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We present IXPN, and indexing technique for XML collections that permits fast processing of
XPath queries. The underlying idea of IXPN is to map the XML /XPath model onto the Proximal
Nodes (PN) model [Baeza-Yates and Navarro, ACM TOIS 1997], for which efficient algorithms
have been designed. The mapping of XPath onto the query language of PN is rather involved
because they are based on different concepts, but it can be done efficiently. On the side of the
implementation of the PN model, we have completely reimplemented the 1997 prototype, and have
added new operations needed to support XPath without disturbing the basic PN philosophy. In
this paper we explain how the model mapping is done, how we have implemented the PN model,
and how our implementation compares favourably against all the freely available alternatives we
are aware of.

1. INTRODUCTION

There is little doubt that XML [Goldfarb and Prescod 1998] is bound to play an
important role in the area of handling semistructured data. XML permits express-
ing the content and structure of a document, so that it can be read by a human
and at the same time manipulated automatically, keeping maximum flexibility in
the kind of structure that documents may have. XML is becoming a standard for
manipulating, exchanging and storing semistructured data.

One of the most important operations needed on these “structured text” collec-
tions is that of searching for some piece of the collection that has some property.
This property can be related to the text content and also to the structure. XPath
[Consortium 1999a] is one of the most popular languages to query XML data.
Although it has existed for several years, no fully satisfactory implementation of
XPath exists, to the best of our knowledge.
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On the other hand, several theoretical models (in the sense of not being tied to
any popular format such as XML) have been proposed in the last decades to query
and manipulate structured text. One of those, called Proximal Nodes (PN) [Navarro
and Baeza-Yates 1997], was designed with the aim of balancing expresiveness and
implementation efficiency.

Recently, it has been shown that XQL [Lapp et al. 1998], a query language
simpler than XPath and now less popular, could be mapped onto PN [Baeza-Yates
and Navarro 2000]. No implementation was presented, however.

In this paper we tackle the problem of implementing the more powerful and pop-
ular XPath by mapping it onto the PN model. This mapping is not straightforward,
because the design conceptions of XPath and PN are widely different. However,
it can be done without loss of efficiency and we show carefully how this is carried
out. Once transformed into a PN query, we find that the operations considered
for the PN model in the original paper [Navarro and Baeza-Yates 1997] have to be
changed slightly, some can be simplified, and others have to be added. We reimple-
ment completely the PN model with a more efficient design. We show that all the
operations can be implemented in time linear with the size of the arguments (and
not of the database), and usually using very little main memory. At the end, we
show how our prototype compares against existing freely available search engines
for XPath.

The page of the IXPN prototype is www.dcc.uchile.cl/ixpn.

2. XML AND XPATH

We present in this section the XML and XPath specifications, in the depth necessary
to understand how we implement XPath.

2.1 XML: eXtensible Markup Language

XML [Goldfarb and Prescod 1998] is the specification of a flexible markup language
for structured text. The markup is expressed by means of special marks, called tags,
that are inserted into the text in order to describe a structure. An XML tag is a
sequence of characters between the special characters “<” and “>”. All the text
inside tags is part of the document structure, the rest is the content. Tags are
human-readable, but are usually hidden when displaying the document, as they
are not content but indicate how the content should be understood and presented.
Figure 1 shows our running example of an XML document.

Tags are usually paired, so that portions of the content are marked by enclosing
them between an initial and a final tag, typically <tagname> and </tagname>. For
example,

<title>Introduction</title>

marks the text “Introduction” with the tag “title”. When the enclosed content is
empty, the initial and final tags are merged into one, <tagname/>. Apart from a
name, tags may have attributes, each of which has a value. For example,

<image source="graph.png" caption="This is a graph"/>

is a tag without content and with two attributes, “source” and “caption”, whose
contents are “graph.png” and “This is a graph”, respectively.
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1. <?xml version="1.0" encoding="iso-8859-1"7>

2. <!DOCTYPE book "http://www.example.com/project.dtd">
3. <!--THE BOOK-->

4. <book>

5. <author>J. Williams</author>

6. <title>XCD Algorithm</title>

7. <chapter number="1">

8. <title>Introduction</title>

9. This is the Introduction...

10. <image source='"graph.png" caption="This is a Graph"/>
11. </chapter>

12. <chapter number="2">

13. <title>Prototype</title>

14. The prototype...

15. <section number="2.1">

16. <title>Implementation</title>

17. <section number="2.1.1">

18. <title>Data Model</title>

19. Qur data model...
20. </section>
21. </section>
22. </chapter>
23. <chapter number="3">
24. <title>Conclusions And Future Work</title>
25. </chapter>
26. </book>

Fig. 1.  Our running example of an XML document. Line numbers are not part of the document
but used for future references.

An important aspect of XML is that tags cannot overlap, that is, a tag cannot
be closed until all the contained tags have been closed. This induces a hierarchical
structure on the document, where each node represents a tag, whose children are
its attributes and contained tags. Figure 2 illustrates the hierarchy.

Each tag contains a text segment of the document, which in turn can contain
more tags. Since tags have a length greater than zero, no two segments of different
tags can start at the same position. Note also that the order in which initial tags
are found in the text corresponds to a preorder traversal in the tree. This is known
as the document order.

Apart from the tags that describe the structure, there are other elements in the
XML specification that do not describe structure, such as comments, commands
directed to specific processors, document type definitions, and so on. These are
usually ignored in query languages and we ignore them in this paper.

2.2 XPath: XML Path Language

XPath [Consortium 1999a] is one of the favorite languages to select parts of an
XML collection. It is an essential piece of more complete languages such as XQuery
[Consortium 2001c] and XSLT [Consortium 1999b]. XPath has a full notation and
an abbreviated version for the most commonly used operations. The result of an
XPath query is a well-formed XML document.

XPath is composed of two parts. The first, most important for us, comprises
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number number number

source caption number

number

Fig. 2. The hierarchical structure of our running example. Circles represent tags and squares
represent attributes.

the node selection operations, which let the user specify which parts of the XML
collection to obtain. The second includes elements of a classical programming lan-
guage, such as variables, expressions, and conditional and branching instructions.
Indeed, XPath must be embedded into another language, from where variables and
expressions take their semantics. In particular, for XPath embedded in XQuery,
the so-called FLOWER expressions are permitted. These refer to For-Let-Where-
Return structures, which permit specifying queries in XPath and present the results
as desired in XML, perhaps forming structures not originally present in the docu-
ment, much like SQL works on relational databases.

Figure 3 shows an example. It is clear that node selection operations are as
important as the programming-like operations. However, from an implementation
point of view, the former are much more challenging. Once the node selection
operation returns the consecutive values for $p, the rest of the processing is rather
simple: $b is obtained by variable substitution, the WHERE clause implies simple
increments and comparisons, and so on.

FOR $p IN document("book.xml")//author

LET $b := document("book.xml")//book[author = $p]
WHERE count($b) > 100

RETURN $p

Fig. 3.  An XQuery program using XPath in its first line.

This is why in this paper we focus only on the node selection operations of XPath:
This is the most critical part of an implementation. It can be done very efficiently
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or very naively, as its language is very high-level. Tts performance drives the overall
performance. The programming language part, on the other hand, is rather low-
level and therefore it can hardly experiment too large differences in implementation
performance. In the example of Figure 3, the most challenging part is how are we
going to find the author field across all the collection. The rest is fast and simple.

2.3 XPath Specifications
XPath distinguishes several node types in an XML document.

—An XML document is seen by XPath as rooted by a special and virtual root-node.

—All the XML tags that describe structure define element-nodes. These are the
most common nodes.

—Each attribute of each tag makes up an attribute-node, which belongs to the
corresponding element-node but is not considered to be a child of it.

—Other types of elements that we disregard in this paper because they are not used
when implementing the basic XPath machinery are namespace-nodes, instruction-
nodes, text-nodes and comment-nodes. In fact, text-nodes are of importance as
they contain all the text content, but the concept of having virtual nodes that
contain maximal text pieces is of no use for our translation. We treat the text in
a different way.

The basic syntax of XPath consists of expressions, whose result is usually a set of
nodes, but it can also be a boolean, numeric or string value. An expression specifies
a set of nodes and optionally a function of the result. Hence it is possible to search
for all the section nodes and just deliver the set, or add a counting operation and
deliver instead the number of such nodes.

The mechanism used by XPath to describe the nodes that should be returned
consists of four important parts: a context, an azis, a nodetext, and a predicate. In
a first approximation, we can consider that all the nodes are considered as suitable
context nodes, the axis specifies how to reach the selected nodes from the context
nodes, the nodetest checks the name/type of the nodes to return, and the predicate
further filters the desired selected nodes. For example, an XPath expression like

child: :chapter[position()=1]

specifies a child axis, meaning that we want all the nodes that are children of
some node (hence their parent is the context node). Furthermore, it specifies two
predicates over the desired nodes: (1) a test of name: the node should be named
chapter; (2) an explicit predicate (whose language we examine later): the position
of the node should be the first in its context. This means that we want the first
chapters of nodes found in the collection. In our running example, the full chapter
number 1 (lines 7 11) is retrieved.

2.3.1 Location Steps and Location Paths. The above is an example of a so-called
location step. It always refers to some context node (that is outside its specification),
and includes three parts:

(1) An axis specifying how to move from the context node to find the selected node
(this can be self if we want to select the context node itself);
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(2) a node test that checks the name of the selected node; and
(3) a predicate with zero or more expressions that further refine the selected nodes.

If a single location step is given alone, then all the nodes of the document are
suitable context nodes, as in our previous example.

Location steps can be chained together to form a location path, which is a sequence
of location steps where the result of each step becomes the set of context nodes for
the next. This can be seen as the definition of a path in the structure tree that
shows how answer nodes should be reached from context nodes and what conditions
should context and selected nodes satisfy.

Consecutive location steps of a location path are separated by a “/”. The context
of the first location step is the set of all the nodes, and this location path is said to
be “relative” (in the sense that the sequence of steps can appear anywhere in the
tree). On the opposite, if a location path starts with a “/”, this means that the
context of the first location step is only the root node, and hence the path must be
found only starting at the root. This path is called “absolute”.

For example, an XPath expression like

self::chapter/child::section/child: :title

is a location path formed by three location steps. It selects all the nodes of name
title that are children of nodes of name section that are children of nodes of
name chapter. In our running example it would return only the node

<title>Implementation</title>.

Figure 4 illustrates. Indeed, child is the default axis after a “/”, and self is the
first axis by default!. Hence the expression could be written simply as

chapter/section/title.

2.3.2 Azes. Let us now consider the axes in detail. Possible axes are:

child: direct children of the context node in the tree;
descendant: children, their children, and so on;

parent: tree parent of context node;

ancestor: parent, its parent, and so on;
following-sibling: siblings of the context node to its right;
preceding-sibling: siblings to the left;

following: nodes following the context node in document order, inside the same
document and excluding descendants;

preceding: idem preceding the context node;
attribute: attributes of the context node;
self: the same context node;
descendant-or-self: self plus descendants; and

ancestor-or-self: self plus ancestors.

