
Approximate Regular Expression Searhingwith Arbitrary Integer WeightsGonzalo Navarro�AbstratWe present a bit-parallel tehnique to searh a text of length n for a regular expression ofm symbols permitting k di�erenes in worst ase time O(mn= logk s), where s is the amountof main memory that an be alloated. The algorithm permits arbitrary integer weights andmathes the omplexity of the best previous tehniques, but it is muh simpler and faster inpratie. In our way, we de�ne a new reurrene for approximate searhing where the urrentvalues depend only on previous values.1 Introdution and Related WorkThe need to searh for regular expressions arises in many text-based appliations, suh as text re-trieval, text editing and omputational biology, to name a few. A regular expression is a generalizedpattern omposed of (i) basi strings, (ii) union, onatenation and Kleene losure of other regularexpressions. Readers unfamiliar with the onept and terminology related to regular expressionsare referred to a lassial book suh as [ASU85℄. We all m the length of our regular expression,not ounting operator symbols. The alphabet is denoted by �, and n is the length of the text.The traditional tehnique to searh for a regular expression [ASU85℄ �rst builds a nondetermin-isti �nite automaton (NFA) and then onverts it to a deterministi �nite automaton (DFA), whihis �nally used to searh the text in O(n) time. This is worst-ase optimal in terms of n. The mainproblem has been always the preproessing time and spae requirement to ode the DFA, whihan be as high as O(22mj�j) if the lassial Thompson's NFA onstrution algorithm [Tho68℄ isused. Thompson's onstrution produes up to 2m states, but it has interesting properties, suhas ensuring a linear number of edges, onstant indegree and outdegree, et.An alternative NFA onstrution is Glushkov's [Glu61, BS86℄. Although it does not providethe same regularities of Thompson's, this onstrution has other interesting properties, suh asproduing the minimum number of states (m + 1) and that all the edges arriving at a node arelabeled by the same harater. The orresponding DFA needs only O(2mj�j) spae, whih issigni�antly less than the worst ase using Thompson's NFA. Nevertheless, this is still exponentialin m.Two teniques have been lassially used to ope with the spae problem. The �rst is to uselazy DFAs, where the states are built only when they are reahed. This ensures that no more thanO(n) extra spae is neessary. The seond hoie [Tho68℄ is to diretly use the NFA instead ofonverting it to deterministi. This requires only O(m) spae, but the searh time beomes O(mn).Both approahes are slow in pratie if the regular expression is large.�Dept. of Computer Siene, Univ. of Chile. gnavarro�d.uhile.l. Partially supported by Fondeyt grant1-020831. 1



Newer tehniques have provided better spae-time tradeo�s by using hybrids between the NFAand the DFA. Based on the Four Russians tehnique, whih preomputes large tables that permitproessing several automaton states in one shot, it has been shown that O(mn= log s) searh time ispossible using O(s) spae [Mye92℄. The use of Thompson's automaton is essential for this approahwhih, however, is rather ompliated. Simpler solutions obtaining the same omplexities have beenobtained later using bit-parallelism, a tehnique to pak several NFA states in a single mahine wordand update them as a single state. A �rst solution [WM92b℄, based on Thompson's onstrution,uses a table of size O(22m) that an be split into t tables of size O(22m=t) eah, at a searh ost ofO(tn) table inspetions. A seond solution [NR01℄ uses Glushkov's automaton and uses t tables ofsize O(2m=t) eah, whih is muh more eÆient in spae usage. In both ases, O(mn= log s) searhtime is obtained using O(s) spae.Several appliations in omputational biology, data mining, text retrieval, et. need an even moresophistiated form of searhing. In addition to the regular expression, an integer threshold k is given,so that we have to report the text substrings that an math the regular expression after performingseveral harater insertions, deletions and substitutions, whose total ost or weight does not exeedk. In most real appliations, there are di�erent weights assoiated to insertions, deletions, andsubstitutions, depending on the haraters involved. This problem is alled \approximate regularexpression searhing", as opposed to \exat" searhing.Instead of being just ative or inative, every NFA node has now k+2 possible states, aordingto the weight of the di�erenes needed to math the text (0 to k, or more than k). If one applies thelassial DFA onstrution algorithm, the spae requirement raises to O((k + 2)2m) using Thomp-son's NFA and O((k + 2)m) using Glushkov's NFA. A dynami programming based solution withO(mn) time and O(m) spae exists [MM89℄. Although this is an ahievement beause it retainsthe time omplexity of the exat searh version and handles real-valued weights, it is still slow.The Four Russians tehnique has been graefully extended to this problem [WMM95℄, obtainingO(mn= logk s) time using O(s) spae. Again, this algorithm is rather ompliated.Sine bit-parallel solutions have, for many related problems, yielded fast and simple solutions,one may wonder what have they ahieved here. For the ase of unitary osts (that is, all the weightsare 1), bit-parallel solutions exist whih resort to simulating k+1 opies of the NFA used for exatsearhing. They ahieve O(ktn) time using O(22m=t) spae [WM92b℄ (implemented in the softwareAgrep [WM92a℄) or O(2m=t) spae (implemented in the software Nrgrep [Nav01b℄). This yieldsO(kmn= log s) time using O(s) spae, whih is inferior to the ahievement of the Four Russianstehnique. Despite this less attrative omplexity, bit-parallel solutions are by far the fastest formoderate sized regular expressions. Yet, they are restrited to the simpler ase of unitary osts.The aim of this paper is to overome the tehnial problems that have prevented the existene ofa simple O(mn= logk s) time and O(s) spae bit-parallel solution to approximate regular expressionsearhing with arbitrary integer weights. We build over Glushkov's NFA and represent the stateof the searh using md1 + log2(k + 2)e bits. We then use t tables of size O((k + 2)m=t) and reahO(tn) searh time.We use the following terminology for bit-parallel algorithms. A bit mask is a sequene of bits,where the lowest bit is written at the right. Typial bit operations are in�x \j" (bitwise or), in�x\&" (bitwise and), pre�x \�" (bit omplementation), and in�x \<<" (\>>"), whih moves the bitsof the �rst argument (a bit mask) to higher (lower) positions in an amount given by the argument2



