
Equivalence of OLAP Dimension SchemasCarlos A. Hurtado and Claudio Guti�errezDepartment of Computer ScienceUniversity of Chilefchurtado,cgutierrg@dcc.uchile.clBlanco Encalada 2120, Santiago, Chile , C.P. 6511224Paper ID: 1561 IntroductionOLAP dimensions are data hierarchies that popu-late data warehouses. These entities are hierarchi-cally organized information that de�ne the perspec-tive upon which the data is viewed. As an example,in a data warehouse we may have dimensions describ-ing products, stores and time, which may be used tovisualize the facts generated by a sales process. Fig-ure 1 depicts a dimension that models �nancial ser-vices o�ered by a bank: accounts, credit cards andloans. The products are classi�ed through the hi-erarchy path Product-ProdType-ProdCategory-All.Some types of products, like personal loans and somesorts of accounts, are handled by branches, whereasothers, like mortgage and corporate loans, are han-dled by departments. The products handled bybranches are also classi�ed according to the categoryBranchProdType. There is a manager in charge ofeach branch and department. Finally, it happens thatall departments handle products in only one category.On the left hand side of Figure 1, there is a graphcalled hierarchy schema which models the structureof the dimension. The vertices of this graph are calledcategories. On the right hand side, there is anothergraph, called hierarchy domain, whose vertices, calledmembers, are grouped by categories and ordered by achild/parent relation. For example, in the dimensionat hand, we may say that member p1 belongs to thecategory Product and p1 has d1 as a parent in thecategory Department.Dimension Schema A dimension schema is anabstract model of a dimension commonly used tosupport summarizability reasoning in OLAP applica-tions [HM01], that is, to test whether aggregate viewsde�ned for some categories can be correctly derivedfrom a set of precomputed views de�ned for other cat-egories. In previous work [HM02] we have introduced

semantically reach dimension schemas to support thisinference task. A dimension schema, being an ab-stract representation of a dimension, represents theset of possible dimensions that conforms to it. Thisset reects the information capacity of the schema.Thus when we perform reasoning on the schema, weinfer properties of all the dimensions in the set.Dimension schemas are modeled as a hierarchyschema (i.e. the structure of the dimension) alongwith a set of integrity constraints, called dimen-sion constraints. The hierarchy schema is a di-rected acyclic graph whose vertices are the cate-gories, and whose edges capture the child/parentrelation among the members. The constraints areused to place further restrictions to let the schemacapture more precisely di�erent sets of dimensions.The most basic constraints are statements aboutpaths arising in the child/parent relation. For ex-ample, we may require that all the products han-dled by some branch are not handled by depart-ments, and viceversa. This is stated by the con-straint saying that for each product, it can haveancestors in either the path hProduct; Branchi orthe path hProduct;Departmenti, but not in both.Other constraints may express that the ancestor ofsome members is another particular member. Forexample we may state \the manager of the Asiabranch is Mr. Huang" as \hBranch = Asiai im-plies hBranch; ::;Manager = Huangi". The ex-pressions in brackets are atomic statements (calledatoms). It turns out that Boolean combinations ofatoms are needed to support summarizability reason-ing [HM02].Simple forms of these constraints characterize typ-ical classes of OLAP schemas. In this sense, this ex-tended class of schemas with constraints subsumesother well known classes in OLAP.1
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       ProdTypeFigure 1: The dimension Product: (A) hierarchy schema; (B) child/parent relation.Problem Statement Similarly to the case of gen-eral database schemas, two dimension schemas couldbe compared with respect to their information ca-pacity. Schemas with the same information capacitycan be used to simulate each other. Having di�er-ent equivalent schemas give users exibility to chooseamong several options the best suited for the appli-cation at hand. In a typical modeling scenario theuser starts with some schema and proceed to restruc-ture it. In the context of OLAP, it is very impor-tant that the restructuring process preserves schemaequivalence because the schema is more useful for rea-soning about data than it is just as a container ofdata. So we would like to keep the information onthe schema as precise as possible to capture the setof instances as tight as possible.Formal notions of schema equivalence are neededto sit restructuring mechanisms and schema designtechniques on solid grounds. For example, Miller etal. [MIR94] argue that the restrestructuringcess maybe addressed following two di�erent strategies: (i)build a desired schema and then test whether it isequivalent to the original schema; (ii) use a set ofprimitives to transform the original schema into adesired schema. In both approaches, we need to de-�ne under which conditions two dimension schemasare equivalent. In the �rst approach we need algo-rithms for the equivalence test. The second approachrequires a set of well de�ned dimension transforma-tions. The central desirable properties of such a set,soundness and completeness [Alb00], depend on thenotion of schema equivalence used as well.Di�erent notions of schema equivalence have beenaround in the database �eld. The most general notionof schema equivalene, absolute equivalence [Hul86]characterizes the minimum requirements that twoschemas must satisfy in order for them to have thesame information capacity. Absolute equivalence is