Mn fact it could be said that child is always the default axis, and this makes no difference because
every node has a parent except the root node, which is not retrievable.
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context node

47 Jocation path

foeeecos . location steps

Fig. 4. A location path formed by three location steps.

namespace: this axis that is irrelevant for this paper.

Except for attribute, attribute nodes are never selected by these axes. Also, the
result of these axes when the context is an attribute node is the empty set, except
for self.

Note that the axes ancestor, descendant, following, preceding, and self partition
the document tree into disjoint subsets. Attribute nodes are special nodes and
considered as orthogonal to the rest of the model (as well as namespace nodes).
Figure 5 illustrates.

Context Node

Ancestor Parent

Preceding-Siinng/I\ Following-Sibling
< Self >
S < Attribute \1/

Following Child

NameSpace

Preceding

Descendant

Fig. 5. The different axes and how they partition the document.

It is also important to mention that axes are classified into reverse-azes and
forward-azes, depending on whether they take nodes that, in document order, are
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before or after the context node. Reverse axes are ancestor, ancestor-or-self, pre-
ceding, preceding-or-self, and parent?. All the rest are forward axes.

2.3.3 Nodetests. With respect to the test over the node, both the main node type
(element-node, attribute-node or namespace-node) and the node name must match
the test. The node type is given by the axis (attribute leads to an attribute-node,
namespace to an namespace-node, and all the rest to an element-node). The term
node() or the symbol “x*” can be used to select any node name. Note that the
root-node is never retrieved by an XPath query.

2.3.4 Predicates. Finally, let us consider the possible predicate filters. The whole
set of possible expressions includes those defined in the embedding language, but
there are some basic ones that are part of XPath. The predicates contain one or
more basic conditions connected by or, and and not.

The simplest possible predicate is just a location path. The predicate becomes
true if there exists such a location path in the context of the candidate node (to
which the predicate applies). For example,

chapter[section/title] = self::chapter[child::section/child::title]

selects nodes of name chapter that satisfy the predicate of having a title child of
a section as their child. The answer to this query in our running example is lines
12 22 (chapter 2).

An equality test, , compares either numbers or strings. In the case of strings,
one operand must be a constant string and the other a location path. The test
becomes true if the location path appears and its text content equals the string. A
string containment test, “="", is similar but the string should be contained in the
text content of the location path®. As an example,

w_"”

self::section[attribute: :number="2.1.1"]

selects sections containing an attribute named number whose text content is ex-
actly “2.1.17, that is, lines 17-20 of our running example. The example can be
abbreviated as

section[@number="2.1.1"].

We remark that the text in attribute values is not considered to be a part of the
text in other containing nodes.

The equality between numbers makes sense when we use some functions provided
by XPath. These include, at least: position(), which is the position of the node
(in document order) among those returned in the same context; last (), which is
the number of nodes returned from this context. For example,

self::chapter/descendant-or-self::section[position()=last ()]

gives the last section of each chapter, that is, lines 17-20 in our running example.

2 According to the definition, parent could be classified either as forward or reverse axis. In our
case it is simpler to see it as a reverse axis.

3We have used this operation for brevity. In rigor, this is written as “contains(path,string)” in
XPath 1.0.
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The example can be abbreviated as
chapter//section[position()=last()].

Furthermore, a simple number is taken as a numeric equality over position(), so
the example can be further abbreviated as

chapter//section[last()].

Other abbreviations are “.”, which stands for “self::node()” and “..”, which
stands for “parent::node()”. Figure 6 summarizes the syntax of XPath, without
abbreviations. It is a simplification of the official XPath 1.0 grammar.

path / path | path / axis :: step | axis :: step

aris child | descendant | descendant-or-self | parent
ancestor | ancestor-or-self | following
following-sibling | preceding | preceding-sibling
attribute | namespace | self

step nodetest | step [ pred ]
pred pred and pred | pred or pred | not pred
spath | numeric = numeric

spath axis :: nodetest / spath | axis :: nodetest

axis :: nodetest = string | awxis :: nodetest =~ string
last() | position() | NUMBER

WORD | string WORD

—
—
|
|
|
—
nodetest — NAME | node()
—
|
—
|
numeric —»
—

string

Fig. 6. Summary of the syntax of XPath, abbreviations excluded.

3. PROXIMAL NODES

The Proximal Nodes Model (PN) [Navarro and Baeza-Yates 1995; Navarro and
Baeza-Yates 1997] presents a good compromise between expressiveness and effi-
ciency. It does not define a specific language, but a model in which it is shown that
a number of useful operators can be included, while achieving good efficiency. Many
independent structures can be defined on the same text, each one being a strict hi-
erarchy, and allowing overlaps between areas delimited by different hierarchies (e.g.
chapters/sections and pages/lines). A query can relate different hierarchies, but re-
turns a subset of the nodes of one hierarchy only (i.e., nested elements are allowed
in the answers, but not overlaps). Each node has an associated segment, which
is the area of the text it comprises. The segment of a node includes that of its
descendants. Text matching queries are modeled as returning nodes from a special
“text hierarchy”.

The model specifies a fully compositional language with three types of opera-
tors: (1) text pattern-matching; (2) to retrieve structural components by name
(e.g. all chapters); and (3) to combine other results. The main idea behind the
efficient evaluation of these operations is a bottom-up approach, by first searching
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the queries on contents and then going up the structural part. Two indices are
used, for text and for structure, meant to efficiently solve queries of type 1 and 2
without traversing the whole database. To make operations of type 3 efficient, only
operations that relate “nearby” nodes are allowed. Nearby nodes are those whose
segments are more or less proximal. This way, the answer is built by traversing
both operands in synchronization, leading in most cases to a constant amortized
cost per processed element.

As we show next, many useful operators fit into this model. There is a separate
text matching sublanguage, which is independent of the model. This model can be
efficiently implemented, needing linear time for most operations and in all practical
cases (this is supported by analysis and experimental results [Navarro 1995]). The
time to solve a query is proportional to the sum of the sizes of the intermediate
results (and not to the size of the database).

3.1 Query Language

The PN model permits any operation in which the fact that a node belongs or not
to the final result can be determined by the identity and text position of itself and
of nodes (in the operands) which are “proximal” to it, as explained.

Composition
Operations

after, after(k)
before, before(k)

By including elements

By included elements

Set manipulation

Direct structural

same

parent(k)
[s] child

union, minus, is

collapse, subtract...
opers
on matches

M

Contmt

All Basis

Structure
Basis

Constructor

Fig. 7. Possible operations for the PN model, classified by type. We have removed those that
are relevant when several hierarchies exist, which is not the case in XML.

Figure 7 shows the scheme of a possible set of operations. There are basic ex-
traction operators (forming the basis of querying on structure and on contents),
and operators to combine results from others, which are classified in a number of
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groups: those which operate by considering included elements, including elements,
nearby elements, by manipulating sets and by direct structural relationships.

We explain in some detail those that are relevant for the case of a single hierarchy,
which includes the XML model.

Matching sublanguage: Is the only one which accesses the text content of the

database, and is orthogonal to the rest of the language.

—NMatches: The matching language generates a set of disjoint segments, which
are introduced in the model as belonging to a special “text hierarchy”. All
the text answers generate flat lists. For example, "Introduction" generates
the flat set of all segments of 12 letters where that word appears in the text
(those are contained in lines 8 and 9 of our running example). Note that the
matching language could allow much more complex expressions (e.g. regular
expressions).

—Operations on matches: Are applicable only to subsets of the text hierarchy,
and make transformations to the segments. We see this point and the previous
one as the mechanism for generating match queries, and we do not restrict
our language to any sublanguage for this. As an example, M collapse M’
superimposes both sets of matches, merging them when an overlap results;
and M subtract M’ removes from the first set the text positions belonging to
the second set, shortening, removing and cutting segments as required.

Basic structure operators: Are the other kind of leaves of the query syntax tree,
which refer to basic structural components.
Name of structural component: (“constructor” queries). Is the set of all nodes
of the given type. For example, chapter retrieves all the chapter elements (3
nodes in Figure 2).
Whole hierarchy: (“All” queries). Is the set of all nodes of the hierarchy. The
same effect can be obtained by summing up (“union” operator) all the node
types of the hierarchy.

Included-In operators: Select elements from the first operand which are included

in one of the second.

—Free inclusion: Select any included element. “P in @” is the set of nodes of P

which are included in a node of ). For example, title in chapter selects all
titles inside chapters, even section titles (see Figure 2).
Positional inclusion: Select only those elements included at a given position. In
order to define position, only the top-level included elements for each including
node are considered. “[s] P in (" is the same as in, but only qualifying
the nodes which descend from a ()-node in a position (from left to right)
considered in s. The language for expressing positions (i.e. values for s) is
also independent. It was considered that finite unions of i..j, last — i..last—j,
and ¢..last—j would suffice for most purposes. The range of possible values is
1..last. For example, [1..2] chapter in book retrieves the first two chapters
from our book example. If chapters included other chapters, only the top-level
ones would be considered.

Including operators: Select from the first operand the elements including elements
from the second one. “P with(k) @7 is the set of nodes of P which include at
least k£ nodes of ). If (k) is not present, we assume 1. For example, chapter
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with(2) "Introduction" selects the chapters in which the word “Introduction”
appears at least two times (chapter 1 in our example).

Direct structure operators: Select elements from the first operand based on direct
structural criteria, i.e. by direct parentship in the structure tree corresponding
to the hierarchy.

—“[s] P child @Q” is the set of nodes of P which are children (in the hierarchy) of
some node of (), at a position considered in s (that is, the s-th children). If [s]
is not present, we assume 1..last. For example, title child chapter retrieves
the titles of all chapters (and not titles of sections inside chapters).

—“P parent (k) Q)" is the set of nodes of P which are parents (in the hierarchy) of
at least k nodes of Q. If (k) is not present, we assume 1. For example, chapter
parent(3) section selects chapters with three or more top-level sections (none
in our example).

Distance operators: Select from the first operand elements which are at a given
distance of some element of the second operand, under certain additional condi-
tions.

—“P after/before @) (C)” is the set of nodes of P whose segments begin/end
after/before the end /beginning of a segment in Q. If there is more than one P-
candidate for a node of @, the nearest one to the )-node is considered (if they
are at the same distance, then one of them includes the other and we select
the including one). In order for a P-node to be considered a candidate for a
-node, the minimal node of C' containing them must be the same, or must
not exist in both cases. For example, image after title (chapter) retrieves
the nearest images following titles, inside the same chapter (the only image
would be retrieved in our example).

