
Integrated Notation for Software Ar
hite
tureSpe
i�
ationsMar��a Ce
ilia Bastarri
a 1, Sergio F. O
hoa1, and Pedro O. Rossel21 Computer S
ien
e Department,Universidad de Chile,Blan
o En
alada 2120, Santiago, Chile,f
e
ilia,so
hoag�d

.u
hile.
l,2 Departamento de Computa
i�on e Inform�ati
a,Universidad Cat�oli
a del Maule,Av. San Miguel 3605, Tal
a, Chile,prossel�hualo.u
m.
lAbstra
t. Currently, there are many ways to spe
ify software ar
hite
-tures that address a wide variety of formality and
ompleteness. Gen-erally, the most formal and
omplete spe
i�
ations are the most dif-�
ult to understand,
ompromising usability and appli
ability. On theother hand, informal spe
i�
ations are usually easier to use and under-stand, but several design aspe
ts remain underspe
i�ed and there is noway to
he
k for
onsisten
y or to reason about the semanti
s of thespe
i�
ation. This paper presents an integrated notation for spe
ifyingsoftware ar
hite
tures that
ombines simpli
ity and formality. This no-tation involves a spe
i�
ation in three levels of abstra
tion: a graphi-
al box-and-line diagram, typi
al from informal spe
i�
ations that pro-vides the stru
tural information, an intera
tion behavior spe
i�
ationusing Input/Output Automata,
ompletely formal and
onsistent withthe graphi
al level, and a basis of Lar
h traits des
ribing the domain spe-
i�
 abstra
t data types. In order to show the appli
ability and usabilityof the proposed notation, this paper des
ribes the use of the notationto spe
ify the ar
hite
ture of a highly
omplex mesh management tool.The proposed notation showed to be very helpful in en
apsulating thetool
omplexity and allowing developers to model systems with the ap-propriate level of abstra
tion.Keywords. Ar
hite
ture de�nition languages, software ar
hite
ture.1 Introdu
tionSoftware design involves a great deal of art, but this artisti
 expression in theabsen
e of rules results in
haoti
 design [3℄. In the last years, software engineer-ing has matured towards well-de�ned rules to spe
ify and govern the stru
tureand dynami
s of software systems [8℄. As a result, several patterns and modelingand spe
i�
ation languages were
reated and validated [23℄.

2 Software ar
hite
ture design is the basis of produ
t design and also one ofthe most
riti
al parts. Several ar
hite
tural patterns have been proposed tohelp design the ar
hite
ture of software systems [4, 35℄. If a software system hasa well designed ar
hite
ture, there is a high probability that the �nal produ
thas a good overall design. On the other hand, if the produ
t ar
hite
ture is notwell designed there is no possibility at all that the produ
t would have a gooddesign.However, having a well-designed ar
hite
ture is not enough to implement,maintain and extend a software produ
t be
ause if it is not well spe
i�ed itwill not be well understood. A good design is as important as its spe
i�
ation.The software ar
hite
ture
ommunity has proposed several ar
hite
ture de�ni-tion languages (ADLs) to spe
ify the stru
ture and the dynami
s of softwarear
hite
tures. Unfortunately, there are too many di�erent ADLs and there isno
lear sign that they will
onverge to a
ommon standard notation to spe
-ify ar
hite
tures [7℄ any time soon. Some ADLs fo
us on stru
ture, others on
onne
tors, some of them are domain spe
i�
 and others are general, so it isdiÆ
ult to
hoose the most appropriate among all the available
hoi
es. Whatis generally true for all ADLs is that formality and usability are qualities thatseldom go together.Spe
ifying a system using a formal ADL is generally diÆ
ult and requirestrained software ar
hite
ts. Sometimes, the software ar
hite
ture design may be
orre
t, but its spe
i�
ation is so
omplex that it
annot be easily understood andshared among the development team. To over
ome this diÆ
ulty, many designers
hoose to use informal representations su
h as box-and-line diagrams or latelythe UML, even though it is largely re
ognized as not an appropriate form ofspe
ifying software ar
hite
ture design [2, 5℄. As a
onsequen
e, an informal orinappropriate ar
hite
ture spe
i�
ation weakens its e�e
tiveness as a means forunambiguous
ommuni
ating and analyzing software systems.In this paper we present another way of spe
ifying software ar
hite
tures.We use already developed and validated spe
i�
ation languages but we orga-nize them in a di�erent way su
h that we take advantage of the formality whilenot resigning usability. We organize ar
hite
tural spe
i�
ations in three abstra
-tion levels: stru
tural, behavioral and domain spe
i�
 abstra
t data types. Thestru
tural spe
i�
ation uses box-and-line diagrams. This would be semiformal ifit were not
ontrolled by the other two levels. The behavioral spe
i�
ation usesInput/Output Automata (IOA) [11, 20, 21℄. This level provides an IOA spe
i�-
ation for ea
h box in the stru
tural diagram and a
ombination of an inputtransition in one automaton and an output transition in the other for ea
h linein the stru
tural diagram. These two levels provide the most important elementsin an ar
hite
tural spe
i�
ation: stru
ture and behavior. But we still have an-other lower spe
i�
ation level
orresponding to the domain spe
i�
 abstra
t datatypes. It is implemented using Lar
h traits [13, 14, 37℄. This formalism allows usto de�ne in all detail the domain spe
i�

omponents that are used in the IOAbehavioral de�nition.