formalized by requiring the existence of a bijectionbetween the instances of the schemas. Absoluteequivalence is independent of the data model. Aproblem that arises with this notion of equivalence isthat any arbitrary mapping may be used to guaran-tee absolute equivalence; furthermore, as observed byMiller et al. [MIR93], the mappings are not requiredto be �nitely speci�able (they can be an in�nite listof pairs of schema instances).A hierarchy of more restricted notions of equiva-lence have been proposed [Hul86]. For example: in-ternal equivalence requires the existence of a bijec-tion that neither creates nor destroy elements in theinstances; query equivalence requires the mappingsto be expressible in the query language of the datamodel. We claim that they are of no practical usein the context of OLAP, because dimension instanceswith no intuitive relationship betweem tbetweenld beallowed to be associated via the mappings. This hap-pens because these mapping do not necessarily pre-serve the hierarchical arrangement of OLAP data.We sustain that two dimension instances must be re-lated via a mapping only if they have the same hierar-chical domain. In order words, in the OLAP context,we conceive restructuring as a process in which wechange the structure of the dimension (i.e. its hierar-chy schema) without modifying its data hierarchy (hi-erarchical domain). As members are associated withfacts in datacubes, this mapping restriction guar-antees that the aggregate data are preserved, thusavoiding aggregate data re-computations, and keep-ing users to browse aggregate data using the samehierarchical domain.As an example, Figure 2 depicts two possible hier-archy schemas to represent the instance on the righthand side of Figure 1. Both preserve the hierarchydomain. The constraints allow di�erent graphs torepresent the same information. For example, con-2
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(a') hProduct;Dept&AsiaBranchi � hProduct;Branchi(b') (hProduct;Branchi _ hProduct; ::;Dept&AsiaBranch = Asiai , hProduct;ProdTypei(c') hDept&AsiaBranch;Manager; ProdClassiFigure 2: Product dimension schemas.straints (c) and (d) for the hierarchy schema on thetop translate to (c') for the hierarchy schema on thebottom. Observe that dimension on the top is homo-geneous, i.e., every pair of members in the same cate-gory have ancestors in the same set of categories; theon in the bottom is heterogeneous because it modelsdepartments and branches in a single category calledDept&AsiaBranch.Contributions and Outline This paper proposesa notion of equivalence, hierarchical equivalence,which naturally captures dimension schema equiv-alence in OLAP. We prove that hierarchical equiv-alence can be characterized in terms of graph andschema isomorphisms in two known classes of dimen-sion schemas, called here canonical and balanced.This result proves that canonical schemas are moreexpressive than balanced schemas, hence formallyjustifying the introduction of canonical schemas. Westudy hierarchical equivalence in dimension schemasenriched with dimension constraints. We presentcharacterizations of hierarchical equivalence in termsof mapping between minimal dimensions containedby the schemas. We give a class of schemas {frozenschemas{ that act as normal forms for dimensionsschemas, in the sense that any dimension schema canbe reduced via some well de�ned transformation toa unique (up to isomporhism) frozen schema. Weprove that hierarchy equivalence test for frozen di-

mension reduces to a simple form of schema isomor-phism, which leads to an algorithm for testing hier-archical equivalence. Additionally this result showsthat schemas enriched with dimension constraints aremore expressive than canonical schemas. Finally weprove complexity bounds and study algorithmic as-pects of hierarchical equivalence testing.The remainder of the paper is organized as follows.In Section 2 we review the main concepts relatedto schemas and state the notation. Section 3 intro-duces hierarchical equivalence and show its relationwith balanced schemas. Section 4 studies hierarchi-cal equivalence of canonical schemas, and shows thatin this context hierarchical equivalence correspondsexactly with graph isomorphism of the correspond-ing hierarchy schemas. In Section 5 we generalizethis result to dimension schemas, that is allowing tocompare di�erent hierarchy schemas and constraints.The notion of frozen schema is introduced and stud-ied, along with the algorithmic aspects of hierarchicalequivalence are studied. In Section 6 we present re-lated work. Finally, in Section 7 we briey concludeand outline further work. The complete proofs arepresented in the appendix.3



