
IXPN: An Index-Based XPath ImplementationGonzalo NavarroCenter for Web Researh, Dept. of Computer Siene, University of ChileandManuel OrtegaDept. of Computer Siene, University of ChileWe present IXPN, and indexing tehnique for XML olletions that permits fast proessing ofXPath queries. The underlying idea of IXPN is to map the XML/XPath model onto the ProximalNodes (PN) model [Baeza-Yates and Navarro, ACM TOIS 1997℄, for whih eÆient algorithmshave been designed. The mapping of XPath onto the query language of PN is rather involvedbeause they are based on di�erent onepts, but it an be done eÆiently. On the side of theimplementation of the PN model, we have ompletely reimplemented the 1997 prototype, and haveadded new operations needed to support XPath without disturbing the basi PN philosophy. Inthis paper we explain how the model mapping is done, how we have implemented the PN model,and how our implementation ompares favourably against all the freely available alternatives weare aware of.1. INTRODUCTIONThere is little doubt that XML [Goldfarb and Presod 1998℄ is bound to play animportant role in the area of handling semistrutured data. XML permits express-ing the ontent and struture of a doument, so that it an be read by a humanand at the same time manipulated automatially, keeping maximum exibility inthe kind of struture that douments may have. XML is beoming a standard formanipulating, exhanging and storing semistrutured data.One of the most important operations needed on these \strutured text" olle-tions is that of searhing for some piee of the olletion that has some property.This property an be related to the text ontent and also to the struture. XPath[Consortium 1999a℄ is one of the most popular languages to query XML data.Although it has existed for several years, no fully satisfatory implementation ofXPath exists, to the best of our knowledge.Funded by Millenium Nuleus Center for Web Researh, Grant P01-029-F, Mideplan, Chile.Authors' address: Gonzalo Navarro, Dept. of Computer Siene, University of Chile, BlanoEnalada 2120, Santiago, Chile. gnavarro�d.uhile.l. Manuel Ortega, Dept. of ComputerSiene, University of Chile, Blano Enalada 2120, Santiago, Chile. mortega�d.uhile.l.Permission to make digital or hard opies of part or all of this work for personal or lassroom use isgranted without fee provided that opies are not made or distributed for pro�t or diret ommerialadvantage and that opies show this notie on the �rst page or initial sreen of a display alongwith the full itation. Copyrights for omponents of this work owned by others than ACM mustbe honored. Abstrating with redit is permitted. To opy otherwise, to republish, to post onservers, to redistribute to lists, or to use any omponent of this work in other works, requires priorspei� permission and/or a fee. Permissions may be requested from Publiations Dept, ACMIn., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions�am.org.

2 � G. Navarro and M. OrtegaOn the other hand, several theoretial models (in the sense of not being tied toany popular format suh as XML) have been proposed in the last deades to queryand manipulate strutured text. One of those, alled Proximal Nodes (PN) [Navarroand Baeza-Yates 1997℄, was designed with the aim of balaning expresiveness andimplementation eÆieny.Reently, it has been shown that XQL [Lapp et al. 1998℄, a query languagesimpler than XPath and now less popular, ould be mapped onto PN [Baeza-Yatesand Navarro 2000℄. No implementation was presented, however.In this paper we takle the problem of implementing the more powerful and pop-ular XPath by mapping it onto the PN model. This mapping is not straightforward,beause the design oneptions of XPath and PN are widely di�erent. However,it an be done without loss of eÆieny and we show arefully how this is arriedout. One transformed into a PN query, we �nd that the operations onsideredfor the PN model in the original paper [Navarro and Baeza-Yates 1997℄ have to behanged slightly, some an be simpli�ed, and others have to be added. We reimple-ment ompletely the PN model with a more eÆient design. We show that all theoperations an be implemented in time linear with the size of the arguments (andnot of the database), and usually using very little main memory. At the end, weshow how our prototype ompares against existing freely available searh enginesfor XPath.The page of the IXPN prototype is www.d.uhile.l/ixpn.2. XML AND XPATHWe present in this setion the XML and XPath spei�ations, in the depth neessaryto understand how we implement XPath.2.1 XML: eXtensible Markup LanguageXML [Goldfarb and Presod 1998℄ is the spei�ation of a exible markup languagefor strutured text. The markup is expressed by means of speial marks, alled tags,that are inserted into the text in order to desribe a struture. An XML tag is asequene of haraters between the speial haraters \<" and \>". All the textinside tags is part of the doument struture, the rest is the ontent. Tags arehuman-readable, but are usually hidden when displaying the doument, as theyare not ontent but indiate how the ontent should be understood and presented.Figure 1 shows our running example of an XML doument.Tags are usually paired, so that portions of the ontent are marked by enlosingthem between an initial and a �nal tag, typially <tagname> and </tagname>. Forexample, <title>Introdution</title>marks the text \Introdution" with the tag \title". When the enlosed ontent isempty, the initial and �nal tags are merged into one, <tagname/>. Apart from aname, tags may have attributes, eah of whih has a value. For example,<image soure="graph.png" aption="This is a graph"/>is a tag without ontent and with two attributes, \soure" and \aption", whoseontents are \graph.png" and \This is a graph", respetively.

IXPN: An Index-Based XPath Implementation � 31. <?xml version="1.0" enoding="iso-8859-1"?>2. <!DOCTYPE book "http://www.example.om/projet.dtd">3. <!--THE BOOK-->4. <book>5. <author>J. Williams</author>6. <title>XCD Algorithm</title>7. <hapter number="1">8. <title>Introdution</title>9. This is the Introdution...10. <image soure="graph.png" aption="This is a Graph"/>11. </hapter>12. <hapter number="2">13. <title>Prototype</title>14. The prototype...15. <setion number="2.1">16. <title>Implementation</title>17. <setion number="2.1.1">18. <title>Data Model</title>19. Our data model...20. </setion>21. </setion>22. </hapter>23. <hapter number="3">24. <title>Conlusions And Future Work</title>25. </hapter>26. </book>Fig. 1. Our running example of an XML doument. Line numbers are not part of the doumentbut used for future referenes.An important aspet of XML is that tags annot overlap, that is, a tag annotbe losed until all the ontained tags have been losed. This indues a hierarhialstruture on the doument, where eah node represents a tag, whose hildren areits attributes and ontained tags. Figure 2 illustrates the hierarhy.Eah tag ontains a text segment of the doument, whih in turn an ontainmore tags. Sine tags have a length greater than zero, no two segments of di�erenttags an start at the same position. Note also that the order in whih initial tagsare found in the text orresponds to a preorder traversal in the tree. This is knownas the doument order.Apart from the tags that desribe the struture, there are other elements in theXML spei�ation that do not desribe struture, suh as omments, ommandsdireted to spei� proessors, doument type de�nitions, and so on. These areusually ignored in query languages and we ignore them in this paper.2.2 XPath: XML Path LanguageXPath [Consortium 1999a℄ is one of the favorite languages to selet parts of anXML olletion. It is an essential piee of more omplete languages suh as XQuery[Consortium 2001℄ and XSLT [Consortium 1999b℄. XPath has a full notation andan abbreviated version for the most ommonly used operations. The result of anXPath query is a well-formed XML doument.XPath is omposed of two parts. The �rst, most important for us, omprises

4 � G. Navarro and M. Ortega
author

title section

book

image

chapter chapter

title

title section

title

number

source caption

number

number

number

title

title

chapter

number

Fig. 2. The hierarhial struture of our running example. Cirles represent tags and squaresrepresent attributes.the node seletion operations, whih let the user speify whih parts of the XMLolletion to obtain. The seond inludes elements of a lassial programming lan-guage, suh as variables, expressions, and onditional and branhing instrutions.Indeed, XPath must be embedded into another language, from where variables andexpressions take their semantis. In partiular, for XPath embedded in XQuery,the so-alled FLOWER expressions are permitted. These refer to For-Let-Where-Return strutures, whih permit speifying queries in XPath and present the resultsas desired in XML, perhaps forming strutures not originally present in the dou-ment, muh like SQL works on relational databases.Figure 3 shows an example. It is lear that node seletion operations are asimportant as the programming-like operations. However, from an implementationpoint of view, the former are muh more hallenging. One the node seletionoperation returns the onseutive values for $p, the rest of the proessing is rathersimple: $b is obtained by variable substitution, the WHERE lause implies simpleinrements and omparisons, and so on.FOR $p IN doument("book.xml")//authorLET $b := doument("book.xml")//book[author = $p℄WHERE ount($b) > 100RETURN $p Fig. 3. An XQuery program using XPath in its �rst line.This is why in this paper we fous only on the node seletion operations of XPath:This is the most ritial part of an implementation. It an be done very eÆiently

IXPN: An Index-Based XPath Implementation � 5or very naively, as its language is very high-level. Its performane drives the overallperformane. The programming language part, on the other hand, is rather low-level and therefore it an hardly experiment too large di�erenes in implementationperformane. In the example of Figure 3, the most hallenging part is how are wegoing to �nd the author �eld aross all the olletion. The rest is fast and simple.2.3 XPath Spei�ationsXPath distinguishes several node types in an XML doument.|An XML doument is seen by XPath as rooted by a speial and virtual root-node.|All the XML tags that desribe struture de�ne element-nodes. These are themost ommon nodes.|Eah attribute of eah tag makes up an attribute-node, whih belongs to theorresponding element-node but is not onsidered to be a hild of it.|Other types of elements that we disregard in this paper beause they are not usedwhen implementing the basi XPath mahinery are namespae-nodes, instrution-nodes, text-nodes and omment-nodes. In fat, text-nodes are of importane asthey ontain all the text ontent, but the onept of having virtual nodes thatontain maximal text piees is of no use for our translation. We treat the text ina di�erent way.The basi syntax of XPath onsists of expressions, whose result is usually a set ofnodes, but it an also be a boolean, numeri or string value. An expression spei�esa set of nodes and optionally a funtion of the result. Hene it is possible to searhfor all the setion nodes and just deliver the set, or add a ounting operation anddeliver instead the number of suh nodes.The mehanism used by XPath to desribe the nodes that should be returnedonsists of four important parts: a ontext, an axis, a nodetext, and a prediate. Ina �rst approximation, we an onsider that all the nodes are onsidered as suitableontext nodes, the axis spei�es how to reah the seleted nodes from the ontextnodes, the nodetest heks the name/type of the nodes to return, and the prediatefurther �lters the desired seleted nodes. For example, an XPath expression likehild::hapter[position()=1℄spei�es a hild axis, meaning that we want all the nodes that are hildren ofsome node (hene their parent is the ontext node). Furthermore, it spei�es twoprediates over the desired nodes: (1) a test of name: the node should be namedhapter; (2) an expliit prediate (whose language we examine later): the positionof the node should be the �rst in its ontext. This means that we want the �rsthapters of nodes found in the olletion. In our running example, the full hapternumber 1 (lines 7{11) is retrieved.2.3.1 Loation Steps and Loation Paths. The above is an example of a so-alledloation step. It always refers to some ontext node (that is outside its spei�ation),and inludes three parts:(1) An axis speifying how to move from the ontext node to �nd the seleted node(this an be self if we want to selet the ontext node itself);

6 � G. Navarro and M. Ortega(2) a node test that heks the name of the seleted node; and(3) a prediate with zero or more expressions that further re�ne the seleted nodes.If a single loation step is given alone, then all the nodes of the doument aresuitable ontext nodes, as in our previous example.Loation steps an be hained together to form a loation path, whih is a sequeneof loation steps where the result of eah step beomes the set of ontext nodes forthe next. This an be seen as the de�nition of a path in the struture tree thatshows how answer nodes should be reahed from ontext nodes and what onditionsshould ontext and seleted nodes satisfy.Conseutive loation steps of a loation path are separated by a \/". The ontextof the �rst loation step is the set of all the nodes, and this loation path is said tobe \relative" (in the sense that the sequene of steps an appear anywhere in thetree). On the opposite, if a loation path starts with a \/", this means that theontext of the �rst loation step is only the root node, and hene the path must befound only starting at the root. This path is alled \absolute".For example, an XPath expression likeself::hapter/hild::setion/hild::titleis a loation path formed by three loation steps. It selets all the nodes of nametitle that are hildren of nodes of name setion that are hildren of nodes ofname hapter. In our running example it would return only the node<title>Implementation</title>:Figure 4 illustrates. Indeed, hild is the default axis after a \/", and self is the�rst axis by default1. Hene the expression ould be written simply ashapter/setion/title:2.3.2 Axes. Let us now onsider the axes in detail. Possible axes are:hild: diret hildren of the ontext node in the tree;desendant: hildren, their hildren, and so on;parent: tree parent of ontext node;anestor: parent, its parent, and so on;following-sibling: siblings of the ontext node to its right;preeding-sibling: siblings to the left;following: nodes following the ontext node in doument order, inside the samedoument and exluding desendants;preeding: idem preeding the ontext node;attribute: attributes of the ontext node;self: the same ontext node;desendant-or-self: self plus desendants; andanestor-or-self: self plus anestors.1In fat it ould be said that hild is always the default axis, and this makes no di�erene beauseevery node has a parent exept the root node, whih is not retrievable.