—“P after/before(k) @ (C)” is the set of all nodes of P whose segments be-
gin/end after /before the end/beginning of a segment in (), at a distance of
at most k text symbols (not only nearest ones). C' plays the same role as
above. For example, "Conclusions" before (20) "Future" (chapter) selects
the words “Conclusions” that are followed by “Future” at a distance of at most
20 symbols, inside the same chapter (there is one occurrence in chapter 3 in
our example).

Set manipulation operators: Manipulate both operands as sets, implementing
union, difference, and intersection under different criteria.

“P union @7 is the union of P and ). For example, figure union list is
the set of all figures and lists. To make a union on text segments, one uses
collapse.

“P minus Q" is the set difference of P and ). For example, chapter minus
(chapter with image) are the chapters with no images (chapters 2 and 3 in
our example). To subtract text segments, one resorts to operations on matches.
“Pis @ is the intersection of P and (). For example, ([1] title in chapter)
is ([3] title in book) selects the titles which are first (top-level) title of a
chapter and at the same time third (top-level) title of the book (the title of
chapter 2 would be selected in our example). To intersect text segments use
same.
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—“P same Q" is the set of nodes of P whose segments are the same segment of
a node in Q). For example, title same "Introduction" gets the titles that
say (exactly) “Introduction”. This gives the title of chapter 1 in our example.

Except for set manipulation ones, the model also permits the negated version of
all the operators. For example, P not with ) is the same as P — (P with Q),
although the evaluation is more efficient.

Clearly inclusion can be determined by the text area covered by a node, and
the fact that an element in A qualifies or not depends only on elements of B
that include it or are included in it. Direct ancestorship can be determined by
the identity of the nodes and appropriate information on the hierarchical relations
between nodes. Note that just the information on text areas covered is not enough
to discern between direct and general inclusion. Distance operations can be carried
out by just considering the areas covered and by examining nearby elements of the
three operands. Finally, set manipulation needs nothing more than the identity of
the nodes and depend on nearby nodes of the other operands.

3.2 Existing Implementation

The PN model proposes an implementation where an index is built on the structure
of the text separated from the normal index for the text content. The structural
index is basically the hierarchy tree with pointers to know the parent, first child
and next sibling of each node. In addition, implicit lists (with “next sibling” and
“first child” pointers) for each different structural element are maintained, so that
one can traverse the complete tree or the subtree of all the nodes of a given type.
Figure 8 illustrates.

Structure Index

author
book

caption
chapter

image
number
source
section

title

Text Index

Introduction

Text

... Introduction . . .

Fig. 8. Structure and text index over our XML document, with the links for title highlighted.
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Two different implementations of the model are proposed. A full evaluation
version solves the query syntax tree recursively, that is, both operands of the root
are (recursively) solved completely and then the root operator is applied to both
arguments, which are by this time fully evaluated. A lazy evaluation version regards
the query syntax tree as an entity that survives across the whole evaluation, to
which one requests results one by one. Upon receiving a request, any node of this
syntax tree requests in turn results from its operand subtrees until it has enough
information to deliver one result. In the experiments [Navarro 1995] the lazy version
worked better for more complicated queries and worse for simpler queries.

Leaves which correspond to structural elements are solved by using the structure
index directly; those which correspond to pure queries on the text content are solved
with the classical index on content (e.g. an inverted file) and translated into a list
of text segments that match the query. This list is treated as a particular case of a
tree of answers.

The intermediate (and final) results are trees which are subsets of the whole
hierarchy. Figure 9 illustrates.

As defined by the model, all the allowed operations can be solved by a synchro-
nized linear traversal over the operands, so that the total time to solve a query is
proportional to the total size of the intermediate results, usually linear time.

4. MAPPING XML/XPATH ONTO PROXIMAL NODES

In this section we describe how the XML/XPath model has been mapped onto
the PN model. This mapping has two parts: mapping the data and mapping the
operations.

4.1 Mapping the XML Structure

First of all, the PN model permits independent hiearchies, while XML has only one.
This makes it possible to simplify the implementation of PN described in [Navarro
and Baeza-Yates 1997; Navarro 1995]. The special “text hieararchy” defined in the
PN model, however, has to be maintained in order to permit text searches.

An aspect where XML is more complex than PN is that XML permits different
node types: Although most XML nodes are element-nodes, there are also attribute-
nodes and other node types. In PN there exists a single node type.

We have circumvented this problem by considering all nodes as element-nodes. In
those nodes that are not originally element-nodes, we add a special initial character
to their name so that we can know which node types they were originally. This can
be applied to all node types. However, we have done this only to attribute-nodes
(to which we added the special character “@”, although any other one would do).

In order to handle collections of XML documents, we have added a new node
type called document-node. These are virtual (like the root-node) and not retriev-
able. We have translated them as if they corresponded to tag name “~DOCUMENT”.
Similarly, the root-node is named “-R0O0T”.

The other node types are not interesting for searching and thus can be disre-
garded.

For example, a tag with attributes like

<chapter number="1"> ... </chapter>
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i author

{ number

{ image ; i number }

{ source i caption :

{ number :

Fig. 9. Tree result of the query “section union title”.

will be regarded as
<chapter><@number>1</@number> ... </chapter>.

We still, however, refer to text positions in the original file. This requires some
care when it comes to define which is exactly the text segment that corresponds
to each node type, so that segments of parent nodes strictly contain those of child
nodes. The rules are as follows:

(1) For element-nodes with start and end tags, the segment starts two positions
after the last character of the initial tag name, and finishes at the position
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preceding the closing tag;

(2) for element-nodes with a single start/end tag, the segment starts with the
same rule as for (1), and ends at the position preceding the final “/” (this may
cause the finishing position to be before the starting position, but it causes no
troubles, as in this case there cannot be children nor attributes);

(3) for attribute-nodes, the segments cover exactly the area of their attribute value,
excluding quotation marks;

(4) for document-nodes, the segment goes from the first to the last characters of
the document;

(5) for the root-node, the segment goes from a ficticious position 0 (zero) to one
position after the last character of the last document (also ficticious).

Figure 10 illustrates some cases. This scheme preserves the document order
of the nodes and is well defined for the XPath and PN operations, as explained.
Additionally, it has the advantage of easing the displaying of results: If one knows
that a given segment with a known tag name has matched the query, one can simply
expand the segment by the tag name length plus a fixed amount in each direction in
order to obtain a well-formed XML node to display. Finally, the property of strict
segment containment simplifies several PN algorithms [Navarro and Baeza-Yates
1997; Navarro 1995].

<title>Data Model </title>

title: Start end

<chapt er Turrberf‘ 1"> ... ‘</ chapt er >
chapt er start end
nunber : start & end

<i mage sourcez"Traph. png" caption="This is a graph"/>

i mage: start ‘ Lnd
sour ce: start end
caption: start end
<br/>
br: ‘start
end

Fig. 10. Examples of segment coverage for XML tags.

In order to enforce that texts below attributes do not belong to other containing
nodes, we state that words in attribute values should have added a blank character
at their beginning, so they cannot be confused with words belonging to text-nodes.
We see soon how this features is used.

We note that XML permits references between documents, which can be queried
in languages like XLink [Consortium 2001a] and XPointer [Consortium 2001b], but
not in XPath. For this reason we disregard these references when considering the
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structure of the collection. Implementing queries on these references, however, prob-
ably needs techniques that are well beyond the capabilities of an XPath implemen-
tation: The references induce an arbitrary graph structure in the text collection,
not necessarily a hierarchy. Most of the efficiency of our XPath implementation
strongly relies on a hierarchical structure.

4.2 Mapping XPath Expressions

Three aspects have to be taken into account when mapping XPath expressions onto
PN: the contexts, the axes, and the predicates.

While XPath is strongly based on the notion of context, this concept does not
exist in PN. Yet, the conversion is possible. XPath expressions are regarded as
sequences of location steps, where the result of the current step makes up the
context for the next. Previous and current location steps are related by the axes.
PN expressions, on the other hand, can be seen as a composition of binary relations
between node sets. The types of binary relations are quite similar to those denoted
by the axes. Hence it is possible to convert sequences of location steps into a
composition of binary relations. The operands of these relations are given by the
node tests and the composition of the location path itself. Predicates, on the other
hand, can similarly be translated into a composition of relations, as will be made
clear soon.

4.2.1 Nodetests. The most common nodetest is just an element-node name. This
is translated into PN simply as the same structural name. Note that, if the name
starts with the special character “@”, then it is indeed an attribute-node name, but
we need not pay special attention to this fact.

The other possible nodetest is node() (abbreviated “x”), which corresponds to
the set of all element-nodes. This is translated into a variant of the All operand of
PN, namely Node. The abbreviation “@*” stands for all the attribute-nodes, and
is translated into another new PN operand named Attribute. Both new operands
will be implemented as variants of All.

4.2.2 Axzes. Most axes of XPath have their counterpart in PN operations. Some
PN operations, however, must be slightly redefined, and others have to be created
from scratch. However, the new operations fit well in the philosophy of PN. More-
over, some axes that exist as PN operations can be simplified for an XML structure.
We present now the axes of XPath and their PN counterparts.

child: corresponds to child operation in PN, where the [s] modifier is not used.
Note, for this item and the rest, that we plan to translate paths in reverse,
for example section/title becomes “title child section”. Note that if the
abbreviation “@name” is used as a nodetest, then “child” should be under-
stood as “attribute” (a later item in this list), and the special character “@”
removed. The fact that “@” is used both in XPath and by ourselves to denote
attribute nodes makes it possible to not doing anything special when dealing
with this kind of names.

parent: corresponds to parent operation in PN, where the (k) modifier is not
used.

descendant: corresponds to in operation in PN, without the [s] modifier.
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descendant-or-self: can be implemented in PN as “(P is ()) union (P in Q)”.
It is, however, much simpler and efficient to add a new inself operation to PN
with the proper semantics.

ancestor: corresponds to with operation in PN, without the (k) modifier.
ancestor-or-self: again we choose to add a new operation withself to PN.

following: corresponds to after(oo)(-DOCUMENT) operation in PN. For brevity we
call it just after (and make a special, faster and simplified, implementation for
it).

preceding: similarly, it corresponds to before(oo)(~DOCUMENT) operation in PN,
which we will call just before.

following-sibling: can be implemented in PN as “(P after @) child (Node
parent ))”. It is, however, much simpler and efficient to add a new after-
sibling operation to PN with the proper semantics.

preceding-sibling: just as before, we add a new before-sibling operation to
PN.

attribute: is similar to child, but also we enforce the selection of attribute-nodes
only. It is implemented in PN by simply adding the special character “@” at

[I3%2)

the beginning of the nodetest, even if this nodetest is “x”, and translate it as
child.

self: corresponds to is operation in PN.
As explained, the translation of a location path is done in reverse. For example,
chapter/section/title = self::chapter/child::section/child::title,

would select all titles children of sections children of chapters. In our running
example this is the content of line 16. The expression is translated into

title child (section child chapter).
Another example could be
self::image/ancestor: :chapter/following-sibling: :chapter,

which would select chapters that follow chapters (from the same book) that contain
images (the whole chapters 2 and 3 in our running example). This expression would
be translated into

chapter after-sibling (chapter with image).
Yet a third example, involving abbreviations, is “//image”, which stands for
/descendant-or-self::node()/child::image,
and would be translated into
image child (Node inself -ROOT).