3We have applied the proposed notation for the spe
i�
ation of a 3D meshmanagement tool that is being developed at the Computer S
ien
e Departmentin the Universidad de Chile sin
e last year. We used our notation for spe
ifyingwhat was already programmed and also for spe
ifying new
omponents that stillneed to be developed. In this way we were able to reason about di�erent fea-tures of the produ
t, mainly about
oupling between
omponents and s
alabilityissues.In Se
tion 2 we dis
uss work done on other ADLs and we
ompare themwith our integrated notation. Following, Se
tion 3 presents a
omplex meshmanagement tool that is
urrently being extended. The software ar
hite
turedesign of this tool was spe
i�ed using the proposed notation and it is presentedin this paper as an example that shows the appli
ability and usability of ourproposal. Se
tion 4 presents the integrated notation showing how ea
h featureis used to spe
ify the software ar
hite
ture of the mesh tool. Finally, Se
tion 5presents the
on
lusions and the future work.2 Related WorkFor the last de
ade, there has been a big e�ort in developing ADLs in orderto get better ar
hite
tural design spe
i�
ations. Examples of these ADLs areRapide [19℄, Wright [1℄, C2 [24℄, SADL [26℄, ACME [10℄, UML [25℄, and Dar-win [22℄. Also IOA [12℄, even though it was not
reated as an ADL, provides mostof the
apabilities required from a
ommon ADL. All these languages provideformality to ar
hite
tural spe
i�
ations, something la
king from box-and-linediagrams that are still
ommon in professional pra
ti
e. Formal spe
i�
ationsredu
e ambiguities and promote reusability of ar
hite
tural designs, and allowsanalysis and simulation. Ar
hite
tural design is spe
i�ed in terms of
ompo-nents,
onne
tors and
on�gurations that represent the stru
ture and behaviorof a software systems [23℄.Rapide is a textual event-based language and toolset for spe
ifying and sim-ulating software ar
hite
tures. This ADL provides exe
utable features for
om-posing systems out of
omponent interfa
es by de�ning their syn
hronizationand
ommuni
ation inter
onne
tions in terms of event patterns. It has the abil-ity to model distributed and dynami
 systems. It represents
omponents, and ina minor s
ale,
onne
tors and
on�gurations.Wright uses a text-based representation that provides a pre
ise and abstra
tmeaning to an ar
hite
tural spe
i�
ation, and allows the analysis of both thear
hite
ture of individual software systems and families of systems. In parti
ular,work on Wright has fo
used on the
on
ept of expli
it
onne
tor types, on theuse of automated
he
king of ar
hite
tural properties, and on the formalizationof ar
hite
tural styles. Wright does not have a good support for
on�gurations.C2 is a message-based ar
hite
tural ADL for building
exible and extensiblesoftware systems. A ar
hite
ture in C2 is seen as a hierar
hi
al network of
on-
urrent
omponents linked together by
onne
tors (or message routing devi
es)

4
onsistent with a set of style rules. C2
ommuni
ation rules require that all
ommuni
ation between C2
omponents be a
hieved through message passing.The ar
hite
tural des
ription language SADL is intended for the de�nitionof software ar
hite
ture hierar
hies that need to be analyzed formally. This ADL
an be used to spe
ify both the stru
ture and the semanti
s of an ar
hite
tureby using a textual representation.ACME is a generi
 ADL that
an be used as a
ommon inter
hange format forar
hite
ture design tools and/or as a foundation for developing new ar
hite
turaldesign and analysis tools. ACME is text-based, but there are some tools thatgenerate a graphi
al representation of its design.UML is a graphi
al language for spe
ifying, visualizing,
onstru
ting, anddo
umenting the artifa
ts of a software-intensive system. It supports multipleviews of a system -both stru
tural and behavioral- espe
ially those in
ludedin [18℄. Today many
ompanies are using UML for ar
hite
tural des
ription,but formally it is not
onsidered an ADL due to its la
k of a formal semanti
to represent the designs. It limits the development of validation tools and thear
hite
tural analysis. In addition, UML is less expressive than typi
al ADLs; forinstan
e, UML does not distinguish
omponents and
onne
tors, and does nothave a built-in notion of ar
hite
ture style
onstraints. UML is useful to spe
ifyalready designed software ar
hite
tures, but it is not useful to model it [5℄.Darwin is a de
larative ADL intended to be a general purpose notation forspe
ifying the stru
ture of software systems
omposed of a set of software
om-ponents and their intera
tion me
hanisms. It advo
ates a
onstru
tive style ofsystem design, whi
h leads to a
lear separation between program stru
ture,
omputation and intera
tion. Darwin has both a graphi
al and textual represen-tation. It has a solid theoreti
al ba
kground based on �-
al
ulus.Input/Output Automata is a text-based language that has been developedand applied at MIT for the last 15 years [20, 21℄. It is a formalism for spe
ify-ing asyn
hronous
on
urrent and potentially distributed
omponents based onlabeled transitions. IOA is not generally
onsidered as an ADL, but it models
omponents,
onne
tors and
on�gurations, therefore, it has most of the
har-a
teristi
s needed to be an ADL [23℄.In summary, ADLs like ACME, Wright, and C2, are based on textual rep-resentations, whi
h limits readability and understandability of the ar
hite
turaldesign spe
i�
ations. Text-based notations do not help re
ognizing and reusinghigh level abstra
tions as design and ar
hite
tural patterns. In general, it isnatural and eÆ
ient to use a graphi
al representation to aid in the design pro-
ess [28, 34℄. On the other hand, languages like UML and box-and-line that arenot formally ADLs, are
ommonly used as design languages. These languagesprovides a graphi
al representation of the ar
hite
tural design but they haveproblems avoiding ambiguities on the ar
hite
tural design spe
i�
ation be
ausethey do not provide a formal semanti
 to represent
omponents,
onne
tors and
on�gurations. It also limits their
apability to
arry out analysis and validationof ar
hite
tural designs.

