Approximate Regular Expression Searching
with Arbitrary Integer Weights

Gonzalo Navarro*

Abstract

We present, a bit-parallel technique to search a text of length n for a regular expression of
m symbols permitting k differences in worst case time O(mn/log, s), where s is the amount
of main memory that can be allocated. The algorithm permits arbitrary integer weights and
matches the complexity of the best previous techniques, but it is much simpler and faster in
practice. In our way, we define a new recurrence for approximate searching where the current
values depend only on previous values.

1 Introduction and Related Work

The need to search for regular expressions arises in many text-based applications, such as text re-
trieval, text editing and computational biology, to name a few. A regqular expression is a generalized
pattern composed of (i) basic strings, (ii) union, concatenation and Kleene closure of other regular
expressions. Readers unfamiliar with the concept and terminology related to regular expressions
are referred to a classical book such as [ASU85]. We call m the length of our regular expression,
not counting operator symbols. The alphabet is denoted by X, and n is the length of the text.

The traditional technique to search for a regular expression [ASUS85] first builds a nondetermin-
istic finite automaton (NFA) and then converts it to a deterministic finite automaton (DFA), which
is finally used to search the text in O(n) time. This is worst-case optimal in terms of n. The main
problem has been always the preprocessing time and space requirement to code the DFA, which
can be as high as O(2?™|X|) if the classical Thompson’s NFA construction algorithm [Tho68] is
used. Thompson’s construction produces up to 2m states, but it has interesting properties, such
as ensuring a linear number of edges, constant indegree and outdegree, etc.

An alternative NFA construction is Glushkov’s [Glu61, BS86]. Although it does not provide
the same regularities of Thompson’s, this construction has other interesting properties, such as
producing the minimum number of states (m + 1) and that all the edges arriving at a node are
labeled by the same character. The corresponding DFA needs only O(2™|X|) space, which is
significantly less than the worst case using Thompson’s NFA. Nevertheless, this is still exponential
in m.

Two tecniques have been classically used to cope with the space problem. The first is to use
lazy DFAs, where the states are built only when they are reached. This ensures that no more than
O(n) extra space is necessary. The second choice [Tho68] is to directly use the NFA instead of
converting it to deterministic. This requires only O(m) space, but the search time becomes O(mn).
Both approaches are slow in practice if the regular expression is large.

“Dept. of Computer Science, Univ. of Chile. gnavarro@dcc.uchile.cl. Partially supported by Fondecyt grant
1-020831.

Newer techniques have provided better space-time tradeoffs by using hybrids between the NFA
and the DFA. Based on the Four Russians technique, which precomputes large tables that permit
processing several automaton states in one shot, it has been shown that O(mn/ log s) search time is
possible using O(s) space [Mye92]. The use of Thompson’s automaton is essential for this approach
which, however, is rather complicated. Simpler solutions obtaining the same complexities have been
obtained later using bit-parallelism, a technique to pack several NFA states in a single machine word
and update them as a single state. A first solution [WM92b], based on Thompson’s construction,
uses a table of size O(22™) that can be split into ¢ tables of size O(22™/!) each, at a search cost of
O(tn) table inspections. A second solution [NRO1] uses Glushkov’s automaton and uses ¢ tables of
size O(2™/') each, which is much more efficient in space usage. In both cases, O(mn/log s) search
time is obtained using O(s) space.

Several applications in computational biology, data mining, text retrieval, etc. need an even more
sophisticated form of searching. In addition to the regular expression, an integer threshold k is given,
so that we have to report the text substrings that can match the regular expression after performing
several character insertions, deletions and substitutions, whose total cost or weight does not exceed
k. In most real applications, there are different weights associated to insertions, deletions, and
substitutions, depending on the characters involved. This problem is called “approximate regular
expression searching”, as opposed to “exact” searching.

Instead of being just active or inactive, every NFA node has now k + 2 possible states, according
to the weight of the differences needed to match the text (0 to k, or more than k). If one applies the
classical DFA construction algorithm, the space requirement raises to O((k + 2)?™) using Thomp-
son’s NFA and O((k + 2)™) using Glushkov’s NFA. A dynamic programming based solution with
O(mn) time and O(m) space exists [MM89]. Although this is an achievement because it retains
the time complexity of the exact search version and handles real-valued weights, it is still slow.
The Four Russians technique has been gracefully extended to this problem [WMM95], obtaining
O(mn/log, s) time using O(s) space. Again, this algorithm is rather complicated.

