
Succinct Representation of Sequences⋆

Paolo Ferragina1, Giovanni Manzini2, Veli Mäkinen3, and Gonzalo
Navarro4

1 Dipartimento di Informatica, University of Pisa, Italy.
2 Dipartimento di Informatica, University of Piemonte Orientale, Italy.

3 Department of Computer Science, University of Helsinki, Finland.
4 Center for Web Research, Department of Computer Science, University of Chile,

Chile.

Abstract. Given a sequence S = s1s2 . . . sn such that 1 ≤ sq ≤ r for
all q, where r = O(polylog(n)), we show how S can be represented using
nH0(S)+ o(n) bits (where H0(S) is the zero-order entropy of S), so that
we can know any sq, as well as answer rank and select queries on S, in
constant time. This extends previous results on binary sequences, and
improves previous results on general sequences where those queries are
answered in O(log r) time. Furthermore, we show how our technique can
be applied to improve a succinct full-text index.

1 Introduction

Recent years have witnessed an increasing interest on succinct data struc-
tures. Their aim is to represent the data using as little space as possible,
yet efficiently answering queries on the represented data. Several results
exist on the representation of sequences [5, 6, 1, 9, 10], trees [7, 3], graphs
[7], permutations [8], etc. The structures differ depending on the types of
queries supported.

A heavily studied case is that of binary sequences, with rank and
select queries. Given a sequence S = s1s2 . . . sn, with each sq ∈ {0, 1},
Rankc(S, q) is the number of times symbol c ∈ {0, 1} appears in S[1, q] =
s1s2 . . . sq, and Selectc(S, q) is the position in S of the q-th occurrence of
symbol c ∈ {0, 1}.

The first results on binary sequences [5, 6, 1] achieved constant time
on those queries by using n + o(n) bits. In those schemes, n bits are used
by S itself and o(n) additional bits are needed by the data structures used
to answer Rankc and Selectc queries. Further refinements [9, 10] achieved
constant time on the same queries by using nH0(S) + o(n) bits, where

⋆ Partially supported by the Italian MIUR projects ALINWEB, ECD, Grid.it and
‘‘Piattaforma distribuita ad alte prestazioni’’, and by Millennium Nucleus
Center for Web Research, Grant P01-029-F, Mideplan, Chile.

Hk(S) is the k-th order entropy of S. In this case, a further nontrivial
query that is solved is determining sq given q.

The case of general sequences, where 1 ≤ sq ≤ r for some r, has re-
ceived less attention. The only existing proposal is the wavelet tree [4],
an elegant data structure that allows to reduce rank/select operations
over arbitrary-alphabet sequences onto rank/select operations over bi-
nary sequences. By using results on binary sequence representations [9,
10] the wavelet tree achieves a representation using nH0(S) + o(n) bits
that answers sq and Rankc(S, q) queries in O(log r) time.

In this paper we generalize a result on binary sequences [9, 10] to
sequences of symbols in the range [1, r], useful for small r. The main
challenge in this generalization is to generate short descriptions of pieces
of the sequence, which can be computed in constant time and are used to
index into tables with partial precomputed queries. This is more com-
plex than for binary sequences. We obtain a sequence representation
using nH0(S) + O((rn log log n)/ logr n) bits which answers queries sq,
Rankc(S, q) and Selectc(S, q) in constant time. This is interesting only for
small r = o(log n/ log log n).

This base result permits us generalizing wavelet trees to be r-ary, for
small r. Wavelet trees are binary in part because they need to represent
a sequence telling which branch was chosen by each element of the se-
quence. Our generalization, in turn, strenghtens the base result since it
achieves nH0(S) + o(n) bits of space and constant query time for any
r = O(polylog(n)). That is, the same queries answered in logarithmic
time with binary wavelet trees [4] are now answered in constant time.

Finally, we show how this result can be used for text indexing. A full-

text self-index is a succinct data structure that represents a text string
T [1, n] (which is a sequence over an alphabet Σ) while supporting not only
access to any character T [i] but also the efficient search for an arbitrary
pattern as a substring of the indexed text. It has been recently shown
[2] that a full-text self-index can be represented using nHk(T) + o(n)
bits of space, for any k ≤ α log|Σ| n, 0 < α < 1, so as to answer the
following queries: (i) number of occurrences of a string pattern P [1, p] in
T in time O(p log |Σ|), (ii) initial text position of each such occurrence in
time O(log |Σ| log1+ε n) for any ε > 0, and (iii) content of T [i, i + ℓ − 1]
in time O(log |Σ|(ℓ+log1+ε n)). This result makes use of wavelet trees for
its internal workings. By using our new sequence representation instead
of the wavelet tree, we achieve the same space usage and the log |Σ| term
disappears from all time complexities. The result is the fastest among

those full-text indexes that use minimum space, nHk(T) + o(n) bits (the
only other indexes in this category are [4, 2]).

