
Approximate Regular Expression Sear
hingwith Arbitrary Integer WeightsGonzalo Navarro�Abstra
tWe present a bit-parallel te
hnique to sear
h a text of length n for a regular expression ofm symbols permitting k di�eren
es in worst
ase time O(mn= logk s), where s is the amountof main memory that
an be allo
ated. The algorithm permits arbitrary integer weights andmat
hes the
omplexity of the best previous te
hniques, but it is mu
h simpler and faster inpra
ti
e. In our way, we de�ne a new re
urren
e for approximate sear
hing where the
urrentvalues depend only on previous values.1 Introdu
tion and Related WorkThe need to sear
h for regular expressions arises in many text-based appli
ations, su
h as text re-trieval, text editing and
omputational biology, to name a few. A regular expression is a generalizedpattern
omposed of (i) basi
 strings, (ii) union,
on
atenation and Kleene
losure of other regularexpressions. Readers unfamiliar with the
on
ept and terminology related to regular expressionsare referred to a
lassi
al book su
h as [ASU85℄. We
all m the length of our regular expression,not
ounting operator symbols. The alphabet is denoted by �, and n is the length of the text.The traditional te
hnique to sear
h for a regular expression [ASU85℄ �rst builds a nondetermin-isti
 �nite automaton (NFA) and then
onverts it to a deterministi
 �nite automaton (DFA), whi
his �nally used to sear
h the text in O(n) time. This is worst-
ase optimal in terms of n. The mainproblem has been always the prepro
essing time and spa
e requirement to
ode the DFA, whi
h
an be as high as O(22mj�j) if the
lassi
al Thompson's NFA
onstru
tion algorithm [Tho68℄ isused. Thompson's
onstru
tion produ
es up to 2m states, but it has interesting properties, su
has ensuring a linear number of edges,
onstant indegree and outdegree, et
.An alternative NFA
onstru
tion is Glushkov's [Glu61, BS86℄. Although it does not providethe same regularities of Thompson's, this
onstru
tion has other interesting properties, su
h asprodu
ing the minimum number of states (m + 1) and that all the edges arriving at a node arelabeled by the same
hara
ter. The
orresponding DFA needs only O(2mj�j) spa
e, whi
h issigni�
antly less than the worst
ase using Thompson's NFA. Nevertheless, this is still exponentialin m.Two te
niques have been
lassi
ally used to
ope with the spa
e problem. The �rst is to uselazy DFAs, where the states are built only when they are rea
hed. This ensures that no more thanO(n) extra spa
e is ne
essary. The se
ond
hoi
e [Tho68℄ is to dire
tly use the NFA instead of
onverting it to deterministi
. This requires only O(m) spa
e, but the sear
h time be
omes O(mn).Both approa
hes are slow in pra
ti
e if the regular expression is large.�Dept. of Computer S
ien
e, Univ. of Chile. gnavarro�d

.u
hile.
l. Partially supported by Fonde
yt grant1-020831. 1

Newer te
hniques have provided better spa
e-time tradeo�s by using hybrids between the NFAand the DFA. Based on the Four Russians te
hnique, whi
h pre
omputes large tables that permitpro
essing several automaton states in one shot, it has been shown that O(mn= log s) sear
h time ispossible using O(s) spa
e [Mye92℄. The use of Thompson's automaton is essential for this approa
hwhi
h, however, is rather
ompli
ated. Simpler solutions obtaining the same
omplexities have beenobtained later using bit-parallelism, a te
hnique to pa
k several NFA states in a single ma
hine wordand update them as a single state. A �rst solution [WM92b℄, based on Thompson's
onstru
tion,uses a table of size O(22m) that
an be split into t tables of size O(22m=t) ea
h, at a sear
h
ost ofO(tn) table inspe
tions. A se
ond solution [NR01℄ uses Glushkov's automaton and uses t tables ofsize O(2m=t) ea
h, whi
h is mu
h more eÆ
ient in spa
e usage. In both
ases, O(mn= log s) sear
htime is obtained using O(s) spa
e.Several appli
ations in
omputational biology, data mining, text retrieval, et
. need an even moresophisti
ated form of sear
hing. In addition to the regular expression, an integer threshold k is given,so that we have to report the text substrings that
an mat
h the regular expression after performingseveral
hara
ter insertions, deletions and substitutions, whose total
ost or weight does not ex
eedk. In most real appli
ations, there are di�erent weights asso
iated to insertions, deletions, andsubstitutions, depending on the
hara
ters involved. This problem is
alled \approximate regularexpression sear
hing", as opposed to \exa
t" sear
hing.Instead of being just a
tive or ina
tive, every NFA node has now k+2 possible states, a

