
Sequential and Indexed Two-DimensionalPattern Mathing Allowing RotationsKimmo Fredriksson� Gonzalo Navarroy Esko Ukkonen zAbstratWe present new and faster algorithms to searh for a 2-dimensional pattern in a 2-dimensionaltext allowing any rotation of the pattern. This has appliations suh as image databases andomputational biology. We onsider the ases of exat and approximate mathing under severalmathing models, improving all previous results. We fous on sequential algorithms, where onlythe pattern an be preproessed, as well as on indexed algorithms, where the text is preproessedand an index built on it. On sequential searhing we derive average-ase lower bounds and thenobtain optimal average-ase algorithms for all the mathing models. At the same time, thesealgorithms are worst-ase optimal. On indexed searhing we obtain searh time polylogarithmion the text size, as well as sublinear time in general for approximate searhing.Keywords: Template mathing, ombinatorial algorithms, image proessing, string mathing.1 IntrodutionWe onsider the problem of �nding the exat and approximate ourrenes of a two-dimensionalpattern of size m�m ells in a two-dimensional text of size n� n ells, when all possible rotationsof the pattern are allowed. This problem is often alled rotation invariant template mathing inthe signal proessing literature. Template mathing has numerous important appliations fromsiene to multimedia, for example in image proessing, ontent based information retrieval fromimage databases, �ngerprint proessing, optial harater reognition, geographi information sys-tems, proessing of aerial and astronomial images, and searhing for known substrutures (suhas proteins) from three dimensional models of biologial viruses, to name a few.In many appliations, \lose enough" mathes of the pattern are also aepted. To this end,the user may speify a parameter k, suh that mathes that have at most k di�erenes with thepattern should be aepted.The traditional approah to the problem [9℄ is to ompute the ross orrelation between eahtext loation and eah rotation of the pattern template. This an be done reasonably eÆientlyusing the Fast Fourier Transform (FFT), requiring time O(Kn2 log n) where K is the number ofrotations sampled. Typially K is O(m) in the 2-dimensional (2D) ase, and O(m3) in the 3Dase, whih makes the FFT approah very slow in pratie. Other approahes to the problem arereviewed in [33℄.�Department of Computer Siene, University of Joensuu, Finland. kfredrik�s.joensuu.fi. Part of this workdeveloped while the author was at University of Helsinki, supported by ComBi and the Aademy of Finland.yCenter for Web Researh, Department of Computer Siene, University of Chile, Chile. gnavarro�d.uhile.l.Funded by Millenium Nuleus Center for Web Researh, Grant P01-029-F, Mideplan, Chile.zDepartment of Computer Siene, University of Helsinki, Finland. ukkonen�s.helsinki.fi. Work supportedby the Aademy of Finland. 1



Reently, a di�erent approah to template mathing, alled ombinatorial template mathing,has emerged. The idea is to generalize well-studied string mathing tehniques. String mathingdeals with the problem of searhing for a one-dimensional pattern on a one-dimensional text, andthe aim is to generalize the problem to two and more dimensions.Examples of ombinatorial template mathing algorithms are [21, 8, 2, 26, 7, 31, 32, 25℄. Theyaddress di�erent searh problems, from exat pattern mathing to handling insertion and deletionerrors. However, they do not permit searhing for the pattern in rotated form. This was stated asa major open problem already in 1992 [5℄.Rotation invariant template mathing was �rst onsidered from a ombinatorial point of viewin [17, 19℄. The �rst problem was to de�ne what was to be onsidered a math. If we onsider thepattern and text as regular grids, then de�ning the notion of mathing beomes nontrivial whenwe rotate the pattern: Sine every pattern ell intersets several text ells and vie versa, it isnot lear what should math what. They proposed a simple model suh that (1) the geometrienter of the pattern has to align with the enter of a text ell (this is alled the enter-to-enterassumption); (2) the text ells involved in the math are those whose geometri enters are overedby the pattern; (3) eah text ell involved in an ourrene should math the value of the patternell that overs its enter. This mathing model is alled Exat in this paper. They presented anO(n2) average time algorithm for this model. An O(m3n2) worst-ase time algorithm for a rathersimilar model was presented in [3℄. They show that this algorithm is worst-ase optimal.An extension of the exat mathing model more suitable for gray level images states that thevalue of eah text ell involved in a math must be between the minimum and maximum valueof the 9 neighboring ells surrounding the orresponding pattern ell [19℄. This model is alledMinMax. We are not aware of any previous algorithm for this model.The exat model (in fat a 3D version) was extended in [20℄ suh that there may be a limitednumber k of mismathes between the pattern and its ourrene. Under this Mismathes modelan O(k4n3) average time algorithm was obtained, as well as an O(k2n3) average time algorithmfor omputing a lower bound on the distane. We show here that a 2D version of the same ideayields O(k3=2n2) average time for any 0 � k < m2. For very small k < �r2e��r2=� (r = O(m)), anO(k1=2n2) average time algorithm was given in [12℄.Finally, a more re�ned model [12, 20℄ suitable for gray level images adds up the absolute valuesof the di�erenes in the gray levels of the pattern and text ells supposed to math, and putsan upper limit k on this sum. Under this Aumulated model average time O((k=�)3=2n2) wasahieved, assuming that the ell values are uniformly distributed among � gray levels.In this paper we address all the above de�ned mathing models. We (1) �nd tight lower boundsfor the average omplexity of the searh problem, for all the mathing models (worst-ase omplexityis already known); (2) show a tehnique to make all the algorithms that follow optimal in the worstase, without a�eting their average omplexity; and (3) onsider eah of the models in turn anddevelop optimal average-ase searh algorithm for them. Therefore, we solve the searh problemfor all the mathing models onsidered in optimal worst- and average-ase time simultaneously.Our main tehnique is to extrat linear strips from the pattern at every possible rotation, andsearh for those strips simultaneously along some text rows, permitting or not mismathes. Theuse of optimal exat and approximate one-dimensional multipattern searh algorithms is ruialto obtain optimality in our problem. Our spae requirement and preproessing time is always2



polynomial in the pattern size.All the algorithms onsidered up to now are sequential. This means that they an preproessthe pattern but not the text. An alternative senario is that the text (that is, the large image)is known in advane and an be preproessed to speed up searhes later. This is alled indexedsearhing.In this work we give the �rst algorithms for indexed searhing. The data struture we useis based on tries. SuÆx trees for two-dimensional texts have been onsidered, for example, in[22, 23, 24℄. The idea of searhing for a rotated pattern using a \suÆx" array of spiral-like stringsis mentioned in [24℄, but only for rotations of multiples of 90 degrees. The problem is muh moreomplex if we want to allow any rotation.Our searh times are polylogarithmi for exat searhing and sublinear1 on average when someonditions on the mismath threshold are met. In most the ases the index needs O(n2) (that is,linear) spae and it an be onstruted in average time O(n2 log� n).Model Searh time Type Comments/onditionsExat n2 Seq Previous result
(n2 log�(m)=m2) n2 log�(m)=m2 Seq Optimal(log� n)5=2 Ind �m2=4 � 2 log� nMinMax O(n2 log(m)=m2) Seq Optimal
(n2 log(m)=m2) (log� n)3=2n2(1�log�(5=4)) Ind �m2=4 � 2 log� nMismathes n2k3=2 Seq Previous result, adapted by us
(n2(k + log�m)=m2) n2k1=2 Seq Previous resultk < �r2e��r2=�, r = O(m)n2(k + log�m)=m2 Seq Optimal, � < 1=2(1 �O(1=�))(2 log� n)k+3=2�k Ind �m2=4 � 2 log� n > kHn2(�+HH� (�))m3k Ind m2 � max(kH ; 2 log� n)Aumulated n2(k=�)3=2 Seq Previous result, adapted by us
(n2(k=� + log�m)=m2) n2(k=� + logm)=m2 Seq � < �=(4e). Optimalexept log�m � k � (�=e) logm(k + 2 log� n)k+3=2n2 log� 2 Ind �m2=4 � 2 log� n > kAn2(log� 2+HA� (�))m3k Ind m2 � max(kA; 2 log� n)Table 1: Simpli�ed average sequential and indexed time omplexities ahieved under di�erentmodels. We inlude the average-time sequential lower bounds we have proved. All our sequentialalgorithms are worst-ase optimal.Table 1 shows our main ahievements. All the results are on the average, using a probabilistimodel where � is the alphabet size and the ell values are uniformly and independently distributedover those � values. We have several di�erent results for eah model. In partiular, some algorithmsare sequential and others are indexed. In the mismathes and aumulated models we all � = k=m2(note that � < 1 for mismathes and � < � for aumulated) and kH and kA denote the maximum1Throughout this paper we speak of \sublinearity" to mean less than n2, whih is the input size.3



k values up to where some tehniques work: kH = k=(1� e=�) and kA = k=(�=(2e)�1). Moreover,HH� (�) = �� log�(�) � (1� �) log�(1� �) and HA� (�) = �� log�(�) + (1 + �) log�(1 + �).The algorithms are easily generalized for handling large databases of images. That is, we maystore any number of images in the index, and searh the query pattern simultaneously in all theimages. The time omplexities remain the same, if we now onsider that n2 denotes the size of thewhole image library.We have also onsidered alternative models where pattern enters are used instead of textenters to de�ne what should math what, where no enter-to-enter assumption holds, and wherethere are more dimensions. In most ases we obtain basially the same algorithms, but there are afew interesting exeptions.Partial preliminary versions of this work appeared in [14, 16, 15℄.The organization of the paper follows. We start by proving giving some preliminary oneptsthat are used throughout the paper, in Setion 2. In Setion 3, a lower bound on the averagesequential omplexity of the searh problem, both for exat and for approximate searhing, is given.In Setion 4 we give optimal worst-ase algorithms for all the mathing models in one shot. Setions5 to 8 are devoted to optimal/eÆient average-ase algorithms for the exat, minmax, mismathesand aumulated models, respetively. Setion 9 deals with some alternative formulations of theproblem and briey shows how the results ould be extended to more dimensions. We give ouronlusions and future work diretions in Setion 10.2 Preliminaries2.1 Mathing FuntionsLet T = T [1::n; 1::n℄ and P = P [1::m; 1::m℄ be arrays of unit squares, alled ells, in the (x; y)-plane.Eah ell has a value in ordered �nite alphabet �, whih we sometimes all \olors". The size of thealphabet is denoted by � = j�j. The orners of the ell for T [i; j℄ are (i�1; j�1); (i; j�1); (i�1; j)and (i; j). The enter of the ell for T [i; j℄ is (i � 12 ; j � 12). The array of ells for pattern P isde�ned similarly. The enter of the whole pattern P is the enter of the ell in the middle of P .We assume for simpliity that m is odd, hene the enter of P is the enter of ell P [m+12 ; m+12 ℄.Assume now that P has been moved on top of T using a rigid motion (translation and rotation),suh that the enter of P oinides exatly with the enter of some ell of T (this is alled the enter-to-enter assumption). The loation of P with respet to T an be uniquely given as ((i; j); �) where(i; j) is the ell of T that mathes the enter of P , and � is the angle between the x-axis of T andthe x-axis of P . The (approximate) ourrene between T and P at some loation is de�ned byomparing the values of the ells of T and P that overlap. We will use the enters of the ells ofT for seleting the omparison points. That is, for the pattern at loation ((i; j); �), we look whihells of the pattern over the enters of the ells of the text, and ompare those ell values. See theleftmost plot of Figure 1.More preisely, assume that P is at loation ((i; j); �). For eah ell [r; s℄ of T whose enter be-longs to the area overed by P , let [r0; s0℄ be the ell of P whose area overs the enter of [r; s℄. ThenM(i;j);�([r; s℄) = [r0; s0℄. Our algorithms ompare the ell T [r; s℄ against the ell P [M(i;j);�([r; s℄)℄.Hene the mathing funtion M(i;j);� is a funtion from the ells of T to the ells of P . Nowonsider what happens to M(i;j);� when (i; j) is �xed and angle � grows ontinuously, starting from4