Since bit-parallel solutions have, for many related problems, yielded fast and simple solutions,
one may wonder what have they achieved here. For the case of unitary costs (that is, all the weights
are 1), bit-parallel solutions exist which resort to simulating k& + 1 copies of the NFA used for exact
searching. They achieve O(ktn) time using O(22"™/?) space [WM92b] (implemented in the software
Agrep [WM92a]) or O(2"™/?) space (implemented in the software Nrgrep [Nav01b]). This yields
O(kmn/log s) time using O(s) space, which is inferior to the achievement of the Four Russians
technique. Despite this less attractive complexity, bit-parallel solutions are by far the fastest for
moderate sized regular expressions. Yet, they are restricted to the simpler case of unitary costs.

The aim of this paper is to overcome the technical problems that have prevented the existence of
a simple O(mn/log,, s) time and O(s) space bit-parallel solution to approximate regular expression
searching with arbitrary integer weights. We build over Glushkov’s NFA and represent the state
of the search using m[1 + log, (k + 2)] bits. We then use ¢ tables of size O((k + 2)™/!) and reach
O(tn) search time.

We use the following terminology for bit-parallel algorithms. A bit mask is a sequence of bits,
where the lowest bit is written at the right. Typical bit operations are infix “|” (bitwise or), infix
“&” (bitwise and), prefix “~” (bit complementation), and infix “<<” (“>>"), which moves the bits
of the first argument (a bit mask) to higher (lower) positions in an amount given by the argument

on the right. Additionally, one can treat the bit masks as numbers and obtain specific effects using
the arithmetic operations “+”7, “=” etc. Exponentiation is used to denote bit repetition, e.g.,
031 = 0001, and [7]; represents an integer o using ¢ bits. Finally, X x x, where X is a bit mask and
x is a number, is the exact result of the multiplication, that is, a bit mask where x appears in the
places where X has 1’s (superimpositions are solved with summation, as in usual multiplication,
but we never use that feature).

2 A Bit-Parallel Exact Search Algorithm

We describe in this section the exact bit-parallel solution we build on [NRO1]. The classical algo-
rithm to produce a DFA from an NFA [ASUS85] consists in making each DFA state represent a set
of NFA states that may be active at some point. Our way to represent the states of a DFA (i.e.,
the sets of states of an NFA) is a bit mask of O(m) bits. The bit mask has in 1 the bits that belong
to the set. We use set notation or bit mask notation indistinctly.

The description of Glushkov’s NFA construction algorithm is outside the scope of this paper
[Glu61, BS86]. We just remark some of its properties. Given a regular expression of m characters
(not counting operator symbols), the algorithm defines m + 1 positions numbered 0 to m (one per
position of a character of ¥ in the regular expression, plus an initial position 0). Then, the NFA has
exactly one state per position, the initial state corresponding to position 0. Two tables are built:
B(o), the set of positions of the regular expression that contain character o; and Follow(z), the
set of NFA states that can be reached from state z in one transition'. From these two tables, the
transition function of the NFA is computed: §: {0...m} x X — o({0...m}), such that y € i(x, 0)
if and only if from state z we can move to state y by character o. The algorithm gives also a set
of final states, Last, which again will be represented as a bit mask.

Important properties of Glushkov’s construction follow. (1) The NFA is e-free. (2) All the
arrows leading to a given NFA state are labeled by the same character: the one at the corresponding
position. (3) The initial state does not receive any transition. (4) d(x, o) = Follow(x) N B(o).

Property (4) permits a very compact representation of the DFA transitions. The construction
algorithm is written so that tables B and Follow represent the sets of states as bit masks. We use
B as is and build a large table .J, the deterministic version of Follow. That is, .J is a table that, for
every bit mask D representing a set of states, stores J[D] = |J;cp Follow(i). Then, by Property
(4) it holds that, if the current set of active states is D and we read text character o, then the new
set of active states is J[D] N B|o]. For search purposes, we set state 0 in .JJ[D] for every D and in
Blo] for every o2, and report every text position j where D N Last # 0.

