
IXPN: An Index-Based XPath ImplementationGonzalo NavarroCenter for Web Resear
h, Dept. of Computer S
ien
e, University of ChileandManuel OrtegaDept. of Computer S
ien
e, University of ChileWe present IXPN, and indexing te
hnique for XML
olle
tions that permits fast pro
essing ofXPath queries. The underlying idea of IXPN is to map the XML/XPath model onto the ProximalNodes (PN) model [Baeza-Yates and Navarro, ACM TOIS 1997℄, for whi
h eÆ
ient algorithmshave been designed. The mapping of XPath onto the query language of PN is rather involvedbe
ause they are based on di�erent
on
epts, but it
an be done eÆ
iently. On the side of theimplementation of the PN model, we have
ompletely reimplemented the 1997 prototype, and haveadded new operations needed to support XPath without disturbing the basi
 PN philosophy. Inthis paper we explain how the model mapping is done, how we have implemented the PN model,and how our implementation
ompares favourably against all the freely available alternatives weare aware of.1. INTRODUCTIONThere is little doubt that XML [Goldfarb and Pres
od 1998℄ is bound to play animportant role in the area of handling semistru
tured data. XML permits express-ing the
ontent and stru
ture of a do
ument, so that it
an be read by a humanand at the same time manipulated automati
ally, keeping maximum
exibility inthe kind of stru
ture that do
uments may have. XML is be
oming a standard formanipulating, ex
hanging and storing semistru
tured data.One of the most important operations needed on these \stru
tured text"
olle
-tions is that of sear
hing for some pie
e of the
olle
tion that has some property.This property
an be related to the text
ontent and also to the stru
ture. XPath[Consortium 1999a℄ is one of the most popular languages to query XML data.Although it has existed for several years, no fully satisfa
tory implementation ofXPath exists, to the best of our knowledge.Funded by Millenium Nu
leus Center for Web Resear
h, Grant P01-029-F, Mideplan, Chile.Authors' address: Gonzalo Navarro, Dept. of Computer S
ien
e, University of Chile, Blan
oEn
alada 2120, Santiago, Chile. gnavarro�d

.u
hile.
l. Manuel Ortega, Dept. of ComputerS
ien
e, University of Chile, Blan
o En
alada 2120, Santiago, Chile. mortega�d

.u
hile.
l.Permission to make digital or hard
opies of part or all of this work for personal or
lassroom use isgranted without fee provided that
opies are not made or distributed for pro�t or dire
t
ommer
ialadvantage and that
opies show this noti
e on the �rst page or initial s
reen of a display alongwith the full
itation. Copyrights for
omponents of this work owned by others than ACM mustbe honored. Abstra
ting with
redit is permitted. To
opy otherwise, to republish, to post onservers, to redistribute to lists, or to use any
omponent of this work in other works, requires priorspe
i�
 permission and/or a fee. Permissions may be requested from Publi
ations Dept, ACMIn
., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions�a
m.org.

2 � G. Navarro and M. OrtegaOn the other hand, several theoreti
al models (in the sense of not being tied toany popular format su
h as XML) have been proposed in the last de
ades to queryand manipulate stru
tured text. One of those,
alled Proximal Nodes (PN) [Navarroand Baeza-Yates 1997℄, was designed with the aim of balan
ing expresiveness andimplementation eÆ
ien
y.Re
ently, it has been shown that XQL [Lapp et al. 1998℄, a query languagesimpler than XPath and now less popular,
ould be mapped onto PN [Baeza-Yatesand Navarro 2000℄. No implementation was presented, however.In this paper we ta
kle the problem of implementing the more powerful and pop-ular XPath by mapping it onto the PN model. This mapping is not straightforward,be
ause the design
on
eptions of XPath and PN are widely di�erent. However,it
an be done without loss of eÆ
ien
y and we show
arefully how this is
arriedout. On
e transformed into a PN query, we �nd that the operations
onsideredfor the PN model in the original paper [Navarro and Baeza-Yates 1997℄ have to be
hanged slightly, some
an be simpli�ed, and others have to be added. We reimple-ment
ompletely the PN model with a more eÆ
ient design. We show that all theoperations
an be implemented in time linear with the size of the arguments (andnot of the database), and usually using very little main memory. At the end, weshow how our prototype
ompares against existing freely available sear
h enginesfor XPath.The page of the IXPN prototype is www.d

.u
hile.
l/ixpn.2. XML AND XPATHWe present in this se
tion the XML and XPath spe
i�
ations, in the depth ne
essaryto understand how we implement XPath.2.1 XML: eXtensible Markup LanguageXML [Goldfarb and Pres
od 1998℄ is the spe
i�
ation of a
exible markup languagefor stru
tured text. The markup is expressed by means of spe
ial marks,
alled tags,that are inserted into the text in order to des
ribe a stru
ture. An XML tag is asequen
e of
hara
ters between the spe
ial
hara
ters \<" and \>". All the textinside tags is part of the do
ument stru
ture, the rest is the
ontent. Tags arehuman-readable, but are usually hidden when displaying the do
ument, as theyare not
ontent but indi
ate how the
ontent should be understood and presented.Figure 1 shows our running example of an XML do
ument.Tags are usually paired, so that portions of the
ontent are marked by en
losingthem between an initial and a �nal tag, typi
ally <tagname> and </tagname>. Forexample, <title>Introdu
tion</title>marks the text \Introdu
tion" with the tag \title". When the en
losed
ontent isempty, the initial and �nal tags are merged into one, <tagname/>. Apart from aname, tags may have attributes, ea
h of whi
h has a value. For example,<image sour
e="graph.png"
aption="This is a graph"/>is a tag without
ontent and with two attributes, \sour
e" and \
aption", whose
ontents are \graph.png" and \This is a graph", respe
tively.

IXPN: An Index-Based XPath Implementation � 31. <?xml version="1.0" en
oding="iso-8859-1"?>2. <!DOCTYPE book "http://www.example.
om/proje
t.dtd">3. <!--THE BOOK-->4. <book>5. <author>J. Williams</author>6. <title>XCD Algorithm</title>7. <
hapter number="1">8. <title>Introdu
tion</title>9. This is the Introdu
tion...10. <image sour
e="graph.png"
aption="This is a Graph"/>11. </
hapter>12. <
hapter number="2">13. <title>Prototype</title>14. The prototype...15. <se
tion number="2.1">16. <title>Implementation</title>17. <se
tion number="2.1.1">18. <title>Data Model</title>19. Our data model...20. </se
tion>21. </se
tion>22. </
hapter>23. <
hapter number="3">24. <title>Con
lusions And Future Work</title>25. </
hapter>26. </book>Fig. 1. Our running example of an XML do
ument. Line numbers are not part of the do
umentbut used for future referen
es.An important aspe
t of XML is that tags
annot overlap, that is, a tag
annotbe
losed until all the
ontained tags have been
losed. This indu
es a hierar
hi
alstru
ture on the do
ument, where ea
h node represents a tag, whose
hildren areits attributes and
ontained tags. Figure 2 illustrates the hierar
hy.Ea
h tag
ontains a text segment of the do
ument, whi
h in turn
an
ontainmore tags. Sin
e tags have a length greater than zero, no two segments of di�erenttags
an start at the same position. Note also that the order in whi
h initial tagsare found in the text
orresponds to a preorder traversal in the tree. This is knownas the do
ument order.Apart from the tags that des
ribe the stru
ture, there are other elements in theXML spe
i�
ation that do not des
ribe stru
ture, su
h as
omments,
ommandsdire
ted to spe
i�
 pro
essors, do
ument type de�nitions, and so on. These areusually ignored in query languages and we ignore them in this paper.2.2 XPath: XML Path LanguageXPath [Consortium 1999a℄ is one of the favorite languages to sele
t parts of anXML
olle
tion. It is an essential pie
e of more
omplete languages su
h as XQuery[Consortium 2001
℄ and XSLT [Consortium 1999b℄. XPath has a full notation andan abbreviated version for the most
ommonly used operations. The result of anXPath query is a well-formed XML do
ument.XPath is
omposed of two parts. The �rst, most important for us,
omprises

4 � G. Navarro and M. Ortega
author

title
 section

book

image

chapter
 chapter

title

title
 section

title

number

source
 caption

number

number

number

title

title

chapter

number

Fig. 2. The hierar
hi
al stru
ture of our running example. Cir
les represent tags and squaresrepresent attributes.the node sele
tion operations, whi
h let the user spe
ify whi
h parts of the XML
olle
tion to obtain. The se
ond in
ludes elements of a
lassi
al programming lan-guage, su
h as variables, expressions, and
onditional and bran
hing instru
tions.Indeed, XPath must be embedded into another language, from where variables andexpressions take their semanti
s. In parti
ular, for XPath embedded in XQuery,the so-
alled FLOWER expressions are permitted. These refer to For-Let-Where-Return stru
tures, whi
h permit spe
ifying queries in XPath and present the resultsas desired in XML, perhaps forming stru
tures not originally present in the do
u-ment, mu
h like SQL works on relational databases.Figure 3 shows an example. It is
lear that node sele
tion operations are asimportant as the programming-like operations. However, from an implementationpoint of view, the former are mu
h more
hallenging. On
e the node sele
tionoperation returns the
onse
utive values for $p, the rest of the pro
essing is rathersimple: $b is obtained by variable substitution, the WHERE
lause implies simplein
rements and
omparisons, and so on.FOR $p IN do
ument("book.xml")//authorLET $b := do
ument("book.xml")//book[author = $p℄WHERE
ount($b) > 100RETURN $p Fig. 3. An XQuery program using XPath in its �rst line.This is why in this paper we fo
us only on the node sele
tion operations of XPath:This is the most
riti
al part of an implementation. It
an be done very eÆ
iently

IXPN: An Index-Based XPath Implementation � 5or very naively, as its language is very high-level. Its performan
e drives the overallperforman
e. The programming language part, on the other hand, is rather low-level and therefore it
an hardly experiment too large di�eren
es in implementationperforman
e. In the example of Figure 3, the most
hallenging part is how are wegoing to �nd the author �eld a
ross all the
olle
tion. The rest is fast and simple.2.3 XPath Spe
i�
ationsXPath distinguishes several node types in an XML do
ument.|An XML do
ument is seen by XPath as rooted by a spe
ial and virtual root-node.|All the XML tags that des
ribe stru
ture de�ne element-nodes. These are themost
ommon nodes.|Ea
h attribute of ea
h tag makes up an attribute-node, whi
h belongs to the
orresponding element-node but is not
onsidered to be a
hild of it.|Other types of elements that we disregard in this paper be
ause they are not usedwhen implementing the basi
 XPath ma
hinery are namespa
e-nodes, instru
tion-nodes, text-nodes and
omment-nodes. In fa
t, text-nodes are of importan
e asthey
ontain all the text
ontent, but the
on
ept of having virtual nodes that
ontain maximal text pie
es is of no use for our translation. We treat the text ina di�erent way.The basi
 syntax of XPath
onsists of expressions, whose result is usually a set ofnodes, but it
an also be a boolean, numeri
 or string value. An expression spe
i�esa set of nodes and optionally a fun
tion of the result. Hen
e it is possible to sear
hfor all the se
tion nodes and just deliver the set, or add a
ounting operation anddeliver instead the number of su
h nodes.The me
hanism used by XPath to des
ribe the nodes that should be returned
onsists of four important parts: a
ontext, an axis, a nodetext, and a predi
ate. Ina �rst approximation, we
an
onsider that all the nodes are
onsidered as suitable
ontext nodes, the axis spe
i�es how to rea
h the sele
ted nodes from the
ontextnodes, the nodetest
he
ks the name/type of the nodes to return, and the predi
atefurther �lters the desired sele
ted nodes. For example, an XPath expression like
hild::
hapter[position()=1℄spe
i�es a
hild axis, meaning that we want all the nodes that are
hildren ofsome node (hen
e their parent is the
ontext node). Furthermore, it spe
i�es twopredi
ates over the desired nodes: (1) a test of name: the node should be named
hapter; (2) an expli
it predi
ate (whose language we examine later): the positionof the node should be the �rst in its
ontext. This means that we want the �rst
hapters of nodes found in the
olle
tion. In our running example, the full
hapternumber 1 (lines 7{11) is retrieved.2.3.1 Lo
ation Steps and Lo
ation Paths. The above is an example of a so-
alledlo
ation step. It always refers to some
ontext node (that is outside its spe
i�
ation),and in
ludes three parts:(1) An axis spe
ifying how to move from the
ontext node to �nd the sele
ted node(this
an be self if we want to sele
t the
ontext node itself);

6 � G. Navarro and M. Ortega(2) a node test that
he
ks the name of the sele
ted node; and(3) a predi
ate with zero or more expressions that further re�ne the sele
ted nodes.If a single lo
ation step is given alone, then all the nodes of the do
ument aresuitable
ontext nodes, as in our previous example.Lo
ation steps
an be
hained together to form a lo
ation path, whi
h is a sequen
eof lo
ation steps where the result of ea
h step be
omes the set of
ontext nodes forthe next. This
an be seen as the de�nition of a path in the stru
ture tree thatshows how answer nodes should be rea
hed from
ontext nodes and what
onditionsshould
ontext and sele
ted nodes satisfy.Conse
utive lo
ation steps of a lo
ation path are separated by a \/". The
ontextof the �rst lo
ation step is the set of all the nodes, and this lo
ation path is said tobe \relative" (in the sense that the sequen
e of steps
an appear anywhere in thetree). On the opposite, if a lo
ation path starts with a \/", this means that the
ontext of the �rst lo
ation step is only the root node, and hen
e the path must befound only starting at the root. This path is
alled \absolute".For example, an XPath expression likeself::
hapter/
hild::se
tion/
hild::titleis a lo
ation path formed by three lo
ation steps. It sele
ts all the nodes of nametitle that are
hildren of nodes of name se
tion that are
hildren of nodes ofname
hapter. In our running example it would return only the node<title>Implementation</title>:Figure 4 illustrates. Indeed,
hild is the default axis after a \/", and self is the�rst axis by default1. Hen
e the expression
ould be written simply as
hapter/se
tion/title:2.3.2 Axes. Let us now
onsider the axes in detail. Possible axes are:
hild: dire
t
hildren of the
ontext node in the tree;des
endant:
hildren, their
hildren, and so on;parent: tree parent of
ontext node;an
estor: parent, its parent, and so on;following-sibling: siblings of the
ontext node to its right;pre
eding-sibling: siblings to the left;following: nodes following the
ontext node in do
ument order, inside the samedo
ument and ex
luding des
endants;pre
eding: idem pre
eding the
ontext node;attribute: attributes of the
ontext node;self: the same
ontext node;des
endant-or-self: self plus des
endants; andan
estor-or-self: self plus an
estors.1In fa
t it
ould be said that
hild is always the default axis, and this makes no di�eren
e be
auseevery node has a parent ex
ept the root node, whi
h is not retrievable.