Both are indeed equivalent to just “image”. Later we will give some simplification
rules for the resulting PN expressions.
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4.2.3 Predicates. Proximal Nodes has no concept of predicate. However, pred-
icates can be translated into additional compositions with the PN algebra. It is
important, however, that all predicates are solved as sets of nodes instead of boolean
or numeric values, as these cannot be handled as intermediate values in PN.

The main idea applies to predicates that consist simply of a location path. This
location path can be translated similarly as location paths outside predicates. This
time, however, we must reverse the order and meaning of operands. Axes with
opposite meaning are, for example, child<+parent and descendant<>ancestor.

By default, the first axis of the predicate is child. For example,

chapter[section/title] = chapter[child::section/child::title],

which selects chapters that are parents of sections that are parents of titles, is
translated into the PN expression

chapter parent (section parent title).
The default axis can be overwritten, for example using
chapter[//title] = chapter[descendant-or-self::node()/child::titlel,
which selects chapters containing titles, is translated into the PN expression
chapter withself (Node parent title) = chapter with title,

where the second expression is obtained after algebraic simplification of the PN
expression.
Yet a third example is

image[@*] = imagelattribute:*],
which selects images with attributes and is translated into the PN expression
image parent Attribute.

When a location path is compared against a string, the translation uses with
for containment and same for equality. The operation is applied to the final step
of the path. Phrases are translated using a new operation of PN called phrase.
This operation belongs to the matching sublanguage, and is the only operation we
need from that sublanguage. The basic matching, on the other hand, requires only
searching for whole words.

For example,

chapter[@number="1"] = chapter[attribute: :number="1"],

chooses the chapter whose attribute “@number” has the string value “1”. This is
translated into PN as

chapter parent (@number same " 1"),

where we note that we have added a blank in front of the “1”, as we are dealing
with text inside attributes.
Similarly,

section[title=""Model"] = section[child::title=""Model"]
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chooses the sections whose titles contain the word “Model”. This is translated into
PN as

section parent (title with "Model").

Let us now consider the boolean operations that can appear in predicates. The
“and” operation can be solved just by composing the conditions, as these are nat-
urally restricting the previous result. For example,

image [@source and Qcaption]
is translated into
(image parent @source) parent @caption.

The “or” operation, instead, requires explicit union of both results, is translated
into the union operation in PN. For example,

image [@source or Qcaption]
is translated into
(image parent @source) union (image parent @caption).

Finally, the “not” operation can be applied to a whole path (or path with a final
equality /containment test), denoting that the context node should not match such
a location path. This could be easily translated using the set difference operator
(“minus”) of PN, although we choose a faster option: negated versions of all the
PN operations are used to connect the context node and the predicate.

To conclude this section we must explain how we handle the numeric predicates,
which may specify that only some qualifying nodes must be returned, namely those
at specific positions (in document order) within the set of qualifying nodes for each
context node. These are solved by first obtaining all the answers and later choosing
the appropriate positions. In case the positions do not mention last (), it may not
be necessary to generate all the answers. For example, the expression

chapter[2] = chapter[position()=2]

requires obtaining only the second chapter. Node that this resembles the [s] modifier
of child and in, but this time we need it applied to every possible axis. Hence we
need a general, independent method.

4.3 A Formalization

To summarize the whole method in a complete and unambiguous way, we present
now a formalization of the transformation of XPath into PN expressions. This is
expressed in terms of a transformation function PN, which gives the PN expression
equivalent to a given XPath expression.

We use some auxiliary functions: A transforms axes into PN operations, A™ into
reverse PN operations, and A®V into reverse and negated PN operations. On the
other hand, A transforms nodetests into PN operands. Tables 1 and 2 define these
auxiliary functions.

Before any translation we perform a conversion on attribute axes. This is as
follows: any occurrence of the form

.../attribute: :nodetest. ..
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Axis A AR ARN
child child parent not parent
parent parent child not child
descendant in with not with
descendant-or-self inself withself not withself
ancestor with in not in
ancestor-or-self withself inself not inself
following after before not before
preceding before after not after
following-sibling after-sibling before-sibling | not before-sibling
preceding-sibling before-sibling after-sibling not after-sibling
self is is not is

Table 1. Formal translation of axes. A is used in normal location paths, while AR and ARN
are used for location paths inside predicates. The latter is used to translate boolean negation. We
do not specify how to translate the attribute axis because we never let that case occur.

Nodetest N
name name
@name @name
node () Node

* Node
Qx Attribute

Table 2. Formal translation of nodetests.

is converted into
.../child: :@nodetest. . .

that is, an “@” is added at the beginning of the nodetest and the attribute axis
becomes child. Moreover, if a string comparison follows the nodetest, all their
words get added a blank before their first character.

Our translation follows, based on the abstract unabbreviated syntax of Figure 6.
The first rule that matches an argument is the one used. We remark that we keep
translation rules as simple as possible, and deal later with possible inefficiencies
incurred.

We translate location paths by always considering its last element first. Our first
rule translates absolute paths into relative paths. The second rule specifies how
location paths are split into location steps. The third rule shows how the sequence
is finished.

PN (/path) = PN(self::-R0O0T/path)
PN (path/azis: :step) = (S(step) A(axis) PN (path))
PN (axis::step) = (S(step) A(awxis) Node)

Function S specifies how to translate a single location step, axis excluded. The
first rule translates a simple nodetest, while the second rule handles consecutive
predicates by resorting to a function R.
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S(nodetest) = N(nodetest)
S(steplpred]l) = R(S(step),pred)

Let us now consider R, which translates predicates. The idea is that the first
argument of R is the context (already a PN expression) and the second is the
predicate. This time we consider the location paths from left to right, and reverse
the axes. The first rule specifies how location paths are split into location steps.
The second rule treats the case of a single location step. The third and fourth rules
deal with string comparisons. The final six rules work out the boolean connectives.
For the “not” connective, we assume that it is applied only to paths, otherwise the
obvious boolean equivalences are applied. For brevity we have used ntst instead of
nodetest.

ctr AR R(
cte AR N (ntst))

cte AR (N (ntst) same P(string))
ctx AR (axis) (N (ntst) with P(string))
R(R(ctx,predy ), preds)

R(ctx, pred;) union R(ctx, preds))

ctx ARN (axis) R(N (ntst), spath))

Rctx, axis: :ntst/spath axis N (ntst), spath))

R(ctx, axis: :ntst

)
aris)
aris)

R(ctx,azis: :ntst=string

(
(
(
(

—~ T~ T~

R(ctx,axis: :ntst="string

R(ctx, pred, and preds

)
)
)
)
)
R(ctx,pred; or preds)
R(ctz,not axis: :ntst/spath)

)

)

)

o~~~ o~ —~
ﬁ

R(ctr,not axis: :ntst te ARN (axis) N (ntst))
R(ctz,not awis: :ntst=string) = (ctx AN (axis) (N (ntst) same P(string))
R(ctz,not awis: :ntst="string) = (ctz AR (axis) (N (ntst) with P(string))

Numeric predicates are not included in the translation rules because they are not
translated but implemented directly, as explained. Finally, function P translates
phrases (sequences of words) into PN expressions.

P(word) = word
P(string word) =  (P(string) phrase word)

4.3.1 Algebraic Optimizations. The above rules are designed to be as simple to
understand as possible. However, they may generate unnecessarily complex PN
expressions. Most of them can be simplified back by finding places where Node
and Attribute are mentioned, and applying some simplification rules, as follows:
All the expressions that follow are equivalent to just P.

P is Node Node is P
P is Attribute Attribute is P
P inself Node P withself Node
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P in Node P child Node
P inself -RO0OT P in -ROOT

Note that the fourth line is valid because we are not interested in returning the
-ROOT node, as it is ficticious. Other algebraic equivalences of interest are

P withself (Node parent ()) = P parent (Node withself Q) = P with @
P inself (Node child ) = P child (Node inself ) = P in @

Pis (Nodeop )) = (Nodeop Q)isP = PopQ

for any operation op.
Many other optimizations are possible, but those above fix the inefficiencies in-
cluded when we automatically transform XPath into PN expressions.

5. IMPLEMENTING PROXIMAL NODES OPERATIONS

In principle, we followed the previous PN implementation described in Section 3.2.
However, several important improvements were possible and/or necessary in order
to handle very large text collections and the specific operations needed to translate
XPath.

5.1 Index Structure

The index stores the initial and final positions of all the segments corresponding to
nodes in the XML collection. These positions are stored as byte-offsets. Although
a consecutive node or word numbering would suffice and yield smaller numbers
needing less space, we chose byte-offsets in order to simplify the presentation of
results to the user: given a node to display we know exactly which address of which
file to access.

The index handles collections with multiple files. These are seen logically as
a single large collection, where the content of each file is enclosed into ~-DOCUMENT
tags. A small directory permits mapping virtual positions into the physical position
of the proper file.

5.1.1 Text Matching Index. This is little more than an inverted index in sec-
ondary memory, where the set of all different words of the collection are maintained,
and for each such word the list of all its occurrences are stored.

In order to efficiently solve phrase queries, the word-offsets of the words should
be stored, as byte-offsets are not enough to distinguish whether two word positions
form a phrase or not, especially because, in an XML context, there could be a lot
of markup in the physical file between two words that appear as forming a phrase
to an end-user.

On the other hand, we do not need to store byte-offsets of words. Byte-offsets,
as explained, are necessary only to display the results. However, XPath does not
permit to write queries that return simple words or phrases. Every answer must be
an XML node. This reduces space requirements a lot.

Also, not all the text words have to be indexed. We manage a short list of words
that will not be indexed (usually articles, prepositions, and other words that do
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not carry meaning). These are called stopwords and it is customary to remove
them from indexes and queries in Information Retrieval scenarios [Baeza-Yates and
Ribeiro-Neto 1999]. This permits saving up to 50% of index space at very little cost.
In any case the list is configurable and the index can work under either decision.

In order to save index space, lists of consecutive positions are stored in a differ-
ential format: each number indicates the offset with respect to the previous. This
poses no problems because all the lists are processed sequentially, and it yields
smaller numbers. We take advantage of this by coding the offsets in an 8-1 for-
mat: the number uses as many bytes as necessary and the last bit of each byte is
used to signal the end of the number. This coding is a good compromise between
compression ratio and efficient handling.

As explained, words in attribute values have added a blank before their first
position, and indexed as normal words. This makes it impossible to have text inside
attributes as answers of non-attribute queries. Moreover, their word positions are
accumulated in a separate counter, so that the presence of words in attributes
does not disturb the result of a same operation regarding the text inside the node
containing the attribute.