2 Representing sequences of small numbers

Let S be a sequence of n numbers in the range [1, r], called symbols

from now on. Our aim is to represent S essentially in the space re-
quired by its zero-order entropy, nH0(S), so as to answer S[q], Rankc(S, q)
and Selectc(S, q) queries in constant time. Our only assumption on r is
2 ≤ r ≤ √

n, albeit our final result will be interesting only for r =
o(log n/ log log n). We first concentrate on S[q] and Rankc(S, q) queries
and address Selectc(S, q) later.

Structure. We divide S into blocks of size u =
⌊

1

2
logr n

⌋

. We define the

following sequences (which are not stored explicitly) of values indexed by
block number i ∈ 1 . . . ⌈n/u⌉:
– Si = S[u(i − 1) + 1 . . . ui] is the sequence of symbols of block i.
– For each symbol c ∈ [1, r], N c

i = Rankc(Si, u) is the number of occur-
rences of c in Si.

– Li =
⌈

log
(u
N1

i
,...,Nr

i

)

⌉

is the number of bits necessary to code all possi-

ble sequences of u symbols in [1, r] having N c
i occurrences of symbol

c, for c ∈ [1, r].

We store the following information:

– For each block i, an Li-bits identifier for the sequence Si among those
with N c

i occurrences of symbol c, c ∈ [1, r]. The identifier is actually an
index inside a table EN1

i
,...,Nr

i
, which contains the actual sequences (see

next). These Li-bits identifiers are called Ii and they are of variable
length. We store all them concatenated into a single binary sequence.

– For each block i, an identifier for the tuple (N1
i , . . . ,N r

i) among all
combinations of numbers that add up u. The identifier, called Ri, is
an index inside a table F , which contains data on the tuple (see next).

– Information to answer partial sum queries on Li, that is, to compute
∑i

j=1 Lj in constant time for any block i.
– Information to answer partial sum queries on N c

i , that is, to compute
∑i

j=1 N c
j in constant time for any block i and symbol c.

– For every possible combination N1 + . . . + N r = u, a table E =
EN1,...,Nr giving the u-length symbol sequence corresponding to each
identifier Ii in that combination. Furthermore, each entry G of E
stores the answers to all Rankc(G, q) queries, 1 ≤ q ≤ u, c ∈ [1, r].

– A table F , with entries indexed by the Ri numbers, points to the table
EN1,...,Nr corresponding to each valid tuple (N1, . . . ,N r).

Solving queries. To answer queries about position q we first compute
the block number i = ⌈q/u⌉ where q belongs and the offset ℓ = q−(i−1)u
inside the block. Then we compute E = F [Ri], the table of entries corre-
sponding to block i, and G = E[Ii], the entry of E corresponding to block
i. Note that, since the Ii values use variable number of bits, we need to
know which is the starting and ending positions of the representation for
Ii in the sequence. These are 1+

∑i−1
j=1

Lj and
∑i

j=1 Lj , respectively, which
are known in constant time because we have partial sum information on
Li.

Now, to answer Rankc(S, q) we evaluate (in constant time) the partial
sum

∑i−1
j=1

N c
j and add Rankc(G, ℓ). To answer S[q] we simply give G[ℓ].

Both queries take constant time.

Space usage. First notice that uH0(Si) = log
(u
N1

i
,...,Nr

i

)

, and thus

⌈n/u⌉
∑

i=1

uH0(Si) =

⌈n/u⌉
∑

i=1

log

(

u

N1
i , . . . ,N r

i

)

= log

⌈n/u⌉
∏

i=1

(

u

N1
i , . . . ,N r

i

)

≤ log

(

n

n1, . . . , nr

)

= nH0(S), (1)

where nc is the total number of occurrences of character c in S. The
inequality holds because distributing N c

i symbols over blocks Si is just
one possible way to distribute nc symbols over S [9]. This result permits
bounding the length of the sequence Ii as

⌈n/u⌉
∑

i=1

Li =

⌈n/u⌉
∑

i=1

⌈

log

(

u

N1
i , . . . ,N r

i

)⌉

≤
⌈n/u⌉
∑

i=1

uH0(Si) + ⌈n/u⌉

≤ nH0(S) + O(n/ logr n).