IXPN: An Index-Based XPath Implementation � 7
section

chapter

title

title
 section

number

number

context node

location path

location steps

Fig. 4. A lo
ation path formed by three lo
ation steps.namespa
e: this axis that is irrelevant for this paper.Ex
ept for attribute, attribute nodes are never sele
ted by these axes. Also, theresult of these axes when the
ontext is an attribute node is the empty set, ex
eptfor self.Note that the axes an
estor, des
endant, following, pre
eding, and self partitionthe do
ument tree into disjoint subsets. Attribute nodes are spe
ial nodes and
onsidered as orthogonal to the rest of the model (as well as namespa
e nodes).Figure 5 illustrates.
Descendant

Following
Preceding

Context Node

Attribute

NameSpace
 Following-Sibling
Preceding-Sibling

Self

Child

Parent

Self

Ancestor

Fig. 5. The di�erent axes and how they partition the do
ument.It is also important to mention that axes are
lassi�ed into reverse-axes andforward-axes, depending on whether they take nodes that, in do
ument order, are

8 � G. Navarro and M. Ortegabefore or after the
ontext node. Reverse axes are an
estor, an
estor-or-self, pre-
eding, pre
eding-or-self, and parent2. All the rest are forward axes.2.3.3 Nodetests. With respe
t to the test over the node, both the main node type(element-node, attribute-node or namespa
e-node) and the node name must mat
hthe test. The node type is given by the axis (attribute leads to an attribute-node,namespa
e to an namespa
e-node, and all the rest to an element-node). The termnode() or the symbol *"
an be used to sele
t any node name. Note that theroot-node is never retrieved by an XPath query.2.3.4 Predi
ates. Finally, let us
onsider the possible predi
ate �lters. The wholeset of possible expressions in
ludes those de�ned in the embedding language, butthere are some basi
 ones that are part of XPath. The predi
ates
ontain one ormore basi

onditions
onne
ted by or, and and not.The simplest possible predi
ate is just a lo
ation path. The predi
ate be
omestrue if there exists su
h a lo
ation path in the
ontext of the
andidate node (towhi
h the predi
ate applies). For example,
hapter[se
tion/title℄ = self::
hapter[
hild::se
tion/
hild::title℄sele
ts nodes of name
hapter that satisfy the predi
ate of having a title
hild ofa se
tion as their
hild. The answer to this query in our running example is lines12{22 (
hapter 2).An equality test, \=",
ompares either numbers or strings. In the
ase of strings,one operand must be a
onstant string and the other a lo
ation path. The testbe
omes true if the lo
ation path appears and its text
ontent equals the string. Astring
ontainment test, \=~", is similar but the string should be
ontained in thetext
ontent of the lo
ation path3. As an example,self::se
tion[attribute::number="2.1.1"℄sele
ts se
tions
ontaining an attribute named number whose text
ontent is ex-a
tly \2.1.1", that is, lines 17{20 of our running example. The example
an beabbreviated as se
tion[�number="2.1.1"℄:We remark that the text in attribute values is not
onsidered to be a part of thetext in other
ontaining nodes.The equality between numbers makes sense when we use some fun
tions providedby XPath. These in
lude, at least: position(), whi
h is the position of the node(in do
ument order) among those returned in the same
ontext; last(), whi
h isthe number of nodes returned from this
ontext. For example,self::
hapter/des
endant-or-self::se
tion[position()=last()℄gives the last se
tion of ea
h
hapter, that is, lines 17{20 in our running example.2A

ording to the de�nition, parent
ould be
lassi�ed either as forward or reverse axis. In our
ase it is simpler to see it as a reverse axis.3We have used this operation for brevity. In rigor, this is written as \
ontains(path,string)" inXPath 1.0.

IXPN: An Index-Based XPath Implementation � 9The example
an be abbreviated as
hapter//se
tion[position()=last()℄:Furthermore, a simple number is taken as a numeri
 equality over position(), sothe example
an be further abbreviated as
hapter//se
tion[last()℄:Other abbreviations are \.", whi
h stands for \self::node()" and \..", whi
hstands for \parent::node()". Figure 6 summarizes the syntax of XPath, withoutabbreviations. It is a simpli�
ation of the oÆ
ial XPath 1.0 grammar.path �! / path j path / axis :: step j axis :: stepaxis �!
hild j des
endant j des
endant-or-self j parentj an
estor j an
estor-or-self j followingj following-sibling j pre
eding j pre
eding-siblingj attribute j namespa
e j selfstep �! nodetest j step [pred ℄nodetest �! NAME j node()pred �! pred and pred j pred or pred j not predj spath j numeri
 = numeri
spath �! axis :: nodetest / spath j axis :: nodetestj axis :: nodetest = string j axis :: nodetest =~ stringnumeri
 �! last() j position() j NUMBERstring �! WORD j string WORDFig. 6. Summary of the syntax of XPath, abbreviations ex
luded.3. PROXIMAL NODESThe Proximal Nodes Model (PN) [Navarro and Baeza-Yates 1995; Navarro andBaeza-Yates 1997℄ presents a good
ompromise between expressiveness and eÆ-
ien
y. It does not de�ne a spe
i�
 language, but a model in whi
h it is shown thata number of useful operators
an be in
luded, while a
hieving good eÆ
ien
y. Manyindependent stru
tures
an be de�ned on the same text, ea
h one being a stri
t hi-erar
hy, and allowing overlaps between areas delimited by di�erent hierar
hies (e.g.
hapters/se
tions and pages/lines). A query
an relate di�erent hierar
hies, but re-turns a subset of the nodes of one hierar
hy only (i.e., nested elements are allowedin the answers, but not overlaps). Ea
h node has an asso
iated segment, whi
his the area of the text it
omprises. The segment of a node in
ludes that of itsdes
endants. Text mat
hing queries are modeled as returning nodes from a spe
ial\text hierar
hy".The model spe
i�es a fully
ompositional language with three types of opera-tors: (1) text pattern-mat
hing; (2) to retrieve stru
tural
omponents by name(e.g. all
hapters); and (3) to
ombine other results. The main idea behind theeÆ
ient evaluation of these operations is a bottom-up approa
h, by �rst sear
hing

10 � G. Navarro and M. Ortegathe queries on
ontents and then going up the stru
tural part. Two indi
es areused, for text and for stru
ture, meant to eÆ
iently solve queries of type 1 and 2without traversing the whole database. To make operations of type 3 eÆ
ient, onlyoperations that relate \nearby" nodes are allowed. Nearby nodes are those whosesegments are more or less proximal. This way, the answer is built by traversingboth operands in syn
hronization, leading in most
ases to a
onstant amortized
ost per pro
essed element.As we show next, many useful operators �t into this model. There is a separatetext mat
hing sublanguage, whi
h is independent of the model. This model
an beeÆ
iently implemented, needing linear time for most operations and in all pra
ti
al
ases (this is supported by analysis and experimental results [Navarro 1995℄). Thetime to solve a query is proportional to the sum of the sizes of the intermediateresults (and not to the size of the database).3.1 Query LanguageThe PN model permits any operation in whi
h the fa
t that a node belongs or notto the �nal result
an be determined by the identity and text position of itself andof nodes (in the operands) whi
h are \proximal" to it, as explained.
after, after(k)

before, before(k)

Distances

Direct structural

parent(k)

[s] child

By included elements

with(k)

Content
Basis

expr.
Match

matchesBasis
Structure

Constructor

All on matches

Opers

Composition
Operations

collapse, subtract...

in

[s] in

By including elements

Set manipulation

same

union, minus, is

Fig. 7. Possible operations for the PN model,
lassi�ed by type. We have removed those thatare relevant when several hierar
hies exist, whi
h is not the
ase in XML.Figure 7 shows the s
heme of a possible set of operations. There are basi
 ex-tra
tion operators (forming the basis of querying on stru
ture and on
ontents),and operators to
ombine results from others, whi
h are
lassi�ed in a number of

IXPN: An Index-Based XPath Implementation � 11groups: those whi
h operate by
onsidering in
luded elements, in
luding elements,nearby elements, by manipulating sets and by dire
t stru
tural relationships.We explain in some detail those that are relevant for the
ase of a single hierar
hy,whi
h in
ludes the XML model.|Mat
hing sublanguage: Is the only one whi
h a

esses the text
ontent of thedatabase, and is orthogonal to the rest of the language.|Mat
hes: The mat
hing language generates a set of disjoint segments, whi
hare introdu
ed in the model as belonging to a spe
ial \text hierar
hy". Allthe text answers generate
at lists. For example, "Introdu
tion" generatesthe
at set of all segments of 12 letters where that word appears in the text(those are
ontained in lines 8 and 9 of our running example). Note that themat
hing language
ould allow mu
h more
omplex expressions (e.g. regularexpressions).|Operations on mat
hes: Are appli
able only to subsets of the text hierar
hy,and make transformations to the segments. We see this point and the previousone as the me
hanism for generating mat
h queries, and we do not restri
tour language to any sublanguage for this. As an example, M
ollapse M 0superimposes both sets of mat
hes, merging them when an overlap results;and M subtra
t M 0 removes from the �rst set the text positions belonging tothe se
ond set, shortening, removing and
utting segments as required.|Basi
 stru
ture operators: Are the other kind of leaves of the query syntax tree,whi
h refer to basi
 stru
tural
omponents.|Name of stru
tural
omponent: (\
onstru
tor" queries). Is the set of all nodesof the given type. For example,
hapter retrieves all the
hapter elements (3nodes in Figure 2).|Whole hierar
hy: (\All" queries). Is the set of all nodes of the hierar
hy. Thesame e�e
t
an be obtained by summing up (\union" operator) all the nodetypes of the hierar
hy.|In
luded-In operators: Sele
t elements from the �rst operand whi
h are in
ludedin one of the se
ond.|Free in
lusion: Sele
t any in
luded element. \P in Q" is the set of nodes of Pwhi
h are in
luded in a node of Q. For example, title in
hapter sele
ts alltitles inside
hapters, even se
tion titles (see Figure 2).|Positional in
lusion: Sele
t only those elements in
luded at a given position. Inorder to de�ne position, only the top-level in
luded elements for ea
h in
ludingnode are
onsidered. \[s℄ P in Q" is the same as in, but only qualifyingthe nodes whi
h des
end from a Q-node in a position (from left to right)
onsidered in s. The language for expressing positions (i.e. values for s) isalso independent. It was
onsidered that �nite unions of i..j, last� i..last�j,and i..last�j would suÆ
e for most purposes. The range of possible values is1..last. For example, [1..2℄
hapter in book retrieves the �rst two
haptersfrom our book example. If
hapters in
luded other
hapters, only the top-levelones would be
onsidered.|In
luding operators: Sele
t from the �rst operand the elements in
luding elementsfrom the se
ond one. \P with(k) Q" is the set of nodes of P whi
h in
lude atleast k nodes of Q. If (k) is not present, we assume 1. For example,
hapter