IXPN: An Index-Based XPath Implementation � 7
section

chapter

title

title section

number

number

context node

location path

location steps

Fig. 4. A loation path formed by three loation steps.namespae: this axis that is irrelevant for this paper.Exept for attribute, attribute nodes are never seleted by these axes. Also, theresult of these axes when the ontext is an attribute node is the empty set, exeptfor self.Note that the axes anestor, desendant, following, preeding, and self partitionthe doument tree into disjoint subsets. Attribute nodes are speial nodes andonsidered as orthogonal to the rest of the model (as well as namespae nodes).Figure 5 illustrates.
Descendant

FollowingPreceding

Context Node

Attribute

NameSpace Following-SiblingPreceding-Sibling
Self

Child

Parent

Self

Ancestor

Fig. 5. The di�erent axes and how they partition the doument.It is also important to mention that axes are lassi�ed into reverse-axes andforward-axes, depending on whether they take nodes that, in doument order, are

8 � G. Navarro and M. Ortegabefore or after the ontext node. Reverse axes are anestor, anestor-or-self, pre-eding, preeding-or-self, and parent2. All the rest are forward axes.2.3.3 Nodetests. With respet to the test over the node, both the main node type(element-node, attribute-node or namespae-node) and the node name must maththe test. The node type is given by the axis (attribute leads to an attribute-node,namespae to an namespae-node, and all the rest to an element-node). The termnode() or the symbol *" an be used to selet any node name. Note that theroot-node is never retrieved by an XPath query.2.3.4 Prediates. Finally, let us onsider the possible prediate �lters. The wholeset of possible expressions inludes those de�ned in the embedding language, butthere are some basi ones that are part of XPath. The prediates ontain one ormore basi onditions onneted by or, and and not.The simplest possible prediate is just a loation path. The prediate beomestrue if there exists suh a loation path in the ontext of the andidate node (towhih the prediate applies). For example,hapter[setion/title℄ = self::hapter[hild::setion/hild::title℄selets nodes of name hapter that satisfy the prediate of having a title hild ofa setion as their hild. The answer to this query in our running example is lines12{22 (hapter 2).An equality test, \=", ompares either numbers or strings. In the ase of strings,one operand must be a onstant string and the other a loation path. The testbeomes true if the loation path appears and its text ontent equals the string. Astring ontainment test, \=~", is similar but the string should be ontained in thetext ontent of the loation path3. As an example,self::setion[attribute::number="2.1.1"℄selets setions ontaining an attribute named number whose text ontent is ex-atly \2.1.1", that is, lines 17{20 of our running example. The example an beabbreviated as setion[�number="2.1.1"℄:We remark that the text in attribute values is not onsidered to be a part of thetext in other ontaining nodes.The equality between numbers makes sense when we use some funtions providedby XPath. These inlude, at least: position(), whih is the position of the node(in doument order) among those returned in the same ontext; last(), whih isthe number of nodes returned from this ontext. For example,self::hapter/desendant-or-self::setion[position()=last()℄gives the last setion of eah hapter, that is, lines 17{20 in our running example.2Aording to the de�nition, parent ould be lassi�ed either as forward or reverse axis. In ourase it is simpler to see it as a reverse axis.3We have used this operation for brevity. In rigor, this is written as \ontains(path,string)" inXPath 1.0.

IXPN: An Index-Based XPath Implementation � 9The example an be abbreviated ashapter//setion[position()=last()℄:Furthermore, a simple number is taken as a numeri equality over position(), sothe example an be further abbreviated ashapter//setion[last()℄:Other abbreviations are \.", whih stands for \self::node()" and \..", whihstands for \parent::node()". Figure 6 summarizes the syntax of XPath, withoutabbreviations. It is a simpli�ation of the oÆial XPath 1.0 grammar.path �! / path j path / axis :: step j axis :: stepaxis �! hild j desendant j desendant-or-self j parentj anestor j anestor-or-self j followingj following-sibling j preeding j preeding-siblingj attribute j namespae j selfstep �! nodetest j step [pred ℄nodetest �! NAME j node()pred �! pred and pred j pred or pred j not predj spath j numeri = numerispath �! axis :: nodetest / spath j axis :: nodetestj axis :: nodetest = string j axis :: nodetest =~ stringnumeri �! last() j position() j NUMBERstring �! WORD j string WORDFig. 6. Summary of the syntax of XPath, abbreviations exluded.3. PROXIMAL NODESThe Proximal Nodes Model (PN) [Navarro and Baeza-Yates 1995; Navarro andBaeza-Yates 1997℄ presents a good ompromise between expressiveness and eÆ-ieny. It does not de�ne a spei� language, but a model in whih it is shown thata number of useful operators an be inluded, while ahieving good eÆieny. Manyindependent strutures an be de�ned on the same text, eah one being a strit hi-erarhy, and allowing overlaps between areas delimited by di�erent hierarhies (e.g.hapters/setions and pages/lines). A query an relate di�erent hierarhies, but re-turns a subset of the nodes of one hierarhy only (i.e., nested elements are allowedin the answers, but not overlaps). Eah node has an assoiated segment, whihis the area of the text it omprises. The segment of a node inludes that of itsdesendants. Text mathing queries are modeled as returning nodes from a speial\text hierarhy".The model spei�es a fully ompositional language with three types of opera-tors: (1) text pattern-mathing; (2) to retrieve strutural omponents by name(e.g. all hapters); and (3) to ombine other results. The main idea behind theeÆient evaluation of these operations is a bottom-up approah, by �rst searhing

10 � G. Navarro and M. Ortegathe queries on ontents and then going up the strutural part. Two indies areused, for text and for struture, meant to eÆiently solve queries of type 1 and 2without traversing the whole database. To make operations of type 3 eÆient, onlyoperations that relate \nearby" nodes are allowed. Nearby nodes are those whosesegments are more or less proximal. This way, the answer is built by traversingboth operands in synhronization, leading in most ases to a onstant amortizedost per proessed element.As we show next, many useful operators �t into this model. There is a separatetext mathing sublanguage, whih is independent of the model. This model an beeÆiently implemented, needing linear time for most operations and in all pratialases (this is supported by analysis and experimental results [Navarro 1995℄). Thetime to solve a query is proportional to the sum of the sizes of the intermediateresults (and not to the size of the database).3.1 Query LanguageThe PN model permits any operation in whih the fat that a node belongs or notto the �nal result an be determined by the identity and text position of itself andof nodes (in the operands) whih are \proximal" to it, as explained.
after, after(k)

before, before(k)

Distances

Direct structural

parent(k)

[s] child

By included elements

with(k)

Content
Basis

expr.
Match

matchesBasis
Structure

Constructor

All on matches

Opers

Composition
Operations

collapse, subtract...

in

[s] in

By including elements

Set manipulation

same

union, minus, is

Fig. 7. Possible operations for the PN model, lassi�ed by type. We have removed those thatare relevant when several hierarhies exist, whih is not the ase in XML.Figure 7 shows the sheme of a possible set of operations. There are basi ex-tration operators (forming the basis of querying on struture and on ontents),and operators to ombine results from others, whih are lassi�ed in a number of

IXPN: An Index-Based XPath Implementation � 11groups: those whih operate by onsidering inluded elements, inluding elements,nearby elements, by manipulating sets and by diret strutural relationships.We explain in some detail those that are relevant for the ase of a single hierarhy,whih inludes the XML model.|Mathing sublanguage: Is the only one whih aesses the text ontent of thedatabase, and is orthogonal to the rest of the language.|Mathes: The mathing language generates a set of disjoint segments, whihare introdued in the model as belonging to a speial \text hierarhy". Allthe text answers generate at lists. For example, "Introdution" generatesthe at set of all segments of 12 letters where that word appears in the text(those are ontained in lines 8 and 9 of our running example). Note that themathing language ould allow muh more omplex expressions (e.g. regularexpressions).|Operations on mathes: Are appliable only to subsets of the text hierarhy,and make transformations to the segments. We see this point and the previousone as the mehanism for generating math queries, and we do not restritour language to any sublanguage for this. As an example, M ollapse M 0superimposes both sets of mathes, merging them when an overlap results;and M subtrat M 0 removes from the �rst set the text positions belonging tothe seond set, shortening, removing and utting segments as required.|Basi struture operators: Are the other kind of leaves of the query syntax tree,whih refer to basi strutural omponents.|Name of strutural omponent: (\onstrutor" queries). Is the set of all nodesof the given type. For example, hapter retrieves all the hapter elements (3nodes in Figure 2).|Whole hierarhy: (\All" queries). Is the set of all nodes of the hierarhy. Thesame e�et an be obtained by summing up (\union" operator) all the nodetypes of the hierarhy.|Inluded-In operators: Selet elements from the �rst operand whih are inludedin one of the seond.|Free inlusion: Selet any inluded element. \P in Q" is the set of nodes of Pwhih are inluded in a node of Q. For example, title in hapter selets alltitles inside hapters, even setion titles (see Figure 2).|Positional inlusion: Selet only those elements inluded at a given position. Inorder to de�ne position, only the top-level inluded elements for eah inludingnode are onsidered. \[s℄ P in Q" is the same as in, but only qualifyingthe nodes whih desend from a Q-node in a position (from left to right)onsidered in s. The language for expressing positions (i.e. values for s) isalso independent. It was onsidered that �nite unions of i..j, last� i..last�j,and i..last�j would suÆe for most purposes. The range of possible values is1..last. For example, [1..2℄ hapter in book retrieves the �rst two haptersfrom our book example. If hapters inluded other hapters, only the top-levelones would be onsidered.|Inluding operators: Selet from the �rst operand the elements inluding elementsfrom the seond one. \P with(k) Q" is the set of nodes of P whih inlude atleast k nodes of Q. If (k) is not present, we assume 1. For example, hapter

12 � G. Navarro and M. Ortegawith(2) "Introdution" selets the hapters in whih the word \Introdution"appears at least two times (hapter 1 in our example).|Diret struture operators: Selet elements from the �rst operand based on diretstrutural riteria, i.e. by diret parentship in the struture tree orrespondingto the hierarhy.|\[s℄ P hild Q" is the set of nodes of P whih are hildren (in the hierarhy) ofsome node of Q, at a position onsidered in s (that is, the s-th hildren). If [s℄is not present, we assume 1::last. For example, title hild hapter retrievesthe titles of all hapters (and not titles of setions inside hapters).|\P parent(k) Q" is the set of nodes of P whih are parents (in the hierarhy) ofat least k nodes of Q. If (k) is not present, we assume 1. For example, hapterparent(3) setion selets hapters with three or more top-level setions (nonein our example).|Distane operators: Selet from the �rst operand elements whih are at a givendistane of some element of the seond operand, under ertain additional ondi-tions.|\P after/before Q (C)" is the set of nodes of P whose segments begin/endafter/before the end/beginning of a segment in Q. If there is more than one P -andidate for a node of Q, the nearest one to the Q-node is onsidered (if theyare at the same distane, then one of them inludes the other and we seletthe inluding one). In order for a P -node to be onsidered a andidate for aQ-node, the minimal node of C ontaining them must be the same, or mustnot exist in both ases. For example, image after title (hapter) retrievesthe nearest images following titles, inside the same hapter (the only imagewould be retrieved in our example).|\P after/before(k) Q (C)" is the set of all nodes of P whose segments be-gin/end after/before the end/beginning of a segment in Q, at a distane ofat most k text symbols (not only nearest ones). C plays the same role asabove. For example, "Conlusions" before (20) "Future" (hapter) seletsthe words \Conlusions" that are followed by \Future" at a distane of at most20 symbols, inside the same hapter (there is one ourrene in hapter 3 inour example).|Set manipulation operators: Manipulate both operands as sets, implementingunion, di�erene, and intersetion under di�erent riteria.|\P union Q" is the union of P and Q. For example, figure union list isthe set of all �gures and lists. To make a union on text segments, one usesollapse.|\P minus Q" is the set di�erene of P and Q. For example, hapter minus(hapter with image) are the hapters with no images (hapters 2 and 3 inour example). To subtrat text segments, one resorts to operations on mathes.|\P is Q" is the intersetion of P and Q. For example, ([1℄ title in hapter)is ([3℄ title in book) selets the titles whih are �rst (top-level) title of ahapter and at the same time third (top-level) title of the book (the title ofhapter 2 would be seleted in our example). To interset text segments usesame.

