
Integrated Notation for Software ArhitetureSpei�ationsMar��a Ceilia Bastarria 1, Sergio F. Ohoa1, and Pedro O. Rossel21 Computer Siene Department,Universidad de Chile,Blano Enalada 2120, Santiago, Chile,feilia,sohoag�d.uhile.l,2 Departamento de Computai�on e Inform�atia,Universidad Cat�olia del Maule,Av. San Miguel 3605, Tala, Chile,prossel�hualo.um.lAbstrat. Currently, there are many ways to speify software arhite-tures that address a wide variety of formality and ompleteness. Gen-erally, the most formal and omplete spei�ations are the most dif-�ult to understand, ompromising usability and appliability. On theother hand, informal spei�ations are usually easier to use and under-stand, but several design aspets remain underspei�ed and there is noway to hek for onsisteny or to reason about the semantis of thespei�ation. This paper presents an integrated notation for speifyingsoftware arhitetures that ombines simpliity and formality. This no-tation involves a spei�ation in three levels of abstration: a graphi-al box-and-line diagram, typial from informal spei�ations that pro-vides the strutural information, an interation behavior spei�ationusing Input/Output Automata, ompletely formal and onsistent withthe graphial level, and a basis of Larh traits desribing the domain spe-i� abstrat data types. In order to show the appliability and usabilityof the proposed notation, this paper desribes the use of the notationto speify the arhiteture of a highly omplex mesh management tool.The proposed notation showed to be very helpful in enapsulating thetool omplexity and allowing developers to model systems with the ap-propriate level of abstration.Keywords. Arhiteture de�nition languages, software arhiteture.1 IntrodutionSoftware design involves a great deal of art, but this artisti expression in theabsene of rules results in haoti design [3℄. In the last years, software engineer-ing has matured towards well-de�ned rules to speify and govern the strutureand dynamis of software systems [8℄. As a result, several patterns and modelingand spei�ation languages were reated and validated [23℄.



2 Software arhiteture design is the basis of produt design and also one ofthe most ritial parts. Several arhitetural patterns have been proposed tohelp design the arhiteture of software systems [4, 35℄. If a software system hasa well designed arhiteture, there is a high probability that the �nal produthas a good overall design. On the other hand, if the produt arhiteture is notwell designed there is no possibility at all that the produt would have a gooddesign.However, having a well-designed arhiteture is not enough to implement,maintain and extend a software produt beause if it is not well spei�ed itwill not be well understood. A good design is as important as its spei�ation.The software arhiteture ommunity has proposed several arhiteture de�ni-tion languages (ADLs) to speify the struture and the dynamis of softwarearhitetures. Unfortunately, there are too many di�erent ADLs and there isno lear sign that they will onverge to a ommon standard notation to spe-ify arhitetures [7℄ any time soon. Some ADLs fous on struture, others ononnetors, some of them are domain spei� and others are general, so it isdiÆult to hoose the most appropriate among all the available hoies. Whatis generally true for all ADLs is that formality and usability are qualities thatseldom go together.Speifying a system using a formal ADL is generally diÆult and requirestrained software arhitets. Sometimes, the software arhiteture design may beorret, but its spei�ation is so omplex that it annot be easily understood andshared among the development team. To overome this diÆulty, many designershoose to use informal representations suh as box-and-line diagrams or latelythe UML, even though it is largely reognized as not an appropriate form ofspeifying software arhiteture design [2, 5℄. As a onsequene, an informal orinappropriate arhiteture spei�ation weakens its e�etiveness as a means forunambiguous ommuniating and analyzing software systems.In this paper we present another way of speifying software arhitetures.We use already developed and validated spei�ation languages but we orga-nize them in a di�erent way suh that we take advantage of the formality whilenot resigning usability. We organize arhitetural spei�ations in three abstra-tion levels: strutural, behavioral and domain spei� abstrat data types. Thestrutural spei�ation uses box-and-line diagrams. This would be semiformal ifit were not ontrolled by the other two levels. The behavioral spei�ation usesInput/Output Automata (IOA) [11, 20, 21℄. This level provides an IOA spei�-ation for eah box in the strutural diagram and a ombination of an inputtransition in one automaton and an output transition in the other for eah linein the strutural diagram. These two levels provide the most important elementsin an arhitetural spei�ation: struture and behavior. But we still have an-other lower spei�ation level orresponding to the domain spei� abstrat datatypes. It is implemented using Larh traits [13, 14, 37℄. This formalism allows usto de�ne in all detail the domain spei� omponents that are used in the IOAbehavioral de�nition.



