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lAbstra
t. We address the problem of sear
hing for a two-dimensional pattern in a two-dimensionaltext (or image), su
h that the pattern 
an be found even if it appears rotated and brighter or darker thanits o

urren
e. Furthermore, we 
onsider approximate mat
hing under several toleran
e models. Weobtain algorithms that are almost optimal both in the worst and the average 
ases simultaneously. The
omplexities we obtain are very 
lose to the best 
urrent results for the 
ase where only rotations, butnot lighting invarian
e, are supported. These are the �rst results for this problem under a 
ombinatorialapproa
h.1 Introdu
tionWe 
onsider the problem of �nding the o

urren
es of a two-dimensional pattern of size m � m 
ells ina two-dimensional text of size n � n 
ells, when all possible rotations of the pattern are allowed and alsopattern and text may have di�eren
es in brightness. This stands for rotation and lighting invariant templatemat
hing. Text and pattern are seen as images formed by 
ells, ea
h of whi
h has a gray level value, also
alled a 
olor.Template mat
hing has numerous important appli
ations from s
ien
e to multimedia, for example inimage pro
essing, 
ontent based information retrieval from image databases, geographi
 information systems,pro
essing of aerial images, to name a few. In all these 
ases, we want to �nd a small subimage (the pattern)inside a large image (the text) permitting rotations (a small degree or any). Furthermore, pattern and textmay have been photographed under di�erent lighting 
onditions, so one may be brighter than the other.The traditional approa
h to this problem [3℄ is to 
ompute the 
ross 
orrelation between ea
h text lo
ationand ea
h rotation of the pattern template. This 
an be done reasonably eÆ
iently using the Fast FourierTransform (FFT), requiring time O(Kn2 logn) where K is the number of rotations sampled. Typi
ally Kis O(m) in the two-dimensional (2D) 
ase, and O(m3) in the 3D 
ase, whi
h makes the FFT approa
h veryslow in pra
ti
e. In addition, lighting-invariant features may be de�ned in order to make the FFT insensitiveto brightness. Also, in many appli
ations, \
lose enough" mat
hes of the pattern are also a

epted. To thisend, the user may spe
ify, for example, a parameter � su
h that mat
hes that have at most � di�eren
es withthe pattern should be a

epted, or a parameter Æ su
h that gray levels di�ering by less than Æ are 
onsideredequal. The de�nition of the mat
hing 
onditions is 
alled the \mat
hing model" in this paper.Rotation invariant template mat
hing was �rst 
onsidered from a 
ombinatorial point of view in [10,11℄. Sin
e then, several fast �lters have been developed for diverse mat
hing models [12, 6, 13, 8, 7, 9℄. Theserepresent large performan
e improvements over the FFT-based approa
h. The worst-
ase 
omplexity of theproblem was also studied [1, 8℄. However, lighting invarian
e has not been 
onsidered in this s
enario.? A part of the work was done while visiting University of Chile under a resear
her ex
hange grant from Universityof Helsinki.?? Funded by Millenium Nu
leus Center for Web Resear
h, Grant P01-029-F, Mideplan, Chile.



On the other hand, transposition invariant string mat
hing was 
onsidered in musi
 retrieval [4, 14℄. Theaim is to sear
h for (one-dimensional) patterns in texts su
h that the pattern may mat
h the text after allits 
hara
ters (notes) are shifted by some value. The reason is that su
h an o

urren
e will sound like thepattern to a human, albeit in a di�erent s
ale. In this 
ontext, eÆ
ient algorithms for several approximatemat
hing fun
tions were developed in [16, 15℄.We note that transposition invarian
e be
omes lighting invarian
e when we repla
e musi
al notes by graylevels of 
ells in an image. Hen
e, the aim of this paper is to enri
h the existing algorithms for rotationinvariant template mat
hing [8℄ with the te
hniques developed for transposition invarian
e [16℄ so as toobtain rotation and lighting invariant template mat
hing. It turns out that lighting invarian
e 
an be addedat very little extra 
ost. The key te
hnique exploited is in
remental distan
e 
omputation; we show thatseveral transposition invariant distan
es 
an be 
omputed in
rementally taking the 
omputation done withthe previous rotation into a

ount in the next rotation angle.Let us now determine whi
h are the reasonable mat
hing models. In [8℄, some of the models 
onsideredwere useful only for binary images, a 
ase where obviously we are not interested in this paper. We will addressmodels that make sense for gray level images. We de�ne three transposition-invariant distan
es: dt;ÆH , whi
h
ounts how many pattern and text 
ells di�er by more than Æ; dt;�MAD, whi
h is the maximum 
olor di�eren
ebetween pattern and text 
ells when up to � outliers are permitted; and dt;�SAD, whi
h is the sum of absolute
olor di�eren
es between pattern and text 
ells permitting up to � outliers. Table 1 shows our 
omplexitiesto 
ompute these distan
es for every possible rotation of a pattern 
entered at a �xed text position. Variable� is the number of di�erent gray levels (assume � = 1 if the alphabet is not a �nite dis
rete range). Weremark that a lower bound to this problem is O(m3), and this is a
hieved in [9℄ without lighting invarian
e.Distan
e Complexitydt;ÆH min(logm;� + (Æ + 1))m3dt;�MAD (min(�; �) + logmin(m;�))m3dt;�SAD (min(�; �) + logmin(m;�))m3Table 1. Worst-
ase 
omplexities to 
ompute the di�erent distan
es de�ned.We also de�ne three sear
h problems, 
onsisting in �nding all the transposition-invariant rotated o

ur-ren
es of P in T su
h that: there are at most � 
ells of P di�ering by more than Æ from their text 
ell(Æ-mat
hing); the sum of absolute di�eren
e between 
ells in P and T , ex
ept for � outliers, does not ex
eed
 (
-mat
hing); and P mat
hes both 
riteria at the same time, for a given transposition and set of outliers((Æ; 
)-mat
hing). Table 2 shows our worst-
ase and average-
ase results (the latter are valid only on �niteinteger alphabets). Without transposition invarian
e the worst 
ases are all O(m3n2) [9℄. In the same paperthey give average 
ase algorithms for Æ-mat
hing with Æ = 0 and for 
-mat
hing for � = 0. The respe
tiveaverage 
omplexities are O(n2(�+ log�m)=m2) and O(n2(
=�+ logm)=m2). The former is indeed average-optimal and the latter is almost (and 
onje
tured) average-optimal, as shown in [9℄. Hen
e our 
omplexitiesare rather 
lose to be optimal.We remark that we have developed algorithms that work on arbitrary alphabets, but we have also takenadvantage of the 
ase where the alphabet is a dis
rete range of integer values.2 De�nitionsLet T = T [1::n; 1::n℄ and P = P [1::m; 1::m℄ be arrays of unit squares, 
alled 
ells, in the (x; y)-plane.Ea
h 
ell has a value in an alphabet 
alled �, sometimes 
alled its gray level or its 
olor. A parti
ular