5On the other hand, Darwin
ould provide a good framework for developingspe
i�
ations of ar
hite
tural designs. The main limitations of this ADL are thatit does not represent
onne
tors and it does not naturally represent hierar
hi-
al designs through
omponent abstra
tions. This is an important limitation fors
alability. Similar to Darwin, this paper presents a textual and graphi
al no-tation to spe
ify software ar
hite
ture designs. This notation provides a formalsemanti
s to represent
omponents,
onne
tors, and
on�gurations, therefore it
an be
onsidered an ADL. Also, the proposed notation is well
on
eived tomodel software ar
hite
tures in a hierar
hi
al way, whi
h is very helpful for non-experimented software ar
hite
ts.3 The Appli
ation Example: A Mesh Management ToolThere is a group at the Computer S
ien
e Department in the Universidad deChile developing a mesh management tool based on resear
h on mesh manage-ment algorithms
arried out for the last 15 years. Ea
h algorithm involved is very
omplex, so the
omplexity of a tool integrating about 20 di�erent algorithms iseven greater. There is a personal issue in the fa
t that people involved in meshmanagement resear
h are not very mu
h aware and familiar with good softwareengineering pra
ti
es. They have already had a
ouple of experien
es of lettinga program grow until it is not possible to �x errors anymore and then the wholee�ort has aborted. We want a planned development that gives us some warrantythat if we follow the plan, we will get what we expe
ted.Some
omponents of the tool have already been developed su
h as a 3D tetra-hedral mesh visualizer and an intera
tive re�nement
omponent. The generationof a �rst good quality tetrahedral mesh is
urrently under development. Figure 1shows a s
reenshot of this partial implementation.The algorithms ne
essary for generating, managing and re�ning geometri
meshes in three dimensions are highly
omplex [15, 30℄. We need highly
ompe-tent and expensive people for the development and we need to establish a qualityassuran
e methodology. If we also have the
apability of reusing the implemen-tation of all these algorithms in su

essive versions of the tool, these produ
tswill have a better opportunity of
ommer
ial su

ess [6℄.4 Integrated Software Ar
hite
ture NotationTwo main goals guide our proposal of an integrated notation for software ar-
hite
ture spe
i�
ation: formality and usability. These two qualities tend to beopposed: the more formality we add into a spe
i�
ation, the less understandableit be
omes; the more formality we require from a spe
i�
ation, the more diÆ
ultit is to build it. So we want a spe
i�
ation that is formal enough to avoid all am-biguity but in a way that developers do not be
ome overwhelmed with notation.This spe
i�
ation should address stru
tural and behavioral aspe
ts of softwarear
hite
ture design so that we
an understand
learly what the system does and

6

Fig. 1. Mesh tool implementation.we
an analyze its possible behavior, but only if we need to reason about thesystem.In order to deal with these requirements we propose an integrated nota-tion that spe
i�es the software ar
hite
ture design in three di�erent levels ofabstra
tion, as we show in Figure 2. We provide a high level stru
tural spe
i�
a-tion using box-and-line diagrams, an intermediate behavioral spe
i�
ation usingInput/Output Automata, and an abstra
t data type spe
i�
ation using Lar
htraits.
LARCH
TRAITS

BOX AND LINE
DIAGRAMS

INPUT/OUTPUT
AUTOMATA

STRUCTURE

BEHAVIOR

ADTsFig. 2. Three levels of ar
hite
tural spe
i�
ationGenerally, when people inspe
t a design, they �rst identify its stru
ture [27℄.It is natural for human beings to think about designs mainly fo
used on stru
-