on the right. Additionally, one an treat the bit masks as numbers and obtain spei� e�ets usingthe arithmeti operations \+", \�", et. Exponentiation is used to denote bit repetition, e.g.,031 = 0001, and [x℄` represents an integer x using ` bits. Finally, X�x, where X is a bit mask andx is a number, is the exat result of the multipliation, that is, a bit mask where x appears in theplaes where X has 1's (superimpositions are solved with summation, as in usual multipliation,but we never use that feature).2 A Bit-Parallel Exat Searh AlgorithmWe desribe in this setion the exat bit-parallel solution we build on [NR01℄. The lassial algo-rithm to produe a DFA from an NFA [ASU85℄ onsists in making eah DFA state represent a setof NFA states that may be ative at some point. Our way to represent the states of a DFA (i.e.,the sets of states of an NFA) is a bit mask of O(m) bits. The bit mask has in 1 the bits that belongto the set. We use set notation or bit mask notation indistintly.The desription of Glushkov's NFA onstrution algorithm is outside the sope of this paper[Glu61, BS86℄. We just remark some of its properties. Given a regular expression of m haraters(not ounting operator symbols), the algorithm de�nes m+ 1 positions numbered 0 to m (one perposition of a harater of � in the regular expression, plus an initial position 0). Then, the NFA hasexatly one state per position, the initial state orresponding to position 0. Two tables are built:B(�), the set of positions of the regular expression that ontain harater �; and Follow(x), theset of NFA states that an be reahed from state x in one transition1. From these two tables, thetransition funtion of the NFA is omputed: Æ : f0 : : : mg��! }(f0 : : : mg), suh that y 2 Æ(x; �)if and only if from state x we an move to state y by harater �. The algorithm gives also a setof �nal states, Last, whih again will be represented as a bit mask.Important properties of Glushkov's onstrution follow. (1) The NFA is "-free. (2) All thearrows leading to a given NFA state are labeled by the same harater: the one at the orrespondingposition. (3) The initial state does not reeive any transition. (4) Æ(x; �) = Follow(x) \ B(�).Property (4) permits a very ompat representation of the DFA transitions. The onstrutionalgorithm is written so that tables B and Follow represent the sets of states as bit masks. We useB as is and build a large table J , the deterministi version of Follow. That is, J is a table that, forevery bit mask D representing a set of states, stores J [D℄ = Si2D Follow(i). Then, by Property(4) it holds that, if the urrent set of ative states is D and we read text harater �, then the newset of ative states is J [D℄ \ B[�℄. For searh purposes, we set state 0 in J [D℄ for every D and inB[�℄ for every �2, and report every text position j where D \ Last 6= ;.Hene we need onlyO(2m + j�j) spae instead of the O(2mj�j) spae of the lassial represen-tation. Spae-time tradeo�s are ahieved by splitting table J . The splitting is done as follows. Webuild two tables J1 and J2, whih give the set of states reahed from states 0 : : : ` and `+ 1 : : : m,respetively, with ` = b(m + 1)=2. Then, if we aordingly split the urrent set of states D intoleft and right submasks, D = D1 : D2, we have J [D℄ = J1[D1℄ [ J2[D2℄. Tables J1 and J2 needonly O(2m=2) spae. This generalizes to using t tables, for an overall spae requirement of O(t2m=t)and a searh ost of O(tn) table aesses.1To simplify the disussion, we assume that Follow(0) = First, the states reahable from the initial state.2In fat, state 0 needs not be represented, sine it is always ative when searhing.3