ordingto the weight of the di�eren
es needed to mat
h the text (0 to k, or more than k). If one applies the
lassi
al DFA
onstru
tion algorithm, the spa
e requirement raises to O((k + 2)2m) using Thomp-son's NFA and O((k + 2)m) using Glushkov's NFA. A dynami
 programming based solution withO(mn) time and O(m) spa
e exists [MM89℄. Although this is an a
hievement be
ause it retainsthe time
omplexity of the exa
t sear
h version and handles real-valued weights, it is still slow.The Four Russians te
hnique has been gra
efully extended to this problem [WMM95℄, obtainingO(mn= logk s) time using O(s) spa
e. Again, this algorithm is rather
ompli
ated.Sin
e bit-parallel solutions have, for many related problems, yielded fast and simple solutions,one may wonder what have they a
hieved here. For the
ase of unitary
osts (that is, all the weightsare 1), bit-parallel solutions exist whi
h resort to simulating k+1
opies of the NFA used for exa
tsear
hing. They a
hieve O(ktn) time using O(22m=t) spa
e [WM92b℄ (implemented in the softwareAgrep [WM92a℄) or O(2m=t) spa
e (implemented in the software Nrgrep [Nav01b℄). This yieldsO(kmn= log s) time using O(s) spa
e, whi
h is inferior to the a
hievement of the Four Russianste
hnique. Despite this less attra
tive
omplexity, bit-parallel solutions are by far the fastest formoderate sized regular expressions. Yet, they are restri
ted to the simpler
ase of unitary
osts.The aim of this paper is to over
ome the te
hni
al problems that have prevented the existen
e ofa simple O(mn= logk s) time and O(s) spa
e bit-parallel solution to approximate regular expressionsear
hing with arbitrary integer weights. We build over Glushkov's NFA and represent the stateof the sear
h using md1 + log2(k + 2)e bits. We then use t tables of size O((k + 2)m=t) and rea
hO(tn) sear
h time.We use the following terminology for bit-parallel algorithms. A bit mask is a sequen
e of bits,where the lowest bit is written at the right. Typi
al bit operations are in�x \j" (bitwise or), in�x\&" (bitwise and), pre�x \�" (bit
omplementation), and in�x \<<" (\>>"), whi
h moves the bitsof the �rst argument (a bit mask) to higher (lower) positions in an amount given by the argument2

on the right. Additionally, one
an treat the bit masks as numbers and obtain spe
i�
 e�e
ts usingthe arithmeti
 operations \+", \�", et
. Exponentiation is used to denote bit repetition, e.g.,031 = 0001, and [x℄` represents an integer x using ` bits. Finally, X�x, where X is a bit mask andx is a number, is the exa
t result of the multipli
ation, that is, a bit mask where x appears in thepla
es where X has 1's (superimpositions are solved with summation, as in usual multipli
ation,but we never use that feature).2 A Bit-Parallel Exa
t Sear
h AlgorithmWe des
ribe in this se
tion the exa
t bit-parallel solution we build on [NR01℄. The
lassi
al algo-rithm to produ
e a DFA from an NFA [ASU85℄
onsists in making ea
h DFA state represent a setof NFA states that may be a
tive at some point. Our way to represent the states of a DFA (i.e.,the sets of states of an NFA) is a bit mask of O(m) bits. The bit mask has in 1 the bits that belongto the set. We use set notation or bit mask notation indistin
tly.The des
ription of Glushkov's NFA
onstru
tion algorithm is outside the s
ope of this paper[Glu61, BS86℄. We just remark some of its properties. Given a regular expression of m
hara
ters(not
ounting operator symbols), the algorithm de�nes m+ 1 positions numbered 0 to m (one perposition of a
hara
ter of � in the regular expression, plus an initial position 0). Then, the NFA hasexa
tly one state per position, the initial state
orresponding to position 0. Two tables are built:B(�), the set of positions of the regular expression that
ontain
hara
ter �; and Follow(x), theset of NFA states that
an be rea
hed from state x in one transition1. From these two tables, thetransition fun
tion of the NFA is
omputed: Æ : f0 : : : mg��! }(f0 : : : mg), su
h that y 2 Æ(x; �)if and only if from state x we
an move to state y by
hara
ter �. The algorithm gives also a setof �nal states, Last, whi
h again will be represented as a bit mask.Important properties of Glushkov's
onstru
tion follow. (1) The NFA is "-free. (2) All thearrows leading to a given NFA state are labeled by the same
hara
ter: the one at the
orrespondingposition. (3) The initial state does not re
eive any transition. (4) Æ(x; �) = Follow(x) \ B(�).Property (4) permits a very
ompa
t representation of the DFA transitions. The
onstru
tionalgorithm is written so that tables B and Follow represent the sets of states as bit masks. We useB as is and build a large table J , the deterministi
 version of Follow. That is, J is a table that, forevery bit mask D representing a set of states, stores J [D℄ = Si2D Follow(i). Then, by Property(4) it holds that, if the
urrent set of a
tive states is D and we read text
hara
ter �, then the newset of a
tive states is J [D℄ \ B[�℄. For sear
h purposes, we set state 0 in J [D℄ for every D and inB[�℄ for every �2, and report every text position j where D \ Last 6= ;.Hen
e we need onlyO(2m + j�j) spa
e instead of the O(2mj�j) spa
e of the
lassi
al represen-tation. Spa
e-time tradeo�s are a
hieved by splitting table J . The splitting is done as follows. Webuild two tables J1 and J2, whi
h give the set of states rea
hed from states 0 : : : ` and `+ 1 : : : m,respe
tively, with ` = b(m + 1)=2
. Then, if we a

ordingly split the
urrent set of states D intoleft and right submasks, D = D1 : D2, we have J [D℄ = J1[D1℄ [J2[D2℄. Tables J1 and J2 needonly O(2m=2) spa
e. This generalizes to using t tables, for an overall spa
e requirement of O(t2m=t)and a sear
h
ost of O(tn) table a

esses.1To simplify the dis
ussion, we assume that Follow(0) = First, the states rea
hable from the initial state.2In fa
t, state 0 needs not be represented, sin
e it is always a
tive when sear
hing.3