� = 0. Funtion M hanges only at the values of � suh that some ell enter of T hits someell boundary of P . It was shown in [17℄ that this happens O(m3) times, when P rotates full 360degrees. This result was shown to be also a lower bound in [3℄. Hene there are �(m3) relevantorientations of P to be heked. The set of angles for 0 � � � �=2 isA = f�; �=2 � � j � = arsin h+ 12pi2 + j2 � arsin jpi2 + j2 ;i = 1; 2; : : : ; bm=2; j = 0; 1; : : : ; bm=2;h = 0; 1; : : : ; bqi2 + j2g:By symmetry, the set of possible angles �, 0 � � < 2�, isA = A [ A+ �=2 [ A+ � [ A+ 3�=2:
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α α αFigure 1: Eah text ell is mathed against the pattern ell that overs the enter of the text ell.For eah angle �, a set of features is read from P .For the rest of the paper, it is important to understand how the O(m3) bound is obtained.Consider a given pattern ell, at Eulidean distane ` from the pattern enter. As the patternrotates 360 degrees around its enter, the pattern ell desribes a irle of irumferene 2�`, andhene its ell borders touh O(`) di�erent text enters. Eah suh hit de�nes a border between twoangle ranges that must be taken as di�erent, beause there is at least one text ell that will di�er inits mathing funtion M . If we add up the O(`) di�erent angles de�ned for all the m2 pattern ells,at distanes 1 to O(m) from the enter, we get the O(m3) di�erent angles. Muh more diÆult isto prove that a suÆient number of these angles are indeed di�erent and hene there are �(m3)di�erent rotations, see [3℄.In general, note that if we onsider a set of  pattern ells whih are up to distane ` from theenter, then there will be only �(`) relevant angles to math them. Note that the set of anglesB de�ned by the  ells hosen is a subset of A. The exat size of B depends on how the ells arehosen. If a math of suh ell set is found and we want to extend it to an ourrene of P , thenthere are O(jAj=jBj) = O(m3=(`)) possible orientations where the mathing funtion M for thewhole P an hange as long as it does not hange for those  ells. Hene we may have to hekO(m3=(`)) possible orientations. The reason is that the O(m3) angles distribute uniformly enoughover the 360 degrees.More preisely, assume that B = (1; : : : ; K), and that i < i+1. Therefore, the text ellsorresponding to the hosen  ells an be read for angle i using any � suh that i � � < i+1.5



On the other hand, there are O(jAj=jB)j angles � 2 A suh that i � � < i+1. If there is an anglei suh that the  ells of P math the text, then P may our with any suh angle �.2.2 Mathing ModelsWe onsider four mathing models in this paper. These an be de�ned on top of the mathingfuntion just de�ned. Assume P is at loation ((i; j); �) and let us all M = M(i;j);�. Hene thefollowing models are de�ned:Exat: de�nes onditionT [r; s℄ = P (M [r; s℄); 8[r; s℄ 2 [1 : : : n; 1 : : : n℄ suh that M [r; s℄ 2 [1 : : : m; 1 : : : m℄MinMax: de�nes onditionminfP (M [r; s℄+[Æ; Æ0 ℄); �1 � Æ; Æ0 � 1g � T [r; s℄ � maxfP (M [r; s℄+[Æ; Æ0 ℄); �1 � Æ; Æ0 � 1g;8[r; s℄ 2 [1 : : : n; 1 : : : n℄ suh that M [r; s℄ 2 [1 : : : m; 1 : : : m℄where we have de�ned + as the pairwise summation over ells.Mismathes: de�nes numberXfif T [r; s℄ = P (M [r; s℄) then 0 else 1; [r; s℄ 2 [1 : : : n; 1 : : : n℄; M [r; s℄ 2 [1 : : : m; 1 : : : m℄gAumulated: de�nes numberXfjT [r; s℄ � P (M [r; s℄)j; [r; s℄ 2 [1 : : : n; 1 : : : n℄; M [r; s℄ 2 [1 : : : m; 1 : : : m℄gGiven the models, the exat and minmax searh problems are to report all the triples (i; j; �)suh that their mathing ondition is met, while the mismathes and aumulated searh problemsare to report all the triples (i; j; �) suh that their de�ned value at that point does not exeed agiven threshold k.2.3 FeaturesAs shown in [17℄, any math of a pattern P in a text T allowing arbitrary rotations must ontaina so-alled \feature", that is, a one-dimensional string obtained by reading a line of the pattern insome angle and rossing the enter. These features are used to build a �lter for �nding the positionand orientation of P in T .We now de�ne a set of linear features (strings) for P (see Figure 1). The length of a partiularfeature is denoted by u, and the feature for angle � and row q is denoted by F q(�). Assume forsimpliity that u is odd. To read a feature F q(�) from P , let P be on top of T , on loation ((i; j); �).Consider ells T [i � m+12 + q; j � u�12 ℄; : : : ; T [i � m+12 + q; j + u�12 ℄. Denote them as tq1; tq2; : : : ; tqu.Let qi be the value of the ell of P that overs the enter of tqi . The (horizontal) feature of P withangle � and row q is now the sequene F q(�) = q1q2 � � � qu. Note that this value depends only on q,� and P , not on T . 6



The sets of angles for the features are obtained the same way as the set of angles for the wholepattern P . As explained in Setion 2.1, the set of angles Bq for the feature set F q is subset of A.The size of B varies from �(u2) (for features rossing the enter of P ) to �(um) (for features atdistane �(m) from the enter of P ). Therefore, if a math of some feature F q(�) is found, and thefeature is at distane r from the enter of P , then there are O(m3=(ur)) possible orientations to beveri�ed for an ourrene of P . For those orientations, M hanges but F q(�) does not hange.2.4 Spiral Reads and SistringsEah ell of the text de�nes a string whih is obtained by reading text positions at inreasingEulidean distanes from the enter of the ell. The �rst harater is that of the ell, then omethe 4 losest enters (from the ells above, below, left and right of the entral ell), then the other4 neighbors, and so on. The ells at the same distane are read in some prede�ned order, theonly important thing is to read the ells in order of inreasing distanes from the entral ell. Ifsuh a string hits the border of the text it is onsidered �nished there. We will all sistrings (for\semi-in�nite strings") [24℄ the strings obtained in this way. Figure 2 shows a possible readingorder.
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(a) (b) (c)Figure 2: A spiral reading order for the sistring that starts in the middle of a text of size 5�5. Figure(a) shows the reading order by enumerating the ells, and �gure (b) shows the enumeration graphi-ally. Figure () shows the olor values of the ells of the image, so for that image the sistring orre-sponding to the reading order is h3; 2; 19; 2; 6; 7; 5; 5; 28; 3; 12; 1; 12; 13; 31; 1; 56; 1; 9; 23; 22; 2; 2; 3; 4i.Note that, by reading ells in inreasing distane from the enter, we are making good use of theO(m3) bound on the number of angles. Say that we have read ` ells in spiral order from patternand text and want to determine whether there is a math or not. Sine we are at distane O(p`)from the enters, there are only O(`3=2) relevant rotations to onsider, aording to Setion 2.1.2.5 Sistring Trie and TreeOur index data struture is a trie [6℄, a well-known tree struture for storing strings. Eah trie nodedenotes a pre�x of some string. Eah tree edge is labeled by a harater. The root node representsthe empty string, and if node v desends from node u by an edge labeled a, and if u representspre�x s, then v represents pre�x sa. Nodes that represent a omplete string in the set are markedwith a pointer to that string. 7



It should be lear that it is possible to searh for string s in time O(s) over a trie that storesany set of strings of any size. It is just a matter of stepping down from the root node following theharaters of s. If at any point there is no proper edge to follow, then s is not in the set. If wetraverse the whole s, then the whole subtree of the urrent node ontains the strings with pre�x s.In partiular, if the urrent node is marked then we have found string s. At this point it should belear that a trie an be built in time proportional to its size, by inserting the strings one by one.To save spae, we assume that the strings in the set are stored separately. Hene, as soon assome trie node represents the pre�x of a unique string, we remove all the unary path that desendsfrom it and make the node a leaf in the trie, with a pointer to the proper string. The searhalgorithm must be slightly modi�ed so as to ontinue omparing s diretly against the string onea leaf node has been reahed. As a result, internal trie nodes represent pre�xes shared by at leasttwo strings, and leaf nodes represent the whole unique strings.As explained in Setion 2.4, eah text ell de�nes a sistring of length O(n2). A trie built onthose strings will be alled the sistring trie. This time, pointers to strings are replaed by textoordinates, whih represent the starting point of the spiral that reads the orresponding sistring.It is well known that a trie built on n2 random strings has on average O(n2) nodes (insteadof the worst ase O(n4)) and O(log�(n2)) depth. In fat this also happens when strings are notindependent, under rather general onditions [29, 30℄. It is not hard to see that suh a trie an bebuilt in O(n2 log� n) time by suessive insertions.Alternatively, the unary paths of suh a trie an be ompressed so as to form a sistring tree, justlike when ompressing suÆx tries to suÆx trees [6℄. Eah edge is labeled now by a string, whih isrepresented in onstant spae by a text enter and a range of values in a spiral read from that enter.This will yield the haraters of the string represented. Sine the resulting tree is at least binaryand has O(n2) leaves, it follows that it has O(n2) nodes overall, in the worst ase. For simpliity,we desribe our algorithms on a sistring trie, although they run with the same omplexity oversistring trees.We �nish with folklore property of the sistring trie that is important for some analyses in thispaper. We show that, under a uniform model, the number of sistring trie nodes at depth ` is onaverage �(min(�`; n2)). Roughly, this is to say that in levels ` � h, for h = log�(n2) = 2 log� n,all the di�erent strings of length ` exist, while from that level on the �(n2) sistrings are alreadydi�erent. In partiular, this means that nodes deeper than h have O(1) hildren beause there existsonly one sistring in the text with that pre�x of length h (note that a sistring pre�x is graphiallyseen as a spiral inside the text, around the orresponding text ell).To prove this property we onsider that there are n2 sistrings uniformly distributed aross �`di�erent pre�xes of length `, for any `. The probability of a given pre�x not being \hit" after n2\attempts" (sistrings) is (1� 1=�`)n2 , so the average number of di�erent pre�xes hit (i.e., existingsistring trie nodes) is�`(1� (1� 1=�`)n2) = �`(1� e��(n2=�`)) = �`(1� e�x)for x = �(n2=�`). Now, if n2 = o(�`) then x = o(1) and 1� e�x = 1 � (1 � x+ O(x2)) = �(x) =�(n2=�`), whih gives the result �(n2). On the other hand, if n2 = 
(�`) then x = 
(1) and theresult is �(�`). Hene the number of sistring trie nodes at depth ` is on average �(min(�`; n2)),whih is the same as in the worst ase. Indeed, in the worst ase the onstant is 1, that is, thenumber of di�erent strings is at most min(�`; n), while on average the onstant is smaller.8