Hence we need onlyO(2™ + |X|) space instead of the O(2™|X]) space of the classical represen-
tation. Space-time tradeoffs are achieved by splitting table J. The splitting is done as follows. We
build two tables .J; and .Jo, which give the set of states reached from states 0...¢ and ¢ +1...m,
respectively, with ¢ = |(m + 1)/2]. Then, if we accordingly split the current set of states D into
left and right submasks, D = Dy : Dy, we have J[D] = J;[D1] U Jy[Dy]. Tables .J; and .Jo need
only O(2™/?) space. This generalizes to using ¢ tables, for an overall space requirement of O(t2™/?)
and a search cost of O(tn) table accesses.

'To simplify the discussion, we assume that Follow(0) = First, the states reachable from the initial state.
2In fact, state 0 needs not be represented, since it is always active when searching.

3 A New Recurrence for Approximate Searching

Let us first give an exact formulation for our problem. Let R be a regular expression generating
language L(R) C ¥*. Let m be the number of characters belonging to ¥ in R. Let T} , € ¥*
be the text, a sequence of n symbols. The problem is, given R, T, and k € N, to report every
text position j such that, for some j' < j and P € L(R), ed(T}. ;,P) < k. Here ed(A, B), the
edit distance, is the minimum sum of weights of a sequence of character insertions, deletions and
substitutions needed to convert A into B. The weights are represented by a function w, such that
w(a,b) is the cost to substitute character a by character b in the text, w(a,) is the cost to delete
character a from the text, and w(e,b) is the cost to insert character b in the text. Function w
satisfies w(a, a) = 0, nonnegativity, and the triangle inequality.

The classical dynamic programming solution for approximate string matching [Sel80], for the
case where R is a simple string P;_,,, recomputes for every text position j a vector Cy_,,, where
Ci = minji<jed(Ty . ;, P1. ;). Hence every text position j where C,, < k is reported. C'is initialized
as C; =i and then updated to C” at text position j using dynamic programming;:

CZI — min(w(Tj,Pi) + 02;17 w(Tj,E) + CZ', w(&?,Pi) + C{il)

where C} = 0. The first component refers to a character matching or substitution, the second to
deleting a text character, and the third to inserting a character in the text.

If we have a general regular expression R built using Glushkov’s algorithm, with positions 1
to m, this generalizes as follows. We call L; the set of strings recognized by the automaton if we
assume that the only final state is i. Then C; = minj <; per, ed(Tj . ;, P) is computed as follows:

O} + min(S;(T}) + ifepgﬁjful—l(i) Ci, D(Tj) + i, I +if€F§ﬁ£71(i) Cir) (1)
where S;(a) = w(a, R;), D(a) = w(Tj,¢), I; = w(e,R;), and R; is the only character such that
B(R;) = {i}: Thanks to Property (2), we know that all the edges arriving at state i are labeled by
the same character, R;. Cj is always 0 because it refers to the initial state, so Ly = {¢}.

Note that the main difference in the generalization is that, in the case of a single pattern, every
state ¢ has a unique predecessor, state i — 1. Here, the set of predecessor states, Follow (i), can
be arbitrarily complex. In the third component of Recurrence (1) (insertions in the text) we have a
potential dependence problem, because in order to compute C’ for state ¢ we need to have already
computed C' for states that precede 4, in an automaton that can perfectly contain cycles. There
are good previous solutions to this circular dependence problem [MMS89], but these are not easy to
apply in a bit-parallel context.