3 A New Reurrene for Approximate SearhingLet us �rst give an exat formulation for our problem. Let R be a regular expression generatinglanguage L(R) � ��. Let m be the number of haraters belonging to � in R. Let T1:::n 2 ��be the text, a sequene of n symbols. The problem is, given R, T , and k 2 N, to report everytext position j suh that, for some j0 � j and P 2 L(R), ed(Tj0:::j ; P ) � k. Here ed(A;B), theedit distane, is the minimum sum of weights of a sequene of harater insertions, deletions andsubstitutions needed to onvert A into B. The weights are represented by a funtion !, suh that!(a; b) is the ost to substitute harater a by harater b in the text, !(a; ") is the ost to deleteharater a from the text, and !("; b) is the ost to insert harater b in the text. Funtion !satis�es !(a; a) = 0, nonnegativity, and the triangle inequality.The lassial dynami programming solution for approximate string mathing [Sel80℄, for thease where R is a simple string P1:::m, reomputes for every text position j a vetor C0:::m, whereCi = minj0�j ed(Tj0:::j; P1:::i). Hene every text position j where Cm � k is reported. C is initializedas Ci = i and then updated to C 0 at text position j using dynami programming:C 0i  min(!(Tj ; Pi) + Ci�1; !(Tj ; ") + Ci; !("; Pi) + C 0i�1)where C 00 = 0. The �rst omponent refers to a harater mathing or substitution, the seond todeleting a text harater, and the third to inserting a harater in the text.If we have a general regular expression R built using Glushkov's algorithm, with positions 1to m, this generalizes as follows. We all Li the set of strings reognized by the automaton if weassume that the only �nal state is i. Then Ci = minj0�j;P2Li ed(Tj0:::j ; P ) is omputed as follows:C 0i  min(Si(Tj) + mini02Follow�1(i)Ci0 ; D(Tj) + Ci; Ii + mini02Follow�1(i)C 0i0) (1)where Si(a) = !(a;Ri), D(a) = !(Tj ; "), Ii = !(";Ri), and Ri is the only harater suh thatB(Ri) = fig: Thanks to Property (2), we know that all the edges arriving at state i are labeled bythe same harater, Ri. C0 is always 0 beause it refers to the initial state, so L0 = f"g.Note that the main di�erene in the generalization is that, in the ase of a single pattern, everystate i has a unique predeessor, state i� 1. Here, the set of predeessor states, Follow�1(i), anbe arbitrarily omplex. In the third omponent of Reurrene (1) (insertions in the text) we have apotential dependene problem, beause in order to ompute C 0 for state i we need to have alreadyomputed C 0 for states that preede i, in an automaton that an perfetly ontain yles. Thereare good previous solutions to this irular dependene problem [MM89℄, but these are not easy toapply in a bit-parallel ontext.We present a new solution now. We will use the form i(r) in minimization arguments, whoserange is as follows: i(0) = i and i(r+1) 2 Follow�1(i(r)). Also, we will denote Si(r) = Si(r)(Tj) andD = D(Tj). Let us now unfold Reurrene (1):C 0i  min(Si +mini(1) Ci(1) ; D + Ci; Ii +mini(1) min(Si(1) +mini(2) Ci(2) ; D + Ci(1) ; Ii(1) +mini(2) C 0i(2)))where after a few manipulations we obtainC 0i  min ( D + Ci;mini(1) (Si + Ci(1));mini(1) (Ii + Si(1) +mini(2) Ci(2));mini(1) (Ii +D + Ci(1));mini(1) (Ii + Ii(1) +mini(2) C 0i(2)) )4



The term mini(1)(Ii+D+Ci(1)) an be removed beause, by de�nition of Ci, Ci � mini(1) Ii+Ci(1)(third omponent of Reurrene (1) applied to the omputation of C), and we have already D+Ciin the minimization. We fator out all the minimizing operators and getC 0i  min(D + Ci; mini(1);i(2)min(Si + Ci(1) ; Ii + Si(1) + Ci(2) ; Ii + Ii(1) + C 0i(2)))By unfolding C 0i(2) and doing the same manipulations again we getC 0i  min(D + Ci;mini(1);i(2);i(3)min(Si + Ci(1) ; Ii + Si(1) + Ci(2) ; Ii + Ii(1) + Si(2) +Ci(3) ; Ii + Ii(1) + Ii(2) + C 0i(3)))and we an ontinue until the latter term exeeds k + C 0i(r+1) , whih is not interesting anymore.The resulting reurrene does not depend anymore on C 0, and will beome our working reurrene:C 0i  min(D + Ci; minr�0 mini(1):::i(r) X0�u<r Ii(u) + Si(r) + Ci(r+1)) (2)4 A Bit-Parallel Approximate Searh AlgorithmWe will represent the Ci vetor in a bit mask. Eah Ci value will range in the interval 0 : : : k+1, sowe will need ` = dlog2(k+ 2)e bits to represent it. The reason is that, if a ell is larger than k +1,we an assume that its value is k + 1 and the outome of the searh will be the same [Ukk85℄. Fortehnial reasons that are made lear soon, we will need an extra bit per ell, whih will always bezero. Sine C0 is always 0, it does not need to be represented. Hene we need m(1+ `) bits overall.The bit mask will represent the sequene of ells C = 0[Cm℄` 0[Cm�1℄` : : : 0[C2℄` 0[C1℄`. We use asmany omputer words as needed to store C (a single ell will not be split among omputer words).From the parsing of the regular expression, we reeive the tables B and Follow, where thesets are represented as bit masks of length m + 1 (see previous work for details [NR01℄). We willpreproess B so as to produe bit-parallel versions of Ii, D and Si. These will be alled I, D[�℄and S[�℄, respetively. The omputation of these values from ! and B is shown in Figure 1.Our next tool is a table J , whih maps bit masks of length m(1 + `) into bit masks of lengthm(1 + `), as follows:J [ 0[Cm℄` 0[Cm�1℄` : : : 0[C2℄` 0[C1℄` ℄ = 0[Mm℄` 0[Mm�1℄` : : : 0[M2℄` 0[M1℄`where Mi = mini02Follow�1(i)Ci0That is, J takes a searh state C and permits every C value propagate by the NFA edges. Ifseveral states i0 propagate to a single state i, we hoose the minimum. We aount for the zerospropagated from the unrepresented initial state 0.Let us now onsider Reurrene (2). Assume that C is our urrent searh state. The �rst partof the minimum (D + Ci) is easily obtained in bit-parallel, as E  C + (0[D℄`)m. If D turns outto be larger than k + 1 we set D = k + 1. The result of the sum an give us values as large as5