Let us now consider the numbers Ri. The number of different tuples
(N1, . . . , N r) that add up u is

(u+r−1

r−1

)

≤ (u + 1)r. Hence it is enough to
use ⌈r log(u + 1)⌉ bits for each Ri (which actually is enough to describe
any tuple of numbers in [0, u]). Accumulated over the ⌈n/u⌉ blocks, this
requires O(rn log log n/ logr n) bits for sequence R.

We consider now the structures to answer partial sum queries [9],
namely

∑i
j=1 N c

j and
∑i

j=1 Lj. Both structures are similar, so we con-
centrate on L, whose upper bounds are larger: Since

(u
N1

i
,...,Nr

i

)

≤ ru, we

have 0 ≤ Li ≤ ⌈u log r⌉. We remark that the length of the sequence
is t = ⌈n/u⌉ and the partial sums over L do not exceed n ⌈log r⌉. Di-
vide L into blocks of length ⌈log(n ⌈log r⌉)⌉, and store the full partial
sums for each block beginning. This requires t = O(n/ logr n) bits. In-
side each block, store the partial sums relative to the block beginning.
As these cannot exceed ⌈u log r⌉ ⌈log(n ⌈log r⌉)⌉, we only need O(log u +
log log r + log log n) = O(log log n) bits for each. Hence we need overall
O(t log log n) = O(n log log n/ logr n) bits for the partial sum information
on L. A partial sum query is answered in constant time by adding the
partial sum of the block of i and the relative partial sum of i inside its
block. The same technique can be applied to sequences N c, whose val-
ues are in the range [0, u], to obtain O(rn log log n/ logr n) bits of space
because there are r sequences to index.

Finally, let us consider tables E and F . The total number of entries
over all EN1,...,Nr tables is clearly ru since each sequence of u symbols
over [1, r] belongs exactly to one combination. For each such entry G we
store the sequence itself plus answers to all Rankc(G, q) queries, needing
O(u log r + ru log u) bits per entry. Added over all the entries of all the
E tables, we have O(ru(u log r + ru log u)) = O(

√
nr logr n log log n) bits,

which is o(rn log log n/ logr n). Table F has necessarily less entries than
E, since there is at least one distinct entry of E for each (N1, . . . ,N r)
combination in F . Each entry in F points to the corresponding table
EN1,...,Nr . If we concatenate all EN1,...,Nr tables into a supertable of ru

entries, then F points inside that supertable, to the first entry of the
corresponding table, and this needs O(u log r) bits per entry. Overall this
adds O(ruu log r) bits, which is negligible compared to the size of E.

We remark that the simpler solution of storing pointers Pi = F [Ri]+Ii

into the large supertable E would require n log r bits as the pointers are
as long as the sequences represented. This would defeat the whole scheme.
Thus we we use table F as an intermediary so as to store the smaller Ri

(subtable identifier) and Ii (index into subtable).

Solving Selectc(S, q) queries. The solution to Selectc(S, q) queries on
binary sequences depicted in [10, Lemma 2.3] divides the sequence into
blocks of size u (with the same formula we use for u, with r = 2) and
makes use of a sequence A, so that Ai is the number of bits set in the
i-th block. In our scheme, sequence A corresponds to sequence N c for
each character c ∈ [1, r]. We can use exactly the same scheme of [10]
for each of our sequences N c. They need precisely the same partial sum
queries we already considered for N c, as well as other structures that

require O(n log(u)/u) bits per sequence N c. They also need to have all
Selectc(G, q) queries precomputed for each possible block G, which we
can add to our E tables for additional O(ruru log u) bits. Overall, the
solution needs O(rn log(u)/u) = O(rn log log n/ logr n) additional bits of
space.

Theorem 1. Let S[1, n] be a sequence of digits in [1, r], with 2 ≤ r ≤ √
n.

There exists a data structure that uses H0(S) + O(r(n log log n)/ logr n)
bits of space, supporting S[q], Rankc(S, q) and Selectc(S, q) queries in con-

stant time.

