
Rotation and Lighting Invariant Template MathingKimmo Fredriksson1, Veli M�akinen2?, and Gonzalo Navarro3 ??1 Department of Computer Siene, University of Joensuu.kfredrik�s.joensuu.fi2 Department of Computer Siene, University of Helsinki.vmakinen�s.helsinki.fi3 Center for Web Researh, Department of Computer Siene, University of Chile.gnavarro�d.uhile.lAbstrat. We address the problem of searhing for a two-dimensional pattern in a two-dimensionaltext (or image), suh that the pattern an be found even if it appears rotated and brighter or darker thanits ourrene. Furthermore, we onsider approximate mathing under several tolerane models. Weobtain algorithms that are almost optimal both in the worst and the average ases simultaneously. Theomplexities we obtain are very lose to the best urrent results for the ase where only rotations, butnot lighting invariane, are supported. These are the �rst results for this problem under a ombinatorialapproah.1 IntrodutionWe onsider the problem of �nding the ourrenes of a two-dimensional pattern of size m � m ells ina two-dimensional text of size n � n ells, when all possible rotations of the pattern are allowed and alsopattern and text may have di�erenes in brightness. This stands for rotation and lighting invariant templatemathing. Text and pattern are seen as images formed by ells, eah of whih has a gray level value, alsoalled a olor.Template mathing has numerous important appliations from siene to multimedia, for example inimage proessing, ontent based information retrieval from image databases, geographi information systems,proessing of aerial images, to name a few. In all these ases, we want to �nd a small subimage (the pattern)inside a large image (the text) permitting rotations (a small degree or any). Furthermore, pattern and textmay have been photographed under di�erent lighting onditions, so one may be brighter than the other.The traditional approah to this problem [3℄ is to ompute the ross orrelation between eah text loationand eah rotation of the pattern template. This an be done reasonably eÆiently using the Fast FourierTransform (FFT), requiring time O(Kn2 logn) where K is the number of rotations sampled. Typially Kis O(m) in the two-dimensional (2D) ase, and O(m3) in the 3D ase, whih makes the FFT approah veryslow in pratie. In addition, lighting-invariant features may be de�ned in order to make the FFT insensitiveto brightness. Also, in many appliations, \lose enough" mathes of the pattern are also aepted. To thisend, the user may speify, for example, a parameter � suh that mathes that have at most � di�erenes withthe pattern should be aepted, or a parameter Æ suh that gray levels di�ering by less than Æ are onsideredequal. The de�nition of the mathing onditions is alled the \mathing model" in this paper.Rotation invariant template mathing was �rst onsidered from a ombinatorial point of view in [10,11℄. Sine then, several fast �lters have been developed for diverse mathing models [12, 6, 13, 8, 7, 9℄. Theserepresent large performane improvements over the FFT-based approah. The worst-ase omplexity of theproblem was also studied [1, 8℄. However, lighting invariane has not been onsidered in this senario.? A part of the work was done while visiting University of Chile under a researher exhange grant from Universityof Helsinki.?? Funded by Millenium Nuleus Center for Web Researh, Grant P01-029-F, Mideplan, Chile.

On the other hand, transposition invariant string mathing was onsidered in musi retrieval [4, 14℄. Theaim is to searh for (one-dimensional) patterns in texts suh that the pattern may math the text after allits haraters (notes) are shifted by some value. The reason is that suh an ourrene will sound like thepattern to a human, albeit in a di�erent sale. In this ontext, eÆient algorithms for several approximatemathing funtions were developed in [16, 15℄.We note that transposition invariane beomes lighting invariane when we replae musial notes by graylevels of ells in an image. Hene, the aim of this paper is to enrih the existing algorithms for rotationinvariant template mathing [8℄ with the tehniques developed for transposition invariane [16℄ so as toobtain rotation and lighting invariant template mathing. It turns out that lighting invariane an be addedat very little extra ost. The key tehnique exploited is inremental distane omputation; we show thatseveral transposition invariant distanes an be omputed inrementally taking the omputation done withthe previous rotation into aount in the next rotation angle.Let us now determine whih are the reasonable mathing models. In [8℄, some of the models onsideredwere useful only for binary images, a ase where obviously we are not interested in this paper. We will addressmodels that make sense for gray level images. We de�ne three transposition-invariant distanes: dt;ÆH , whihounts how many pattern and text ells di�er by more than Æ; dt;�MAD, whih is the maximum olor di�erenebetween pattern and text ells when up to � outliers are permitted; and dt;�SAD, whih is the sum of absoluteolor di�erenes between pattern and text ells permitting up to � outliers. Table 1 shows our omplexitiesto ompute these distanes for every possible rotation of a pattern entered at a �xed text position. Variable� is the number of di�erent gray levels (assume � = 1 if the alphabet is not a �nite disrete range). Weremark that a lower bound to this problem is O(m3), and this is ahieved in [9℄ without lighting invariane.Distane Complexitydt;ÆH min(logm;� + (Æ + 1))m3dt;�MAD (min(�; �) + logmin(m;�))m3dt;�SAD (min(�; �) + logmin(m;�))m3Table 1. Worst-ase omplexities to ompute the di�erent distanes de�ned.We also de�ne three searh problems, onsisting in �nding all the transposition-invariant rotated our-renes of P in T suh that: there are at most � ells of P di�ering by more than Æ from their text ell(Æ-mathing); the sum of absolute di�erene between ells in P and T , exept for � outliers, does not exeed (-mathing); and P mathes both riteria at the same time, for a given transposition and set of outliers((Æ;)-mathing). Table 2 shows our worst-ase and average-ase results (the latter are valid only on �niteinteger alphabets). Without transposition invariane the worst ases are all O(m3n2) [9℄. In the same paperthey give average ase algorithms for Æ-mathing with Æ = 0 and for -mathing for � = 0. The respetiveaverage omplexities are O(n2(�+ log�m)=m2) and O(n2(=�+ logm)=m2). The former is indeed average-optimal and the latter is almost (and onjetured) average-optimal, as shown in [9℄. Hene our omplexitiesare rather lose to be optimal.We remark that we have developed algorithms that work on arbitrary alphabets, but we have also takenadvantage of the ase where the alphabet is a disrete range of integer values.2 De�nitionsLet T = T [1::n; 1::n℄ and P = P [1::m; 1::m℄ be arrays of unit squares, alled ells, in the (x; y)-plane.Eah ell has a value in an alphabet alled �, sometimes alled its gray level or its olor. A partiular

