
When we scan the block for the relevant transpositions, we compute not only
the original array S(−σ . . . σ), but also an array H(−σ . . . σ), where H(t) is the

list of cells (r, s) in the block corresponding to transposition t, that is, cell (r, s)
appears in list H(bkj+s − aki+r). All this is accomplished in O(σ + k2) time.

Then, the relevant transpositions t are processed one by one. All the rows
r and columns s in list H(t) are marked, and subsequently traversed to make
two increasing lists r1, . . . , rf and s1, . . . , sc of rows and columns (without du-
plicates). Finally, the procedure of Eq. (2) is applied by referring only to those
marked rows and columns. All the others yield no matches between A + t and
B. Thus the following recurrence holds for the cells (ki + rp, kj + sq) where
t = bkj+sq

− aki+rp
:

Mt(ki + rp, kj + sq) = 1 + Mt(ki + rp − 1, kj + sq − 1)

= 1 + max(Mt(ki + rp−1, kj + sq), Mt(ki + rp, kj + sq−1)),

where the first equality owes to Eq. (2), and the second to Property 1. On the
other hand, when t 6= bkj+sq

− aki+rp
, we have by Property 1:

Mt(ki + rp, kj + sq) = max(Mt(ki + rp−1, kj + sq), Mt(ki + rp, kj + sq−1)).

Hence each transposition can be computed in O(rf sc) time. The sum of all
the lengths of the (up to) k2 entries in H is exactly k2. In the worst case all the
rows and columns are different in each list, so the rf values and the sc values
might add up k2, but no individual rf or sc term can exceed k. The worst case
occurs when as few terms as possible are as large as possible, that is, k values
rf and sc have value (almost) k and the others have value (almost) zero. In this
case the overall cost for all the relevant transpositions is O(k3).

Note that, this time, even for the relevant transpositions we do not fill the
whole bottom row and rightmost column of the blocks. This is not necessary, as
Rt and Ct keep row-wise and column-wise information of the last time transpo-
sition t was relevant.

6 Transposition Invariant Levenshtein Distance

The Levenshtein distance [10] ed(A, B) between strings A and B is the minimum
number of character insertions, deletions, and substitutions, necessary to make
them equal. Levenshtein distance can be computed in O(mn) time [13] time with
the classical recurrence:

D(0, 0) = 0

D(i, j) = if ai = bj then D(i − 1, j − 1)

else 1 + min(D(i − 1, j), D(i, j − 1), D(i − 1, j − 1)),

so that ed(A, B) = D(m, n).
Transposition invariant Levenshtein distance aims at finding the minimum

distance ed(A + t, B) over all t. Apart from the obvious O(mn σ) time solution,
there exists an O(mn log log max(m, n)) time algorithm based on sparse dynamic
programming [12]. The backtracking algorithm [7] can also be extended to deal

with this distance. In this section we show how the ideas we developed for LCTS
can be extended to obtain O(mn

√
σ) time for Levenshtein distances.

First, we can apply the basic algorithm of Section 3. However, as no simple
rule like Property 1 holds to handle regions without matches, we must fully com-
pute the bottom row and rightmost column for all the irrelevant transpositions
as well. This ensures that the neighboring blocks always have computed the
transpositions one needs for the current block. The O(σk) border cells for irrele-
vant transpositions can be filled in O(σk) time using the algorithm for different
letter boxes from [11, Section 3]. Thus the overall cost is

O
(

mn/k2
(

σ + k2 + k4 + σk
))

= O
(

mn
(

σ/k + k2
))

,

which is optimized for k = σ1/3 to yield O(mn σ2/3) complexity.
Recursion can be applied over this basic scheme, just as in Section 4. We

call T0(k, k, k2) = O(k4) the complexity of the naive computation of relevant
transpositions, T1(k, k, k2) = O(k2+4/3) that of computing the transpositions
using the O(mn σ2/3) time algorithm, and so on. This time the analysis is more
complex and we choose k optimizing only the complexity, not the constant.
This is sufficient since, as we see next, even so the constant does not grow.

With h levels of recursion we obtain O

(

2
2h+2−h−4

2h+1−1 mn σ
2h

2h+1−1

)

complexity,

thus Th(k, k, k2) = O

(

2
2h+2−h−4

2h+1−1 k
2+ 2h+1

2h+1−1

)

. This is clearly true for h = 0,

while for general h we have by induction the complexity

O
(mn

k2

(

σ + k2 + Th−1(k, k, k2) + σk
)

)

= O

(

mn

(

2
2h+1−h−3

2h−1 k
2h

2h−1 +
σ

k

))

,

which is optimized (in complexity) for k = σ
2h−1

2h+1−1 /2
2h+1−h−3

2h+1−1 to yield the
promised result. Since the constant (as a function of h) is upper bounded by

4, the complexity is actually O

(

mn σ
2h

2h+1−1

)

.