7tures [29℄. For this reason, we propose that the top highest level of the softwarear
hite
ture spe
i�
ation is fo
used on the stru
ture of su
h design. On
e thestru
ture is understood, the behavior is naturally easier to analyze and under-stand. In summary, people that develop and review designs start with the stru
-ture, follows with the system behavior, and only then they
an deal with the�ner grained details about the design. In general, this way to pro
eed is naturalfor human being, and also for software ar
hite
ts.4.1 Stru
tural Spe
i�
ationIn the uppermost level, a box-and-line diagram is used. Ea
h box
orresponds toa software
omponent and ea
h line is an intera
tion between the
omponentsit
onne
ts. This kind of diagrams is the most typi
al informal diagram used forspe
ifying ar
hite
tures, so people are generally familiar with the notation. Eventhough it is a limited notation, there are many high level pie
es of informationthat
an be addressed very
learly: the type and number of
omponents in thesystem, whi
h ones
ommuni
ate and whi
h ones do not
ommuni
ate, whi
h
omponents
ommuni
ate with
omponents outside the system and whi
h onesonly
ommuni
ate with internal
omponents, and the
on�guration of the wholesystem. All these elements are quite relevant for a software development team.Also, ar
hite
tural patterns are generally de�ned using di�erent
avors of box-and-line diagrams [4℄; so using this notation makes it easier to re
ognize andreuse these patterns.The internal details about the
omponents are almost irrelevant for the stru
-tural des
ription of the system. However, developers in
harged of implementingor modifying ea
h
omponent, should know about these details, so they shouldhave a

ess to the
omponent behavior spe
i�
ation.

DATA

MESH TOOL

AND
VISUALIZER

CONTROLLER

FIRST MESH

GENERATION IMPROVEMENT
MESH INTERACTIVE

REFINEMENT
MESH

ADAPTIVE
MESH

REFINEMENT
FEM

SOFTWARE

Fig. 3. High level ar
hite
ture for a mesh tool.

8 Figure 3 shows the stru
tural box-and-line diagram of the mesh tool. The fol-lowing
omponents are already implemented: VISUALIZER AND CONTROL-LER, INTERACTIVE MESH REFINEMENT, and DATA. The rest of the
om-ponents are either under
onstru
tion or just planned. Table 1 provides a briefdes
ription of ea
h
omponent in the system.Component Des
riptionVISUALIZER This
omponents shows the tetrahedral mesh in its
urrent state. ItAND allows visualization operations: rotate user point of view, zoom,CONTROLLER
ontra
t elements. As a
ontroller, it allows the user to
all otherfun
tional
omponents [36℄. This
omponent holds a simpli�edversion of the mesh in
luding only geometri
 data.FIRST The tool needs a tetrahedral mesh to start exe
uting all other
omponents.MESH The �rst mesh is built starting from a three dimensional surfa
eGENERATION mesh.MESH The main goal of this
omponent is to improve a mesh based on a
ertainIMPROVEMENT quality
riterion. There are many
riteria for improving a tetrahedralmesh. The user
hooses a
riterion and this
omponent will improve alltetrahedra that do not satisfy it [32℄.INTERACTIVE This
omponent helps the user to improve
ertain mesh elements that areMESH not good enough. For this purpose, he or she marks the elements to beREFINEMENT re�ned using a re�nement algorithm [31, 33℄.ADAPTIVE The elements that need to be re�ned depend on the physi
al phenomenonMESH under study [31, 33℄. So this
omponent must
arry out the re�nementREFINEMENT based on the information provided by a FEM (Finite Elements Method)software as is shown in Figure 3.DATA De
oupling data stru
tures from algorithms is a very important feature inthe mesh tool development philosophy. Data stru
tures must be ri
henough to provide the information ne
essary for ea
h algorithm andsuÆ
iently en
apsulated to allow them to see only what other
omponentsneed.Table 1. Planned
omponents in the mesh toolThe
omplete system, the MESH TOOL,
an also be seen as a
ompoundbox, similarly as the form used in [9℄. In the same way, we
an spe
ify sub-boxesinter
onne
ted as a form of a �ner grained spe
i�
ation for
omplex boxes.4.2 Behavioral Spe
i�
ationWe spe
ify the behavior of the overall system at the ar
hite
tural level as thedynami
s of
omponent intera
tions identi�ed in the stru
tural level. For thispurpose we use Input/Output Automata.A system may be �rst de�ned at a high level of abstra
tion
apturing onlythe essential requirements about its behavior, and then be su

essively re�neduntil the desired level of detail is rea
hed.The notion of parallel
omposition, also in
luded in the I/O automatonmodel, fa
ilitates modular design and analysis of distributed systems. The par-allel
omposition operator in the model allows the
onstru
tion of large and
omplex systems from smaller and simpler subsystems and study their behaviorin terms of the behavior of its
omponents.