3We have applied the proposed notation for the spei�ation of a 3D meshmanagement tool that is being developed at the Computer Siene Departmentin the Universidad de Chile sine last year. We used our notation for speifyingwhat was already programmed and also for speifying new omponents that stillneed to be developed. In this way we were able to reason about di�erent fea-tures of the produt, mainly about oupling between omponents and salabilityissues.In Setion 2 we disuss work done on other ADLs and we ompare themwith our integrated notation. Following, Setion 3 presents a omplex meshmanagement tool that is urrently being extended. The software arhiteturedesign of this tool was spei�ed using the proposed notation and it is presentedin this paper as an example that shows the appliability and usability of ourproposal. Setion 4 presents the integrated notation showing how eah featureis used to speify the software arhiteture of the mesh tool. Finally, Setion 5presents the onlusions and the future work.2 Related WorkFor the last deade, there has been a big e�ort in developing ADLs in orderto get better arhitetural design spei�ations. Examples of these ADLs areRapide [19℄, Wright [1℄, C2 [24℄, SADL [26℄, ACME [10℄, UML [25℄, and Dar-win [22℄. Also IOA [12℄, even though it was not reated as an ADL, provides mostof the apabilities required from a ommon ADL. All these languages provideformality to arhitetural spei�ations, something laking from box-and-linediagrams that are still ommon in professional pratie. Formal spei�ationsredue ambiguities and promote reusability of arhitetural designs, and allowsanalysis and simulation. Arhitetural design is spei�ed in terms of ompo-nents, onnetors and on�gurations that represent the struture and behaviorof a software systems [23℄.Rapide is a textual event-based language and toolset for speifying and sim-ulating software arhitetures. This ADL provides exeutable features for om-posing systems out of omponent interfaes by de�ning their synhronizationand ommuniation interonnetions in terms of event patterns. It has the abil-ity to model distributed and dynami systems. It represents omponents, and ina minor sale, onnetors and on�gurations.Wright uses a text-based representation that provides a preise and abstratmeaning to an arhitetural spei�ation, and allows the analysis of both thearhiteture of individual software systems and families of systems. In partiular,work on Wright has foused on the onept of expliit onnetor types, on theuse of automated heking of arhitetural properties, and on the formalizationof arhitetural styles. Wright does not have a good support for on�gurations.C2 is a message-based arhitetural ADL for building exible and extensiblesoftware systems. A arhiteture in C2 is seen as a hierarhial network of on-urrent omponents linked together by onnetors (or message routing devies)



4onsistent with a set of style rules. C2 ommuniation rules require that allommuniation between C2 omponents be ahieved through message passing.The arhitetural desription language SADL is intended for the de�nitionof software arhiteture hierarhies that need to be analyzed formally. This ADLan be used to speify both the struture and the semantis of an arhitetureby using a textual representation.ACME is a generi ADL that an be used as a ommon interhange format forarhiteture design tools and/or as a foundation for developing new arhiteturaldesign and analysis tools. ACME is text-based, but there are some tools thatgenerate a graphial representation of its design.UML is a graphial language for speifying, visualizing, onstruting, anddoumenting the artifats of a software-intensive system. It supports multipleviews of a system -both strutural and behavioral- espeially those inludedin [18℄. Today many ompanies are using UML for arhitetural desription,but formally it is not onsidered an ADL due to its lak of a formal semantito represent the designs. It limits the development of validation tools and thearhitetural analysis. In addition, UML is less expressive than typial ADLs; forinstane, UML does not distinguish omponents and onnetors, and does nothave a built-in notion of arhiteture style onstraints. UML is useful to speifyalready designed software arhitetures, but it is not useful to model it [5℄.Darwin is a delarative ADL intended to be a general purpose notation forspeifying the struture of software systems omposed of a set of software om-ponents and their interation mehanisms. It advoates a onstrutive style ofsystem design, whih leads to a lear separation between program struture,omputation and interation. Darwin has both a graphial and textual represen-tation. It has a solid theoretial