12 � G. Navarro and M. Ortegawith(2) "Introdu
tion" sele
ts the
hapters in whi
h the word \Introdu
tion"appears at least two times (
hapter 1 in our example).|Dire
t stru
ture operators: Sele
t elements from the �rst operand based on dire
tstru
tural
riteria, i.e. by dire
t parentship in the stru
ture tree
orrespondingto the hierar
hy.|\[s℄ P
hild Q" is the set of nodes of P whi
h are
hildren (in the hierar
hy) ofsome node of Q, at a position
onsidered in s (that is, the s-th
hildren). If [s℄is not present, we assume 1::last. For example, title
hild
hapter retrievesthe titles of all
hapters (and not titles of se
tions inside
hapters).|\P parent(k) Q" is the set of nodes of P whi
h are parents (in the hierar
hy) ofat least k nodes of Q. If (k) is not present, we assume 1. For example,
hapterparent(3) se
tion sele
ts
hapters with three or more top-level se
tions (nonein our example).|Distan
e operators: Sele
t from the �rst operand elements whi
h are at a givendistan
e of some element of the se
ond operand, under
ertain additional
ondi-tions.|\P after/before Q (C)" is the set of nodes of P whose segments begin/endafter/before the end/beginning of a segment in Q. If there is more than one P -
andidate for a node of Q, the nearest one to the Q-node is
onsidered (if theyare at the same distan
e, then one of them in
ludes the other and we sele
tthe in
luding one). In order for a P -node to be
onsidered a
andidate for aQ-node, the minimal node of C
ontaining them must be the same, or mustnot exist in both
ases. For example, image after title (
hapter) retrievesthe nearest images following titles, inside the same
hapter (the only imagewould be retrieved in our example).|\P after/before(k) Q (C)" is the set of all nodes of P whose segments be-gin/end after/before the end/beginning of a segment in Q, at a distan
e ofat most k text symbols (not only nearest ones). C plays the same role asabove. For example, "Con
lusions" before (20) "Future" (
hapter) sele
tsthe words \Con
lusions" that are followed by \Future" at a distan
e of at most20 symbols, inside the same
hapter (there is one o

urren
e in
hapter 3 inour example).|Set manipulation operators: Manipulate both operands as sets, implementingunion, di�eren
e, and interse
tion under di�erent
riteria.|\P union Q" is the union of P and Q. For example, figure union list isthe set of all �gures and lists. To make a union on text segments, one uses
ollapse.|\P minus Q" is the set di�eren
e of P and Q. For example,
hapter minus(
hapter with image) are the
hapters with no images (
hapters 2 and 3 inour example). To subtra
t text segments, one resorts to operations on mat
hes.|\P is Q" is the interse
tion of P and Q. For example, ([1℄ title in
hapter)is ([3℄ title in book) sele
ts the titles whi
h are �rst (top-level) title of a
hapter and at the same time third (top-level) title of the book (the title of
hapter 2 would be sele
ted in our example). To interse
t text segments usesame.

IXPN: An Index-Based XPath Implementation � 13|\P same Q" is the set of nodes of P whose segments are the same segment ofa node in Q. For example, title same "Introdu
tion" gets the titles thatsay (exa
tly) \Introdu
tion". This gives the title of
hapter 1 in our example.Ex
ept for set manipulation ones, the model also permits the negated version ofall the operators. For example, P not with Q is the same as P � (P with Q),although the evaluation is more eÆ
ient.Clearly in
lusion
an be determined by the text area
overed by a node, andthe fa
t that an element in A quali�es or not depends only on elements of Bthat in
lude it or are in
luded in it. Dire
t an
estorship
an be determined bythe identity of the nodes and appropriate information on the hierar
hi
al relationsbetween nodes. Note that just the information on text areas
overed is not enoughto dis
ern between dire
t and general in
lusion. Distan
e operations
an be
arriedout by just
onsidering the areas
overed and by examining nearby elements of thethree operands. Finally, set manipulation needs nothing more than the identity ofthe nodes and depend on nearby nodes of the other operands.3.2 Existing ImplementationThe PN model proposes an implementation where an index is built on the stru
tureof the text separated from the normal index for the text
ontent. The stru
turalindex is basi
ally the hierar
hy tree with pointers to know the parent, �rst
hildand next sibling of ea
h node. In addition, impli
it lists (with \next sibling" and\�rst
hild" pointers) for ea
h di�erent stru
tural element are maintained, so thatone
an traverse the
omplete tree or the subtree of all the nodes of a given type.Figure 8 illustrates.
author

title
 section

book

image

chapter
 chapter

title

title
 section

title

title

title

chapter

number
 number
 number

number

number

source
 caption

Structure Index

 . . . Introduction
Text

...

Introduction

....

Text Index

author

book

caption

chapter

image

number

source

section

title

Fig. 8. Stru
ture and text index over our XML do
ument, with the links for title highlighted.

14 � G. Navarro and M. OrtegaTwo di�erent implementations of the model are proposed. A full evaluationversion solves the query syntax tree re
ursively, that is, both operands of the rootare (re
ursively) solved
ompletely and then the root operator is applied to botharguments, whi
h are by this time fully evaluated. A lazy evaluation version regardsthe query syntax tree as an entity that survives a
ross the whole evaluation, towhi
h one requests results one by one. Upon re
eiving a request, any node of thissyntax tree requests in turn results from its operand subtrees until it has enoughinformation to deliver one result. In the experiments [Navarro 1995℄ the lazy versionworked better for more
ompli
ated queries and worse for simpler queries.Leaves whi
h
orrespond to stru
tural elements are solved by using the stru
tureindex dire
tly; those whi
h
orrespond to pure queries on the text
ontent are solvedwith the
lassi
al index on
ontent (e.g. an inverted �le) and translated into a listof text segments that mat
h the query. This list is treated as a parti
ular
ase of atree of answers.The intermediate (and �nal) results are trees whi
h are subsets of the wholehierar
hy. Figure 9 illustrates.As de�ned by the model, all the allowed operations
an be solved by a syn
hro-nized linear traversal over the operands, so that the total time to solve a query isproportional to the total size of the intermediate results, usually linear time.4. MAPPING XML/XPATH ONTO PROXIMAL NODESIn this se
tion we des
ribe how the XML/XPath model has been mapped ontothe PN model. This mapping has two parts: mapping the data and mapping theoperations.4.1 Mapping the XML Stru
tureFirst of all, the PN model permits independent hiear
hies, while XML has only one.This makes it possible to simplify the implementation of PN des
ribed in [Navarroand Baeza-Yates 1997; Navarro 1995℄. The spe
ial \text hiearar
hy" de�ned in thePN model, however, has to be maintained in order to permit text sear
hes.An aspe
t where XML is more
omplex than PN is that XML permits di�erentnode types: Although most XML nodes are element-nodes, there are also attribute-nodes and other node types. In PN there exists a single node type.We have
ir
umvented this problem by
onsidering all nodes as element-nodes. Inthose nodes that are not originally element-nodes, we add a spe
ial initial
hara
terto their name so that we
an know whi
h node types they were originally. This
anbe applied to all node types. However, we have done this only to attribute-nodes(to whi
h we added the spe
ial
hara
ter \�", although any other one would do).In order to handle
olle
tions of XML do
uments, we have added a new nodetype
alled do
ument-node. These are virtual (like the root-node) and not retriev-able. We have translated them as if they
orresponded to tag name \-DOCUMENT".Similarly, the root-node is named \-ROOT".The other node types are not interesting for sear
hing and thus
an be disre-garded.For example, a tag with attributes like<
hapter number="1"> ... </
hapter>

IXPN: An Index-Based XPath Implementation � 15
author

title
 section

book

image

chapter
 chapter

title

title
 section

title

title

title

chapter

number
 number
 number

number

number

source
 caption

section
title
 title

title
 section

title

title
 title

Fig. 9. Tree result of the query \se
tion union title".will be regarded as<
hapter><�number>1</�number> ... </
hapter>:We still, however, refer to text positions in the original �le. This requires some
are when it
omes to de�ne whi
h is exa
tly the text segment that
orrespondsto ea
h node type, so that segments of parent nodes stri
tly
ontain those of
hildnodes. The rules are as follows:(1) For element-nodes with start and end tags, the segment starts two positionsafter the last
hara
ter of the initial tag name, and �nishes at the position

16 � G. Navarro and M. Ortegapre
eding the
losing tag;(2) for element-nodes with a single start/end tag, the segment starts with thesame rule as for (1), and ends at the position pre
eding the �nal \/" (this may
ause the �nishing position to be before the starting position, but it
auses notroubles, as in this
ase there
annot be
hildren nor attributes);(3) for attribute-nodes, the segments
over exa
tly the area of their attribute value,ex
luding quotation marks;(4) for do
ument-nodes, the segment goes from the �rst to the last
hara
ters ofthe do
ument;(5) for the root-node, the segment goes from a �
ti
ious position 0 (zero) to oneposition after the last
hara
ter of the last do
ument (also �
ti
ious).Figure 10 illustrates some
ases. This s
heme preserves the do
ument orderof the nodes and is well de�ned for the XPath and PN operations, as explained.Additionally, it has the advantage of easing the displaying of results: If one knowsthat a given segment with a known tag name has mat
hed the query, one
an simplyexpand the segment by the tag name length plus a �xed amount in ea
h dire
tion inorder to obtain a well-formed XML node to display. Finally, the property of stri
tsegment
ontainment simpli�es several PN algorithms [Navarro and Baeza-Yates1997; Navarro 1995℄.
<title>Data Model</title>

<chapter number="1"> ... </chapter>

<image source="graph.png" caption="This is a graph"/>

chapter

number:

image:

source:

caption:

br:

title: start end

start

start

start
end

end

start & end

start end

start end

end

Fig. 10. Examples of segment
overage for XML tags.In order to enfor
e that texts below attributes do not belong to other
ontainingnodes, we state that words in attribute values should have added a blank
hara
terat their beginning, so they
annot be
onfused with words belonging to text-nodes.We see soon how this features is used.We note that XML permits referen
es between do
uments, whi
h
an be queriedin languages like XLink [Consortium 2001a℄ and XPointer [Consortium 2001b℄, butnot in XPath. For this reason we disregard these referen
es when
onsidering the

IXPN: An Index-Based XPath Implementation � 17stru
ture of the
olle
tion. Implementing queries on these referen
es, however, prob-ably needs te
hniques that are well beyond the
apabilities of an XPath implemen-tation: The referen
es indu
e an arbitrary graph stru
ture in the text
olle
tion,not ne
essarily a hierar
hy. Most of the eÆ
ien
y of our XPath implementationstrongly relies on a hierar
hi
al stru
ture.4.2 Mapping XPath ExpressionsThree aspe
ts have to be taken into a

ount when mapping XPath expressions ontoPN: the
ontexts, the axes, and the predi
ates.While XPath is strongly based on the notion of
ontext, this
on
ept does notexist in PN. Yet, the
onversion is possible. XPath expressions are regarded assequen
es of lo
ation steps, where the result of the
urrent step makes up the
ontext for the next. Previous and
urrent lo
ation steps are related by the axes.PN expressions, on the other hand,
an be seen as a
omposition of binary relationsbetween node sets. The types of binary relations are quite similar to those denotedby the axes. Hen
e it is possible to
onvert sequen
es of lo
ation steps into a
omposition of binary relations. The operands of these relations are given by thenode tests and the
omposition of the lo
ation path itself. Predi
ates, on the otherhand,
an similarly be translated into a
omposition of relations, as will be made
lear soon.4.2.1 Nodetests. The most
ommon nodetest is just an element-node name. Thisis translated into PN simply as the same stru
tural name. Note that, if the namestarts with the spe
ial
hara
ter \�", then it is indeed an attribute-node name, butwe need not pay spe
ial attention to this fa
t.The other possible nodetest is node() (abbreviated *"), whi
h
orresponds tothe set of all element-nodes. This is translated into a variant of the All operand ofPN, namely Node. The abbreviation \�*" stands for all the attribute-nodes, andis translated into another new PN operand named Attribute. Both new operandswill be implemented as variants of All.4.2.2 Axes. Most axes of XPath have their
ounterpart in PN operations. SomePN operations, however, must be slightly rede�ned, and others have to be
reatedfrom s
rat
h. However, the new operations �t well in the philosophy of PN. More-over, some axes that exist as PN operations
an be simpli�ed for an XML stru
ture.We present now the axes of XPath and their PN
ounterparts.
hild:
orresponds to
hild operation in PN, where the [s℄ modi�er is not used.Note, for this item and the rest, that we plan to translate paths in reverse,for example se
tion/title be
omes \title
hild se
tion". Note that if theabbreviation \�name" is used as a nodetest, then \
hild" should be under-stood as \attribute" (a later item in this list), and the spe
ial
hara
ter \�"removed. The fa
t that \�" is used both in XPath and by ourselves to denoteattribute nodes makes it possible to not doing anything spe
ial when dealingwith this kind of names.parent:
orresponds to parent operation in PN, where the (k) modi�er is notused.des
endant:
orresponds to in operation in PN, without the [s℄ modi�er.