We present a new solution now. We will use the form (") in minimization arguments, whose
range is as follows: i(?) =i and i"+t") € Follow='(i(")). Also, we will denote Sy = S;n (1) and
D = D(Tj). Let us now unfold Recurrence (1):

Cj « min(S; + I}}}? Cioy, D+ G, i + rﬁll)ﬂ min(S;) + r;g)ﬂ Ci, D+ Gy, Loy + r;g)ﬂ Cliz))
where after a few manipulations we obtain
Ci = min (- D+ Cimin(S; + Cyoy)min(l; + S;o) +min Ciez)),
2 13 13

rzrgll)n(fz + D+ Cyy), Iﬂ})n([z + Loy + IZI%;)H C;(Q)))

The term min,) (I;+D+C;)) can be removed because, by definition of C;, C; < min,u) I;+C;n)
(third component of Recurrence (1) applied to the computation of C'), and we have already D + C;
in the minimization. We factor out all the minimizing operators and get

CZ{ — min(D + G, '(Ilr)lilré) min(Si + 01(1) i+ Si(n + C,L'(Q), I; + I,;(l) + Cg(z)))
3(1) 4

By unfolding C’g(z) and doing the same manipulations again we get

C! «+ min(D + C;,
»(1)%?4(3) min(S; + Cyay, i+ S;0) + Cyors Li + Loy + Sio) + Ciery Ii + Loy + ey + Clis)))
ASE AT

and we can continue until the latter term exceeds k + C’Z{(TH), which is not interesting anymore.

The resulting recurrence does not depend anymore on C’, and will become our working recurrence:

C! + min(D + C; i i I S C.r 2
!« min(D + C;, min min 02 i+ S+ Cieiny) (2)
<u<r

4 A Bit-Parallel Approximate Search Algorithm

We will represent the C; vector in a bit mask. Each C; value will range in the interval 0...k+1, so
we will need ¢ = [logy(k + 2)] bits to represent it. The reason is that, if a cell is larger than k + 1,
we can assume that its value is & + 1 and the outcome of the search will be the same [Ukk85]. For
technical reasons that are made clear soon, we will need an extra bit per cell, which will always be
zero. Since C is always 0, it does not need to be represented. Hence we need m(1+ () bits overall.
The bit mask will represent the sequence of cells C' = 0[C,,]; 0[Cy—1]¢ ... 0[C2]¢ 0[C1],. We use as
many computer words as needed to store C' (a single cell will not be split among computer words).

From the parsing of the regular expression, we receive the tables B and Follow, where the
sets are represented as bit masks of length m + 1 (see previous work for details [NRO1]). We will
preprocess B so as to produce bit-parallel versions of I;, D and S;. These will be called I, D|o]
and S[o], respectively. The computation of these values from w and B is shown in Figure 1.

Our next tool is a table J, which maps bit masks of length m(1 + ¢) into bit masks of length
m(1 + (), as follows:

J[0[Conle O[Crmrl...0[Cole O[C1]e] = O[Mum]e O[Mu_1]e-. . 0[Ma]e O[M:],

where
M; = min Cy
i’ €Follow=1(1)

That is, J takes a search state C' and permits every C' value propagate by the NFA edges. If
several states i’ propagate to a single state i, we choose the minimum. We account for the zeros
propagated from the unrepresented initial state 0.

Let us now consider Recurrence (2). Assume that C' is our current search state. The first part
of the minimum (D + C}) is easily obtained in bit-parallel, as E «+— C + (0[D],)™. If D turns out
to be larger than £ + 1 we set D = k + 1. The result of the sum can give us values as large as

CalcWeights (w, B, k, m, ()
I« 0(1+Z)m
For c € ¥ Do
Dic] < (O[min(w(c,e), k + 1)]o)™
S[c] « ot+om
For:€1...m Do
If Blc] & 0™ %10""! £ 0™ Then
I« I|00+00m=D0min(w(e, c), k + 1)],00+HE=1)
For ¢ € ¥ Do
S[c'] « S[c'] | 0+ =)0 [min(w(c’, ¢), k + 1)],00+O 1)

© XN oo WD

Figure 1: Computation of tables I, D and S from w and B.

2(k + 1) in the counters. Our extra bit per cell can hold the overflow, but we have to replace the
values of the overflown counters by k+ 1 in order to continue our process®. We detect the overflown
counters by precomputing W < (10°)™ and doing Z < E & W. Then, Z < Z — (Z >> () will be
a sequence of all-0 or all-1 cells, where the all-1 ones correspond to the overflown counters. These
are restored to k + 1 by doing F + (E & ~ Z) | (0k+ 1)) & Z).

Let us call H the second, complex part of the main minimum of Recurrence (2). Once we
obtain H, we have to obtain C' < Min(E, H), where Min takes the element-wise minimum over
two sequences of values, in bit-parallel.