IXPN: An Index-Based XPath Implementation � 13|\P same Q" is the set of nodes of P whose segments are the same segment ofa node in Q. For example, title same "Introdution" gets the titles thatsay (exatly) \Introdution". This gives the title of hapter 1 in our example.Exept for set manipulation ones, the model also permits the negated version ofall the operators. For example, P not with Q is the same as P � (P with Q),although the evaluation is more eÆient.Clearly inlusion an be determined by the text area overed by a node, andthe fat that an element in A quali�es or not depends only on elements of Bthat inlude it or are inluded in it. Diret anestorship an be determined bythe identity of the nodes and appropriate information on the hierarhial relationsbetween nodes. Note that just the information on text areas overed is not enoughto disern between diret and general inlusion. Distane operations an be arriedout by just onsidering the areas overed and by examining nearby elements of thethree operands. Finally, set manipulation needs nothing more than the identity ofthe nodes and depend on nearby nodes of the other operands.3.2 Existing ImplementationThe PN model proposes an implementation where an index is built on the strutureof the text separated from the normal index for the text ontent. The struturalindex is basially the hierarhy tree with pointers to know the parent, �rst hildand next sibling of eah node. In addition, impliit lists (with \next sibling" and\�rst hild" pointers) for eah di�erent strutural element are maintained, so thatone an traverse the omplete tree or the subtree of all the nodes of a given type.Figure 8 illustrates.
author

title section

book

image

chapter chapter

title

title section

title

title

title

chapter

number number number

number

number

source caption

Structure Index

 . . . IntroductionText

...

Introduction

....

Text Index

author

book

caption

chapter

image

number

source

section

title

Fig. 8. Struture and text index over our XML doument, with the links for title highlighted.

14 � G. Navarro and M. OrtegaTwo di�erent implementations of the model are proposed. A full evaluationversion solves the query syntax tree reursively, that is, both operands of the rootare (reursively) solved ompletely and then the root operator is applied to botharguments, whih are by this time fully evaluated. A lazy evaluation version regardsthe query syntax tree as an entity that survives aross the whole evaluation, towhih one requests results one by one. Upon reeiving a request, any node of thissyntax tree requests in turn results from its operand subtrees until it has enoughinformation to deliver one result. In the experiments [Navarro 1995℄ the lazy versionworked better for more ompliated queries and worse for simpler queries.Leaves whih orrespond to strutural elements are solved by using the strutureindex diretly; those whih orrespond to pure queries on the text ontent are solvedwith the lassial index on ontent (e.g. an inverted �le) and translated into a listof text segments that math the query. This list is treated as a partiular ase of atree of answers.The intermediate (and �nal) results are trees whih are subsets of the wholehierarhy. Figure 9 illustrates.As de�ned by the model, all the allowed operations an be solved by a synhro-nized linear traversal over the operands, so that the total time to solve a query isproportional to the total size of the intermediate results, usually linear time.4. MAPPING XML/XPATH ONTO PROXIMAL NODESIn this setion we desribe how the XML/XPath model has been mapped ontothe PN model. This mapping has two parts: mapping the data and mapping theoperations.4.1 Mapping the XML StrutureFirst of all, the PN model permits independent hiearhies, while XML has only one.This makes it possible to simplify the implementation of PN desribed in [Navarroand Baeza-Yates 1997; Navarro 1995℄. The speial \text hieararhy" de�ned in thePN model, however, has to be maintained in order to permit text searhes.An aspet where XML is more omplex than PN is that XML permits di�erentnode types: Although most XML nodes are element-nodes, there are also attribute-nodes and other node types. In PN there exists a single node type.We have irumvented this problem by onsidering all nodes as element-nodes. Inthose nodes that are not originally element-nodes, we add a speial initial haraterto their name so that we an know whih node types they were originally. This anbe applied to all node types. However, we have done this only to attribute-nodes(to whih we added the speial harater \�", although any other one would do).In order to handle olletions of XML douments, we have added a new nodetype alled doument-node. These are virtual (like the root-node) and not retriev-able. We have translated them as if they orresponded to tag name \-DOCUMENT".Similarly, the root-node is named \-ROOT".The other node types are not interesting for searhing and thus an be disre-garded.For example, a tag with attributes like<hapter number="1"> ... </hapter>

IXPN: An Index-Based XPath Implementation � 15
author

title section

book

image

chapter chapter

title

title section

title

title

title

chapter

number number number

number

number

source caption

sectiontitle title

title section

title

title title

Fig. 9. Tree result of the query \setion union title".will be regarded as<hapter><�number>1</�number> ... </hapter>:We still, however, refer to text positions in the original �le. This requires someare when it omes to de�ne whih is exatly the text segment that orrespondsto eah node type, so that segments of parent nodes stritly ontain those of hildnodes. The rules are as follows:(1) For element-nodes with start and end tags, the segment starts two positionsafter the last harater of the initial tag name, and �nishes at the position

16 � G. Navarro and M. Ortegapreeding the losing tag;(2) for element-nodes with a single start/end tag, the segment starts with thesame rule as for (1), and ends at the position preeding the �nal \/" (this mayause the �nishing position to be before the starting position, but it auses notroubles, as in this ase there annot be hildren nor attributes);(3) for attribute-nodes, the segments over exatly the area of their attribute value,exluding quotation marks;(4) for doument-nodes, the segment goes from the �rst to the last haraters ofthe doument;(5) for the root-node, the segment goes from a �tiious position 0 (zero) to oneposition after the last harater of the last doument (also �tiious).Figure 10 illustrates some ases. This sheme preserves the doument orderof the nodes and is well de�ned for the XPath and PN operations, as explained.Additionally, it has the advantage of easing the displaying of results: If one knowsthat a given segment with a known tag name has mathed the query, one an simplyexpand the segment by the tag name length plus a �xed amount in eah diretion inorder to obtain a well-formed XML node to display. Finally, the property of stritsegment ontainment simpli�es several PN algorithms [Navarro and Baeza-Yates1997; Navarro 1995℄.
<title>Data Model</title>

<chapter number="1"> ... </chapter>

<image source="graph.png" caption="This is a graph"/>

chapter

number:

image:

source:

caption:

br:

title: start end

start

start

start
end

end

start & end

start end

start end

end

Fig. 10. Examples of segment overage for XML tags.In order to enfore that texts below attributes do not belong to other ontainingnodes, we state that words in attribute values should have added a blank haraterat their beginning, so they annot be onfused with words belonging to text-nodes.We see soon how this features is used.We note that XML permits referenes between douments, whih an be queriedin languages like XLink [Consortium 2001a℄ and XPointer [Consortium 2001b℄, butnot in XPath. For this reason we disregard these referenes when onsidering the

IXPN: An Index-Based XPath Implementation � 17struture of the olletion. Implementing queries on these referenes, however, prob-ably needs tehniques that are well beyond the apabilities of an XPath implemen-tation: The referenes indue an arbitrary graph struture in the text olletion,not neessarily a hierarhy. Most of the eÆieny of our XPath implementationstrongly relies on a hierarhial struture.4.2 Mapping XPath ExpressionsThree aspets have to be taken into aount when mapping XPath expressions ontoPN: the ontexts, the axes, and the prediates.While XPath is strongly based on the notion of ontext, this onept does notexist in PN. Yet, the onversion is possible. XPath expressions are regarded assequenes of loation steps, where the result of the urrent step makes up theontext for the next. Previous and urrent loation steps are related by the axes.PN expressions, on the other hand, an be seen as a omposition of binary relationsbetween node sets. The types of binary relations are quite similar to those denotedby the axes. Hene it is possible to onvert sequenes of loation steps into aomposition of binary relations. The operands of these relations are given by thenode tests and the omposition of the loation path itself. Prediates, on the otherhand, an similarly be translated into a omposition of relations, as will be madelear soon.4.2.1 Nodetests. The most ommon nodetest is just an element-node name. Thisis translated into PN simply as the same strutural name. Note that, if the namestarts with the speial harater \�", then it is indeed an attribute-node name, butwe need not pay speial attention to this fat.The other possible nodetest is node() (abbreviated *"), whih orresponds tothe set of all element-nodes. This is translated into a variant of the All operand ofPN, namely Node. The abbreviation \�*" stands for all the attribute-nodes, andis translated into another new PN operand named Attribute. Both new operandswill be implemented as variants of All.4.2.2 Axes. Most axes of XPath have their ounterpart in PN operations. SomePN operations, however, must be slightly rede�ned, and others have to be reatedfrom srath. However, the new operations �t well in the philosophy of PN. More-over, some axes that exist as PN operations an be simpli�ed for an XML struture.We present now the axes of XPath and their PN ounterparts.hild: orresponds to hild operation in PN, where the [s℄ modi�er is not used.Note, for this item and the rest, that we plan to translate paths in reverse,for example setion/title beomes \title hild setion". Note that if theabbreviation \�name" is used as a nodetest, then \hild" should be under-stood as \attribute" (a later item in this list), and the speial harater \�"removed. The fat that \�" is used both in XPath and by ourselves to denoteattribute nodes makes it possible to not doing anything speial when dealingwith this kind of names.parent: orresponds to parent operation in PN, where the (k) modi�er is notused.desendant: orresponds to in operation in PN, without the [s℄ modi�er.

18 � G. Navarro and M. Ortegadesendant-or-self: an be implemented in PN as \(P is Q) union (P in Q)".It is, however, muh simpler and eÆient to add a new inself operation to PNwith the proper semantis.anestor: orresponds to with operation in PN, without the (k) modi�er.anestor-or-self: again we hoose to add a new operation withself to PN.following: orresponds to after(1)(-DOCUMENT) operation in PN. For brevity weall it just after (and make a speial, faster and simpli�ed, implementation forit).preeding: similarly, it orresponds to before(1)(-DOCUMENT) operation in PN,whih we will all just before.following-sibling: an be implemented in PN as \(P after Q) hild (Nodeparent Q)". It is, however, muh simpler and eÆient to add a new after-sibling operation to PN with the proper semantis.preeding-sibling: just as before, we add a new before-sibling operation toPN.attribute: is similar to hild, but also we enfore the seletion of attribute-nodesonly. It is implemented in PN by simply adding the speial harater \�" atthe beginning of the nodetest, even if this nodetest is *", and translate it ashild.self: orresponds to is operation in PN.As explained, the translation of a loation path is done in reverse. For example,hapter/setion/title = self::hapter/hild::setion/hild::title;would selet all titles hildren of setions hildren of hapters. In our runningexample this is the ontent of line 16. The expression is translated intotitle hild (setion hild hapter):Another example ould beself::image/anestor::hapter/following-sibling::hapter;whih would selet hapters that follow hapters (from the same book) that ontainimages (the whole hapters 2 and 3 in our running example). This expression wouldbe translated intohapter after-sibling (hapter with image):Yet a third example, involving abbreviations, is \//image", whih stands for/desendant-or-self::node()/hild::image;and would be translated intoimage hild (Node inself -ROOT):Both are indeed equivalent to just \image". Later we will give some simpli�ationrules for the resulting PN expressions.