Problem Worst ase Average aseÆ-mathing min(logm;� + (Æ + 1))m3n2 n2� log�=(2Æ+1)(m)=m2, for 2Æ + 1 < � and � � m=p2(min(�; �) + logmin(m;�))m3n2-mathing (min(�; �) + logmin(m;�))m3n2 n2(�+ =�) log(m)=m2, for � (m=p2� �)=2(Æ;)-mathing (min(�; �)p + logmin(m;�))m3n2 best of the two aboveTable 2. Complexities for di�erent searh problems. (Æ;) mathing and average omplexities are valid only forinteger alphabets.ase of interest is that of � being a �nite integer range of size �. The orners of the ell for T [i; j℄ are(i� 1; j� 1); (i; j� 1); (i� 1; j) and (i; j). The enter of the ell for T [i; j℄ is (i� 12 ; j � 12). The array of ellsfor pattern P is de�ned similarly. The enter of the whole pattern P is the enter of the ell in the middleof P . Preisely, assuming for simpliity that m is odd, the enter of P is the enter of ell P [m+12 ; m+12 ℄.Assume now that P has been moved on top of T using a rigid motion (translation and rotation), suhthat the enter of P oinides exatly with the enter of some ell of T (enter-to-enter assumption). Theloation of P with respet to T an be uniquely given as ((i; j); �) where (i; j) is the ell of T that mathesthe enter of P , and � is the angle between the x-axis of T and the x-axis of P . The (approximate) ourrenebetween T and P at some loation is de�ned by omparing the values of the ells of T and P that overlap.We will use the enters of the ells of T for seleting the omparison points. That is, for the pattern atloation ((i; j); �), we look whih ells of the pattern over the enters of the ells of the text, and omparethe orresponding values of those ells. Figure 1 illustrates.

x

y’

x’

j

α

y

(0,0)

i

Fig. 1. Eah text ell is mathed against the pattern ell that overs the enter of the text ell.More preisely, assume that P is at loation ((i; j); �). For eah ell T [r; s℄ of T whose enter belongs tothe area overed by P , let P [r0; s0℄ be the ell of P suh that the enter of T [r; s℄ belongs to the area overedby P [r0; s0℄. Then M(T [r; s℄) = P [r0; s0℄, that is, our algorithms ompare the ell T [r; s℄ of T against the ellM(T [r; s℄) of P .Hene the mathing funtion M is a funtion from the ells of T to the ells of P . Now onsider whathappens to M when angle � grows ontinuously, starting from � = 0. Funtion M hanges only at the valuesof � suh that some ell enter of T hits some ell boundary of P . It was shown in [10℄ that this happensO(m3) times, when P rotates full 2� radians. This result was shown to be also a lower bound in [1℄. Hene

there are �(m3) relevant orientations of P to be heked. The set of angles for 0 � � � �=2 isA = f�; �=2� � j � = arsin h+ 12pi2 + j2 � arsin jpi2 + j2 ;i = 1; 2; : : : ; bm=2; j = 0; 1; : : : ; bm=2;h = 0; 1; : : : ; bpi2 + j2g:By symmetry, the set of possible angles �, 0 � � < 2�, isA = A [A+ �=2 [A+ � [A+ 3�=2:Furthermore, pattern P mathes at loation ((i; j); �) with lighting invariane if there is some integertransposition t suh that T [r; s℄ + t = P [r0; s0℄ for all [r0; s0℄ in the area of P .One the position and rotation ((i; j); �) of P in T de�ne the mathing funtion, we an ompute di�erentkinds of distanes between the pattern and the text. Lighting-invariane versions of the distanes hoose thetransposition minimizing the basi distane. The following distanes are interesting for gray level images.Hamming Distane (H): The number of times T [r; s℄ 6= P [r0; s0℄ ours, over all the ells of P , that isdH(i; j; �; t) =Xr0;s0 if T [r; s℄ + t 6= P [r0; s0℄ then 1 else 0dtH(i; j; �) = mint dH(i; j; �; t)This an be extended to distane dÆH and its transposition-invariant version dt;ÆH , where olors must di�erby more than Æ in order to be onsidered di�erent, that is, T [r; s℄ + t 62 [P [r0; s0℄� Æ; P [r0; s0℄ + Æ℄.Maximum Absolute Di�erenes (MAD): The maximum value of jT [r; s℄�P [r0; s0℄j over all the ells ofP , that is, dMAD(i; j; �; t) = maxr0;s0 jT [r; s℄ + t� P [r0; s0℄jdtMAD(i; j; �) = mint dMAD(i; j; �; t)This an be extended to distane d�MAD and its transposition-invariant version dt;�MAD, so that up to �pattern ells are freed from mathing the text. Then the problem is to ompute the MAD distane withthe best hoie of � outliers that are not inluded in the maximum.Sum of Absolute Di�erenes (SAD): The sum of the jT [r; s℄ � P [r0; s0℄j values over all the ells of P ,that is, dSAD(i; j; �; t) =Xr0;s0 jT [r; s℄ + t� P [r0; s0℄jdtSAD(i; j; �) = mint dSAD(i; j; �; t)Similarly, this distane an be extended to d�SAD and its transposition-invariant version dt;�SAD, where upto � pattern ells an be removed from the summation.One the above distanes are de�ned, we an de�ne the following searh problems:Æ-Mathing: Report triples (i; j; �) suh that dtMAD(i; j; �) � Æ. A tolerane � an be permitted, so that weonly require dt;�MAD(i; j; �) � Æ. Observe that this ondition is the same as dt;ÆH (i; j; �) � �.-Mathing: Report triples (i; j; �) suh that dtSAD(i; j; �) � . Again, permitting tolerane � means re-quiring dt;�SAD(i; j; �) � .(Æ;)-Mathing: Report triples (i; j; �) suh that dMAD(i; j; �; t) � Æ and dSAD(i; j; �; t) � for some t.Tolerane � an be handled similarly, but the � exluded ells must be the same for both distanes.