bakground based on �-alulus.Input/Output Automata is a text-based language that has been developedand applied at MIT for the last 15 years [20, 21℄. It is a formalism for speify-ing asynhronous onurrent and potentially distributed omponents based onlabeled transitions. IOA is not generally onsidered as an ADL, but it modelsomponents, onnetors and on�gurations, therefore, it has most of the har-ateristis needed to be an ADL [23℄.In summary, ADLs like ACME, Wright, and C2, are based on textual rep-resentations, whih limits readability and understandability of the arhiteturaldesign spei�ations. Text-based notations do not help reognizing and reusinghigh level abstrations as design and arhitetural patterns. In general, it isnatural and eÆient to use a graphial representation to aid in the design pro-ess [28, 34℄. On the other hand, languages like UML and box-and-line that arenot formally ADLs, are ommonly used as design languages. These languagesprovides a graphial representation of the arhitetural design but they haveproblems avoiding ambiguities on the arhitetural design spei�ation beausethey do not provide a formal semanti to represent omponents, onnetors andon�gurations. It also limits their apability to arry out analysis and validationof arhitetural designs.



5On the other hand, Darwin ould provide a good framework for developingspei�ations of arhitetural designs. The main limitations of this ADL are thatit does not represent onnetors and it does not naturally represent hierarhi-al designs through omponent abstrations. This is an important limitation forsalability. Similar to Darwin, this paper presents a textual and graphial no-tation to speify software arhiteture designs. This notation provides a formalsemantis to represent omponents, onnetors, and on�gurations, therefore itan be onsidered an ADL. Also, the proposed notation is well oneived tomodel software arhitetures in a hierarhial way, whih is very helpful for non-experimented software arhitets.3 The Appliation Example: A Mesh Management ToolThere is a group at the Computer Siene Department in the Universidad deChile developing a mesh management tool based on researh on mesh manage-ment algorithms arried out for the last 15 years. Eah algorithm involved is veryomplex, so the omplexity of a tool integrating about 20 di�erent algorithms iseven greater. There is a personal issue in the fat that people involved in meshmanagement researh are not very muh aware and familiar with good softwareengineering praties. They have already had a ouple of experienes of lettinga program grow until it is not possible to �x errors anymore and then the wholee�ort has aborted. We want a planned development that gives us some warrantythat if we follow the plan, we will get what we expeted.Some omponents of the tool have already been developed suh as a 3D tetra-hedral mesh visualizer and an interative re�nement omponent. The generationof a �rst good quality tetrahedral mesh is urrently under development. Figure 1shows a sreenshot of this partial implementation.The algorithms neessary for generating, managing and re�ning geometrimeshes in three dimensions are highly omplex [15, 30℄. We need highly ompe-tent and expensive people for the development and we need to establish a qualityassurane methodology. If we also have the apability of reusing the implemen-tation of all these algorithms in suessive versions of the tool, these produtswill have a better opportunity of ommerial suess [6℄.4 Integrated Software Arhiteture NotationTwo main goals guide our proposal of an integrated notation for software ar-hiteture spei�ation: formality and usability. These two qualities tend to beopposed: the more formality we add into a spei�ation, the less understandableit beomes; the more formality we require from a spei�ation, the more diÆultit is to build it. So we want a spei�ation that is formal enough to avoid all am-biguity but in a way that developers do not beome overwhelmed with notation.This spei�ation should address strutural and behavioral aspets of softwarearhiteture design so that we an understand learly what the system does and
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Fig. 1. Mesh tool implementation.we an analyze its possible behavior, but only if we need to reason about thesystem.In order to deal with these requirements we propose an integrated nota-tion that spei�es the software arhiteture design in three di�erent levels ofabstration, as we show in Figure 2. We provide a high level strutural spei�a-tion using box-and-line diagrams, an intermediate behavioral spei�ation usingInput/Output Automata, and an abstrat data type spei�ation using Larhtraits.
