
Application-level graphic streaming channel

Patricio Inostroza
Dpto. de Ciencias de la Computación – U. Chile

Av. Blanco Encalada 2120, Casilla 2777
Santiago – Chile

Patricio.Inostroza@dcc.uchile.cl

Jacques Lemordant

Vis / Gravir / Inria,
655 avenue de l’Europe, Montbonnot 38334, Saint

Ismier Cedex - France
Jacques.Lemordant@inrialpes.fr

Abstract. Scene Graph APIs are used to interact at the application level with a 2D or
3D scene. Examples of such APIs are the External Authoring Interface for VRML scenes
or the MPEG-J scene graph API for MPEG-4 scenes. In the practice, the application is
running in the scene player as an applet or MPEGlet. This paper shows how a remote
scene graph API can be implemented by defining a new graphic streaming channel at the
application level. We describe a simple and compact communication protocol
corresponding to this streaming channel and give an example of use of this channel.

1 Introduction

The Virtual Reality Modeling Language (VRML) is a file format used to describe interactive
3D objects and worlds [3,13]. MPEG-4 has extended this language with new nodes and
streaming channels for audio, video and graphics [1,13]. Concerning graphic, a binary format,
called BIFS for Binary Format for Scene [1,13] has been and a protocol have been defined to
stream graphics elements directly in the scene graph. MPEG-4 can handle 3D graphics
objects with streaming media such as text, audio, video and images. MPEG-4 browsers, as
well as authoring tools for the creation of MP4 files, are becoming to be available for
different platforms, such as desktop computers mobiles or set-top boxes.

A scene graph API specifies the communication interface between a scene and an application.
Examples of such API are the VRML External Authoring Interface [4] or the MPEG-J Scene
Graph API [2]. Using this kind of API, an application can interact with the scene in the
following ways:

• Accessing the functionality of the browser interface (i.e. to create or delete nodes)
• Sending events to eventIns of nodes inside the scene (i.e. to change positions or colors

of objects)
• Reading the last value sent from eventOuts of nodes inside the scene (i.e. to get the

position or color of an object)
• Getting notified when events are sent from eventOuts of nodes inside the scene (i.e.

when an object is clicked)

These scenes graph APIs as specified are not limited to a local implementation. But in the
practice for VRML, the browser, where the VRML scene is played, and the external
application run in the same local program. In general this program is a web Browser (Internet
Explorer, Netscape), the VRML browser is a plug-in and the external application is a java
applet as shown on figure 1. For MPEG-4, we have the same situation, but the delivery
mechanism is different. The application is called an MPEGlet[2] and streamed to the player
via an MPEG-J channel. Another difference with VRML is the fact that it’s less in the scope
of the MPEGlet to use it for authoring.

HTTP

Applet

Interaction

Player

Applet

Web Browser

Figure 1: Using a scene graph API in the VRML case

This approach allows different levels of interaction with the scene. The user can interact
directly with the world or through the applet or MPEGlet. All interactions are local ones. The
interaction problem between a 2D or 3D world and a remote application is a topic which has
been mainly studied in the framework of multi-user applications. Proprietary communication
systems have been developed between the server and the clients [5,7,8,9]. The
communication can take place internally or at the application level via the scene graph API.
Figure 2 shows the interaction between a remote application (which has a graphical interface)
and 3D world.

TCP/IP

Figure 2

This paper is laid out as follow: in the section 2 we illustrate the MEG-J and EAI likeness. In
section 3, we briefly introduce the design of a remote scene graph API. In section 4 we
present a description of a protocol which can be used as a basis for a remote scene graph API.
Our implementation is presented in the section 5. Finally in the section 6, we give an example
of use of these application-level streaming channels.

2 Scene Graph API: MPEG-J / EAI

Both EAI and MPEG-J scene graph API comprise 4 elements:

1. An interface to get references on the nodes of the scene graph. This interface is named
Scene for MPEG-J and Browser for EAI.

2. An interface to manipulate the nodes: a node can be removed, stored and re-inserted in
the scene graph.

3. A set of interfaces to modify the fields of a node.
4. An interface to subscribe as a listener to the events of the scene graph

List 1 and List 2 below, show an example where the same scene graph is modified by means
of MPEG-J and EAI. This scene graph has a transform node that contains a sphere. In the
MPEG-J example, the Transform node is retrieved using the Scene interface. Transform
values are retrieved and new values are placed in an object that implements the
SFVec3fFieldValue interface. Finally, the Transform node receives the new transform values.