3 A New Re
urren
e for Approximate Sear
hingLet us �rst give an exa
t formulation for our problem. Let R be a regular expression generatinglanguage L(R) � ��. Let m be the number of
hara
ters belonging to � in R. Let T1:::n 2 ��be the text, a sequen
e of n symbols. The problem is, given R, T , and k 2 N, to report everytext position j su
h that, for some j0 � j and P 2 L(R), ed(Tj0:::j ; P) � k. Here ed(A;B), theedit distan
e, is the minimum sum of weights of a sequen
e of
hara
ter insertions, deletions andsubstitutions needed to
onvert A into B. The weights are represented by a fun
tion !, su
h that!(a; b) is the
ost to substitute
hara
ter a by
hara
ter b in the text, !(a; ") is the
ost to delete
hara
ter a from the text, and !("; b) is the
ost to insert
hara
ter b in the text. Fun
tion !satis�es !(a; a) = 0, nonnegativity, and the triangle inequality.The
lassi
al dynami
 programming solution for approximate string mat
hing [Sel80℄, for the
ase where R is a simple string P1:::m, re
omputes for every text position j a ve
tor C0:::m, whereCi = minj0�j ed(Tj0:::j; P1:::i). Hen
e every text position j where Cm � k is reported. C is initializedas Ci = i and then updated to C 0 at text position j using dynami
 programming:C 0i min(!(Tj ; Pi) + Ci�1; !(Tj ; ") + Ci; !("; Pi) + C 0i�1)where C 00 = 0. The �rst
omponent refers to a
hara
ter mat
hing or substitution, the se
ond todeleting a text
hara
ter, and the third to inserting a
hara
ter in the text.If we have a general regular expression R built using Glushkov's algorithm, with positions 1to m, this generalizes as follows. We
all Li the set of strings re
ognized by the automaton if weassume that the only �nal state is i. Then Ci = minj0�j;P2Li ed(Tj0:::j ; P) is
omputed as follows:C 0i min(Si(Tj) + mini02Follow�1(i)Ci0 ; D(Tj) + Ci; Ii + mini02Follow�1(i)C 0i0) (1)where Si(a) = !(a;Ri), D(a) = !(Tj ; "), Ii = !(";Ri), and Ri is the only
hara
ter su
h thatB(Ri) = fig: Thanks to Property (2), we know that all the edges arriving at state i are labeled bythe same
hara
ter, Ri. C0 is always 0 be
ause it refers to the initial state, so L0 = f"g.Note that the main di�eren
e in the generalization is that, in the
ase of a single pattern, everystate i has a unique prede
essor, state i� 1. Here, the set of prede
essor states, Follow�1(i),
anbe arbitrarily
omplex. In the third
omponent of Re
urren
e (1) (insertions in the text) we have apotential dependen
e problem, be
ause in order to
ompute C 0 for state i we need to have already
omputed C 0 for states that pre
ede i, in an automaton that
an perfe
tly
ontain
y
les. Thereare good previous solutions to this
ir
ular dependen
e problem [MM89℄, but these are not easy toapply in a bit-parallel
ontext.We present a new solution now. We will use the form i(r) in minimization arguments, whoserange is as follows: i(0) = i and i(r+1) 2 Follow�1(i(r)). Also, we will denote Si(r) = Si(r)(Tj) andD = D(Tj). Let us now unfold Re
urren
e (1):C 0i min(Si +mini(1) Ci(1) ; D + Ci; Ii +mini(1) min(Si(1) +mini(2) Ci(2) ; D + Ci(1) ; Ii(1) +mini(2) C 0i(2)))where after a few manipulations we obtainC 0i min (D + Ci;mini(1) (Si + Ci(1));mini(1) (Ii + Si(1) +mini(2) Ci(2));mini(1) (Ii +D + Ci(1));mini(1) (Ii + Ii(1) +mini(2) C 0i(2)))4

The term mini(1)(Ii+D+Ci(1))
an be removed be
ause, by de�nition of Ci, Ci � mini(1) Ii+Ci(1)(third
omponent of Re
urren
e (1) applied to the
omputation of C), and we have already D+Ciin the minimization. We fa
tor out all the minimizing operators and getC 0i min(D + Ci; mini(1);i(2)min(Si + Ci(1) ; Ii + Si(1) + Ci(2) ; Ii + Ii(1) + C 0i(2)))By unfolding C 0i(2) and doing the same manipulations again we getC 0i min(D + Ci;mini(1);i(2);i(3)min(Si + Ci(1) ; Ii + Si(1) + Ci(2) ; Ii + Ii(1) + Si(2) +Ci(3) ; Ii + Ii(1) + Ii(2) + C 0i(3)))and we
an
ontinue until the latter term ex
eeds k + C 0i(r+1) , whi
h is not interesting anymore.The resulting re
urren
e does not depend anymore on C 0, and will be
ome our working re
urren
e:C 0i min(D + Ci; minr�0 mini(1):::i(r) X0�u<r Ii(u) + Si(r) + Ci(r+1)) (2)4 A Bit-Parallel Approximate Sear
h AlgorithmWe will represent the Ci ve
tor in a bit mask. Ea
h Ci value will range in the interval 0 : : : k+1, sowe will need ` = dlog2(k+ 2)e bits to represent it. The reason is that, if a
ell is larger than k +1,we
an assume that its value is k + 1 and the out
ome of the sear
h will be the same [Ukk85℄. Forte
hni
al reasons that are made
lear soon, we will need an extra bit per
ell, whi
h will always bezero. Sin
e C0 is always 0, it does not need to be represented. Hen
e we need m(1+ `) bits overall.The bit mask will represent the sequen
e of
ells C = 0[Cm℄` 0[Cm�1℄` : : : 0[C2℄` 0[C1℄`. We use asmany
omputer words as needed to store C (a single
ell will not be split among
omputer words).From the parsing of the regular expression, we re
eive the tables B and Follow, where thesets are represented as bit masks of length m + 1 (see previous work for details [NR01℄). We willprepro
ess B so as to produ
e bit-parallel versions of Ii, D and Si. These will be
alled I, D[�℄and S[�℄, respe
tively. The
omputation of these values from ! and B is shown in Figure 1.Our next tool is a table J , whi
h maps bit masks of length m(1 + `) into bit masks of lengthm(1 + `), as follows:J [0[Cm℄` 0[Cm�1℄` : : : 0[C2℄` 0[C1℄` ℄ = 0[Mm℄` 0[Mm�1℄` : : : 0[M2℄` 0[M1℄`where Mi = mini02Follow�1(i)Ci0That is, J takes a sear
h state C and permits every C value propagate by the NFA edges. Ifseveral states i0 propagate to a single state i, we
hoose the minimum. We a