IXPN: An Index-Based XPath Implementation � 194.2.3 Prediates. Proximal Nodes has no onept of prediate. However, pred-iates an be translated into additional ompositions with the PN algebra. It isimportant, however, that all prediates are solved as sets of nodes instead of booleanor numeri values, as these annot be handled as intermediate values in PN.The main idea applies to prediates that onsist simply of a loation path. Thisloation path an be translated similarly as loation paths outside prediates. Thistime, however, we must reverse the order and meaning of operands. Axes withopposite meaning are, for example, hild$parent and desendant$anestor.By default, the �rst axis of the prediate is hild. For example,hapter[setion/title℄ = hapter[hild::setion/hild::title℄;whih selets hapters that are parents of setions that are parents of titles, istranslated into the PN expressionhapter parent (setion parent title):The default axis an be overwritten, for example usinghapter[//title℄ = hapter[desendant-or-self::node()/hild::title℄;whih selets hapters ontaining titles, is translated into the PN expressionhapter withself (Node parent title) = hapter with title;where the seond expression is obtained after algebrai simpli�ation of the PNexpression.Yet a third example isimage[�*℄ = image[attribute:*℄;whih selets images with attributes and is translated into the PN expressionimage parent Attribute:When a loation path is ompared against a string, the translation uses withfor ontainment and same for equality. The operation is applied to the �nal stepof the path. Phrases are translated using a new operation of PN alled phrase.This operation belongs to the mathing sublanguage, and is the only operation weneed from that sublanguage. The basi mathing, on the other hand, requires onlysearhing for whole words.For example,hapter[�number="1"℄ = hapter[attribute::number="1"℄;hooses the hapter whose attribute \�number" has the string value \1". This istranslated into PN ashapter parent (�number same " 1");where we note that we have added a blank in front of the \1", as we are dealingwith text inside attributes.Similarly,setion[title=~"Model"℄ = setion[hild::title=~"Model"℄

20 � G. Navarro and M. Ortegahooses the setions whose titles ontain the word \Model". This is translated intoPN as setion parent (title with "Model"):Let us now onsider the boolean operations that an appear in prediates. The\and" operation an be solved just by omposing the onditions, as these are nat-urally restriting the previous result. For example,image[�soure and �aption℄is translated into (image parent �soure) parent �aption:The \or" operation, instead, requires expliit union of both results, is translatedinto the union operation in PN. For example,image[�soure or �aption℄is translated into(image parent �soure) union (image parent �aption):Finally, the \not" operation an be applied to a whole path (or path with a �nalequality/ontainment test), denoting that the ontext node should not math suha loation path. This ould be easily translated using the set di�erene operator(\minus") of PN, although we hoose a faster option: negated versions of all thePN operations are used to onnet the ontext node and the prediate.To onlude this setion we must explain how we handle the numeri prediates,whih may speify that only some qualifying nodes must be returned, namely thoseat spei� positions (in doument order) within the set of qualifying nodes for eahontext node. These are solved by �rst obtaining all the answers and later hoosingthe appropriate positions. In ase the positions do not mention last(), it may notbe neessary to generate all the answers. For example, the expressionhapter[2℄ = hapter[position()=2℄requires obtaining only the seond hapter. Node that this resembles the [s℄ modi�erof hild and in, but this time we need it applied to every possible axis. Hene weneed a general, independent method.4.3 A FormalizationTo summarize the whole method in a omplete and unambiguous way, we presentnow a formalization of the transformation of XPath into PN expressions. This isexpressed in terms of a transformation funtion PN , whih gives the PN expressionequivalent to a given XPath expression.We use some auxiliary funtions: A transforms axes into PN operations, AR intoreverse PN operations, and ARN into reverse and negated PN operations. On theother hand, N transforms nodetests into PN operands. Tables 1 and 2 de�ne theseauxiliary funtions.Before any translation we perform a onversion on attribute axes. This is asfollows: any ourrene of the form.../attribute::nodetest...

IXPN: An Index-Based XPath Implementation � 21Axis A AR ARNhild hild parent not parentparent parent hild not hilddesendant in with not withdesendant-or-self inself withself not withselfanestor with in not inanestor-or-self withself inself not inselffollowing after before not beforepreeding before after not afterfollowing-sibling after-sibling before-sibling not before-siblingpreeding-sibling before-sibling after-sibling not after-siblingself is is not isTable 1. Formal translation of axes. A is used in normal loation paths, while AR and ARNare used for loation paths inside prediates. The latter is used to translate boolean negation. Wedo not speify how to translate the attribute axis beause we never let that ase our.Nodetest Nname name�name �namenode() Node* Node�* AttributeTable 2. Formal translation of nodetests.is onverted into .../hild::�nodetest...that is, an \�" is added at the beginning of the nodetest and the attribute axisbeomes hild. Moreover, if a string omparison follows the nodetest, all theirwords get added a blank before their �rst harater.Our translation follows, based on the abstrat unabbreviated syntax of Figure 6.The �rst rule that mathes an argument is the one used. We remark that we keeptranslation rules as simple as possible, and deal later with possible ineÆieniesinurred.We translate loation paths by always onsidering its last element �rst. Our �rstrule translates absolute paths into relative paths. The seond rule spei�es howloation paths are split into loation steps. The third rule shows how the sequeneis �nished. PN (/path) = PN (self::-ROOT/path)PN (path/axis::step) = (S(step) A(axis) PN (path))PN (axis::step) = (S(step) A(axis) Node)Funtion S spei�es how to translate a single loation step, axis exluded. The�rst rule translates a simple nodetest, while the seond rule handles onseutiveprediates by resorting to a funtion R.

22 � G. Navarro and M. OrtegaS(nodetest) = N (nodetest)S(step[pred℄) = R(S(step); pred)Let us now onsider R, whih translates prediates. The idea is that the �rstargument of R is the ontext (already a PN expression) and the seond is theprediate. This time we onsider the loation paths from left to right, and reversethe axes. The �rst rule spei�es how loation paths are split into loation steps.The seond rule treats the ase of a single loation step. The third and fourth rulesdeal with string omparisons. The �nal six rules work out the boolean onnetives.For the \not" onnetive, we assume that it is applied only to paths, otherwise theobvious boolean equivalenes are applied. For brevity we have used ntst instead ofnodetest.R(tx; axis::ntst/spath) = (tx AR(axis) R(N (ntst); spath))R(tx; axis::ntst) = (tx AR(axis) N (ntst))R(tx; axis::ntst=string) = (tx AR(axis) (N (ntst) same P(string))R(tx; axis::ntst=~string) = (tx AR(axis) (N (ntst) with P(string))R(tx; pred1 and pred2) = R(R(tx; pred1); pred2)R(tx; pred1 or pred2) = (R(tx; pred1) union R(tx; pred2))R(tx; not axis::ntst/spath) = (tx ARN (axis) R(N (ntst); spath))R(tx; not axis::ntst) = (tx ARN (axis) N (ntst))R(tx; not axis::ntst=string) = (tx ARN (axis) (N (ntst) same P(string))R(tx; not axis::ntst=~string) = (tx ARN (axis) (N (ntst) with P(string))Numeri prediates are not inluded in the translation rules beause they are nottranslated but implemented diretly, as explained. Finally, funtion P translatesphrases (sequenes of words) into PN expressions.P(word) = wordP(string word) = (P(string) phrase word)4.3.1 Algebrai Optimizations. The above rules are designed to be as simple tounderstand as possible. However, they may generate unneessarily omplex PNexpressions. Most of them an be simpli�ed bak by �nding plaes where Nodeand Attribute are mentioned, and applying some simpli�ation rules, as follows:All the expressions that follow are equivalent to just P .P is Node Node is PP is Attribute Attribute is PP inself Node P withself Node

IXPN: An Index-Based XPath Implementation � 23P in Node P hild NodeP inself -ROOT P in -ROOTNote that the fourth line is valid beause we are not interested in returning the-ROOT node, as it is �tiious. Other algebrai equivalenes of interest areP withself (Node parent Q) = P parent (Node withself Q) = P with QP inself (Node hild Q) = P hild (Node inself Q) = P in QP is (Node op Q) = (Node op Q) is P = P op Qfor any operation op.Many other optimizations are possible, but those above �x the ineÆienies in-luded when we automatially transform XPath into PN expressions.5. IMPLEMENTING PROXIMAL NODES OPERATIONSIn priniple, we followed the previous PN implementation desribed in Setion 3.2.However, several important improvements were possible and/or neessary in orderto handle very large text olletions and the spei� operations needed to translateXPath.5.1 Index StrutureThe index stores the initial and �nal positions of all the segments orresponding tonodes in the XML olletion. These positions are stored as byte-o�sets. Althougha onseutive node or word numbering would suÆe and yield smaller numbersneeding less spae, we hose byte-o�sets in order to simplify the presentation ofresults to the user: given a node to display we know exatly whih address of whih�le to aess.The index handles olletions with multiple �les. These are seen logially asa single large olletion, where the ontent of eah �le is enlosed into -DOCUMENTtags. A small diretory permits mapping virtual positions into the physial positionof the proper �le.5.1.1 Text Mathing Index. This is little more than an inverted index in se-ondary memory, where the set of all di�erent words of the olletion are maintained,and for eah suh word the list of all its ourrenes are stored.In order to eÆiently solve phrase queries, the word-o�sets of the words shouldbe stored, as byte-o�sets are not enough to distinguish whether two word positionsform a phrase or not, espeially beause, in an XML ontext, there ould be a lotof markup in the physial �le between two words that appear as forming a phraseto an end-user.On the other hand, we do not need to store byte-o�sets of words. Byte-o�sets,as explained, are neessary only to display the results. However, XPath does notpermit to write queries that return simple words or phrases. Every answer must bean XML node. This redues spae requirements a lot.Also, not all the text words have to be indexed. We manage a short list of wordsthat will not be indexed (usually artiles, prepositions, and other words that do

24 � G. Navarro and M. Orteganot arry meaning). These are alled stopwords and it is ustomary to removethem from indexes and queries in Information Retrieval senarios [Baeza-Yates andRibeiro-Neto 1999℄. This permits saving up to 50% of index spae at very little ost.In any ase the list is on�gurable and the index an work under either deision.In order to save index spae, lists of onseutive positions are stored in a di�er-ential format: eah number indiates the o�set with respet to the previous. Thisposes no problems beause all the lists are proessed sequentially, and it yieldssmaller numbers. We take advantage of this by oding the o�sets in an 8-1 for-mat: the number uses as many bytes as neessary and the last bit of eah byte isused to signal the end of the number. This oding is a good ompromise betweenompression ratio and eÆient handling.As explained, words in attribute values have added a blank before their �rstposition, and indexed as normal words. This makes it impossible to have text insideattributes as answers of non-attribute queries. Moreover, their word positions areaumulated in a separate ounter, so that the presene of words in attributesdoes not disturb the result of a same operation regarding the text inside the nodeontaining the attribute.5.1.2 Node Index. Among the alternatives analyzed in the original implementa-tion [Navarro 1995℄ we opted for the one that maintains a separate index for eahdi�erent tag name. If we onsider only the nodes with a given name, the result hasalso a tree struture (e.g. setion in our small running example, see Figure 2 andalso Figure 8). Hene eah index stores a tree.The tree is stored as a sequene of nodes, in depth-�rst order (a node, thenreursively its hildren, then reursively its next sibling). There is no need to storea pointer to the �rst hild of a node beause, if it exists, it is right next to the node.A forward pointer to the next sibling is stored, and it points right next to the nodeif and only if the urrent node has no hildren. An additional advantage of thisorganization is that if more text is added at the end of the olletion, we only needto append more nodes at the end of the index �les, without need to rewrite them.This organization permits answering queries onsisting of tag names with a singlepass over a ontiguous �le. All the algorithms ensure that (node or subexpression)trees are traversed using only two operations: �rst-hild and next-sibling. These areextremely easy to exeute in our format and ensure that we always move forwardover the index �les.The deision of storing separate indexes per tag name favors tag-name queriesagainst Node or Attribute queries, whih an only be solved by a union of allthe involved tag names. In pratie these latter queries are very infrequent andmost should be removed by algebrai optimization.At index onstrution time, eah node is labeled with a unique identi�er. This isuseful to know whether any two nodes are the same or not, and whether two nodesare hildren of the same parent. However, we do not need any additional storage forthe node identi�er: the byte-o�set of its initial segment position is already unique,and we use it as the node identi�er.Sine the node name is impliit from the index �le the node is stored at, we onlyneed to store, for eah node, 6 numbers:|The identi�er (start tag position) of its parent in the whole hierarhy. This is