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ADTsFig. 2. Three levels of arhitetural spei�ationGenerally, when people inspet a design, they �rst identify its struture [27℄.It is natural for human beings to think about designs mainly foused on stru-



7tures [29℄. For this reason, we propose that the top highest level of the softwarearhiteture spei�ation is foused on the struture of suh design. One thestruture is understood, the behavior is naturally easier to analyze and under-stand. In summary, people that develop and review designs start with the stru-ture, follows with the system behavior, and only then they an deal with the�ner grained details about the design. In general, this way to proeed is naturalfor human being, and also for software arhitets.4.1 Strutural Spei�ationIn the uppermost level, a box-and-line diagram is used. Eah box orresponds toa software omponent and eah line is an interation between the omponentsit onnets. This kind of diagrams is the most typial informal diagram used forspeifying arhitetures, so people are generally familiar with the notation. Eventhough it is a limited notation, there are many high level piees of informationthat an be addressed very learly: the type and number of omponents in thesystem, whih ones ommuniate and whih ones do not ommuniate, whihomponents ommuniate with omponents outside the system and whih onesonly ommuniate with internal omponents, and the on�guration of the wholesystem. All these elements are quite relevant for a software development team.Also, arhitetural patterns are generally de�ned using di�erent avors of box-and-line diagrams [4℄; so using this notation makes it easier to reognize andreuse these patterns.The internal details about the omponents are almost irrelevant for the stru-tural desription of the system. However, developers in harged of implementingor modifying eah omponent, should know about these details, so they shouldhave aess to the omponent behavior spei�ation.
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Fig. 3. High level arhiteture for a mesh tool.



8 Figure 3 shows the strutural box-and-line diagram of the mesh tool. The fol-lowing omponents are already implemented: VISUALIZER AND CONTROL-LER, INTERACTIVE MESH REFINEMENT, and DATA. The rest of the om-ponents are either under onstrution or just planned. Table 1 provides a briefdesription of eah omponent in the system.Component DesriptionVISUALIZER This omponents shows the tetrahedral mesh in its urrent state. ItAND allows visualization operations: rotate user point of view, zoom,CONTROLLER ontrat elements. As a ontroller, it allows the user to all otherfuntional omponents [36℄. This omponent holds a simpli�edversion of the mesh inluding only geometri data.FIRST The tool needs a tetrahedral mesh to start exeuting all other omponents.MESH The �rst mesh is built starting from a three dimensional surfaeGENERATION mesh.MESH The main goal of this omponent is to improve a mesh based on a ertainIMPROVEMENT quality riterion. There are many riteria for improving a tetrahedralmesh. The user hooses a riterion and this omponent will improve alltetrahedra that do not satisfy it [32℄.INTERACTIVE This omponent helps the user to improve ertain mesh elements that areMESH not good enough. For this purpose, he or she marks the elements to beREFINEMENT re�ned using a re�nement algorithm [31, 33℄.ADAPTIVE The elements that need to be re�ned depend on the physial phenomenonMESH under study [31, 33℄. So this omponent must arry out the re�nementREFINEMENT based on the information provided by a FEM (Finite Elements Method)software as is shown in Figure 3.DATA Deoupling data strutures from algorithms is a very important feature inthe mesh tool development philosophy. Data strutures must be rihenough to provide the information neessary for eah algorithm andsuÆiently enapsulated to allow them to see only what other omponentsneed.Table 1. Planned omponents in the mesh toolThe omplete system, the MESH TOOL, an also be seen as a ompoundbox, similarly as the form used in [9℄. In the same way, we an speify sub-boxesinteronneted as a form of a �ner grained spei�ation for omplex boxes.4.2 Behavioral Spei�ationWe speify the behavior of the overall system at the arhitetural level as thedynamis of omponent interations identi�ed in the strutural level. For thispurpose we use Input/Output Automata.A system may be �rst de�ned at a high level of abstration apturing onlythe essential requirements about its behavior, and then be suessively re�neduntil the desired level of detail is reahed.The notion of parallel omposition, also inluded in the I/O automatonmodel, failitates modular design and analysis of distributed systems. The par-allel omposition operator in the model allows the onstrution of large andomplex systems from smaller and simpler subsystems and study their behaviorin terms of the behavior of its omponents.