18 � G. Navarro and M. Ortegades
endant-or-self:
an be implemented in PN as \(P is Q) union (P in Q)".It is, however, mu
h simpler and eÆ
ient to add a new inself operation to PNwith the proper semanti
s.an
estor:
orresponds to with operation in PN, without the (k) modi�er.an
estor-or-self: again we
hoose to add a new operation withself to PN.following:
orresponds to after(1)(-DOCUMENT) operation in PN. For brevity we
all it just after (and make a spe
ial, faster and simpli�ed, implementation forit).pre
eding: similarly, it
orresponds to before(1)(-DOCUMENT) operation in PN,whi
h we will
all just before.following-sibling:
an be implemented in PN as \(P after Q)
hild (Nodeparent Q)". It is, however, mu
h simpler and eÆ
ient to add a new after-sibling operation to PN with the proper semanti
s.pre
eding-sibling: just as before, we add a new before-sibling operation toPN.attribute: is similar to
hild, but also we enfor
e the sele
tion of attribute-nodesonly. It is implemented in PN by simply adding the spe
ial
hara
ter \�" atthe beginning of the nodetest, even if this nodetest is *", and translate it as
hild.self:
orresponds to is operation in PN.As explained, the translation of a lo
ation path is done in reverse. For example,
hapter/se
tion/title = self::
hapter/
hild::se
tion/
hild::title;would sele
t all titles
hildren of se
tions
hildren of
hapters. In our runningexample this is the
ontent of line 16. The expression is translated intotitle
hild (se
tion
hild
hapter):Another example
ould beself::image/an
estor::
hapter/following-sibling::
hapter;whi
h would sele
t
hapters that follow
hapters (from the same book) that
ontainimages (the whole
hapters 2 and 3 in our running example). This expression wouldbe translated into
hapter after-sibling (
hapter with image):Yet a third example, involving abbreviations, is \//image", whi
h stands for/des
endant-or-self::node()/
hild::image;and would be translated intoimage
hild (Node inself -ROOT):Both are indeed equivalent to just \image". Later we will give some simpli�
ationrules for the resulting PN expressions.

IXPN: An Index-Based XPath Implementation � 194.2.3 Predi
ates. Proximal Nodes has no
on
ept of predi
ate. However, pred-i
ates
an be translated into additional
ompositions with the PN algebra. It isimportant, however, that all predi
ates are solved as sets of nodes instead of booleanor numeri
 values, as these
annot be handled as intermediate values in PN.The main idea applies to predi
ates that
onsist simply of a lo
ation path. Thislo
ation path
an be translated similarly as lo
ation paths outside predi
ates. Thistime, however, we must reverse the order and meaning of operands. Axes withopposite meaning are, for example,
hild$parent and des
endant$an
estor.By default, the �rst axis of the predi
ate is
hild. For example,
hapter[se
tion/title℄ =
hapter[
hild::se
tion/
hild::title℄;whi
h sele
ts
hapters that are parents of se
tions that are parents of titles, istranslated into the PN expression
hapter parent (se
tion parent title):The default axis
an be overwritten, for example using
hapter[//title℄ =
hapter[des
endant-or-self::node()/
hild::title℄;whi
h sele
ts
hapters
ontaining titles, is translated into the PN expression
hapter withself (Node parent title) =
hapter with title;where the se
ond expression is obtained after algebrai
 simpli�
ation of the PNexpression.Yet a third example isimage[�*℄ = image[attribute:*℄;whi
h sele
ts images with attributes and is translated into the PN expressionimage parent Attribute:When a lo
ation path is
ompared against a string, the translation uses withfor
ontainment and same for equality. The operation is applied to the �nal stepof the path. Phrases are translated using a new operation of PN
alled phrase.This operation belongs to the mat
hing sublanguage, and is the only operation weneed from that sublanguage. The basi
 mat
hing, on the other hand, requires onlysear
hing for whole words.For example,
hapter[�number="1"℄ =
hapter[attribute::number="1"℄;
hooses the
hapter whose attribute \�number" has the string value \1". This istranslated into PN as
hapter parent (�number same " 1");where we note that we have added a blank in front of the \1", as we are dealingwith text inside attributes.Similarly,se
tion[title=~"Model"℄ = se
tion[
hild::title=~"Model"℄

20 � G. Navarro and M. Ortega
hooses the se
tions whose titles
ontain the word \Model". This is translated intoPN as se
tion parent (title with "Model"):Let us now
onsider the boolean operations that
an appear in predi
ates. The\and" operation
an be solved just by
omposing the
onditions, as these are nat-urally restri
ting the previous result. For example,image[�sour
e and �
aption℄is translated into (image parent �sour
e) parent �
aption:The \or" operation, instead, requires expli
it union of both results, is translatedinto the union operation in PN. For example,image[�sour
e or �
aption℄is translated into(image parent �sour
e) union (image parent �
aption):Finally, the \not" operation
an be applied to a whole path (or path with a �nalequality/
ontainment test), denoting that the
ontext node should not mat
h su
ha lo
ation path. This
ould be easily translated using the set di�eren
e operator(\minus") of PN, although we
hoose a faster option: negated versions of all thePN operations are used to
onne
t the
ontext node and the predi
ate.To
on
lude this se
tion we must explain how we handle the numeri
 predi
ates,whi
h may spe
ify that only some qualifying nodes must be returned, namely thoseat spe
i�
 positions (in do
ument order) within the set of qualifying nodes for ea
h
ontext node. These are solved by �rst obtaining all the answers and later
hoosingthe appropriate positions. In
ase the positions do not mention last(), it may notbe ne
essary to generate all the answers. For example, the expression
hapter[2℄ =
hapter[position()=2℄requires obtaining only the se
ond
hapter. Node that this resembles the [s℄ modi�erof
hild and in, but this time we need it applied to every possible axis. Hen
e weneed a general, independent method.4.3 A FormalizationTo summarize the whole method in a
omplete and unambiguous way, we presentnow a formalization of the transformation of XPath into PN expressions. This isexpressed in terms of a transformation fun
tion PN , whi
h gives the PN expressionequivalent to a given XPath expression.We use some auxiliary fun
tions: A transforms axes into PN operations, AR intoreverse PN operations, and ARN into reverse and negated PN operations. On theother hand, N transforms nodetests into PN operands. Tables 1 and 2 de�ne theseauxiliary fun
tions.Before any translation we perform a
onversion on attribute axes. This is asfollows: any o

urren
e of the form.../attribute::nodetest...

IXPN: An Index-Based XPath Implementation � 21Axis A AR ARN
hild
hild parent not parentparent parent
hild not
hilddes
endant in with not withdes
endant-or-self inself withself not withselfan
estor with in not inan
estor-or-self withself inself not inselffollowing after before not beforepre
eding before after not afterfollowing-sibling after-sibling before-sibling not before-siblingpre
eding-sibling before-sibling after-sibling not after-siblingself is is not isTable 1. Formal translation of axes. A is used in normal lo
ation paths, while AR and ARNare used for lo
ation paths inside predi
ates. The latter is used to translate boolean negation. Wedo not spe
ify how to translate the attribute axis be
ause we never let that
ase o

ur.Nodetest Nname name�name �namenode() Node* Node�* AttributeTable 2. Formal translation of nodetests.is
onverted into .../
hild::�nodetest...that is, an \�" is added at the beginning of the nodetest and the attribute axisbe
omes
hild. Moreover, if a string
omparison follows the nodetest, all theirwords get added a blank before their �rst
hara
ter.Our translation follows, based on the abstra
t unabbreviated syntax of Figure 6.The �rst rule that mat
hes an argument is the one used. We remark that we keeptranslation rules as simple as possible, and deal later with possible ineÆ
ien
iesin
urred.We translate lo
ation paths by always
onsidering its last element �rst. Our �rstrule translates absolute paths into relative paths. The se
ond rule spe
i�es howlo
ation paths are split into lo
ation steps. The third rule shows how the sequen
eis �nished. PN (/path) = PN (self::-ROOT/path)PN (path/axis::step) = (S(step) A(axis) PN (path))PN (axis::step) = (S(step) A(axis) Node)Fun
tion S spe
i�es how to translate a single lo
ation step, axis ex
luded. The�rst rule translates a simple nodetest, while the se
ond rule handles
onse
utivepredi
ates by resorting to a fun
tion R.

22 � G. Navarro and M. OrtegaS(nodetest) = N (nodetest)S(step[pred℄) = R(S(step); pred)Let us now
onsider R, whi
h translates predi
ates. The idea is that the �rstargument of R is the
ontext (already a PN expression) and the se
ond is thepredi
ate. This time we
onsider the lo
ation paths from left to right, and reversethe axes. The �rst rule spe
i�es how lo
ation paths are split into lo
ation steps.The se
ond rule treats the
ase of a single lo
ation step. The third and fourth rulesdeal with string
omparisons. The �nal six rules work out the boolean
onne
tives.For the \not"
onne
tive, we assume that it is applied only to paths, otherwise theobvious boolean equivalen
es are applied. For brevity we have used ntst instead ofnodetest.R(
tx; axis::ntst/spath) = (
tx AR(axis) R(N (ntst); spath))R(
tx; axis::ntst) = (
tx AR(axis) N (ntst))R(
tx; axis::ntst=string) = (
tx AR(axis) (N (ntst) same P(string))R(
tx; axis::ntst=~string) = (
tx AR(axis) (N (ntst) with P(string))R(
tx; pred1 and pred2) = R(R(
tx; pred1); pred2)R(
tx; pred1 or pred2) = (R(
tx; pred1) union R(
tx; pred2))R(
tx; not axis::ntst/spath) = (
tx ARN (axis) R(N (ntst); spath))R(
tx; not axis::ntst) = (
tx ARN (axis) N (ntst))R(
tx; not axis::ntst=string) = (
tx ARN (axis) (N (ntst) same P(string))R(
tx; not axis::ntst=~string) = (
tx ARN (axis) (N (ntst) with P(string))Numeri
 predi
ates are not in
luded in the translation rules be
ause they are nottranslated but implemented dire
tly, as explained. Finally, fun
tion P translatesphrases (sequen
es of words) into PN expressions.P(word) = wordP(string word) = (P(string) phrase word)4.3.1 Algebrai
 Optimizations. The above rules are designed to be as simple tounderstand as possible. However, they may generate unne
essarily
omplex PNexpressions. Most of them
an be simpli�ed ba
k by �nding pla
es where Nodeand Attribute are mentioned, and applying some simpli�
ation rules, as follows:All the expressions that follow are equivalent to just P .P is Node Node is PP is Attribute Attribute is PP inself Node P withself Node

IXPN: An Index-Based XPath Implementation � 23P in Node P
hild NodeP inself -ROOT P in -ROOTNote that the fourth line is valid be
ause we are not interested in returning the-ROOT node, as it is �
ti
ious. Other algebrai
 equivalen
es of interest areP withself (Node parent Q) = P parent (Node withself Q) = P with QP inself (Node
hild Q) = P
hild (Node inself Q) = P in QP is (Node op Q) = (Node op Q) is P = P op Qfor any operation op.Many other optimizations are possible, but those above �x the ineÆ
ien
ies in-
luded when we automati
ally transform XPath into PN expressions.5. IMPLEMENTING PROXIMAL NODES OPERATIONSIn prin
iple, we followed the previous PN implementation des
ribed in Se
tion 3.2.However, several important improvements were possible and/or ne
essary in orderto handle very large text
olle
tions and the spe
i�
 operations needed to translateXPath.5.1 Index Stru
tureThe index stores the initial and �nal positions of all the segments
orresponding tonodes in the XML
olle
tion. These positions are stored as byte-o�sets. Althougha
onse
utive node or word numbering would suÆ
e and yield smaller numbersneeding less spa
e, we
hose byte-o�sets in order to simplify the presentation ofresults to the user: given a node to display we know exa
tly whi
h address of whi
h�le to a

ess.The index handles
olle
tions with multiple �les. These are seen logi
ally asa single large
olle
tion, where the
ontent of ea
h �le is en
losed into -DOCUMENTtags. A small dire
tory permits mapping virtual positions into the physi
al positionof the proper �le.5.1.1 Text Mat
hing Index. This is little more than an inverted index in se
-ondary memory, where the set of all di�erent words of the
olle
tion are maintained,and for ea
h su
h word the list of all its o

urren
es are stored.In order to eÆ
iently solve phrase queries, the word-o�sets of the words shouldbe stored, as byte-o�sets are not enough to distinguish whether two word positionsform a phrase or not, espe
ially be
ause, in an XML
ontext, there
ould be a lotof markup in the physi
al �le between two words that appear as forming a phraseto an end-user.On the other hand, we do not need to store byte-o�sets of words. Byte-o�sets,as explained, are ne
essary only to display the results. However, XPath does notpermit to write queries that return simple words or phrases. Every answer must bean XML node. This redu
es spa
e requirements a lot.Also, not all the text words have to be indexed. We manage a short list of wordsthat will not be indexed (usually arti
les, prepositions, and other words that do