ount for the zerospropagated from the unrepresented initial state 0.Let us now
onsider Re
urren
e (2). Assume that C is our
urrent sear
h state. The �rst partof the minimum (D + Ci) is easily obtained in bit-parallel, as E C + (0[D℄`)m. If D turns outto be larger than k + 1 we set D = k + 1. The result of the sum
an give us values as large as5

Cal
Weights (!; B; k; m; `)1. I 0(1+`)m2. For
 2 � Do3. D[
℄ (0[min(!(
; "); k + 1)℄`)m4. S[
℄ 0(1+`)m5. For i 2 1 : : :m Do6. If B[
℄ & 0m�i10i�1 6= 0m Then7. I I j 0(1+`)(m�i)0[min(!(";
); k + 1)℄`0(1+`)(i�1)8. For
0 2 � Do9. S[
0℄ S[
0℄ j 0(1+`)(m�i)0[min(!(
0;
); k + 1)℄`0(1+`)(i�1)Figure 1: Computation of tables I, D and S from ! and B.2(k + 1) in the
ounters. Our extra bit per
ell
an hold the over
ow, but we have to repla
e thevalues of the over
own
ounters by k+1 in order to
ontinue our pro
ess3. We dete
t the over
own
ounters by pre
omputing W (10`)m and doing Z E & W . Then, Z Z � (Z >> `) will bea sequen
e of all-0 or all-1
ells, where the all-1 ones
orrespond to the over
own
ounters. Theseare restored to k + 1 by doing E (E & � Z) j (0[k + 1℄`)m & Z).Let us
all H the se
ond,
omplex part of the main minimum of Re
urren
e (2). On
e weobtain H, we have to obtain C 0 Min(E;H), where Min takes the element-wise minimum overtwo sequen
es of values, in bit-parallel.Bit-parallel minimum
an be obtained with a te
hnique similar to the one used above to restoreover
own values. Say that we have to
omputeMin(X;Y), whereX and Y
ontain several
ounters(nonnegative integers) properly aligned. We need the extra highest bit per
ounter, whi
h is alwayszero. We use mask W and perform the operation Z ((X j W)� Y) & W . The result is that, inZ, ea
h highest bit is set if and only if the
ounter of X is larger than that of Y . We now
omputeZ Z�(Z >> `), so that the
ounters whereX is larger than Y have all their bits set in Z, and theothers have all the bits in zero. We now
hoose the minima asMin(X;Y) (Y & Z) j (X & � Z).Similarly, Max(X;Y) (X & Z) j (Y & � Z). Figure 2 summarizes our min/max pro
edures.Min (X; Y)1. W (10`)m2. Z ((X j W)� Y) & W3. Z Z � (Z >> `)4. Return (Y & Z) j (X & � Z) Max (X; Y)1. W (10`)m2. Z ((X j W)� Y) & W3. Z Z � (Z >> `)4. Return (X & Z) j (Y & � Z)Figure 2: Bit-parallel minima and maxima.Having over
omed these initial obsta
les, we fo
us now on the most
omplex part: the
om-putation of H. Let us
onsider A = J [C℄ + S[Tj ℄, and assume that we have again solved over
ow3A simple
hoi
e is to use 2+ ` bits per
ounter, sin
e the up
oming minimizations will take
are of the over
ows,but we show that it
an be done anyway with 1 + ` bits. 6