2 Preliminaries2.1 Basic Graph TerminologyA (directed) graph G is a pair of sets (V;E) whereE � V � V . Elements v 2 V are called vertices andpairs (u; v) 2 E (directed) edges; u and v are adjacentvertices. A path in G from v to w is a sequence ofvertices v = v0; : : : ; vn = w such that (vi; vi+1) 2 E.We say that v reaches w. The length of a path is n.A cycle is a path with v = w. A dag is a directedacyclic graph. A sink in a dag is a distinguished ver-tex w reachable from every other vertex in the graph.A source in a dag is a distinguished vertex v fromwhich every other vertex of the graph is reachable.A shortcut in a dag is a path of length > 1 betweentwo adjacent vertices. Given a vertex v of G, an up-graph is the subgraph of G generated by v and all thevertices reachable from it.Given two graphs G = (V;E) and G0 = (V 0; E0), agraph morphism is a function � : V ! V 0 preservingedges, that is, (u; v) 2 E implies (�(u); �(v)) 2 E0.The morphism � is called an isomorphism (resp.monomorphism, epimorphism) if � as a function isbijective (resp. injective, onto).2.2 Dimension InstanceAssume the existence of (possibly in�nite) sets of cat-egories C, and of members M.De�nition 1 (Hierarchy Schema) A hierar-chy schema is a dag H = (C;%), where C � C,having a distinguished category All 2 C which is asink.De�nition 2 (Hierarchy Domain) A Hierarchydomain is a dag h = (M;<) where M � M, hav-ing a distinguished member all 2M which is a sink,and without shortcuts.The last condition in De�nition 2 (no shortcuts)avoids redundancies (transitive edges) in the repre-sentation of the data.Given a child/parent relation <, we denote by �the transitive closure of <. The reexive and transi-tive closure of <, denoted �, is called rollup relation,and is a partial order between members.De�nition 3 (Dimension instance) A dimensioninstance d over a hierarchy schema (C;%) is a graphmorphism d : (M;<)! (C;%) such that:1. (M;<) is a hierarchy domain;2. d(all) = All;3. for all x and y 6= z, if x � y ^ x � z thend(y) 6= d(z).

The fact that d is a graph morphism in De�ni-tion 3 states that whenever we have a child/parentrelationship m1 < m2 between some pair of mem-bers m1 2 c1 and m2 2 c2, then there is an edgec1 % c2 in the hierarchy schema representing linksbetween categories c1 and c2. Condition 3 of De�-nition 3 is a basic restriction in OLAP data model-ing [HMV99, CT97, Kim97, LAW98], and states thatthe rollup relation � is functional (i.e., single valued)between every pair of categories. This motivates tointroduce the rollup mapping between two categoriesc1 and c2 of a dimension d, denoted �c2c1d, which isthe restriction of � to d�1(c1) and d�1(c2).2.3 Dimension SchemaA dimension schema can be viewed as an abstractmodel of a dimension. It is used to visualize the dataand to reason about summarizability. In previouswork [HM02] we showed that the hierarchy schemaitself is not enough expressive to support summa-rizability reasoning, and should be extended withconstraints. This motivated us to introduce a classof constraints, dimension constraints, which togetherwith the hierarchy schema forms a suitable schemato support summarizability reasoning. In this view-point, a dimension schema consists of a hierarchyschema, along with a set of dimension constraints.This notion of schema generalizes most well knownclasses of dimension schema. In what follows we for-malize these notions.De�nition 4 (Dimension Constraint) Let H =(C;%) be a hierarchy schema, c 2 C, K � M. Thelanguage of constraints (with root c) has the followingatoms:1. Path atoms: hc; c1; � � � ; cni, where the cj mustsatisfy that cc1 � � �cn is a path in H;2. Equality atoms: hc; ::; c0 = ki, where c0 is suchthat there is a path from c to c0, and k 2 K.A dimension constraint with root c is a Booleancombination � of atoms of the above kind.Dimension constraints consider the usual connec-tives :;^;_;);,, and � for exclusive disjunction.In addition, ? and > will denote the false and thetrue proposition, respectively.De�nition 5 (Semantics of Constraints) Let d :(M;<) ! (C;%) be a dimension instance, and � aconstraint with root c. Then d j= � if and only iffor all m 2 d�1(c), d j= �[c=m],where d j= �[c=m] is de�ned recursively as follows:1. d j= hc; c1; : : : ; cni[c=m] i� there is a pathmx1 � � �xn in (M;<) with d(xi) 2 ci.4