2.6 Optimal Multipattern Exat String MathingIn [11℄ a one-dimensional multipattern exat searh algorithm using a suÆx automaton was pro-posed. A suÆx automaton built on a set of strings is the smallest deterministi automaton able ofreognizing any suÆx of any string in the set. The automaton is not omplete, that is, edges thatannot lead to aeptane are not present. When traversing it, we will have an edge to follow aslong as we have read a substring of some of the patterns.The algorithm works basially as follows. Assume all the patterns are of the same length m.We build the suÆx automaton over the set of reversed patterns (that is, read bakwards). Thenwe slide a window of length m over the text. Eah window is read from right to left, and theharaters are input to the suÆx automaton. This proess an �nish in two possible ways. First,it may happen that we have no edge to follow in the automaton. This means that the suÆx of thewindow read is not a substring of any pattern in the set, so no window overing the suÆx readan ontain a math. In this ase we an safely shift the window so it starts right after the lastharater read. Seond, we an reah the beginning of the window, whih means that we have reada string of length m whih is a substring of some pattern of length m, that is, we have reognizeda pattern in the set and we report it. We shift the window by one position.The above sheme is a bit simpli�ed. In fat the algorithm uses the suÆx automaton also toremember the last position in the suÆx read where the automaton reognized a suÆx of somereversed pattern. SuÆxes of reverse patterns are reverse pre�xes of patterns. It is not hard to seethat, no matter how the proessing of the urrent window �nished, we an shift it so that it isaligned to the last pre�x reognized.We show now that this algorithm takes average time O(n log�(rm)=m) to searh a text oflength n for r patterns of length m. Let us say that we have read ` haraters from the suÆx ofa text window with the suÆx automaton. Let us all s the string just read. There are r di�erentpatterns where s ould math. Inside eah of these, there are m � ` + 1 positions where s ouldmath. Hene the probability of s mathing any substring of any searh pattern is at most rm=�`.This is smaller than 1=m2 provided ` � log�(rm3), so for now on let this be the value of `. Letus pessimistially assume that ` haraters are always read, that if at that point s mathes anysubstring of any pattern (with probability 1=m2) then we read the whole window (at ost O(m))and shift the window by 1 position, and that otherwise we shift the window by m� ` positions.On a text of length n the number of window veri�ations is on average O(n=m2), and eah ostsO(m), so this part adds a negligible O(n=m) ost. The sanning time dominates. The averagenumber of windows proessed is O(n=(m � `)) and eah osts O(`) harater inspetions, yieldingan overall average searh time of O(n log�(rm3)=(m� log�(rm3))), whih is O(n log�(rm)=m). Weshow that this omplexity is indeed optimal in [13℄.An additional improvement in [11℄ is to ombine the bakward sanning with a Aho-Corasik-like forward sanning [1℄, so as to ensure linear worst ase time for the algorithm.The spae requirement of the suÆx automaton is O(rm), one state per eah suÆx of eahpattern.
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2.7 Optimal Multipattern Approximate String MathingIn [13℄, two algorithms for one-dimensional multiple approximate string mathing were presented.They permit searhing for r patterns of length m allowing up to k insertions, deletions and substi-tutions in a text of length n. The �rst has optimal average searh time O(n(k + log�(rm))=m) fork=m < 1=3�O(1=p�). The seond has average searh time O(n) for k=m < 1=2 �O(1=p�).The algorithms preompute, for every possible string of length `, the minimum number ofharater insertions, deletions and substitutions needed to math them somewhere inside somepattern in the set, that is, the minimum Levenshtein distane against any substring of any pattern.Hene, an optimal algorithm works as follows. It divides the text into bloks of length (m�k)=2,so that every possible math must ontain a omplete blok. Then, eah blok is proessed asfollows: suessive non-overlapping `-grams (that is, substrings of length `) are read from theblok, and their preomputed minimum distanes are aumulated. If, before reahing the endof the blok, the aumulated di�erenes exeed k, then the blok an be safely abandoned sinethere is no way to math those `-grams inside any partiular pattern with few enough di�erenes.Otherwise, we reah the end of the blok without totalizing k + 1 di�erenes and must verify theblok with a lassial algorithm.For the purposes of this paper, the analysis an be rephrased as follows. Let p(`; ) be theprobability of two random strings of length ` mathing under a given mathing model (Levenshteinin [13℄) with at most ` di�erenes. Pessimistially, assume that we will verify the blok as soonas we �nd one `-gram whose preomputed minimum distane is less than `, for some onstant to �x later. Otherwise we will abandon the blok after testing 1 + dk=(`)e `-grams. For this tobe orret it must hold ` k=(`) � (m � k)=2, or 2k=(m � k) < , otherwise we proess all thebloks anyway without any sublinearity. Proessing eah `-gram takes time O(`). The probabilityof verifying a blok is O(p(`; )mrk=(`)) beause eah of the k=(`) `-grams an math any patternat any position, and the ost of veri�ation is O(m2r). Hene the searh ost has two omponents:O(n(`+k=)=(m�k)) to san the `-grams of eah window, and O(nm2r(p(`; )mrk=(`))=(m�k))for the veri�ations.In order to make veri�ations negligible ompared to sanning, it is suÆient that p(`; ) =O(1=(m3r2)). Under the Levenshtein model, it holds p(`; ) = `=` where  = 1=(�1�2(1 �)2(1�)). Hene it is neessary that  < 1 � e=p� to make  < 1, as otherwise veri�ationost is very high. For suh , hoosing ` = log1=(m3r2) = �(log�(mr)=(1 � )) gives an overallsearh ost of O(n(log�(mr)=(1 � ) + k=)=(m � k)), whih must be optimized for  in the range2k=(m � k) <  < 1 � e=p�. For the range of  values to be nonempty we need k=m < (1 �e=p�)=(3 � e=p�) = 1=3 � O(1=p�). In fat, any onstant  in the range will yield the optimalomplexity, and it will be within bounds as long as k=m is bounded away from 1=3. Hene thealgorithm is O(n(k + log�(rm))=m) for k=m < 1=3�O(1=p�).A seond algorithm onsists of sanning all the `-grams of the text one by one, and keep theaumulated sum over a sliding text window of length m � k, whih will be veri�ed wheneverthe aumulated sum does not exeed k. The searh time is learly O(n) and the analysis of thepermissible k=m values yields k=m < 1=2�O(1=p�), beause the window is of length m�k insteadof (m� k)=2.The spae requirement of the algorithm is O(m3r2�O(1)) = O(m3r2).10



3 Problem ComplexityIn this setion we prove that the lower bound for the average time of the rotation invariant searhproblem in d dimensions is 
(dnd log�m=md) for the exat model, 
(dnd logm=md) for the minmaxmodel, 
(nd(k + d log�m)=md) for the mismathes model, and 
(nd(k=� + d log�m)=md) for theaumulated model. Worst ase omplexity is known to be O(m3n2) for all these models, in twodimensions [3℄.For the average ase results of this proof and the rest of the paper, we state our probabilistimodel. We assumed that the ells of pattern and text are independent random variables hosenuniformly from an alphabet of size �. Several of our results an be extended to nonuniform proba-bilities, as long as we replae � by 1=p, where p < 1 is the probability that two random ells hosenfrom the pattern and the text math.The exat number of relevant rotations in d dimensions is unknown. Partiular ases are knownfor d = 2 (O(m3) [17℄) and d = 3 (O(m11) [20℄). However, it seems lear that it is 
(md�1) beauseeah ell of P an be fored, by rotations, to math any of the O(md�1) text ells that are atthe same distane to the enter. On the other hand, there annot be more than mO(d3) relevantrotations. The reason is that there are �d2� = O(d2) rotation planes. For eah suh plane we anassume that, one all the other rotations at other planes are �xed, eah ell of P an be made tomath O(m) di�erent ells of P , for a total of O(md+1) rotations regarding that rotation plane.We �nally an assume that eah hoie of rotation for eah rotation plane produes a di�erentombination, so we have overall O((md+1)d2) = O(md3) possibilities. Therefore, although we knowvery little about the number of rotations in d dimensions, we have that they are �(m�(d)), where�(d) = poly(m) (in partiular, d� 1 � �(d) � (d� 1)d(d + 1)=2. This will be enough for us.3.1 Exat and MinMax ModelsUnder our probabilisti model, there exists a general lower bound for d-dimensional exat patternmathing. In [34℄ Yao showed that the one-dimensional string mathing problem requires at least
(n log�m=m) omparisons on average, where n and m are the lengths of the text string and thepattern respetively. In [25℄ this result was generalized for the d-dimensional ase, for whih thelower bound (without rotations) is 
(nd log�(md)=md) = 
(dnd log�(m)=md).The above lower bound also holds for the ase with rotations allowed, as exat pattern mathingredues (as a speial ase) to mathing with rotations. To searh for the pattern exatly, we �rstsearh for it allowing rotations, and one we �nd an ourrene we verify whether or not the rotationangle is zero. Sine in 2D there are O(m3) rotations [17℄, on average there are O(n2m3=�m2) our-renes. Eah rotated ourrene an be veri�ed in O(m2) time (indeed, O(1) average time using theresults of the present paper, but this is not relevant). Hene the total exat searh time (et) is thatof searhing with rotations (rt) plus O(n2m5=�m2) = o(n2 log�(m)=m2) for veri�ations. Beause ofthe bound in [25℄, et = 
(n2 log�(m)=m2) = rt+o(n2 log�(m)=m2), and so rt = 
(n2 log�(m)=m2)as well. This argument an be easily generalized to d dimensions beause there are O(ndm�(d)=�md)mathes to verify at O(md) ost eah, and hene ndmd+�(d)=�md = o(nd log�(md)=md). Hene weget a general bound of 
(nd log�(md)=md) = 
(dnd log�(m)=md) omparisons.This result is easily generalizable to the minmax model if we onsider that eah text ell mathesa range of values. The size of the range is the average di�erene between the maximum and11