problems in A4. The i-th element of A is, by de�nintion of J , Ai = Si+mini02Follow�1(i) Ci0 . Now,
onsider J [A℄ + I. Its i-th value isIi + mini02Follow�1(i)Ai0 = Ii + mini02Follow�1(i)(Si0 + mini002Follow�1(i0)Ci00)= mini(1);i(2)(Ii + Si(1) + Ci(2))If we
ompute J [J [A℄+I℄+I, we have that its i-th value is mini(1);i(2);i(3)(Ii+Ii(1)+Si(2)+Ci(3)),and so on. Let us de�ne f(A) = J [A℄ + I and f (r)(A) as the result of taking r times f over A.Then, we have that f (r)(A) = mini(1):::i(r)(X0�u<r Ii(u) + Si(r) + Ci(r+1))and hen
e the H we look for isH[A℄ = Min (A; f(A); f(f(A)); f(f(f(A))); : : :)To
on
lude, we have to report every text position where it holds Ci � k for a �nal state i.The parsing yields an (m + 1)-bits long mask of �nal states, Last. We will pre
ompute a maskF = 0[Fm℄` 0[Fm�1℄` : : : 0[F2℄` 0[F1℄`, so that Fi = 1 if i is �nal and Fi = 0 otherwise5. Hen
e, wehave a mat
h if and only if C & (F � (2` � 1)) 6= F � (k + 1). Note that F � x is a bit mask of m
ounters Xi su
h that Xi = x if Fi = 1 and Xi = 0 otherwise.Figure 3 gives the sear
h
ode. To initialize C we take H over an initial state where all the
ounters are k + 1. Glushkov Parse is in
harge of parsing the regular expression and deliveringtables B, Follow and bit mask Last. We then pre
ompute all the tables using Prepro
ess.Sear
h (T1:::n; R; k; !)1. (B;Follow; Last;m) Glushkov Parse(R)2. (D;S; J;H; F; `) Prepro
ess(B;Follow; Last;m; k; !)3. C H [(0[k + 1℄`)m℄4. For j 2 1 : : : n Do5. A J [C℄ + S[Tj ℄6. C Min(C +D[Tj ℄; H [A℄)7. If C & (F � (2` � 1)) 6= F � (k + 1) Then Report text position jFigure 3: Our sear
h algorithm. We disregard the pro
ess of restoring over
ows after additions.The prepro
essing is given in Figure 4. Although it looks
ompli
ated, it is
on
eptually simple.Fun
tion Expand takes a sequen
e ofm+1 bits, ignores the �rst, and introdu
es ` zero bits betweenea
h pair of bits, so as to align them to our representation. J is
omputed by ranging over all the(k + 2)m possible sear
h states, starting with a state where all the
ounters are k + 1 and then4The extra work for this
an be avoided either by, as before, using
ounters of 2 + ` bits, or by pre
omputing allthe allo
ated
ells of H, as it will be
lear soon.5We assume that the initial state is not �nal, as otherwise the problem is trivial.7

omputing all the possible values for state i, with the invariant that all the possible values of states< i (with states larger than i having value k + 1) are already
omputed. G is a bit mask thattraverses all these possible values, and
urr is the
urrent value of state i in G. J [G℄ is
omputedas the minimum between what we already have with value k + 1 for state i and the
urr value forthe states in Follow[i℄. Next
omputes the next value for G. The pro
essing for H is very similar,ex
ept that we �rst
ompute h[i; v℄ as the desired value of H[A℄ when the i-th value of A is v andthe rest is k + 1. Then, we build all the
ombinations of A using h with the same te
hnique asbefore. Note that we do not return I be
ause it is embedded in the
omputation of H.5 Analysis and Spa
e-Time Tradeo�sThe sear
h time of our algorithm is
learly O(n). The prepro
essing time in
ludes O(j�j2m) forCal
Weights and O(k2m2) to
ompute h (sin
e for ea
h of the km
ells we iterate as long as weredu
e some
ounter, whi
h
an happen onlym(k+1) times). However, the dominant prepro
essing
omplexity is the O((k+2)m) spa
e and time needed to �ll J andH. If this turns out to be ex
essive,we
an horizontally split tables J and H.The splitting is based on the following property. Let J be a table built over m
ounters. LetC = C1 : C2 be a splitting of mask C into two submasks, a left and a right submask. If we de�ne J1and J2 so that they propagate
ounters only from the �rst and se
ond half of mask C, respe
tively,then J [C1 : C2℄ = Min(J1[C1℄; J2[C2℄) be
ause of the de�nition of J . (Note that J1 and J2
anpropagate values to states of any half.) The same is valid for H: we
an split the argument Ainto two halves A1 and A2, and prepro
ess the propagations of values from the �rst and se
ondhalf in H1 and H2, so that H[A1 : A2℄ = Min(H1[A1℄;H2[A2℄). Note, in parti
ular, that J andH have been built by adding the e�e
ts of new states one by one, pre
isely be
ause they
an bede
omposed in this way.In general, we
an split J and H into t tables J1 : : : Jt and H1 : : : Ht, su
h that Ji and Hiaddress the
ounters roughly from (i� 1)m=t to im=k � 1, that is, m=t
ounters. Ea
h su
h tablehas (k+2)m=t entries, for a total spa
e requirement of O(t(k+2)m=t). The
ost is that, in order toperform ea
h transition, we need to pay for t table a

esses so as to
omputeJ [C1 : C2 : : : : Ct℄ = Min(J1[C1℄; J2[C2℄; : : : Jt[Ct℄)H[A1 : A2 : : : : At℄ = Min(H1[A1℄; H2[A2℄; : : : Ht[At℄)whi
h makes the sear
h time O(tn) in terms of table a

esses. If we have O(s) spa
e, then we solvefor s = t(k + 2)m=t, to obtain a sear
h time of O(tn) = O(mn= logk s).6 Experimental ResultsIn this se
tion we evaluate our algorithm experimentally and
ompare it against previous work.The algorithms we have
ompared are:DP: The
lassi
al dynami
 programming solution [MM89℄. The
ode was originally from G. Myersand we modi�ed it to work with integer values and �xed threshold k. This algorithm is by8