2. d j= hc; ::; c0 = ki[c=m] i� d(k) 2 c0 and m � k.3. d j= (� ^  )[c=m] i� d j= �[c=m] and d j= [c=m]. Similarly for _ and the other Boolean con-nectives.Given a hierarchy schema H and two sets of con-straints �;�0 over H, we say that � is equivalent to�0, if for all dimension instances d over H it holds:d j= � i� d j= �0.Now we are ready to introduce the concept of Di-mension Schema. The following de�nition extendsDe�nition 3 in the presence of constraints.De�nition 6 (Dimension Schema) A dimensionschema is a pair (H;�) where H is a hierarchyschema and � is a set of constraints.A dimension instance d over a dimension schemaD = (H;�) is a dimension instance d over H suchthat d j= �. The set of dimensions instances over Dwill be denoted by I(D).De�nition 7 (Schema Equiv. and Isom.)Let D = (H;�) and D0 = (H 0;�0) be to dimensionschemas.1. D and D0 are equivalent, denoted D � D0, i�H = H 0 and � is equivalent to �0.2. D and D0 are isomorphic, denoted D �= D0, i�there exists a graph isomorphism f : H ! H 0 suchthat (f(H); f(�)) � (H 0;�0), where f(�) stands for� modulo renaming by f .2.4 Classes of Dimension SchemasThe model we have presented subsumes the dimen-sion models presented in the literature. The followingde�nition formalizes two classes of dimension schemasthat arise in OLAP.De�nition 8 (Classes of Dimension Schemas)Let D = (H;�) be a hierarchy schema.1. D is canonical if H has no shortcuts and � isequivalent to fhc; c0i j c% c0g.2. D is balanced if D is canonical and H has asource.A dimension instance d is homogeneous if for ev-ery pair of categories c1 % c2 it holds that the rollupmapping �c2c1d is a total function. Note that the con-straint hc; c0i where c% c0 forces the rollup mappingfrom c to c0 to be total. Therefore, canonical schemasconvey all the homogeneous instances over its hierar-chy schema. In this sense, in canonical schemas, �captures exactly homogeneity. Also notice that wehave de�ned a canonical schema to be shortcut-free,because otherwise � would force the categories from
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The following de�nition generalizes De�nition 7 forschemas over arbitrary hierarchy schemas.De�nition 9 (Hierarchical Equivalence) Twodimension shemas D and D0 are hierarchically equiv-alent (h-equivalent) if and only if there is a bijectivefunction f : I(D) ! I(D0) such that for all d 2 I(D),dom(d) = dom(f(d)). In this case we write D�hD0.Observe that the relation �h is an equivalence rela-tion. Also, it is worth noting that the instance map-ping f required for h-equivalence is internal [Hul86],i.e., it does neither create nor destroy members orconstants in the instances. Moreover, the mapping isgeneric [Hul86], that is, given a pair of dimension in-stances d and d0 with d0 = f(d), if we apply the samepermutation � of members to d and to d0, if �(d) isin the domain of f then �(d0) = f(�(d)).Example 2 Consider the dimension schemas D1 =(A;�1), D2 = (B;�2) and D3 = (C;�3), whereA;B;C are the hierarchy schemas in Figure 4, �1 =�3 = ; and �2 = f:he; fi _ :he; gig. Then D1�hD2via mapping the members of c to f , the membersof d to g, and the members of a and b to e. How-ever, it is not the case that D1�hD3. Indeed, givena member m, there is a unique dimension instancein I(D3) whose child/parent relation is fm < allg,but there are two dimension instances in I(D2) whosechild/parent relation is fm < allg.It is not di�cult to check that if D � D0 thenD�hD0. We end this section by showing that it isstraightforward to show that the converse also holdsfor balanced schemas.A dimension instance d is exact if d is bijective. Itis easily veri�ed that all canonical dimension schemashave an exact dimension instance.Theorem 1 (h-Equiv. of Balanced Schemas)Two balanced dimension schemas D = (H;�) andD0 = (H 0;�0) are h-equivalent if and only if H andH0 are (graph) isomorphic.Proof of Theorem 1 One direction is obvious.Assume that D�hD0 via f . Consider an exact di-mension d of D. Then, as graphs, H �= dom(d) �=dom(f(d)). Now, because D0 is balanced there is a(graph) monomorphism � : dom(f(d)) ! H 0 with�(all) = All (if �(v) = �(w) for v 6= w, the sourceof dom(f(d)) would have two ancestors in the samecategory, violating condition 3 of De�nition 3.) Hencethere is a monomorphism H ! H 0. By the same ar-gument on the reverse direction, there is a monomor-phism H0 ! H. Hence H �= H0. 2