9A suite of software tools|the IOA toolkit|is being developed to help inthe design, analysis, and development of systems within the I/O automatonframework [17℄. The toolkit inludes syntax and stati semantis analysis, anIOA simulator, a ode generator and translators to a range of representationssuitable for use with some theorem provers and model heking tools [16℄.An I/O automaton is a simple type of state mahine in whih transitionsare assoiated with named ations. The ations are lassi�ed as either input,output, or internal. Inputs and output transitions are used for ommuniationwith the automaton's environment, whereas internal ations are visible onlyto the automaton itself. The input ations are assumed not to be under theautomaton's ontrol, while the automaton itself an ontrol whih output andinternal ations should be performed. Table 2 desribes the essential parts in anI/O automaton de�nition.Element Desriptionsignature lists the disjoint sets of input, output, and internal ations of an automaton Astates a (not neessarily �nite) set of states, usually desribed by a olletionof state variablesstart states a non-empty subset of the set of all statestransitions triples known as steps or transitions of the form (state, ation, state)tasks an optional set whih partitions the internal and output ations of ATable 2. Elements in an IOA de�nition of an automaton AAn ation � is said to be enabled in a state s if there is another state s' suhthat (s,�,s' ) is a transition of the automaton. Input ations are enabled in everystate. That is to say that automata are not able to blok input ations fromourring. The external ations of an automaton onsist of its input and outputations.We an speify the behavior of the VISUALIZER AND CONTROLLER asan Input Output Automata as is shown in Figure 4. Only the interations be-tween the VISUALIZER AND CONTROLLER with the FIRST MESH GEN-ERATION and the INTERACTIVE MESH REFINEMENT have been inludedin the IOA spei�ation in Figure 4. The interative re�nement is already builtand the omponent that builds the �rst mesh is urrently under onstrution, sowe needed these interations. As soon as MESH IMPROVEMENT and ADAP-TIVE MESH REFINEMENT start to be built, we will need to evolve the VIS-UALIZER AND CONTROLLER IOA spei�ation to inlude the appropriateinterations.The VISUALIZER AND CONTROLLER keeps trak of the urrent mesh;it is de�ned as part of its internal state as a TetSet, that is a set of tetrahedra.This data type is used in the IOA spei�ation but it is de�ned elsewhere (seeSetion 4.3). The mesh is initiated as an empty set, so we assume that the �rstoperation should be to generate a mesh. The variable option lets us know theurrent status of the automaton in order to synhronize all transitions; initiallyoption is available.