The theorem is a generalization of the result in [9, 10], which uses
nH0(S) + O((n log log n)/ log n) bits of space to represent a binary se-
quence S (r = 2) so as to answer Rankc(S, q) and Selectc(S, q) queries in
constant time. With constant r, queries S[q] are automatically answered
in constant time by finding the c such that Rankc(S, q)−Rankc(S, q−1) =
1. Moreover, with binary sequences we have Ri = i.

Note that, although we assume r ≤ √
n, the result is interesting only

for r = o(log n/ log log n), as otherwise the O(r(n log log n)/ logr n) term
is Ω(n log r) and it dominates the space complexity. In the next section
we show how to reduce the dependence on r.

3 Generalized wavelet trees

In this section we use the representation of sequences developed in Sec-
tion 2 to build a more flexible sequence representation, which adapts
better to the number of symbols represented. Albeit we solve exactly
the same problem, we will change notation a little bit for clarity. This
time our sequence S[1, n] will be a sequence of symbols over an alphabet

Σ = [1, |Σ|], so that r ≤ Σ will be reserved to applications of Theo-
rem 1. Actually, for r = |Σ| the r-ary wavelet tree will be essentially the
structure of Theorem 1.

Structure. Let us consider an r-ary wavelet tree built over a string
S[1, n]. Much like a wavelet tree, each node v of the r-ary tree is re-
sponsible for a subset of the alphabet Σ, say Σv, so that v represents
the subsequence Sv of S formed by the characters in Σv. The root node
stands for the whole Σ, and thus represents the whole string S. Each node
v with children v1 . . . vr splits its alphabet Σv into r equally-sized subsets
Σv1

. . . Σvr , which are integral ranges of size |Σvi
| ≈ |Σv|/r. Notice that

the leaves of the tree correspond to singletons of Σ, and that the tree has
height at most 1 + logr |Σ|.

In each non-leaf node v parent of v1, . . . , vr, we represent a sequence
Sv, of nv = |Sv| digits in the range [1, r], such that Sv[q] = j whenever
Sv[q] ∈ Σvj

. The data structure of Theorem 1 is built over Sv and stored
at node v to answer in constant time Rankj(Sv, q) and Sv[q] queries.

To be more precise, all the sequences Sv at each tree level h are con-
catenated into a long sequence Sh. As we go down the tree, it is easy
to maintain in constant time the index q∗ + 1 where the current node
sequence Sv starts inside the level sequence Sh corresponding to node v.
Each node v will maintain a vector Cv[1, r], so that Cv[j] is the number
of occurrences in Sv of symbols in [1, j − 1]. If we are currently at node v,
whose sequence in level h starts at index q∗ + 1, and go down to subset
Σvj

, then the sequence for vj at level h+1 starts at q∗ +Cv[j]+ 1. Alter-
natively, to traverse the tree upwards, if the sequence Svj

starts at index
q∗ + 1 of Sh+1, and v is the parent of node vj, then sequence Sv starts at
q∗ − Cv[j] + 1 in Sh. We can store pointers (with negligible extra space)
to find the C vectors of children or parents, or we can take advantage of
the tree being almost perfect to avoid such pointers. We need also, for
bottom-up traversal, |Σ| pointers to the sequences corresponding to each
symbol in the bottom sequence Sh.

Solving queries. To compute Rankc(S, q), we start at the root node v
and determine in constant time the subset Σvj

to which c belongs. We
then compute qvj

= Rankj(Sv, q), which is the position corresponding
to q in Svj

. We then recursively continue with q = qvj
at node vj . We

eventually reach a tree leaf vl (corresponding to the subset {c} ⊆ Σ), for
which we have the answer to our original query Rankc(S, q) = qvl

. On the
other hand, to determine S[q], we start at the root node v and obtain
j = Sv[q], so that S[q] ∈ Σvj

. Then we continue recursively with node
vj and q = qvj

= Rankj(Sv, q) as before, until reaching a leaf vl, where
Σvl

= {S[q]} is finally determined. Both queries take O(logr |Σ|) time.

To compute Selectc(S, q), instead, we proceed bottom-up. We identify
the leaf vl corresponding to subset {c} and then proceed upwards. At leaf
vl (not actually represented in the tree), we initialize qvl

= q. This is the
position we want to track upwards in the tree. Now, let v be the parent
of vj, then qv = Selectj(Sv, qvj

) is the position of Svj
[qvj

] in Sv. We reach
the root, with qroot = Selectc(S, q), in O(logr |Σ|) time.