3 EÆient Worst-Case AlgorithmsIn [1℄ it was shown that for the problem of the two dimensional pattern mathing allowing rotations theworst ase lower bound is
(n2m3). We have shown in [8℄ a simple way to ahieve this lower bound for anyof the distanes under onsideration (without lighting invariane).The idea is that we will hek eah possible text enter, one by one. So we have to pay O(m3) per textenter to ahieve the desired omplexity. What we do is to ompute the distane we want for eah possiblerotation, by reusing most of the work done for the previous rotation. One the distanes are omputed, itis easy to report the triples (i; j; �) where these values are smaller than the given thresholds (Æ and/or).Only distanes dH (with Æ = 0) and dSAD (with � = 0) were onsidered.Assume that, when omputing the set of anglesA = (�1; �2; : : :), we also sort the angles so that �i < �i+1,and assoiate with eah angle �i the set Ci ontaining the orresponding ell enters that must hit a ellboundary at �i. Hene we an evaluate the distane funtions (suh as dSAD) inrementally for suessiverotations of P . That is, assume that the distane has been evaluated for �i, then to evaluate it for rotation�i+1 it suÆes to re-evaluate the ells restrited to the set Ci. This is repeated for eah � 2 A. Therefore,the total time for evaluating the distane for P entered at some position in T , for all possible angles, isO(Pi jCij). This is O(m3) beause eah �xed ell enter of T , overed by P , an belong to some Ci at mostO(m) times. To see this, note that when P is rotated the whole angle 2�, any ell of P traverses throughO(m) ells of T .If we want to add lighting invariane to the above sheme, a naive approah is to run the algorithm forevery possible transposition, for a total ost of O(n2m3�). In ase of a general alphabet there are O(m2)relevant transpositions at eah rotation (that is, eah pattern ell an be made to math its orrespondingtext ell). Hene the ost raises to O(n2m5).In order to do better, we must be able to ompute the optimal transposition for the initial angle andthen maintaining it when some haraters of the text hange (beause the pattern has been aligned over adi�erent text ell). If we take f(m) time to do this, then our lighting invariant algorithm beomes worst-ase time O(n2m3f(m)). In the following we show how an we ahieve this for eah of the distanes underonsideration.This tehnique an be inserted into the �lters that we present later in order to make them near optimal inthe worst ase. All our �ltration algorithms are based on disarding most of the possible (i; j; �) loations andleaving a few of them to be veri�ed. If we manage to avoid verifying a given text enter more than one, thenwe an apply our veri�ation tehnique and ensure that, overall, we annot pay more than O(n2m3f(m)).3.1 Distane dt;ÆH and Æ-MathingAs proved in [15℄, the optimal transposition for Hamming distane is obtained as follows. Eah ell P [r0; s0℄,aligned to T [r; s℄, votes for a range of transpositions [P [r0; s0℄� T [r; s℄� Æ; P [r0; s0℄� T [r; s℄ + Æ℄, for whih itwould math. If a transposition reeives v votes, then its Hamming distane ism2�v. Hene, the transpositionthat reeives most votes is the one yielding distane dt;ÆH . Let us now separate the ases of integer and generalalphabets.Integer alphabet. The original algorithm [15℄ obtains O(� + jP j) time on integer alphabet, by buket-sorting the range extremes and then traversing them linearly so as to �nd the most voted transposition (aounter is inremented when a range starts and deremented when it �nishes).In our ase, we have to pay O(� +m2) in order to �nd the optimal transposition for the �rst rotationangle. The problem is how to reompute the optimal transposition one some text ell T [r; s℄ hanges itsvalue (due to a small hange in rotation angle). The net e�et is that the range of transpositions given bythe old ell value loses a vote and a new range gains a vote.