10automaton VISUALIZER AND CONTROLLERuses TetraSettype Status = enumeration of wait generate, wait re�ne, availablesignatureoutput generate mesh()input generate done(new mesh : TetSet)internal mark(ts : TetSet)output int re�ne mesh(ts : TetSet)input int re�ne done(refset, ext marked : TetSet)statesoption : Status := availablemesh : TetSet := fgmarked : TetSet := fgtransitionsoutput generate mesh()pre option = availablee� option = wait generateinput generate done(new mesh)e� mesh := new meshoption := availableinternal mark(ts)pre option := availablets � meshe� marked := tsoutput int re�ne mesh(marked)pre option = availablemarked 6= fge� option = wait re�neinput int re�ne done(refset, ext marked)e� mesh := mesh - ext marked [ refsetoption := available ^ marked := fgFig. 4. IOA Spei�ation for the VisualizerAs we mentioned in Setion 4.1, we an see the omplete MESH TOOL as aompound automata. The omposition is made by identifying all transitions withequal name: whenever an output transition is �red in one of the automata, allinput transitions with the same signature (name and parameter list) in other au-tomata are also �red; this is the way of speifying the behavior of the onnetorsin the arhiteture.The set of all interating omponents forms the arhiteture on�guration.This is ahived by omposing all the automata orresponding to omponents inthe system. We provide the ompound spei�ation of the mesh tool in Figure 5.Whenever we build a new automaton by omposing a set of other automata, wean hoose to rename pairs of input and output transitions in the automata set asan internal transition of the ompound automaton. In this way, this transitionis not an external ation anymore and we an better enapsulate automatadeiding what is seem from the outside and what is not. In our example, wean dedue that the only external ations of the omplete MESH TOOL shouldbe those by whih the ADAPTIVE MESH REFINEMENT interats with theFEM software.



11automaton MESH TOOLomposeVISUALIZER AND CONTROLLER;FIRST MESH GENERATION;MESH IMPROVEMENT;INTERACTIVE MESH REFINEMENT;ADAPTIVE MESH REFINEMENT;DATA Fig. 5. Mesh tool spei�ed as a ompound automata4.3 Domain Spei� Abstrat Data TypesIn order to have a ompletely formal de�nition of a system arhiteture weneed to formally de�ne its struture and behavior, as we did in Setions 4.1and 4.2. However, as has been our motivation from the beginning, in eah ofthese steps we hose to hide some lower level information that ould be de�nedelsewhere and that would only add omplexity to the de�nition at hand. Thisis the ase of the domain spei� abstrat data types (ADTs). Componentsde�ned as automata ommuniate by sending messages of a ertain type, andtheir internal state is also de�ned in terms of state variables of a ertain type.In omplex domains these types may be omplex too. We used Larh [14℄ tospeify these ADTs mainly beause it has already been used in onjuntion withInput/Output Automata [11℄ and there are many primitives that make it easierto integrate both notations into a unique spei�ation.The trait is the basi unit of spei�ation in the Larh Shared Language(LSL). A trait introdues some operators and spei�es some of their properties.Sometimes the trait de�nes an abstrat type. LSL spei�ations de�ne two kindsof symbols, operators and sorts. The onepts of operator and sort are similar to\proedure" and \type" in a programming language. Operators stand for totalfuntions from tuples of values to values. Sorts stand for disjoint non-empty setsof values, and are used to indiates the domains and ranges of operators [14℄.A Larh spei�ation is formed by four basi parts introdued by the key-words inludes, introdues, asserts and implies. Table 3 provides a brief expla-nation of eah of these terms.Figure 6 shows the Larh spei�ation of the TetraSet trait. This ADT is usedin the VISUALIZER AND CONTROLLER automaton spei�ed in Figure 4.The de�nitions for the inluded traits SetBasis and DerivedOrders are as-sumed to be those provided in [14℄. We are also assuming that there existsanother trait Tetra that de�nes a tetrahedron as an ADT. The set operationsinluded in the introdues part of the trait are the only ones that we need, thatmeans that a TetSet is formed by elements Tetra and thus only elements of thesort Tetra an be members of a TetSet (2), and that union ([) and set di�er-ene (-) are operations between TetSets. In the asserts part, the axioms thatrule the de�ned operations are stated. Finally, in the implies part we inlude