Actually we do not represent sequences Sv but level-wise sequences
Sh. Assume that our current sequence Sv starts at position q∗ + 1 in

Sh. Then, queries over Sv are translated to queries over Sh as follows:
Sv[q] = Sh[q∗ + q], Rankj(Sv, q) = Rankj(S

h, q∗ + q)− Rankj(S
h, q∗), and

Selectj(Sv, q) = Selectj(S
h,Rankj(S

h, q∗) + q).

Space usage. An immediate advantage of having all sequences Sh[1, n]
over the same alphabet [1, r] is that all tables E and F are the same
for all levels, so they take o((rn log log n)/ logr n) overall. All the other
O((rn log log n)/ logr n) size structures used to prove Theorem 1 total-
ize O(log |Σ| (rn log log n)/ log n) bits of space by adding up all the lev-
els. The new structures Cv we introduced need O(r log n) bits each, and

there is one Cv array per non-leaf node v. This totalizes O
(

|Σ|
r−1

r log n
)

=

O(|Σ| log n) bits. This space includes also the pointers to leaves and the
parent-child pointers in the tree, if they are used.

Let us consider now the entropy-related part. For each non-leaf node
v at tree level h, with children v1, . . . , vr, sequence Sv spans at most
2 + ⌊nv/u⌋ blocks in Sh (recall from Section 2 that the sequence is di-

vided into blocks of length u =
⌊

1

2
log n

⌋

). The sum of local zero-order

entropies uH0(S
h
i) for the ⌊nv/u⌋ blocks is a lower bound to nvH0(Sv)

(recall Eq. (1)). For the other 2 blocks, we simply assume that they take
the maximum u ⌈log r⌉ bits. Added over all the sequence boundaries over
the whole tree we have at most r

r−1
|Σ| boundaries, for an overall space

overhead of O(|Σ| log n) bits due to partial blocks.
Thus, let us focus on the summation of all nvH0(Sv) terms over all

the tree. Note that this is

−nv

r
∑

j=1

nvj

nv
log

nvj

nv
= −

r
∑

j=1

nvj
log nvj

+
r
∑

j=1

nvj
log nv

= nv log nv −
r
∑

j=1

nvj
log nvj

,

where we note that the addition of all the first terms nvj
log nvj

over
all the children of v will cancel with the second term of the formula
for their parent v. Therefore, after all the cancelations, the only surviving
terms are n log n corresponding to the tree root and the terms −nul

log nul

corresponding to the parents of the tree leaves (where nul
= nc for some

c ∈ Σ, being nc the frequency of character c). This is

n log n −
∑

c∈Σ

nc log(nc) = nH0(S).

Theorem 2. Let S[1, n] denote a string over an arbitrary alphabet Σ.

The r-ary wavelet tree built on S, for 2 ≤ r ≤ min(|Σ|,√n), uses nH0(S)+
O(|Σ| log n) + O(log |Σ| r(n log log n)/ log n) bits of storage and supports

in O(logr |Σ|) time the queries S[q], Rankc(S, q) and Selectc(S, q), for any

c ∈ Σ and 1 ≤ q ≤ n.

Moreover, if |Σ| = O(polylog(n)), then r can be chosen so that the tree

answers both queries in constant time and takes nH0(S)+O(n/ log1−ε n)
bits of space, for any constant ε > 0.

Proof. The first part of the theorem, for general r, is a consequence of the
development in this section. For the last sentence, note that by choosing
r = |Σ|1/κ, for constant κ > 0, we can support the query operations in
constant time O(κ). Now, if |Σ| = O(polylog(n)) = O((log n)d), then
we can choose any κ > d to obtain O(κn(log log n)2/(log n)1−d/κ) space
overhead. For any constant ε > 0, we choose k > d/ε to ensure that
O(n(log log n)2/(log n)1−d/κ) = O(n/ log1−ε n). ⊓⊔

The theorem is a generalization upon the (binary) wavelet tree data
structure [4], which takes nH0(S) + O(log |Σ| (n log log n)/ log n) space
and answers the same queries in O(log |Σ|) time. The last part shows that
the generalization permits an improvement when |Σ| = O(polylog(n)).