minimum of 9 values (that is, its neighboring ells) uniformly distributed over �. It is easy to seethat the maximum over t uniformly distributed disrete random variables in the interval 1 : : : �is on average � �t=(t + 1), and the minimum is � �=(t + 1), hene the average di�erene isbounded above by �(t � 1)=(t + 1). Sine in our ase t = 9, we have that the average size ofour range is (4=5)� (this pessimisti bound is tight, as the relative error is O(1=�)). Hene themathing probability is 4=5 instead of 1=� and log�m beomes O(logm), yielding a lower boundof 
(n2 log(m)=m2). In d dimensions t = 3d, so the 4=5 beomes (3d � 1)=(3d + 1) and log5=4mbeomes log(m)=(log(3d + 1)� log(3d � 1)) = log(m)=�(1=3d). Therefore the lower bound for theminmax model in d dimensions is 
(d3dnd log(m)=md).3.2 Mismathes and Aumulated ModelsA lower bound for the k di�erenes problem (approximate string mathing with � k mismathes,insertions or deletions of haraters) was given in [10℄ for the one dimensional ase. This bound is
(n(k + log�m)=m), where n is the length of the text string and m is the length of the pattern.This bound is tight; an algorithm ahieving it was also given in [10℄.This lower bound an be generalized to the d-dimensional ase also. By [25℄, exat d-dimensionalsearhing needs 
(nd log�(md)=md) omparisons, and this is a speial ase of approximate mathing.Following [10℄, we divide the text into nd=md disjoint \windows", that is, hyperubes of size md.Hene, at least k + 1 symbols of eah window have to be examined to guarantee that the windowannot math the pattern. So a seond lower bound is 
(knd=md). The lower bound 
(nd(k +log�md)=md) = 
(nd(k + d log�m)=md) follows, without onsidering rotations.We an apply the same redution as before to show that the bound is also valid when ro-tations are permitted. The only deliate part of the redution is to ensure that ndmd+�(d)p =o(n2 log�(md)=md), where p is the probability that the pattern mathes some text position at somegiven rotation. Aording to Appendix A, p � �mdk �=�md�k. Substituting we get that our bound isvalid for k=md < 1=(1 + d log�m)(1 + o(1)). However, for larger k the lower bound is also valid,simply beause the number of ourrenes to report by a rotation invariant searh is on averagendm�(d)p = 
(n2 log�(md)=md), and we annot work less than the size of the output.To generalize this result for the aumulated model, we have to take into aount that (k+1)=�ell inspetions may be suÆient to disard a window, so the lower bound beomes just 
(nd(k=�+d log�m)=md). Considering the results of this paper, however, we onjeture that this bound is nottight, and that it ould be improved to 
(nd(k=�+ d logm)=md). If we onsider that the alphabetsize is a onstant, however, both bounds are indistinguishable.3.3 Worst Case ComplexityWith respet to worst ase omplexity, it has been shown in [3℄ to be O(m3n2), for the exat andany other of our models. They give an optimal worst-ase algorithm for exat searhing. In thispaper we show that this an be obtained simultaneously with average-ase optimality.In d dimensions, this worst-ase lower bound generalizes to O(m�(d)nd), although unfortunatelywe know little about the exat value of �(d), exept that it is between d� 1 and (d� 1)d(d+1)=2.
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4 A Worst-Case Optimal AlgorithmIn [3℄ it was shown that for the problem of two dimensional pattern mathing allowing rotations theworst ase lower bound is 
(n2m3). They give an algorithm with suh omplexity. In this setionwe show a simple algorithm with the same omplexity that works for any of our mathing models.In [20℄, a 3D algorithm is presented for the mismathes model whih involves an idea that anbe exploited muh further. We reuse that idea and onvert it into an optimal worst-ase algorithm.Assume that, when omputing the set of angles A = (�1; �2; : : :) to math the pattern, we alsosort those angles so that �i < �i+1, and assoiate with eah angle �i the set Ci ontaining theorresponding text ell enters that must hit a pattern ell boundary at �i. Hene we an evaluatethe number of mismathes for suessive rotations of P inrementally. That is, assume that thenumber of mismathes has been evaluated for �i, then to evaluate the number of mismathes forrotation �i+1, it suÆes to re-evaluate the ells restrited to the set Ci+1. This is repeated for eah� 2 A. Therefore, the total time for evaluating the number of mismathes for P entered at someposition in T , for all possible angles, is O(Pi jCij). This is O(m3) beause eah �xed ell enter ofT , overed by P , an belong to O(m) di�erent Ci sets. To see this, note that when P is rotated thewhole 360 degrees, any ell enter of T is touhed by O(m) ell boundaries of P (see Setion 2.1).Therefore, it suÆes to apply the above algorithm for eah of the n2 possible text positionsin order to solve the exat, minmax2, and mismathes problem in O(n2m3) worst ase time. Theaumulated problem is easily solved in the same time by (re)omputing absolute di�erenes insteadof number of mismathes.In fat, the algorithm is very exible, and an be adapted to many other mathing models aswell. Its spae requirement is O(m3).All the algorithms that follow from now on are �lters that disard most of the text positionsand orientations, and hek a small subset of the andidates. Although we will use a di�erentveri�ation algorithm that is faster on average, their same average omplexity an be ahieved ifwe replae their veri�ation algorithm with the one we have just desribed. Hene, without a�etingtheir good average omplexity (optimal in most ases), we have that all these algorithms will bealso optimal in the worst ase, sine the worst that an happen is that they have to verify all thetext positions and orientations, just as we have assumed here. We only have to make sure that wedo not verify the same text position more than one.5 The Exat ModelIn [17℄ only a set of features of length m rossing the enter of P is extrated from P , that is,q = m+12 and u = m (see Setion 2.3). The text is then sanned row-wise for the ourrene ofsome feature, and upon suh an ourrene the whole pattern is heked at the appropriate angles.Aording to Setion 2.1, they have to hek O(m) angles per ourrene, and sine eahveri�ation takes O(1) time on average, their average veri�ation ost is O(m). Overall, theiralgorithm is O(n2), dominated by multipattern text searh for the features using an Aho-Corasikmahine [1℄.2In this ase reomputing a ell means onsidering a new 9-ell set. This is onstant but depends on the dimension.A truly onstant-time solution is to preompute, for eah ell of P , the range of values permitted given its neighbors.13



In [19℄ the possibility of using features of length u � m is onsidered, sine it redues the spaeusage and number of rotations.We show now how to improve both searh and veri�ation time. In whih follows we assumethat the features are of length u � m, and later �nd the optimal u.5.1 Faster SearhIn [8℄ a 2-dimensional searh algorithm (not allowing rotations) is proposed whih works by searh-ing for all the pattern rows in the image. Only every m-th row of the image needs to be onsideredbeause one of them must ontain some pattern row in any ourrene.We take a similar approah. Instead of taking the O(u2) features that ross the enter of thepattern, we also take some not rossing the enter. More spei�ally, we take features for q inthe range m�r2 + 1 : : : m+r2 , where r is an odd integer for simpliity. For eah suh q, we read thefeatures at all the relevant rotations. This is illustrated in Figure 1.This allows us to searh only one out of r image rows, but there are O(rumax(r; u)) featuresnow (sine the farthest feature ell is at distane max(r; u) from the pattern enter). Figure 1 alsoshows that the features may beome shorter thanm when they are far away from the enter and thepattern is rotated. On the other hand, there is no point in taking features farther away than m=2from the enter, sine in the ase of unrotated patterns this is the farthest we an go. Therefore wehave the limit r � m. If we take features from r = m rows then the shortest ones (for the patternrotated at 45 degrees) are of length (p2� 1)m = �(m). Note that some features do not ross thepattern enter, but they are still �xed if the pattern enter mathes a text enter.The searh time per harater is independent on the number of features if an Aho-Corasikmahine [1℄ is used. Alternatively, we an use a suÆx automaton (dawg-math algorithm) [11℄ toget optimal average searh time. The worst ase time for the suÆx automaton is the same as forthe Aho-Corasik automaton.5.2 Faster Veri�ationWe show how veri�ations an be performed faster, inO(1) average time instead of O(m). Note that,between to onseutive angles of this O(m)-size set, there are many text ells that atually maththe same pattern ell, so by heking eah rotation separately we are unneessarily reomparing alot of ells. Our idea is to reompare ells only when neessary.Imagine that a feature taken at angle � has been found in the text. Sine the feature has lengthu and its farthest ell an be at distane at least u from the enter, there at most O(m3=u2) di�erentangles to hek, whose limits we all 1 to K , and we have i � � < i+1.We will show �rst an overkill tehnique that is O(1), and then will turn into pratial eÆienyonsiderations. Let us assume that we want to hek for an ourrene entered at a given textposition, for any possible orientation.The idea is that, instead of heking eah orientation separately, we interleave heking andorientation re�ning. We perform a spiral read of the text around the position of interest, as inSetion 2.4. If the text enter does not math the pattern enter, we �nish immediately. Otherwise,at any moment, we have a set of ranges of orientations in whih the pattern has mathed the text14



up to now. In the beginning, after we see that the enters math, our range set ontains a singlerange of 360 degrees.Eah time we read a new text ell, we onsider all the ative orientation ranges. For eah suhrange, the text ell enter may be overed by one or more di�erent pattern ells. If there is morethan one hoie of pattern ells, then we split the orientation range under onsideration into severalsmaller ranges and replae them in the set. After this operation, eah range gives us a single hoieof whih pattern ell should math the urrent text ell. Now, we remove from the ative rangesall those where the text ell does not math the pattern ell. We repeat the proess until eitherthere are no more ative ranges or we have heked all the pattern ells for a given range. In thelatter ase we report the ourrene of P .Let us analyze this algorithm. Say that we are reading the `-th text ell in a spiral read. Thismeans that we are at distane O(p`) from the enter, and therefore there are O(`3=2) relevantorientations up to now (Setion 2.1). For eah suh orientation, we will read the new text ell onlyif all the previous ` � 1 ells have mathed in this �xed orientation, and if the text and patternenters have mathed initially. Hene the total ost of the algorithm is the sum of the text ellsread for eah orientation for every `, whih isO(m2)X̀=1 O(`3=2)=�` = O(1)This shows that even the least orientation-restrited veri�ation an be done in onstant averagetime if we leverly interleave heking and orientation restrition. Note that the algorithm an usebaktraking instead of atually keeping a set of ative orientations.It is interesting that, using this smart veri�ation tehnique, we would obtain O(n2) averagesearh time, just by heking every text ell.If we use the tehnique for veri�ation of mathing features, then the initial angle range will bemuh smaller than the 360 degrees we start with. Indeed, all the pattern ells loser to the enterthat the farthest feature ell are heked with a single orientation, and the inremental proessdesribed above is started only in order to hek ells that are farther away.Note that this result holds even if the ell values are not uniformly distributed in the range1 : : : �. It is enough that there is an independent probability p < 1 of math between a randompattern ell and a random text ell, in whih ase � is replaed by 1=p.5.3 AnalysisThe average searh time of the suÆx automaton for s features of length u is O(n2 log�(su)=(r(u�log�(su)))): There are su feature suÆxes to math, so we examine O(log�(su)) haraters onaverage before abandoning eah text window, and shift the window by O(u � log�(su)) positions.We are searhing for s = O(rumax(r; u)) features (ounting all their rotations). Finally, we sanonly every r-th row of the text.The veri�ation time per feature that mathes is O(1) as explained, and there areO(rumax(r; u)=�u) features mathing eah text position on average. This results in a total searhost of O n2r  log�(ru2max(r; u))u� log�(ru2max(r; u)) + rumax(r; u)�u !!15



The optimum is at r = u = �(m), whih leads to total average timeO(n2(log�(m)=m2 +m2=�m)) = O(n2 log�(m)=m2)whih is average-optimal. So the exat mathing problem an be solved in optimal average timeO(n2 log�(m)=m2). The spae requirement of the suÆx automaton is O(m4).Again, this analysis is valid for non-uniformly distributed ell values, by replaing 1=� by p, theprobability of a math between random pattern and text ells.If we want to make this algorithm worst-ase optimal at the same time, we must resort to theO(m3) veri�ation tehnique of Setion 4 instead of our onstant-time veri�ation. In this ase theaverage searh ost with r = u = �(m) stays optimal:O(n2(log�(m)=m2 +m3 m2=�m)) = O(n2 log�(m)=m2)5.4 Indexed SearhingLet us now onsider that we have built a sistring trie over T (Setion 2.5). A simple searh approahis to onsider all the O(m3) pattern orientations in turn and searh eah one in the sistring trie.To hek the pattern at a given orientation we have to see in whih order the pattern ells have tobe read so that they math the reading order of the sistring trie onstrution.Figure 3 shows the reading order indued in the pattern by a rotated ourrene, using thespiral reading order given in Figure 2. For eah possible rotation we ompute the indued readingorder, build the string obtained by reading the pattern in that order from its enter, and searh thatstring in the sistring trie. Note in partiular that some pattern ells may be read twie and othersmay not be onsidered at all. Observe that in our example the ells numbered 30, 32, 34, and 36are outside the maximum irle ontained in the pattern, and are therefore ignored in the sistringtrie searh. This is beause those values annot be used unless some trie levels are skipped in thesearh, whih would mean entering into all the branhes after reading ell number 20. Rather, weprefer to hek the surviving andidates diretly in the text. Finally, text ells 21-29, 31, 33, 35,and 37- all fall outside the pattern.As in Setion 5.2, we an do better. We do not need to onsider all the O(m3) orientationsfrom the beginning, beause of two reasons: (1) when we are not reading far away from the patternenter, many of those rotations are indistinguishable; (2) we may have found no string in the textequal to the pattern long before reading all the pattern ells.The main idea is to use the sistring trie to verify all the text positions simultaneously. Justas in Setion 5.2, we start by onsidering the pattern enter and a single orientation range of 360degrees. We re�ne the relevant angles as we get farther away from the enter, so that there isalways a single pattern ell to math. However, instead of diretly omparing a partiular text ellagainst our pattern ell, we try to desend in the trie using the urrent pattern ell value. In thisway, we searh all the possible text positions at the same time.Our algorithm reads deeper and deeper ells in the sistring trie, and onsiders �ner rotations(hene entering more than one trie branh at times) as it gets farther away from the pattern enter.When the pattern ells are exhausted (that is, we have reahed the end of the pattern in our spiralread), the rest of the pattern ells are diretly veri�ed in the text individually, for eah text positionthat has survived up to now, using the algorithm of Setion 5.2.16
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(a) (b) (c)Figure 3: Reading order indued in the pattern by a rotated ourrene. (a) shows thepattern superimposed on the image, (b) shows the enumeration of the indued reading or-der, and () shows the olor values for the pattern ells. The orresponding string ish3; 2; 4; 2; 6; 7; 5; 5; 12; 9; 19; 9; 5; 6; 7; 3; 1; 7; 1; 1; 3i. Cells numbered 30, 32, 34, and 36 are ignored inthe trie searh.Let us analyze this algorithm. The number of rotations grows as we get farther from the enter,and they are tried only on the existing branhes of the sistring trie. That is, when we reah depth` in the sistring trie we are onsidering a pattern ell whih is at distane O(p`) from the enter,and hene we need to onsider O(`3=2) di�erent rotations (Setion 2.1).The fat that on average every di�erent string up to length h = O(log� n2) exists in the sistringtrie (Setion 2.5) means that we always enter until depth h. The number of sistring trie nodesonsidered up to depth h is thus hX̀=1 `3=2 = O(h5=2)At this point we have O(h3=2) andidates that are searhed deeper in the sistring trie. Now,eah suh andidate orresponds to a node of the sistring trie at depth h, whih has O(1) hildrenbeause there exist O(1) text sistrings that share this pre�x with the pattern (Setion 2.5, a \pre�x"here means a spiral around the pattern enter).A simple way to see this proess is to onsider that following a unary path is equivalent todiretly heking in the text eah andidate that arrived at depth h, instead of using the sistringtrie. Indeed, this is what atually happens beause the trie does not store the �nal unary path,but stores a pointer to the text oordinate as soon as the pre�x beomes unique. Hene, we mayresort to diret text veri�ation long before reahing a border of the pattern. There are O(h3=2)andidates and eah one an be heked in O(1) time using the result of Setion 5.2. Hene thispart of the searh is dominated by the O(h5=2) time spent in the top part of the trie.Therefore we have a total average searh ost of O((log� n)5=2). This assumes that the patternis large enough, that is, that we an read h haraters from the pattern enter in spiral form withouthitting the border of the pattern. This is equivalent to the onditionm2 � 4� log� n2whih is a preondition for our analysis. Smaller patterns leave us without the help of the sistring17