4 Hierarchical Equivalence ofCanonical SchemasThis sections extends the results of Theorem 1 tocanonical dimensions. The importance of this re-sult is twofold: (1) The notion of h-equivalence hasa simple and intuitive characterization as graph iso-morphism. (2) This proves that canonical schemasare strictly more expressive than balanced schemas(because given a canonical and not balanced schemathere is no balanced schema isomorphic to it.) So wehave now a formal argument that justi�es the intro-duction of canonical schemas for OLAP modeling.First, observe that the argument in the proof ofProposition 1 does not necessarily work in this setting(there could be no injective �).4.1 Hierarchical Equivalence and Iso-morphismThe following is the main result of the section.Theorem 2 (h-Equiv. of Canonical Schemas)Let D = (H;�) and D0 = (H 0;�0) be two canonicalschemas. Then, D�hD0 if and only if H is (graph)isomorphic to H 0.Proof of Theorem 2 Let us sketch the non-trivialdirection of the proof. Let H = (C;%) and H 0 =(C0;%0) and f : I(D) ! I(D0) be the bijection givenby �h.(*) Let d1 : (M;<)! H be an exact dimension ofD (hence H �= (M;<)). Let f(d1) : (M;<) ! H 0 bethe image of d1 under f (by hypothesis f(d1) has thesame domain of d1). Let d01 be an exact dimension off(d1)(M ). Let d2 be an exact dimension of f�1(d01).Continue this process until H1 = Im(di) �= Im(d0i) =H01. Denote by �1 this isomorphism. Note that H1is well de�ned because the process terminates by agraph theoretic argument.For each dimension instance d : M1 ! H withd(M1) = H1 do: Rede�ne f by performing the fol-lowing operations: y := f(d); f(d) := (�1 � d);ff�1(�1 � d) := y. Recall from Section 2 that aninstance d takes its domain from a possibly in�nitesetM. Here we assume that the setM is �nite, hencethe loop ends. The extension to the in�nite case isstraightforward. It is easily veri�ed that at the endof this process we will have that for all complete d ofH1, it holds that f(d) = (�1 � d). Call f1 this new f .Now we repeat the whole process starting from (*)with f1. This process generates a H2;H 02 and a newf2.6
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(C)Figure 4: Three hierarchy schemas.Observe that H2 6= H1, because otherwise theremust be a complete dimension d of H1 which is notmap to the complete dimension (�1 � d) via f1.By repeating this process we generate a series(H1;H 01; f1); (H2;H 02; f2); : : :This series has the prop-erty Hi 6= Hj for i 6= j by an argument similar to thecase i = 1.Finally just note that this series must be in�nite.2 The following examples illustrates the main idea ofthe previous proof.Example 3 Let D and D0 be the dimension schemasof Figures 5(A) and 5(B). Clearly they are not graphisomorphic. Assume that D�hD0 via an instancemapping f . Figure 6 depicts, on the top, the triple(H1;H 01; f1), and in the bottom (H2;H 02; f2), in a pos-sible sequence generated in the proof for D and D0. f1sends the complete dimension of the subschema un-derlined to the one underlined in H 01. Similarly forf2. This property forces the schema H2 (resp. H 02)to be di�erent from H1 (resp. H 01). This series is in-�nite, but it can be checked now that there is no nexttriple (H3;H 03; f3), yielding a contradiction. HenceD 6�hD0.5 Hierarchical Equivalence inDimension SchemasIn this section we present a characterization of h-equivalence for dimension schemas, which yields analgorithm for testing h-equivalence.5.1 Frozen EquivalenceWe introduce a notion of equivalence, frozen equiv-alence, de�ned in terms of injective mappings be-tween a special kind of dimension instances, calledfrozen. Intuitively, a frozen dimension is a minimalmodel conveyed by a dimension schema. (We refer

the reader to previous work [HM02] for details.) Thenotion of frozen dimension is essential for giving analgorithmic version of h-equivalence.Let D = (H;�) and H = (C;%). We need to de-�ne two functions, NotKnown : C ! M, an injectivefunction that assigns a �x member to each category,and ConstD : C ! K, de�ned by ConstD(c) to bethe set of constants k appearing in �.De�nition 10 (Frozen Dimension) Given a di-mension schema D and c 2 C, a frozen dimensionwith root c is a dimension instance d : (M;<) !(C;<) such that:1. d is injective;2. c 2 Im(d);3. d�1(c) is a source of (M;<);4. For all x 2 M , x 2 ConstD(d(x)) [NotKnown(d(x)).We denote by Frozen(D; c) the set of frozen dimen-sion of D with root c, and by Frozen(D) the unionof all Frozen(D; c) for all categories c of D.Example 4 Figure 7 depicts the frozen relation be-tween the product schemas of Figure 2. (We are onlyshowing the frozen dimensions with root Product.)De�nition 11 (Frozen Equivalence) Given apair of dimension schemas D = (H;�) and D0 =(H0;�0), where H = (C;%) and H 0 = (C 0;%0):1. A category correspondence between D and D0is a binary relation 
 � C �C 0.2. A correspondence 
 � D �D0 induces a binaryrelation F
 � Frozen(D)�Frozen(D0), called frozenrelation, de�ned as the pairs (d; d0) 2 Frozen(D) �Frozen(D0) such that there is a graph isomorphism� : Im(d) ! Im(d0) with � � 
, and for each c 2 Cand k 2 ConstD(c), d(k) = c implies d0(k) = �(c).In this case we say that d �= d0 (frozen dimensionisomorphism).3. Two schemas D and D0 are frozen equivalent(in the sequel f-equivalent) if there is a bijective frozenrelation between them.7
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, where 
 is the category correspondence thatde�nes r. Then, we have d0(x) = �x(c).Notices that steps 1-3 above de�ne c0 = d0(x), foreach member x in M .The above procedure has the following properties:For each pair of members x1 and x2 in M : (P1)