4 Full-text indexes

Given a string T [1, n] of symbols over an alphabet Σ, a full-text index
over T supports the following queries: (i) count the number of occurrences
of a pattern string P [1, p] as a substring of T , (ii) locate the position in
T of each such occurrence, (iii) retrieve T [i, i + ℓ − 1], a substring of T
of length ℓ. The following theorem was proved in [2]:

Theorem 3. Let T [1, n] be a string over an alphabet Σ. Then there ex-

ists a representation for T using nHk(T)+O(log |Σ|(n log log n)/ log n)+
O(n/ logε n) bits for any k ≤ α log|Σ| n, 0 < α < 1, and ε > 0, such that it

can count the number of occurrences of any pattern string P [1, p] in T in

O(p log |Σ|) time, locate each occurrence in O(log |Σ| log1+ε n) time, and

retrieve any text substring of length ℓ in O((ℓ + log1+ε n) log |Σ|) time.

The result was obtained using wavelet trees [4]. Actually, it was shown
in [2] that any alternative to the wavelet tree can be used to obtain
different space-time tradeoffs, as follows.

Theorem 4. Let T [1, n] be a string over an alphabet Σ. Assume there

exists a representation of sequences S[1, s] of symbols in [1, |Σ|] taking

sH0(S) + f(s) bits of space, for concave f , which answers queries S[q] in

time ta(s) and Rankc(S, q) in time tr(s). Then there exists a representa-

tion for T using nHk(T)+f(n)+O(n/ logε n) bits, for any k ≤ α log|Σ| n,

0 < α < 1, and ε > 0, such that it can count the number of occurrences of

a pattern string P [1, p] in T in O(p tr(n)) time, locate each occurrence in

O((ta(n) + tr(n)) log1+ε n) time, and retrieve any text substring of length

ℓ in O((ℓ + log1+ε n)(ta(n) + tr(n))) time.

By combining Theorems 2 and 4, and using an upper limit of 1/2 for
both ε’s, we obtain the following:

Theorem 5. Let T [1, n] be a string over an alphabet Σ, where |Σ| =
O(polylog(n)). Then there exists a representation for T using nHk(T) +
O(n/ logε n) bits for any k ≤ α log|Σ| n, 0 < α < 1, and 0 < ε < 1/2,
such that it can count the number of occurrences of any pattern string

P [1, p] in T in O(p) time, locate each occurrence in O(log1+ε n) time,

and retrieve any text substring of length ℓ in O(ℓ + log1+ε n) time.

This is the best existing result on succinct full-text indexes, in the
sense that our index belongs to the class of the most succinct existing
indexes [2, 4], and it is the fastest among those.

5 Conclusions

We have presented a new succinct sequence representation that takes
space essentially equal to its zero-order entropy. This representation per-
mits retrieving any sequence character, knowing how many times any
character has appeared before any position, and finding the q-th occur-
rence of any character, all in constant time. Our result extends previous
results on binary sequences [9, 10] and improves previous results that
answers those queries in time logarithmic with the maximum number
appearing in the sequence [4].

We have shown that our representation can be applied to improve a
recent result on full-text indexing [2]. The text index we present belongs
to the class of the most succinct ones, needing essentially the space for a
k-th order entropy representation of the text. Among those indexes, ours
gives the best search complexities.

References

1. D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.
2. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. An alphabet-friendly

FM-index. In Proc. 11th International Symposium on String Processing and In-
formation Retrieval (SPIRE 2004), LNCS, 2004. To appear.

3. R. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal represen-
tation for balanced parentheses. In Combinatorial Pattern Matching Conference
(CPM’04), LNCS 3109, pages 159–172, 2004.

4. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In ACM-SIAM Symposium on Discrete Algorithms (SODA ’03), pages 841–850,
2003.

5. G. Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie Mellon Uni-
versity, 1989.

6. I. Munro. Tables. In Proceedings of the 16th Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 37–42. Springer-Verlag LNCS
n. 1180, 1996.

7. I. Munro and V. Raman. Succinct representation of balanced parentheses, static
trees and planar graphs. In Proceedings of the 38th IEEE Symposium on Founda-
tions of Computer Science, pages 118–126, 1997.

8. J. Munro, R. Raman, V. Raman, and S. Rao. Succinct representations of per-
mutations. In Proc. 30th International Colloquium on Automata, Languages and
Programming (ICALP ’03), pages 345–356. Springer-Verlag LNCS n. 2719, 2003.

9. R. Pagh. Low redundancy in dictionaries with O(1) worst case lookup time. In
Proc. ICALP, pages 595–604, 1999.

10. R. Raman, V. Raman, and S.Srinivasa Rao. Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In ACM-SIAM Symposium on
Discrete Algorithms (SODA ’02), pages 233–242, 2002.