CalWeights (!; B; k; m; `)1. I  0(1+`)m2. For  2 � Do3. D[℄ (0[min(!(; "); k + 1)℄`)m4. S[℄ 0(1+`)m5. For i 2 1 : : :m Do6. If B[℄ & 0m�i10i�1 6= 0m Then7. I  I j 0(1+`)(m�i)0[min(!("; ); k + 1)℄`0(1+`)(i�1)8. For 0 2 � Do9. S[0℄ S[0℄ j 0(1+`)(m�i)0[min(!(0; ); k + 1)℄`0(1+`)(i�1)Figure 1: Computation of tables I, D and S from ! and B.2(k + 1) in the ounters. Our extra bit per ell an hold the overow, but we have to replae thevalues of the overown ounters by k+1 in order to ontinue our proess3. We detet the overownounters by preomputing W  (10`)m and doing Z  E & W . Then, Z  Z � (Z >> `) will bea sequene of all-0 or all-1 ells, where the all-1 ones orrespond to the overown ounters. Theseare restored to k + 1 by doing E  (E & � Z) j (0[k + 1℄`)m & Z).Let us all H the seond, omplex part of the main minimum of Reurrene (2). One weobtain H, we have to obtain C 0  Min(E;H), where Min takes the element-wise minimum overtwo sequenes of values, in bit-parallel.Bit-parallel minimum an be obtained with a tehnique similar to the one used above to restoreoverown values. Say that we have to omputeMin(X;Y ), whereX and Y ontain several ounters(nonnegative integers) properly aligned. We need the extra highest bit per ounter, whih is alwayszero. We use mask W and perform the operation Z  ((X j W )� Y ) & W . The result is that, inZ, eah highest bit is set if and only if the ounter of X is larger than that of Y . We now omputeZ  Z�(Z >> `), so that the ounters whereX is larger than Y have all their bits set in Z, and theothers have all the bits in zero. We now hoose the minima asMin(X;Y ) (Y & Z) j (X & � Z).Similarly, Max(X;Y ) (X & Z) j (Y & � Z). Figure 2 summarizes our min/max proedures.Min (X; Y )1. W  (10`)m2. Z  ((X j W )� Y ) & W3. Z  Z � (Z >> `)4. Return (Y & Z) j (X & � Z) Max (X; Y )1. W  (10`)m2. Z  ((X j W )� Y ) & W3. Z  Z � (Z >> `)4. Return (X & Z) j (Y & � Z)Figure 2: Bit-parallel minima and maxima.Having overomed these initial obstales, we fous now on the most omplex part: the om-putation of H. Let us onsider A = J [C℄ + S[Tj ℄, and assume that we have again solved overow3A simple hoie is to use 2+ ` bits per ounter, sine the upoming minimizations will take are of the overows,but we show that it an be done anyway with 1 + ` bits. 6