Bit-parallel minimum can be obtained with a technique similar to the one used above to restore
overflown values. Say that we have to compute Min(X,Y), where X and Y contain several counters
(nonnegative integers) properly aligned. We need the extra highest bit per counter, which is always
zero. We use mask W and perform the operation Z < ((X | W) —Y) & W. The result is that, in
7, each highest bit is set if and only if the counter of X is larger than that of Y. We now compute
Z < Z—(Z >> (), so that the counters where X is larger than Y have all their bits set in Z, and the
others have all the bits in zero. We now choose the minima as Min(X,Y) «+ (Y & Z) | (X & ~ Z).
Similarly, Max(X,Y) « (X & Z) | (Y & ~ Z). Figure 2 summarizes our min/max procedures.

Min (X, Y) Max (X, Y)

1. W« (109H™ L. W+« (109H™

2. I+« (X|W)=-Y)&W 2. Z+ (X |W)-)&W

3. Z+Z—(Z>>10 3. Z«+Z—(Z>>10)

4 Return (Y & 2) | (X & ~ 2) 4 Return (X & Z) | (Y & ~ 2)

Figure 2: Bit-parallel minima and maxima.

Having overcomed these initial obstacles, we focus now on the most complex part: the com-
putation of H. Let us consider A = J[C] 4+ S[T}], and assume that we have again solved overflow

3 A simple choice is to use 2 + ¢ bits per counter, since the upcoming minimizations will take care of the overflows,
but we show that it can be done anyway with 1 + ¢ bits.

problems in A*. The i-th element of A is, by definintion of .J, A; = S; + ming e popiow-1(i) Cir- Now,
consider J[A] + I. Its i-th value is

I; + min Ay = I+ min (Si + min Cin)
i’ €Follow—1(7) i’ €Follow=1(1) i€ Follow—1(i")

— in (I + S. C.
i(fllgl’li%)(i+ S0+ Cim)
If we compute J[J[A]+ 1]+ I, we have that its i-th value is min,a) ;2 ;) (i + L;0) + S50 + Gy),
and so on. Let us define f(A) = J[A] + I and f(")(A) as the result of taking r times f over A.
Then, we have that

fU(4) = min

i i(w)(Z Liw + Sie) + Ciosn)
BEICI

<u<r

and hence the H we look for is

H[A] = Min (A, f(A), f(f(A), F(f(f(A))),--.)

To conclude, we have to report every text position where it holds C; < k for a final state i.
The parsing yields an (m + 1)-bits long mask of final states, Last. We will precompute a mask
F = 0[F.]¢ O[Fy_1]¢ ... O[Fy]; O[F1]¢, so that F; = 1if i is final and F; = 0 otherwise®. Hence, we
have a match if and only if C & (F x (2¢ — 1)) # F x (k 4+ 1). Note that F x 2 is a bit mask of m
counters X; such that X; =z if F; =1 and X; = 0 otherwise.

Figure 3 gives the search code. To initialize C' we take H over an initial state where all the
counters are k + 1. Glushkov_Parse is in charge of parsing the regular expression and delivering
tables B, Follow and bit mask Last. We then precompute all the tables using Preprocess.

Search (T _,, R, k, w)
(B, Follow, Last, m) + Glushkov_Parse(R)
(D,S,J, H,F,l) + Preprocess(B, Follow, Last, m, k,w)
C « H[(0[k + 1],)™]
For j€1...n Do
A« J[C] + S[T}]
C + Min(C + DI[T}], H[A])
If C & (F x (2 = 1)) # F x (k + 1) Then Report text position j

NSO W=

Figure 3: Our search algorithm. We disregard the process of restoring overflows after additions.