IXPN: An Index-Based XPath Implementation � 25not the same parent in the tree of the urrent index �le, and it is essential foranswering parent/hild queries).|Initial byte position and byte length of its text segment.|Distane to its next sibling in the urrent index �le. Atually, given that we have�xed node sizes, what we store is the subtree size, measured in number of nodes.|Word-o�set of �rst word, and number of words inside this node.Word o�sets are neessary in order to properly solve same queries: With byteo�set information it is not possible to determine whether a node ontains exatly agiven sequene of words. Two reasons are the presene of attributes at the beginningof the segment overed by a node, and separator haraters like whitespae at theextremes of the node. The �rst word of a node should be that of the next ontentword following the opening tag, so attributes are exluded. This is automatiallyobtained by keeping separate word-o�sets for attribute values and other words.Figure 11 exempli�es the layout on disk.
section

13

title
15

section
16

title
18

number
14

number
17

section 13
segment

16
segment number 14

segment
17

segment title 15
segment

18
segment

parent's id

descendants
of same typeFig. 11. Index �le layout of a subtree of our running example. The numbers are the nodeidenti�ers, and segments are not detailed. The \parent's id" arrows are a graphial view of thevalue stored.Some �elds, suh as initial text segment position and word-o�set of the �rstword, ould be ompressed using 8-1 oding using di�erential enoding. However,we have to be areful beause it is possible to arrive at a node from its parent, itsprevious sibling, or from desendants of the previous sibling. Other usually values,suh as text segment length and word-o�set of last word in the segment, annot.

26 � G. Navarro and M. OrtegaThe reason is that we determine their values only after proessing the last elementof the node. By that time we have already written on disk the node data, and haveto ome bak and write down these values, so we need to use a �xed amount ofbytes. This is a onsequene of our deision of storing nodes in preorder and of aone-pass onstrution.Hene we need 6 numbers. In the databases we have examined, all these numbersare large enough to require full 4-byte integers. The only exeption is the distaneto next sibling, whih is rather small (reall Table 4) and we enode it using 2-byteshort integers. Hene, we need 22 bytes per node.A struture-id is assoiated to eah tag name at indexing time. This simpli�esomparing node names.At query time, it will be neessary to bring some nodes into main memory. Theiramount is very low: in most ases, just one per query syntax tree element. In mainmemory, we need to assoiate some extra data to eah node:|Its struture-id (inherited from the index �le the node was read from);|its position in its index �le (so that its hildren or siblings an be found if ne-essary); and|doument identi�er to whih the node belongs (neessary for before and afterqueries).5.2 Lazy EvaluationTwo alternative evaluation shemes are proposed in the original PN implementation(Setion 3.2). Sine our fous is on large text databases, we annot a�ord storingall the result of PN subexpressions in main memory before using them to omputeother operations over these. Writing intermediate results to disk is also slow andumbersome. Hene we hose lazy evaluation. However, the original work is notfully lazy: all the hildren of a given node are produed as soon as anyone is needed.Our urrent sheme is even more lazy.We envision lazy evaluation as a proess where we never build expliitly the re-sults of PN expressions. Rather, we provide the mehanisms to navigate throughthe result trees. The navigation operations permitted are the same as for the index�les: �rst-hild and next-sibling. Hene, rather than implementing proedures that,given two result trees of subexpressions, ompute a new result tree, we implementursors that, given an operation and two ursors (that traverse subexpression re-sults), are able to navigate through the result they should produe. Therefore,the results (�nal and intermediate) are never produed. Rather, we need to keepin main memory just one node of the result tree for eah PN subexpression (theurrent node). This sheme works preisely beause of the philosophy of the PNmodel: we an ompute the result by traversing the arguments more or less in syn-hronization. The �nal result of the PN expression an be obtained inrementally,by navigating it with the �rst-hild operation.Atually, the operations have a slightly speial semantis, as follows:�rst-hild: moves to the �rst hild of the urrent node. If it does not exist itmoves to its next sibling. If no next sibling exists, it moves to the sibling of itsparent, or of its grandparent, and so on.

IXPN: An Index-Based XPath Implementation � 27next-sibling: moves to the next sibling of the urrent node. If it does not exist itmoves to the sibling of its parent, or of its grandparent, and so on.Figure 12 shows an example. Atually, the query syntax tree is an ative deviethroughout the query proess. Eah node is replaed by a ursor able to navi-gate through the result tree of the subexpression. We navigate the root node andshow the �nal result tree. The navigation over the root node triggers navigationoperations over subexpression nodes.In partiular, the ursors orresponding to tag-name queries are extremely simple.When the ursor is initialized the appropriate index �le is opened. Eah time werequest the ursor to move to its �rst-hild, it advanes in the �le by one positionand delivers the urrent node. Eah time we request the ursor to move to its next-sibling, it advanes the �le by its number-of-desendants �eld plus 1, and deliversthe urrent node. Of ourse, bu�ering is used to redue the amount of disk aesses.The sheme is very eÆient and one an determine exatly how muh main memoryis going to be spent on bu�ering.A similar sheme solves word mathing queries. To initialize the ursor we searhfor the word in the voabulary and feth the list of its text ourrenes. Bothtraversal operations are idential in this ase: the next word position has to bedelivered. Again we an use bu�ering to redue disk aesses and at the same timeuse as muh main memory as we want.Hene the ursors for the leaves of the query syntax tree are easily implemented.The operations Node and Attribute are rewritten as a balaned union of all theknown tag names of the appropriate type. In our example,Node = (((hapter union setion) union (title union author))union (image union book))Attribute = ((�aption union soure) union �number)where the balaned union ensures that eah node traverses the hierarhy in timelogarithmi in the number of di�erent tags.For the internal nodes, we need to implement a di�erent proedure for eahPN operation de�ned. This proedure is slightly di�erent depending on whetherwe want the �rst-hild or the next-sibling. At the invoation, all we know is theurrent node of the operands and the previous node delivered.There is little point in going over all the 13 operations implemented plus their13 negated versions. Rather, we prefer to show a few representative ases.5.2.1 Some Easy Operators. In the seudoodes that follow, operations reeive twosubquery parameters P and Q, as well as a diretion dir that an have the valuehild or sibling, depending on where we have to move. Subqueries are manipulatedas ursors, as explained. FieldX:result is the urrent value of ursorX (i.e., urrentnode in the results of subquery X). Operation Next(X,dir) moves urrent ursorX aording to dir, and returns the modi�ed ursor X . Depending on the operatorat the root of subquery X , Next beomes the appropriate PN operation (e.g. In).As the result of suh a funtion invoation, we assign a new value to variable result,whih beomes the urrent node of the orresponding ursor. Observe that, exeptfor union, we always return values from P that satisfy some ondition.

28 � G. Navarro and M. Ortega
Struct(title)

title title title titletitle title

Struct(section)

section

section

Union(Struct(title), Struct(section))

title title section titletitle

title

Union(Struct(title), Struct(section))

title title section titletitle

sectiontitle

title

sectiontitle

Fig. 12. Cursors over result trees. The top trees show the argument trees (obtained in lazy forfrom the index �les). The middle tree is the whole result of the query title union setion, butthis tree is never produed. What one really has is a devie like that of the bottom �gure, whereone an navigate using the �rst-hild (solid line) and next-sibling (dashed line) operations.

IXPN: An Index-Based XPath Implementation � 29A result equal to � indiates that the tree traversal has �nished. We an omparethe segments of two nodes p and q by using the following relations: p < q (segmentof p is ompletely before segment of q), p > q (idem after), p � q (segment of p isstritly ontained in segment of q), p � q (stritly ontaining), and p = q (segmentsoinide). Symbols �, �, � and � permit also the ondition p = q to be true.A very simple example is the In funtion, whih implements P in Q. As long asthe urrent segments of P and Q are disjoint, it advanes by sibling the leftmostsegment. At some moment it �nds a pair of nodes ontained one in the other. Ifthe node of P is not ontained in that of Q, then it moves to the hild of P , assome desendant of P ould be ontained in the urrent Q node. If, instead, thenode of P is ontained in the urrent node of Q, it stops at the urrent P node andthis is the new result. In the beginning, it starts by moving in P by dir, sine theinvariant is that the urrent node in P has already been delivered.Figure 5.2.1 gives the seudoode. If we replae � by � and � by � we obtainInself. It should be lear that the time to traverse the result of \P in Q" isO(jP j + jQj), that is, linear in the size of the arguments, sine we work O(1) timeper node of P or Q.In (P , Q, dir)1. p Next(P; dir):result2. q Q:result3. While p 6= � and q 6= � Do4. Case5. p < q : p Next(P; sibling):result6. p > q : q Next(Q; sibling):result7. p � q : p Next(P; hild):result8. p � q : result p; Return9. result �Fig. 13. Operation In.Let us now onsider funtion With. It works quite similarly as In. This time wemove to the hild of Q if P is ontained in the urrent node of Q, sine there ouldbe desendants of Q ontained in the urrent P node. Another di�erene is that it ispossible that Q is the result of a phrase query and hene it may represent a segmentthat overlaps strutural segments. Hene we have used expliitly the From and Tovalues of segments in order to move. Figure 5.2.1 gives the seudoode. Again, thesame hange as before yields Withself. The omplexity is learly linear as well.Let us now onsider funtion Before. It uses funtor Do over urrent nodevalues, whih is their doument identi�er (reall that this is stored when the nodeis in main memory). We advane in P or Q until they are in the same doument.Then the result is the urrent P node if it is before the urrent q value. If urrentP node is after urrent Q node, we advane in Q by sibling. If one node inludes

30 � G. Navarro and M. OrtegaWith (P , Q, dir)1. p Next(P; dir):result2. q Q:result3. While p 6= � and q 6= � Do4. Case5. p � q : q Next(Q; hild):result6. p � q : result p; Return7. From(p) < From(q) : p Next(P; sibling):result8. From(p) > From(q) : q Next(Q; sibling):result9. result � Fig. 14. Operation With.another we advane in Q by hild, as we annot disard urrent P node until weare sure there is no relevant Q node ahead.Figure 5.2.1 shows the seudoode, whih is again learly linear time. FuntionAfter is symmetri.Before (P , Q, dir)1. p Next(P; dir):result2. q Q:result3. While p 6= � and q 6= � Do4. Case5. Do(p) > Do(q) : q Next(Q; sibling):result6. Do(p) < Do(q) : p Next(P; sibling):result7. p > q : q Next(Q; sibling):result8. p < q : result p; Return9. else : q Next(Q; hild):result10. result �Fig. 15. Operation Before.Other simple funtions are those that implement same and is, as well as thenegated versions of all the simple funtions. The other operator that quali�es as\simple" is union. Although it needs some are beause it is the only one wherenodes from both P and Q an be retrieved, it is essentially simple. Finally, thereare di�erent versions for same and with when the right-hand operator is a textmathing query, sine in that ase word-o�sets rather than byte-o�sets have to beused.All simple operations need onstant memory and linear time in the worst ase.