problems in A4. The i-th element of A is, by de�nintion of J , Ai = Si+mini02Follow�1(i) Ci0 . Now,onsider J [A℄ + I. Its i-th value isIi + mini02Follow�1(i)Ai0 = Ii + mini02Follow�1(i)(Si0 + mini002Follow�1(i0)Ci00)= mini(1);i(2)(Ii + Si(1) + Ci(2))If we ompute J [J [A℄+I℄+I, we have that its i-th value is mini(1);i(2);i(3)(Ii+Ii(1)+Si(2)+Ci(3)),and so on. Let us de�ne f(A) = J [A℄ + I and f (r)(A) as the result of taking r times f over A.Then, we have that f (r)(A) = mini(1):::i(r)( X0�u<r Ii(u) + Si(r) + Ci(r+1))and hene the H we look for isH[A℄ = Min (A; f(A); f(f(A)); f(f(f(A))); : : :)To onlude, we have to report every text position where it holds Ci � k for a �nal state i.The parsing yields an (m + 1)-bits long mask of �nal states, Last. We will preompute a maskF = 0[Fm℄` 0[Fm�1℄` : : : 0[F2℄` 0[F1℄`, so that Fi = 1 if i is �nal and Fi = 0 otherwise5. Hene, wehave a math if and only if C & (F � (2` � 1)) 6= F � (k + 1). Note that F � x is a bit mask of mounters Xi suh that Xi = x if Fi = 1 and Xi = 0 otherwise.Figure 3 gives the searh ode. To initialize C we take H over an initial state where all theounters are k + 1. Glushkov Parse is in harge of parsing the regular expression and deliveringtables B, Follow and bit mask Last. We then preompute all the tables using Preproess.Searh (T1:::n; R; k; !)1. (B;Follow; Last;m) Glushkov Parse(R)2. (D;S; J;H; F; `) Preproess(B;Follow; Last;m; k; !)3. C  H [(0[k + 1℄`)m℄4. For j 2 1 : : : n Do5. A J [C℄ + S[Tj ℄6. C  Min(C +D[Tj ℄; H [A℄)7. If C & (F � (2` � 1)) 6= F � (k + 1) Then Report text position jFigure 3: Our searh algorithm. We disregard the proess of restoring overows after additions.The preproessing is given in Figure 4. Although it looks ompliated, it is oneptually simple.Funtion Expand takes a sequene ofm+1 bits, ignores the �rst, and introdues ` zero bits betweeneah pair of bits, so as to align them to our representation. J is omputed by ranging over all the(k + 2)m possible searh states, starting with a state where all the ounters are k + 1 and then4The extra work for this an be avoided either by, as before, using ounters of 2 + ` bits, or by preomputing allthe alloated ells of H, as it will be lear soon.5We assume that the initial state is not �nal, as otherwise the problem is trivial.7



omputing all the possible values for state i, with the invariant that all the possible values of states< i (with states larger than i having value k + 1) are already omputed. G is a bit mask thattraverses all these possible values, and urr is the urrent value of state i in G. J [G℄ is omputedas the minimum between what we already have with value k + 1 for state i and the urr value forthe states in Follow[i℄. Next omputes the next value for G. The proessing for H is very similar,exept that we �rst ompute h[i; v℄ as the desired value of H[A℄ when the i-th value of A is v andthe rest is k + 1. Then, we build all the ombinations of A using h with the same tehnique asbefore. Note that we do not return I beause it is embedded in the omputation of H.5 Analysis and Spae-Time Tradeo�sThe searh time of our algorithm is learly O(n). The preproessing time inludes O(j�j2m) forCalWeights and O(k2m2) to ompute h (sine for eah of the km ells we iterate as long as weredue some ounter, whih an happen onlym(k+1) times). However, the dominant preproessingomplexity is the O((k+2)m) spae and time needed to �ll J andH. If this turns out to be exessive,we an horizontally split tables J and H.The splitting is based on the following property. Let J be a table built over m ounters. LetC = C1 : C2 be a splitting of mask C into two submasks, a left and a right submask. If we de�ne J1and J2 so that they propagate ounters only from the �rst and seond half of mask C, respetively,then J [C1 : C2℄ = Min(J1[C1℄; J2[C2℄) beause of the de�nition of J . (Note that J1 and J2 anpropagate values to states of any half.) The same is valid for H: we an split the argument Ainto two halves A1 and A2, and preproess the propagations of values from the �rst and seondhalf in H1 and H2, so that H[A1 : A2℄ = Min(H1[A1℄;H2[A2℄). Note, in partiular, that J andH have been built by adding the e�ets of new states one by one, preisely beause they an bedeomposed in this way.In general, we an split J and H into t tables J1 : : : Jt and H1 : : : Ht, suh that Ji and Hiaddress the ounters roughly from (i� 1)m=t to im=k � 1, that is, m=t ounters. Eah suh tablehas (k+2)m=t entries, for a total spae requirement of O(t(k+2)m=t). The ost is that, in order toperform eah transition, we need to pay for t table aesses so as to omputeJ [C1 : C2 : : : : Ct℄ = Min(J1[C1℄; J2[C2℄; : : : Jt[Ct℄)H[A1 : A2 : : : : At℄ = Min(H1[A1℄; H2[A2℄; : : : Ht[At℄)whih makes the searh time O(tn) in terms of table aesses. If we have O(s) spae, then we solvefor s = t(k + 2)m=t, to obtain a searh time of O(tn) = O(mn= logk s).6 Experimental ResultsIn this setion we evaluate our algorithm experimentally and ompare it against previous work.The algorithms we have ompared are:DP: The lassial dynami programming solution [MM89℄. The ode was originally from G. Myersand we modi�ed it to work with integer values and �xed threshold k. This algorithm is by8