trie long before we have eliminated enough andidates, so their text veri�ation is expensive(O(m3n2=�m2�=4), that is, on average O(�m2(1��=4)) time per result delivered). Note, iniden-tally, that this would be optimal if we searhed for irular instead of square patterns, beause evenif the pattern were very small, one the pattern ells were all used we would have all the results inthe subtrees of our urrent trie node. Hene we would work O(1) time per delivered result, whihis optimal.6 The MinMax ModelIn the MinMax model a math requires that the olor of eah text ell must be between the minimumand maximum pattern olors in the 9-ell neighborhood of the orresponding pattern ell. As itwas shown in Setion 3.1, the probability of mathing between a random pattern and text ell inthis model is p = 4=5. In pratie p is muh smaller than 4=5, as images do not usually have manyolor hanges between neighboring ells [19℄.6.1 Sequential SearhingIn priniple, we an apply our exat searh algorithm as is, just taking are of preomputing therange of olor values that math eah pattern ell in O(m2) time before the searh.The simultaneous searh for multiple pattern features, however, is rather di�erent now. Eahpattern ell has a range of values rather than a single value. Standard string mathing algorithmsdo not work in this senario. The most similar problem is alled \string mathing with lasses",where eah pattern position mathes a set of alphabet values. Although there are some solutionsfor single-pattern searhing, no good multipattern searh algorithms exist [28℄.We opt for expanding the pattern set into the full set of all simple patterns that may resultfrom the given ranges. That is, if a pattern of length 2 has the ranges h[1 : : : 3℄; [2 : : : 3℄i then weexpand it into the 6 patterns h1; 2i, h1; 3i, h2; 2i, h2; 3i, h3; 2i, h3; 3i.If we all �, where 1 � � � �, the random variable telling the range of values of eah featureell, then this expansion yields O(�u) simple features for eah feature of length u. Hene, returningto the analysis in Setion 5.3, we are now searhing for O(�urumax(r; u)) simple features of lengthu. It is not onvenient, however, to analyze the searh time of a a suÆx automaton for this numberof patterns, beause the set is not a general set of patterns, but a rather partiular one.Let us redo the analysis of Setion 2.6 for our partiular ase. Assume that we have read `haraters from the suÆx of a text window with the suÆx automaton. Let us all s the string justread. There are rumax(r; u) di�erent patterns where s ould math. Inside eah of these, thereare u� `+ 1 positions where s ould math. Finally, for eah suh position, there are �` possiblevalues for s that math that position. Overall, the probability of s mathing any substring of anysearh pattern is ru2max(r; u)�`=�`. This is smaller than 1=u2 provided ` � log�=� ru4max(r; u),so for now on let this be the value of `. Now pessimistially assume that ` haraters are alwaysread, that if at that point s mathes any substring of any pattern (with probability 1=u3) thenwe hek the window (at ost O(u) with an Aho-Corasik mahine [1℄) and shift the window by1 position, and that otherwise we shift the window by u � ` positions. On a text of length nthe number of window veri�ations is on average O(n=u2), and eah osts O(u), so this part adds18



a negligible O(n=u) ost. The other ase dominates, yielding an overall average searh time ofO(n log�=�(ru4max(r; u))=(u � log�=�(ru4max(r; u))).To ontinue, onsider that the expetation of � is (4=5)�, and therefore log�=� x = log5=4 x.Substituting, we have that the searh ost for all the features isO n2r  log5=4(ru4max(r; u))u� log5=4(ru4max(r; u))!!where the optimum is learly r = u = �(m), so as to obtain O(n2 log(m)=m2) searh time.Veri�ations still ost O(1) time using the tehnique of Setion 5.2, but their number has raisedto O(n2�urumax(r; u)=�u) = O(n2rumax(r; u)=(5=4)u). This is smaller than the searh ostprovided we hoose u > 5 log5=4m. This is no problem sine u = �(m).A remaining problem is that the size of the automaton is exponential in m, beause we store�u = �O(m) features. A way to irumvent this is as follows. We store every `-sized substring ofevery pattern. Instead of running the real dawg-math algorithm, we run something muh loserto its pessimisti (but still aurate) analysis: We read at most ` haraters in the window, andif the string read still appears in some pattern, then we verify the window with Aho-Corasik andshift it by 1 position. As shown with our analysis, this still has the optimal omplexity. However,now the spae usage is O(�`ru2max(r; u)) = O(m7 log5=4(�)�3), whih is polynomial in m.If we wish to retain the optimal worst-ase omplexity, then we would pay O(m3) for veri�a-tions. We need to hoose u > 8 log5=4m and spend a bit more spae for the automaton (but stillpolynomial in m).6.2 Indexed SearhingIndexed searhing an be adapted as well. In this ase, we do not enter into a single branh of thesistring trie. Rather, for eah pattern ell we follow all the branhes whose olor is between theminimum and maximum neighbor of that pattern ell. The number of branhes qualifying for thenext pattern ell is again a random variable �.Sine there are now O(�`) possible strings that math the pattern pre�x of length `, and O(`3=2)rotations for eah, we touh hX̀=1 `3=2�` = O(h3=2�h)sistring trie nodes up to depth h, beause all those qualifying strings exist up to that depth. Fromthat depth on, we verify the remaining O(h3=2�h) andidates one by one using the O(1) veri�ationtehnique. Therefore, the total omplexity isO(h3=2�h) = O �(log� n)3=2n2 log��� = O �(log� n)3=2n2(1�log� 5=4)� :where the last step is based on that � = (4=5)� on average.7 The Mismathes ModelThis model is an extension of the exat mathing model. An additional parameter k is providedto the searh algorithm, suh that a mismath ours only when more than k haraters have not19



mathed. In this setion we use � = k=m2. We require 0 � � < 1, as otherwise the pattern wouldmath everywhere.7.1 A Robust AlgorithmWe �rst present a 2D version of the inremental algorithm of [20℄, whih runs in O(k3=2n2) averagetime to searh for a pattern in a text allowing rotations and at most k mismathes. This algorithmworks for any k and onverges smoothly to the worst ase O(m3n2) when k tends to m2.Reall the veri�ation tehnique proposed in Setion 4. Then onsider the k mismathes prob-lem. As proven in Appendix A, the mathing probability with k mismathes beomes exponentiallydereasing as soon as we ompare more than kH = �(k) haraters.This suggests the following algorithm for the k-mismathes ase. Chek, for every text position,whether or not it mathes the pattern with k mismathes. However, do not use the whole patternP , but rather the smallest subpattern P 0 of P , with the same enter ell, of size m0 �m0 > kH .Then use the veri�ation algorithm of Setion 4 at eah text position. This has a worst ase ostof O(m03n2).Now, for those text positions where P 0 has been found, ontinue the veri�ation until the wholeP has been mathed or disarded. For this stage, use the veri�ation algorithm of Setion 5.2.Sine at this point we have examined more than m02 > kH ells, the probability of ontinuing theveri�ation is exponentially dereasing at any moment, and therefore ompleting the veri�ationadds only O(1) ost per text ell on average.Overall, we have an average searh time of O(m03n2), whih is O(k3=2n2). Note that thisalgorithm assumes nothing on how we ompare the ell values, so any other distane measure thanounting the mismathes an be also used.We show now how to improve this time omplexity. The results we present next ompletelyovershadow our previous results for this model [16℄.7.2 Approximate FeaturesIf there are k mismathes or less in an ourrene of P and we hoose r features as for exatsearhing, then at least one of the features must appear in the ourrene with at most bk=rmismathes. Otherwise, eah of the r features appears with at least bk=r + 1 mismathes, for atotal of r(bk=r+ 1) > r(k=r) = k mismathes.This folklore property an be used as follows. Instead of sanning one text row out of r as inSetion 5.1, we san one text row out of br=`, for some 1 � ` � r. This guarantees that at least `features of every potential ourrene are sanned. Hene the above argument implies that we ansearh for all the r features allowing bk=` mismathes in their ourrenes. When we �nd suh afeature, we hek the omplete pattern.It turns out that it is trivial to simplify the one-dimensional multipattern approximate searhalgorithms presented in Setion 2.7 so that they permit only mismathes (that is, Hamming dis-tane). Just the preproessing has to be hanged to preompute Hamming instead of Levenshteindistanes.Let us now adapt the analysis. For the optimal algorithm, the windows an be of length m=2now, instead of (m � k)=2. The reason is that an approximate ourrene has length m (instead20



