Integrated Notation for Software Architecture
Specifications

Maria Cecilia Bastarrica !, Sergio F. Ochoa'!, and Pedro O. Rossel?

! Computer Science Department,
Universidad de Chile,
Blanco Encalada 2120, Santiago, Chile,
{cecilia,sochoa}@dcc.uchile.cl,

2 Departamento de Computacién e Informética,
Universidad Catdlica del Maule,
Av. San Miguel 3605, Talca, Chile,

prossel@hualo.ucm.cl

Abstract. Currently, there are many ways to specify software architec-
tures that address a wide variety of formality and completeness. Gen-
erally, the most formal and complete specifications are the most dif-
ficult to understand, compromising usability and applicability. On the
other hand, informal specifications are usually easier to use and under-
stand, but several design aspects remain underspecified and there is no
way to check for consistency or to reason about the semantics of the
specification. This paper presents an integrated notation for specifying
software architectures that combines simplicity and formality. This no-
tation involves a specification in three levels of abstraction: a graphi-
cal box-and-line diagram, typical from informal specifications that pro-
vides the structural information, an interaction behavior specification
using Input/Output Automata, completely formal and consistent with
the graphical level, and a basis of Larch traits describing the domain spe-
cific abstract data types. In order to show the applicability and usability
of the proposed notation, this paper describes the use of the notation
to specify the architecture of a highly complex mesh management tool.
The proposed notation showed to be very helpful in encapsulating the
tool complexity and allowing developers to model systems with the ap-
propriate level of abstraction.

Keywords. Architecture definition languages, software architecture.

1 Introduction

Software design involves a great deal of art, but this artistic expression in the
absence of rules results in chaotic design [3]. In the last years, software engineer-
ing has matured towards well-defined rules to specify and govern the structure
and dynamics of software systems [8]. As a result, several patterns and modeling
and specification languages were created and validated [23].

Software architecture design is the basis of product design and also one of
the most critical parts. Several architectural patterns have been proposed to
help design the architecture of software systems [4, 35]. If a software system has
a well designed architecture, there is a high probability that the final product
has a good overall design. On the other hand, if the product architecture is not
well designed there is no possibility at all that the product would have a good
design.

However, having a well-designed architecture is not enough to implement,
maintain and extend a software product because if it is not well specified it
will not be well understood. A good design is as important as its specification.
The software architecture community has proposed several architecture defini-
tion languages (ADLs) to specify the structure and the dynamics of software
architectures. Unfortunately, there are too many different ADLs and there is
no clear sign that they will converge to a common standard notation to spec-
ify architectures [7] any time soon. Some ADLs focus on structure, others on
connectors, some of them are domain specific and others are general, so it is
difficult to choose the most appropriate among all the available choices. What
is generally true for all ADLs is that formality and usability are qualities that
seldom go together.

Specifying a system using a formal ADL is generally difficult and requires
trained software architects. Sometimes, the software architecture design may be
correct, but its specification is so complex that it cannot be easily understood and
shared among the development team. To overcome this difficulty, many designers
choose to use informal representations such as box-and-line diagrams or lately
the UML, even though it is largely recognized as not an appropriate form of
specifying software architecture design [2,5]. As a consequence, an informal or
inappropriate architecture specification weakens its effectiveness as a means for
unambiguous communicating and analyzing software systems.

In this paper we present another way of specifying software architectures.
We use already developed and validated specification languages but we orga-
nize them in a different way such that we take advantage of the formality while
not resigning usability. We organize architectural specifications in three abstrac-
tion levels: structural, behavioral and domain specific abstract data types. The
structural specification uses box-and-line diagrams. This would be semiformal if
it were not controlled by the other two levels. The behavioral specification uses
Input/Output Automata (IOA) [11,20,21]. This level provides an IOA specifi-
cation for each box in the structural diagram and a combination of an input
transition in one automaton and an output transition in the other for each line
in the structural diagram. These two levels provide the most important elements
in an architectural specification: structure and behavior. But we still have an-
other lower specification level corresponding to the domain specific abstract data
types. It is implemented using Larch traits [13, 14, 37]. This formalism allows us
to define in all detail the domain specific components that are used in the IOA
behavioral definition.