Expand(X; m; `)1. EX  0(1+`)m2. For i 2 1 : : :m Do3. If X & 0m�i10i 6= 0m+1 Then EX  EX j 0(m�i)(1+`)0`10(i�1)(1+`)4. Return EXNext(G; `; m; lim)1. For i 2 1 : : :m Do2. val (G >> (1 + `)(i� 1)) & 0(1+`)(m�1)01`3. If val < lim Then4. G G+ 0(1+`)(m�i�1)0`10(1+`)(i�1)5. Return G6. G G & 1(1+`)(m�i�1)01+`1(1+`)(i�1)Preproess (B; Follow; Last; m; k; !)1. ` dlog2(k + 2)e2. (I;D; S) CalWeights (!; B; k; m; `)3. F  Expand(Last;m; `)// Computation of J4. For i 2 0 : : :m Do EFollow[i℄ Expand(Follow[i℄;m; `)5. J [(0[k + 1℄`)m℄ (0[k + 1℄`)m � (EFollow[0℄� (k + 1))6. For i 2 1 : : :m Do7. G (0[k + 1℄`)m�i0(1+`)i8. For j 2 0 : : : (k + 2)i � 1 Do9. urr  (G >> (1 + `)(i� 1)) & 0(1+`)(m�1)01`10. J [G℄ Min(J [G+ 0(1+`)(m�i)0[k + 1� urr℄`0(1+`)(i�1)℄;(0[k + 1℄`)m � (EFollow[i℄� (k + 1� urr)))11. G Next(G; `;m; k + 1)// Computation of H12. For i 2 1 : : :m Do13. For v 2 0 : : : k + 1 Do14. h[i; v℄ (0[k + 1℄`)m�i0[v℄`(0[k + 1℄`)i�115. While h[i; v℄ 6=Min(h[i; v℄; J [h[i; v℄℄ + I) Do16. h[i; v℄ Min(h[i; v℄; J [h[i; v℄℄ + I)17. H [(0[k + 1℄`)m℄ (0[k + 1℄`)m18. For i 2 1 : : :m Do19. G (0[k + 1℄`)m�i0(1+`)i20. For j 2 0 : : : (k + 2)i � 1 Do21. urr  (G >> (1 + `)(i� 1)) & 0(1+`)(m�1)01`22. H [G℄ Min(H [G+ 0(1+`)(m�i)0[k + 1� urr℄`0(1+`)(i�1)℄; h[i; urr℄)23. G Next(G; `;m; k + 1)24. Return (D;S; J;H; F; `)Figure 4: Our preproessing.9



far the slowest in our experiments, but it handles the more general problem of real-valuedarbitrary weighted soring shemes and aÆne gap osts, as opposed to our algorithm, whihhandles just integral-ost di�erenes. However, it is a good baseline to ompare how the morespei� algorithms improve over it. Sine the algorithm performane is insensitive to ostsand thresholds, we run it only for k = 1 and unit-ost di�erenes.RUS: The four-russians approah [WMM95℄. Unfortunately, the ode used for this paper seemsto be lost [WMM02℄, so we have used an algorithm implemented using the same tehnique,but whih handles exat searh only, at O(mn= log s) time and O(s) spae [Mye92℄. The odeis from G. Myers. The exat searhing algorithm gives us a lower bound on whih would havebeen the performane of the version that searhes permitting k di�erenes.GREP: The tehnique of opying k + 1 exat searhing automata and updating them one by one[WM92b, WM92a, Nav01b℄. The ode is a highly optimized modi�ation of the \forwardsanning" or nrgrep where we removed the transposition error, manually oded the ases1 � k � 8 and up to 2 omputer words, and redued reporting to just ounting all themathes. The performane is at least as good as that of agrep beause the DFA is smaller[NR01℄. This algorithm an handle only unit-ost di�erenes, and seems not extensible toarbitrary weights. Hene, it is not an alternative to our algorithm, but it serves to show howsimpler is the problem of unit-ost di�erenes.OURS: Our algorithm handling arbitrary integer-ost di�erenes, where we have manually odedthe ases of up to 2 omputer words and tables split into up to 6 subtables. The ode is aplain implementation of Figures 4 and 3. Sine our algorithm performane is insensitive to theweight funtion !, we ran it with unit-osts di�erenes for simpliity (our ode, however, doesnot take advantage of this). For eah data point, we hoose the best among the alternativesof using 1 to 6 tables. The best is generally the one with fewest tables so that the mahinean hold them omfortably. In our experiments we never used more than about 5 megabytesof memory.All the algorithms are arefully oded, use similar bu�er shemes, and just ount the numberof ourrenes. We used g with all the ode optimizations. Our mahine is a 64-bit DigitalAlphaserver 600 5/266 with 266 MHz 21164 Alpha-proessors and 768 Mb of RAM, running DigitalUnix 4.0B. The mahine was not performing other heavy tasks while the experiments ran. Wemeasure user times (CPU times).We searhed 10 megabytes of English text extrated from the Wall Street Journal 1987 [Har95℄.Any data point orresponds to an average over 100 di�erent searh patterns (the same for all thealgorithms).The hoie of patterns is always problemati when dealing with regular expressions, sine thereis no lear onept of what a random regular expression is and, as far as we know, there is no publirepository of regular expressions available, exept for a dozen of trivial examples. We have hosento generate random regular expressions as follows:1. We hoose m and pik a random text substring of length m.2. We hoose an operator density 0 � � � 1. 10