We use the fat that the alphabet is an integer range, so there are O(�) possible transpositions. Eahtransposition an be lassi�ed aording to the number of votes it has. There are m2+1 lists Li, 0 � i � m2,ontaining the transpositions that urrently have i votes. Hene, when a range of transpositions loses/gainsone vote, the 2Æ+1 transpositions are moved to the lower/upper list. We need to keep ontrol of whih is thehighest-numbered non-empty list, whih is easily done in onstant time per operation beause transpositionsmove only from one list to the next/previous. Initially we pay O(� +m2) to initialize all the lists and putall the transpositions in list L0, then O((Æ + 1)m2) to proess the votes of all the ells, and then O(Æ + 1)to proess eah ell that hanges. Overall, when we onsider all the O(m3) ell hanges, the sheme isO(� + (Æ + 1)m3). This is our omplexity to ompute distane dt;ÆH between a pattern and a text enter,onsidering all possible rotations and transpositions.Æ-Mathing an be done simply by omputing dt;ÆH distanes at eah text enter and reporting triples(i; j; �) where dt;ÆH (i; j; �) � �. In fat, the �nal state of the lists (rotation of 2�) is equal to their state whenbuilt for the �rst rotation (angle zero), so it is possible to turn bak to the initial state at ost O(m2). Henewe an move to the next text ell without paying again the O(�) initialization time. This means that ouroverall searh time is O(� + (Æ + 1)n2m3).General alphabet. Let us resort to a more general problem of dynami range voting : In the stati ase wehave a multiset S = f[`; r℄g of one-dimensional losed ranges, and we are interested in obtaining a point pthat is inluded in most ranges, that is maxvote(S) = maxp jf[`; r℄ 2 S j ` � p � rgj. In the dynami ase anew range is added to or an old one is deleted from S, and we must be able to return maxvote(S) after eahupdate.Notie that our original problem of omputing dt;ÆH from one rotation angle to another is a speial ase ofdynami range voting; multiset S is f[P [r0; s0℄�T [r; s℄�Æ; P [r0; s0℄�T [r; s℄+Æ℄ jM(T [r; s℄) = P [r0; s0℄g in onerotation angle, and in the next one some T [r; s℄ hanges its value. That is, the old range is deleted and thenew one is inserted, after whih maxvote(S) is requested to ompute the distane dt;ÆH = m2 �maxvote(S)in the new angle.We show that dynami range voting an be supported in O(log jSj) time, whih immediately gives anO(m3 logm) time algorithm for omputing dt;ÆH between a pattern and a text enter, onsidering all possiblerotations and transpositions.First, notie that the point that gives maxvote(S) an always be hosen among the endpoints of rangesin S. We store eah endpoint e in a balaned binary searh tree with key e. Let us denote the leaf whosekey is e simply by (leaf) e. With eah endpoint e we assoiate a value vote(e) (stored in leaf e) that givesthe number jf[`; r℄ j ` � e � r; [`; r℄ 2 Sgj, where the set is onsidered as a multiset (same ranges anhave multiple ourrenes). In eah internal node v, value maxvote(v) gives the maximum of the vote(e)values of the leaves e in its subtree. After all the endpoints e are added and the values vote(e) in the leavesand values maxvote(v) in the internal nodes are omputed, the stati ase is solved by taking the valuemaxvote(root) = maxvote(S) in the root node of the tree.A straightforward way of generalizing the above approah to the dynami ase would be to reompute allvalues vote(e) that are a�eted by the insertion/deletion of a range. This would, however, take O(jSj) timein the worst ase. To get a faster algorithm, we only store the hanges of the votes in the roots of ertainsubtrees so that vote(e) for any leaf e an be omputed by summing up the hanges from the root to theleaf e.For now on, we refer to vote(e) and maxvote(v) as virtual values, and replae them with ounters di�(v)and values maxdi�(v). Counters di�(v) are de�ned impliitly so that for all leaves of the tree it holdsvote(e) = Xv2path(root;e)di�(v); (1)

where path(root; e) is the set of nodes in the path from the root to a leaf e (inluding the leaf). Valuesmaxdi�(v) are de�ned reursively asmax(maxdi�(v:left) + di�(v:left);maxdi�(v:right) + di�(v:right)); (2)where v:left and v:right are the left and right hild of v, respetively. In partiular, maxdi�(e) = 0 for anyleaf node e. One easily noties thatmaxvote(v) = maxdi�(v) + Xv02path(root;v)di�(v0); (3)whih also gives as a speial ase Equation (1) one we notie that maxvote(e) = vote(e) for eah leaf nodee. Our goal is to maintain di�() and maxdi�() values orretly during insertions and deletions. We havethree di�erent ases to onsider: (i) How to ompute the value di�(e) for a new endpoint of a range, (ii) howto update the values of di�() and maxdi�() when a range is inserted/deleted, and (iii) how to update thevalues during rotations to rebalane the tree.Case (i) is handled by storing in eah leaf an additional ounter end(e). It gives the number of rangeswhose rightmost endpoint is e. Assume that this value is omputed for all existing leaves. When we insert anew endpoint e, we either �nd a leaf labeled e or otherwise there is a leaf e0 after whih e is inserted. In the�rst ase vote(e) remains the same and in the latter ase vote(e) = vote(e0)� end(e0), beause e is inludedin the same ranges as e0 exept those that end at e0. Notie also that vote(e) = 0 in the degenerate ase whene is the leftmost leaf. The +1 vote indued by the new range whose endpoint e is, will be handled in ase (ii).To make vote(e) =Pv02path(root;e) di�(v0), we �x di�(e) so that vote(e) = di�(e)+Pv02path(root;v) di�(v0),where v is the parent of e. One the maxdi�() values are updated in the path from e to the root, we anonlude that all the neessary updates are done in O(log jSj) time.Let use then onsider ase (ii). Reall the one-dimensional range searh on a balaned binary searh tree(see e.g. [5℄, Setion 5.1). We use the fat that one an �nd in O(log jSj) time the minimal set of nodes,say F , suh that the range [`; r℄ of S is partitioned by F ; the subtrees starting at nodes of F ontain allthe points in [`; r℄ \ S and only them. It follows that when inserting (deleting) a range [`; r℄, we an setdi�(v) = di�(v) + 1 (di�(v) = di�(v) � 1) at eah v 2 F . This is beause all the values vote(e) in thesesubtrees hange by �1 (inluding leaves ` and r). To keep also the maxdi�() values orretly updated, it isenough to reompute the values in the nodes in the paths from eah v 2 F to the root using Equation (2);other values are not a�eted by the insertion/deletion of the range [`; r℄. The overall number of nodes thatneed updating is O(log jSj).Finally, let us onsider ase (iii). Counters di�(v) are a�eted by rotations, but in ase a rotation involvinge.g. subtrees v:left, v:right:left and v:right:right takes plae, values di�(v) and di�(v:right) an be \pushed"down to the roots of the a�eted subtrees, and hene they beome zero. Then the rotation an be arriedout. Subtree maxima are easily maintained through rotations.Hene, eah insertion/deletion takes O(log jSj) time, and maxvote(S) = maxdi�(root) + di�(root) isreadily available in the root node.3.2 Distane dt;�MAD and Æ-MathingLet us start with � = 0. As proved in [15℄, the optimal transposition for distane dtMAD is obtained as follows.Eah ell P [r0; s0℄, aligned to T [r; s℄, votes for transposition P [r0; s0℄�T [r; s℄. Then, the optimal transpositionis the average between the minimum and maximum vote. The dtMAD distane yielded is the di�erene ofmaximum minus minimum, divided by two. Hene an O(jP j) algorithm was immediate.We need O(m2) to obtain the optimal transposition for the �rst angle, zero. Then, in order to addresshanges of text haraters (beause, due to angle hanges, the pattern ell was aligned to a di�erent text