We have applied the proposed notation for the specification of a 3D mesh
management tool that is being developed at the Computer Science Department
in the Universidad de Chile since last year. We used our notation for specifying
what was already programmed and also for specifying new components that still
need to be developed. In this way we were able to reason about different fea-
tures of the product, mainly about coupling between components and scalability
issues.

In Section 2 we discuss work done on other ADLs and we compare them

with our integrated notation. Following, Section 3 presents a complex mesh
management tool that is currently being extended. The software architecture
design of this tool was specified using the proposed notation and it is presented
in this paper as an example that shows the applicability and usability of our
proposal. Section 4 presents the integrated notation showing how each feature
is used to specify the software architecture of the mesh tool. Finally, Section 5
presents the conclusions and the future work.

2 Related Work

For the last decade, there has been a big effort in developing ADLs in order
to get better architectural design specifications. Examples of these ADLs are
Rapide [19], Wright [1], C2 [24], SADL [26], ACME [10], UML [25], and Dar-
win [22]. Also IOA [12], even though it was not created as an ADL, provides most
of the capabilities required from a common ADL. All these languages provide
formality to architectural specifications, something lacking from box-and-line
diagrams that are still common in professional practice. Formal specifications
reduce ambiguities and promote reusability of architectural designs, and allows
analysis and simulation. Architectural design is specified in terms of compo-
nents, connectors and configurations that represent the structure and behavior
of a software systems [23].

Rapide is a textual event-based language and toolset for specifying and sim-
ulating software architectures. This ADL provides executable features for com-
posing systems out of component interfaces by defining their synchronization
and communication interconnections in terms of event patterns. It has the abil-
ity to model distributed and dynamic systems. It represents components, and in
a minor scale, connectors and configurations.

Wright uses a text-based representation that provides a precise and abstract
meaning to an architectural specification, and allows the analysis of both the
architecture of individual software systems and families of systems. In particular,
work on Wright has focused on the concept of explicit connector types, on the
use of automated checking of architectural properties, and on the formalization
of architectural styles. Wright does not have a good support for configurations.

C2 is a message-based architectural ADL for building flexible and extensible
software systems. A architecture in C2 is seen as a hierarchical network of con-
current components linked together by connectors (or message routing devices)

consistent with a set of style rules. C2 communication rules require that all
communication between C2 components be achieved through message passing.

The architectural description language SADL is intended for the definition
of software architecture hierarchies that need to be analyzed formally. This ADL
can be used to specify both the structure and the semantics of an architecture
by using a textual representation.

ACME is a generic ADL that can be used as a common interchange format for
architecture design tools and/or as a foundation for developing new architectural
design and analysis tools. ACME is text-based, but there are some tools that
generate a graphical representation of its design.

UML is a graphical language for specifying, visualizing, constructing, and
documenting the artifacts of a software-intensive system. It supports multiple
views of a system -both structural and behavioral- especially those included
in [18]. Today many companies are using UML for architectural description,
but formally it is not considered an ADL due to its lack of a formal semantic
to represent the designs. It limits the development of validation tools and the
architectural analysis. In addition, UML is less expressive than typical ADLs; for
instance, UML does not distinguish components and connectors, and does not
have a built-in notion of architecture style constraints. UML is useful to specify
already designed software architectures, but it is not useful to model it [5].

Darwin is a declarative ADL intended to be a general purpose notation for
specifying the structure of software systems composed of a set of software com-
ponents and their interaction mechanisms. It advocates a constructive style of
system design, which leads to a clear separation between program structure,
computation and interaction. Darwin has both a graphical and textual represen-
tation. It has a solid theoretical background based on w-calculus.

Input/Output Automata is a text-based language that has been developed
and applied at MIT for the last 15 years [20,21]. It is a formalism for specify-
ing asynchronous concurrent and potentially distributed components based on
labeled transitions. IOA is not generally considered as an ADL, but it models
components, connectors and configurations, therefore, it has most of the char-
acteristics needed to be an ADL [23].