of a minimum length of m � k under Levenshtein model). Hene the �rst requirement on  is2k=m < . Also, we show in Appendix A that, under the mismathes model, p(`; ) = `=p`, where = 1=(�1�(1 � )1�) and  < 1 for  < 1 � e=�. Therefore we get again ` = log1=(m3r2) =�(log�(m3r2)=(1� )) and the analysis follows the same. The hange only a�ets the ondition ofappliability, to 2k=m <  < 1� e=�. We an obtain an optimal algorithm by hoosing a onstant in the interval, whih is not empty as long as k=m < (1� e=�)=(2 � e=�) = 1=2 � e=(4� � 2e) =1=2 � O(1=�). The linear time algorithm follows the same path, the only ondition on k=m beingnow k=m < 1� e=�.7.2.1 Using an Optimal AlgorithmWe searh one out of r=` text rows. Our r features are of length u, and the number of relevantrotations for eah is O(umax(r; u)). Hene the total number of length-u strings searhed for isO(rumax(r; u)). The number of mismathes permitted is k=`. So the searh ost isO n2r=` �k=`+ log�(ru2max(r; u))�u ! = O n2ru �k + ` log�(ru2max(r; u))�!It is lear that ` should be as small as possible. Yet, we have to ful�ll the ondition that thenumber of mismathes divided by pattern length should be away from 1=2. This means (k=`)=u �1=2 � O(1=�), and therefore ` � 2k=u(1 + O(1=�)). Sine we want the smallest possible `, let usset ` = max(1; 2k=u(1 +O(1=�))).Let us �rst assume u > 2k(1 +O(1=�)) and hene ` = 1. The searh ost beomesO n2ru �k + log�(ru2max(r; u))�!where it is lear that we prefer the maximum possible u = r = �(m), whih yields the optimalsearh time O n2m2 (k + log�m)!under the ondition u > 2k(1 + O(1=�)). The maximum possible value for u suh that r =�(m) and still r features of length u an be extrated from the pattern rotated 45 degrees isu = mp2� �2 and r = �m. Hene the ondition under whih we an reah optimal searh time is� < 1=(p2m)(1 +O(1=�)).Let us now assume u � 2k(1 + O(1=�)) and ` = 2k=u(1 + O(1=�)). Hene we have that thesearh ost is O n2ru  k + k log�(ru2max(r; u))u !!where again the best hoie is to have the largest possible u and r, so we set r = �(m) andu = min(2k(1+O(1=�));p2m). First assume 2k(1+O(1=�)) � p2m and hene u = 2k(1+O(1=�)).Then the searh ost is O n2mk (k + log�m)!21



whih is valid only for 2k(1 +O(1=�)) � p2m, that is, � � 1=(p2m)(1 +O(1=�)). This branh isnot interesting, as it is not optimal and is valid in the same k range of the optimal result. Heneassume p2m � 2k(1 +O(1=�)) and then u = �(m). The searh ost beomesO n2m2 �k + km log�m�! = O n2km2 !and this is valid for � � 1=(p2m)(1+O(1=�)). There is another ondition of appliability, however,namely ` � r. This means 2k=u(1 +O(1=�)) � r, that is, 2k(1 +O(1=�)) � ru. The maximum ruthat works for all rotations (in partiular, 45 degrees) is reahed for r = u = m=p2, and thereforethe appliability ondition is � � 1=4(1 +O(1=�)).To summarize, we have optimal searh time O(n2(k+log�m)=m2) for � < 1=(p2m)(1+O(1=�))(hoosing u = mp2� �2, r = �m, ` = 1) and searh time O(n2k=m2) for 1=(p2m)(1 + O(1=�)) �� � 1=4(1 +O(1=�)) (hoosing u = r = m=p2, ` = 2k=u(1 +O(1=�))).7.2.2 An Algorithm for Higher Error LevelsThe seond algorithm in [13℄ is O(n) time for an error level of at most 1 � O(1=�). If we useit for searhing we get O(n2`=r) searh time. Again, we want to minimize ` and therefore ` =max(1; k=u(1 + O(1=�))). The same options as before appear. If k=u(1 + O(1=�)) < 1 then ` = 1and we get a searh time of O(n2=m) that works for � < p2=m(1+O(1=�)). If k=u(1+O(1=�)) � 1then ` = k=u(1 + O(1=�)) and we have u = min(k(1 + O(1=�));p2m). If k(1 + O(1=�)) � p2mwe get again O(n2=m) time, so this branh is not interesting. If k(1 + O(1=�)) > p2m thenwe get O(n2k=m2) time. The other appliability ondition is ` � r, whih translates into � �1=2(1 +O(1=�)).This algorithm gives us two interesting results. First, for the range 1=(p2m)(1 + O(1=�)) �� � p2=m(1 +O(1=�)), we have O(n2=m) time (hoosing u = mp2� �2, r = �m, ` = 1). Seond,for the range p2=m(1 + O(1=�)) � � � 1=2(1 + O(1=�)), we have O(n2k=m2) time (hoosingu = r = m=p2, ` = k=u(1 + O(1=�))). Both are better or equal than the O(n2k=m2) resultobtained with the optimal algorithm, and hene using the optimal algorithm remains interestingonly for � � 1=(p2m)(1 +O(1=�)).Finally, to simplify the presentation of the results, notie that all the three relevant omplexitiesare indeed the optimal O(n2(k + log�m)=m2) in the range of k values where they are appliable.So, overall, we have an optimal algorithm for k=m2 � 1=2(1 + O(1=�)). The spae requirement ofthe feature searh algorithm is O(u5r4) = O(m9), polynomial in m.7.3 Veri�ationWe have not onsidered up to now how the pattern should be veri�ed one a mathing feature hasbeen found. This time veri�ation at O(1) ost is not possible beause we must let k+1 mismathesour before abandoning the veri�ation.The tehnique desribed in Setion 7.1 is useful here. As we have shown, we an hek for allthe potential ourrenes entered any text ell in O(k3=2) average time.The next onern is how many veri�ations we perform on average. Using the same reasoningof Appendix A, the probability of a piee of length u mathing with k=` mismathes is O(u=pu),22



where  < 1 as long as � = (k=`)=u < 1� e=�. On the other hand, we searh for rumax(r; u) suhfeatures, so the total veri�ation ost isO(n2k3=2rumax(r; u)u=pu) = O(n2k3=2m5=2�(m))where the equality is based on our previous deisions r = u = �(m). This is negligible omparedto the searh time as long as  < 1, that is, � = k=(u`) < 1 � e=�. In our algorithms we havetwo ases: (i) ` = 1, u = p2m and k=m2 � p2=m(1 + O(1=�)), where � = k=(p2m) � 1 � e=�implies k=m � p2(1� e=�), whih mathes our previous onditions; and (ii) ` = k=u(1 +O(1=�)),u = m=p2 and k=m2 � 1=2(1 + O(1=�)), where � = k=(k(1 + O(1=�))) = 1 + O(1=�) < 1 � e=�,also mathing our previous onditions. Hene veri�ations do not introdue any new onstraints.In order to ahieve O(m3n2) worst ase time simultaneously, we should use the algorithm ofSetion 4 for veri�ations. This does not hange the onditions under whih veri�ations arenegligible (that is,  < 1), so the average ase stays the same.7.4 Indexed SearhingThe idea of traversing all the relevant branhes of the sistring trie gives several ompliations now.Even for a �xed rotation, the number of sistring trie nodes to onsider grows exponentially withk. To see this, note that at least k haraters have to be read in all the sistrings, whih gives aminimum of 
(�k) nodes to proess. This means in partiular that if k � h then we will onsiderall the n2 sistrings and the index will be of no use, so we assume k < h; still striter onditions willappear later. We �rst present a standard tehnique and then a pattern partitioning tehnique.As in Setion 6.2, we enter into the trie and at the same time perform the rotations inrementally.This time, however, we do not follow only the branh whose label oinides with the next haraterof the pattern. Rather, we enter into all branhes and keep a ount of the number of mismathesfound up to now. Only when this ounter exeeds k an we abandon a branh.As explained, up to depth k we enter into all the branhes of the trie. Sine we assume h > k,we have to analyze whih branhes we enter at depths k < ` � h. Sine all those strings exist inthe sistring trie, this is the same as to ask how many di�erent strings of length ` math a patternpre�x of length ` with at most k mismathes. Resorting again to Appendix A, we have that �k̀��kis a tight upper bound. To this we have to add the fat that we are searhing for O(`3=2) di�erentstrings at depth `. Hene, the total number of trie nodes touhed up to level h iskX̀=1 `3=2�` + hX`=k+1 `3=2 k̀!�k = O h3=2�k hk!!After level h we are left with a number of andidate text positions to verify. There are twoases to distinguish here, aording to Appendix A. First, if h > kH = k=(1� e=�), then when westart the veri�ation we have already seen enough haraters so that the mathing probability isexponentially dereasing. Hene we an apply an inremental veri�ation as in Setion 5.2 and itwill ost O(1) time per veri�ation. Seond, if h � kH , then it holds that �hk�=�h�k = 
(h�1=2),and therefore just the trie searh osts h3=2�k�hk� = 
(hn2), whih is not sublinear.23



Therefore, the ondition for a sublinear searh time is kH < h < m2. This in partiular impliesthat � < 1� e=�. In this ase the searh ost isO h3=2�k hk!! = O �(2 log� n)k+3=2�k�7.5 Partitioning the Pattern into PieesThe above searh time is polylogarithmi in n, but exponential in k. We present now a patternpartitioning tehnique that obtains a ost of the form O(n2�) for � < 1. The idea is to split thepattern into j2 piees (j divisions aross eah oordinate). If there are at most k mismathes in anourrene, then at least one of the piees must have at most bk=j2 mismathes. Otherwise, eahpiee would need at least bk=j2 + 1 mismathes, and the total number of mismathes would bej2(bk=j2+ 1) > j2(k=j2) = k.So the tehnique is to searh for eah of the j2 piees (of size (m=j)�(m=j)) separately allowingbk=j2 mismathes, and for eah (rotated) math of a piee in the text, go to the text diretly andhek if the math an be extended to a omplete ourrene with k mismathes. Note that the �value for the piees stays the same as for the whole pattern, k=m2.The enter-to-enter assumption does not hold when searhing for the piees. However, foreah possible rotation of the whole pattern with the enter-to-enter assumption, it is possible to�x some position of the enter of eah piee inside its text ell. The tehniques developed to readthe text in rotated form an be easily adapted to introdue suh a �xed o�set at the enter of themathing subpattern.Let us onsider a piee of size (m=j)� (m=j) whih is at distane �(m) from the enter of thepattern. The number of relevant rotations for that piee is O((m=j)2m) = O(m3=j2) (Setion 2.1).Sine it is problemati to onsider a spiral searh with inremental rotations for a piee that is notentered, let us devise a more brute-fore approah. We searh for eah of the O(m3=j2) rotationsof eah of the j2 piees separately, for a total of O(m3) independent searhes in the trie.Hene the searh ost for this tehnique beomes O(m3) times the ost to searh for a piee(with a �xed rotation and enter o�set) in the sistring trie plus the ost to hek for a ompleteourrene if the piee is found.If we onsider that (m=j)2 � h, then all the strings orresponding to pattern piees exist in thetrie. Therefore the ost to traverse the sistring trie for a piee at a �xed rotation is equivalent to thenumber of strings that an be obtained with k=j2 mismathes from it. Aording to Appendix A,this is U =  (m=j)2k=j2 !�k=j2On average there are n2=�(m=j)2 text sistrings mathing eah string in U . Eah of these stringshas to be heked in the text for a omplete ourrene. Sine the rotation is �xed, the ost to hekan ourrene is O(k), whih is the average time needed to �nd k mismathes when omparing twostrings (Appendix A). So the total amount of veri�ation work per piee is Ukn2=�(m=j)2 and theoverall ost is m3 U + Uk n2�(m=j)2 !24