The preprocessing is given in Figure 4. Although it looks complicated, it is conceptually simple.
Function Expand takes a sequence of m+1 bits, ignores the first, and introduces ¢ zero bits between
each pair of bits, so as to align them to our representation. .J is computed by ranging over all the
(k + 2)™ possible search states, starting with a state where all the counters are k + 1 and then

“The extra work for this can be avoided either by, as before, using counters of 2 + ¢ bits, or by precomputing all
the allocated cells of H, as it will be clear soon.
SWe assume that the initial state is not final, as otherwise the problem is trivial.

computing all the possible values for state ¢, with the invariant that all the possible values of states
< i (with states larger than i having value k + 1) are already computed. G is a bit mask that
traverses all these possible values, and curr is the current value of state i in G. J[G] is computed
as the minimum between what we already have with value k + 1 for state ¢ and the curr value for
the states in Follow[i]. Next computes the next value for G. The processing for H is very similar,
except that we first compute h[i, v] as the desired value of H[A] when the i-th value of A is v and
the rest is £ + 1. Then, we build all the combinations of A using h with the same technique as
before. Note that we do not return I because it is embedded in the computation of H.

5 Analysis and Space-Time Tradeoffs

The search time of our algorithm is clearly O(n). The preprocessing time includes O(|%|?m) for
CalcWeights and O(k*m?) to compute h (since for each of the km cells we iterate as long as we
reduce some counter, which can happen only m(k+1) times). However, the dominant preprocessing
complexity is the O((k+2)™) space and time needed to fill J and H. If this turns out to be excessive,
we can horizontally split tables J and H.

The splitting is based on the following property. Let .J be a table built over m counters. Let
C = C': C? be a splitting of mask C into two submasks, a left and a right submask. If we define .J;
and .Jo so that they propagate counters only from the first and second half of mask C', respectively,
then J[C' : C% = Min(J1[C"], Jo[C?]) because of the definition of J. (Note that J; and Jy can
propagate values to states of any half.) The same is valid for H: we can split the argument A
into two halves A! and A2, and preprocess the propagations of values from the first and second
half in Hy and Ho, so that H[A! : A%] = Min(H,[A'], H3[A?]). Note, in particular, that .J and
H have been built by adding the effects of new states one by one, precisely because they can be
decomposed in this way.

In general, we can split J and H into t tables .J;....J; and Hi... H;, such that J; and H;
address the counters roughly from (i — 1)m/t to im/k — 1, that is, m/t counters. Each such table
has (k4 2)™/! entries, for a total space requirement of O(¢(k +2)™/!). The cost is that, in order to
perform each transition, we need to pay for ¢ table accesses so as to compute

Jct:c?:...C" = Min(J,[CY, L[C?, ...L[CY)
H[AY: A%: A") = Min(H [AY], Hy[A?], ... HyA")

which makes the search time O(tn) in terms of table accesses. If we have O(s) space, then we solve
for s = t(k + 2)™/?, to obtain a search time of O(tn) = O(mn/ logy, s).

6 Experimental Results

In this section we evaluate our algorithm experimentally and compare it against previous work.
The algorithms we have compared are:

DP: The classical dynamic programming solution [MM89]. The code was originally from G. Myers
and we modified it to work with integer values and fixed threshold k. This algorithm is by

Expand (X, m, /)

1.

2
3.
4

EX « oU+Om
For:€1...m Do

If X & 0m710° # 0™F! Then EX « EX | 0(m=00+00t10t-1D) 0+
Return £ X

Next(G, ¢, m, lim)

SN

For:€1...m Do
val < (G >> (1 +0)(i — 1)) & 0+Om=1)g1¢
If val < lim Then
GG+ 0(1+f)(m7i71)0510(1+l)(i71)
Return G
G G& 1(1+Z)(m7i71)01+£1(1+f)(i71)

Preprocess (B, Follow, Last, m, k, w)

11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

l <+ [logy(k +2)]
(I,D,S) « CalcWeights (w, B, k, m, ()
F + Expand(Last,m,()
// Computation of J
For i € 0...m Do EFollow[i] <+ Expand(Follow[i],m, ()
TI(0[k + 1)) (OfF + 1])™ — (EFollow[0] x (& + 1))
Forie1l...m Do
G + (0[k + 1]p)m—i00+0i
For j€0...(k+2)"—1Do
curr < (G >> (1 4+ 0)(i — 1)) & 00+ m=1)(1¢
J|G] < Min(J[G + 00O =D0[k + 1 — curr], 00017,
(O[k + 1],)™ — (EFollow[i] x (k+ 1 — curr)))
G + Next(G,l,m,k+1)
// Computation of H
Foriel...m Do
Forve0...k+1Do
Bli,v] « (O[K + 1])™ 0[], (0[k + 1))~
While hfi,v] # Min(h[i,v], J[h[i, v]] +
hli, v] + Min(h[i,v], J[h[i,v]] + I)
H[(0[k +1],)™] «+ (O[k + 1]¢)™
Forie1l...m Do
G« (O[k + 1])™ 0 +0i
For j€0...(k+2)"—1Do
curr < (G >> (1 +0)(i — 1)) & 0+Om=1)p1¢
H[G] + Min(H[G 4 00+ =D0[k 4 1 — curr],00+0C=D] " h[i, curr))
G «+ Next(G,¢,m,k+ 1)
Return (D, S, J, H,F., ()