In summary, ADLs like ACME, Wright, and C2, are based on textual rep-
resentations, which limits readability and understandability of the architectural
design specifications. Text-based notations do not help recognizing and reusing
high level abstractions as design and architectural patterns. In general, it is
natural and efficient to use a graphical representation to aid in the design pro-
cess [28,34]. On the other hand, languages like UML and box-and-line that are
not formally ADLs, are commonly used as design languages. These languages
provides a graphical representation of the architectural design but they have
problems avoiding ambiguities on the architectural design specification because
they do not provide a formal semantic to represent components, connectors and
configurations. It also limits their capability to carry out analysis and validation
of architectural designs.

On the other hand, Darwin could provide a good framework for developing
specifications of architectural designs. The main limitations of this ADL are that
it does not represent connectors and it does not naturally represent hierarchi-
cal designs through component abstractions. This is an important limitation for
scalability. Similar to Darwin, this paper presents a textual and graphical no-
tation to specify software architecture designs. This notation provides a formal
semantics to represent components, connectors, and configurations, therefore it
can be considered an ADL. Also, the proposed notation is well conceived to
model software architectures in a hierarchical way, which is very helpful for non-
experimented software architects.

3 The Application Example: A Mesh Management Tool

There is a group at the Computer Science Department in the Universidad de
Chile developing a mesh management tool based on research on mesh manage-
ment algorithms carried out for the last 15 years. Each algorithm involved is very
complex, so the complexity of a tool integrating about 20 different algorithms is
even greater. There is a personal issue in the fact that people involved in mesh
management research are not very much aware and familiar with good software
engineering practices. They have already had a couple of experiences of letting
a program grow until it is not possible to fix errors anymore and then the whole
effort has aborted. We want a planned development that gives us some warranty
that if we follow the plan, we will get what we expected.

Some components of the tool have already been developed such as a 3D tetra-
hedral mesh visualizer and an interactive refinement component. The generation
of a first good quality tetrahedral mesh is currently under development. Figure 1
shows a screenshot of this partial implementation.

The algorithms necessary for generating, managing and refining geometric
meshes in three dimensions are highly complex [15,30]. We need highly compe-
tent and expensive people for the development and we need to establish a quality
assurance methodology. If we also have the capability of reusing the implemen-
tation of all these algorithms in successive versions of the tool, these products
will have a better opportunity of commercial success [6].

4 Integrated Software Architecture Notation

Two main goals guide our proposal of an integrated notation for software ar-
chitecture specification: formality and usability. These two qualities tend to be
opposed: the more formality we add into a specification, the less understandable
it becomes; the more formality we require from a specification, the more difficult
it is to build it. So we want a specification that is formal enough to avoid all am-
biguity but in a way that developers do not become overwhelmed with notation.
This specification should address structural and behavioral aspects of software
architecture design so that we can understand clearly what the system does and

& REINMA 3D [Refinamiento Interactivo de Mallas Tridimensionales)
Atchivo Herramientas Ver Ayuda

Fig. 1. Mesh tool implementation.

we can analyze its possible behavior, but only if we need to reason about the
system.

In order to deal with these requirements we propose an integrated nota-
tion that specifies the software architecture design in three different levels of
abstraction, as we show in Figure 2. We provide a high level structural specifica-
tion using box-and-line diagrams, an intermediate behavioral specification using
Input/Output Automata, and an abstract data type specification using Larch
traits.

STRUCTURE
ADTs

LARCH
TRAITS

Fig. 2. Three levels of architectural specification

Generally, when people inspect a design, they first identify its structure [27].
It is natural for human beings to think about designs mainly focused on struc-

tures [29]. For this reason, we propose that the top highest level of the software
architecture specification is focused on the structure of such design. Once the
structure is understood, the behavior is naturally easier to analyze and under-
stand. In summary, people that develop and review designs start with the struc-
ture, follows with the system behavior, and only then they can deal with the
finer grained details about the design. In general, this way to proceed is natural
for human being, and also for software architects.

4.1 Structural Specification

In the uppermost level, a box-and-line diagram is used. Each box corresponds to
a software component and each line is an interaction between the components
it connects. This kind of diagrams is the most typical informal diagram used for
specifying architectures, so people are generally familiar with the notation. Even
though it is a limited notation, there are many high level pieces of information
that can be addressed very clearly: the type and number of components in the
system, which ones communicate and which ones do not communicate, which
components communicate with components outside the system and which ones
only communicate with internal components, and the configuration of the whole
system. All these elements are quite relevant for a software development team.
Also, architectural patterns are generally defined using different flavors of box-
and-line diagrams [4]; so using this notation makes it easier to recognize and
reuse these patterns.