if x1 � x2 then �x1 � �x2 ; and (P2) if x1 < x2then �x1(d(x1)) %0 �x2(d(x2)). Property 1 followsfrom the fact that if x1 � x2, gx1 � gx2 . Property2 follows from the fact that if x1 < x2, the sourceof dom(gx1) is a child, in the dimension gx2, of thesource of dom(gx2).It is easily veri�ed that d0 is unique. Now, we provethat d0 is a dimension instance over H, i.e., we provethat d0 is a graph morphism and it satis�es condi-tions 1-3 of De�nition 3. Assume d0 is not a graphmorphism, then there are members x1 < x2 2 Msuch that d0(x1) %0 d0(x2) does not hold. Thus�x1(d(x1)) %0 �x2 (dx2) does not hold, contradict-ing Property 2. Conditions 1-2 of De�nition 3 areeasy to verify. Now, assume d0 does not satisfyCondition 3, then there are members x; y; z in M ,such that x < y, x < z and d0(y) = d0(z). Then,�y(d(y)) = �z(d(z)). Then, by Property 1, we havethat �x(d(y)) = �x(d(z)). But, because d satis�esCondition 3 of De�nition 3, d(y) 6= d(z), and hence�x is not bijective (and not an isomorphism), yieldinga contradiction.Now, we prove that d0 j= �, assume not, then bya basic property of dimension schemas proved in pre-vious work [HM02], there must be some dimensiontuple e of d0, such that e 6j= �. Now, we obtain adimension g from e similarly as done in Step 2 above.Because e 6j= �, we have that g 6j= �. By construction8
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AllFigure 7: Frozen relationof d0, g must be in Im(r), thus g 2 Frozen(D0), andg j= �, leading to a contradiction.So far, we have proved that f is well de�ned, i.e.,f is a function (thus total) from I(D) to I(D0). Itremains to prove that f is surjective and injective.That is, f�1 is also a function. This follows fromthe fact that, applying steps 1-2, modulo replacing Dwith D0, and vice versa, we obtain f�1 (instead off). 2If we pre-compute and keep a frozen mappingstored, the computation of f(d) (see proof of Propo-sition 1) can be accomplished in polytime. Conse-quently, we may compute the instance mapping in-duced by a bijective frozen relation in polytime in thesize of the input dimension instance and the frozenrelation.In Section 5.3 we will state and prove the converseof Proposition 1.5.2 Frozen SchemasFirstly, we will introduce frozen schemas, dimensionschemas that are normal forms, in the sense thatevery dimension schema is h-equivalent to a frozenschema.De�nition 12 (Frozen Schema) A frozen schemais a dimension schema D such that each category cin D has a unique frozen dimension d and Im(d) isexactly the upgraph of c.Notice that a frozen schema does not have short-cuts. Also, it is easily veri�ed that canonical schemasare frozen schemas.

Example 5 The bottom schema given in Figure 2 isa frozen schema. The category AsiaBranch is theonly category whose frozen dimension has a constant(Asia) di�erent than NotKnown(AsiaBranch).Next, we show that testing h-equivalence of frozenschemas de�ned over the same set of constants re-duces to testing whether the schemas are isomorphic.This result generalizes Theorem 2 because canonicalschemas are frozen schemas.Theorem 3 (h-Equiv. in Frozen Schemas)Let D and D0 be two frozen dimension schemas suchthat for all c 2 C and c0 2 C 0 it holds ConstD(c) =ConstD0(c0). Then D and D0 are h-equivalent i� theyare isomorphic (i.e., D�hD0 i� D �= D0).Proof of Theorem 3 The proof is a generalizationof the proof of Theorem 2. 2This theorem also shows that dimension schemasare more expressive than canonical schemas becausesome frozen schemas are not isomorphic to any canon-ical schema.5.3 h-Equivalence and f-EquivalenceIn this section we show that h-equivalence impliesf-equivalence. This result along with Proposition 1shows that f-equivalence characterizes h-equivalence.Theorem 4 (h-Equiv. in dimension Schemas)Let D and D0 be two frozen dimension schemas suchthat for all c 2 C and c0 2 C 0 it holds ConstD(c) =ConstD0(c0). Then D and D0 are f -equivalent i� theyare h-equivalent.9