24 � G. Navarro and M. Orteganot
arry meaning). These are
alled stopwords and it is
ustomary to removethem from indexes and queries in Information Retrieval s
enarios [Baeza-Yates andRibeiro-Neto 1999℄. This permits saving up to 50% of index spa
e at very little
ost.In any
ase the list is
on�gurable and the index
an work under either de
ision.In order to save index spa
e, lists of
onse
utive positions are stored in a di�er-ential format: ea
h number indi
ates the o�set with respe
t to the previous. Thisposes no problems be
ause all the lists are pro
essed sequentially, and it yieldssmaller numbers. We take advantage of this by
oding the o�sets in an 8-1 for-mat: the number uses as many bytes as ne
essary and the last bit of ea
h byte isused to signal the end of the number. This
oding is a good
ompromise between
ompression ratio and eÆ
ient handling.As explained, words in attribute values have added a blank before their �rstposition, and indexed as normal words. This makes it impossible to have text insideattributes as answers of non-attribute queries. Moreover, their word positions area

umulated in a separate
ounter, so that the presen
e of words in attributesdoes not disturb the result of a same operation regarding the text inside the node
ontaining the attribute.5.1.2 Node Index. Among the alternatives analyzed in the original implementa-tion [Navarro 1995℄ we opted for the one that maintains a separate index for ea
hdi�erent tag name. If we
onsider only the nodes with a given name, the result hasalso a tree stru
ture (e.g. se
tion in our small running example, see Figure 2 andalso Figure 8). Hen
e ea
h index stores a tree.The tree is stored as a sequen
e of nodes, in depth-�rst order (a node, thenre
ursively its
hildren, then re
ursively its next sibling). There is no need to storea pointer to the �rst
hild of a node be
ause, if it exists, it is right next to the node.A forward pointer to the next sibling is stored, and it points right next to the nodeif and only if the
urrent node has no
hildren. An additional advantage of thisorganization is that if more text is added at the end of the
olle
tion, we only needto append more nodes at the end of the index �les, without need to rewrite them.This organization permits answering queries
onsisting of tag names with a singlepass over a
ontiguous �le. All the algorithms ensure that (node or subexpression)trees are traversed using only two operations: �rst-
hild and next-sibling. These areextremely easy to exe
ute in our format and ensure that we always move forwardover the index �les.The de
ision of storing separate indexes per tag name favors tag-name queriesagainst Node or Attribute queries, whi
h
an only be solved by a union of allthe involved tag names. In pra
ti
e these latter queries are very infrequent andmost should be removed by algebrai
 optimization.At index
onstru
tion time, ea
h node is labeled with a unique identi�er. This isuseful to know whether any two nodes are the same or not, and whether two nodesare
hildren of the same parent. However, we do not need any additional storage forthe node identi�er: the byte-o�set of its initial segment position is already unique,and we use it as the node identi�er.Sin
e the node name is impli
it from the index �le the node is stored at, we onlyneed to store, for ea
h node, 6 numbers:|The identi�er (start tag position) of its parent in the whole hierar
hy. This is

IXPN: An Index-Based XPath Implementation � 25not the same parent in the tree of the
urrent index �le, and it is essential foranswering parent/
hild queries).|Initial byte position and byte length of its text segment.|Distan
e to its next sibling in the
urrent index �le. A
tually, given that we have�xed node sizes, what we store is the subtree size, measured in number of nodes.|Word-o�set of �rst word, and number of words inside this node.Word o�sets are ne
essary in order to properly solve same queries: With byteo�set information it is not possible to determine whether a node
ontains exa
tly agiven sequen
e of words. Two reasons are the presen
e of attributes at the beginningof the segment
overed by a node, and separator
hara
ters like whitespa
e at theextremes of the node. The �rst word of a node should be that of the next
ontentword following the opening tag, so attributes are ex
luded. This is automati
allyobtained by keeping separate word-o�sets for attribute values and other words.Figure 11 exempli�es the layout on disk.
section

13

title

15

section

16

title

18

number

14

number

17

section
 13

segment

16

segment
 number
 14

segment

17

segment
 title
 15

segment

18

segment

parent's id

descendants

of same type
Fig. 11. Index �le layout of a subtree of our running example. The numbers are the nodeidenti�ers, and segments are not detailed. The \parent's id" arrows are a graphi
al view of thevalue stored.Some �elds, su
h as initial text segment position and word-o�set of the �rstword,
ould be
ompressed using 8-1
oding using di�erential en
oding. However,we have to be
areful be
ause it is possible to arrive at a node from its parent, itsprevious sibling, or from des
endants of the previous sibling. Other usually values,su
h as text segment length and word-o�set of last word in the segment,
annot.

26 � G. Navarro and M. OrtegaThe reason is that we determine their values only after pro
essing the last elementof the node. By that time we have already written on disk the node data, and haveto
ome ba
k and write down these values, so we need to use a �xed amount ofbytes. This is a
onsequen
e of our de
ision of storing nodes in preorder and of aone-pass
onstru
tion.Hen
e we need 6 numbers. In the databases we have examined, all these numbersare large enough to require full 4-byte integers. The only ex
eption is the distan
eto next sibling, whi
h is rather small (re
all Table 4) and we en
ode it using 2-byteshort integers. Hen
e, we need 22 bytes per node.A stru
ture-id is asso
iated to ea
h tag name at indexing time. This simpli�es
omparing node names.At query time, it will be ne
essary to bring some nodes into main memory. Theiramount is very low: in most
ases, just one per query syntax tree element. In mainmemory, we need to asso
iate some extra data to ea
h node:|Its stru
ture-id (inherited from the index �le the node was read from);|its position in its index �le (so that its
hildren or siblings
an be found if ne
-essary); and|do
ument identi�er to whi
h the node belongs (ne
essary for before and afterqueries).5.2 Lazy EvaluationTwo alternative evaluation s
hemes are proposed in the original PN implementation(Se
tion 3.2). Sin
e our fo
us is on large text databases, we
annot a�ord storingall the result of PN subexpressions in main memory before using them to
omputeother operations over these. Writing intermediate results to disk is also slow and
umbersome. Hen
e we
hose lazy evaluation. However, the original work is notfully lazy: all the
hildren of a given node are produ
ed as soon as anyone is needed.Our
urrent s
heme is even more lazy.We envision lazy evaluation as a pro
ess where we never build expli
itly the re-sults of PN expressions. Rather, we provide the me
hanisms to navigate throughthe result trees. The navigation operations permitted are the same as for the index�les: �rst-
hild and next-sibling. Hen
e, rather than implementing pro
edures that,given two result trees of subexpressions,
ompute a new result tree, we implement
ursors that, given an operation and two
ursors (that traverse subexpression re-sults), are able to navigate through the result they should produ
e. Therefore,the results (�nal and intermediate) are never produ
ed. Rather, we need to keepin main memory just one node of the result tree for ea
h PN subexpression (the
urrent node). This s
heme works pre
isely be
ause of the philosophy of the PNmodel: we
an
ompute the result by traversing the arguments more or less in syn-
hronization. The �nal result of the PN expression
an be obtained in
rementally,by navigating it with the �rst-
hild operation.A
tually, the operations have a slightly spe
ial semanti
s, as follows:�rst-
hild: moves to the �rst
hild of the
urrent node. If it does not exist itmoves to its next sibling. If no next sibling exists, it moves to the sibling of itsparent, or of its grandparent, and so on.

IXPN: An Index-Based XPath Implementation � 27next-sibling: moves to the next sibling of the
urrent node. If it does not exist itmoves to the sibling of its parent, or of its grandparent, and so on.Figure 12 shows an example. A
tually, the query syntax tree is an a
tive devi
ethroughout the query pro
ess. Ea
h node is repla
ed by a
ursor able to navi-gate through the result tree of the subexpression. We navigate the root node andshow the �nal result tree. The navigation over the root node triggers navigationoperations over subexpression nodes.In parti
ular, the
ursors
orresponding to tag-name queries are extremely simple.When the
ursor is initialized the appropriate index �le is opened. Ea
h time werequest the
ursor to move to its �rst-
hild, it advan
es in the �le by one positionand delivers the
urrent node. Ea
h time we request the
ursor to move to its next-sibling, it advan
es the �le by its number-of-des
endants �eld plus 1, and deliversthe
urrent node. Of
ourse, bu�ering is used to redu
e the amount of disk a

esses.The s
heme is very eÆ
ient and one
an determine exa
tly how mu
h main memoryis going to be spent on bu�ering.A similar s
heme solves word mat
hing queries. To initialize the
ursor we sear
hfor the word in the vo
abulary and fet
h the list of its text o

urren
es. Bothtraversal operations are identi
al in this
ase: the next word position has to bedelivered. Again we
an use bu�ering to redu
e disk a

esses and at the same timeuse as mu
h main memory as we want.Hen
e the
ursors for the leaves of the query syntax tree are easily implemented.The operations Node and Attribute are rewritten as a balan
ed union of all theknown tag names of the appropriate type. In our example,Node = (((
hapter union se
tion) union (title union author))union (image union book))Attribute = ((�
aption union sour
e) union �number)where the balan
ed union ensures that ea
h node traverses the hierar
hy in timelogarithmi
 in the number of di�erent tags.For the internal nodes, we need to implement a di�erent pro
edure for ea
hPN operation de�ned. This pro
edure is slightly di�erent depending on whetherwe want the �rst-
hild or the next-sibling. At the invo
ation, all we know is the
urrent node of the operands and the previous node delivered.There is little point in going over all the 13 operations implemented plus their13 negated versions. Rather, we prefer to show a few representative
ases.5.2.1 Some Easy Operators. In the seudo
odes that follow, operations re
eive twosubquery parameters P and Q, as well as a dire
tion dir that
an have the value
hild or sibling, depending on where we have to move. Subqueries are manipulatedas
ursors, as explained. FieldX:result is the
urrent value of
ursorX (i.e.,
urrentnode in the results of subquery X). Operation Next(X,dir) moves
urrent
ursorX a

ording to dir, and returns the modi�ed
ursor X . Depending on the operatorat the root of subquery X , Next be
omes the appropriate PN operation (e.g. In).As the result of su
h a fun
tion invo
ation, we assign a new value to variable result,whi
h be
omes the
urrent node of the
orresponding
ursor. Observe that, ex
eptfor union, we always return values from P that satisfy some
ondition.

28 � G. Navarro and M. Ortega
Struct
(
 title
)

title
 title
 title
 title
title
 title

Struct
(
 section
)

section

section

Union(
 Struct
(
 title
),
 Struct
(
section
))

title
 title
 section
 title
title

title

Union(
 Struct
(
 title
),
 Struct
(
section
))

title
 title
 section
 title
title

section
title

title

section
title

Fig. 12. Cursors over result trees. The top trees show the argument trees (obtained in lazy forfrom the index �les). The middle tree is the whole result of the query title union se
tion, butthis tree is never produ
ed. What one really has is a devi
e like that of the bottom �gure, whereone
an navigate using the �rst-
hild (solid line) and next-sibling (dashed line) operations.

IXPN: An Index-Based XPath Implementation � 29A result equal to � indi
ates that the tree traversal has �nished. We
an
omparethe segments of two nodes p and q by using the following relations: p < q (segmentof p is
ompletely before segment of q), p > q (idem after), p � q (segment of p isstri
tly
ontained in segment of q), p � q (stri
tly
ontaining), and p = q (segments
oin
ide). Symbols �, �, � and � permit also the
ondition p = q to be true.A very simple example is the In fun
tion, whi
h implements P in Q. As long asthe
urrent segments of P and Q are disjoint, it advan
es by sibling the leftmostsegment. At some moment it �nds a pair of nodes
ontained one in the other. Ifthe node of P is not
ontained in that of Q, then it moves to the
hild of P , assome des
endant of P
ould be
ontained in the
urrent Q node. If, instead, thenode of P is
ontained in the
urrent node of Q, it stops at the
urrent P node andthis is the new result. In the beginning, it starts by moving in P by dir, sin
e theinvariant is that the
urrent node in P has already been delivered.Figure 5.2.1 gives the seudo
ode. If we repla
e � by � and � by � we obtainInself. It should be
lear that the time to traverse the result of \P in Q" isO(jP j + jQj), that is, linear in the size of the arguments, sin
e we work O(1) timeper node of P or Q.In (P , Q, dir)1. p Next(P; dir):result2. q Q:result3. While p 6= � and q 6= � Do4. Case5. p < q : p Next(P; sibling):result6. p > q : q Next(Q; sibling):result7. p � q : p Next(P;
hild):result8. p � q : result p; Return9. result �Fig. 13. Operation In.Let us now
onsider fun
tion With. It works quite similarly as In. This time wemove to the
hild of Q if P is
ontained in the
urrent node of Q, sin
e there
ouldbe des
endants of Q
ontained in the
urrent P node. Another di�eren
e is that it ispossible that Q is the result of a phrase query and hen
e it may represent a segmentthat overlaps stru
tural segments. Hen
e we have used expli
itly the From and Tovalues of segments in order to move. Figure 5.2.1 gives the seudo
ode. Again, thesame
hange as before yields Withself. The
omplexity is
learly linear as well.Let us now
onsider fun
tion Before. It uses fun
tor Do
 over
urrent nodevalues, whi
h is their do
ument identi�er (re
all that this is stored when the nodeis in main memory). We advan
e in P or Q until they are in the same do
ument.Then the result is the
urrent P node if it is before the
urrent q value. If
urrentP node is after
urrent Q node, we advan
e in Q by sibling. If one node in
ludes

30 � G. Navarro and M. OrtegaWith (P , Q, dir)1. p Next(P; dir):result2. q Q:result3. While p 6= � and q 6= � Do4. Case5. p � q : q Next(Q;
hild):result6. p � q : result p; Return7. From(p) < From(q) : p Next(P; sibling):result8. From(p) > From(q) : q Next(Q; sibling):result9. result � Fig. 14. Operation With.another we advan
e in Q by
hild, as we
annot dis
ard
urrent P node until weare sure there is no relevant Q node ahead.Figure 5.2.1 shows the seudo
ode, whi
h is again
learly linear time. Fun
tionAfter is symmetri
.Before (P , Q, dir)1. p Next(P; dir):result2. q Q:result3. While p 6= � and q 6= � Do4. Case5. Do
(p) > Do
(q) : q Next(Q; sibling):result6. Do
(p) < Do
(q) : p Next(P; sibling):result7. p > q : q Next(Q; sibling):result8. p < q : result p; Return9. else : q Next(Q;
hild):result10. result �Fig. 15. Operation Before.Other simple fun
tions are those that implement same and is, as well as thenegated versions of all the simple fun
tions. The other operator that quali�es as\simple" is union. Although it needs some
are be
ause it is the only one wherenodes from both P and Q
an be retrieved, it is essentially simple. Finally, thereare di�erent versions for same and with when the right-hand operator is a textmat
hing query, sin
e in that
ase word-o�sets rather than byte-o�sets have to beused.All simple operations need
onstant memory and linear time in the worst
ase.