IXPN: An Index-Based XPath Implementation � 315.2.2 More Compliated Operators. There are four PN operations that presentompliations. Two of them, hild and after-sibling, still ahieve linear worst-ase time but need O(h) spae, being h the height of the olletion tree. This isnot really a problem in pratie, as h is usually very low. The other two, parentand before-sibling, are worse. We obtain linear time only on average (O(n logn)worst ase), and need potentially O(n) spae.We note that the key issue is that these are the operations that make diretreferene to the struture of the whole olletion: their results annot be determinedby looking at segment inlusion only, but we need to onsider diret parentship inthe XML tree. On top of that, the operations orresponding to forward axes onlyrequire to keep, for the urrent node, the list of its anestors in the result tree,whih are only O(h) and have already been omputed. The reverse axes, on theother hand, require all their desendants, whih are O(n) and have to be omputeadahead of time.Let us �rst onsider \P hild Q". The problem is that, given a urrent P and Qnodes, suh that P � Q, we may have to enter inside Q in order to �nd the parentsof some other nodes inside P , but later it may be that the urrent value of Q isthe orret parent of a subsequent node of P . Figure 16 illustrates this ase. If westart at P1 and Q1, we must move to Q2 in order to properly �nd the parent of P2,but later, when we move to P3, we should ome bak to Q1 to �nd the parent ofP3.
P2

P3

P1

Q1

Q2Fig. 16. A ase where we annot advane in Q and forget the anestors.Moving bakwards goes against all the philosophy of the model. So we prefer tostore a stak of anestors of the urrent Q node. These anestors refer to the virtualtree Q and have been already seen. We also keep the invariant that p � Top(stak).Figure 5.2.2 gives the seudoode. We use funtor Id for nodes, whih as explainedis just the byte o�set of the segment beginning. We also use Parent, whih is theparent identi�er, i.e., parent byte o�set again.Although the stak is O(h) spae, the algorithm is still linear time in the worstase. This is not so immediate this time: we an perform several Pop operationsfor a single Q node. However, there annot be more Pop's than Push's overall, andthese are linear overall.The algorithm for after-sibling su�ers from the same problem: Siblings of anyanestor of the urrent P node an appear later, after we have proessed otherdesendants. The solution uses a similar stak, and the spae and time omplexitystays the same.Let us onsider now the reverse axes with the same problem, in partiular theparent operation. Given urrent nodes of P and Q, we may need to traverse all the

32 � G. Navarro and M. OrtegaChild (P , Q, dir)1. p Next(P; dir):result2. q Q:result3. While p 6= � and q 6= � Do4. While p 6� Top(stak) Do Pop(stak)5. Case6. Parent(p) = Id(Top(stak)) : result p; Return7. p < q : p Next(P; sibling):result8. p > q : q Next(Q; sibling):result9. While q 6� Top(stak) Do Pop(stak)10. p � q : p Next(P; hild):result11. p � q : Push(stak; q);12. q Next(Q; hild):result13. While q 6� Top(stak) Do Pop(stak)14. While p 6= � and not IsEmpty(stak) Do15. Case16. Parent(p) = Id(Top(stak)) : result p; Return17. else : Pop(stak)18. result � Fig. 17. Operation Child.Q nodes that desend from the urrent P node before �nding a hild that selets theurrent P node. The Q nodes traversed before that must be remembered, however,beause they may be neessary to selet further nodes of P . Figure 16 serves againas an example if we onsider \Q parent P". If the urrent nodes are Q1 and P2,we need to traverse P2 and P3 in order to know that Q1 quali�es, but then we haveforgotten P2, whih is neessary to make Q2 qualify.The solution is to store the Q desendants of the urrent P node in a hash table,indexed by their parent-id value. Hene the identi�er of subsequent P nodes aresearhed for in this table. Figure 5.2.2 gives the seudoode.Note that we only need to know whether the hild of a given P node has beeninserted in the hash table, so a bit array suÆes, and this is the way it is imple-mented in the prototype. In ase we prefer to use a lassial table with only therelevant P nodes inserted, we ould implement a mehanism to remove old P nodesone we have de�nitely abandoned their area. This an be implemented as part ofthe same Insert funtion: when inserting a new node p, every other node p0 suhthat To(p0) < From(p) an be removed from the hash table.This algorithm is linear time on average, and it ould be made O(n logn) in theworst ase (where n = jP j+ jQj), by using a balaned binary searh tree. It requiresin the worst ase enough spae to store the whole argument P . This ould even bestored on disk, whih would slow down the proess but permit an implementationwith bounded main memory. Our prototype stores the hash table in main memory.The situation with before-sibling is similar. This time, however, the hash table

IXPN: An Index-Based XPath Implementation � 33Parent (P , Q, dir)1. p Next(P; dir):result2. q Q:result3. While p 6= � and q 6= � Do4. Insert(hash;Parent(q))5. Case6. Exists(hash; Id(p)) : result p; Return7. p < q : p Next(P; sibling):result8. p > q : q Next(Q; sibling):result9. else : q Next(Q; hild):result10. While p 6= � Do11. Case12. Exists(hash; Id(p)) : result p; Return13. else : p Next(P; sibling):result14. result �Fig. 18. Operation Parent.is a bit bigger beause we need also to store, for eah parent identi�er in the hashtable, whih is the last sibling that quali�ed, so as to know whether the urrentP node is before that Q sibling. We use a lassial losed hashing table, withoutremoving obsolete nodes.6. A SOFTWARE PROTOTYPEWe have implemented a software prototype alled IXPN (Index for XPath usingProximal Nodes). An online demo an be seen in www.d.uhile.l/ixpn. Thedemo indexes several of the databases desribed in the experiments and permitsexeuting XPath queries against them. The translation to PN is shown both inplain format and as a query syntax tree. The result of the query an also beexamined.In this setion we desribe the prototype and our experimental performane om-parisons against other existing softwares to solve XPath queries.6.1 DesriptionThe software prototype onsists of three omponents (see Figure 19):|An indexer, whih builds the text and struture indexes from the XML olletion;|a query evaluator, whih reeives and XPath expression and returns the qualifyingnodes; and|a visualizer of results, whih shows the XML ontent of the resulting nodes.All the software was developed in C language, using a funtion-oriented modularsheme.6.1.1 Indexer. To build the doument indexer we used a fast and exible XMLparser alled Expat [Clark and Cooper 2002℄.

34 � G. Navarro and M. Ortega
Indexer

Query EngineInterface

User

SoftwareXML
documents

Text
Index

Structure
Index

Fig. 19. The arhiteture of IXPN.As it reads the douments of the olletion, the indexer writes to disk the stru-ture nodes and builds in main memory a trie data struture with the text wordsand their positions. When the memory used by the trie reahes a given limit, apartial index is stored to disk. Finally, partial indexes are merged in a balanedway, and other information suh as doument list, tag list, et. is generated. Thisfollows the general sheme to build an inverted �le depited in [Baeza-Yates andRibeiro-Neto 1999℄.About 70% of the index time is used to store and ombine the partial indexes ondisk.The total main memory required by the indexer is determined by the height ofthe XML tree. This is beause a node an be stored on disk only when its �nalposition is known, so we may have to keep in main memory a whole path of nodesbefore writing them do disk. This requirement is in pratie minimal. A morerelevant requirement is that of the trie data struture, but this an be �xed almostarbitrarily and traded for indexing time. This means that the amount of mainmemory available is usually not an issue.6.1.2 Query Evaluator. We used ex [GNU Projet 2000℄ and bison [GNU Projet2003℄ for the syntax analysis of the XPath query. The evaluation is done in threesteps:(1) Constrution of the PN query syntax tree.(2) Modi�ation of the syntax tree to aount for simpli�ations and other trans-formations.(3) Evaluation of the PN query. A loop sequentially obtains the results, under thelazy evaluation sheme.6.1.3 Visualization of Results. For this prototype we hose to present to the userthe original XML piees orresponding to eah returned node. This omponent

IXPN: An Index-Based XPath Implementation � 35ould be easily replaed by others that exeute more sophistiated visualizationor even pass the results in some prede�ned format to other higher level queryproessors, suh as an XQuery proessor.6.2 Experimental PerformaeWe measured the performane of IXPN in evaluating di�erent kinds of simple andomplex queries.6.2.1 Setup. We used a dediated 700 MHz Intel Pentium III with 384 Mb ofRAM running Windows XP 2002, with a 30 Gb loal hard disk Maxtor 5400 RPM.Eah experiment was repeated 20 times and the average elapsed times are reported,in milliseonds (mses). Standard deviation was 5 to 10 mses. Given our lazyevaluation sheme, we measured the time to retrieve 1, 10, 100, and all the answersof eah query. The time to obtain the �rst node is taken as the lateny of thequery time (open �les, �ll bu�ers, et.), and then a time per node is omputed bysubtrating the lateny and dividing the remaining time by the number of nodesreturned by the query, onsidering the time to retrieve all the answers.We ounted the times to obtain the node identi�ers, not that of outputting thetext ontent of eah node, as this is a feature external to the engine.6.2.2 Text Colletions. We used XML olletions from four di�erent soures andwith di�erent harateristis:Shakespeare: A olletion of plays from Shakespeare [Bosak 1999b℄.GCIDE: A ollaborative ditionary, ompiled the GNU Projet [Dyk 2002℄.Religion: A olletion of religious texts [Bosak 1999a℄.DOE: Short abstrats from DOE publiations [Harman 1995℄.These olletions have very diverse level of struturing. We measure it in termsof the perentage of the total olletion size that is used by XML tags. This fatorstrongly inuenes the spae required by the struture index. Table 3 gives severalrelevant parameters, inluding spae overhead of both indexes. We use a set of122 stopwords, formed by prepositions, artiles, and so on. This produed a 50%redution in the spae for the inverted index.Colletion Size (Mb) # dos. # tags # attr. % strut. txt-idx str-idxShakespeare 10.0 37 21 1 50.49% 45.0% 75.0%GCIDE 53.5 28 289 6 39.53% 17.3% 83.1%Religion 6.7 4 28 0 5.50% 15.0% 16.5%DOE 91.5 93 4 1 4.55% 19.8% 7.6%Table 3. Some data on the XML olletions used. By \# tags" and \# attr." we refer tothe number of di�erent tag and attribute names, respetively. \% strut" refers to the level ofstruturing. The last two olumns show the spae overhead of text and struture indexes.The size of IXPN indexes hanges drastially depending on the struturing levelof the olletion, sine eah node oupies a �xed amount of spae on disk, usuallymuh larger than the text length of the orresponding tag. Colletions Shake-speare and GCIDE have a high level of struturing as ompared to Religion

36 � G. Navarro and M. Ortegaand DOE. This aounts for the inidene of the two indexes on the overall spaeoverhead.It might also be interesting to see whih are the maximum values of the �eldsstored at index nodes, so as to evaluate the possibility of ompression. Table 4shows this. As it an be seen, most numbers are rather large, so ompression is nottrivial. Of ourse, it would be possible to onsider the maxima of eah tag nameseparately in order to ompress those with smaller �elds.The main surprise might be that the distane to the sibling is always one node.This is beause, in all our example databases (those shown here and others omit-ted), a tag annot ontain another tag of the same name. We will onsider someonsequenes of this in the onlusions.Colletion Parent-id First-byte Byte-len Dist-sibl First-word Word-lenShakespeare 10,479,622 10,180,162 10,479,683 22 648,946 23,479GCIDE 56,109,897 55,975,405 56,078,405 22 3,571,749 399,844Religion 6,997,786 3,511,727 6,998,843 22 550,181 287,987DOE 96,030,726 95,340,608 96,031,587 22 9,043,007 105,532Table 4. Maximum size of di�erent �elds for the XML olletions used.6.2.3 Queries. We tested eah operation in isolation in order to analyze the per-formane of the di�erent funtions implemented. Later we show tests on omplexqueries. The queries have to be di�erent for eah olletion beause they have dif-ferent tags. However, we use a general sheme and hange only tag names. Theseare:Child: Queries of the form strut1/strut2.Parent: Queries of the form strut1[strut2℄.In: Queries of the form strut1//strut2.With: Queries of the form strut1[//strut2℄.Following: Queries of the form strut1/following::strut2.Preeding: Queries of the form strut1/preeding::strut2.Following-sibling: Queries of the form strut1/following-sibling::strut2.This is abbreviated in the tables as strut1/foll-sibling::strut2.Preeding-sibling: Queries of the form strut1/preeding-sibling::strut2.This is abbreviated in the tables as strut1/pre-sibling::strut2.Text: Queries of the form strut[.=~"word"℄.Phrase: Queries of the form strut1[.=~"word1 word2"℄.Node: Queries of the form *.Attribute: Queries of the form �*.Note that *" and \�*" are in fat tests for the speed of union, as the queryis translated into a balaned union of all the tag names. This has to be takeninto aount when the number of \nodes involved" is omputed, as we refer toall intermediate results. Not only the original arguments are ounted, but also theinternal nodes of the query syntax tree. This inludes the �nal result, orrespondingto the root of the syntax tree.