9A suite of software tools|the IOA toolkit|is being developed to help inthe design, analysis, and development of systems within the I/O automatonframework [17℄. The toolkit in
ludes syntax and stati
 semanti
s analysis, anIOA simulator, a
ode generator and translators to a range of representationssuitable for use with some theorem provers and model
he
king tools [16℄.An I/O automaton is a simple type of state ma
hine in whi
h transitionsare asso
iated with named a
tions. The a
tions are
lassi�ed as either input,output, or internal. Inputs and output transitions are used for
ommuni
ationwith the automaton's environment, whereas internal a
tions are visible onlyto the automaton itself. The input a
tions are assumed not to be under theautomaton's
ontrol, while the automaton itself
an
ontrol whi
h output andinternal a
tions should be performed. Table 2 des
ribes the essential parts in anI/O automaton de�nition.Element Des
riptionsignature lists the disjoint sets of input, output, and internal a
tions of an automaton Astates a (not ne
essarily �nite) set of states, usually des
ribed by a
olle
tionof state variablesstart states a non-empty subset of the set of all statestransitions triples known as steps or transitions of the form (state, a
tion, state)tasks an optional set whi
h partitions the internal and output a
tions of ATable 2. Elements in an IOA de�nition of an automaton AAn a
tion � is said to be enabled in a state s if there is another state s' su
hthat (s,�,s') is a transition of the automaton. Input a
tions are enabled in everystate. That is to say that automata are not able to blo
k input a
tions fromo

urring. The external a
tions of an automaton
onsist of its input and outputa
tions.We
an spe
ify the behavior of the VISUALIZER AND CONTROLLER asan Input Output Automata as is shown in Figure 4. Only the intera
tions be-tween the VISUALIZER AND CONTROLLER with the FIRST MESH GEN-ERATION and the INTERACTIVE MESH REFINEMENT have been in
ludedin the IOA spe
i�
ation in Figure 4. The intera
tive re�nement is already builtand the
omponent that builds the �rst mesh is
urrently under
onstru
tion, sowe needed these intera
tions. As soon as MESH IMPROVEMENT and ADAP-TIVE MESH REFINEMENT start to be built, we will need to evolve the VIS-UALIZER AND CONTROLLER IOA spe
i�
ation to in
lude the appropriateintera
tions.The VISUALIZER AND CONTROLLER keeps tra
k of the
urrent mesh;it is de�ned as part of its internal state as a TetSet, that is a set of tetrahedra.This data type is used in the IOA spe
i�
ation but it is de�ned elsewhere (seeSe
tion 4.3). The mesh is initiated as an empty set, so we assume that the �rstoperation should be to generate a mesh. The variable option lets us know the
urrent status of the automaton in order to syn
hronize all transitions; initiallyoption is available.

10automaton VISUALIZER AND CONTROLLERuses TetraSettype Status = enumeration of wait generate, wait re�ne, availablesignatureoutput generate mesh()input generate done(new mesh : TetSet)internal mark(ts : TetSet)output int re�ne mesh(ts : TetSet)input int re�ne done(refset, ext marked : TetSet)statesoption : Status := availablemesh : TetSet := fgmarked : TetSet := fgtransitionsoutput generate mesh()pre option = availablee� option = wait generateinput generate done(new mesh)e� mesh := new meshoption := availableinternal mark(ts)pre option := availablets � meshe� marked := tsoutput int re�ne mesh(marked)pre option = availablemarked 6= fge� option = wait re�neinput int re�ne done(refset, ext marked)e� mesh := mesh - ext marked [refsetoption := available ^ marked := fgFig. 4. IOA Spe
i�
ation for the VisualizerAs we mentioned in Se
tion 4.1, we
an see the
omplete MESH TOOL as a
ompound automata. The
omposition is made by identifying all transitions withequal name: whenever an output transition is �red in one of the automata, allinput transitions with the same signature (name and parameter list) in other au-tomata are also �red; this is the way of spe
ifying the behavior of the
onne
torsin the ar
hite
ture.The set of all intera
ting
omponents forms the ar
hite
ture
on�guration.This is a
hived by
omposing all the automata
orresponding to
omponents inthe system. We provide the
ompound spe
i�
ation of the mesh tool in Figure 5.Whenever we build a new automaton by
omposing a set of other automata, we
an
hoose to rename pairs of input and output transitions in the automata set asan internal transition of the
ompound automaton. In this way, this transitionis not an external a
tion anymore and we
an better en
apsulate automatade
iding what is seem from the outside and what is not. In our example, we
an dedu
e that the only external a
tions of the
omplete MESH TOOL shouldbe those by whi
h the ADAPTIVE MESH REFINEMENT intera
ts with theFEM software.