IXPN: An Index-Based XPath Implementation � 315.2.2 More Compli
ated Operators. There are four PN operations that present
ompli
ations. Two of them,
hild and after-sibling, still a
hieve linear worst-
ase time but need O(h) spa
e, being h the height of the
olle
tion tree. This isnot really a problem in pra
ti
e, as h is usually very low. The other two, parentand before-sibling, are worse. We obtain linear time only on average (O(n logn)worst
ase), and need potentially O(n) spa
e.We note that the key issue is that these are the operations that make dire
treferen
e to the stru
ture of the whole
olle
tion: their results
annot be determinedby looking at segment in
lusion only, but we need to
onsider dire
t parentship inthe XML tree. On top of that, the operations
orresponding to forward axes onlyrequire to keep, for the
urrent node, the list of its an
estors in the result tree,whi
h are only O(h) and have already been
omputed. The reverse axes, on theother hand, require all their des
endants, whi
h are O(n) and have to be
omputeadahead of time.Let us �rst
onsider \P
hild Q". The problem is that, given a
urrent P and Qnodes, su
h that P � Q, we may have to enter inside Q in order to �nd the parentsof some other nodes inside P , but later it may be that the
urrent value of Q isthe
orre
t parent of a subsequent node of P . Figure 16 illustrates this
ase. If westart at P1 and Q1, we must move to Q2 in order to properly �nd the parent of P2,but later, when we move to P3, we should
ome ba
k to Q1 to �nd the parent ofP3.
P2

P3

P1

Q1

Q2Fig. 16. A
ase where we
annot advan
e in Q and forget the an
estors.Moving ba
kwards goes against all the philosophy of the model. So we prefer tostore a sta
k of an
estors of the
urrent Q node. These an
estors refer to the virtualtree Q and have been already seen. We also keep the invariant that p � Top(sta
k).Figure 5.2.2 gives the seudo
ode. We use fun
tor Id for nodes, whi
h as explainedis just the byte o�set of the segment beginning. We also use Parent, whi
h is theparent identi�er, i.e., parent byte o�set again.Although the sta
k is O(h) spa
e, the algorithm is still linear time in the worst
ase. This is not so immediate this time: we
an perform several Pop operationsfor a single Q node. However, there
annot be more Pop's than Push's overall, andthese are linear overall.The algorithm for after-sibling su�ers from the same problem: Siblings of anyan
estor of the
urrent P node
an appear later, after we have pro
essed otherdes
endants. The solution uses a similar sta
k, and the spa
e and time
omplexitystays the same.Let us
onsider now the reverse axes with the same problem, in parti
ular theparent operation. Given
urrent nodes of P and Q, we may need to traverse all the

32 � G. Navarro and M. OrtegaChild (P , Q, dir)1. p Next(P; dir):result2. q Q:result3. While p 6= � and q 6= � Do4. While p 6� Top(sta
k) Do Pop(sta
k)5. Case6. Parent(p) = Id(Top(sta
k)) : result p; Return7. p < q : p Next(P; sibling):result8. p > q : q Next(Q; sibling):result9. While q 6� Top(sta
k) Do Pop(sta
k)10. p � q : p Next(P;
hild):result11. p � q : Push(sta
k; q);12. q Next(Q;
hild):result13. While q 6� Top(sta
k) Do Pop(sta
k)14. While p 6= � and not IsEmpty(sta
k) Do15. Case16. Parent(p) = Id(Top(sta
k)) : result p; Return17. else : Pop(sta
k)18. result � Fig. 17. Operation Child.Q nodes that des
end from the
urrent P node before �nding a
hild that sele
ts the
urrent P node. The Q nodes traversed before that must be remembered, however,be
ause they may be ne
essary to sele
t further nodes of P . Figure 16 serves againas an example if we
onsider \Q parent P". If the
urrent nodes are Q1 and P2,we need to traverse P2 and P3 in order to know that Q1 quali�es, but then we haveforgotten P2, whi
h is ne
essary to make Q2 qualify.The solution is to store the Q des
endants of the
urrent P node in a hash table,indexed by their parent-id value. Hen
e the identi�er of subsequent P nodes aresear
hed for in this table. Figure 5.2.2 gives the seudo
ode.Note that we only need to know whether the
hild of a given P node has beeninserted in the hash table, so a bit array suÆ
es, and this is the way it is imple-mented in the prototype. In
ase we prefer to use a
lassi
al table with only therelevant P nodes inserted, we
ould implement a me
hanism to remove old P nodeson
e we have de�nitely abandoned their area. This
an be implemented as part ofthe same Insert fun
tion: when inserting a new node p, every other node p0 su
hthat To(p0) < From(p)
an be removed from the hash table.This algorithm is linear time on average, and it
ould be made O(n logn) in theworst
ase (where n = jP j+ jQj), by using a balan
ed binary sear
h tree. It requiresin the worst
ase enough spa
e to store the whole argument P . This
ould even bestored on disk, whi
h would slow down the pro
ess but permit an implementationwith bounded main memory. Our prototype stores the hash table in main memory.The situation with before-sibling is similar. This time, however, the hash table

IXPN: An Index-Based XPath Implementation � 33Parent (P , Q, dir)1. p Next(P; dir):result2. q Q:result3. While p 6= � and q 6= � Do4. Insert(hash;Parent(q))5. Case6. Exists(hash; Id(p)) : result p; Return7. p < q : p Next(P; sibling):result8. p > q : q Next(Q; sibling):result9. else : q Next(Q;
hild):result10. While p 6= � Do11. Case12. Exists(hash; Id(p)) : result p; Return13. else : p Next(P; sibling):result14. result �Fig. 18. Operation Parent.is a bit bigger be
ause we need also to store, for ea
h parent identi�er in the hashtable, whi
h is the last sibling that quali�ed, so as to know whether the
urrentP node is before that Q sibling. We use a
lassi
al
losed hashing table, withoutremoving obsolete nodes.6. A SOFTWARE PROTOTYPEWe have implemented a software prototype
alled IXPN (Index for XPath usingProximal Nodes). An online demo
an be seen in www.d

.u
hile.
l/ixpn. Thedemo indexes several of the databases des
ribed in the experiments and permitsexe
uting XPath queries against them. The translation to PN is shown both inplain format and as a query syntax tree. The result of the query
an also beexamined.In this se
tion we des
ribe the prototype and our experimental performan
e
om-parisons against other existing softwares to solve XPath queries.6.1 Des
riptionThe software prototype
onsists of three
omponents (see Figure 19):|An indexer, whi
h builds the text and stru
ture indexes from the XML
olle
tion;|a query evaluator, whi
h re
eives and XPath expression and returns the qualifyingnodes; and|a visualizer of results, whi
h shows the XML
ontent of the resulting nodes.All the software was developed in C language, using a fun
tion-oriented modulars
heme.6.1.1 Indexer. To build the do
ument indexer we used a fast and
exible XMLparser
alled Expat [Clark and Cooper 2002℄.

34 � G. Navarro and M. Ortega
Indexer

Query Engine
Interface

User

Software
XML

documents

Text

Index

Structure

Index

Fig. 19. The ar
hite
ture of IXPN.As it reads the do
uments of the
olle
tion, the indexer writes to disk the stru
-ture nodes and builds in main memory a trie data stru
ture with the text wordsand their positions. When the memory used by the trie rea
hes a given limit, apartial index is stored to disk. Finally, partial indexes are merged in a balan
edway, and other information su
h as do
ument list, tag list, et
. is generated. Thisfollows the general s
heme to build an inverted �le depi
ted in [Baeza-Yates andRibeiro-Neto 1999℄.About 70% of the index time is used to store and
ombine the partial indexes ondisk.The total main memory required by the indexer is determined by the height ofthe XML tree. This is be
ause a node
an be stored on disk only when its �nalposition is known, so we may have to keep in main memory a whole path of nodesbefore writing them do disk. This requirement is in pra
ti
e minimal. A morerelevant requirement is that of the trie data stru
ture, but this
an be �xed almostarbitrarily and traded for indexing time. This means that the amount of mainmemory available is usually not an issue.6.1.2 Query Evaluator. We used
ex [GNU Proje
t 2000℄ and bison [GNU Proje
t2003℄ for the syntax analysis of the XPath query. The evaluation is done in threesteps:(1) Constru
tion of the PN query syntax tree.(2) Modi�
ation of the syntax tree to a

ount for simpli�
ations and other trans-formations.(3) Evaluation of the PN query. A loop sequentially obtains the results, under thelazy evaluation s
heme.6.1.3 Visualization of Results. For this prototype we
hose to present to the userthe original XML pie
es
orresponding to ea
h returned node. This
omponent

IXPN: An Index-Based XPath Implementation � 35
ould be easily repla
ed by others that exe
ute more sophisti
ated visualizationor even pass the results in some prede�ned format to other higher level querypro
essors, su
h as an XQuery pro
essor.6.2 Experimental Performa
eWe measured the performan
e of IXPN in evaluating di�erent kinds of simple and
omplex queries.6.2.1 Setup. We used a dedi
ated 700 MHz Intel Pentium III with 384 Mb ofRAM running Windows XP 2002, with a 30 Gb lo
al hard disk Maxtor 5400 RPM.Ea
h experiment was repeated 20 times and the average elapsed times are reported,in millise
onds (mse
s). Standard deviation was 5 to 10 mse
s. Given our lazyevaluation s
heme, we measured the time to retrieve 1, 10, 100, and all the answersof ea
h query. The time to obtain the �rst node is taken as the laten
y of thequery time (open �les, �ll bu�ers, et
.), and then a time per node is
omputed bysubtra
ting the laten
y and dividing the remaining time by the number of nodesreturned by the query,
onsidering the time to retrieve all the answers.We
ounted the times to obtain the node identi�ers, not that of outputting thetext
ontent of ea
h node, as this is a feature external to the engine.6.2.2 Text Colle
tions. We used XML
olle
tions from four di�erent sour
es andwith di�erent
hara
teristi
s:Shakespeare: A
olle
tion of plays from Shakespeare [Bosak 1999b℄.GCIDE: A
ollaborative di
tionary,
ompiled the GNU Proje
t [Dy
k 2002℄.Religion: A
olle
tion of religious texts [Bosak 1999a℄.DOE: Short abstra
ts from DOE publi
ations [Harman 1995℄.These
olle
tions have very diverse level of stru
turing. We measure it in termsof the per
entage of the total
olle
tion size that is used by XML tags. This fa
torstrongly in
uen
es the spa
e required by the stru
ture index. Table 3 gives severalrelevant parameters, in
luding spa
e overhead of both indexes. We use a set of122 stopwords, formed by prepositions, arti
les, and so on. This produ
ed a 50%redu
tion in the spa
e for the inverted index.Colle
tion Size (Mb) # do
s. # tags # attr. % stru
t. txt-idx str-idxShakespeare 10.0 37 21 1 50.49% 45.0% 75.0%GCIDE 53.5 28 289 6 39.53% 17.3% 83.1%Religion 6.7 4 28 0 5.50% 15.0% 16.5%DOE 91.5 93 4 1 4.55% 19.8% 7.6%Table 3. Some data on the XML
olle
tions used. By \# tags" and \# attr." we refer tothe number of di�erent tag and attribute names, respe
tively. \% stru
t" refers to the level ofstru
turing. The last two
olumns show the spa
e overhead of text and stru
ture indexes.The size of IXPN indexes
hanges drasti
ally depending on the stru
turing levelof the
olle
tion, sin
e ea
h node o

upies a �xed amount of spa
e on disk, usuallymu
h larger than the text length of the
orresponding tag. Colle
tions Shake-speare and GCIDE have a high level of stru
turing as
ompared to Religion

36 � G. Navarro and M. Ortegaand DOE. This a

ounts for the in
iden
e of the two indexes on the overall spa
eoverhead.It might also be interesting to see whi
h are the maximum values of the �eldsstored at index nodes, so as to evaluate the possibility of
ompression. Table 4shows this. As it
an be seen, most numbers are rather large, so
ompression is nottrivial. Of
ourse, it would be possible to
onsider the maxima of ea
h tag nameseparately in order to
ompress those with smaller �elds.The main surprise might be that the distan
e to the sibling is always one node.This is be
ause, in all our example databases (those shown here and others omit-ted), a tag
annot
ontain another tag of the same name. We will
onsider some
onsequen
es of this in the
on
lusions.Colle
tion Parent-id First-byte Byte-len Dist-sibl First-word Word-lenShakespeare 10,479,622 10,180,162 10,479,683 22 648,946 23,479GCIDE 56,109,897 55,975,405 56,078,405 22 3,571,749 399,844Religion 6,997,786 3,511,727 6,998,843 22 550,181 287,987DOE 96,030,726 95,340,608 96,031,587 22 9,043,007 105,532Table 4. Maximum size of di�erent �elds for the XML
olle
tions used.6.2.3 Queries. We tested ea
h operation in isolation in order to analyze the per-forman
e of the di�erent fun
tions implemented. Later we show tests on
omplexqueries. The queries have to be di�erent for ea
h
olle
tion be
ause they have dif-ferent tags. However, we use a general s
heme and
hange only tag names. Theseare:Child: Queries of the form stru
t1/stru
t2.Parent: Queries of the form stru
t1[stru
t2℄.In: Queries of the form stru
t1//stru
t2.With: Queries of the form stru
t1[//stru
t2℄.Following: Queries of the form stru
t1/following::stru
t2.Pre
eding: Queries of the form stru
t1/pre
eding::stru
t2.Following-sibling: Queries of the form stru
t1/following-sibling::stru
t2.This is abbreviated in the tables as stru
t1/foll-sibling::stru
t2.Pre
eding-sibling: Queries of the form stru
t1/pre
eding-sibling::stru
t2.This is abbreviated in the tables as stru
t1/pre
-sibling::stru
t2.Text: Queries of the form stru
t[.=~"word"℄.Phrase: Queries of the form stru
t1[.=~"word1 word2"℄.Node: Queries of the form *.Attribute: Queries of the form �*.Note that *" and \�*" are in fa
t tests for the speed of union, as the queryis translated into a balan
ed union of all the tag names. This has to be takeninto a

ount when the number of \nodes involved" is
omputed, as we refer toall intermediate results. Not only the original arguments are
ounted, but also theinternal nodes of the query syntax tree. This in
ludes the �nal result,
orrespondingto the root of the syntax tree.