The internal details about the components are almost irrelevant for the struc-
tural description of the system. However, developers in charged of implementing
or modifying each component, should know about these details, so they should
have access to the component behavior specification.

MESH TOOL

VISUALIZER
AND
CONTROLLER

FIRST MESH MESH INTERACTIVE| | ADAPTIVE cen
GENERATION |IMPROVEMENT | MESH MESH "
REFINEMENT| | REFINEMENT SOFTWARE

DATA

Fig. 3. High level architecture for a mesh tool.

Figure 3 shows the structural box-and-line diagram of the mesh tool. The fol-
lowing components are already implemented: VISUALIZER_AND_CONTROL-
LER, INTERACTIVE_MESH _REFINEMENT, and DATA. The rest of the com-
ponents are either under construction or just planned. Table 1 provides a brief
description of each component in the system.

| Component |Description

VISUALIZER |This components shows the tetrahedral mesh in its current state. It
AND allows visualization operations: rotate user point of view, zoom,
CONTROLLER |contract elements. As a controller, it allows the user to call other
functional components [36]. This component holds a simplified
version of the mesh including only geometric data.

FIRST The tool needs a tetrahedral mesh to start executing all other components.

MESH The first mesh is built starting from a three dimensional surface
GENERATION |mesh.

MESH The main goal of this component is to improve a mesh based on a certain

IMPROVEMENT |quality criterion. There are many criteria for improving a tetrahedral

mesh. The user chooses a criterion and this component will improve all

tetrahedra that do not satisfy it [32].

INTERACTIVE [This component helps the user to improve certain mesh elements that are
MESH not good enough. For this purpose, he or she marks the elements to be

REFINEMENT |refined using a refinement algorithm [31, 33].

ADAPTIVE The elements that need to be refined depend on the physical phenomenon

MESH under study [31, 33]. So this component must carry out the refinement

REFINEMENT |based on the information provided by a FEM (Finite Elements Method)

software as is shown in Figure 3.

DATA Decoupling data structures from algorithms is a very important feature in

the mesh tool development philosophy. Data structures must be rich

enough to provide the information necessary for each algorithm and

sufficiently encapsulated to allow them to see only what other components

need.

Table 1. Planned components in the mesh tool

The complete system, the MESH_TOOL, can also be seen as a compound
box, similarly as the form used in [9]. In the same way, we can specify sub-boxes
interconnected as a form of a finer grained specification for complex boxes.

4.2 Behavioral Specification

We specify the behavior of the overall system at the architectural level as the
dynamics of component interactions identified in the structural level. For this
purpose we use Input/Output Automata.

A system may be first defined at a high level of abstraction capturing only
the essential requirements about its behavior, and then be successively refined
until the desired level of detail is reached.

The notion of parallel composition, also included in the I/O automaton
model, facilitates modular design and analysis of distributed systems. The par-
allel composition operator in the model allows the construction of large and
complex systems from smaller and simpler subsystems and study their behavior
in terms of the behavior of its components.

A suite of software tools the IOA toolkit is being developed to help in
the design, analysis, and development of systems within the I/O automaton
framework [17]. The toolkit includes syntax and static semantics analysis, an
TIOA simulator, a code generator and translators to a range of representations
suitable for use with some theorem provers and model checking tools [16].

An I/O automaton is a simple type of state machine in which transitions
are associated with named actions. The actions are classified as either input,
output, or internal. Inputs and output transitions are used for communication
with the automaton’s environment, whereas internal actions are visible only
to the automaton itself. The input actions are assumed not to be under the
automaton’s control, while the automaton itself can control which output and
internal actions should be performed. Table 2 describes the essential parts in an
I/O automaton definition.

| Element |Descripti0n |

signature |lists the disjoint sets of input, output, and internal actions of an automaton A
states a (not necessarily finite) set of states, usually described by a collection
of state variables
start states|{a non-empty subset of the set of all states
transitions [triples known as steps or transitions of the form (state, action, state)
tasks an optional set which partitions the internal and output actions of A

Table 2. Elements in an IOA definition of an automaton A

An action 7 is said to be enabled in a state s if there is another state s’ such
that (s,7,s’) is a transition of the automaton. Input actions are enabled in every
state. That is to say that automata are not able to block input actions from
occurring. The external actions of an automaton consist of its input and output
actions.