Proof of Theorem 4 One direction is Proposi-tion 1.So assume that D and D0 are h-equivalent. Firstde�ne a schema transformation that takes D and pro-duces a frozen schema Df h-equivalent to D. Thetransformation works as follows: (1) Compute thefrozen dimensions of D using the DIMSAT algorithmin previous work [HM02]; (2) Do a topological sort ofthe graph (C;%0) with the edges reversed. (3) Fol-lowing the topological sort, for each category c withmore than one frozen dimension, split c into c1; : : : ; cn(preserving adjacent edges) yielding a new hierarchyschema with a single frozen dimension in each cj ; (4)For each cj delete adjacent edges that do not matchthe frozen dimension.Each split in step (3) induces induces the follow-ing category correspondence between the hierarchyschemas before and after the split: (c; cj) for all1 � j � n, and for the remaining categories c0 thatappear in both hierarchy schemas we have (c; c0).It is not di�cult to verify that this category cor-respondence induces a bijective frozen mapping be-tween the old and the new schema. By composingthese frozen mappings we get a bijective frozen map-ping between D and Df .In the same manner, we build a frozen schema D0fand a bijective frozen mapping between D0 and D0f .Hence, we have bijective frozen mappings D ! Dfand D0 ! D0f . Also, from Theorem 3 we know thatDf �= D0f via some �. From � we can build a bijectivefrozen relation between Df andD0f . Composing thesemappings we get the statement of the theorem. 2Example 6 The bijective frozen relation of Figure 7shows that the two schemas of Figure 2 are h-equivalent.5.4 Algorithmic aspectsFrom the proof of Theorem 4, we can derive an al-gorithm for testing h-equivalence and prove that thisproblem is decidable. The naive application of theprocedure in the proof yields a double exponentialtime algorithm. In fact, we can test whether D�hD0in the following two steps:1. Apply the transformation in step (4) in the proofto transform D into Df and D0 into D0f ;2. Test whether Hf is graph isomorphic to H 0f ,where Hf (resp. H0f ) is the hierarchy schema of Df(resp. D0f ).The number of categories in the frozen schemasis in O(n2nK), where n is the number of categoriesand K is the number of constants mentioned in theschema. This bound is the order of the number of

splits used in each transformation. Essentially, wemay have as many categories in the resulting schemaas frozen dimensions in the original schema. Sincethe size of Df (resp. D0f ) is exponential in the sizeof the initial schema D (resp. D0) we get the statedbound due to the test in 2.1The following result shows that the problem ishard.Theorem 5 (Lower bound for Testing h-Equiv.)Testing whether two dimension schemas D and D0are h-equivalent is co-NP hard.Proof of Theorem 5 We will present a polytimetransformation from VALIDITY, which is known tobe CoNP-complete. In VALIDITY we are given aproposition P and we are asked whether P is valid,i.e., whether P is satis�ed by all truth assignments.From an instance P of VALIDITY we obtain the di-mension schemas D and D0. Both schemas have thesame hierarchy schema H with a bottom categorycb, a top category All, and a set Cp containing onecategory cp for each propositional variable p in P .In addition, cb is connected to every category in Cp,and every category in Cp is connected to All. Theschema D has a unique constraint ? (false), and D0has a single constraint :�P , where �P is the dimen-sion constraint obtained from P by replacing eachpropositional variable p with hcb; cpi. Now, we showthat D�hD0 i� P is valid. (If) If P is valid, cb isunsatis�able in D0, then the schemas are equivalentand thus h-equivalent. (Only If) If the schemas areh-equivalent and P is not valid, cb is satis�able inD0. Thus, the instances d with members in d�1(cb)cannot be mapped to instances of D, yielding a con-tradiction. 2We end this section by sketching an exponentialtime algorithm for testing h-equivalence.1. Compute the frozen dimensions of D and D0;2. For every binary relation between categories,test whether it induces a bijective frozen mapping.Step 1 can be done in exponential time in the sizeof the schema. (See [HM02] for detailed bounds.)The number of binary relations between categories weneed to test in Step 2 is O(2n2). For each such rela-tion, we have to compute the induced frozen relationR, i.e. we need to test for each pair of frozen dimen-sions d 2 Frozen(D) and d0 2 Frozen(D0) whether(d; d0) 2 R. This test can be done in 2n2 operationsof O(n) steps each, since we need to check at most1DAG isomorphism is graph isomorphism complete. Recallthat the \exact" complexity of deciding whether two graphsare isomorphic is still not known. The problem has neitherbeen proved to be NP complete nor in P.10



2n2 possible isomorphisms between d and d0. Also,we have to perform one test for each pair of frozendimensions d and d0. Since the number of frozen di-mensions of a given schema is exponential in the sizeof the schema, Step 2 can be accomplished in timeexponential in the size of the schemas.In Section 5.3, we showed that a bijective frozenrelation induces a bijection between the instances ofthe schemas, and that we may implement this func-tion as a polytime function in the size of the instanceand frozen relation. Thus, it is always possible to ef-�ciently translate instances between two h-equivalentschemas.6 Related WorkThere has been abundant work on OLAP dimensionmodeling over the past few years [CT97, HMV99,LAW98, PJE99, JLS99]. However, to the best of ourknowledge, there are no studies regarding dimensionschema equivalence. Other notions of equivalence andtheir testing have been studied for generic graph datamodels by Miller et al. [MIR94] and nested data mod-els [VL00]. Several sets of schema transformations[MIR94, RR98] have proven successful in supportingthe restructuring of schemas in a variety of data mod-els. These notions are not suitable for restructuringdata in OLAP for the same reasons given before.Furthermore, Hurtado [Hur02] shows that di-mension constraints although being �rst order con-straints, are orthogonal to traditional constraintsstudied in the database literature [AV97] (the extraexpressiveness is needed to support summarizabilityreasoning). As the test for equivalence depends onthe class of constraints the models have, the problemwe address in this paper is not related to previouswork on schema equivalence. In the next two para-graphs we explain this point into more detail.Let us �rst explain the relationship between dimen-sion constraints and First Order Logic (FOL) con-straints, that may expressed over the relational repre-sentation described above. An important property ofthe hierarchical domain < of a dimension instance isthat the size of its largest path should be smaller thanthe size of the largest path without cycle in the hi-erarchy schema. This turns the ancestor/descendantrelation � to be FOL de�nable. Consequently, theconditions that a child/parent relation must satisfyand the conditions 3 in De�nition 3 are FOL de�n-able. In addition, it is easily veri�ed that dimensionconstraints are FOL constraints; therefore, dimensionconstraints along with the partitioning property maybe expressed as FOL constraints over a snowake rep-