Aording to Appendix A, U=�(m=j)2 is of the form (m=j)2=(m=j), where  < 1 if � < 1� e=�.Sine in ase � � 1 � e=� the seond term is not sublinear, let us assume  < 1. It an alsobe seen in Appendix A that  � 1=�. Hene, the �rst term of the formula, U , is of the form(m=j)2�(m=j)2=(m=j) = (�)(m=j)2=(m=j), whih dereases with j. The seond term of the formulais of the form kn2(m=j)2=(m=j) and inreases with j.The optimum is therefore found when both terms meet, that is, j = m=p2 log� n(1 + o(1)),whih inidentally is away by a lower order term from our limiting ondition (m=j)2 � h. (Thefat that it is away only means that the analysis is pessimisti, beause in the last levels not all thedi�erent sistrings exist in the trie.)Expanding the value of , we an writeU = � ����(1� �)1���(m=j)2 = (m=j) = (kn2)�+HH� (�)=qlog� nwhere the equality holds beause the optimal j satis�es (m=j)2 = log�(kn2). For this sake we havede�ned HH� (�) = �� log�(�) � (1� �) log�(1� �):Hene the overall searh time isO m3kplog� n n2(�+HH� (�))!This bound is sublinear as long as � < 1 � e=�. On the other hand, we an onsider to use alarger j, violating the assumed ondition (m=j)2 � h so as to redue the veri�ation time. However,the searh time will not be redued and therefore the time bound will not derease.Note that this time there is no need that the trie be deep enough, as we indeed expet thatthe searh for the piees will stop before reahing the end of the trie. This time the sublinearityis obtained by making the piees large enough to ensure that they will not appear in the text onaverage. All we require is kH � m2 and h � m2 (so j � 1).8 The Aumulated ModelEven more powerful is the aumulated model, whih provides a mismathes-like searh apabilityfor gray-level images. Here, the sum of the absolute di�erenes between text and pattern olorsmust not exeed k. In this setion we all � = k=m2 as before, but this time 0 � � � �.8.1 Sequential SearhingA �rst relevant hoie is to apply the algorithm of Setion 7.1 to this model. Aording to Ap-pendix B, one we have tried more than kA = O(k=�) ells, the probability of mathing withthreshold k beomes exponentially dereasing. With the same method of Setion 7.1 we get anO((k=�)3=2n2) average time algorithm for this model.We an improve the searh by using again the redution to one-dimensional multipattern ap-proximate searhing, as in Setion 7.2. Again, it is trivial to adapt the one-dimensional algorithms25



desribed in Setion 2.7 so that they use a distane de�ned as the sum of the absolute di�erenesbetween pattern and text haraters. Just the preproessing has to be hanged to preompute thesenew distanes instead of Levenshtein distanes.The analysis follows the same lines of Setion 7.2, although this time 0 <  < �. As inSetion 7.2, windows are of length m=2 and m instead of (m � k)=2 and m � k. The probabilityp(`; ) is obtained in Appendix B; we have p(`; ) = `=p`, where  = 2(1 + )1+=(�), whih issmaller than 1 provided  < �=(2e) � 1. Hene we get again ` = log1=(m3r2), but now we havelog(1=) = log � +  log � (+ 1) log(+ 1)� log 2 = log � � log � log 2 +O(1=)= log(�=(2)) +O(1=)and the searh ost of the optimal algorithm beomesO� nm �log�=(2)(rm) + k��whih is not optimal in the range log�mr < k < � log(rm). In fat, it is simpler to assume  = �(�)to obtain O� nm �log(rm) + k���whih is not optimal in the same range, and only by an O(log �) fator3. The range of appliabilityof this solution is given by 2k=m < �=(2e) � 1, that is k=m < �=(4e) � O(1). For the linear-timealgorithm we get a limit of appliability of the form k=m < �=(2e) �O(1).We an repeat step by step the development of Setion 7.2, replaing variable k there byk0 = k=�, to make formulas as similar as possible. The only hanges are (1) searh time ofthe sublinear algorithm is O(n(log(rm) + k0)=m), (2) appliability of the sublinear algorithm isk0=m < 1=(4e)(1 +O(1=�)), (3) appliability of the linear algorithm is k0=m < 1=(2e)(1 +O(1=�)).By following all the details one arrives at O(n2(k=� + logm)=m2) time for � < �=(4e). Thespae remains O(m9). Inidentally, the same would be obtained if we applied the tehnique ofoarsening gray levels presented in [14℄, and ombined it with the algorithms for the mismathesmodel presented in this paper.As usual, we an use the veri�ation algorithm of Setion 4 to ahieve O(m3n2) worst ase timesimultaneously, without major ompliations.8.2 Indexed SearhingAs in Setion 7.4, we have to enter, for eah relevant rotation, into all the branhes of the sistringtrie until we obtain an aumulated di�erene larger than k. We present �rst a standard approahand then a pattern partitioning tehnique.We enter into all the branhes of the sistring trie until we an report a math or the sum of thedi�erenes exeeds k. As we show in Appendix B, the number of strings mathing a given string3In fat, this an be regarded as optimal if we onsider that the alphabet size is a onstant. We have not donethat in this paper for time omplexities. 26



of length ` under this model is at most 2`�k+`k �. Sine up to length h all them exist, we traversehX̀=1 `3=22` k + `k ! = O h3=22h k + hk !!nodes in the trie. As in Setion 7.4, we have that the andidate-wise veri�ation that follows isO(1) per andidate provided h > kA (where kA = k(�=(2e)�1) is the limit de�ned in Appendix B),and it is not sublinear for h � kA.Hene for k > kA the total searh ost isO h3=22h k + hk !! = O �(k + 2 log� n)k(log� n)3=2n2 log� 2�whih is sublinear in n2 for � > 2. On the other hand, � = 2 means that the image is bilevel, andin that ase the mismathes model is the adequate hoie. Hene we obtain sublinear omplexity(albeit exponential in k) for kA < 2 log� n.8.3 Partitioning the Pattern into PieesAs in Setion 7.5, we an partition the pattern into j2 subpatterns that are searhed exhaustivelyin the sistring trie. Again onsidering (m=j)2 � h we have a total searh ost ofm3 U + Uk n2�(m=j)2 !where this time U = 2(m=j)2 (m=j)2 + k=j2k=j2 !aording to Appendix B. Again, looking at the detailed formula, we have that the �rst termdereases and the seond term inreases as a funtion of j. The optimum is found when both termsmeet, whih is again j = m=p2 log� n(1 + o(1)), onsistent with our ondition (m=j)2 � h. Infat, the seond term is dereasing only for � < �=(2e) � 1 (or kA < m2), otherwise the optimumis j = 1, i.e., no pattern partitioning.For this optimal j, the overall omplexity isO m3kplog� n n2(log� 2+HA� (�))!where we have de�ned HA� (�) = �� log�(�) + (1 + �) log�(1 + �):This omplexity is sublinear as long as � < �=(2e) � 1. Again, we an onsider to use a largerj value but the omplexity does not improve. 27



9 Alternative Mathing ModelsIn this setion we onsider the impliations of hanging some of the assumptions we have beenworking on. We reonsider the deisions of (1) de�ning mathing in terms of text ell entersrather than pattern ell enters; (2) assuming the pattern enter has to math a text enter; and(3) stiking to the bidimensional ase.9.1 Considering Pattern CentersWe have onsidered up to now that text enters must math the value of the pattern ells theylie in. This has been done for tehnial onveniene, although an equally reasonable alternativemodel is that the pattern ells must math the text olor where their enters lie in the text. Inappliations it is most likely that one an hoose either way.With respet to sequential algorithms, the main problem is related to extrating pattern featuresto searh for. There may be more than one pattern enter lying at the same text ell, and even nopattern enter at all. This means that, when searhing for features in the text, it might be thatour searh pattern has some positions that do not have to be mathed against the text, or severalpositions that have to be mathed against the same text harater. The resulting string mathingproblem an hardly be solved in optimal or even linear time, so all the average-optimal omplexitieswould be lost.Veri�ation, on the other hand, will not be a�eted by this model hange, beause eah patternell read will have to math against some text ell. We will still be able to hek eah text position inO(1) time for the exat and minmax model, O(k3=2) time on the mismathes model and O((k=�)3=2)time on the aumulated model. Probably the only reasonable hoie to deal with this situationis to use these veri�ation algorithms to hek every text position, with a omplexity equal to n2times the veri�ation ost per ell.Indexed searhing presents similar ompliations, but some surprising opportunities too. Usingpattern enters means that in some branhes of the sistring trie we may have more than oneondition to meet (whih may be inompatible and then the branh an be abandoned under somemodels) or there may be no ondition at all, in whih ase we have to follow all the branhes atthat level of the trie.On average, however, we still have �(`) onditions when entering in the sistring trie with apattern string of length `, and therefore all the time bounds remain the same. The reason behindthis is the same that permits retaining the omplexity of veri�ation.We present two ases where it turns out to be possible to develop new algorithms. The �rst isfor the exat mathing model, where we an have a larger index that searhes faster than with thestandard model. The seond is for the minmax model.9.1.1 The Exat ModelIn the normal index the text sistrings are indexed one at a �xed rotation (zero). When a givenpattern rotation is tried, the pattern is read in rotated form, in an order driven by the text enters.This beomes problemati when using pattern enters, beause some text ells must be skipped andothers read more than one. However, the dual approah beomes feasible. Imagine that the text28



sistrings are read in all the rotated forms. The way to do this is to assume that a rotated patternis superimposed onto it and to read the text ells where the pattern ells, read in order, fall. Thise�etively orresponds to the model we are onsidering in this setion, and would be problematiunder the text-enters model.We onsider then indexing the rotated versions of the text sistrings, instead of onsidering therotated versions of the pattern at searh time. Hene, the pattern is just searhed with no rotations.Imagine that we index all the rotations of the text up to depth H. This means that there will beO(n2H3=2) sistrings, and the size of the sistring trie will grow aordingly.The bene�t omes at searh time: In the �rst part of the searh we do not need to onsiderrotations of the pattern, sine all the rotated ways to read the text are already indexed. Sine weindex O(n2H3=2) strings now, all the di�erent sistrings will exist until depth h0 = log�(n2H3=2) =2 log� n + 3=2 log�H. We �rst assume that H � h0. This means that until depth H we payO(H). After that depth all the surviving positions and rotations are individually onsidered. SineH � h0, there are O(1) andidates, whih are heked in onstant time eah. Hene the overall ostis O(H), and the best hoie is to take H = h0. Therefore h0 must satisfy h0 = 2 log� n+3=2 log� h0,so h0 = x log� n, for any x > 2, will do.This makes the total searh time O(log� n) on average. The spae omplexity beomes nowO(n2(log� n)3=2). The same tehnique an be used for the mismathes and aumulated model, butin that ase the omplexity does not improve signi�antly.9.1.2 The MinMax ModelIn a model where pattern enters are used, it might be more natural to require that the olor ofeah pattern ell is between minimum and maximum olors of the text ells neighboring the onewhere the enter of the pattern ell lies. However, this time the indexed algorithm annot be used.This is beause the ondition to enter into a branh of the sistring trie does not depend only on itsvalue but also on its neighbors.A possible solution to this problem is to generate a new text from the urrent one, wherethe value of eah ell is replaed by a range of values. This range goes from the minimum to themaximum over its 9 neighbors. After this transformation we an searh for the pattern, in priniple,as in the exat model, where equality is rede�ned as that the pattern value must belong to the textrange.However, some problems arise. First, the alphabet of the text is of size O(�2) to aount forall the possible ranges. This hanges h to h = log�2(n2) = log� n. Seond, the searh has to enterinto all the branhes whose value (a range) ontains the value of the urrent pattern ell. Let usall � the number of ranges mathing a random pattern ell. Then, using the same tehniques asbefore, the searh ost of this baktraking isO �(log� n)3=2nlog��� = O �(log� n)3=2n2�log�(5=4)�where for the last step we have onsidered that � � (4=5)�2 on average. This is only a bit worsethan the omplexity under the standard model. Some onsiderations for eÆient implementationof this type of trie an be found in [19℄. 29