11automaton MESH TOOL
omposeVISUALIZER AND CONTROLLER;FIRST MESH GENERATION;MESH IMPROVEMENT;INTERACTIVE MESH REFINEMENT;ADAPTIVE MESH REFINEMENT;DATA Fig. 5. Mesh tool spe
i�ed as a
ompound automata4.3 Domain Spe
i�
 Abstra
t Data TypesIn order to have a
ompletely formal de�nition of a system ar
hite
ture weneed to formally de�ne its stru
ture and behavior, as we did in Se
tions 4.1and 4.2. However, as has been our motivation from the beginning, in ea
h ofthese steps we
hose to hide some lower level information that
ould be de�nedelsewhere and that would only add
omplexity to the de�nition at hand. Thisis the
ase of the domain spe
i�
 abstra
t data types (ADTs). Componentsde�ned as automata
ommuni
ate by sending messages of a
ertain type, andtheir internal state is also de�ned in terms of state variables of a
ertain type.In
omplex domains these types may be
omplex too. We used Lar
h [14℄ tospe
ify these ADTs mainly be
ause it has already been used in
onjun
tion withInput/Output Automata [11℄ and there are many primitives that make it easierto integrate both notations into a unique spe
i�
ation.The trait is the basi
 unit of spe
i�
ation in the Lar
h Shared Language(LSL). A trait introdu
es some operators and spe
i�es some of their properties.Sometimes the trait de�nes an abstra
t type. LSL spe
i�
ations de�ne two kindsof symbols, operators and sorts. The
on
epts of operator and sort are similar to\pro
edure" and \type" in a programming language. Operators stand for totalfun
tions from tuples of values to values. Sorts stand for disjoint non-empty setsof values, and are used to indi
ates the domains and ranges of operators [14℄.A Lar
h spe
i�
ation is formed by four basi
 parts introdu
ed by the key-words in
ludes, introdu
es, asserts and implies. Table 3 provides a brief expla-nation of ea
h of these terms.Figure 6 shows the Lar
h spe
i�
ation of the TetraSet trait. This ADT is usedin the VISUALIZER AND CONTROLLER automaton spe
i�ed in Figure 4.The de�nitions for the in
luded traits SetBasi
s and DerivedOrders are as-sumed to be those provided in [14℄. We are also assuming that there existsanother trait Tetra that de�nes a tetrahedron as an ADT. The set operationsin
luded in the introdu
es part of the trait are the only ones that we need, thatmeans that a TetSet is formed by elements Tetra and thus only elements of thesort Tetra
an be members of a TetSet (2), and that union ([) and set di�er-en
e (-) are operations between TetSets. In the asserts part, the axioms thatrule the de�ned operations are stated. Finally, in the implies part we in
lude

12 Clause Des
riptionin
ludes This
lause allows the reuse of traits when spe
ifying more
omplex ADTs.Operators are spe
i�ed in a separate trait that is in
luded by referen
e usingthe in
ludes
lause.introdu
es De
lares a set of operators (fun
tion identi�ers), ea
h with its signature(thesorts of its domain and range). Every operator used in a trait must be de
lared.asserts Generaly, it represents the body of the spe
i�
ation. It
ontains equations(two terms of the same trait, separated by = or ==) between terms
ontainingoperators and variables. This equations
onstrain the operators.implies It is useful for theory
ontainment (that a spe
i�
ation has intended
onsequen
es).It enables spe
i�ers to in
lude information they believe to be redundant, eitheras a
he
k on their understanding or to
all atention to something that a readermight otherwise miss.Table 3. Clauses in a Lar
h de�nition of a trait
ertain statements for
larifying notation, provided that we are using in
ludedde�nitions that are not ne
essarily at hand for the user.5 Con
lusions and Work in ProgressThe ar
hite
ture of a system de�nes its high-level stru
ture as a
olle
tion ofintera
ting
omponents. Many software ar
hite
ts use informal box-and-line di-agrams to des
ribe ar
hite
tures. Unfortunately, informal diagrams and des
rip-tions are highly ambiguous. Consequently, it is virtually impossible to answerwith any pre
ision most of the questions that arise during system development.Re
ognizing the de�
ien
ies of using ad-ho
 and informal notations to des
ribear
hite
ture, the software engineering resear
h
ommunity has developed ar
hi-te
ture de�nition languages. ADLs have well-de�ned semanti
s and tools forparsing,
ompiling and analyzing spe
i�
ations of software ar
hite
ture designs.Most of them are text-based. Also, the more formal and
omplete these spe
i�
a-tions are the more diÆ
ult to spe
ify and understand these ar
hite
tural designsbe
ome,
ompromising usability and appli
ability of the ADL. The software ar-
hite
ts need an ADL that is
omplete and formal enough to avoid ambiguitiesin the ar
hite
tural design spe
i�
ations, but also easy to use and understandso that it does not be
ome an obsta
le to spe
ify, extend, or modify a softwaresystem.In order to deal with these
hallenges, this paper presented an integratednotation for spe
ifying software ar
hite
tures that
ombines simpli
ity and for-mality. This notation involves a spe
i�
ation in three levels of abstra
tion: agraphi
al box-and-line diagram to spe
ify stru
ture, an IOA spe
i�
ation torepresent behavior, and a basis of Lar
h traits to des
ribe the domain spe
i�
abstra
t data types. Box-and-line diagrams are quite popular and most develop-ers understand what they mean. However it is also well known that they do sayalmost nothing about the behavior. For that reason the proposed notation in-
ludes a IOA spe
i�
ation for ea
h box-and-line
omponent, in order to representtheir behavior. IOA is a formal modeling language that has been used for many