IXPN: An Index-Based XPath Implementation � 376.2.4 Results. Tables 5, 6, 7 and 8 show the results. As it
an be seen, the laten
yis rather
onstant, from 70 to 90 mse
s in most
ases. An ex
eption is for the query*" on GCIDE, due to the large number of di�erent tags, and hen
e of leaves inthe query syntax tree. An initial bu�er of results has to be �lled for ea
h su
h leaf.It is also
lear that, on
e this laten
y is paid, the time to retrieve 1 or 100 nodesis not very di�erent. On the other hand, the type of operation and
olle
tion typeor size do not have mu
h in
uen
e.In general, laten
y ex
luded, IXPN takes 15 to 35 mi
rose
onds (�se
s) to outputea
h new answer node. Obtaining a better approximation is diÆ
ult be
ause thetime depends not only on the size of the result but also on the sizes of the inter-mediate results (
alled \nodes involved" in the tables). It
an be seen that thereare a few
ases where the time per node is mu
h larger than 35 �se
s. In mostof these
ases, the number of nodes involved ex
eed by a fa
tor of 10 the answersize. This is usually the
ase of parent, with, and phrase operations. Trying tomodel the time as a fun
tion of nodes involved does not help, be
ause these oper-ators usually skip a large amount of involved nodes, so they take mu
h less timeper involved node than others. The remaining
ases of very large time per nodeanswered
orresponds to queries that anyway return too few answers.It is also interesting that the operations that were algorithmi
ally problemati
have worked well in pra
ti
e, for example
hild and parent. They are as fast asthe simpler in and with.Query Nodes retrieved Answer Nodes �se
s1 10 100 All size involved /nodeSPEECH/LINE 80 80 81 2,060 107,833 246,694 18SPEECH[LINE℄ 80 80 84 913 31,028 169,889 27SCENE//LINE 97 97 98 1,915 107,164 215,747 17SCENE[//LINE℄ 101 103 114 211 750 109,333 147LINE/following::LINE 87 87 89 2,667 107,796 323,462 24LINE/pre
eding::LINE 85 85 88 2,788 107,796 323,462 25LINE/foll-sibling::LINE 85 85 89 3,398 76,805 292,471 43LINE/pre
-sibling::LINE 83 84 89 2,126 76,805 292,471 27LINE[.=~"love"℄ 86 86 94 209 1,705 112,600 72SPEAKER[.=~"MARK ANTONY"℄ 87 87 94 102 204 31,739 74* 110 111 112 5,778 179,689 1,018,237 32�* 88 88 97 3,742 179,689 179,689 20Table 5. Elapsed time to solve di�erent queries on the Shakespeare
olle
tion. Times are inmse
s. The time for 1 node is the laten
y and \�se
s/node" refers to mi
rose
onds per answernode, laten
y ex
luded.6.3 Comparison against OthersAlthough there exist many prototypes and test versions of softwares that supportXML databases, most of them are
ommer
ial developments. In the best
ases,online demos are available via Web, but these
annot be used for
omparison pur-poses be
ause of di�erent server ar
hite
tures, di�erent text
olle
tions, and evenbe
ause of the network laten
ies that distort the results.

38 � G. Navarro and M. Ortega
Query Nodes retrieved Answer Nodes �se
s1 10 100 All size involved /nodep/sour
e 84 85 88 4,548 229,043 689,674 19p[sour
e℄ 84 84 86 1,041 8,568 469,199 112p//br 83 83 84 4,273 243,885 718,786 17p[//br℄ 85 86 88 4,347 226,203 701,104 19p/following::p 90 93 92 5,651 230,989 693,021 24p/pre
eding::p 80 83 88 5,850 230,989 693,021 25p/foll-sibling::p 87 88 96 6,729 230,989 693,021 29p/pre
-sibling::p 84 85 89 5,892 230,989 693,021 25p[.=~"Webster"℄ 73 75 76 1,262 25,722 469,160 46p[.=~"1913 Webster"℄ 71 72 77 1,510 24,873 680,733 58* 3,086 3,086 3,087 126,943 2,201,761 21,469,074 56�* 92 98 | 100 60 220 133Table 6. Elapsed time to solve di�erent queries on the GCIDE
olle
tion. Times are in mse
s.The time for 1 node is the laten
y and \�se
s/node" refers to mi
rose
onds per answer node,laten
y ex
luded.

Query Nodes retrieved Answer Nodes �se
s1 10 100 All size involved /nodebook/
hapter 82 82 85 104 1,423 2,922 15
hapter[v℄ 102 102 110 250 1,090 46,462 136tstmt//v 84 84 86 737 43,949 87,902 15
hapter[//v℄ 87 88 93 149 1,423 46,795 44title/following::v 82 83 85 996 43,949 87,906 21v/pre
eding::v 82 82 83 1,080 43,945 131,843 23v/foll-sibling::v 80 81 85 1,172 42,386 130,284 26title/pre
-sibling::v 82 82 91 1,166 42,386 86,343 26v[.=~"God"℄ 88 89 96 202 4,404 53,383 26v[.=~"LORD God"℄ 92 93 101 212 1,113 55,710 108* 111 113 116 1,517 48,259 275,766 29�* | | | | | | |Table 7. Elapsed time to solve di�erent queries on the Religion
olle
tion. Times are in mse
s.The time for 1 node is the laten
y and \�se
s/node" refers to mi
rose
onds per answer node,laten
y ex
luded.

IXPN: An Index-Based XPath Implementation � 39Query Nodes retrieved Answer Nodes �se
s1 10 100 All size involved /nodeDOC/DOCNO 83 83 85 2,175 112,144 336,372 19DOC[DOCNO℄ 80 80 83 2,279 112,144 336,372 20DOC//TEXT 86 87 90 2,044 112,144 336,372 17DOC[//TEXT℄ 86 86 89 2,201 112,144 336,372 19DOC/following::DOC 88 89 93 3,041 112,054 336,282 26DOC/pre
eding::DOC 80 81 85 2,787 112,054 336,282 24DOC/foll-sibling::DOC 79 79 82 3,045 112,054 336,282 26DOC/pre
-sibling::DOC 82 83 89 2,830 112,054 336,282 25TEXT[.=~"energy"℄ 70 70 73 765 19,102 162,060 36TEXT[.=~"high energy"℄ 71 73 99 609 1,205 180,656 446* 93 96 97 9,290 336,522 1,009,566 27�* 89 90 | 91 90 90 22Table 8. Elapsed time to solve di�erent queries on the DOE
olle
tion. Times are in mse
s. Thetime for 1 node is the laten
y and \�se
s/node" refers to mi
rose
onds per answer node, laten
yex
luded.We obtained six softwares whose sour
e or exe
utable versions were available,and
ompared them against IXPN. These areXindi
e [Apa
he Software Foundation 2002℄: Indexes do
uments using a na-tive XML database with proprietary format. It is designed to work on smalland medium-size
olle
tions, with a maximum do
ument size of about 5 Mb.It uses the te
hnology of Apa
he group to work with XML do
uments, whi
h
onsists of a set of Java
lasses . Queries are run on a server pro
ess. Theindexes are stored in a
ompressed format and a

essed from disk. Xindi
eimplements only a basi
 XPath fun
tionality.eXist [Meier 2002℄: Indexes do
uments using a native XML database with pro-prietary format. It is designed to work on small and medium-size
olle
tions,with a maximum do
ument size of about 5 Mb. It uses the te
hnology ofApa
he group to work with XML do
uments, whi
h
onsists of a set of Java
lasses . Queries are run on a server pro
ess. Indexes are stored and managedon disk. eXist implements a
omplete XPath fun
tionality.XMLGrep [Jones 2000℄: Sear
hes the do
uments sequentially, looking for reg-ular expressions the XPath queries are transformed into. It is implementedin C language and only supports basi
 XPath operations. This proje
t wasabandoned by its developer. It
annot handle multiple-do
ument
olle
tions.Saxon [Kay 2002℄: Sear
hes the do
uments sequentially, but it builds the stru
-ture tree of ea
h do
ument before running the query against it. It is imple-mented as Java
lasses. Saxon is oriented to transforming XML do
uments us-ing XSLT language [Consortium 1999b℄, but it
an be adapted to solve XPathqueries. It implements lazy evaluation for XPath. It
annot handle multiple-do
ument
olle
tions.MSXML [Mi
rosoft Corp. 2002℄: Sear
hes the do
uments sequentially, but itbuilds the stru
ture tree of ea
h do
ument before running the query against it.It is an API available as a COM
omponent for several Mi
rosoft languages su
has C++, VisualS
ript and JS
ript. MSXML is oriented to transforming XML

40 � G. Navarro and M. Ortegado
uments using XSLT language [Consortium 1999b℄, but it
an be adapted tosolve XPath queries. It
annot handle multiple-do
ument
olle
tions. MSXMLis
urrently
onsidered to be one of the most eÆ
ient developments in te
hnolo-gies for XML management.ToXin [Toronto XML Server Proje
t 2002℄: Sear
hes the do
uments sequen-tially, but it builds the stru
ture tree of ea
h do
ument before running the queryagainst it. It is implemented as Java
lasses. It implements a highly simpli�edversion of XPath that in
ludes only the axes
hild and des
endant, whi
h are
alled \regular expressions" of XPath.6.3.1 Indexing. Table 9
ompares the time and spa
e ne
essary to index our testtext
olle
tions. We only
onsider IXPN, Xindi
e and eXist, sin
e the others do notbuild any index but sequentially s
an the
olle
tion for every query. We let IXPNuse 10 Mb of RAM to index the text.Colle
tion IXPN Xindi
e eXistTime Speed Size Time Speed Size Time Speed SizeShakespeare 34 0.294 120% 67 0.149 83% 337 0.030 410%GCIDE 217 0.244 100% 437 0.122 74% | | |Religion 9 0.746 32% 23 0.294 133% 80 0.084 235%DOE 222 0.416 28% 222 0.416 119% | | |Table 9. Time and spa
e to index the test XML
olle
tions. Time is measured in se
onds, speedin Mb/se
, and size in extra per
entage over the XML text size.Xindi
e
ompresses and stores the XML do
uments, unlike IXPN, whi
h retainsthe original do
uments (hen
e in order to
ompare spa
e overheads we should add100% to IXPN). This is the reason why Xindi
e had more overhead on less stru
-tured
olle
tions. Moreover, IXPN does not index stopwords. This makes it diÆ
ultto
ompare the respe
tive index sizes. However, it is interesting that both indexeshave similar spa
e overheads on little stru
tured
olle
tions.eXist, on the other hand,
ould not index the larger
olle
tions GCIDE andDOE, be
ause of ex
essive memory requirements. The indexes produ
ed are huge,although it answers queries faster than Xindi
e.IXPN was the fastest to produ
e the index, at a rate of 1.3{4.0 se
s/Mb. Nextwas Xindi
e, with 2.4{8.2 se
s/Mb, and the slowest was eXist, at a rate of 12{33se
s/Mb.6.3.2 Sear
hing. We tested more
omplex queries against the
olle
tions Reli-gion, Shakespeare and DOE. All queries are evaluated from the root of the tree,as required by the other softwares (not IXPN). The query syntax was adapted toea
h software. Java, JS
ript and Perl programs were developed as ne
essary to testthem, in parti
ular for those unable to pro
ess several do
uments simultaneously.Sin
e the other softwares return the text
ontent of returned nodes, IXPN wasmodi�ed to do the same. We measured the time to return all the results, using anexternal software for fairness.