Problem Worst 
ase Average 
aseÆ-mat
hing min(logm;� + (Æ + 1))m3n2 n2� log�=(2Æ+1)(m)=m2, for 2Æ + 1 < � and � � m=p2(min(�; �) + logmin(m;�))m3n2
-mat
hing (min(�; �) + logmin(m;�))m3n2 n2(�+ 
=�) log(m)=m2, for 
 � (m=p2� �)=2(Æ; 
)-mat
hing (min(�; �)p
 + logmin(m;�))m3n2 best of the two aboveTable 2. Complexities for di�erent sear
h problems. (Æ; 
) mat
hing and average 
omplexities are valid only forinteger alphabets.
ase of interest is that of � being a �nite integer range of size �. The 
orners of the 
ell for T [i; j℄ are(i� 1; j� 1); (i; j� 1); (i� 1; j) and (i; j). The 
enter of the 
ell for T [i; j℄ is (i� 12 ; j � 12 ). The array of 
ellsfor pattern P is de�ned similarly. The 
enter of the whole pattern P is the 
enter of the 
ell in the middleof P . Pre
isely, assuming for simpli
ity that m is odd, the 
enter of P is the 
enter of 
ell P [m+12 ; m+12 ℄.Assume now that P has been moved on top of T using a rigid motion (translation and rotation), su
hthat the 
enter of P 
oin
ides exa
tly with the 
enter of some 
ell of T (
enter-to-
enter assumption). Thelo
ation of P with respe
t to T 
an be uniquely given as ((i; j); �) where (i; j) is the 
ell of T that mat
hesthe 
enter of P , and � is the angle between the x-axis of T and the x-axis of P . The (approximate) o

urren
ebetween T and P at some lo
ation is de�ned by 
omparing the values of the 
ells of T and P that overlap.We will use the 
enters of the 
ells of T for sele
ting the 
omparison points. That is, for the pattern atlo
ation ((i; j); �), we look whi
h 
ells of the pattern 
over the 
enters of the 
ells of the text, and 
omparethe 
orresponding values of those 
ells. Figure 1 illustrates.

x

y’

x’

j

α

y

(0,0)

i

Fig. 1. Ea
h text 
ell is mat
hed against the pattern 
ell that 
overs the 
enter of the text 
ell.More pre
isely, assume that P is at lo
ation ((i; j); �). For ea
h 
ell T [r; s℄ of T whose 
enter belongs tothe area 
overed by P , let P [r0; s0℄ be the 
ell of P su
h that the 
enter of T [r; s℄ belongs to the area 
overedby P [r0; s0℄. Then M(T [r; s℄) = P [r0; s0℄, that is, our algorithms 
ompare the 
ell T [r; s℄ of T against the 
ellM(T [r; s℄) of P .Hen
e the mat
hing fun
tion M is a fun
tion from the 
ells of T to the 
ells of P . Now 
onsider whathappens to M when angle � grows 
ontinuously, starting from � = 0. Fun
tion M 
hanges only at the valuesof � su
h that some 
ell 
enter of T hits some 
ell boundary of P . It was shown in [10℄ that this happensO(m3) times, when P rotates full 2� radians. This result was shown to be also a lower bound in [1℄. Hen
e



there are �(m3) relevant orientations of P to be 
he
ked. The set of angles for 0 � � � �=2 isA = f�; �=2� � j � = ar
sin h+ 12pi2 + j2 � ar
sin jpi2 + j2 ;i = 1; 2; : : : ; bm=2
; j = 0; 1; : : : ; bm=2
;h = 0; 1; : : : ; bpi2 + j2
g:By symmetry, the set of possible angles �, 0 � � < 2�, isA = A [ A+ �=2 [ A+ � [ A+ 3�=2:Furthermore, pattern P mat
hes at lo
ation ((i; j); �) with lighting invarian
e if there is some integertransposition t su
h that T [r; s℄ + t = P [r0; s0℄ for all [r0; s0℄ in the area of P .On
e the position and rotation ((i; j); �) of P in T de�ne the mat
hing fun
tion, we 
an 
ompute di�erentkinds of distan
es between the pattern and the text. Lighting-invarian
e versions of the distan
es 
hoose thetransposition minimizing the basi
 distan
e. The following distan
es are interesting for gray level images.Hamming Distan
e (H): The number of times T [r; s℄ 6= P [r0; s0℄ o