In the same way, in the EAI example the getNode function of the Browser interface returns
the Transform node. The EventOutSFVec3fValue interface of this node returns the current
Transform values, and new transform values are set using the EventInSFvec3fValue interface.
Finally, the Transform node receives the new transform values.

List 1: Scene graph examples

MPEG-4 Scene Graph VRML Scene Graph
DEF 1 Transform {
 children [
 shape {
 geometry Sphere {}
 }
]
}

DEF myTransform Transform {
 children [
 shape {
 geometry Sphere {}
 }
]
}

List 2: Modifying a scene graph

MPEG-J EAI
import org.iso.mpeg.mpegj.scene.*;
public class MyTranslate {
 // ...
 public void translate(Scene scene)
 throws MPEGJException {

 Node node = scene.getNode(1);

 int outID = EventOut.Transform.translation;
 SFVec3fFieldValue translationEventOut =
 (SFVec3fFieldValue) node.getEventOut(outID);
 float[] translation =
 translationEventOut.getSFVec3fValue();

 // Calculate the new translation
 final float[] newTranslation = {
 translation[0] + 2,
 translation[1] + 2,
 translation[2] + 2
 };

 int inID = EventIn.Transform.translation;
 SFVec3fFieldValue translationEventIn =
 new SFVec3fFieldValue() {
 public float[] getSFVec3fValue() {
 return newTranslation;
 }
 };

 node.sendEventIn(inID, translationEventIn);
 }
}

import vrml.eai.Browser;
import vrml.eai.Node;
import vrml.eai.exception.*;
import vrml.eai.field.*;

public class MyTranslate {
 // ...
 public void translate(Browser browser)
 throws Exception {

 Node node = browser.getNode("myTransform");

 EventOutSFVec3f translationEventOut =
 (EventOutSFVec3f) node.getEventOut("translation");
 float[] translation =
 translationEventOut.getSFVec3fValue();

 // Calculate the new translation
 float[] newTranslation = {
 translation[0] + 2,
 translation[1] + 2,
 translation[2] + 2
 };

 EventInSFVec3f translationEventIn =
 (EventInSFVec3f) node.getEventIn("translation");
 translationEventIn.setValue(newTranslation);
 }
}

3 Architectural design of a remote scene graph API

A remote scene graph API is associated to an application-level graphic streaming channel.
This streaming channel is bi-directional, with an upstream channel for scene graph events and
a downstream channel to subscribe as a listener for scene graph events. At the higher level, a
remote scene graph API is composed of 3 elements: a proxy, a wrapper, and a communication
protocol as shown on figure 3.

Web Browser
Application

Player

Adapter

Codec/Decodec

I/O

Remote Scene
Graph API

I/O

Codec/Decodec

events

request

Figure 3: Architecture of remote scene graph API

The proxy or stub codifies and sends each request to the wrapper. The wrapper reads the
request, decodes and executes it using the local scene graph API. If the request produces a
return value, the wrapper encodes and sends it to the proxy.

4 Protocol for the graphic streaming channel

We have classified the messages as request or events messages. Requests are messages sent
by the application to the world. By means of this type of message the application can, for
example, create a new node or get a value of an object. Events are asynchronous messages
produced in the world. The application sends a message (request) to subscribe as a listener for
an event. The application will be notify if the event happens in the world. We give below the
coding that we have used for the VRML External Authoring Interface, which can be seen as a
superset of the MPEG-J scene graph API.

4.1 Request messages

A request message has three parts: the object-ID, the method-ID, and the parameters as
shown in figure 4.

(short 2 bytes) (1...n bytes)

type-ID
(1 byte)

0...k values

object-ID
(integer 4 bytes)

method-ID parameters

Figure 4: A request message

Object-ID is a 32-bit integer value that identifies an object, i.e. an instance of Node, EventIn
or EventOut classes. The object-ID take the 0 value if the application calls a method of the
Browser instance.

Method-ID value is a short value that identifies the method called (tables: 1.a, 1.b, and 1.c).

Parameters is a tuple (type-ID, values) where type-ID is a short integer and values is a list of
simple types as described in column three of table 2. Table 2 is an extension of the set of
types used by VNET, a protocol defined in a multi-users context [7]. MFVFIELD is a special
type, which allows us to send a list of tuples in case a method with several parameters.