5.1.2 Node Index. Among the alternatives analyzed in the original implementa-
tion [Navarro 1995] we opted for the one that maintains a separate index for each
different tag name. If we consider only the nodes with a given name, the result has
also a tree structure (e.g. section in our small running example, see Figure 2 and
also Figure 8). Hence each index stores a tree.

The tree is stored as a sequence of nodes, in depth-first order (a node, then
recursively its children, then recursively its next sibling). There is no need to store
a pointer to the first child of a node because, if it exists, it is right next to the node.
A forward pointer to the next sibling is stored, and it points right next to the node
if and only if the current node has no children. An additional advantage of this
organization is that if more text is added at the end of the collection, we only need
to append more nodes at the end of the index files, without need to rewrite them.

This organization permits answering queries consisting of tag names with a single
pass over a contiguous file. All the algorithms ensure that (node or subexpression)
trees are traversed using only two operations: first-child and nezt-sibling. These are
extremely easy to execute in our format and ensure that we always move forward
over the index files.

The decision of storing separate indexes per tag name favors tag-name queries
against Node or Attribute queries, which can only be solved by a union of all
the involved tag names. In practice these latter queries are very infrequent and
most should be removed by algebraic optimization.

At index construction time, each node is labeled with a unique identifier. This is
useful to know whether any two nodes are the same or not, and whether two nodes
are children of the same parent. However, we do not need any additional storage for
the node identifier: the byte-offset of its initial segment position is already unique,
and we use it as the node identifier.

Since the node name is implicit from the index file the node is stored at, we only
need to store, for each node, 6 numbers:

—The identifier (start tag position) of its parent in the whole hierarchy. This is
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not the same parent in the tree of the current index file, and it is essential for
answering parent/child queries).

Initial byte position and byte length of its text segment.

—Distance to its next sibling in the current index file. Actually, given that we have
fixed node sizes, what we store is the subtree size, measured in number of nodes.

Word-offset of first word, and number of words inside this node.

Word offsets are necessary in order to properly solve same queries: With byte
offset information it is not possible to determine whether a node contains exactly a
given sequence of words. Two reasons are the presence of attributes at the beginning
of the segment covered by a node, and separator characters like whitespace at the
extremes of the node. The first word of a node should be that of the next content
word following the opening tag, so attributes are excluded. This is automatically
obtained by keeping separate word-offsets for attribute values and other words.
Figure 11 exemplifies the layout on disk.

parent's id

N

. 13 16 14 17 . 15 18
section segment segment number segment segment title segment segment
descendants
of same type

Fig. 11. Index file layout of a subtree of our running example. The numbers are the node
identifiers, and segments are not detailed. The “parent’s id” arrows are a graphical view of the
value stored.

Some fields, such as initial text segment position and word-offset of the first
word, could be compressed using 8-1 coding using differential encoding. However,
we have to be careful because it is possible to arrive at a node from its parent, its
previous sibling, or from descendants of the previous sibling. Other usually values,
such as text segment length and word-offset of last word in the segment, cannot.



26 : G. Navarro and M. Ortega

The reason is that we determine their values only after processing the last element
of the node. By that time we have already written on disk the node data, and have
to come back and write down these values, so we need to use a fixed amount of
bytes. This is a consequence of our decision of storing nodes in preorder and of a
one-pass construction.

Hence we need 6 numbers. In the databases we have examined, all these numbers
are large enough to require full 4-byte integers. The only exception is the distance
to next sibling, which is rather small (recall Table 4) and we encode it using 2-byte
short integers. Hence, we need 22 bytes per node.

A structure-id is associated to each tag name at indexing time. This simplifies
comparing node names.

At query time, it will be necessary to bring some nodes into main memory. Their
amount is very low: in most cases, just one per query syntax tree element. In main
memory, we need to associate some extra data to each node:

Its structure-id (inherited from the index file the node was read from);

—its position in its index file (so that its children or siblings can be found if nec-
essary); and

document identifier to which the node belongs (necessary for before and after
queries).

5.2 Lazy Evaluation

Two alternative evaluation schemes are proposed in the original PN implementation
(Section 3.2). Since our focus is on large text databases, we cannot afford storing
all the result of PN subexpressions in main memory before using them to compute
other operations over these. Writing intermediate results to disk is also slow and
cumbersome. Hence we chose lazy evaluation. However, the original work is not
fully lazy: all the children of a given node are produced as soon as anyone is needed.
Our current scheme is even more lazy.

We envision lazy evaluation as a process where we never build explicitly the re-
sults of PN expressions. Rather, we provide the mechanisms to navigate through
the result trees. The navigation operations permitted are the same as for the index
files: first-child and next-sibling. Hence, rather than implementing procedures that,
given two result trees of subexpressions, compute a new result tree, we implement
cursors that, given an operation and two cursors (that traverse subexpression re-
sults), are able to navigate through the result they should produce. Therefore,
the results (final and intermediate) are never produced. Rather, we need to keep
in main memory just one node of the result tree for each PN subexpression (the
current node). This scheme works precisely because of the philosophy of the PN
model: we can compute the result by traversing the arguments more or less in syn-
chronization. The final result of the PN expression can be obtained incrementally,
by navigating it with the first-child operation.

Actually, the operations have a slightly special semantics, as follows:

first-child: moves to the first child of the current node. If it does not exist it
moves to its next sibling. If no next sibling exists, it moves to the sibling of its
parent, or of its grandparent, and so on.
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next-stbling: moves to the next sibling of the current node. If it does not exist it
moves to the sibling of its parent, or of its grandparent, and so on.

Figure 12 shows an example. Actually, the query syntax tree is an active device
throughout the query process. Each node is replaced by a cursor able to navi-
gate through the result tree of the subexpression. We navigate the root node and
show the final result tree. The navigation over the root node triggers navigation
operations over subexpression nodes.

In particular, the cursors corresponding to tag-name queries are extremely simple.
When the cursor is initialized the appropriate index file is opened. Each time we
request the cursor to move to its first-child, it advances in the file by one position
and delivers the current node. Each time we request the cursor to move to its next-
sibling, it advances the file by its number-of-descendants field plus 1, and delivers
the current node. Of course, buffering is used to reduce the amount of disk accesses.
The scheme is very efficient and one can determine exactly how much main memory
is going to be spent on buffering.

A similar scheme solves word matching queries. To initialize the cursor we search
for the word in the vocabulary and fetch the list of its text occurrences. Both
traversal operations are identical in this case: the next word position has to be
delivered. Again we can use buffering to reduce disk accesses and at the same time
use as much main memory as we want.

Hence the cursors for the leaves of the query syntax tree are easily implemented.
The operations Node and Attribute are rewritten as a balanced union of all the
known tag names of the appropriate type. In our example,

Node = (((chapter union section) union (title union author))
union (image union book))

Attribute = ((@caption union source) union @number)

where the balanced union ensures that each node traverses the hierarchy in time
logarithmic in the number of different tags.

For the internal nodes, we need to implement a different procedure for each
PN operation defined. This procedure is slightly different depending on whether
we want the first-child or the next-sibling. At the invocation, all we know is the
current node of the operands and the previous node delivered.

There is little point in going over all the 13 operations implemented plus their
13 negated versions. Rather, we prefer to show a few representative cases.

5.2.1 Some Easy Operators. In the seudocodes that follow, operations receive two
subquery parameters P and (), as well as a direction dir that can have the value
child or sibling, depending on where we have to move. Subqueries are manipulated
as cursors, as explained. Field X.result is the current value of cursor X (i.e., current
node in the results of subquery X). Operation Next(X,dir) moves current cursor
X according to dir, and returns the modified cursor X. Depending on the operator
at the root of subquery X, Next becomes the appropriate PN operation (e.g. In).
As the result of such a function invocation, we assign a new value to variable result,
which becomes the current node of the corresponding cursor. Observe that, except
for union, we always return values from P that satisfy some condition.
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Struct ( title ) Struct ( section )

OOOOIOIONE

Union( Struct ( title ), Struct ( section ))

Union( Struct ( title ), Struct ( section ))

Fig. 12. Cursors over result trees. The top trees show the argument trees (obtained in lazy for
from the index files). The middle tree is the whole result of the query title union section, but
this tree is never produced. What one really has is a device like that of the bottom figure, where
one can navigate using the first-child (solid line) and next-sibling (dashed line) operations.
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A result equal to # indicates that the tree traversal has finished. We can compare
the segments of two nodes p and ¢ by using the following relations: p < ¢ (segment
of p is completely before segment of ¢), p > ¢ (idem after), p C ¢ (segment of p is
strictly contained in segment of ¢), p D ¢ (strictly containing), and p = ¢ (segments
coincide). Symbols <, >, C and D permit also the condition p = ¢ to be true.

A very simple example is the In function, which implements P in (). As long as
the current segments of P and @) are disjoint, it advances by sibling the leftmost
segment. At some moment it finds a pair of nodes contained one in the other. If
the node of P is not contained in that of @), then it moves to the child of P, as
some descendant of P could be contained in the current () node. If, instead, the
node of P is contained in the current node of @), it stops at the current P node and
this is the new result. In the beginning, it starts by moving in P by dir, since the
invariant is that the current node in P has already been delivered.

Figure 5.2.1 gives the seudocode. If we replace O by D and C by C we obtain
Inself. It should be clear that the time to traverse the result of “P in Q" is
O(|P] + |Q]), that is, linear in the size of the arguments, since we work O(1) time
per node of P or Q.

In (P, Q, dir)

1. p « Next(P,dir).result

q < Q.result

While p # 6 AND g # 6 Do

Case

p<gq:p < Next(P,sibling).result
p>q:q < Next(Q,sibling).result
p2Dq:p + Next(P,child).result
p C q: result < p; Return

result < 0

© XN o W

Fig. 13. Operation In.

Let us now consider function With. It works quite similarly as In. This time we
move to the child of () if P is contained in the current node of (), since there could
be descendants of Q contained in the current P node. Another difference is that it is
possible that @ is the result of a phrase query and hence it may represent a segment
that overlaps structural segments. Hence we have used explicitly the From and To
values of segments in order to move. Figure 5.2.1 gives the seudocode. Again, the
same change as before yields Withself. The complexity is clearly linear as well.

Let us now consider function Before. It uses functor Doc over current node
values, which is their document identifier (recall that this is stored when the node
is in main memory). We advance in P or () until they are in the same document.
Then the result is the current P node if it is before the current ¢ value. If current
P node is after current () node, we advance in @ by sibling. If one node includes
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With (P, Q, dir)

1 p « Next(P, dir).result

2 g + Q.result

3 While p # 6 AND g # 6 Do

4 Case

5. pCq:q < Next(Q,child).result

6 pDq: resull + p; Return

7 From(p) < From(q) : p < Next(P, sibling).result
8 From(p) > From(q) : ¢ + Next(Q,sibling).result
9 result + 0

Fig. 14. Operation With.

another we advance in @ by child, as we cannot discard current P node until we
are sure there is no relevant () node ahead.