urs, over all the 
ells of P , that isdH(i; j; �; t) =Xr0;s0 if T [r; s℄ + t 6= P [r0; s0℄ then 1 else 0dtH(i; j; �) = mint dH(i; j; �; t)This 
an be extended to distan
e dÆH and its transposition-invariant version dt;ÆH , where 
olors must di�erby more than Æ in order to be 
onsidered di�erent, that is, T [r; s℄ + t 62 [P [r0; s0℄� Æ; P [r0; s0℄ + Æ℄.Maximum Absolute Di�eren
es (MAD): The maximum value of jT [r; s℄�P [r0; s0℄j over all the 
ells ofP , that is, dMAD(i; j; �; t) = maxr0;s0 jT [r; s℄ + t� P [r0; s0℄jdtMAD(i; j; �) = mint dMAD(i; j; �; t)This 
an be extended to distan
e d�MAD and its transposition-invariant version dt;�MAD, so that up to �pattern 
ells are freed from mat
hing the text. Then the problem is to 
ompute the MAD distan
e withthe best 
hoi
e of � outliers that are not in
luded in the maximum.Sum of Absolute Di�eren
es (SAD): The sum of the jT [r; s℄ � P [r0; s0℄j values over all the 
ells of P ,that is, dSAD(i; j; �; t) =Xr0;s0 jT [r; s℄ + t� P [r0; s0℄jdtSAD(i; j; �) = mint dSAD(i; j; �; t)Similarly, this distan
e 
an be extended to d�SAD and its transposition-invariant version dt;�SAD, where upto � pattern 
ells 
an be removed from the summation.On
e the above distan
es are de�ned, we 
an de�ne the following sear
h problems:Æ-Mat
hing: Report triples (i; j; �) su
h that dtMAD(i; j; �) � Æ. A toleran
e � 
an be permitted, so that weonly require dt;�MAD(i; j; �) � Æ. Observe that this 
ondition is the same as dt;ÆH (i; j; �) � �.
-Mat
hing: Report triples (i; j; �) su
h that dtSAD(i; j; �) � 
. Again, permitting toleran
e � means re-quiring dt;�SAD(i; j; �) � 
.(Æ; 
)-Mat
hing: Report triples (i; j; �) su
h that dMAD(i; j; �; t) � Æ and dSAD(i; j; �; t) � 
 for some t.Toleran
e � 
an be handled similarly, but the � ex
luded 
ells must be the same for both distan
es.



3 EÆ
ient Worst-Case AlgorithmsIn [1℄ it was shown that for the problem of the two dimensional pattern mat
hing allowing rotations theworst 
ase lower bound is 
(n2m3). We have shown in [8℄ a simple way to a
hieve this lower bound for anyof the distan
es under 
onsideration (without lighting invarian
e).The idea is that we will 
he
k ea
h possible text 
enter, one by one. So we have to pay O(m3) per text
enter to a
hieve the desired 
omplexity. What we do is to 
ompute the distan
e we want for ea
h possiblerotation, by reusing most of the work done for the previous rotation. On
e the distan
es are 
omputed, itis easy to report the triples (i; j; �) where these values are smaller than the given thresholds (Æ and/or 
).Only distan
es dH (with Æ = 0) and dSAD (with � = 0) were 
onsidered.Assume that, when 
omputing the set of anglesA = (�1; �2; : : :), we also sort the angles so that �i < �i+1,and asso
iate with ea
h angle �i the set Ci 
ontaining the 
orresponding 
ell 
enters that must hit a 
ellboundary at �i. Hen
e we 
an evaluate the distan
e fun
tions (su
h as dSAD) in
rementally for su

essiverotations of P . That is, assume that the distan
e has been evaluated for �i, then to evaluate it for rotation�i+1 it suÆ
es to re-evaluate the 
ells restri
ted to the set Ci. This is repeated for ea
h � 2 A. Therefore,the total time for evaluating the distan
e for P 
entered at some position in T , for all possible angles, isO(Pi jCij). This is O(m3) be
ause ea
h �xed 
ell 
enter of T , 
overed by P , 
an belong to some Ci at mostO(m) times. To see this, note that when P is rotated the whole angle 2�, any 
ell of P traverses throughO(m) 
ells of T .If we want to add lighting invarian
e to the above s
heme, a naive approa
h is to run the algorithm forevery possible transposition, for a total 
ost of O(n2m3�). In 
ase of a general alphabet there are O(m2)relevant transpositions at ea
h rotation (that is, ea
h pattern 
ell 
an be made to mat
h its 
orrespondingtext 
ell). Hen
e the 
ost raises to O(n2m5).In order to do better, we must be able to 
ompute the optimal transposition for the initial angle andthen maintaining it when some 
hara
ters of the text 
hange (be
ause the pattern has been aligned over adi�erent text 
ell). If we take f(m) time to do this, then our lighting invariant algorithm be
omes worst-
ase time O(n2m3f(m)). In the following we show how 
an we a
hieve this for ea
h of the distan
es under
onsideration.This te
hnique 
an be inserted into the �lters that we present later in order to make them near optimal inthe worst 
ase. All our �ltration algorithms are based on dis
arding most of the possible (i; j; �) lo
ations andleaving a few of them to be veri�ed. If we manage to avoid verifying a given text 
enter more than on
e, thenwe 
an apply our veri�
ation te
hnique and ensure that, overall, we 
annot pay more than O(n2m3f(m)).3.1 Distan
e dt;ÆH and Æ-Mat
hingAs proved in [15℄, the optimal transposition for Hamming distan
e is obtained as follows. Ea
h 
ell P [r0; s0℄,aligned to T [r; s℄, votes for a range of transpositions [P [r0; s0℄� T [r; s℄� Æ; P [r0; s0℄� T [r; s℄ + Æ℄, for whi
h itwould mat
h. If a transposition re
eives v votes, then its Hamming distan
e ism2�v. Hen
e, the transpositionthat re
eives most votes is the one yielding distan
e dt;ÆH . Let us now separate the 
ases of integer and generalalphabets.Integer alphabet. The original algorithm [15℄ obtains O(� + jP j) time on integer alphabet, by bu
ket-sorting the range extremes and then traversing them linearly so as to �nd the most voted transposition (a
ounter is in
remented when a range starts and de
remented when it �nishes).In our 
ase, we have to pay O(� +m2) in order to �nd the optimal transposition for the �rst rotationangle. The problem is how to re
ompute the optimal transposition on
e some text 
ell T [r; s℄ 
hanges itsvalue (due to a small 
hange in rotation angle). The net e�e
t is that the range of transpositions given bythe old 
ell value loses a vote and a new range gains a vote.