1) D

Figure 4: Our preprocessing.

far the slowest in our experiments, but it handles the more general problem of real-valued
arbitrary weighted scoring schemes and affine gap costs, as opposed to our algorithm, which
handles just integral-cost differences. However, it is a good baseline to compare how the more
specific algorithms improve over it. Since the algorithm performance is insensitive to costs
and thresholds, we run it only for £ = 1 and unit-cost differences.

RUS: The four-russians approach [WMMO95]. Unfortunately, the code used for this paper seems
to be lost [WMMO02], so we have used an algorithm implemented using the same technique,
but which handles exact search only, at O(mn/log s) time and O(s) space [Mye92]. The code
is from G. Myers. The exact searching algorithm gives us a lower bound on which would have
been the performance of the version that searches permitting k differences.

GREP: The technique of copying k + 1 exact searching automata and updating them one by one
[WM92b, WM92a, Nav01lb]. The code is a highly optimized modification of the “forward
scanning” or nrgrep where we removed the transposition error, manually coded the cases
1 <k < 8 and up to 2 computer words, and reduced reporting to just counting all the
matches. The performance is at least as good as that of agrep because the DFA is smaller
[NRO1]. This algorithm can handle only unit-cost differences, and seems not extensible to
arbitrary weights. Hence, it is not an alternative to our algorithm, but it serves to show how
simpler is the problem of unit-cost differences.

OURS: Our algorithm handling arbitrary integer-cost differences, where we have manually coded
the cases of up to 2 computer words and tables split into up to 6 subtables. The code is a
plain implementation of Figures 4 and 3. Since our algorithm performance is insensitive to the
weight function w, we ran it with unit-costs differences for simplicity (our code, however, does
not take advantage of this). For each data point, we choose the best among the alternatives
of using 1 to 6 tables. The best is generally the one with fewest tables so that the machine
can hold them comfortably. In our experiments we never used more than about 5 megabytes
of memory.

All the algorithms are carefully coded, use similar buffer schemes, and just count the number
of occurrences. We used gcc with all the code optimizations. Our machine is a 64-bit Digital
Alphaserver 600 5/266 with 266 MHz 21164 Alpha-processors and 768 Mb of RAM, running Digital
Unix 4.0B. The machine was not performing other heavy tasks while the experiments ran. We
measure user times (CPU times).

We searched 10 megabytes of English text extracted from the Wall Street Journal 1987 [Har95].
Any data point corresponds to an average over 100 different search patterns (the same for all the
algorithms).

The choice of patterns is always problematic when dealing with regular expressions, since there
is no clear concept of what a random regular expression is and, as far as we know, there is no public
repository of regular expressions available, except for a dozen of trivial examples. We have chosen
to generate random regular expressions as follows:

1. We choose m and pick a random text substring of length m.

2. We choose an operator density 0 < a < 1.

10

3. We apply a recursive procedure to convert a string of length ¢ into a regular expression:

(a) An empty string is converted into an empty regular expression. In the rest, we assume
a nonempty string.

(b) With probability 1 — o we choose that the expression will be the concatenation of two
subexpressions: a left part of ¢/ characters and a right part of ¢ — (' characters, where
(" is chosen uniformly in the range 1 < ¢/ < ¢ — 1. We recursively convert both subparts
into regular expressions e; and es. The resulting expression is e - es. If £ =1 we simply
write down the string character.