3. We apply a reursive proedure to onvert a string of length ` into a regular expression:(a) An empty string is onverted into an empty regular expression. In the rest, we assumea nonempty string.(b) With probability 1 � � we hoose that the expression will be the onatenation of twosubexpressions: a left part of `0 haraters and a right part of ` � `0 haraters, where`0 is hosen uniformly in the range 1 � `0 � `� 1. We reursively onvert both subpartsinto regular expressions e1 and e2. The resulting expression is e1 � e2. If ` = 1 we simplywrite down the string harater.() Otherwise, if the parent in the reursion has just generated a Kleene losure operator\�", we hoose to add a union operator \j", if not, we hoose with the same probabilityamong a Kleene losure and a union.(d) If we hose that the expression will have a union operator, we hoose a left part of `0haraters and a right part of `� `0 haraters, where `0 is hosen uniformly in the range0 � `0 � `. We reursively onvert both subparts into regular expressions e1 and e2.The resulting expression is e1je2.(e) If we hose to add a Kleene losure operator \�" at the end of the string, we reursivelygenerate a regular expression e1 for the string. The resulting expression is e1�.(f) To avoid problems with the di�erent softwares and with operators symbols in the text,any non-alphanumerial harater is onverted to undersore.The above proedure is just one of the many possible alternatives to generate random regularexpressions one ould argue for, but it has a ouple of advantages. First, it permits determiningthe length m (number of haraters of �) in advane. Seond, it takes the haraters from the text,respeting its distribution. Third, it permits us to hoose expressions with more or less operatorsby varying �. We will show experiments with � = 0:05, � = 0:10 and � = 0:20. Examplesobtained from our tests, with m = 10, are "I(n|(s)*urane )", "(o|ntr(a)*((t)*|or))",and "((( )*f|ro)m l|((a)*|st))", respetively. Note that we have no ontrol on the shorteststring that belongs to the language of the regular expression, whih means that a given k may betoo small or too large for the same m. We ould have hosen otherwise, but it turns out that in allthe algorithms we are testing, the absolute values of k and m are the important ones, rather thanthe relative di�erene ratio.We �rst show how the searh ost inreases with m, for the minimum threshold k = 1. Figure 5shows the results. As it an be seen, DP is by far the slowest algorithm (albeit, as explained, anhandle real-valued weights), and its ost grows notieably as the density � of the regular expressionsinreases. RUS turns out to be learly slower than our algorithm, usually twie as slow, and itsost also grows slightly with �. GREP, on the other hand, is muh faster than our algorithm (upto three times faster) but, as explained, it handles unit-ost di�erenes only. Neither GREP norOURS are a�eted by the density �.From now on we onsider an intermediate density � = 0:10. Figure 6 shows the behavior of thealgorithms for �xed m and inreasing k. We have inluded a new algorithm alled \RUS (extrap)",whih is just an extrapolation of the ost of RUS for k > 0. Sine their omplexity depends on kas log(k+2), we have multiplied the omplexity of the exat searh by ln(k+2)= ln(2). We believe11



0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25

C
P

U
 ti

m
e 

pe
r 

M
b

m

Increasing m, k = 1, alpha = 0.05

DP
RUS

GREP
OURS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25

C
P

U
 ti

m
e 

pe
r 

M
b

m

Increasing m, k = 1, alpha = 0.20

DP
RUS

GREP
OURS

Figure 5: Comparison for inreasing pattern length m and �xed k = 1. We show two di�erentpattern densities, � = 0:05 on the left and � = 0:20 on the right.that this estimation is optimisti beause the ode to handle di�erenes is indeed more omplex,but anyway this has to be taken for what it is: just our extrapolation.Both for length m = 15 and m = 20, OURS beomes slower than RUS only for k > 5, evenwhen RUS works just for k = 0. Our extrapolation of RUS is well above OURS. On the other hand,the O(k) omplexity of GREP is lear as ompared to our O(log k) omplexity. However, it seemsunlikely that GREP beomes slower than our algorithm before our algorithm beomes slower thanDP (there should be another jump form = 20 and k = 6 beause more three omputer words wouldbe needed to hold the masks). We remark again that GREP only works for unit-ost di�erenes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6

C
P

U
 ti

m
e 

pe
r 

M
b

k

Increasing k, m = 15, alpha = 0.10

DP
RUS (k=0)

GREP
OURS

RUS (extrap)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8

C
P

U
 ti

m
e 

pe
r 

M
b

k

Increasing k, m = 20, alpha = 0.10

DP
RUS (k=0)

GREP
OURS

RUS (extrap)

Figure 6: Comparison for �xed pattern length m = 15 (left) and m = 20 (right) and inreasing k.We show density � = 0:10.Finally, we show in Figure 7 the e�et of inreasing m where k is a �xed fration of m. Theresults bring no new surprises. Our algorithm is faster than RUS (k = 0) up to m = 20, and12



onsistently faster than our extrapolation of RUS. On the other hand, DP is muh slower andGREP is signi�antly faster than our algorithm.