We use the fa
t that the alphabet is an integer range, so there are O(�) possible transpositions. Ea
htransposition 
an be 
lassi�ed a

ording to the number of votes it has. There are m2+1 lists Li, 0 � i � m2,
ontaining the transpositions that 
urrently have i votes. Hen
e, when a range of transpositions loses/gainsone vote, the 2Æ+1 transpositions are moved to the lower/upper list. We need to keep 
ontrol of whi
h is thehighest-numbered non-empty list, whi
h is easily done in 
onstant time per operation be
ause transpositionsmove only from one list to the next/previous. Initially we pay O(� +m2) to initialize all the lists and putall the transpositions in list L0, then O((Æ + 1)m2) to pro
ess the votes of all the 
ells, and then O(Æ + 1)to pro
ess ea
h 
ell that 
hanges. Overall, when we 
onsider all the O(m3) 
ell 
hanges, the s
heme isO(� + (Æ + 1)m3). This is our 
omplexity to 
ompute distan
e dt;ÆH between a pattern and a text 
enter,
onsidering all possible rotations and transpositions.Æ-Mat
hing 
an be done simply by 
omputing dt;ÆH distan
es at ea
h text 
enter and reporting triples(i; j; �) where dt;ÆH (i; j; �) � �. In fa
t, the �nal state of the lists (rotation of 2�) is equal to their state whenbuilt for the �rst rotation (angle zero), so it is possible to turn ba
k to the initial state at 
ost O(m2). Hen
ewe 
an move to the next text 
ell without paying again the O(�) initialization time. This means that ouroverall sear
h time is O(� + (Æ + 1)n2m3).General alphabet. Let us resort to a more general problem of dynami
 range voting : In the stati
 
ase wehave a multiset S = f[`; r℄g of one-dimensional 
losed ranges, and we are interested in obtaining a point pthat is in
luded in most ranges, that is maxvote(S) = maxp jf[`; r℄ 2 S j ` � p � rgj. In the dynami
 
ase anew range is added to or an old one is deleted from S, and we must be able to return maxvote(S) after ea
hupdate.Noti
e that our original problem of 
omputing dt;ÆH from one rotation angle to another is a spe
ial 
ase ofdynami
 range voting; multiset S is f[P [r0; s0℄�T [r; s℄�Æ; P [r0; s0℄�T [r; s℄+Æ℄ jM(T [r; s℄) = P [r0; s0℄g in onerotation angle, and in the next one some T [r; s℄ 
hanges its value. That is, the old range is deleted and thenew one is inserted, after whi
h maxvote(S) is requested to 
ompute the distan
e dt;ÆH = m2 �maxvote(S)in the new angle.We show that dynami
 range voting 
an be supported in O(log jSj) time, whi
h immediately gives anO(m3 logm) time algorithm for 
omputing dt;ÆH between a pattern and a text 
enter, 
onsidering all possiblerotations and transpositions.First, noti
e that the point that gives maxvote(S) 
an always be 
hosen among the endpoints of rangesin S. We store ea
h endpoint e in a balan
ed binary sear
h tree with key e. Let us denote the leaf whosekey is e simply by (leaf) e. With ea
h endpoint e we asso
iate a value vote(e) (stored in leaf e) that givesthe number jf[`; r℄ j ` � e � r; [`; r℄ 2 Sgj, where the set is 
onsidered as a multiset (same ranges 
anhave multiple o

urren
es). In ea
h internal node v, value maxvote(v) gives the maximum of the vote(e)values of the leaves e in its subtree. After all the endpoints e are added and the values vote(e) in the leavesand values maxvote(v) in the internal nodes are 
omputed, the stati
 
ase is solved by taking the valuemaxvote(root) = maxvote(S) in the root node of the tree.A straightforward way of generalizing the above approa
h to the dynami
 
ase would be to re
ompute allvalues vote(e) that are a�e
ted by the insertion/deletion of a range. This would, however, take O(jSj) timein the worst 
ase. To get a faster algorithm, we only store the 
hanges of the votes in the roots of 
ertainsubtrees so that vote(e) for any leaf e 
an be 
omputed by summing up the 
hanges from the root to theleaf e.For now on, we refer to vote(e) and maxvote(v) as virtual values, and repla
e them with 
ounters di�(v)and values maxdi�(v). Counters di�(v) are de�ned impli
itly so that for all leaves of the tree it holdsvote(e) = Xv2path(root;e)di�(v); (1)



where path(root; e) is the set of nodes in the path from the root to a leaf e (in
luding the leaf). Valuesmaxdi�(v) are de�ned re
ursively asmax(maxdi�(v:left) + di�(v:left);maxdi�(v:right) + di�(v:right)); (2)where v:left and v:right are the left and right 
hild of v, respe
tively. In parti
ular, maxdi�(e) = 0 for anyleaf node e. One easily noti
es thatmaxvote(v) = maxdi�(v) + Xv02path(root;v)di�(v0); (3)whi
h also gives as a spe
ial 
ase Equation (1) on
e we noti
e that maxvote(e) = vote(e) for ea
h leaf nodee. Our goal is to maintain di�() and maxdi�() values 
orre
tly during insertions and deletions. We havethree di�erent 
ases to 
onsider: (i) How to 
ompute the value di�(e) for a new endpoint of a range, (ii) howto update the values of di�() and maxdi�() when a range is inserted/deleted, and (iii) how to update thevalues during rotations to rebalan
e the tree.Case (i) is handled by storing in ea
h leaf an additional 
ounter end(e). It gives the number of rangeswhose rightmost endpoint is e. Assume that this value is 
omputed for all existing leaves. When we insert anew endpoint e, we either �nd a leaf labeled e or otherwise there is a leaf e0 after whi
h e is inserted. In the�rst 
ase vote(e) remains the same and in the latter 
ase vote(e) = vote(e0)� end(e0), be
ause e is in
ludedin the same ranges as e0 ex
ept those that end at e0. Noti
e also that vote(e) = 0 in the degenerate 
ase whene is the leftmost leaf. The +1 vote indu
ed by the new range whose endpoint e is, will be handled in 
ase (ii).To make vote(e) =Pv02path(root;e) di�(v0), we �x di�(e) so that vote(e) = di�(e)+Pv02path(root;v) di�(v0),where v is the parent of e. On
e the maxdi�() values are updated in the path from e to the root, we 
an
on
lude that all the ne
essary updates are done in O(log jSj) time.Let use then 
onsider 
ase (ii). Re
all the one-dimensional range sear
h on a balan
ed binary sear
h tree(see e.g. [5℄, Se
tion 5.1). We use the fa
t that one 
an �nd in O(log jSj) time the minimal set of nodes,say F , su
h that the range [`; r℄ of S is partitioned by F ; the subtrees starting at nodes of F 
ontain allthe points in [`; r℄ \ S and only them. It follows that when inserting (deleting) a range [`; r℄, we 
an setdi�(v) = di�(v) + 1 (di�(v) = di�(v) � 1) at ea
h v 2 F . This is be
ause all the values vote(e) in thesesubtrees 
hange by �1 (in
luding leaves ` and r). To keep also the maxdi�() values 
orre
tly updated, it isenough to re
ompute the values in the nodes in the paths from ea
h v 2 F to the root using Equation (2);other values are not a�e
ted by the insertion/deletion of the range [`; r℄. The overall number of nodes thatneed updating is O(log jSj).Finally, let us 
onsider 
ase (iii). Counters di�(v) are a�e
ted by rotations, but in 
ase a rotation involvinge.g. subtrees v:left, v:right:left and v:right:right takes pla
e, values di�(v) and di�(v:right) 
an be \pushed"down to the roots of the a�e
ted subtrees, and hen
e they be
ome zero. Then the rotation 
an be 
arriedout. Subtree maxima are easily maintained through rotations.Hen
e, ea
h insertion/deletion takes O(log jSj) time, and maxvote(S) = maxdi�(root) + di�(root) isreadily available in the root node.3.2 Distan
e dt;�MAD and Æ-Mat
hingLet us start with � = 0. As proved in [15℄, the optimal transposition for distan
e dtMAD is obtained as follows.Ea
h 
ell P [r0; s0℄, aligned to T [r; s℄, votes for transposition P [r0; s0℄�T [r; s℄. Then, the optimal transpositionis the average between the minimum and maximum vote. The dtMAD distan
e yielded is the di�eren
e ofmaximum minus minimum, divided by two. Hen
e an O(jP j) algorithm was immediate.We need O(m2) to obtain the optimal transposition for the �rst angle, zero. Then, in order to address
hanges of text 
hara
ters (be
ause, due to angle 
hanges, the pattern 
ell was aligned to a di�erent text