IXPN: An Index-Based XPath Implementation � 376.2.4 Results. Tables 5, 6, 7 and 8 show the results. As it an be seen, the latenyis rather onstant, from 70 to 90 mses in most ases. An exeption is for the query*" on GCIDE, due to the large number of di�erent tags, and hene of leaves inthe query syntax tree. An initial bu�er of results has to be �lled for eah suh leaf.It is also lear that, one this lateny is paid, the time to retrieve 1 or 100 nodesis not very di�erent. On the other hand, the type of operation and olletion typeor size do not have muh inuene.In general, lateny exluded, IXPN takes 15 to 35 miroseonds (�ses) to outputeah new answer node. Obtaining a better approximation is diÆult beause thetime depends not only on the size of the result but also on the sizes of the inter-mediate results (alled \nodes involved" in the tables). It an be seen that thereare a few ases where the time per node is muh larger than 35 �ses. In mostof these ases, the number of nodes involved exeed by a fator of 10 the answersize. This is usually the ase of parent, with, and phrase operations. Trying tomodel the time as a funtion of nodes involved does not help, beause these oper-ators usually skip a large amount of involved nodes, so they take muh less timeper involved node than others. The remaining ases of very large time per nodeanswered orresponds to queries that anyway return too few answers.It is also interesting that the operations that were algorithmially problematihave worked well in pratie, for example hild and parent. They are as fast asthe simpler in and with.Query Nodes retrieved Answer Nodes �ses1 10 100 All size involved /nodeSPEECH/LINE 80 80 81 2,060 107,833 246,694 18SPEECH[LINE℄ 80 80 84 913 31,028 169,889 27SCENE//LINE 97 97 98 1,915 107,164 215,747 17SCENE[//LINE℄ 101 103 114 211 750 109,333 147LINE/following::LINE 87 87 89 2,667 107,796 323,462 24LINE/preeding::LINE 85 85 88 2,788 107,796 323,462 25LINE/foll-sibling::LINE 85 85 89 3,398 76,805 292,471 43LINE/pre-sibling::LINE 83 84 89 2,126 76,805 292,471 27LINE[.=~"love"℄ 86 86 94 209 1,705 112,600 72SPEAKER[.=~"MARK ANTONY"℄ 87 87 94 102 204 31,739 74* 110 111 112 5,778 179,689 1,018,237 32�* 88 88 97 3,742 179,689 179,689 20Table 5. Elapsed time to solve di�erent queries on the Shakespeare olletion. Times are inmses. The time for 1 node is the lateny and \�ses/node" refers to miroseonds per answernode, lateny exluded.6.3 Comparison against OthersAlthough there exist many prototypes and test versions of softwares that supportXML databases, most of them are ommerial developments. In the best ases,online demos are available via Web, but these annot be used for omparison pur-poses beause of di�erent server arhitetures, di�erent text olletions, and evenbeause of the network latenies that distort the results.

38 � G. Navarro and M. Ortega
Query Nodes retrieved Answer Nodes �ses1 10 100 All size involved /nodep/soure 84 85 88 4,548 229,043 689,674 19p[soure℄ 84 84 86 1,041 8,568 469,199 112p//br 83 83 84 4,273 243,885 718,786 17p[//br℄ 85 86 88 4,347 226,203 701,104 19p/following::p 90 93 92 5,651 230,989 693,021 24p/preeding::p 80 83 88 5,850 230,989 693,021 25p/foll-sibling::p 87 88 96 6,729 230,989 693,021 29p/pre-sibling::p 84 85 89 5,892 230,989 693,021 25p[.=~"Webster"℄ 73 75 76 1,262 25,722 469,160 46p[.=~"1913 Webster"℄ 71 72 77 1,510 24,873 680,733 58* 3,086 3,086 3,087 126,943 2,201,761 21,469,074 56�* 92 98 | 100 60 220 133Table 6. Elapsed time to solve di�erent queries on the GCIDE olletion. Times are in mses.The time for 1 node is the lateny and \�ses/node" refers to miroseonds per answer node,lateny exluded.

Query Nodes retrieved Answer Nodes �ses1 10 100 All size involved /nodebook/hapter 82 82 85 104 1,423 2,922 15hapter[v℄ 102 102 110 250 1,090 46,462 136tstmt//v 84 84 86 737 43,949 87,902 15hapter[//v℄ 87 88 93 149 1,423 46,795 44title/following::v 82 83 85 996 43,949 87,906 21v/preeding::v 82 82 83 1,080 43,945 131,843 23v/foll-sibling::v 80 81 85 1,172 42,386 130,284 26title/pre-sibling::v 82 82 91 1,166 42,386 86,343 26v[.=~"God"℄ 88 89 96 202 4,404 53,383 26v[.=~"LORD God"℄ 92 93 101 212 1,113 55,710 108* 111 113 116 1,517 48,259 275,766 29�* | | | | | | |Table 7. Elapsed time to solve di�erent queries on the Religion olletion. Times are in mses.The time for 1 node is the lateny and \�ses/node" refers to miroseonds per answer node,lateny exluded.

IXPN: An Index-Based XPath Implementation � 39Query Nodes retrieved Answer Nodes �ses1 10 100 All size involved /nodeDOC/DOCNO 83 83 85 2,175 112,144 336,372 19DOC[DOCNO℄ 80 80 83 2,279 112,144 336,372 20DOC//TEXT 86 87 90 2,044 112,144 336,372 17DOC[//TEXT℄ 86 86 89 2,201 112,144 336,372 19DOC/following::DOC 88 89 93 3,041 112,054 336,282 26DOC/preeding::DOC 80 81 85 2,787 112,054 336,282 24DOC/foll-sibling::DOC 79 79 82 3,045 112,054 336,282 26DOC/pre-sibling::DOC 82 83 89 2,830 112,054 336,282 25TEXT[.=~"energy"℄ 70 70 73 765 19,102 162,060 36TEXT[.=~"high energy"℄ 71 73 99 609 1,205 180,656 446* 93 96 97 9,290 336,522 1,009,566 27�* 89 90 | 91 90 90 22Table 8. Elapsed time to solve di�erent queries on the DOE olletion. Times are in mses. Thetime for 1 node is the lateny and \�ses/node" refers to miroseonds per answer node, latenyexluded.We obtained six softwares whose soure or exeutable versions were available,and ompared them against IXPN. These areXindie [Apahe Software Foundation 2002℄: Indexes douments using a na-tive XML database with proprietary format. It is designed to work on smalland medium-size olletions, with a maximum doument size of about 5 Mb.It uses the tehnology of Apahe group to work with XML douments, whihonsists of a set of Java lasses . Queries are run on a server proess. Theindexes are stored in a ompressed format and aessed from disk. Xindieimplements only a basi XPath funtionality.eXist [Meier 2002℄: Indexes douments using a native XML database with pro-prietary format. It is designed to work on small and medium-size olletions,with a maximum doument size of about 5 Mb. It uses the tehnology ofApahe group to work with XML douments, whih onsists of a set of Javalasses . Queries are run on a server proess. Indexes are stored and managedon disk. eXist implements a omplete XPath funtionality.XMLGrep [Jones 2000℄: Searhes the douments sequentially, looking for reg-ular expressions the XPath queries are transformed into. It is implementedin C language and only supports basi XPath operations. This projet wasabandoned by its developer. It annot handle multiple-doument olletions.Saxon [Kay 2002℄: Searhes the douments sequentially, but it builds the stru-ture tree of eah doument before running the query against it. It is imple-mented as Java lasses. Saxon is oriented to transforming XML douments us-ing XSLT language [Consortium 1999b℄, but it an be adapted to solve XPathqueries. It implements lazy evaluation for XPath. It annot handle multiple-doument olletions.MSXML [Mirosoft Corp. 2002℄: Searhes the douments sequentially, but itbuilds the struture tree of eah doument before running the query against it.It is an API available as a COM omponent for several Mirosoft languages suhas C++, VisualSript and JSript. MSXML is oriented to transforming XML

40 � G. Navarro and M. Ortegadouments using XSLT language [Consortium 1999b℄, but it an be adapted tosolve XPath queries. It annot handle multiple-doument olletions. MSXMLis urrently onsidered to be one of the most eÆient developments in tehnolo-gies for XML management.ToXin [Toronto XML Server Projet 2002℄: Searhes the douments sequen-tially, but it builds the struture tree of eah doument before running the queryagainst it. It is implemented as Java lasses. It implements a highly simpli�edversion of XPath that inludes only the axes hild and desendant, whih arealled \regular expressions" of XPath.6.3.1 Indexing. Table 9 ompares the time and spae neessary to index our testtext olletions. We only onsider IXPN, Xindie and eXist, sine the others do notbuild any index but sequentially san the olletion for every query. We let IXPNuse 10 Mb of RAM to index the text.Colletion IXPN Xindie eXistTime Speed Size Time Speed Size Time Speed SizeShakespeare 34 0.294 120% 67 0.149 83% 337 0.030 410%GCIDE 217 0.244 100% 437 0.122 74% | | |Religion 9 0.746 32% 23 0.294 133% 80 0.084 235%DOE 222 0.416 28% 222 0.416 119% | | |Table 9. Time and spae to index the test XML olletions. Time is measured in seonds, speedin Mb/se, and size in extra perentage over the XML text size.Xindie ompresses and stores the XML douments, unlike IXPN, whih retainsthe original douments (hene in order to ompare spae overheads we should add100% to IXPN). This is the reason why Xindie had more overhead on less stru-tured olletions. Moreover, IXPN does not index stopwords. This makes it diÆultto ompare the respetive index sizes. However, it is interesting that both indexeshave similar spae overheads on little strutured olletions.eXist, on the other hand, ould not index the larger olletions GCIDE andDOE, beause of exessive memory requirements. The indexes produed are huge,although it answers queries faster than Xindie.IXPN was the fastest to produe the index, at a rate of 1.3{4.0 ses/Mb. Nextwas Xindie, with 2.4{8.2 ses/Mb, and the slowest was eXist, at a rate of 12{33ses/Mb.6.3.2 Searhing. We tested more omplex queries against the olletions Reli-gion, Shakespeare and DOE. All queries are evaluated from the root of the tree,as required by the other softwares (not IXPN). The query syntax was adapted toeah software. Java, JSript and Perl programs were developed as neessary to testthem, in partiular for those unable to proess several douments simultaneously.Sine the other softwares return the text ontent of returned nodes, IXPN wasmodi�ed to do the same. We measured the time to return all the results, using anexternal software for fairness.