We can specify the behavior of the VISUALIZER_AND_CONTROLLER as
an Input Output Automata as is shown in Figure 4. Only the interactions be-
tween the VISUALIZER_AND_CONTROLLER with the FIRST_MESH_GEN-
ERATION and the INTERACTIVE_MESH_REFINEMENT have been included
in the IOA specification in Figure 4. The interactive refinement is already built
and the component that builds the first mesh is currently under construction, so
we needed these interactions. As soon as MESH_ IMPROVEMENT and ADAP-
TIVE_MESH_REFINEMENT start to be built, we will need to evolve the VIS-
UALIZER_AND_CONTROLLER TOA specification to include the appropriate
interactions.

The VISUALIZER_AND_CONTROLLER keeps track of the current mesh;
it is defined as part of its internal state as a TetSet, that is a set of tetrahedra.
This data type is used in the IOA specification but it is defined elsewhere (see
Section 4.3). The mesh is initiated as an empty set, so we assume that the first
operation should be to generate a mesh. The variable option lets us know the
current status of the automaton in order to synchronize all transitions; initially
option is available.

10

automaton VISUALIZER_AND_CONTROLLER
uses TetraSet
type Status = enumeration of wait_generate, wait_refine, available
signature
output generate_mesh()
input generate_done(new_mesh : TetSet)
internal mark(ts : TetSet)
output int_refine_mesh(ts : TetSet)
input int_refine_done(refset, ext_marked : TetSet)
states
option : Status := available
mesh : TetSet := {}
marked : TetSet := {}
transitions
output generate_mesh()
pre option = available
eff option = wait_generate
input generate_done(new_mesh)
eff mesh := new_mesh
option := available
internal mark(ts)
pre option := available
ts C mesh
eff marked := ts
output int_refine_mesh(marked)
pre option = available
marked # {}
eff option = wait_refine
input int_refine_done(refset, ext_marked)
eff mesh := mesh - ext_marked U refset
option := available A marked := {}

Fig. 4. TOA Specification for the Visualizer

As we mentioned in Section 4.1, we can see the complete MESH_TOOL as a
compound automata. The composition is made by identifying all transitions with
equal name: whenever an output transition is fired in one of the automata, all
input transitions with the same signature (name and parameter list) in other au-
tomata are also fired; this is the way of specifying the behavior of the connectors
in the architecture.

The set of all interacting components forms the architecture configuration.
This is achived by composing all the automata corresponding to components in
the system. We provide the compound specification of the mesh tool in Figure 5.
Whenever we build a new automaton by composing a set of other automata, we
can choose to rename pairs of input and output transitions in the automata set as
an internal transition of the compound automaton. In this way, this transition
is not an external action anymore and we can better encapsulate automata
deciding what is seem from the outside and what is not. In our example, we
can deduce that the only external actions of the complete MESH_TOOL should
be those by which the ADAPTIVE_MESH_REFINEMENT interacts with the
FEM software.

11

automaton MESH_TOOL

compose
VISUALIZER_AND_CONTROLLER;
FIRST_MESH_GENERATION;
MESH_IMPROVEMENT;
INTERACTIVE_MESH_REFINEMENT;
ADAPTIVE_MESH_REFINEMENT;
DATA

Fig. 5. Mesh tool specified as a compound automata

4.3 Domain Specific Abstract Data Types

In order to have a completely formal definition of a system architecture we
need to formally define its structure and behavior, as we did in Sections 4.1
and 4.2. However, as has been our motivation from the beginning, in each of
these steps we chose to hide some lower level information that could be defined
elsewhere and that would only add complexity to the definition at hand. This
is the case of the domain specific abstract data types (ADTs). Components
defined as automata communicate by sending messages of a certain type, and
their internal state is also defined in terms of state variables of a certain type.
In complex domains these types may be complex too. We used Larch [14] to
specify these ADTs mainly because it has already been used in conjunction with
Input/Output Automata [11] and there are many primitives that make it easier
to integrate both notations into a unique specification.