9.2 Center to Center AssumptionIt is possible to extend the model by removing the enter-to-enter assumption [18℄. In this asethe number of mathing funtions goes as high as O(m7) instead of O(m3). Despite the algorithmiompliations, sequential omplexities are not a�eted: The exponent of m is either inside loga-rithms (so it is translated just into worse onstant fators) or is divided by funtions exponentialin m (and hene any polynomial in m is the same). The only exeptions are the robust algo-rithms for mismathes and aumulated models, whih now beome O(k7=2n2) and O((k=�)7=2n2),respetively.Indexing tehniques do hange their omplexity. Sine there are O(`7=2) sistrings to searh for atdepth `, the searh time for the exat model beomes O((log� n)9=2). By indexing all the rotationsand enter displaements we get O(log� n) time again, but at a spae ost of O(n2(log� n)7=2).An interesting tehnique that an be used as a pre-�lter based on the enter-to-enter assump-tion, is as follows. Assume that P is at some loation ((u; v); �) on top of T , suh that (u; v) 2 T [i; j℄is not a enter-to-enter translation, and that the number of mismathes is k for that position ofP . Then assume that P is translated to ((i; j); �), that is, enter-to-enter beomes true while therotation angle stays the same. As a onsequene, some ell enters of T may have moved to the ellof P that is one of its eight neighbors. Now ompute the number of mismathes suh that T [r; s℄is ompared against M(T [r; s℄) and its eight neighbors as well. If any of those 9 ells math T [r; s℄,then we ount a math, otherwise we ount a mismath. Let the number of mismathes obtainedthis way be k0.This means that k0 � k, beause all mathes that ontribute to m2 � k must be present inm2 � k0 too. Hene this gives a lower bound on the number of mismathes that our in a math.Hene we use the algorithm with the enter-to-enter assumption, but ount a mismath onlywhen the text ells di�ers from all the 9 pattern ells that surround the one it mathes with. Thenet result in eÆieny is that the alphabet size beomes �0 = 1=(1� (1�1=�)9), meaning that ellsmath with probability 1=�0.This is useful both for the exat and mismathes models, and is easy to adapt to the minmaxand aumulated models.9.3 Three and More DimensionsRotation invariant template mathing in three dimensions has important appliations in mirobi-ology, when searhing some known substrutures (e.g., proteins) from three dimensional models ofbiologial viruses. Mathing models in three dimensions have been de�ned in [20℄.The tehniques we have developed an be extended to d dimensions in a straightforward manner.As seen in Setion 3, in d dimensions, a pattern of size md an be rotated in O(m�(d)) ways, whered� 1 � �(d) = �(poly(m)) � (d� 1)d(d + 1)=2.For exat sequential searhing, for example, we an extrat rd�1 = O(md�1) features of lengthu = O(m), and searh for all them together in the text. It is enough to selet one out of r text rowsalong eah dimension, sine this still ensures that a ube of size md mathing the pattern will touhone of the seleted rows [7℄. Therefore, we have to traverse nd=md�1 text ells, with a multipattern
30



searh for rd�1 features, rotated in O(m�(d)) ways eah. The searh ost isO0� ndmd�1 log� �md�1m�(d)�m 1A = O poly(d)nd log�mmd !whih, at least for onstant d, is optimal (Setion 3.1). It is easy to see that all the other optimalomplexities an be ahieved as well.Similarly, it is possible to adapt the robust algorithms (Setion 7.1) for the mismathes model.After omparing O(k) ells, we are at distane O(k1=d) from the enter, and therefore we haveonsidered O(k�(d)=d) rotations. Hene the average searh time is O(k�(d)=dnd). For the aumulatedmodel this is O((k=�)�(d)=dnd).Finally, it is possible to apply the tehniques of Setion 4 to limit the worst ase to O(m�(d)nd),whih we onjeture is worst-ase optimal.With respet to indexing, the index needs O(nd) spae and is able of exat searhing inO((d log� n)1+�(d)=d) time. For the minmax model there will be 3d neighboring ells, and the 5=4beomes (3d+1)=(3d�1). Hene the searh time will be O((d log� n)�(d)=dnd(1�log�((3d+1)=(3d�1)))) =O((d log� n)�(d)=dnd(1�1=�(3d log �))). For the Hamming model we get O((k + d log� n)k+�(d)=d�k) orO(m�(d)knd(�+HH� (�))=(d log� n)1=d. The formulas for the aumulated model are similar.10 Conlusions and Future WorkWe have addressed the problem of searhing for a two-dimensional pattern in a large two-dimensional image (text), so that the pattern an appear with any rotation in the image. Theproblem has appliations in image proessing, image databases, geographi information systems,and omputational biology, to name a few areas.We have onsidered not only the exat mathing problem but also several mathing models thatpermit a few di�erenes between the pattern and its ourrenes.We have derived average-ase lower bounds for the problem, and designed searh algorithmsthat are optimal on average and in the worst ase simultaneously, for all the mathing modelsunder onsideration. We have also onsidered text preproessing tehniques, whih have resultedin searh times whih are sublinear in the text size. These indexing tehniques an be used tosearh all the images of a library in one shot.The tehniques we desribe here an be implemented, and have been suessfully used to solvesome omputational biology problems [20℄. These ombinatorial tehniques are muh faster thanthose based on the FFT. However, despite that our mathing models permit relaxing the mathingonditions, even more exible mathing models should be addressed in order to losing the gaptowards more ambitious appliations in image retrieval.� In real appliations, images may su�er from deformations beause of several fators. Somemodels permit handling displaement errors suh as insertions/deletions along rows andolumns and in any dimension [7℄, but these do not address rotations. Combining bothwould make up a stronger model. 31



� It would be interesting to generalize the method for saling invariane also, so that the patternand the text do not have to be exatly of the same size. Some work on saling invariane hasbeen arried out [4℄, but rotations have not been addressed.� Another problem that should be addressed is due to di�erent lighting onditions. The patternand the image might have been obtained under di�erent onditions, and hene one image maybe brighter than the other. The pixel values in this ase may di�er onsiderably, even if theimages are taken from the very same objet. In this respet, some reent work on transpositioninvariant string mathing, aimed at musi retrieval, an be adapted to searh under lightinginvariane [27℄.� One general problem for this kind of pattern mathing algorithms is that the pattern templatemay ontain di�erent bakground than the ourrene of the pattern in the text, or some partsof the pattern or its ounterpart in the text may be oluded by some other objets. Onepossible way to solve this to speify whih parts of the pattern are atually relevant and whihare bakground. In pattern partitioning tehniques, we ould require that only some pieesmath.On the other hand, our basi ideas (approximate feature searh, spiral reads) are rather generaland an be applied to address several other mathing models. For example, our approximate featuresearh algorithm an be easily adapted to a variant of the aumulated model where the squaresof the olor di�erenes (rather than their absolute values) are aumulated, with the same timeomplexity. This model is loser to the traditional ross-orrelation approah usually addressedvia FFT. The ross-orrelation omes from the model (a � b)2 = a2 + b2 � 2ab, and the basitraditional ross-orrelation uses the term ab (normalized, sometimes), sine ab orresponds to theonvolutions that an be eÆiently omputed using FFT. Using our algorithms would yield a muhmore eÆient tehnique.Referenes[1℄ A. V. Aho and M. J. Corasik. EÆient string mathing: an aid to bibliographi searh.Commun. ACM, 18(6):333{340, 1975.[2℄ A. Amir, G. Benson, and M. Farah. An alphabet independent approah to two-dimensionalpattern mathing. SIAM Journal on Computing, 23(2):313{323, 1994.[3℄ A. Amir, A. Butman, M. Crohemore, G. Landau, and M. Shaps. Two-dimensional patternmathing with rotations. In Pro. 14th Annual Symposium on Combinatorial Pattern Mathing(CPM 2003), LNCS, 2003. To appear.[4℄ A. Amir and G. C�alinesu. Alphabet independent and ditionary saled mathing. In Pro.7th Annual Symposium on Combinatorial Pattern Mathing (CPM'96), LNCS v. 1075, pages320{334, 1996.[5℄ Amihood Amir. Multidimensional pattern mathing: A survey. Tehnial Report GIT-CC-92/29, Georgia Institute of Tehnology, College of Computing, 1992.32
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A Probability of Mathing under the Mismathes ModelWe are interested in the probability of two strings of length ` mathing with at most k mismathes.For this to hold, at least `� k haraters must math. Hene, the probability of mathing is upperbounded by �k̀��k�` = 1�`�k k̀!where the ombinatorial ounts all the possible loations for the mismathing haraters and �kall the ways to hoose their value. Note that we are permitting to replae a harater by itself,and hene we are inluding the probability of mathing with less than k mismathes as well. Theformula is an upper bound beause, when less than k mismathes exist, we are ounting the samestrings more than one.In the analysis that follows, we all � = k=` and take it as a onstant (whih is our aseof interest, as seen later). We will prove that, after some length `, the mathing probability isO((�)`), for some (�) < 1. By using Stirling's approximation x! = (x=e)xp2�x(1+O(1=x)) overthe mathing probability we have1�`�k  ``p2�`kk(`� k)`�kp2�kp2�(`� k)!�1 +O� 1̀��whih is � 1�1����(1� �)1���` `�1=2  1p2��(1 � �) +O� 1̀�!This formula is of the form (�)` �(1=p`), where we de�ne(x) = 1�1�xxx(1� x)1�xTherefore the probability is exponentially dereasing with ` if and only if (�) < 1, that is,� > � 1��(1� �)1��� 11�� = 1� �1�� (1� �)It is easy to show analytially that e�1 � � �1�� � 1 if 0 � � � 1, so it suÆes that � > e=(1��),or equivalently, � < 1�e=� is a suÆient ondition for the probability to be exponentially dereasingwith `.Hene, the result is that the mathing probability is very high (atually, �(1=p`)) for � =k=` � 1� e=�, and otherwise it is exponentially dereasing, O((�)`=p`), where (�) < 1.Seen another way, we have that the probability of mathing is large as long as` � kH = k1� e=�but from then on it is exponentially dereasing. 35



B Probability of Mathing under the Aumulated ModelWe are interested in the probability of two random strings of length ` mathing with threshold k.Our model is as follows: we onsider the sequene of ` absolute di�erenes between both stringsÆ1 : : : Æ`. The mathing ondition states that Pì=1 Æi � k.The number of di�erent sequenes of di�erenes satisfying this is �k+`` �, what an be seen asthe number of ways to insert ` divisions into a sequene of k elements. The ` divisions divide thesequene into ` + 1 zones. The sizes of the �rst ` zones are the Æi values and the last allows thesum to be � k instead of exatly k. Note that we are pessimistially forgetting about the fat thatindeed Æi � �.Finally, eah di�erene Æi an be obtained in two ways: i + Æi and i � Æi, where i is the i-thharater of the other string (we pessimistially ount twie the ase Æi = 0). Therefore, the totalmathing probability is upper bounded by 2`�` `+ kk !In the analysis that follows, we all � = k=` and take it as a onstant (whih is our aseof interest, as seen later). We will prove that, after some length `, the mathing probability isO((�)`), for some (�) < 1. By using Stirling's approximation x! = (x=e)xp2�x(1+O(1=x)) overthe mathing probability we have2`�`  (k + `)k+`p2�(k + `)kk``p2�kp2�` !�1 +O� 1̀��whih is  2(1 + �)1+���� !` `�1=2  s1 + �2�� +O� 1̀�!This formula is of the form (�)` �(1=p`), where we de�ne(x) = 2(1 + x)1+x�xxTherefore the probability is exponentially dereasing with ` if and only if (�) < 1, that is,2(1 + �)� �1 + 1��� < 1It an be easily seen analytially that (1+1=�)� � e, so � < �=(2e)�1 is a suÆient onditionfor the probability to be exponentially dereasing with `.Hene, the result is that the mathing probability is very high (�(1=p`)) for � = k=` ��=(2e) � 1, and otherwise it is O((�)`=p`), where (�) < 1.Seen another way, we have that the probability is exponentially dereasing for` > kA = k�=(2e) � 136