13TetraSet: traitin
ludesTetra,SetBasi
s,DerivedOrders (TetSet, � for �)introdu
es2 : Tetra, TetSet ! Boolf g: Tetra ! TetSet[, � : TetSet, TetSet ! TetSetasserts8 e: Tetra, s1, s2: TetSete 2 (s1 [s2) == e 2 s1 _ e 2 s2;e 2 (s1 � s2) == e 2 s1 ^ e 62 s2;s1 � s2 == s1 � s2 = f gimpliesAbelianMonoid ([for Æ, f g for unit, TetSet for T),JoinOp ([, f g for empty),MemberOp (f g for empty),PartialOrder (TetSet, � for �)TetSet generated by f g, f g, [8 e: Tetra, s1, s2: TetSets1 � s2) (e 2 s1) e 2 s2)
onverts2, 62, f g, [, �, �Fig. 6. Lar
h Spe
i�
ation for TetraSetyears to spe
ify
on
urrent systems behavior. IOA has a natural integration withLar
h traits, helping en
apsulating required ADTs details.The integrated notation is able to model
omponents,
onne
tors, and
on-�gurations through a formal spe
i�
ation in order to represent the stru
ture andbehavior of software systems. It does not avoid the diÆ
ulty of building a
om-pletely formal spe
i�
ation, but it organizes it in a way that not everybody needsto be involved with the te
hni
al details. All the semiformal diagrams that areshared among the development team
an be proved to be sound and
onsistentwith the expe
ted stru
ture and behavior.In order to show the usability and appli
ability of the proposed notation, thispaper presented the ar
hite
ture design spe
i�
ation of a
omplex mesh man-agement tool that has been partially implemented. In the future we intend to
reate a tool to simulate and analyze ar
hite
tures spe
i�ed with the integratednotation. Further, it is needed to formalize the hierar
hi
al box-and-line spe
-i�
ation in
onjun
tion with IOA
omposition to enhan
e this integration andtake more advantages of it.A
knowledgementsThe work of Mar��a Ce
ilia Bastarri
a has been partially funded by proje
t I-01-2/2001 of the Dapartment of Development and Resear
h of the Universidad deChile.

14Referen
es1. Robert Allen and David Garlan. A Formal Basis for Ar
hite
tural Conne
tion.ACM Transa
tions on Software Engineering and Methodoly, 6(3):213{249, July1997.2. Hedley Apperly. The Component Industry Metaphor. Addison Wesley, 2001. InComponent-Based Software Engineering,
hapter 2, George Heineman andWilliamCoun
ill editors.3. Marteen Boasson and Hollandse Signaalapparaten. The Artistry of Software Ar-
hite
ture. IEEE Software, 12(6):13{16, November 1995.4. Frank Bus
hmann, Regine Meunier, Hans Rohnert, and Peter Sommerlad. PatternOriented Software Ar
hite
ture: A System of Patterns. John Wiley & Son Ltd.,August 1996.5. Paul Clements, Felix Ba
hmann, Len Bass, David Garlan, James Ivers, Reed Little,Robert Nord, and Judith Sta�ord. Do
umenting Software Ar
hite
tures. Views andBeyond. SEI Series in Software Engineering. Addison Wesley, 2002.6. Paul Clements and Linda M. Northrop. Software Produ
t Lines: Pra
ti
es andPatterns. Addison Wesley, �rst edition, August 2001.7. Eri
 M. Dashofy, Andr�e van der Hoek, and Ri
hard N. Taylor. An Infrastru
-ture for the Rapid Development of XML-based Ar
hite
ture Des
ription Lan-guages. In Pro
eedings of the 24th International Conferen
e on Software Engi-neering (ICSE2002), Orlando, Florida, 2002.8. Amnon H. Eden. Dire
tions in Ar
hite
tural Spe
i�
ations. In Software Ar
hi-te
ture Re
overy and Modelling, in: the 8th Working Conferen
e on Reverse Engi-neering (WCRE), Stuttgart, Germany, O
tober 2001.9. C. Gane and T. Sarson. Stru
tured Systems Analysis. Prenti
e-Hall, 1979.10. D. Garlan, R. Monroe, and D. Wile. ACME: An Ar
hite
tural Inter
onne
tion Lan-guage. Te
hni
al Report CMU-CS-95-219, Carnegie Mellon University, November1995.11. Stehen J. Garlan, Nan
y A. Lyn
h, and Mandana Vaziri. IOA: A Language forSpe
ifying, Programming and Validating Distributed Systems. Te
hni
al report,MIT Laboratory for Computer S
ien
e, De
ember 1997.12. Stephen J. Garland and Nan
y A. Lyn
h. The IOA Language and Toolset: Sup-port for Designing, Analyzing, and Building Distributed Systems. Te
hni
al Re-port MIT/LCS/TR-762, MIT Laboratory for Computer S
ien
e, Cambridge, MA,August 1997.13. J. V. Guttag, J. J. Horning, and J. M. Wing. The Lar
h Family of Spe
i�
ationLanguages. IEEE Software, 2(5), 1985.14. John V. Guttag and James J. Horning. Lar
h: Languages and Tools for FormalSpe
i�
ation. Springer-Verlag Texts and Monographs in Computer S
ien
e, 1993.15. Mar
 Halpern. Industrial Requirements and Pra
ti
es in Finite Element Meshing:A Survey of Trends. In Pro
eedings of the 6th International Meshing Roundtable'97,Park City, Utah, O
tober 1997. Sandia National Laboratories.16. IOA. IOA Language and Toolset, 2002. http://theory.l
s.mit.edu/tds/ioa/.17. Dilsun Kirli Kaynar, Anna Chefter, Laura Dean, Stephen Garlan, Nan
y Lyn
h,Toh NeWin, and Antonio Ram��rez-Robredo. The IOA Simulator. Te
hni
al ReportMIT-LCS-TR-843, MIT Laboratory for Computer S
ien
e, July 2002.18. P. Krut
hen. Ar
hite
tural Blueprints - The \4+1" View Model of Software Ar-
hite
ture. IEEE Software, 12(6):42{50, November 1995.