Expand(X; m; `)1. EX 0(1+`)m2. For i 2 1 : : :m Do3. If X & 0m�i10i 6= 0m+1 Then EX EX j 0(m�i)(1+`)0`10(i�1)(1+`)4. Return EXNext(G; `; m; lim)1. For i 2 1 : : :m Do2. val (G >> (1 + `)(i� 1)) & 0(1+`)(m�1)01`3. If val < lim Then4. G G+ 0(1+`)(m�i�1)0`10(1+`)(i�1)5. Return G6. G G & 1(1+`)(m�i�1)01+`1(1+`)(i�1)Prepro
ess (B; Follow; Last; m; k; !)1. ` dlog2(k + 2)e2. (I;D; S) Cal
Weights (!; B; k; m; `)3. F Expand(Last;m; `)// Computation of J4. For i 2 0 : : :m Do EFollow[i℄ Expand(Follow[i℄;m; `)5. J [(0[k + 1℄`)m℄ (0[k + 1℄`)m � (EFollow[0℄� (k + 1))6. For i 2 1 : : :m Do7. G (0[k + 1℄`)m�i0(1+`)i8. For j 2 0 : : : (k + 2)i � 1 Do9.
urr (G >> (1 + `)(i� 1)) & 0(1+`)(m�1)01`10. J [G℄ Min(J [G+ 0(1+`)(m�i)0[k + 1�
urr℄`0(1+`)(i�1)℄;(0[k + 1℄`)m � (EFollow[i℄� (k + 1�
urr)))11. G Next(G; `;m; k + 1)// Computation of H12. For i 2 1 : : :m Do13. For v 2 0 : : : k + 1 Do14. h[i; v℄ (0[k + 1℄`)m�i0[v℄`(0[k + 1℄`)i�115. While h[i; v℄ 6=Min(h[i; v℄; J [h[i; v℄℄ + I) Do16. h[i; v℄ Min(h[i; v℄; J [h[i; v℄℄ + I)17. H [(0[k + 1℄`)m℄ (0[k + 1℄`)m18. For i 2 1 : : :m Do19. G (0[k + 1℄`)m�i0(1+`)i20. For j 2 0 : : : (k + 2)i � 1 Do21.
urr (G >> (1 + `)(i� 1)) & 0(1+`)(m�1)01`22. H [G℄ Min(H [G+ 0(1+`)(m�i)0[k + 1�
urr℄`0(1+`)(i�1)℄; h[i;
urr℄)23. G Next(G; `;m; k + 1)24. Return (D;S; J;H; F; `)Figure 4: Our prepro
essing.9

far the slowest in our experiments, but it handles the more general problem of real-valuedarbitrary weighted s
oring s
hemes and aÆne gap
osts, as opposed to our algorithm, whi
hhandles just integral-
ost di�eren
es. However, it is a good baseline to
ompare how the morespe
i�
 algorithms improve over it. Sin
e the algorithm performan
e is insensitive to
ostsand thresholds, we run it only for k = 1 and unit-
ost di�eren
es.RUS: The four-russians approa
h [WMM95℄. Unfortunately, the
ode used for this paper seemsto be lost [WMM02℄, so we have used an algorithm implemented using the same te
hnique,but whi
h handles exa
t sear
h only, at O(mn= log s) time and O(s) spa
e [Mye92℄. The
odeis from G. Myers. The exa
t sear
hing algorithm gives us a lower bound on whi
h would havebeen the performan
e of the version that sear
hes permitting k di�eren
es.GREP: The te
hnique of
opying k + 1 exa
t sear
hing automata and updating them one by one[WM92b, WM92a, Nav01b℄. The
ode is a highly optimized modi�
ation of the \forwards
anning" or nrgrep where we removed the transposition error, manually
oded the
ases1 � k � 8 and up to 2
omputer words, and redu
ed reporting to just
ounting all themat
hes. The performan
e is at least as good as that of agrep be
ause the DFA is smaller[NR01℄. This algorithm
an handle only unit-
ost di�eren
es, and seems not extensible toarbitrary weights. Hen
e, it is not an alternative to our algorithm, but it serves to show howsimpler is the problem of unit-
ost di�eren
es.OURS: Our algorithm handling arbitrary integer-
ost di�eren
es, where we have manually
odedthe
ases of up to 2
omputer words and tables split into up to 6 subtables. The
ode is aplain implementation of Figures 4 and 3. Sin
e our algorithm performan
e is insensitive to theweight fun
tion !, we ran it with unit-
osts di�eren
es for simpli
ity (our
ode, however, doesnot take advantage of this). For ea
h data point, we
hoose the best among the alternativesof using 1 to 6 tables. The best is generally the one with fewest tables so that the ma
hine
an hold them
omfortably. In our experiments we never used more than about 5 megabytesof memory.All the algorithms are
arefully
oded, use similar bu�er s
hemes, and just
ount the numberof o

urren
es. We used g

 with all the
ode optimizations. Our ma
hine is a 64-bit DigitalAlphaserver 600 5/266 with 266 MHz 21164 Alpha-pro
essors and 768 Mb of RAM, running DigitalUnix 4.0B. The ma
hine was not performing other heavy tasks while the experiments ran. Wemeasure user times (CPU times).We sear
hed 10 megabytes of English text extra
ted from the Wall Street Journal 1987 [Har95℄.Any data point
orresponds to an average over 100 di�erent sear
h patterns (the same for all thealgorithms).The
hoi
e of patterns is always problemati
 when dealing with regular expressions, sin
e thereis no
lear
on
ept of what a random regular expression is and, as far as we know, there is no publi
repository of regular expressions available, ex
ept for a dozen of trivial examples. We have
hosento generate random regular expressions as follows:1. We
hoose m and pi
k a random text substring of length m.2. We
hoose an operator density 0 � � � 1. 10