0

0.5

1

1.5

2

2.5

5 10 15 20 25

C
P

U
 ti

m
e 

pe
r 

M
b

m

Increasing m, k = 10% of m, alpha = 0.10

DP
RUS (k=0)

GREP
OURS

RUS (extrap)

0

0.5

1

1.5

2

2.5

5 10 15 20 25
C

P
U

 ti
m

e 
pe

r 
M

b
m

Increasing m, k = 20% of m, alpha = 0.10

DP
RUS (k=0)

GREP
OURS

RUS (extrap)

Figure 7: Comparison for inreasingm and �xed fration k=m = 10% (left) and k=m = 20% (right).We show density � = 0:10.7 ConlusionsWe have presented a bit-parallel algorithm to solve the problem of approximate searhing for regularexpressions with arbitrary integer weights. The algorithm is simple and has the same omplexityof the best previous solution, namely O(mn= logk s) time with O(s) spae. In pratie, however,we show that our algorithm learly outperforms all previous solutions.In our way, we have found a new reurrene for the problem, where the urrent values dependonly on previous values. This is usually the main ompliation when ombining the irular de-pendene of the lassial reurrene (urrent values depending on urrent values) with the possibleyles of the automaton. We believe that our solution an be useful in other senarios.It is easy to extend the solution to the ase where the regular expression ontains lasses ofharaters, that is, positions that math several possible haraters. We simply have to take theminimum over the haraters of the lass when preomputing tables I and S.It is also interesting that our solution is also relevant for approximate searhing of simple stringsusing arbitrary weights. Current bit-parallel solutions handle only the ase of unitary osts, or atmost a �xed integer ost per operation [Nav01a℄. It would be interesting to study how an onetake advantage of the simpler struture of a string pattern in order to simplify our algorithm inthis ase.On the other hand, we have also shown that muh better solutions exist for the ase of searhingfor regular expressions with unit-ost di�erenes. Even when these solutions, also based on bit-parallelism, have worse omplexity, O(kmn= log s), they are signi�antly faster in pratie. Despitethat unit-osts is an oversimpli�ation for many real-world appliations, a lear goal for future workis to develop an algorithm whose eÆieny approahes that of the best algorithms for the unit-ostase. A way to simplify the omputation of bit-parallel minimum would be important in this sense.13



Referenes[ASU85℄ A. Aho, R. Sethi, and J. Ullman. Compilers: Priniples, Tehniques and Tools. Addison-Wesley, 1985.[BS86℄ G. Berry and R. Sethi. From regular expression to deterministi automata. TheoretialComputer Siene, 48(1):117{126, 1986.[Glu61℄ V-M. Glushkov. The abstrat theory of automata. Russian Mathematial Surveys,16:1{53, 1961.[Har95℄ D. Harman. Overview of the Third Text REtrieval Conferene. In Pro. Third TextREtrieval Conferene (TREC-3), pages 1{19, 1995. NIST Speial Publiation 500-207.[MM89℄ E. W. Myers and W. Miller. Approximate mathing of regular expressions. Bulletin ofMathematial Biology, 51:7{37, 1989.[Mye92℄ E. Myers. A four-russian algorithm for regular expression pattern mathing. Journal ofthe ACM, 39(2):430{448, 1992.[Nav01a℄ G. Navarro. A guided tour to approximate string mathing. ACM Computing Surveys,33(1):31{88, 2001.[Nav01b℄ G. Navarro. Nr-grep: a fast and exible pattern mathing tool. Software Pratie andExperiene, 31:1265{1312, 2001.[NR01℄ G. Navarro and M. RaÆnot. Compat DFA representation for fast regular expressionsearh. In Pro. 5th Workshop on Algorithm Engineering (WAE'01), LNCS 2141, pages1{12, 2001.[Sel80℄ P. H. Sellers. The theory and omputation of evolutionary distanes: Pattern reogni-tion. Journal of Algorithms, 1(4):359{373, 1980.[Tho68℄ K. Thompson. Regular expression searh algorithm. Communiations of the ACM,11(6):419{422, 1968.[Ukk85℄ E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms, 6:132{137,1985.[WM92a℄ S. Wu and U. Manber. Agrep { a fast approximate pattern-mathing tool. In Pro. ofthe USENIX Tehnial Conferene, pages 153{162, 1992.[WM92b℄ S. Wu and U. Manber. Fast text searhing allowing errors. Communiations of theACM, 35(10):83{91, Otober 1992.[WMM95℄ S. Wu, U. Manber, and E. W. Myers. A subquadrati algorithm for approximate regularexpression mathing. Journal of Algorithms, 19(3):346{360, 1995.[WMM02℄ S. Wu, U. Manber, and G. Myers. Personal ommuniation. 2002.14