1519. D. C. Lu
kham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann.Spe
i�
ation and Analysis of System Ar
hite
ture Using Rapide. IEEE Transa
-tions on Software Engineering, pages 336{355, April 1995.20. Nan
y Lyn
h. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.21. Nan
y Lyn
h and Mark Tuttle. An Introdu
tion to Input/Output Automata. CWIQuart, 2(3):219{246, 1989.22. Je� Magee and Je� Kramer. Dynami
 Stru
ture in Software Ar
hite
tures. In Pro-
eedings of ACM SIGSOFT'96: Fourth Symposium on the Foundations of SoftwareEngineering (FSE4), pages 3{14, O
tober 1996.23. Nenad Medvidovi
 and Ri
hard Taylor. A Classi�
ation and Comparison Frame-work for Software Ar
hite
ture Des
ription Languages. IEEE Transa
tions onSoftware Engineering, 26(1), January 2000.24. Nenad Medvidovi
, Ri
hard Taylor, and E. James Whitehead Jr. Formal Modelingof Software Ar
hite
tures at Multiple Levels of Abstra
tion. In Pro
eedings of theCalifornia Software Symposium 1996, pages 28{40, April 1996.25. S. Mellor and M. Bal
er. Exe
utable UML: A Foundation for Model-Driven Ar
hi-te
ture. Addison Wesley, 2002.26. M. Mori
oni, X. Qian, and R. A. Riemens
hneider. Corre
t Ar
hite
ture Re�ne-ment. IEEE Transa
tions on Software Engineering, pages 356{372, April 1995.27. K. Mullet and D. Sano. Designing Visual Interfa
es: Communi
ation OrientedTe
hniques. Sunsoft Press (Prenti
e Hall), 1995.28. J. Nosek and I. Roth. A
omparison of formal knowledge representation s
hemes as
ommuni
ation tools: Predi
ate logi
 vs. semanti
 network. International Journalof Man-Ma
hine Studies, 33:227{239, 1990.29. Joseph Novak. Learning, Creating, and Using Knowledge: Con
ept Maps as Fa
il-itative Tools in S
hools and Corporations. Lawren
e Erlbaum Asso
iates, 1998.30. National S
ien
e Foundation Information Te
hnology Resear
h (NSF/ITR). Adap-tive Software Proje
t, 2001. http://www.er
.msstate.edu/ j
ollins/ITR/-index.html.31. Mar��a Ce
ilia Rivara. Design and Data Stru
ture of Fully Adaptive Multigrid,Finite-Element Software. ACM Transa
tions on Mathemati
al Software, 10(3):242{264, September 1984.32. Mar��a Ce
ilia Rivara. New Longest-Edge Algorithms for the Re�nement and/orImprovement of Unstru
tured Triangularions. International Journal for Numeri
alMethods in Engineering, 40:3313{3324, 1997.33. Mar��a Ce
ilia Rivara and Cristian Levin. A 3-D Re�nement Algorithm Suitablefor Adaptive and Multi-Grid Te
hniques. Communi
ations in Applied Numeri
alMethods, 8:281{290, 1992.34. D. Roberts. The Existential Graphs of Charles S. Peir
e. The Hague, Mouton &Co. N. V., 1973.35. D. S
hmidt, M. Stal, H. Rohner, and F. Bus
hmann. Pattern Oriented SoftwareAr
hite
ture. Vol. 2. Patterns for Con
urrent and Networked Obje
ts. John Wiley& Sons, 2000.36. Felipe De Toro. Interfaz Orientada al Re�namiento Intera
tivo de Mallas Tridimen-sionales, 2002. Universidad de Chile, Fa
ultad de Cien
ias F��si
as y Matem�ati
as,Departamento de Cien
ias de la Computa
i�on.37. Amy Moormann Zaremski and Jeannette M. Wing. Spe
i�
ation Mat
hing of Soft-ware Components. ACM Transa
tions on Software Engineering and Methodology(TOSEM), 6(4):333{369, O
tober 1997.