ell), we must be able to maintain minimum and maximum votes. Every time a text harater hanges, avote disappears and a new vote appears. We an simply maintain balaned searh trees with all the urrentvotes so as to handle any insertion/deletion of votes in O(log(m2)) = O(logm) time, knowing the minimumand maximum at any time. If we have an integer alphabet of size �, there are only 2� +1 possible votes, soit is not hard to obtain O(log �) omplexity. Hene dtMAD distane between a pattern and a text enter anbe omputed in O(m3 logm) or O(m3 logmin(m;�)) time, for all possible rotations and transpositions.In order to aount for up to � outliers, it was already shown in [15℄ that it is optimal to hoose themfrom the pairs that vote for maximum or minimum transpositions. That is, if all the votes are sorted intoa list v1 : : : vm2 , then distane dt;�MAD is the minimum among distanes dtMAD omputed in sets v1 : : : vm2��,v2 : : : vm2��+1, and so on until v�+1 : : : vm2 . Moreover, the optimum transposition of the i-th value of thislist is simply the average of maximum and minimum, that is, (vm2���1+i + vi)=2.So our algorithm for dt;�MAD is as follows. We make our tree threaded, so we an easily aess the � + 1smallest and largest votes. After eah hange in the tree, we retraverse these �+ 1 pairs and reompute theminimum among the vm2���1+i � vi di�erenes. This takes O(m3(� + logm)) time. In ase of an integeralphabet, sine there annot be more than O(�) di�erent votes, this an be done in time O(m3(min(�; �) +logmin(m;�))).The Æ-mathing problem an be alternatively solved by omputing this distane for every text ell,and reporting triples (i; j; �) where dt;�MAD(i; j; �) � Æ. This gives an alternative O((� + logm)n2m3) orO((min(�; �) + logmin(m;�))n2m3) time algorithm to solve the Æ-mathing problem.3.3 Distane dt;�SAD and -MathingLet us �rst onsider ase � = 0. This orresponds to the SAD model of [15℄, where it was shown that, if weollet votes P [r0; s0℄�T [r; s℄, then the median vote (either one if jP j is even) is the transposition that yieldsdistane dtSAD. Then the atual distane an be obtained by using the formula for dSAD. Hene an O(jP j)time algorithm was immediate.In this ase we have to pay O(m2) to ompute the distane for the �rst rotation, and then have to manageto maintain the median transposition and urrent distane when some text ells hange their value due tosmall rotations.We maintain a balaned and threaded binary searh tree for the votes, plus a pointer to the median vote.Eah time a vote hanges beause a pattern ell aligns to a new text ell, we must remove the old vote andinsert the new one. When insertion and deletion our at di�erent halves of the sorted list of votes (that is,one is larger and the other smaller than the median), the median may move by one position. This is done inonstant time sine the tree is threaded.The median value itself an hange. One hange is due to the fat that one of the votes hanged its value.Given a �xed transposition, it is trivial to remove the appropriate summand and introdue a new one in theformula for dSAD. Another hange is due to the fat that the median position an hange from a value inthe sorted list to the next or previous. It was shown in [15℄ how to modify in onstant time distane dtSADin this ase. The idea is very simple: if we move from transposition vj to vj+1, then all the j smallest votesinrease their value by vj+1 � vj , and the m� j largest votes derease by vj+1 � vj . Hene distane dSAD atthe new transposition is the value at the old transposition plus (2j �m)(vj+1 � vj).Hene, we an traverse all the rotations in time O(m3 logm). This an be redued to O(m3 logmin(m;�))on �nite integer alphabet, by noting that there annot be more than O(�) di�erent votes, and taking someare in handling repeated values inside single tree nodes.If we want to ompute distane dt;�SAD, we have again that the optimal values to free from mathing arethose voting for minimum or maximum transpositions. If we remove those values, then the median lies atpositions m� d�=2e : : :m+ d�=2e in the list of sorted votes, where m is the position of the median for thewhole list.