Figure 5.2.1 shows the seudocode, which is again clearly linear time. Function
After is symmetric.

Before (P, Q, dir)

1. p « Next(P, dir).result

2. q + Q.result

3. While p # 6 AND g # 0 Do

4. Case

5. Doc(p) > Doc(q) : ¢ < Next(Q,sibling).result
6. Doc(p) < Doc(q) : p + Next(P,sibling).result
7. p>q:q « Next(Q,sibling).result

8. p<q: result + p; Return

9. else : ¢ + Next(Q,child).result

10.  result < 0

Fig. 15. Operation Before.

Other simple functions are those that implement same and is, as well as the
negated versions of all the simple functions. The other operator that qualifies as
“simple” is union. Although it needs some care because it is the only one where
nodes from both P and @) can be retrieved, it is essentially simple. Finally, there
are different versions for same and with when the right-hand operator is a text
matching query, since in that case word-offsets rather than byte-offsets have to be
used.

All simple operations need constant memory and linear time in the worst case.
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5.2.2 More Complicated Operators. There are four PN operations that present
complications. Two of them, child and after-sibling, still achieve linear worst-
case time but need O(h) space, being h the height of the collection tree. This is
not really a problem in practice, as h is usually very low. The other two, parent
and before-sibling, are worse. We obtain linear time only on average (O(nlogn)
worst case), and need potentially O(n) space.

We note that the key issue is that these are the operations that make direct
reference to the structure of the whole collection: their results cannot be determined
by looking at segment inclusion only, but we need to consider direct parentship in
the XML tree. On top of that, the operations corresponding to forward axes only
require to keep, for the current node, the list of its ancestors in the result tree,
which are only O(h) and have already been computed. The reverse axes, on the
other hand, require all their descendants, which are O(n) and have to be computead
ahead of time.

Let us first consider “P child @”. The problem is that, given a current P and @
nodes, such that P C @), we may have to enter inside @) in order to find the parents
of some other nodes inside P, but later it may be that the current value of () is
the correct parent of a subsequent node of P. Figure 16 illustrates this case. If we
start at P; and ()1, we must move to () in order to properly find the parent of Ps,
but later, when we move to Pz, we should come back to @; to find the parent of
Pg.

P1

Q1

Q2 P3
P2

Fig. 16. A case where we cannot advance in @ and forget the ancestors.

Moving backwards goes against all the philosophy of the model. So we prefer to
store a stack of ancestors of the current () node. These ancestors refer to the virtual
tree ( and have been already seen. We also keep the invariant that p C Top(stack).

Figure 5.2.2 gives the seudocode. We use functor Id for nodes, which as explained
is just the byte offset of the segment beginning. We also use Parent, which is the
parent identifier, i.e., parent byte offset again.

Although the stack is O(h) space, the algorithm is still linear time in the worst
case. This is not so immediate this time: we can perform several Pop operations
for a single () node. However, there cannot be more Pop’s than Push’s overall, and
these are linear overall.

The algorithm for after-sibling suffers from the same problem: Siblings of any
ancestor of the current P node can appear later, after we have processed other
descendants. The solution uses a similar stack, and the space and time complexity
stays the same.

Let us consider now the reverse axes with the same problem, in particular the
parent operation. Given current nodes of P and (), we may need to traverse all the
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Child (P, Q, dir)

1. p « Next(P, dir).result

2. q — Q.result

3. While p # 6 AND g # 0 Do

4. While p ¢ Top(stack) Do Pop(stack)

5. Case

6. Parent(p) = Id(Top(stack)) : result < p; Return
7. p<q:p + Next(P, sibling).result

8. p>q:q < Next(Q,sibling).result

9. While g ¢ Top(stack) Do Pop(stack)

10. p2Dq:p < Next(P,child).result

11. p C q : Push(stack,q);

12. q + Next(Q,child).result

13. While g ¢ Top(stack) Do Pop(stack)

14.  While p # 0 anD NOT [sEmpty(stack) Do

15. Case

16. Parent(p) = Id(Top(stack)) : result < p; Return
17. else : Pop(stack)

18.  result + 6

Fig. 17.  Operation Child.

@ nodes that descend from the current P node before finding a child that selects the
current P node. The () nodes traversed before that must be remembered, however,
because they may be necessary to select further nodes of P. Figure 16 serves again
as an example if we consider “() parent P”. If the current nodes are (J; and P,
we need to traverse P, and P; in order to know that ()1 qualifies, but then we have
forgotten P, which is necessary to make 5 qualify.

The solution is to store the () descendants of the current P node in a hash table,
indexed by their parent-id value. Hence the identifier of subsequent P nodes are
searched for in this table. Figure 5.2.2 gives the seudocode.

Note that we only need to know whether the child of a given P node has been
inserted in the hash table, so a bit array suffices, and this is the way it is imple-
mented in the prototype. In case we prefer to use a classical table with only the
relevant P nodes inserted, we could implement a mechanism to remove old P nodes
once we have definitely abandoned their area. This can be implemented as part of
the same Insert function: when inserting a new node p, every other node p’ such
that To(p') < From(p) can be removed from the hash table.

This algorithm is linear time on average, and it could be made O(nlogn) in the
worst case (where n = |P|+|Q|), by using a balanced binary search tree. It requires
in the worst case enough space to store the whole argument P. This could even be
stored on disk, which would slow down the process but permit an implementation
with bounded main memory. Our prototype stores the hash table in main memory.

The situation with before-sibling is similar. This time, however, the hash table
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Parent (P, Q, dir)
p « Next(P,dir).result
qg + Q.result
While p # 6 AND g # 6 Do
Insert(hash, Parent(q))
Case
Exists(hash, 1d(p)) : result < p; Return
p<q:p + Next(P,sibling).result
p>q:q + Next(Q,sibling).result
else : q + Next(Q,child).result
While p # 6 Do
Case
Exists(hash, Id(p)) : result < p; Return
else : p « Next(P,sibling).result
result < 6
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Fig. 18. Operation Parent.

is a bit bigger because we need also to store, for each parent identifier in the hash
table, which is the last sibling that qualified, so as to know whether the current
P node is before that () sibling. We use a classical closed hashing table, without
removing obsolete nodes.

6. A SOFTWARE PROTOTYPE

We have implemented a software prototype called IXPN (Index for XPath using
Proximal Nodes). An online demo can be seen in www.dcc.uchile.cl/ixpn. The
demo indexes several of the databases described in the experiments and permits
executing XPath queries against them. The translation to PN is shown both in
plain format and as a query syntax tree. The result of the query can also be
examined.

In this section we describe the prototype and our experimental performance com-
parisons against other existing softwares to solve XPath queries.

6.1 Description
The software prototype consists of three components (see Figure 19):

An indexer, which builds the text and structure indexes from the XML collection;

a query evaluator, which receives and XPath expression and returns the qualifying
nodes; and

—a visualizer of results, which shows the XML content of the resulting nodes.

All the software was developed in C language, using a function-oriented modular
scheme.

6.1.1 Indexer. To build the document indexer we used a fast and flexible XML
parser called Ezpat [Clark and Cooper 2002].
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Structure
Index

| Software
Indexer :

y

—> Interface

Query Engine

Fig. 19. The architecture of IXPN.

As it reads the documents of the collection, the indexer writes to disk the struc-
ture nodes and builds in main memory a trie data structure with the text words
and their positions. When the memory used by the trie reaches a given limit, a
partial indez is stored to disk. Finally, partial indexes are merged in a balanced
way, and other information such as document list, tag list, etc. is generated. This
follows the general scheme to build an inverted file depicted in [Baeza-Yates and
Ribeiro-Neto 1999].

About 70% of the index time is used to store and combine the partial indexes on
disk.

The total main memory required by the indexer is determined by the height of
the XML tree. This is because a node can be stored on disk only when its final
position is known, so we may have to keep in main memory a whole path of nodes
before writing them do disk. This requirement is in practice minimal. A more
relevant requirement is that of the trie data structure, but this can be fixed almost
arbitrarily and traded for indexing time. This means that the amount of main
memory available is usually not an issue.

6.1.2 Query Evaluator. We used flex [GNU Project 2000] and bison [GNU Project
2003] for the syntax analysis of the XPath query. The evaluation is done in three
steps:

(1) Construction of the PN query syntax tree.

(2) Modification of the syntax tree to account for simplifications and other trans-
formations.

(3) Evaluation of the PN query. A loop sequentially obtains the results, under the

lazy evaluation scheme.

6.1.3 Visualization of Results. For this prototype we chose to present to the user
the original XML pieces corresponding to each returned node. This component
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could be easily replaced by others that execute more sophisticated visualization
or even pass the results in some predefined format to other higher level query
processors, such as an XQuery processor.

6.2 Experimental Performace

We measured the performance of IXPN in evaluating different kinds of simple and
complex queries.

6.2.1 Setup. We used a dedicated 700 MHz Intel Pentium IIT with 384 Mb of
RAM running Windows XP 2002, with a 30 Gb local hard disk Maxtor 5400 RPM.
Each experiment was repeated 20 times and the average elapsed times are reported,
in milliseconds (msecs). Standard deviation was 5 to 10 msecs. Given our lazy
evaluation scheme, we measured the time to retrieve 1, 10, 100, and all the answers
of each query. The time to obtain the first node is taken as the latency of the
query time (open files, fill buffers, etc.), and then a time per node is computed by
subtracting the latency and dividing the remaining time by the number of nodes
returned by the query, considering the time to retrieve all the answers.

We counted the times to obtain the node identifiers, not that of outputting the
text content of each node, as this is a feature external to the engine.

6.2.2 Text Collections. We used XML collections from four different sources and
with different characteristics:

SHAKESPEARE: A collection of plays from Shakespeare [Bosak 1999b].
GCIDE: A collaborative dictionary, compiled the GNU Project [Dyck 2002].
RELIGION: A collection of religious texts [Bosak 1999a].

DOE: Short abstracts from DOE publications [Harman 1995].

These collections have very diverse level of structuring. We measure it in terms
of the percentage of the total collection size that is used by XML tags. This factor
strongly influences the space required by the structure index. Table 3 gives several
relevant parameters, including space overhead of both indexes. We use a set of
122 stopwords, formed by prepositions, articles, and so on. This produced a 50%
reduction in the space for the inverted index.

Collection Size (Mb) | # docs. | # tags | # attr. | % struct. | txt-idx | str-idx
SHAKESPEARE 10.0 37 21 1 50.49% 45.0% | 75.0%
GCIDE 53.5 28 289 6 39.53% 17.3% 83.1%
RELIGION 6.7 4 28 0 5.50% 15.0% 16.5%
DOE 91.5 93 4 1 4.55% 19.8% 7.6%

Table 3. Some data on the XML collections used. By “# tags” and “# attr.” we refer to
the number of different tag and attribute names, respectively. “% struct” refers to the level of
structuring. The last two columns show the space overhead of text and structure indexes.