IXPN: An Index-Based XPath Implementation � 41Tables 10, 11 and 12 show the results. We use some obvious abbreviations forthe software names.
ol
hi
a los seq ok, grandes no. malos para //, toxin no daba
on algunosWe note that the softwares developed in Java are mu
h slower than the rest.The ex
eption is ToXin. However, for this program we measured only the timeto exe
ute the query, disregarding the time to build the index in main memory.This
an be fair if we measure performan
e in hot state, although for the others wemeasured time in
old state.Xindi
e and eXist use too mu
h main memory,
lose to 100 Mb. They were notable to build their in-memory indexes for GCIDE and DOE, and Xindi
e
ouldnot answer any query on Shakespeare. Xindi
e is very slow in general, but es-pe
ially with operator \//". This is mentioned in the do
umentation, where it isre
ommended to omit it
lose to the root of the
olle
tion. In fa
t, all the imple-mentations re
ommend the same. The reason is that they operate by traversing thetree dire
ted by the axes, and operator \//" for
es them to traverse the whole tree.For the same reason, all them require the queries to start at the root of the tree.This is a
lear advantage of IXPN, whi
h works bottom-up and is very eÆ
ient forthis type of operation.XMLGrep performs bad on reverse axes, whi
h require it to go ba
k to
he
kpie
es of do
uments already traversed. Note also that only IXPN and ToXin areable of qui
kly determining that a given stru
ture tag does not exist (last query onDOE).Sequential sear
h solutions, su
h XMLGrep, work well on small
olle
tions, butit is too slow on large sets. The same performan
e is exhibited by Saxon and eXist.MSXML and ToXin, on the other hand, handle large
olle
tions better. However,none of these
an be
onsidered a
ompetitive
hoi
e for handling a large text
olle
tion (several hundred megabytes). In addition, ToXin handles a very limitedsubset of XPath, whi
h ex
ludes several of our example queries.IXPN, on the other hand, performed well for small and large text
olle
tions,taking usually less than 2 se
onds to answer queries. It was by far faster than allthe other alternatives and does not seem to be mu
h a�e
ted by the size of the
olle
tion.Query IXPN Xind eXist Grep Saxon MS ToXin/tstmt/book
oll/book/
hapter 1.8 20.5 8.8 3.4 4.0 3.3 2.5/tstmt/
overpg/
overpg[title℄ 0.5 2.8 2.2 0.7 3.3 1.3 |/tstmt//
hapter 1.8 58.9 8.8 3.8 4.1 3.2 2.5/tstmt[//
hapter℄ 0.9 22.7 8.8 3.7 4.0 4.2 |v[.=~"love"℄ 0.4 9.9 9.8 0.7 3.4 1.8 3.7/tstmt/
overpg/title/following-sibling::subtitle 0.5 2.6 9.8 0.7 3.3 1.3 |Table 10. Elapsed time, in se
onds, to solve di�erent
omplex queries on the softwares testedover
olle
tion Religion.

42 � G. Navarro and M. OrtegaQuery IXPN Xind eXist Grep Saxon MS ToXin/SPEECH[SPEAKER="mark antony"℄/LINE 0.1 | 25.6 24.5 23.2 5.5 |PLAY[TITLE=~"hamlet"℄//PERSONA 0.1 | 25.7 24.4 23.8 5.4 |SCENE[//SPEAKER="romeo"and //SPEAKER="juliet"℄/TITLE 0.1 | 12.2 38.1 24.2 8.1 |PLAY[//ACT/TITLE=~"a
t III"℄/TITLE 0.6 | 20.1 25.1 23.7 5.7 |SPEECH[SPEAKER="juliet"℄/pre
eding-sibling::SPEECH[SPEAKER="romeo"℄/an
estor::SCENE/TITLE 0.2 | 12.4 23.5 23.1 5.8 |Table 11. Elapsed time, in se
onds, to solve di�erent
omplex queries on the softwares testedover
olle
tion Shakespeare.Query IXPN Xind eXist Grep Saxon MS ToXin/FILE/DOC/DOCNO 2.3 | | 13.8 61.0 24.4 3.6/FILE//TEXT 1.9 | | 68.4 67.7 47.1 19.0/FILE/�* 0.1 | | 12.5 62.2 12.1 |/FILE/DOC/DOCNO[TEXT℄ 1.6 | | 130.2 61.3 11.5 |/FILE/DOC/TEXT[.=~"energy"℄ 0.8 | | 65.3 69.7 20.2 |/* 7.6 | | 58.9 69.3 60.0 22.5//AAA <0.1 | | 13.6 60.0 11.4 0.2Table 12. Elapsed time, in se
onds, to solve di�erent
omplex queries on the softwares testedover
olle
tion DOE.7. CONCLUSIONSWe have presented IXPN, an indexed sear
h te
hnique to answer XPath queries overlarge XML
olle
tions. IXPN �rst builds an index on disk over the XML
olle
tion.Based on that index, it is able of answering XPath queries over the
olle
tion. IXPNworks in a lazy manner, so the answer
an be retrieved in
rementally and navigatedthrough, for example dis
arding uninteresting answer subtrees without need to evenprodu
ing it. IXPN
an index and query an arbitrarily large text
olle
tion witha very limited main memory; in most
ases as limited as desired. The
urrentprototype of IXPN
an be tested at http://www.d

.u
hile.
l/ixpn.We have fo
used on the \most interesting" part of XPath fun
tionality, leav-ing aside the programming-language-like features (http://www.w3.org/TR/xpath-#
orelib). These depend on the embedding language and are easier to implementeÆ
iently. We also disregard instru
tion-nodes, namespa
es, et
., whose in
lusionis rather trivial. Referen
es are also not
onsidered, but these are part of otherlanguages that
ontain XPath, su
h as XLink.IXPN is based on Proximal Nodes (PN), a generi
 model to query stru
turedtext. We have shown how, despite looking very di�erent, XPath
an be
onvertedinto PN. We have reimplemented the PN model in a more memory-eÆ
ient way, andat the same time have redu
ed disk overheads to a minimum. All the operationswork in time linear on the size of the arguments (most in the worst
ase, a few

IXPN: An Index-Based XPath Implementation � 43on average). Most operations require
onstant spa
e, although some require spa
eproportional to the height of the XML tree, and a few pathologi
al
ases
ouldrequire memory proportional to one of the arguments.We have shown that IXPN is by far more eÆ
ient than all the publi
ly availablealternatives we were aware of, in
luding MSXML. In parti
ular, IXPN was the onlyone una�e
ted by the
olle
tion size, and in fa
t the only one that
an
urrentlybe seriously
onsidered to handle large text
olle
tions. IXPN is also una�e
ted bythe use of the `//" operator, whi
h is troublesome for all other softwares. This isdue to the bottom-up nature of PN algorithms, as other alternatives traverse thestru
ture tree in a top-down fashion.We are working on the
urrent prototype in order to improve the
ompression ofthe index (whi
h is
urrently very basi
 but already
ompetitive), and on in
ludingmore algebrai
 optimization of PN queries, whi
h
an make a large di�eren
e inill-posed queries. In parti
ular, we have observed that
ontainment between nodesof the same type is very rare. Indeed, it is so rare that we
ould remove the pointerto the next sibling in our stru
ture index, and in
ase we need to move to thesibling we
ould just move sequentially (as if we moved to
hildren) until rea
hingthe sibling. This would save 10% of stru
ture index spa
e and the e�e
t on querytime would be minimal.Other important aspe
ts not yet
onsidered are: handling transa
tions, imple-menting an API to give a

ess to IXPN via programming languages, multi
olle
tionsupport, handling updates to the text via eÆ
ient reindexing, developing a
lient-server ar
hite
ture,
lever handling of frequent queries, et
.An issue that deserves more resear
h is how to eÆ
iently deal with dire
t edgequeries (those involving
hild{parent and sibling relationships). These have beenthe only where we
ould not guarantee linear time and
onstant spa
e. From these,reverse axes were the most
ompli
ated. Although we showed that in pra
ti
e thereis no big di�eren
e, there is an intrinsi
 problem related to the lazy evaluation ofthese operations, as it is not always possible to run them by moving forward. Aswe for
ed that, we had to pre
ompute some results ahead of time and storing themfor later.On the other hand, these dire
t edges are easily dealt-with by the usual top-down approa
h, for whi
h our easyness to handle transitive operations (des
en-dant/an
estor, for example) is diÆ
ult to a
hieve. It would be interesting to jointhe best of both approa
hes.We are also interested in extending our XPath implementation to in
lude allthe operators of the standard, as well as other operations not in
luded but thatwe
ould handle eÆ
iently, su
h as sear
hing allowing errors, sear
hing for regularexpressions, and so on. More importantly, we plan to handle more sophisti
atedembedding languages, su
h as XQuery or XSLT, keeping the
urrent eÆ
ien
y asmu
h as possible.Finally, it should be pointed out that IXPN
ould be used as a sequential engine,to work on an XML stream without any index. A low-level s
anner would traversethe text, re
ognizing words and stru
tural nodes that are mentioned in the queryand �lling bu�ers of answers at the leaves. The rest
ould pro
eed in lazy form asmore data be
omes available at the leaves. We believe that this
ould be
ompetitiveagainst
urrent sequential alternatives that either sear
h for regular expressions or

44 � G. Navarro and M. Ortegaexpli
itly build the stru
ture tree.Another interesting idea is to rewrite a do
ument
olle
tion as a sequen
e of nodeand word identi�ers. This would yield a
ompressed representation of the
olle
tion,and with the aid of the index it would be possible to reprodu
e a rather legibleversion of the do
ument. This is interesting, for example, in Web sear
h enginesthat maintain a simple version of all the text
ontents. It might be interestingto fo
us on
ompressed indexes for XML
olle
tions, as done in [Ferragina andMastroianni ℄.REFERENCESApa
he Software Foundation. 2002. XIndi
e. http://xml.apa
he.org/xindi
e.Baeza-Yates, R. and Navarro, G. 2000. XQL and proximal nodes (preliminary version).In Pro
. XML Workshop of SIGIR'2000 (23rd Annual International ACM SIGIR Confer-en
e on Resear
h and Development in Information Retrieval (2000). Extended version toappear in JASIST.Baeza-Yates, R. and Ribeiro-Neto, B. 1999. Modern Information Retrieval. Addison-Wesley.Bosak, J. 1999a. Religion 2.0. http://www.ibiblio.org/bosak.Bosak, J. 1999b. Shakespeare in XML. http://www.ibiblio.org/xml/examples/-shakespeare.Clark, J. and Cooper, C. 2002. The Expat XML parser. http://expat.sour
eforge.net.Consortium, W. 1999a. XPath 1.0: XML path language. Te
hni
al report, WWW Con-sortium. www.w3.org/TR/xpath/.Consortium, W. 1999b. XSL transformations (XSLT). Te
hni
al report, WWW Consor-tium. www.w3.org/TR/xslt/.Consortium, W. 2001a. XML linking language (XLink) version 1.0. Te
hni
al report,WWW Consortium. www.w3.org/TR/xlink/.Consortium, W. 2001b. XML pointer language (XPointer) version 1.0. Te
hni
al report,WWW Consortium. www.w3.org/TR/xptr/.Consortium, W. 2001
. Xquery 1.0: An XML query language. Te
hni
al report, WWWConsortium. www.w3.org/TR/xquery/.Dy
k, M. 2002. The GNU version of The Collaborative International Di
tionary of English,presented in the Extensible Markup Language. http://www.ibiblio.org/webster.Ferragina, P. and Mastroianni, A. XCDE, XML Compressed Do
ument Engine.http://butirro.di.unipi.it/ ferrax/x
de/x
delib.html.GNU Proje
t. 2000. Flex 2.5.4. http://www.gnu.org/software/flex.GNU Proje
t. 2003. Bison 1.875b. http://www.gnu.org/software/bison/bison.html.Goldfarb, C. and Pres
od, P. 1998. The XML Handbook. Prenti
e-Hall, Oxford.Harman, D. 1995. Overview of the Third Text REtrieval Conferen
e. In Pro
. Third TextREtrieval Conferen
e (TREC-3) (1995), pp. 1{19. NIST Spe
ial Publi
ation 500-207.Jones, K. 2000. XMLGrep. http://sour
es.redhat.
om/ml/xsl-list/2000-07/-msg01002.html.Kay, M. 2002. SAXON, the XSLT Pro
essor. http://saxon.sour
eforge.net.Lapp, J., Robie, J., and S
ha
, D. 1998. XML query language(XQL). In QL'98 - The Query Languages Workshop (De
ember 1998).http://www.w3.org/TandS/QL/QL98/pp/xql.html.Meier, W. 2002. eXist, Open Sour
e Native XML Database.http://exist.sour
eforge.net.Mi
rosoft Corp. 2002. MSXML, Mi
rosoft XML. http://msdn.mi
rosoft.
om/nhp/-?
ontentid=28000438.

IXPN: An Index-Based XPath Implementation � 45Navarro, G. 1995. A language for queries on stru
ture and
ontents of textual databases.Master's thesis, Dept. of Computer S
ien
e, Univ. of Chile. ftp://ftp.d

.u
hile.
l/-pub/users/gnavarro/thesis95.ps.gz.Navarro, G. and Baeza-Yates, R. 1995. A language for queries on stru
ture and
ontentsof textual databases. In Pro
. ACM SIGIR'95 (1995), pp. 93{101.Navarro, G. and Baeza-Yates, R. 1997. Proximal Nodes: a model to query do
umentdatabases by
ontent and stru
ture. ACM TOIS 15, 4 (O
t), 401{435.Toronto XML Server Proje
t. 2002. ToXin, Toronto XML Server.http://www.
s.toronto.edu/tox.