Hene, instead of maintaining a pointer to the median, we maintain two pointers to the range of � + 1medians that ould be relevant. It is not hard to maintain left and right pointers when votes are inserted anddeleted in the set. All the median values an be hanged one by one, and we an hoose the minimum distaneamong the � + 1 options. This gives us an O(m3(� + logm)) time algorithm to ompute dt;�SAD. On integeralphabet, this is O(m3(�+ logmin(m;�))), whih an be turned into O(m3(min(�; �) + logmin(m;�))) bystandard triks using the fat that there are O(�) possible median votes that have di�erent values.This immediately gives an O((� + logm)n2m3) or O((min(�; �) + logmin(m;�))n2m3) time algorithmfor -mathing. It is a matter of omputing dt;�SAD at eah text position and reporting triples (i; j; �) suhthat dt;�SAD(i; j; �) � .3.4 (Æ;)-Mathing with Tolerane �There are two reasons why solving this problem is not a matter of omputing dt;�MAD and dt;�SAD at eah textposition and reporting triples (i; j; �) where both onditions dt;�MAD(i; j; �) � Æ and dt;�SAD(i; j; �) � hold. Oneis that the transposition ahieving this must be the same, and the other is that the � outliers must be thesame.Let us �rst onsider the ase � = 0. A simple (Æ;)-mathing algorithm is as follows. We run the Æ-mathing algorithm based on dtMAD distane, and the -mathing algorithm based in dtSAD distane atthe same time. Every time we �nd a triple (i; j; �) that meets both riteria, we ompute the range oftranspositions t suh that dMAD(i; j; �; t) � Æ. This is very simple: Say that dtMAD(i; j; �) � Æ, whih isobtained at the optimal transposition tMAD. Then, dMAD(i; j; �; t) � Æ for t 2 [tMAD1 ; tMAD2 ℄ = [tMAD � (Æ �dtMAD(i; j; �)); tMAD + (Æ � dtMAD(i; j; �))℄.The problem is now to determine whether dSAD(i; j; �; t) � for some t in the above range. As a funtionof t, dSAD(i; j; �; t) has a single minimum at its optimum transposition tSAD (whih does not have to bethe same tMAD). Hene, we have three hoies: (i) tMAD1 � tSAD � tMAD2 , in whih ase the ourrene anbe reported; (ii) tSAD < tMAD1 , in whih ase we report the ourrene only if dSAD(i; j; �; tMAD1) � ; (iii)tSAD > tMAD2 , in whih ase we report the ourrene only if dSAD(i; j; �; tMAD2) � .As in the worst ase we may have to hek O(m3n2) times for a (Æ;)-math, and omputing dSAD(i; j; �; t)takes O(m2) time, we ould pay as muh as O(m5n2), whih is as bad as the naive approah. However, oninteger alphabet, we an do better. As we an reompute in onstant time dSAD from one transpositionto the next [15℄, we an move stepwise from tSAD to tMAD1 or tMAD2 . Moreover, as we move away fromtSAD, distane dSAD inreases and it quikly exeeds . As we move i transpositions from the median, wehave i votes ontributing in one unit eah to dSAD, so after we move i times dSAD has inreased in O(i2)(this assumes that the alphabet is integer and that we pak equal votes so as to proess them in oneshot). Hene we annot work more than O(p) before having dSAD out of range. Overall, searh time isO((p + logmin(m;�))n2m3).The situation is more omplex if we permit � outliers. Fortunately, both in dt;�MAD and dt;�SAD it turns outthat the relevant outliers are those yielding the � minimum or maximum votes, so the searh spae is small.That is, even when the seletion of outliers that produes distane dt;�MAD is not the same produing distanedt;�SAD, it holds that if there is a seletion that produes a dt;�MAD distane of at most Æ and a dt;�SAD distane ofat most , then the same is ahieved by a seletion where only those produing minimum or maximum votesan be hosen. This is easily seen beause the dt;�MAD and dt;�SAD distanes an only derease if we replae thevotes in the initial seletion by exluded minimum or maximum votes.Now we ompute dt;�MAD and dt;�SAD distanes and onsider every triple (i; j; �) where both riteria oinide.There are only � + 1 relevant seletions of outliers (that is, hoosing �0 smallest and �00 largest votes suhthat �0 + �00 = �). For eah suh seletion we already have dt;�MAD and dt;�SAD distanes already omputed.Hene we have to run the above veri�ation algorithm for eah triple (i; j; �) and eah of the �+1 seletions

of outliers. This gives a worst-ase searh algorithm of omplexity O((min(�; �)p + logmin(m;�))n2m3).We remark that this works only for integer alphabets.4 FeaturesAs shown in [10, 8℄, any math of a pattern P in a text T allowing arbitrary rotations must ontain someso-alled \features", i.e., one-dimensional strings obtained by reading a line of the pattern in some angle.These features are used to build a �lter for �nding the position and orientation of P in T . See Figure 2.The length of a partiular feature is denoted by u, and the feature for angle � and row q is denoted byF q(�). Assume for simpliity that u is odd. To read a feature F q(�) from P , let P be on top of T , on loation((i; j); �). Consider ells T [i� m+12 + q; j � u�12 ℄; : : : ; T [i� m+12 + q; j + u�12 ℄. Denote them as tq1; tq2; : : : ; tqu.Let qi be the value of the ell of P that overs the enter of tqi . The feature of P with angle � and row q isthe string F q(�) = q1q2 � � � qu. Note that this value depends only on q, � and P , not on T .
α α αFig. 2. For eah angle �, a set of features is read from P . We show F 0(�), F 1(�) and F 2(�).The sets of angles for the features are obtained the same way as the set of angles for the whole patternP . Note that the set of angles Bq for the feature set F q is subset of A, that is Bq � A for any q. The sizeof B varies from O(u2) (the features rossing the enter of P) to O(um) (the features at distane �(m)from the enter of P). Therefore, if a math of some feature F q(�) is found, there are O(jAj=jBq j) possibleorientations to be veri�ed for an ourrene of P . In other words, the mathing funtion M an hange aslong as F q(�) does not hange.More preisely, assume that Bq = (1; : : : ; K), and that i < i+1. Therefore, feature F q(i) = F q(�)an be read using any � suh that i � � < i+1. On the other hand, there are O(jAj=jBq)j angles � 2 Asuh that i � � < i+1. If there is an ourrene of F q(�), then P may our with any suh angle �.Our plan is to build a �lter based on exat searhing for features, but this searh must be transposition-invariant. We will onsider integer integer alphabets only. Exat transposition-invariant searh is very simple,however. Reode the text T into T 0 suh that T 0[i; j℄ = T [i; j℄ � T [i; j � 1℄ and disregard the �rst olumnfrom T 0. Reode the linear features F q(�) = q1; q2; q3; : : : ; qu as F 0q(�) = (q2 � q1); (q3 � q2); : : : ; (qu � qu�1).Hene, F q(�) appears in T [i; j℄ : : : T [i; j + u� 1℄ under some transposition t if and only if F 0q(�) appears inT 0[i; j + 1℄ : : : T [i; j + u� 1℄. Moreover, t = T [i; j℄� F q(�)[1℄.The statistis of this new text T 0 are not the same as in T . The probability that a text and a featureharater math is not 1=� anymore. If we have two ontiguous text haraters 12 and two ontiguousfeature haraters f1f2 then the probability that the orresponding di�erenes math in the transformedstrings is that of 2 � 1 being equal to f2 � f1. Sine the four variables are independent and uniform over[1; �℄, it an be seen that this probability is bounded above by 1=�. Hene we will pessimistially assumethat the transformed text and features share the same statistis of the original text and features. Note thatin the transformed text and features there is a dependene between onseutive pairs, but in any ase all the