The trait is the basic unit of specification in the Larch Shared Language
(LSL). A trait introduces some operators and specifies some of their properties.
Sometimes the trait defines an abstract type. LSL specifications define two kinds
of symbols, operators and sorts. The concepts of operator and sort are similar to
“procedure” and “type” in a programming language. Operators stand for total
functions from tuples of values to values. Sorts stand for disjoint non-empty sets
of values, and are used to indicates the domains and ranges of operators [14].

A Larch specification is formed by four basic parts introduced by the key-
words includes, introduces, asserts and implies. Table 3 provides a brief expla-
nation of each of these terms.

Figure 6 shows the Larch specification of the TetraSet trait. This ADT is used
in the VISUALIZER_AND_CONTROLLER automaton specified in Figure 4.

The definitions for the included traits SetBasics and DerivedOrders are as-
sumed to be those provided in [14]. We are also assuming that there exists
another trait Tetra that defines a tetrahedron as an ADT. The set operations
included in the introduces part of the trait are the only ones that we need, that
means that a TetSet is formed by elements Tetra and thus only elements of the
sort Tetra can be members of a TetSet (€), and that union (U) and set differ-
ence (-) are operations between TetSets. In the asserts part, the axioms that
rule the defined operations are stated. Finally, in the implies part we include

12

[Clause [Description

includes |[This clause allows the reuse of traits when specifying more complex ADTs.
Operators are specified in a separate trait that is included by reference using
the includes clause.

introduces|Declares a set of operators (function identifiers), each with its signature(the
sorts of its domain and range). Every operator used in a trait must be declared.
asserts |Generaly, it represents the body of the specification. It contains equations

(two terms of the same trait, separated by = or ==) between terms containing
operators and variables. This equations constrain the operators.

implies |[It is useful for theory containment (that a specification has intended consequences).
It enables specifiers to include information they believe to be redundant, either
as a check on their understanding or to call atention to something that a reader
might otherwise miss.

Table 3. Clauses in a Larch definition of a trait

certain statements for clarifying notation, provided that we are using included
definitions that are not necessarily at hand for the user.

5 Conclusions and Work in Progress

The architecture of a system defines its high-level structure as a collection of
interacting components. Many software architects use informal box-and-line di-
agrams to describe architectures. Unfortunately, informal diagrams and descrip-
tions are highly ambiguous. Consequently, it is virtually impossible to answer
with any precision most of the questions that arise during system development.
Recognizing the deficiencies of using ad-hoc and informal notations to describe
architecture, the software engineering research community has developed archi-
tecture definition languages. ADLs have well-defined semantics and tools for
parsing, compiling and analyzing specifications of software architecture designs.
Most of them are text-based. Also, the more formal and complete these specifica-
tions are the more difficult to specify and understand these architectural designs
become, compromising usability and applicability of the ADL. The software ar-
chitects need an ADL that is complete and formal enough to avoid ambiguities
in the architectural design specifications, but also easy to use and understand
so that it does not become an obstacle to specify, extend, or modify a software
system.

In order to deal with these challenges, this paper presented an integrated
notation for specifying software architectures that combines simplicity and for-
mality. This notation involves a specification in three levels of abstraction: a
graphical box-and-line diagram to specify structure, an IOA specification to
represent, behavior, and a basis of Larch traits to describe the domain specific
abstract data types. Box-and-line diagrams are quite popular and most develop-
ers understand what they mean. However it is also well known that they do say
almost nothing about the behavior. For that reason the proposed notation in-
cludes a IOA specification for each box-and-line component, in order to represent
their behavior. IOA is a formal modeling language that has been used for many

13

TetraSet: trait
includes
Tetra,
SetBasics,
DerivedOrders (TetSet, C for <)
introduces
___€ __ :Tetra, TetSet — Bool
{___}: Tetra — TetSet
U — _ : TetSet, TetSet — TetSet