ell), we must be able to maintain minimum and maximum votes. Every time a text 
hara
ter 
hanges, avote disappears and a new vote appears. We 
an simply maintain balan
ed sear
h trees with all the 
urrentvotes so as to handle any insertion/deletion of votes in O(log(m2)) = O(logm) time, knowing the minimumand maximum at any time. If we have an integer alphabet of size �, there are only 2� +1 possible votes, soit is not hard to obtain O(log �) 
omplexity. Hen
e dtMAD distan
e between a pattern and a text 
enter 
anbe 
omputed in O(m3 logm) or O(m3 logmin(m;�)) time, for all possible rotations and transpositions.In order to a

ount for up to � outliers, it was already shown in [15℄ that it is optimal to 
hoose themfrom the pairs that vote for maximum or minimum transpositions. That is, if all the votes are sorted intoa list v1 : : : vm2 , then distan
e dt;�MAD is the minimum among distan
es dtMAD 
omputed in sets v1 : : : vm2��,v2 : : : vm2��+1, and so on until v�+1 : : : vm2 . Moreover, the optimum transposition of the i-th value of thislist is simply the average of maximum and minimum, that is, (vm2���1+i + vi)=2.So our algorithm for dt;�MAD is as follows. We make our tree threaded, so we 
an easily a

ess the � + 1smallest and largest votes. After ea
h 
hange in the tree, we retraverse these �+ 1 pairs and re
ompute theminimum among the vm2���1+i � vi di�eren
es. This takes O(m3(� + logm)) time. In 
ase of an integeralphabet, sin
e there 
annot be more than O(�) di�erent votes, this 
an be done in time O(m3(min(�; �) +logmin(m;�))).The Æ-mat
hing problem 
an be alternatively solved by 
omputing this distan
e for every text 
ell,and reporting triples (i; j; �) where dt;�MAD(i; j; �) � Æ. This gives an alternative O((� + logm)n2m3) orO((min(�; �) + logmin(m;�))n2m3) time algorithm to solve the Æ-mat
hing problem.3.3 Distan
e dt;�SAD and 
-Mat
hingLet us �rst 
onsider 
ase � = 0. This 
orresponds to the SAD model of [15℄, where it was shown that, if we
olle
t votes P [r0; s0℄�T [r; s℄, then the median vote (either one if jP j is even) is the transposition that yieldsdistan
e dtSAD. Then the a
tual distan
e 
an be obtained by using the formula for dSAD. Hen
e an O(jP j)time algorithm was immediate.In this 
ase we have to pay O(m2) to 
ompute the distan
e for the �rst rotation, and then have to manageto maintain the median transposition and 
urrent distan
e when some text 
ells 
hange their value due tosmall rotations.We maintain a balan
ed and threaded binary sear
h tree for the votes, plus a pointer to the median vote.Ea
h time a vote 
hanges be
ause a pattern 
ell aligns to a new text 
ell, we must remove the old vote andinsert the new one. When insertion and deletion o

ur at di�erent halves of the sorted list of votes (that is,one is larger and the other smaller than the median), the median may move by one position. This is done in
onstant time sin
e the tree is threaded.The median value itself 
an 
hange. One 
hange is due to the fa
t that one of the votes 
hanged its value.Given a �xed transposition, it is trivial to remove the appropriate summand and introdu
e a new one in theformula for dSAD. Another 
hange is due to the fa
t that the median position 
an 
hange from a value inthe sorted list to the next or previous. It was shown in [15℄ how to modify in 
onstant time distan
e dtSADin this 
ase. The idea is very simple: if we move from transposition vj to vj+1, then all the j smallest votesin
rease their value by vj+1 � vj , and the m� j largest votes de
rease by vj+1 � vj . Hen
e distan
e dSAD atthe new transposition is the value at the old transposition plus (2j �m)(vj+1 � vj).Hen
e, we 
an traverse all the rotations in time O(m3 logm). This 
an be redu
ed to O(m3 logmin(m;�))on �nite integer alphabet, by noting that there 
annot be more than O(�) di�erent votes, and taking some
are in handling repeated values inside single tree nodes.If we want to 
ompute distan
e dt;�SAD, we have again that the optimal values to free from mat
hing arethose voting for minimum or maximum transpositions. If we remove those values, then the median lies atpositions m� d�=2e : : :m+ d�=2e in the list of sorted votes, where m is the position of the median for thewhole list.