12 Clause Desriptioninludes This lause allows the reuse of traits when speifying more omplex ADTs.Operators are spei�ed in a separate trait that is inluded by referene usingthe inludes lause.introdues Delares a set of operators (funtion identi�ers), eah with its signature(thesorts of its domain and range). Every operator used in a trait must be delared.asserts Generaly, it represents the body of the spei�ation. It ontains equations(two terms of the same trait, separated by = or ==) between terms ontainingoperators and variables. This equations onstrain the operators.implies It is useful for theory ontainment (that a spei�ation has intended onsequenes).It enables spei�ers to inlude information they believe to be redundant, eitheras a hek on their understanding or to all atention to something that a readermight otherwise miss.Table 3. Clauses in a Larh de�nition of a traitertain statements for larifying notation, provided that we are using inludedde�nitions that are not neessarily at hand for the user.5 Conlusions and Work in ProgressThe arhiteture of a system de�nes its high-level struture as a olletion ofinterating omponents. Many software arhitets use informal box-and-line di-agrams to desribe arhitetures. Unfortunately, informal diagrams and desrip-tions are highly ambiguous. Consequently, it is virtually impossible to answerwith any preision most of the questions that arise during system development.Reognizing the de�ienies of using ad-ho and informal notations to desribearhiteture, the software engineering researh ommunity has developed arhi-teture de�nition languages. ADLs have well-de�ned semantis and tools forparsing, ompiling and analyzing spei�ations of software arhiteture designs.Most of them are text-based. Also, the more formal and omplete these spei�a-tions are the more diÆult to speify and understand these arhitetural designsbeome, ompromising usability and appliability of the ADL. The software ar-hitets need an ADL that is omplete and formal enough to avoid ambiguitiesin the arhitetural design spei�ations, but also easy to use and understandso that it does not beome an obstale to speify, extend, or modify a softwaresystem.In order to deal with these hallenges, this paper presented an integratednotation for speifying software arhitetures that ombines simpliity and for-mality. This notation involves a spei�ation in three levels of abstration: agraphial box-and-line diagram to speify struture, an IOA spei�ation torepresent behavior, and a basis of Larh traits to desribe the domain spei�abstrat data types. Box-and-line diagrams are quite popular and most develop-ers understand what they mean. However it is also well known that they do sayalmost nothing about the behavior. For that reason the proposed notation in-ludes a IOA spei�ation for eah box-and-line omponent, in order to representtheir behavior. IOA is a formal modeling language that has been used for many



13TetraSet: traitinludesTetra,SetBasis,DerivedOrders (TetSet, � for �)introdues2 : Tetra, TetSet ! Boolf g: Tetra ! TetSet[ , � : TetSet, TetSet ! TetSetasserts8 e: Tetra, s1, s2: TetSete 2 (s1 [ s2) == e 2 s1 _ e 2 s2;e 2 (s1 � s2) == e 2 s1 ^ e 62 s2;s1 � s2 == s1 � s2 = f gimpliesAbelianMonoid ([ for Æ, f g for unit, TetSet for T),JoinOp ([, f g for empty),MemberOp (f g for empty),PartialOrder (TetSet, � for �)TetSet generated by f g, f g, [8 e: Tetra, s1, s2: TetSets1 � s2 ) (e 2 s1 ) e 2 s2)onverts2, 62, f g, [, �, �Fig. 6. Larh Spei�ation for TetraSetyears to speify onurrent systems behavior. IOA has a natural integration withLarh traits, helping enapsulating required ADTs details.The integrated notation is able to model omponents, onnetors, and on-�gurations through a formal spei�ation in order to represent the struture andbehavior of software systems. It does not avoid the diÆulty of building a om-pletely formal spei�ation, but it organizes it in a way that not everybody needsto be involved with the tehnial details. All the semiformal diagrams that areshared among the development team an be proved to be sound and onsistentwith the expeted struture and behavior.In order to show the usability and appliability of the proposed notation, thispaper presented the arhiteture design spei�ation of a omplex mesh man-agement tool that has been partially implemented. In the future we intend toreate a tool to simulate and analyze arhitetures spei�ed with the integratednotation. Further, it is needed to formalize the hierarhial box-and-line spe-i�ation in onjuntion with IOA omposition to enhane this integration andtake more advantages of it.AknowledgementsThe work of Mar��a Ceilia Bastarria has been partially funded by projet I-01-2/2001 of the Dapartment of Development and Researh of the Universidad deChile.
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