The size of IXPN indexes changes drastically depending on the structuring level
of the collection, since each node occupies a fixed amount of space on disk, usually
much larger than the text length of the corresponding tag. Collections SHAKE-
SPEARE and GCIDE have a high level of structuring as compared to RELIGION
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and DOE. This accounts for the incidence of the two indexes on the overall space
overhead.

It might also be interesting to see which are the maximum values of the fields
stored at index nodes, so as to evaluate the possibility of compression. Table 4
shows this. As it can be seen, most numbers are rather large, so compression is not
trivial. Of course, it would be possible to consider the maxima of each tag name
separately in order to compress those with smaller fields.

The main surprise might be that the distance to the sibling is always one node.
This is because, in all our example databases (those shown here and others omit-
ted), a tag cannot contain another tag of the same name. We will consider some
consequences of this in the conclusions.

Collection Parent-id First-byte Byte-len | Dist-sibl | First-word | Word-len
SHAKESPEARE | 10,479,622 | 10,180,162 | 10,479,683 22 648,946 23,479
GCIDE 56,109,897 | 55,975,405 | 56,078,405 22 3,571,749 399,844
RELIGION 6,997,786 3,511,727 6,998,843 22 550,181 287,987
DOE 96,030,726 | 95,340,608 | 96,031,587 22 9,043,007 105,532

Table 4. Maximum size of different fields for the XML collections used.

6.2.3 Queries. We tested each operation in isolation in order to analyze the per-
formance of the different functions implemented. Later we show tests on complex
queries. The queries have to be different for each collection because they have dif-
ferent tags. However, we use a general scheme and change only tag names. These
are:

Child: Queries of the form structi/struct?2.

Parent: Queries of the form structl[struct2].

In: Queries of the form struct1//struct?2.

With: Queries of the form structi[//struct2].

Following: Queries of the form structl/following: :struct?2.

Preceding: Queries of the form structl/preceding: :struct2.

Following-sibling: Queries of the form structl/following-sibling: :struct2.
This is abbreviated in the tables as struct1/foll-sibling: :struct2.

Preceding-sibling: Queries of the form struct1/preceding-sibling: : struct2.
This is abbreviated in the tables as structl/prec-sibling: :struct2.

Text: Queries of the form struct[.=""word"].

Phrase: Queries of the form structi[.=""wordl word2"].

Node: Queries of the form *.

Attribute: Queries of the form @*.

Note that “x¥” and “@+” are in fact tests for the speed of union, as the query
is translated into a balanced union of all the tag names. This has to be taken
into account when the number of “nodes involved” is computed, as we refer to
all intermediate results. Not only the original arguments are counted, but also the
internal nodes of the query syntax tree. This includes the final result, corresponding
to the root of the syntax tree.
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6.2.4 Results. Tables 5, 6, 7 and 8 show the results. As it can be seen, the latency
is rather constant, from 70 to 90 msecs in most cases. An exception is for the query
“*” on GCIDE, due to the large number of different tags, and hence of leaves in
the query syntax tree. An initial buffer of results has to be filled for each such leaf.

It is also clear that, once this latency is paid, the time to retrieve 1 or 100 nodes
is not very different. On the other hand, the type of operation and collection type
or size do not have much influence.

In general, latency excluded, IXPN takes 15 to 35 microseconds (usecs) to output
each new answer node. Obtaining a better approximation is difficult because the
time depends not only on the size of the result but also on the sizes of the inter-
mediate results (called “nodes involved” in the tables). It can be seen that there
are a few cases where the time per node is much larger than 35 psecs. In most
of these cases, the number of nodes involved exceed by a factor of 10 the answer
size. This is usually the case of parent, with, and phrase operations. Trying to
model the time as a function of nodes involved does not help, because these oper-
ators usually skip a large amount of involved nodes, so they take much less time
per involved node than others. The remaining cases of very large time per node
answered corresponds to queries that anyway return too few answers.

It is also interesting that the operations that were algorithmically problematic
have worked well in practice, for example child and parent. They are as fast as
the simpler in and with.

Query Nodes retrieved Answer Nodes psecs

1 10 | 100 All size involved | /node
SPEECH/LINE 80 80 81 | 2,060 | 107,833 246,694 18
SPEECH[LINE] 80 80 84 913 31,028 169,889 27
SCENE//LINE 97 97 98 | 1,915 | 107,164 215,747 17
SCENE[//LINE] 101 | 103 | 114 211 750 109,333 147
LINE/following::LINE 87 87 89 | 2,667 | 107,796 323,462 24
LINE/preceding: :LINE 85 85 88 | 2,788 | 107,796 323,462 25
LINE/foll-sibling::LINE 85 85 89 | 3,398 76,805 292,471 43
LINE/prec-sibling: :LINE 83 84 89 | 2,126 76,805 292,471 27
LINE[.=""1love"] 86 86 94 209 1,705 112,600 72
SPEAKER[.=""MARK ANTONY"] 87 87 94 102 204 31,739 74
* 110 | 111 | 112 | 5,778 | 179,689 | 1,018,237 32
Q* 88 88 97 | 3,742 | 179,689 179,689 20

Table 5. Elapsed time to solve different queries on the SHAKESPEARE collection. Times are in
msecs. The time for 1 node is the latency and “usecs/node” refers to microseconds per answer
node, latency excluded.

6.3 Comparison against Others

Although there exist many prototypes and test versions of softwares that support
XML databases, most of them are commercial developments. In the best cases,
online demos are available via Web, but these cannot be used for comparison pur-
poses because of different server architectures, different text collections, and even
because of the network latencies that distort the results.



38 : G. Navarro and M. Ortega

Query Nodes retrieved Answer Nodes psecs

1 10 100 All size involved | /node
p/source 84 85 88 4,548 229,043 689,674 19
plsourcel 84 84 86 1,041 8,568 469,199 112
p//br 83 83 84 4,273 243,885 718,786 17
pl//br] 85 86 88 4,347 226,203 701,104 19
p/following: :p 90 93 92 5,651 230,989 693,021 24
p/preceding: :p 80 83 88 5,850 230,989 693,021 25
p/foll-sibling::p 87 88 96 6,729 230,989 693,021 29
p/prec-sibling::p 84 85 89 5,892 230,989 693,021 25
pl.=""Webster"] 73 75 76 1,262 25,722 469,160 46
pl.=""1913 Webster"] 71 72 7 1,510 24,873 680,733 58
* 3,086 | 3,086 | 3,087 | 126,943 | 2,201,761 | 21,469,074 56
@x 92 98 — 100 60 220 133

Table 6. FElapsed time to solve different queries on the GCIDE collection. Times are in msecs.
The time for 1 node is the latency and “usecs/node” refers to microseconds per answer node,
latency excluded.

Query Nodes retrieved Answer Nodes psecs

1 10 | 100 All size involved | /node
book/chapter 82 82 85 104 1,423 2,922 15
chapter[v] 102 | 102 | 110 250 1,090 46,462 136
tstmt//v 84 84 86 737 43,949 87,902 15
chapter[//v] 87 88 93 149 1,423 46,795 44
title/following::v 82 83 85 996 43,949 87,906 21
v/preceding::v 82 82 83 | 1,080 43,945 131,843 23
v/foll-sibling::v 80 81 85 | 1,172 42,386 130,284 26
title/prec-sibling::v 82 82 91 | 1,166 42,386 86,343 26
v[.=""God"] 88 89 96 202 4,404 53,383 26
v[.=""LORD God"] 92 93 | 101 212 1,113 55,710 108
% 111 | 113 | 116 | 1,517 48,259 | 275,766 29
(GEJ

Table 7. Elapsed time to solve different queries on the RELIGION collection. Times are in msecs.
The time for 1 node is the latency and “usecs/node” refers to microseconds per answer node,
latency excluded.
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Query Nodes retrieved Answer Nodes psecs

1| 10 | 100 All size involved | /node
DOC/DOCNO 83 | 83 85 | 2,175 112,144 336,372 19
DOC[DOCNO] 80 | 80 83 | 2,279 112,144 336,372 20
DOC//TEXT 86 | 87 90 | 2,044 112,144 336,372 17
DOC[//TEXT] 86 | 86 89 | 2,201 112,144 336,372 19
DOC/following: :DOC 88 | 89 93 | 3,041 112,054 336,282 26
DOC/preceding: :DOC 80 | 81 85 | 2,787 112,054 336,282 24
DOC/foll-sibling::DOC 79 | 79 82 | 3,045 112,054 336,282 26
DOC/prec-sibling::D0OC 82 | 83 89 | 2,830 112,054 336,282 25
TEXT[.=""energy"] 70 | 70 73 765 19,102 162,060 36
TEXT[.=""high energy"] | 71 | 73 99 609 1,205 180,656 446
* 93 | 96 97 | 9,290 336,522 | 1,009,566 27
@x 89 | 90 — 91 90 90 22

Table 8. Elapsed time to solve different queries on the DOE collection. Times are in msecs. The
time for 1 node is the latency and “psecs/node” refers to microseconds per answer node, latency
excluded.

We obtained six softwares whose source or executable versions were available,
and compared them against IXPN. These are

Xindice [Apache Software Foundation 2002]: Indexes documents using a na-
tive XML database with proprietary format. It is designed to work on small
and medium-size collections, with a maximum document size of about 5 Mb.
It uses the technology of Apache group to work with XML documents, which
consists of a set of Java classes . Queries are run on a server process. The
indexes are stored in a compressed format and accessed from disk. Xindice
implements only a basic XPath functionality.

eXist [Meier 2002]: Indexes documents using a native XML database with pro-
prietary format. It is designed to work on small and medium-size collections,
with a maximum document size of about 5 Mb. It uses the technology of
Apache group to work with XML documents, which consists of a set of Java
classes . Queries are run on a server process. Indexes are stored and managed
on disk. eXist implements a complete XPath functionality.

XMLGrep [Jones 2000]: Searches the documents sequentially, looking for reg-
ular expressions the XPath queries are transformed into. It is implemented
in C language and only supports basic XPath operations. This project was
abandoned by its developer. It cannot handle multiple-document collections.

Saxon [Kay 2002]: Searches the documents sequentially, but it builds the struc-
ture tree of each document before running the query against it. It is imple-
mented as Java classes. Saxon is oriented to transforming XML documents us-
ing XSLT language [Consortium 1999b], but it can be adapted to solve XPath
queries. It implements lazy evaluation for XPath. It cannot handle multiple-
document collections.

MSXML [Microsoft Corp. 2002]: Searches the documents sequentially, but it
builds the structure tree of each document before running the query against it.
It is an APT available as a COM component for several Microsoft languages such
as C++, VisualScript and JScript. MSXML is oriented to transforming XML
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documents using XSLT language [Consortium 1999b], but it can be adapted to
solve XPath queries. It cannot handle multiple-document collections. MSXML
is currently considered to be one of the most efficient developments in technolo-
gies for XML management.