probabilities are bounded above by 1=�, so it is (onservatively) orret to assume that they are independentwith probability 1=� eah (note that, sine there are 2�+1 di�erent values, probabilities add 2+1=� in ourpessimisti setup).5 EÆient Average-Case Time AlgorithmsJust as in [8℄, we hoose features of length u from r pattern rows around the enter, rotate them in all possibleways, and searh for all them using a multipattern exat searh algorithm. To simplify the presentation weassume from the beginning u = r = m=p2, whih are in fat the optimal values. Our results are valid onlyfor integer alphabets.5.1 Æ-Mathing with Tolerane �If we examine one text row out of r, then every ourrene of P must ontain a feature. Moreover, if weexamine one text row out of br=(�+1), then every ourrene of P must ontain �+1 features, and thereforeit must ontain some feature that Æ-mathes without any tolerane.In order to searh for a feature F q(�) = q1; q2 : : : qu that Æ-mathes using an exat searh mahinery, wemust generate all its Æ-variants, that is, all the strings that Æ-math F q(�). These an be desribed as theprodut [q1 � Æ; q1 + Æ℄� [q2 � Æ; q2 + Æ℄� : : :� [qu � Æ; qu + Æ℄. This set is of size (2Æ+1)u. If we aount forall the O(rumax(r; u)) = O(m3) rotations of eah feature we arrive at a total of O(m3(2Æ+1)�(m)) strings.This is too muh, so we take the following approah.We preproess the set of O(m3) patterns of length u by olleting all their `-grams (substrings of length `),where ` will be determined soon. Hene the total number of substrings olleted is bounded by O(m4(2Æ+1)`).All these strings are stored in a trie data struture [2℄, whih takes O(m4`(2Æ + 1)`) spae and permitssearhing for a string in the set in O(`) time. We remark that, after generating all the di�erent strings andbefore inserting them into the trie, we must transform them to their di�erentially enoded versions to searhfor them in transposition invariant form.Then, we slide a window of length u along the text row. At eah window, we read its last ` haraters. Ifthis string belongs to the set of `-grams (whih an be determined in O(`) time with the trie), then we reportthe window as a math of all the features that ontain the mathed `-gram (although it might atually notmath any of these features), and shift the window by one position. If, on the other hand, the last `-gram ofthe window does not belong to the set, then no feature ourrene an overlap this `-gram, so we an safelyshift the window by u� `+ 1 haraters.For eah feature delared to math inside eah text window, we must verify the orresponding textenter (i; j) so as to determine whether there is a omplete ourrene of P at (i; j). The probability ofa feature math being delared at a given text position is O(m4(2Æ + 1)`=�`). Sine the time to verify aandidate text enter is O((�+logm)m3), we have that the overall veri�ation ost per text row is on averageO(nm7(� + logm)=(�=(2Æ + 1))`). Sine this method works only for k � r = O(m), this is O(n log(m)=m)provided ` � 9 log�=(2Æ+1)m. So let this be the value of `, and we will see soon why we want to be sure thatveri�ation ost is O(n log(m)=m).Feature searh time an be divided into two parts. We may either advane the window by one positionor by u � ` + 1. In both ases we pay O(`) per window. We onsider at most n text windows in a row.The probability of advaning by one position is that of �nding the last window `-gram, that is, O(m4(2Æ +1)`=�`) = O(1=m5), hene the ost for windows that are advaned by one position is O(n log�=(2Æ+1)(m)=m5),whih is totally negligible. For the other windows we pay O(n`=(m� `)) = O(n log�=(2Æ+1)(m)=m) per textrow. So we have previously made ` large enough to make veri�ation ost smaller than feature searh ost.

Sine we have to traverse one row out of r=(�+1), the overall searh ost, ounting both feature searhingand veri�ations, is O n2� log�=(2Æ+1)mm2 !whih assumes 2Æ + 1 < � and � � m=p2.For this value of `, the spae for the trie of `-grams is O(ru2max(r; u)`(2Æ + 1)`) =O(m4 log(m)m9=(log2Æ+1 ��1)), whih is polynomial in m.For the sake of simpliity we have disregarded many optimizations that do not hange the omplexitybut improve a pratial implementation. For example, with the information given by the feature we donot atually need to try all the O(m3) rotations but just O(m) of them, whih are in the range that isonsistent with the angle of the feature. It is also not neessary that we hek the whole P one an `-gramis found, but we ould �rst hek for the whole feature (one by one). Just these two improvements redue `to 4 log�=(2Æ+1)m and the spae requirement to O(m4(1+1=(log2Æ+1 ��1)) logm). This an be further loweredby, for example, building up a data struture to hek for all the whole features faster.5.2 -Mathing with Tolerane �Let us searh one text row out of br=(� + h). Sine � + h features will appear inside every ourrene, atleast h of them will appear without outliers. Hene at least one feature must appear with dSAD distane ofat most b=h. Otherwise, eah of the h features math with at least b=h+1 outliers, and hene the totalnumber of outliers exeeds sine h(b=h+ 1) > h(=h) = .Hene, we run our Æ-mathing algorithm for Æ = =h, that is, we are muh less restritive and permitdistane =h at eah harater instead of the overall feature. Sine veri�ation for -mathing osts the sameas for Æ-mathing, we an use the analysis of Æ-mathing verbatim (exept that we traverse n(�+ h)=r textrows) and have a searh ost of O n2(�+ h) log�=(2(=h)+1)mm2 !where it is lear that the minimum h is the optimum. However, it might be that 2(=h) + 1 � �, whihontradits our preondition for Æ-mathing. Hene we need h > 2=(� � 1). This gives a searh ost ofO�n2(�+ =�) logmm2 �whih works whenever � (m=p2� �)=2.5.3 (Æ;)-Mathing with Tolerane �In this ase we an use any of the above �lters (that is, the one giving best omplexity or maybe the onethat an be applied), and hange only veri�ation to hek for the (Æ;)-ondition. The higher omplexityof heking does not a�et overall searh time.6 Conlusions and Future WorkWe have presented the �rst ombinatorial approah to the problem of two-dimensional template mathingpermitting rotations and lighting invariane, where in addition there is some tolerane for di�erene betweenthe pattern and its ourrene. We have de�ned a set of meaningful distane measures and searh problems,whih extend previous searh problems [9℄. We have built on top of previous rotation-invariant (but not