Thus we can reach complexity O
(

mn σ1/2+ε
)

for any ε > 0, by using h =

log2

(

1 + 1
2ε

)

− 1 levels of recursion. In particular, by choosing ε = 1/ logσ we
obtain the promised O(mn

√
σ) complexity with O(log log σ) levels of recursion.

7 Conclusions

We have presented an O(mn log σ) time algorithm to compute the longest com-
mon subsequence with transposition invariance. The algorithm is simple and
easy to implement. Its complexity is better than all existing alternatives, except
the one based on dynamic programming [12] for large σ > log min(m, n). We
have also shown that the transposition invariant version of Levenshtein distance
can be computed in time O(mn

√
σ).

The algorithms are easily extended to the search problem, where one seeks
for all the substrings of B that are similar enough to A. In Levenshtein distance

a threshold k < m is chosen and one reports all the endpoints of substrings
of B that are at (transposition invariant) distance at most k from A. This is
easily handled by setting D(0, j) = 0 for all j and produces no effect in our
algorithms. We have also to consider that each computed cell D(i, j) induces
cost D(m, j′) = D(i, j) + (m − i) at columns j ≤ j′ ≤ j + (m − i), and D(i, j +
(m−i)+c) = D(i, j)+(m−i)+c for c > 0. Hence, for each cell D(i, j) we compute,
we may mark an interval j ≤ j′ ≤ j + d of occurrence positions in B, that is,
where D(m, j′) ≤ k. This marking, and remotion of duplicated occurrences, can
easily be handled in overall O(n) time [12]. Hence the search complexity stays at
O(mn

√
σ). The matrix should be filled column by column to guarantee O(mσ)

space. To find substrings of B with long enough LCS to A we use the indel
distance, which is the dual of the LCS, id(A, B) = m + n − 2 · LCS(A, B). The
indel distance can be dealt with essentially as the LCS computation and permits
searching in O(mn log σ) time.

It is not clear whether it is possible to achieve O(mn) time on transposition
invariant distance computation, so that no penalty is paid for the transposition
invariance. No useful lower bounds are known. It would also be interesting to
try to extend our algorithms to other more complex distances of interest in
music retrieval, such as weighted edit distances. We have made use of particular
properties of the LCS and Levenshtein distance to obtain our complexities, so it
is not clear what can be achieved for other distances.

References

1. H. Bunke and J. Csirik. An improved algorithm for computing the edit distance
of run-length coded strings. Information Processing Letters, 54(2):93–96, 1995.

2. T. Crawford, C. Iliopoulos, and R. Raman. String matching techniques for musical
similarity and melodic recognition. Computing in Musicology 11:71–100, 1998.

3. M. Crochemore, C. Iliopoulos, Y. Pinzon, and J. Reid. A fast and practical bit-
vector algorithm for the longest common subsequence problem. Information Pro-
cessing Letters, 80(6):279–285, 2001.

4. M. Crochemore, G. Landau, and M. Ziv-Ukelson. A sub-quadratic sequence align-
ment algorithm for unrestricted cost matrices. In Proc. SODA 2002, pp. 679–688.
ACM-SIAM, 2002.

5. D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

6. J. Hunt and T. Szymanski. A fast algorithm for computing longest common sub-
sequences. Commun. ACM, 20(5):350–353, May 1977.

7. K. Lemström, G. Navarro, and Y. Pinzon. Practical algorithms for transposition-
invariant string matching. Journal of Discrete Algorithms (JDA), 2004. Elsevier
Science. To appear. Abstract in Proc. SPIRE’04, LNCS, to appear.

8. K. Lemström and J. Tarhio. Searching monophonic patterns within polyphonic
sources. In Proc. RIAO 2000, pp. 1261–1279 (vol 2), 2000.

9. K. Lemström and E. Ukkonen. Including interval encoding into edit distance based
music comparison and retrieval. In Proc. AISB 2000, pp. 53–60, 2000.

10. V. Levenshtein. Binary codes capable of correcting deletions, insertions and rever-
sals. Soviet Physics Doklady 6:707–710, 1966.

11. V. Mäkinen, G. Navarro, and E. Ukkonen. Approximate matching of run-length
compressed strings. Algorithmica 35:347–369, 2003.

12. V. Mäkinen, G. Navarro, and E. Ukkonen. Algorithms for transposition invariant
string matching. In Proc. STACS’03, LNCS 2607, pp. 191–202, 2003. Full version
as Technical Report TR/DCC-2002-5, Dept. of Comp. Science, Univ. of Chile,
July 2002, ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/ti matching.ps.gz.
To appear in Journal of Algorithms.

13. P. Sellers. The theory and computation of evolutionary distances: Pattern recog-
nition. Journal of Algorithms, 1(4):359–373, 1980.