Table 1.a: Methods ID of a Node object

Method of a
Node

Method-ID
(short)

unknownMethod
getId
short getType
short getEventIn
getEventOut
finalize

0
1
2
3
4
5

Table 1.b: Methods ID of a Browser object Table 1.c: Methods ID of EventIn and EventOut

Method of a

Browser
Method-ID

(short)
 Method of an

EventIn and
an EventOut

Method-ID
(short)

unknownMethod
addRoute
beginUpdate
createVrmlFromString
createVrmlFromURL
deleteRoute

dispose
endUpdate
getCurrentFrameRate
getCurrentSpeed
getName
getNode

getVersion
getWorldURL
loadURL
replaceWorld
setDescription

0
1
2
3
4
5

6
7
8
9

10
11

12
13
14
15
16

 unknownMethod
advise
finalize
get1Value
getHeight
getId

getNumComponents
getPixels
getSize
getType
getValue
getWidth

newEventIn
newEventOut
set1Value
setValue

0
1
2
3
4
5

6
7
8
9

10
11

12
13
14
15

Table 2: Value part of a message

Tag Type Encoding Description
0
1
2
3

4
5
6
7
8

9
10
11

SFBOOL
SFCOLOR
SFFLOAT
SFIMAGE

SFINT32
SFNODE
SFROTATION
SFSTRING
SFTIME

SFVEC2F
SFVEC3F
SFVOID

Byte
float, float, float
float
int, int, int, [byte byte byte ..]

int
int
float float float float
utf8
double

float, float
float, float, float
(none)

zero = false; no-zero = true
R, G, B colors

width, height, components, [width * height
* components pixels]

Node ID
3-vector of axis, angle
utf8 string
seconds since January 1 1970 GMT

x, y
x, y, z
no data

12

13
14
15

16
17
18
19
20

21
22
23
24
25
26

SFEXCEPTION

SFEVENTIN
SFEVENTOUT
SFDOUBLE

MFCOLOR
MFFLOAT
MFINT32
MFNODE
MFROTATION

MFSTRING
MFVEC2F
MFVEC3F
MFVFIELD
MFEXCEPTION
MFBYTE

utf8

int
int
double

int [float float float …]
int [float float float …]
int [int int int …]
int [int int int …]
int [float float float float…]

int [utf8 utf8 utf8 …]
int [float float …]
int [float float float …]
int [type-1 type-2 …]
int [uft8 utf8 …]
int [byte byte byte …]

utf8 string

EventIn ID
EventOut ID

n, followed by n (R, G, B) 3-tuples
n, followed by n floats
n, followed by n ints
n, followed by n Node ID’s
n, followed by n (3-vector of axis and angle)
4-tuples
n, followed by n utf8-encode strings
n, followed by n (x , y) 2-tuples
n, followed by n (x, y, z) 3-tuples
n, followed by n encoding values
n, followed by n utf8 string
n, followed by n bytes

4.2 Return value

Request messages can result in a return value, which is encoded using table 2. If a method is
declared to raise an exception and this exception is not raised when the method is executed,
an SFVOID is returned.

4.3 Event messages

An event message is composed of an integer follow by a double. The integer is an id, which
identifies the listener of the event, and the double is timestamp indicating the creation time of
the event.

5 Connection protocol

We have defined a connection protocol to set up a graphic streaming channel between the
remote application and the player. This protocol has been design to allow the set-up of
multiple channels.

5.1 Protocol

The wrapper, which belongs to the player, owns a TCP/IP server socket. The wrapper waits
for a remote application to open two socket connections. For each connection, the application
receives a connection ID and after that, sends a message to the wrapper indicating which
socket will be used for request messages and which will be used for events messages. The
wrapper can accept a single connection (figure 5.a) as well as multiples connections (figure
5.b).