3. We apply a re
ursive pro
edure to
onvert a string of length ` into a regular expression:(a) An empty string is
onverted into an empty regular expression. In the rest, we assumea nonempty string.(b) With probability 1 � � we
hoose that the expression will be the
on
atenation of twosubexpressions: a left part of `0
hara
ters and a right part of ` � `0
hara
ters, where`0 is
hosen uniformly in the range 1 � `0 � `� 1. We re
ursively
onvert both subpartsinto regular expressions e1 and e2. The resulting expression is e1 � e2. If ` = 1 we simplywrite down the string
hara
ter.(
) Otherwise, if the parent in the re
ursion has just generated a Kleene
losure operator\�", we
hoose to add a union operator \j", if not, we
hoose with the same probabilityamong a Kleene
losure and a union.(d) If we
hose that the expression will have a union operator, we
hoose a left part of `0
hara
ters and a right part of `� `0
hara
ters, where `0 is
hosen uniformly in the range0 � `0 � `. We re
ursively
onvert both subparts into regular expressions e1 and e2.The resulting expression is e1je2.(e) If we
hose to add a Kleene
losure operator \�" at the end of the string, we re
ursivelygenerate a regular expression e1 for the string. The resulting expression is e1�.(f) To avoid problems with the di�erent softwares and with operators symbols in the text,any non-alphanumeri
al
hara
ter is
onverted to unders
ore.The above pro
edure is just one of the many possible alternatives to generate random regularexpressions one
ould argue for, but it has a
ouple of advantages. First, it permits determiningthe length m (number of
hara
ters of �) in advan
e. Se
ond, it takes the
hara
ters from the text,respe
ting its distribution. Third, it permits us to
hoose expressions with more or less operatorsby varying �. We will show experiments with � = 0:05, � = 0:10 and � = 0:20. Examplesobtained from our tests, with m = 10, are "I(n|(s)*uran
e)", "(
o|ntr(a)*(
(t)*|or))",and "((()*f|ro)m l|((a)*|st))", respe
tively. Note that we have no
ontrol on the shorteststring that belongs to the language of the regular expression, whi
h means that a given k may betoo small or too large for the same m. We
ould have
hosen otherwise, but it turns out that in allthe algorithms we are testing, the absolute values of k and m are the important ones, rather thanthe relative di�eren
e ratio.We �rst show how the sear
h
ost in
reases with m, for the minimum threshold k = 1. Figure 5shows the results. As it
an be seen, DP is by far the slowest algorithm (albeit, as explained,
anhandle real-valued weights), and its
ost grows noti
eably as the density � of the regular expressionsin
reases. RUS turns out to be
learly slower than our algorithm, usually twi
e as slow, and its
ost also grows slightly with �. GREP, on the other hand, is mu
h faster than our algorithm (upto three times faster) but, as explained, it handles unit-
ost di�eren
es only. Neither GREP norOURS are a�e
ted by the density �.From now on we
onsider an intermediate density � = 0:10. Figure 6 shows the behavior of thealgorithms for �xed m and in
reasing k. We have in
luded a new algorithm
alled \RUS (extrap)",whi
h is just an extrapolation of the
ost of RUS for k > 0. Sin
e their
omplexity depends on kas log(k+2), we have multiplied the
omplexity of the exa
t sear
h by ln(k+2)= ln(2). We believe11

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25

C
P

U
 ti

m
e

pe
r

M
b

m

Increasing m, k = 1, alpha = 0.05

DP
RUS

GREP
OURS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25

C
P

U
 ti

m
e

pe
r

M
b

m

Increasing m, k = 1, alpha = 0.20

DP
RUS

GREP
OURS

Figure 5: Comparison for in
reasing pattern length m and �xed k = 1. We show two di�erentpattern densities, � = 0:05 on the left and � = 0:20 on the right.that this estimation is optimisti
 be
ause the
ode to handle di�eren
es is indeed more
omplex,but anyway this has to be taken for what it is: just our extrapolation.Both for length m = 15 and m = 20, OURS be
omes slower than RUS only for k > 5, evenwhen RUS works just for k = 0. Our extrapolation of RUS is well above OURS. On the other hand,the O(k)
omplexity of GREP is
lear as
ompared to our O(log k)
omplexity. However, it seemsunlikely that GREP be
omes slower than our algorithm before our algorithm be
omes slower thanDP (there should be another jump form = 20 and k = 6 be
ause more three
omputer words wouldbe needed to hold the masks). We remark again that GREP only works for unit-
ost di�eren
es.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6

C
P

U
 ti

m
e

pe
r

M
b

k

Increasing k, m = 15, alpha = 0.10

DP
RUS (k=0)

GREP
OURS

RUS (extrap)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8

C
P

U
 ti

m
e

pe
r

M
b

k

Increasing k, m = 20, alpha = 0.10

DP
RUS (k=0)

GREP
OURS

RUS (extrap)

Figure 6: Comparison for �xed pattern length m = 15 (left) and m = 20 (right) and in
reasing k.We show density � = 0:10.Finally, we show in Figure 7 the e�e
t of in
reasing m where k is a �xed fra
tion of m. Theresults bring no new surprises. Our algorithm is faster than RUS (k = 0) up to m = 20, and12

onsistently faster than our extrapolation of RUS. On the other hand, DP is mu
h slower andGREP is signi�
antly faster than our algorithm.