—_

asserts
V e: Tetra, s1, s2: TetSet
e € (sl Us2) ==e€sl Vec€s2;
e € (sl —s2) ==e €sl Ne ¢&s2;
s1 Cs2 ==s1 —s2={1}
implies

AbelianMonoid (U for o, { } for unit, TetSet for T),
JoinOp (U, { } for empty),
MemberOp ({ } for empty),
PartialOrder (TetSet, C for <)
TetSet generated by { }, {__ }, U
V e: Tetra, s1, s2: TetSet
s1 Cs2 = (e €sl = e € 52)
converts

€ ¢ {_}ru—-C

Fig. 6. Larch Specification for TetraSet

years to specify concurrent systems behavior. IOA has a natural integration with
Larch traits, helping encapsulating required ADTs details.

The integrated notation is able to model components, connectors, and con-
figurations through a formal specification in order to represent the structure and
behavior of software systems. It does not avoid the difficulty of building a com-
pletely formal specification, but it organizes it in a way that not everybody needs
to be involved with the technical details. All the semiformal diagrams that are
shared among the development team can be proved to be sound and consistent
with the expected structure and behavior.

In order to show the usability and applicability of the proposed notation, this
paper presented the architecture design specification of a complex mesh man-
agement tool that has been partially implemented. In the future we intend to
create a tool to simulate and analyze architectures specified with the integrated
notation. Further, it is needed to formalize the hierarchical box-and-line spec-
ification in conjunction with IOA composition to enhance this integration and
take more advantages of it.

Acknowledgements

The work of Maria Cecilia Bastarrica has been partially funded by project I-01-
2/2001 of the Dapartment of Development and Research of the Universidad de
Chile.

14

References

10.

11.

12.

13.

14.

15.

16.
17.

18.

. Robert Allen and David Garlan. A Formal Basis for Architectural Connection.

ACM Transactions on Software Engineering and Methodoly, 6(3):213 249, July
1997.

Hedley Apperly. The Component Industry Metaphor. Addison Wesley, 2001. In
Component-Based Software Engineering, chapter 2, George Heineman and William
Councill editors.

Marteen Boasson and Hollandse Signaalapparaten. The Artistry of Software Ar-
chitecture. TEEE Software, 12(6):13—16, November 1995.

Frank Buschmann, Regine Meunier, Hans Rohnert, and Peter Sommerlad. Pattern
Oriented Software Architecture: A System of Patterns. John Wiley & Son Ltd.,
August 1996.

Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little,
Robert Nord, and Judith Stafford. Documenting Software Architectures. Views and
Beyond. SEI Series in Software Engineering. Addison Wesley, 2002.

Paul Clements and Linda M. Northrop. Software Product Lines: Practices and
Patterns. Addison Wesley, first edition, August 2001.

Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. An Infrastruc-
ture for the Rapid Development of XML-based Architecture Description Lan-
guages. In Proceedings of the 24th International Conference on Software Engi-
neering (ICSE2002), Orlando, Florida, 2002.

Amnon H. Eden. Directions in Architectural Specifications. In Software Archi-
tecture Recovery and Modelling, in: the 8th Working Conference on Reverse Engi-
neering (WCRE), Stuttgart, Germany, October 2001.

C. Gane and T. Sarson. Structured Systems Analysis. Prentice-Hall, 1979.

D. Garlan, R. Monroe, and D. Wile. ACME: An Architectural Interconnection Lan-
guage. Technical Report CMU-CS-95-219, Carnegie Mellon University, November
1995.

Stehen J. Garlan, Nancy A. Lynch, and Mandana Vaziri. IOA: A Language for
Specifying, Programming and Validating Distributed Systems. Technical report,
MIT Laboratory for Computer Science, December 1997.

Stephen J. Garland and Nancy A. Lynch. The IOA Language and Toolset: Sup-
port for Designing, Analyzing, and Building Distributed Systems. Technical Re-
port MIT/LCS/TR-762, MIT Laboratory for Computer Science, Cambridge, MA,
August 1997.

J. V. Guttag, J. J. Horning, and J. M. Wing. The Larch Family of Specification
Languages. TEEE Software, 2(5), 1985.

John V. Guttag and James J. Horning. Larch: Languages and Tools for Formal
Specification. Springer-Verlag Texts and Monographs in Computer Science, 1993.
Marc Halpern. Industrial Requirements and Practices in Finite Element Meshing:
A Survey of Trends. In Proceedings of the 6th International Meshing Roundtable’97,
Park City, Utah, October 1997. Sandia National Laboratories.