Wrapper Proxy

socketID-0

socketID-1

new socket

new socket

request socket

event socket, socketID-0 socket-1

socket-0

socket-0

socket-1

Wrapper EAI-Proxy-1

socketID-0

socketID-1

new socket

request socket

event socket, socketID-0

socket-0

socket-1

socketID-2
new socket

socket-2

EAI-Proxy-2

new socket

new socket

socket-2

socket-0

socket-1

socket-3

socket-3

request socket
event socket, socketID-1

socketID-3

a.

b.
Figure 5: Sequence diagram of the connection protocol

5.2 Wrapper implementation

Our MPEG-4 3D player, called SoNG [10], is running inside Internet Explorer as an active-X
component. This plug-in provides a complete java implementation of the External Authoring
Interface. The wrapper is implemented as a signed java applet. The other way to implement it
could have been as a COM component in C++. Figure 6 shows the different patterns of
connection which are allowed.

a. c.b.

ClientClient Client Client

Serv.Serv. Serv. Serv.

Figure 6: Connection Patterns

6 Example

We have used this application-level graphic streaming channel to build a real-time interactive
3D news service and a Javacard[11] service. The news service is using the news provider
moreover.com through an XML channel and is displaying the news in a 3D scene. The design
of the application is shown in figure 7. The user can choose from a menu implemented via a
layer3D node, the type of news he is interested in.

When the system detects that a Javacard is plugged in the computer, a user interface
composed of layer2D nodes is dynamically placed in the MPEG-4 scene. Using this interface
the user can buy tickets for the theater and receive loyalty points (figure 8). Other kind of
services can be plugged at run-time in the 3D world such as conferencing services (chat,
whiteboard, mood aggregation opinions).

MPEG-4
(Main Server)

Remote Scene Graph

News Server 3D

MPEG-4
Player

request

events

(www.moreover.com)
News Web serverHTTP / XML

Figure 7: News service system

Figure 8: MPEG-4 Javacard UI in a theater scene

7 Conclusion

This application-level streaming channel represents an easy way to put new services at run-
time in a running MPEG-4 or VRML world. The main idea behind it, is to let the player
offers its scene graph API as a service to service providers. We are now using the Jini
Connection technology [12,14] to let service providers find in a normative way the object
implementing the remote scene graph API (the player publishes in a Jini Lookup Service its
remote scene graph API). Our ultimate goal is to be able to bring an MPEG-4 player in a Jini
federation both as a client and a service.

8 References

1. Overview of the MPEG-4 Standard. ISO/IEC JTC1/SC29/WG11 N4030, March 2001

http://www.cselt.it/mpeg/standards/mpeg-4/mpeg-4.htm (Visited Sep 15, 2001)

2. MPEG-4 Systems MPEG-J. http://www.cselt.it/mpeg/faq/mp4-sys/mp4-sys-7.htm
(Visited Sep 15, 2001)

3. The Virtual Reality Modeling Language. International Standard ISO/IEC 14772-1:1997
http://www.vrml.org/technicalinfo/specifications/vrml97/index.htm (Visited Sep 15,
2001)

4. Information technology -- Computer graphics and image processing -- The Virtual

Reality Modeling Language (VRML) -- Part 2: External authoring interface.
http://www.vrml.org/WorkingGroups/vrml-eai/Specification/part2/ (Visited Sep 15,
2001)

5. John L. Robinson, John A. Stewart and Isabelle Labbe, “MVIP—audio enable multicast

Vnet”, Proceeding of the Web3D-VRML 2000 fifth symposium on virtual reality
modeling language, 2000, Monterey, CA USA.

6. M. Wray, R. Hawkes, “Distributed virtual environments and VRML: an event-based

architecture”, Computer Networks and ISDN Systems 30 (1998) pp. 43-51

7. The VRML Interchange Protocol: VNet. http://ariadne.iz.net/~jeffs/vnet/ (Visited Sep 15,

2001)

8. Contact (blaxxun): http://www.blaxxun.com (Visited Sep 15, 2001)

9. Sony, Community Place: Vitual Society on the Web.

http://www.sony.co.jp/en/Products/CommunityPlace/ (Visited Sep 15, 2001)

10. portals of Next Generation, SoNG. Information Society Technologies (IST), Project

Reference: IST-1999-10192

11. Java Card Technology, http://java.sun.com/products/javacard/ (Visited Sep 15, 2001)

12. Jini Community, http://jini.org (Visited Sep 15, 2001)

13. Aoron E.Walsh, Mikaël Bourges-Sévenier. Core Web 3D. Prentice Hall, 2001.

14. Jim Waldo & the Jini Technology Team. The Jini(TM) Specifications, Second Edition

Addison-Wesley, 2000.