0

0.5

1

1.5

2

2.5

5 10 15 20 25

C
P

U
 ti

m
e

pe
r

M
b

m

Increasing m, k = 10% of m, alpha = 0.10

DP
RUS (k=0)

GREP
OURS

RUS (extrap)

0

0.5

1

1.5

2

2.5

5 10 15 20 25
C

P
U

 ti
m

e
pe

r
M

b
m

Increasing m, k = 20% of m, alpha = 0.10

DP
RUS (k=0)

GREP
OURS

RUS (extrap)

Figure 7: Comparison for in
reasingm and �xed fra
tion k=m = 10% (left) and k=m = 20% (right).We show density � = 0:10.7 Con
lusionsWe have presented a bit-parallel algorithm to solve the problem of approximate sear
hing for regularexpressions with arbitrary integer weights. The algorithm is simple and has the same
omplexityof the best previous solution, namely O(mn= logk s) time with O(s) spa
e. In pra
ti
e, however,we show that our algorithm
learly outperforms all previous solutions.In our way, we have found a new re
urren
e for the problem, where the
urrent values dependonly on previous values. This is usually the main
ompli
ation when
ombining the
ir
ular de-penden
e of the
lassi
al re
urren
e (
urrent values depending on
urrent values) with the possible
y
les of the automaton. We believe that our solution
an be useful in other s
enarios.It is easy to extend the solution to the
ase where the regular expression
ontains
lasses of
hara
ters, that is, positions that mat
h several possible
hara
ters. We simply have to take theminimum over the
hara
ters of the
lass when pre
omputing tables I and S.It is also interesting that our solution is also relevant for approximate sear
hing of simple stringsusing arbitrary weights. Current bit-parallel solutions handle only the
ase of unitary
osts, or atmost a �xed integer
ost per operation [Nav01a℄. It would be interesting to study how
an onetake advantage of the simpler stru
ture of a string pattern in order to simplify our algorithm inthis
ase.On the other hand, we have also shown that mu
h better solutions exist for the
ase of sear
hingfor regular expressions with unit-
ost di�eren
es. Even when these solutions, also based on bit-parallelism, have worse
omplexity, O(kmn= log s), they are signi�
antly faster in pra
ti
e. Despitethat unit-
osts is an oversimpli�
ation for many real-world appli
ations, a
lear goal for future workis to develop an algorithm whose eÆ
ien
y approa
hes that of the best algorithms for the unit-
ost
ase. A way to simplify the
omputation of bit-parallel minimum would be important in this sense.13

Referen
es[ASU85℄ A. Aho, R. Sethi, and J. Ullman. Compilers: Prin
iples, Te
hniques and Tools. Addison-Wesley, 1985.[BS86℄ G. Berry and R. Sethi. From regular expression to deterministi
 automata. Theoreti
alComputer S
ien
e, 48(1):117{126, 1986.[Glu61℄ V-M. Glushkov. The abstra
t theory of automata. Russian Mathemati
al Surveys,16:1{53, 1961.[Har95℄ D. Harman. Overview of the Third Text REtrieval Conferen
e. In Pro
. Third TextREtrieval Conferen
e (TREC-3), pages 1{19, 1995. NIST Spe
ial Publi
ation 500-207.[MM89℄ E. W. Myers and W. Miller. Approximate mat
hing of regular expressions. Bulletin ofMathemati
al Biology, 51:7{37, 1989.[Mye92℄ E. Myers. A four-russian algorithm for regular expression pattern mat
hing. Journal ofthe ACM, 39(2):430{448, 1992.[Nav01a℄ G. Navarro. A guided tour to approximate string mat
hing. ACM Computing Surveys,33(1):31{88, 2001.[Nav01b℄ G. Navarro. Nr-grep: a fast and
exible pattern mat
hing tool. Software Pra
ti
e andExperien
e, 31:1265{1312, 2001.[NR01℄ G. Navarro and M. RaÆnot. Compa
t DFA representation for fast regular expressionsear
h. In Pro
. 5th Workshop on Algorithm Engineering (WAE'01), LNCS 2141, pages1{12, 2001.[Sel80℄ P. H. Sellers. The theory and
omputation of evolutionary distan
es: Pattern re
ogni-tion. Journal of Algorithms, 1(4):359{373, 1980.[Tho68℄ K. Thompson. Regular expression sear
h algorithm. Communi
ations of the ACM,11(6):419{422, 1968.[Ukk85℄ E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms, 6:132{137,1985.[WM92a℄ S. Wu and U. Manber. Agrep { a fast approximate pattern-mat
hing tool. In Pro
. ofthe USENIX Te
hni
al Conferen
e, pages 153{162, 1992.[WM92b℄ S. Wu and U. Manber. Fast text sear
hing allowing errors. Communi
ations of theACM, 35(10):83{91, O
tober 1992.[WMM95℄ S. Wu, U. Manber, and E. W. Myers. A subquadrati
 algorithm for approximate regularexpression mat
hing. Journal of Algorithms, 19(3):346{360, 1995.[WMM02℄ S. Wu, U. Manber, and G. Myers. Personal
ommuni
ation. 2002.14