IOA. IOA Language and Toolset, 2002. http://theory.lcs.mit.edu/tds/ioa/.
Dilsun Kirli Kaynar, Anna Chefter, Laura Dean, Stephen Garlan, Nancy Lynch,
Toh Ne Win, and Antonio Ramirez-Robredo. The IOA Simulator. Technical Report
MIT-LCS-TR-843, MIT Laboratory for Computer Science, July 2002.

P. Krutchen. Architectural Blueprints - The “44+1” View Model of Software Ar-
chitecture. IEEE Software, 12(6):42 50, November 1995.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

15

D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann.
Specification and Analysis of System Architecture Using Rapide. IEEE Transac-
tions on Software Engineering, pages 336-355, April 1995.

Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
Nancy Lynch and Mark Tuttle. An Introduction to Input/OQutput Automata. CWT
Quart, 2(3):219 246, 1989.

Jeff Magee and Jeff Kramer. Dynamic Structure in Software Architectures. In Pro-
ceedings of ACM SIGSOFT’96: Fourth Symposium on the Foundations of Software
Engineering (FSE4), pages 3 14, October 1996.

Nenad Medvidovic and Richard Taylor. A Classification and Comparison Frame-
work for Software Architecture Description Languages. IEEE Transactions on
Software Engineering, 26(1), January 2000.

Nenad Medvidovic, Richard Taylor, and E. James Whitehead Jr. Formal Modeling
of Software Architectures at Multiple Levels of Abstraction. In Proceedings of the
California Software Symposium 1996, pages 28—40, April 1996.

S. Mellor and M. Balcer. Ezecutable UML: A Foundation for Model-Driven Archi-
tecture. Addison Wesley, 2002.

M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct Architecture Refine-
ment. IEEE Transactions on Software Engineering, pages 356-372, April 1995.
K. Mullet and D. Sano. Designing Visual Interfaces: Communication Oriented
Techniques. Sunsoft Press (Prentice Hall), 1995.

J. Nosek and I. Roth. A comparison of formal knowledge representation schemes as
communication tools: Predicate logic vs. semantic network. International Journal
of Man-Machine Studies, 33:227-239, 1990.

Joseph Novak. Learning, Creating, and Using Knowledge: Concept Maps as Facil-
itative Tools in Schools and Corporations. Lawrence Erlbaum Associates, 1998.
National Science Foundation Information Technology Research (NSF/ITR). Adap-
tive Software Project, 2001. http://www.erc.msstate.edu/ jcollins/ITR/-
index.html.

Maria Cecilia Rivara. Design and Data Structure of Fully Adaptive Multigrid,
Finite-Element Software. ACM Transactions on Mathematical Software, 10(3):242—
264, September 1984.

Maria Cecilia Rivara. New Longest-Edge Algorithms for the Refinement and/or
Improvement of Unstructured Triangularions. International Journal for Numerical
Methods in Engineering, 40:3313 3324, 1997.

Maria Cecilia Rivara and Cristian Levin. A 3-D Refinement Algorithm Suitable
for Adaptive and Multi-Grid Techniques. Communications in Applied Numerical
Methods, 8:281 290, 1992.

D. Roberts. The Existential Graphs of Charles S. Peirce. The Hague, Mouton &
Co. N. V., 1973.

D. Schmidt, M. Stal, H. Rohner, and F. Buschmann. Pattern Oriented Software
Architecture. Vol. 2. Patterns for Concurrent and Networked Objects. John Wiley
& Sons, 2000.

Felipe De Toro. Interfaz Orientada al Refinamiento Interactivo de Mallas Tridimen-
sionales, 2002. Universidad de Chile, Facultad de Ciencias Fisicas y Matemdticas,
Departamento de Ciencias de la Computacién.

Amy Moormann Zaremski and Jeannette M. Wing. Specification Matching of Soft-
ware Components. ACM Transactions on Software Engineering and Methodology
(TOSEM), 6(4):333-369, October 1997.