resentation of the dimension instance.Abiteboul et al. [AV97] study a class of FOL con-straints called embedded constraints that formalizesa wide variety of constraints studied in the databaseliterature. Embedded constraints essentially say thatthe presence of some tuples in the instance impliesthe presence of some tuples in the instance or impliesthat certain tuple components are equal. Dimen-sion constraints cannot be expressed with embeddedconstraints, since we cannot express with them con-straints that assert dependences such as \some tuplesor some other tuples appear in the instance".Example 7 Consider the dimension constrainthc; c1i _ hc; c2i. This constraint is equivalent to thefollowing FOL expression:8x(d�1(c)(x)) 9x19x2(�c1c (x; x1) _ �c2c (x; x2))).This constraint cannot be expressed with an em-bedded constraint, since an embedded constraint is anexpression of the form8x1; : : : ; xn(�(x1; : : : ; xn))9z1; : : : ; zk (y1; : : : ; ym)),where fz1; : : : ; zkg = fy1; : : : ; ymg�fx1; : : : ; xng, and� and  are conjunctions of atoms.Some researchers have considered the problem ofrestructuring multidimensional OLAP data. Gyssensand Lakshmanan [GL96] proposed restructuring op-erators that interchange categories and measures infact tables without losing information content. Usingthese operators, it is possible to drop, add, or renamea category; drop or add measures; and to change acategory to a measure and vice versa. Similar op-erators are introduced by Gupta et al. [GHQ95]. Inthese approaches, dimension hierarchies are not mod-eled explicitly and their results are hence orthogonalto the problem of restructuring dimensions. Lehner etal. [LAW98] model a class of dimension schemas thatallows structural heterogeneity, and propose an oper-ator for transforming them into balanced schemas,which they say to be in dimensional normal form(DNF). The transformation is done by treating cate-gories causing heterogeneity as attributes, which at-tens the hierarchical structure of the schema, causinga loss of information capacity.All these works are over setting where no formalnotion of schema equivalence is provided.Pedersen et al. [PJE99] propose instance mappingsto transform heterogeneous dimensions into homoge-neous dimensions by adding null members (thus themappings are non-internal mappings). These map-pings are used to normalize dimensions in order to11



apply traditional OLAP summarizability reasoning.The proposed mappings, however, are only applicableto a restricted class of dimension instances. An exten-sion of the mappings to deal with the general case ofheterogeneity may generate very intricate dimensioninstances, with lots of null values, and many-to-manyrollup mappings (thus violating Condition 3 of Def-inition 3). (For further details see [Hur02].) In thispaper, we have proved that any dimension schemamay be transformed into a frozen schema (which con-veys only homogeneous dimensions), and that theirinstances can be related via a polytime computablemapping which does not add null values and preserveshierarchical domains.7 Conclusion and FurtherWorkIn this paper we have presented a series of results thatgive conceptual insights into the problem of model-ing OLAP hierarchies. In particular, our framework:allowed us to compare di�erent classes of dimensionschemas introduced in a variety of OLAP models; andprovides a formal basis to further research on schemaintegration and restructuring in OLAP warehouses.Further work includes the de�nition of normalforms, restructuring operators, notion of informationdominance and implementation issues.References[Alb00] J. Albert. Theoretical foundations ofschema restructuring in heterogeneousmultidatabase systems. In Proceedings ofthe ACM Conference on Information andKnowledge Management, Washington, DC,USA, 2000.[AV97] S. Abiteboul and V. Vianu. Regular pathqueries with path constraints. In Proceed-ings of the 16th ACM Symposium on Prin-ciples of Database Systems, Tucson, Ari-zona, USA, 1997.[CD97] S. Chaudhuri and U. Dayal. An overview ofdata warehousing and OLAP technology.In ACM SIGMOD Record 26(1), March1997.[CT97] L. Cabibbo and R. Torlone. Queryingmultidimensional databases. In Proceed-ings of the 6th International Workshop on
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