ToXin [Toronto XML Server Project 2002]: Searches the documents sequen-
tially, but it builds the structure tree of each document before running the query
against it. It is implemented as Java classes. It implements a highly simplified
version of XPath that includes only the axes child and descendant, which are
called “regular expressions” of XPath.

6.3.1 Indexing. Table 9 compares the time and space necessary to index our test
text collections. We only consider IXPN, Xindice and eXist, since the others do not
build any index but sequentially scan the collection for every query. We let IXPN
use 10 Mb of RAM to index the text.

Collection IXPN Xindice eXist

Time | Speed Size Time | Speed Size Time | Speed Size
SHAKESPEARE 34 0.294 | 120% 67 0.149 83% 337 0.030 | 410%
GCIDE 217 0.244 | 100% 437 0.122 74%
RELIGION 9 0.746 32% 23 0.294 | 133% 80 0.084 | 235%
DOE 222 0.416 28% 222 0.416 | 119%

Table 9. Time and space to index the test XML collections. Time is measured in seconds, speed
in Mb/sec, and size in extra percentage over the XML text size.

Xindice compresses and stores the XML documents, unlike IXPN, which retains
the original documents (hence in order to compare space overheads we should add
100% to IXPN). This is the reason why Xindice had more overhead on less struc-
tured collections. Moreover, IXPN does not index stopwords. This makes it difficult
to compare the respective index sizes. However, it is interesting that both indexes
have similar space overheads on little structured collections.

eXist, on the other hand, could not index the larger collections GCIDE and
DOE, because of excessive memory requirements. The indexes produced are huge,
although it answers queries faster than Xindice.

IXPN was the fastest to produce the index, at a rate of 1.3 4.0 secs/Mb. Next
was Xindice, with 2.4 8.2 secs/Mb, and the slowest was eXist, at a rate of 12 33
secs/Mb.

6.3.2 Searching. We tested more complex queries against the collections RELI-
GION, SHAKESPEARE and DOE. All queries are evaluated from the root of the tree,
as required by the other softwares (not IXPN). The query syntax was adapted to
each software. Java, JScript and Perl programs were developed as necessary to test
them, in particular for those unable to process several documents simultaneously.
Since the other softwares return the text content of returned nodes, IXPN was
modified to do the same. We measured the time to return all the results, using an
external software for fairness.
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Tables 10, 11 and 12 show the results. We use some obvious abbreviations for
the software names. col chica los seq ok, grandes no. malos para //, toxin no daba
con algunos

We note that the softwares developed in Java are much slower than the rest.
The exception is ToXin. However, for this program we measured only the time
to execute the query, disregarding the time to build the index in main memory.
This can be fair if we measure performance in hot state, although for the others we
measured time in cold state.

Xindice and eXist use too much main memory, close to 100 Mb. They were not
able to build their in-memory indexes for GCIDE and DOE, and Xindice could
not answer any query on SHAKESPEARE. Xindice is very slow in general, but es-
pecially with operator “//”. This is mentioned in the documentation, where it is
recommended to omit it close to the root of the collection. In fact, all the imple-
mentations recommend the same. The reason is that they operate by traversing the
tree directed by the axes, and operator “//” forces them to traverse the whole tree.
For the same reason, all them require the queries to start at the root of the tree.
This is a clear advantage of IXPN, which works bottom-up and is very efficient for
this type of operation.

XMLGrep performs bad on reverse axes, which require it to go back to check
pieces of documents already traversed. Note also that only IXPN and ToXin are
able of quickly determining that a given structure tag does not exist (last query on
DOE).

Sequential search solutions, such XMLGrep, work well on small collections, but
it is too slow on large sets. The same performance is exhibited by Saxon and eXist.
MSXML and ToXin, on the other hand, handle large collections better. However,
none of these can be considered a competitive choice for handling a large text
collection (several hundred megabytes). In addition, ToXin handles a very limited
subset of XPath, which excludes several of our example queries.

IXPN, on the other hand, performed well for small and large text collections,
taking usually less than 2 seconds to answer queries. It was by far faster than all
the other alternatives and does not seem to be much affected by the size of the
collection.

| Query | IXPN | Xind | eXist | Grep | Saxon | MS | ToXin
/tstmt/bookcoll/book/chapter 1.8 20.5 8.8 3.4 4.0 3.3 2.5
/tstmt/coverpg/coverpgltitle] 0.5 2.8 2.2 0.7 3.3 1.3
/tstmt//chapter 1.8 58.9 8.8 3.8 4.1 3.2 2.5
/tstmt [//chapter] 0.9 22.7 8.8 3.7 4.0 4.2
v[.=""1love"] 0.4 9.9 9.8 0.7 3.4 | 1.8 3.7
/tstmt/coverpg/title
/following-sibling: :subtitle 0.5 2.6 9.8 0.7 3.3 1.3 —

Table 10. FElapsed time, in seconds, to solve different complex queries on the softwares tested
over collection RELIGION.
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| Query | IXPN | Xind | eXist | Grep | Saxon | MS | ToXin
/SPEECH[SPEAKER="mark antony"]
/LINE 0.1 25.6 24.5 23.2 5.5
PLAY[TITLE=""hamlet"]
//PERSONA 0.1 25.7 24.4 23.8 5.4

SCENE[//SPEAKER="romeo"
and //SPEAKER="juliet"]

/TITLE 0.1 — 12.2 38.1 24.2 8.1 —
PLAY[//ACT/TITLE=""act III"]
/TITLE 0.6 — 20.1 25.1 23.7 5.7 —

SPEECH [SPEAKER="juliet"]
/preceding-sibling: :SPEECH
[SPEAKER="romeo"]
/ancestor: :SCENE/TITLE 0.2 — 12.4 23.5 23.1 5.8 —

Table 11. FElapsed time, in seconds, to solve different complex queries on the softwares tested
over collection SHAKESPEARE.

[ Query IXPN | Xind | eXist | Grep | Saxon | MS [ ToXin
/FILE/DOC/DOCNO 2.3 13.8 61.0 | 24.4 3.6
/FILE//TEXT 1.9 — — | 684 | 677|471 19.0
/FILE/@* 0.1 125 62.2 | 12.1
/FILE/DOC/DOCNO [TEXT] 1.6 — — | 130.2 61.3 | 11.5 —
/FILE/DOC/TEXT[.=""energy"] 0.8 65.3 69.7 | 20.2
/% 7.6 — — | 589 69.3 | 60.0 22.5
//AAA <0.1 13.6 60.0 | 11.4 0.2

Table 12. Elapsed time, in seconds, to solve different complex queries on the softwares tested
over collection DOE.

7. CONCLUSIONS

We have presented IXPN, an indexed search technique to answer XPath queries over
large XML collections. IXPN first builds an index on disk over the XML collection.
Based on that index, it is able of answering XPath queries over the collection. IXPN
works in a lazy manner, so the answer can be retrieved incrementally and navigated
through, for example discarding uninteresting answer subtrees without need to even
producing it. IXPN can index and query an arbitrarily large text collection with
a very limited main memory; in most cases as limited as desired. The current
prototype of IXPN can be tested at http://www.dcc.uchile.cl/ixpn.

We have focused on the “most interesting” part of XPath functionality, leav-
ing aside the programming-language-like features (http://www.w3.org/TR/xpath-
#corelib). These depend on the embedding language and are easier to implement
efficiently. We also disregard instruction-nodes, namespaces, etc., whose inclusion
is rather trivial. References are also not considered, but these are part of other
languages that contain XPath, such as XLink.

IXPN is based on Proximal Nodes (PN), a generic model to query structured
text. We have shown how, despite looking very different, XPath can be converted
into PN. We have reimplemented the PN model in a more memory-efficient way, and
at the same time have reduced disk overheads to a minimum. All the operations
work in time linear on the size of the arguments (most in the worst case, a few
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on average). Most operations require constant space, although some require space
proportional to the height of the XML tree, and a few pathological cases could
require memory proportional to one of the arguments.

We have shown that IXPN is by far more efficient than all the publicly available
alternatives we were aware of, including MSXML. In particular, IXPN was the only
one unaffected by the collection size, and in fact the only one that can currently
be seriously considered to handle large text collections. IXPN is also unaffected by
the use of the ‘//” operator, which is troublesome for all other softwares. This is
due to the bottom-up nature of PN algorithms, as other alternatives traverse the
structure tree in a top-down fashion.

We are working on the current prototype in order to improve the compression of
the index (which is currently very basic but already competitive), and on including
more algebraic optimization of PN queries, which can make a large difference in
ill-posed queries. In particular, we have observed that containment between nodes
of the same type is very rare. Indeed, it is so rare that we could remove the pointer
to the next sibling in our structure index, and in case we need to move to the
sibling we could just move sequentially (as if we moved to children) until reaching
the sibling. This would save 10% of structure index space and the effect on query
time would be minimal.

Other important aspects not yet considered are: handling transactions, imple-
menting an API to give access to IXPN via programming languages, multicollection
support, handling updates to the text via efficient reindexing, developing a client-
server architecture, clever handling of frequent queries, etc.

An issue that deserves more research is how to efficiently deal with direct edge
queries (those involving child parent and sibling relationships). These have been
the only where we could not guarantee linear time and constant space. From these,
reverse axes were the most complicated. Although we showed that in practice there
is no big difference, there is an intrinsic problem related to the lazy evaluation of
these operations, as it is not always possible to run them by moving forward. As
we forced that, we had to precompute some results ahead of time and storing them
for later.

On the other hand, these direct edges are easily dealt-with by the usual top-
down approach, for which our easyness to handle transitive operations (descen-
dant /ancestor, for example) is difficult to achieve. It would be interesting to join
the best of both approaches.

We are also interested in extending our XPath implementation to include all
the operators of the standard, as well as other operations not included but that
we could handle efficiently, such as searching allowing errors, searching for regular
expressions, and so on. More importantly, we plan to handle more sophisticated
embedding languages, such as XQuery or XSLT, keeping the current efficiency as
much as possible.

Finally, it should be pointed out that IXPN could be used as a sequential engine,
to work on an XML stream without any index. A low-level scanner would traverse
the text, recognizing words and structural nodes that are mentioned in the query
and filling buffers of answers at the leaves. The rest could proceed in lazy form as
more data becomes available at the leaves. We believe that this could be competitive
against current sequential alternatives that either search for regular expressions or
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explicitly build the structure tree.

Another interesting idea is to rewrite a document collection as a sequence of node
and word identifiers. This would yield a compressed representation of the collection,
and with the aid of the index it would be possible to reproduce a rather legible
version of the document. This is interesting, for example, in Web search engines
that maintain a simple version of all the text contents. It might be interesting
to focus on compressed indexes for XML collections, as done in [Ferragina and
Mastroianni ].
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