Hen
e, instead of maintaining a pointer to the median, we maintain two pointers to the range of � + 1medians that 
ould be relevant. It is not hard to maintain left and right pointers when votes are inserted anddeleted in the set. All the median values 
an be 
hanged one by one, and we 
an 
hoose the minimum distan
eamong the � + 1 options. This gives us an O(m3(� + logm)) time algorithm to 
ompute dt;�SAD. On integeralphabet, this is O(m3(�+ logmin(m;�))), whi
h 
an be turned into O(m3(min(�; �) + logmin(m;�))) bystandard tri
ks using the fa
t that there are O(�) possible median votes that have di�erent values.This immediately gives an O((� + logm)n2m3) or O((min(�; �) + logmin(m;�))n2m3) time algorithmfor 
-mat
hing. It is a matter of 
omputing dt;�SAD at ea
h text position and reporting triples (i; j; �) su
hthat dt;�SAD(i; j; �) � 
.3.4 (Æ; 
)-Mat
hing with Toleran
e �There are two reasons why solving this problem is not a matter of 
omputing dt;�MAD and dt;�SAD at ea
h textposition and reporting triples (i; j; �) where both 
onditions dt;�MAD(i; j; �) � Æ and dt;�SAD(i; j; �) � 
 hold. Oneis that the transposition a
hieving this must be the same, and the other is that the � outliers must be thesame.Let us �rst 
onsider the 
ase � = 0. A simple (Æ; 
)-mat
hing algorithm is as follows. We run the Æ-mat
hing algorithm based on dtMAD distan
e, and the 
-mat
hing algorithm based in dtSAD distan
e atthe same time. Every time we �nd a triple (i; j; �) that meets both 
riteria, we 
ompute the range oftranspositions t su
h that dMAD(i; j; �; t) � Æ. This is very simple: Say that dtMAD(i; j; �) � Æ, whi
h isobtained at the optimal transposition tMAD. Then, dMAD(i; j; �; t) � Æ for t 2 [tMAD1 ; tMAD2 ℄ = [tMAD � (Æ �dtMAD(i; j; �)); tMAD + (Æ � dtMAD(i; j; �))℄.The problem is now to determine whether dSAD(i; j; �; t) � 
 for some t in the above range. As a fun
tionof t, dSAD(i; j; �; t) has a single minimum at its optimum transposition tSAD (whi
h does not have to bethe same tMAD). Hen
e, we have three 
hoi
es: (i) tMAD1 � tSAD � tMAD2 , in whi
h 
ase the o

urren
e 
anbe reported; (ii) tSAD < tMAD1 , in whi
h 
ase we report the o

urren
e only if dSAD(i; j; �; tMAD1 ) � 
; (iii)tSAD > tMAD2 , in whi
h 
ase we report the o

urren
e only if dSAD(i; j; �; tMAD2 ) � 
.As in the worst 
ase we may have to 
he
k O(m3n2) times for a (Æ; 
)-mat
h, and 
omputing dSAD(i; j; �; t)takes O(m2) time, we 
ould pay as mu
h as O(m5n2), whi
h is as bad as the naive approa
h. However, oninteger alphabet, we 
an do better. As we 
an re
ompute in 
onstant time dSAD from one transpositionto the next [15℄, we 
an move stepwise from tSAD to tMAD1 or tMAD2 . Moreover, as we move away fromtSAD, distan
e dSAD in
reases and it qui
kly ex
eeds 
. As we move i transpositions from the median, wehave i votes 
ontributing in one unit ea
h to dSAD, so after we move i times dSAD has in
reased in O(i2)(this assumes that the alphabet is integer and that we pa
k equal votes so as to pro
ess them in oneshot). Hen
e we 
annot work more than O(p
) before having dSAD out of range. Overall, sear
h time isO((p
 + logmin(m;�))n2m3).The situation is more 
omplex if we permit � outliers. Fortunately, both in dt;�MAD and dt;�SAD it turns outthat the relevant outliers are those yielding the � minimum or maximum votes, so the sear
h spa
e is small.That is, even when the sele
tion of outliers that produ
es distan
e dt;�MAD is not the same produ
ing distan
edt;�SAD, it holds that if there is a sele
tion that produ
es a dt;�MAD distan
e of at most Æ and a dt;�SAD distan
e ofat most 
, then the same is a
hieved by a sele
tion where only those produ
ing minimum or maximum votes
an be 
hosen. This is easily seen be
ause the dt;�MAD and dt;�SAD distan
es 
an only de
rease if we repla
e thevotes in the initial sele
tion by ex
luded minimum or maximum votes.Now we 
ompute dt;�MAD and dt;�SAD distan
es and 
onsider every triple (i; j; �) where both 
riteria 
oin
ide.There are only � + 1 relevant sele
tions of outliers (that is, 
hoosing �0 smallest and �00 largest votes su
hthat �0 + �00 = �). For ea
h su
h sele
tion we already have dt;�MAD and dt;�SAD distan
es already 
omputed.Hen
e we have to run the above veri�
ation algorithm for ea
h triple (i; j; �) and ea
h of the �+1 sele
tions