lighting-invariant) searh tehniques [9℄ and of previous one-dimensional lighting-invariant searh algorithms[16℄.We have developed algorithms to ompute the de�ned distanes, as well as algorithms for all the searhproblems, whih are at the same time eÆient in the worst and average ase. We have shown that addinglighting invariane poses a small omputational prie on top of previous rotation invariant searh algorithms[9℄, several of whih are already optimal.The results an be extended to more dimensions. In three dimensions, for example, there are O(m12)di�erent mathing funtions for P [12℄, and O(um2) features of length u. The worst-ase time algorithmsretain their omplexity as long as we replae O(m3n2) by O(m12n3). Average ase algorithms also retaintheir omplexity as long as we replae O(n2=m2) by O(n3=m3).It is also possible to remove some restritions we have used for simpliity, suh as the enter-to-enterassumption. In this ase the number of relevant rotations and small displaements grows up to O(m7) [6℄,so the worst ase omplexities shift to O(: : : m7n2). Average ase omplexities are not a�eted.On the other hand, our average-ase results an be applied to the one-dimensional lighting-invariant searhtoo. If we split the pattern into �+ 1 piees, then some piee must math without outliers. A multipatternsearh for those piees, with Æ-tolerane, enables an O(n� log�=2Æ+1(m)=m) average-time algorithm for Æ-mathing. Similarly, we an get O(n(� + =�) log(m)=m) for -mathing. Finally, (Æ;)-mathing an bedone with the best of these two omplexities.A tehnique used in [9℄ to obtain optimal searh times was to redue the problem to approximate ratherthan exat searh for pattern features. This is promising as far as we are able to develop optimal average-asealgorithms for the one-dimensional version of the problem. For example, if we attempt to use the averagease omplexities given in the previous paragraph, the average omplexity of the two-dimensional searhstays the same.Finally, it would be good to obtain an algorithm for (Æ;)-mathing that works for general alphabets, asthe urrent one only works for integer alphabet.Referenes1. A. Amir, A. Butman, M. Crohemore, G. Landau, and M. Shaps. Two-dimensional pattern mathing withrotations. In Pro. 14th Annual Symposium on Combinatorial Pattern Mathing (CPM 2003), LNCS, 2003. Toappear.2. A. Apostolio. Improving the worst-ase performane of the Hunt-Szymanski strategy for the longest ommonsubsequene of two strings. Inf. Proess. Lett., 23(2):63{69, 1986.3. L. G. Brown. A survey of image registration tehniques. ACM Computing Surveys, 24(4):325{376, 1992.4. T. Crawford, C. Iliopoulos, and R. Raman. String mathing tehniques for musial similarity and melodireognition. Computing in Musiology, 11:71{100, 1998.5. M. de Berg, M. van Kreveld, M. Overmars, and O. Shwarzkopf. Computational Geometry: Algorithms andAppliations. Springer-Verlag, 2nd rev. edition, 2000.6. K. Fredriksson. Rotation invariant histogram �lters for similarity and distane measures between digital images.In Pro. 7th String Proessing and Information Retrieval (SPIRE'2000), pages 105{115. IEEE CS Press, 2000.7. K. Fredriksson, G. Navarro, and E. Ukkonen. Faster than FFT: Rotation Invariant Combinatorial TemplateMathing, volume II, pages 75{112. Transworld Researh Network, 2002.8. K. Fredriksson, G. Navarro, and E. Ukkonen. Optimal exat and fast approximate two dimensional patternmathing allowing rotations. In Pro. 13th Annual Symposium on Combinatorial Pattern Mathing (CPM 2002),LNCS 2373, pages 235{248, 2002.9. K. Fredriksson, G. Navarro, and E. Ukkonen. Sequential and indexed two-dimensional pattern mathing allowingrotations. Tehnial Report TR/DCC-2003-2, Dept. of Computer Siene, Univ. of Chile, May 2003.10. K. Fredriksson and E. Ukkonen. A rotation invariant �lter for two-dimensional string mathing. In Pro. 9thCombinatorial Pattern Mathing (CPM'98), LNCS 1448, pages 118{125, 1998.11. K. Fredriksson and E. Ukkonen. Combinatorial methods for approximate image mathing under translations androtations. Patt. Reog. Letters, 20(11{13):1249{1258, 1999.

12. K. Fredriksson and E. Ukkonen. Combinatorial methods for approximate pattern mathing under rotations andtranslations in 3d arrays. In Pro. 7th String Proessing and Information Retrieval (SPIRE'2000), pages 96{104.IEEE CS Press, 2000.13. G. Navarro K. Fredriksson and E. Ukkonen. An index for two dimensional string mathing allowing rotations. InJ. van Leeuwen, O. Watanabe, M. Hagiya, P.D. Mosses, and T. Ito, editors, IFIP TCS2000, LNCS 1872, pages59{75, 2000.14. K. Lemstr�om and J. Tarhio. Deteting monophoni patterns within polyphoni soures. In Content-BasedMultimedia Information Aess Conferene Proeedings (RIAO'2000), pages 1261{1279, 2000.15. V. M�akinen, G. Navarro, and E. Ukkonen. Algorithms for transposition invariant string mathing. TehnialReport TR/DCC-2002-5, Dept. of Computer Siene, Univ. of Chile, July 2002.16. V. M�akinen, G. Navarro, and E. Ukkonen. Algorithms for transposition invariant string mathing. In Pro.20th International Symposium on Theoretial Aspets of Computer Siene (STACS 2003), LNCS 2607, pages191{202, 2003.