IXPN: An Index-Based XPath Implementation � 41Tables 10, 11 and 12 show the results. We use some obvious abbreviations forthe software names. ol hia los seq ok, grandes no. malos para //, toxin no dabaon algunosWe note that the softwares developed in Java are muh slower than the rest.The exeption is ToXin. However, for this program we measured only the timeto exeute the query, disregarding the time to build the index in main memory.This an be fair if we measure performane in hot state, although for the others wemeasured time in old state.Xindie and eXist use too muh main memory, lose to 100 Mb. They were notable to build their in-memory indexes for GCIDE and DOE, and Xindie ouldnot answer any query on Shakespeare. Xindie is very slow in general, but es-peially with operator \//". This is mentioned in the doumentation, where it isreommended to omit it lose to the root of the olletion. In fat, all the imple-mentations reommend the same. The reason is that they operate by traversing thetree direted by the axes, and operator \//" fores them to traverse the whole tree.For the same reason, all them require the queries to start at the root of the tree.This is a lear advantage of IXPN, whih works bottom-up and is very eÆient forthis type of operation.XMLGrep performs bad on reverse axes, whih require it to go bak to hekpiees of douments already traversed. Note also that only IXPN and ToXin areable of quikly determining that a given struture tag does not exist (last query onDOE).Sequential searh solutions, suh XMLGrep, work well on small olletions, butit is too slow on large sets. The same performane is exhibited by Saxon and eXist.MSXML and ToXin, on the other hand, handle large olletions better. However,none of these an be onsidered a ompetitive hoie for handling a large textolletion (several hundred megabytes). In addition, ToXin handles a very limitedsubset of XPath, whih exludes several of our example queries.IXPN, on the other hand, performed well for small and large text olletions,taking usually less than 2 seonds to answer queries. It was by far faster than allthe other alternatives and does not seem to be muh a�eted by the size of theolletion.Query IXPN Xind eXist Grep Saxon MS ToXin/tstmt/bookoll/book/hapter 1.8 20.5 8.8 3.4 4.0 3.3 2.5/tstmt/overpg/overpg[title℄ 0.5 2.8 2.2 0.7 3.3 1.3 |/tstmt//hapter 1.8 58.9 8.8 3.8 4.1 3.2 2.5/tstmt[//hapter℄ 0.9 22.7 8.8 3.7 4.0 4.2 |v[.=~"love"℄ 0.4 9.9 9.8 0.7 3.4 1.8 3.7/tstmt/overpg/title/following-sibling::subtitle 0.5 2.6 9.8 0.7 3.3 1.3 |Table 10. Elapsed time, in seonds, to solve di�erent omplex queries on the softwares testedover olletion Religion.

42 � G. Navarro and M. OrtegaQuery IXPN Xind eXist Grep Saxon MS ToXin/SPEECH[SPEAKER="mark antony"℄/LINE 0.1 | 25.6 24.5 23.2 5.5 |PLAY[TITLE=~"hamlet"℄//PERSONA 0.1 | 25.7 24.4 23.8 5.4 |SCENE[//SPEAKER="romeo"and //SPEAKER="juliet"℄/TITLE 0.1 | 12.2 38.1 24.2 8.1 |PLAY[//ACT/TITLE=~"at III"℄/TITLE 0.6 | 20.1 25.1 23.7 5.7 |SPEECH[SPEAKER="juliet"℄/preeding-sibling::SPEECH[SPEAKER="romeo"℄/anestor::SCENE/TITLE 0.2 | 12.4 23.5 23.1 5.8 |Table 11. Elapsed time, in seonds, to solve di�erent omplex queries on the softwares testedover olletion Shakespeare.Query IXPN Xind eXist Grep Saxon MS ToXin/FILE/DOC/DOCNO 2.3 | | 13.8 61.0 24.4 3.6/FILE//TEXT 1.9 | | 68.4 67.7 47.1 19.0/FILE/�* 0.1 | | 12.5 62.2 12.1 |/FILE/DOC/DOCNO[TEXT℄ 1.6 | | 130.2 61.3 11.5 |/FILE/DOC/TEXT[.=~"energy"℄ 0.8 | | 65.3 69.7 20.2 |/* 7.6 | | 58.9 69.3 60.0 22.5//AAA <0.1 | | 13.6 60.0 11.4 0.2Table 12. Elapsed time, in seonds, to solve di�erent omplex queries on the softwares testedover olletion DOE.7. CONCLUSIONSWe have presented IXPN, an indexed searh tehnique to answer XPath queries overlarge XML olletions. IXPN �rst builds an index on disk over the XML olletion.Based on that index, it is able of answering XPath queries over the olletion. IXPNworks in a lazy manner, so the answer an be retrieved inrementally and navigatedthrough, for example disarding uninteresting answer subtrees without need to evenproduing it. IXPN an index and query an arbitrarily large text olletion witha very limited main memory; in most ases as limited as desired. The urrentprototype of IXPN an be tested at http://www.d.uhile.l/ixpn.We have foused on the \most interesting" part of XPath funtionality, leav-ing aside the programming-language-like features (http://www.w3.org/TR/xpath-#orelib). These depend on the embedding language and are easier to implementeÆiently. We also disregard instrution-nodes, namespaes, et., whose inlusionis rather trivial. Referenes are also not onsidered, but these are part of otherlanguages that ontain XPath, suh as XLink.IXPN is based on Proximal Nodes (PN), a generi model to query struturedtext. We have shown how, despite looking very di�erent, XPath an be onvertedinto PN. We have reimplemented the PN model in a more memory-eÆient way, andat the same time have redued disk overheads to a minimum. All the operationswork in time linear on the size of the arguments (most in the worst ase, a few

IXPN: An Index-Based XPath Implementation � 43on average). Most operations require onstant spae, although some require spaeproportional to the height of the XML tree, and a few pathologial ases ouldrequire memory proportional to one of the arguments.We have shown that IXPN is by far more eÆient than all the publily availablealternatives we were aware of, inluding MSXML. In partiular, IXPN was the onlyone una�eted by the olletion size, and in fat the only one that an urrentlybe seriously onsidered to handle large text olletions. IXPN is also una�eted bythe use of the `//" operator, whih is troublesome for all other softwares. This isdue to the bottom-up nature of PN algorithms, as other alternatives traverse thestruture tree in a top-down fashion.We are working on the urrent prototype in order to improve the ompression ofthe index (whih is urrently very basi but already ompetitive), and on inludingmore algebrai optimization of PN queries, whih an make a large di�erene inill-posed queries. In partiular, we have observed that ontainment between nodesof the same type is very rare. Indeed, it is so rare that we ould remove the pointerto the next sibling in our struture index, and in ase we need to move to thesibling we ould just move sequentially (as if we moved to hildren) until reahingthe sibling. This would save 10% of struture index spae and the e�et on querytime would be minimal.Other important aspets not yet onsidered are: handling transations, imple-menting an API to give aess to IXPN via programming languages, multiolletionsupport, handling updates to the text via eÆient reindexing, developing a lient-server arhiteture, lever handling of frequent queries, et.An issue that deserves more researh is how to eÆiently deal with diret edgequeries (those involving hild{parent and sibling relationships). These have beenthe only where we ould not guarantee linear time and onstant spae. From these,reverse axes were the most ompliated. Although we showed that in pratie thereis no big di�erene, there is an intrinsi problem related to the lazy evaluation ofthese operations, as it is not always possible to run them by moving forward. Aswe fored that, we had to preompute some results ahead of time and storing themfor later.On the other hand, these diret edges are easily dealt-with by the usual top-down approah, for whih our easyness to handle transitive operations (desen-dant/anestor, for example) is diÆult to ahieve. It would be interesting to jointhe best of both approahes.We are also interested in extending our XPath implementation to inlude allthe operators of the standard, as well as other operations not inluded but thatwe ould handle eÆiently, suh as searhing allowing errors, searhing for regularexpressions, and so on. More importantly, we plan to handle more sophistiatedembedding languages, suh as XQuery or XSLT, keeping the urrent eÆieny asmuh as possible.Finally, it should be pointed out that IXPN ould be used as a sequential engine,to work on an XML stream without any index. A low-level sanner would traversethe text, reognizing words and strutural nodes that are mentioned in the queryand �lling bu�ers of answers at the leaves. The rest ould proeed in lazy form asmore data beomes available at the leaves. We believe that this ould be ompetitiveagainst urrent sequential alternatives that either searh for regular expressions or

44 � G. Navarro and M. Ortegaexpliitly build the struture tree.Another interesting idea is to rewrite a doument olletion as a sequene of nodeand word identi�ers. This would yield a ompressed representation of the olletion,and with the aid of the index it would be possible to reprodue a rather legibleversion of the doument. This is interesting, for example, in Web searh enginesthat maintain a simple version of all the text ontents. It might be interestingto fous on ompressed indexes for XML olletions, as done in [Ferragina andMastroianni ℄.REFERENCESApahe Software Foundation. 2002. XIndie. http://xml.apahe.org/xindie.Baeza-Yates, R. and Navarro, G. 2000. XQL and proximal nodes (preliminary version).In Pro. XML Workshop of SIGIR'2000 (23rd Annual International ACM SIGIR Confer-ene on Researh and Development in Information Retrieval (2000). Extended version toappear in JASIST.Baeza-Yates, R. and Ribeiro-Neto, B. 1999. Modern Information Retrieval. Addison-Wesley.Bosak, J. 1999a. Religion 2.0. http://www.ibiblio.org/bosak.Bosak, J. 1999b. Shakespeare in XML. http://www.ibiblio.org/xml/examples/-shakespeare.Clark, J. and Cooper, C. 2002. The Expat XML parser. http://expat.soureforge.net.Consortium, W. 1999a. XPath 1.0: XML path language. Tehnial report, WWW Con-sortium. www.w3.org/TR/xpath/.Consortium, W. 1999b. XSL transformations (XSLT). Tehnial report, WWW Consor-tium. www.w3.org/TR/xslt/.Consortium, W. 2001a. XML linking language (XLink) version 1.0. Tehnial report,WWW Consortium. www.w3.org/TR/xlink/.Consortium, W. 2001b. XML pointer language (XPointer) version 1.0. Tehnial report,WWW Consortium. www.w3.org/TR/xptr/.Consortium, W. 2001. Xquery 1.0: An XML query language. Tehnial report, WWWConsortium. www.w3.org/TR/xquery/.Dyk, M. 2002. The GNU version of The Collaborative International Ditionary of English,presented in the Extensible Markup Language. http://www.ibiblio.org/webster.Ferragina, P. and Mastroianni, A. XCDE, XML Compressed Doument Engine.http://butirro.di.unipi.it/ ferrax/xde/xdelib.html.GNU Projet. 2000. Flex 2.5.4. http://www.gnu.org/software/flex.GNU Projet. 2003. Bison 1.875b. http://www.gnu.org/software/bison/bison.html.Goldfarb, C. and Presod, P. 1998. The XML Handbook. Prentie-Hall, Oxford.Harman, D. 1995. Overview of the Third Text REtrieval Conferene. In Pro. Third TextREtrieval Conferene (TREC-3) (1995), pp. 1{19. NIST Speial Publiation 500-207.Jones, K. 2000. XMLGrep. http://soures.redhat.om/ml/xsl-list/2000-07/-msg01002.html.Kay, M. 2002. SAXON, the XSLT Proessor. http://saxon.soureforge.net.Lapp, J., Robie, J., and Sha, D. 1998. XML query language(XQL). In QL'98 - The Query Languages Workshop (Deember 1998).http://www.w3.org/TandS/QL/QL98/pp/xql.html.Meier, W. 2002. eXist, Open Soure Native XML Database.http://exist.soureforge.net.Mirosoft Corp. 2002. MSXML, Mirosoft XML. http://msdn.mirosoft.om/nhp/-?ontentid=28000438.

IXPN: An Index-Based XPath Implementation � 45Navarro, G. 1995. A language for queries on struture and ontents of textual databases.Master's thesis, Dept. of Computer Siene, Univ. of Chile. ftp://ftp.d.uhile.l/-pub/users/gnavarro/thesis95.ps.gz.Navarro, G. and Baeza-Yates, R. 1995. A language for queries on struture and ontentsof textual databases. In Pro. ACM SIGIR'95 (1995), pp. 93{101.Navarro, G. and Baeza-Yates, R. 1997. Proximal Nodes: a model to query doumentdatabases by ontent and struture. ACM TOIS 15, 4 (Ot), 401{435.Toronto XML Server Projet. 2002. ToXin, Toronto XML Server.http://www.s.toronto.edu/tox.