of outliers. This gives a worst-
ase sear
h algorithm of 
omplexity O((min(�; �)p
 + logmin(m;�))n2m3).We remark that this works only for integer alphabets.4 FeaturesAs shown in [10, 8℄, any mat
h of a pattern P in a text T allowing arbitrary rotations must 
ontain someso-
alled \features", i.e., one-dimensional strings obtained by reading a line of the pattern in some angle.These features are used to build a �lter for �nding the position and orientation of P in T . See Figure 2.The length of a parti
ular feature is denoted by u, and the feature for angle � and row q is denoted byF q(�). Assume for simpli
ity that u is odd. To read a feature F q(�) from P , let P be on top of T , on lo
ation((i; j); �). Consider 
ells T [i� m+12 + q; j � u�12 ℄; : : : ; T [i� m+12 + q; j + u�12 ℄. Denote them as tq1; tq2; : : : ; tqu.Let 
qi be the value of the 
ell of P that 
overs the 
enter of tqi . The feature of P with angle � and row q isthe string F q(�) = 
q1
q2 � � � 
qu. Note that this value depends only on q, � and P , not on T .
α α αFig. 2. For ea
h angle �, a set of features is read from P . We show F 0(�), F 1(�) and F 2(�).The sets of angles for the features are obtained the same way as the set of angles for the whole patternP . Note that the set of angles Bq for the feature set F q is subset of A, that is Bq � A for any q. The sizeof B varies from O(u2) (the features 
rossing the 
enter of P ) to O(um) (the features at distan
e �(m)from the 
enter of P ). Therefore, if a mat
h of some feature F q(�) is found, there are O(jAj=jBq j) possibleorientations to be veri�ed for an o

urren
e of P . In other words, the mat
hing fun
tion M 
an 
hange aslong as F q(�) does not 
hange.More pre
isely, assume that Bq = (
1; : : : ; 
K), and that 
i < 
i+1. Therefore, feature F q(
i) = F q(�)
an be read using any � su
h that 
i � � < 
i+1. On the other hand, there are O(jAj=jBq)j angles � 2 Asu
h that 
i � � < 
i+1. If there is an o

urren
e of F q(�), then P may o

ur with any su
h angle �.Our plan is to build a �lter based on exa
t sear
hing for features, but this sear
h must be transposition-invariant. We will 
onsider integer integer alphabets only. Exa
t transposition-invariant sear
h is very simple,however. Re
ode the text T into T 0 su
h that T 0[i; j℄ = T [i; j℄ � T [i; j � 1℄ and disregard the �rst 
olumnfrom T 0. Re
ode the linear features F q(�) = 
q1; 
q2; 
q3; : : : ; 
qu as F 0q(�) = (
q2 � 
q1); (
q3 � 
q2); : : : ; (
qu � 
qu�1).Hen
e, F q(�) appears in T [i; j℄ : : : T [i; j + u� 1℄ under some transposition t if and only if F 0q(�) appears inT 0[i; j + 1℄ : : : T [i; j + u� 1℄. Moreover, t = T [i; j℄� F q(�)[1℄.The statisti
s of this new text T 0 are not the same as in T . The probability that a text and a feature
hara
ter mat
h is not 1=� anymore. If we have two 
ontiguous text 
hara
ters 
1
2 and two 
ontiguousfeature 
hara
ters f1f2 then the probability that the 
orresponding di�eren
es mat
h in the transformedstrings is that of 
2 � 
1 being equal to f2 � f1. Sin
e the four variables are independent and uniform over[1; �℄, it 
an be seen that this probability is bounded above by 1=�. Hen
e we will pessimisti
ally assumethat the transformed text and features share the same statisti
s of the original text and features. Note thatin the transformed text and features there is a dependen
e between 
onse
utive pairs, but in any 
ase all the



probabilities are bounded above by 1=�, so it is (
onservatively) 
orre
t to assume that they are independentwith probability 1=� ea
h (note that, sin
e there are 2�+1 di�erent values, probabilities add 2+1=� in ourpessimisti
 setup).5 EÆ
ient Average-Case Time AlgorithmsJust as in [8℄, we 
hoose features of length u from r pattern rows around the 
enter, rotate them in all possibleways, and sear
h for all them using a multipattern exa
t sear
h algorithm. To simplify the presentation weassume from the beginning u = r = m=p2, whi
h are in fa
t the optimal values. Our results are valid onlyfor integer alphabets.5.1 Æ-Mat
hing with Toleran
e �If we examine one text row out of r, then every o

urren
e of P must 
ontain a feature. Moreover, if weexamine one text row out of br=(�+1)
, then every o

urren
e of P must 
ontain �+1 features, and thereforeit must 
ontain some feature that Æ-mat
hes without any toleran
e.In order to sear
h for a feature F q(�) = 
q1; 
q2 : : : 
qu that Æ-mat
hes using an exa
t sear
h ma
hinery, wemust generate all its Æ-variants, that is, all the strings that Æ-mat
h F q(�). These 
an be des
ribed as theprodu
t [
q1 � Æ; 
q1 + Æ℄� [
q2 � Æ; 
q2 + Æ℄� : : :� [
qu � Æ; 
qu + Æ℄. This set is of size (2Æ+1)u. If we a

ount forall the O(rumax(r; u)) = O(m3) rotations of ea
h feature we arrive at a total of O(m3(2Æ+1)�(m)) strings.This is too mu
h, so we take the following approa
h.We prepro
ess the set of O(m3) patterns of length u by 
olle
ting all their `-grams (substrings of length `),where ` will be determined soon. Hen
e the total number of substrings 
olle
ted is bounded by O(m4(2Æ+1)`).All these strings are stored in a trie data stru
ture [2℄, whi
h takes O(m4`(2Æ + 1)`) spa
e and permitssear
hing for a string in the set in O(`) time. We remark that, after generating all the di�erent strings andbefore inserting them into the trie, we must transform them to their di�erentially en
oded versions to sear
hfor them in transposition invariant form.Then, we slide a window of length u along the text row. At ea
h window, we read its last ` 
hara
ters. Ifthis string belongs to the set of `-grams (whi
h 
an be determined in O(`) time with the trie), then we reportthe window as a mat
h of all the features that 
ontain the mat
hed `-gram (although it might a
tually notmat
h any of these features), and shift the window by one position. If, on the other hand, the last `-gram ofthe window does not belong to the set, then no feature o

urren
e 
an overlap this `-gram, so we 
an safelyshift the window by u� `+ 1 
hara
ters.For ea
h feature de
lared to mat
h inside ea
h text window, we must verify the 
orresponding text
enter (i; j) so as to determine whether there is a 
omplete o

urren
e of P at (i; j). The probability ofa feature mat
h being de
lared at a given text position is O(m4(2Æ + 1)`=�`). Sin
e the time to verify a
andidate text 
enter is O((�+logm)m3), we have that the overall veri�
ation 
ost per text row is on averageO(nm7(� + logm)=(�=(2Æ + 1))`). Sin
e this method works only for k � r = O(m), this is O(n log(m)=m)provided ` � 9 log�=(2Æ+1)m. So let this be the value of `, and we will see soon why we want to be sure thatveri�
ation 
ost is O(n log(m)=m).Feature sear
h time 
an be divided into two parts. We may either advan
e the window by one positionor by u � ` + 1. In both 
ases we pay O(`) per window. We 
onsider at most n text windows in a row.The probability of advan
ing by one position is that of �nding the last window `-gram, that is, O(m4(2Æ +1)`=�`) = O(1=m5), hen
e the 
ost for windows that are advan
ed by one position is O(n log�=(2Æ+1)(m)=m5),whi
h is totally negligible. For the other windows we pay O(n`=(m� `)) = O(n log�=(2Æ+1)(m)=m) per textrow. So we have previously made ` large enough to make veri�
ation 
ost smaller than feature sear
h 
ost.



Sin
e we have to traverse one row out of r=(�+1), the overall sear
h 
ost, 
ounting both feature sear
hingand veri�
ations, is O n2� log�=(2Æ+1)mm2 !whi
h assumes 2Æ + 1 < � and � � m=p2.For this value of `, the spa
e for the trie of `-grams is O(ru2max(r; u)`(2Æ + 1)`) =O(m4 log(m)m9=(log2Æ+1 ��1)), whi
h is polynomial in m.For the sake of simpli
ity we have disregarded many optimizations that do not 
hange the 
omplexitybut improve a pra
ti
al implementation. For example, with the information given by the feature we donot a
tually need to try all the O(m3) rotations but just O(m) of them, whi
h are in the range that is
onsistent with the angle of the feature. It is also not ne
essary that we 
he
k the whole P on
e an `-gramis found, but we 
ould �rst 
he
k for the whole feature (one by one). Just these two improvements redu
e `to 4 log�=(2Æ+1)m and the spa
e requirement to O(m4(1+1=(log2Æ+1 ��1)) logm). This 
an be further loweredby, for example, building up a data stru
ture to 
he
k for all the whole features faster.5.2 
-Mat
hing with Toleran
e �Let us sear
h one text row out of br=(� + h)
. Sin
e � + h features will appear inside every o

urren
e, atleast h of them will appear without outliers. Hen
e at least one feature must appear with dSAD distan
e ofat most b
=h
. Otherwise, ea
h of the h features mat
h with at least b
=h
+1 outliers, and hen
e the totalnumber of outliers ex
eeds 
 sin
e h(b
=h
+ 1) > h(
=h) = 
.Hen
e, we run our Æ-mat
hing algorithm for Æ = 
=h, that is, we are mu
h less restri
tive and permitdistan
e 
=h at ea
h 
hara
ter instead of the overall feature. Sin
e veri�
ation for 
-mat
hing 
osts the sameas for Æ-mat
hing, we 
an use the analysis of Æ-mat
hing verbatim (ex
ept that we traverse n(�+ h)=r textrows) and have a sear
h 
ost of O n2(�+ h) log�=(2(
=h)+1)mm2 !where it is 
lear that the minimum h is the optimum. However, it might be that 2(
=h) + 1 � �, whi
h
ontradi
ts our pre
ondition for Æ-mat
hing. Hen
e we need h > 2
=(� � 1). This gives a sear
h 
ost ofO�n2(�+ 
=�) logmm2 �whi
h works whenever 
 � (m=p2� �)=2.5.3 (Æ; 
)-Mat
hing with Toleran
e �In this 
ase we 
an use any of the above �lters (that is, the one giving best 
omplexity or maybe the onethat 
an be applied), and 
hange only veri�
ation to 
he
k for the (Æ; 
)-
ondition. The higher 
omplexityof 
he
king does not a�e
t overall sear
h time.6 Con
lusions and Future WorkWe have presented the �rst 
ombinatorial approa
h to the problem of two-dimensional template mat
hingpermitting rotations and lighting invarian
e, where in addition there is some toleran
e for di�eren
e betweenthe pattern and its o

urren
e. We have de�ned a set of meaningful distan
e measures and sear
h problems,whi
h extend previous sear
h problems [9℄. We have built on top of previous rotation-invariant (but not



lighting-invariant) sear
h te
hniques [9℄ and of previous one-dimensional lighting-invariant sear
h algorithms[16℄.We have developed algorithms to 
ompute the de�ned distan
es, as well as algorithms for all the sear
hproblems, whi
h are at the same time eÆ
ient in the worst and average 
ase. We have shown that addinglighting invarian
e poses a small 
omputational pri
e on top of previous rotation invariant sear
h algorithms[9℄, several of whi
h are already optimal.The results 
an be extended to more dimensions. In three dimensions, for example, there are O(m12)di�erent mat
hing fun
tions for P [12℄, and O(um2) features of length u. The worst-
ase time algorithmsretain their 
omplexity as long as we repla
e O(m3n2) by O(m12n3). Average 
ase algorithms also retaintheir 
omplexity as long as we repla
e O(n2=m2) by O(n3=m3).It is also possible to remove some restri
tions we have used for simpli
ity, su
h as the 
enter-to-
enterassumption. In this 
ase the number of relevant rotations and small displa
ements grows up to O(m7) [6℄,so the worst 
ase 
omplexities shift to O(: : : m7n2). Average 
ase 
omplexities are not a�e
ted.On the other hand, our average-
ase results 
an be applied to the one-dimensional lighting-invariant sear
htoo. If we split the pattern into �+ 1 pie
es, then some pie
e must mat
h without outliers. A multipatternsear
h for those pie
es, with Æ-toleran
e, enables an O(n� log�=2Æ+1(m)=m) average-time algorithm for Æ-mat
hing. Similarly, we 
an get O(n(� + 
=�) log(m)=m) for 
-mat
hing. Finally, (Æ; 
)-mat
hing 
an bedone with the best of these two 
omplexities.A te
hnique used in [9℄ to obtain optimal sear
h times was to redu
e the problem to approximate ratherthan exa
t sear
h for pattern features. This is promising as far as we are able to develop optimal average-
asealgorithms for the one-dimensional version of the problem. For example, if we attempt to use the average
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