(¢) Otherwise, if the parent in the recursion has just generated a Kleene closure operator
“”, if not, we choose with the same probability

Wy

*” we choose to add a union operator
among a Kleene closure and a union.

(d) If we chose that the expression will have a union operator, we choose a left part of ¢/
characters and a right part of ¢ — ¢’ characters, where ¢’ is chosen uniformly in the range
0 < ¢ < (. We recursively convert both subparts into regular expressions e; and es.
The resulting expression is e;

€9.

(e) If we chose to add a Kleene closure operator “x” at the end of the string, we recursively

generate a regular expression e; for the string. The resulting expression is ej*.

(f) To avoid problems with the different softwares and with operators symbols in the text,
any non-alphanumerical character is converted to underscore.

The above procedure is just one of the many possible alternatives to generate random regular
expressions one could argue for, but it has a couple of advantages. First, it permits determining
the length m (number of characters of ¥) in advance. Second, it takes the characters from the text,
respecting its distribution. Third, it permits us to choose expressions with more or less operators
by varying a. We will show experiments with a = 0.05, a« = 0.10 and o = 0.20. Examples
obtained from our tests, with m = 10, are "I(nl| (s)*urance)", "(colntr(a)*(c(t)*|or))",
and "(((D*flro)m. 1] ((a)*|st))", respectively. Note that we have no control on the shortest
string that belongs to the language of the regular expression, which means that a given k& may be
too small or too large for the same m. We could have chosen otherwise, but it turns out that in all
the algorithms we are testing, the absolute values of k& and m are the important ones, rather than
the relative difference ratio.

We first show how the search cost increases with m, for the minimum threshold £ = 1. Figure 5
shows the results. As it can be seen, DP is by far the slowest algorithm (albeit, as explained, can
handle real-valued weights), and its cost grows noticeably as the density a of the regular expressions
increases. RUS turns out to be clearly slower than our algorithm, usually twice as slow, and its
cost also grows slightly with «. GREP, on the other hand, is much faster than our algorithm (up
to three times faster) but, as explained, it handles unit-cost differences only. Neither GREP nor
OURS are affected by the density «.

From now on we consider an intermediate density o = 0.10. Figure 6 shows the behavior of the
algorithms for fixed m and increasing k. We have included a new algorithm called “RUS (extrap)”,
which is just an extrapolation of the cost of RUS for & > 0. Since their complexity depends on k
as log(k + 2), we have multiplied the complexity of the exact search by In(k +2)/1In(2). We believe

11

Increasing m, k = 1, alpha = 0.05 Increasing m, k = 1, alpha = 0.20

DP —— |

DP —— |
RUS —x— RUS —x—
GREP —— | GREP —— |
OURS —— OURS ——

CPU time per Mb
CPU time per Mb

02 //;_//

0 T T 1
5 10 15 20 25
m m

Figure 5: Comparison for increasing pattern length m and fixed £ = 1. We show two different
pattern densities, &« = 0.05 on the left and o = 0.20 on the right.

that this estimation is optimistic because the code to handle differences is indeed more complex,
but anyway this has to be taken for what it is: just our extrapolation.

Both for length m = 15 and m = 20, OURS becomes slower than RUS only for £ > 5, even
when RUS works just for £ = 0. Our extrapolation of RUS is well above OURS. On the other hand,
the O(k) complexity of GREP is clear as compared to our O(log k) complexity. However, it seems
unlikely that GREP becomes slower than our algorithm before our algorithm becomes slower than
DP (there should be another jump for m = 20 and k& = 6 because more three computer words would
be needed to hold the masks). We remark again that GREP only works for unit-cost differences.

Increasing k, m = 15, alpha = 0.10 Increasing k, m = 20, alpha = 0.10
1.6 ‘ ; ; ‘ 2
14 F = 1.8
1.2 RUS (kDoF; —— Loy o
o 2+ = 7 Q2 RUS (k=0
= GREP —+— s 14y OREP
g 1r OURS —— g 12t OURS ——
° | RUS (extrap) —=— o | RUS (extrap) —=—
2 0.8 2 1
S 06 // S 08
o o
S o4t | G 06
04]
0.2 b b O 2 M
M ’
0 1 1 1 1 0 1 1 1 1 1 1
1 2 3 4 5 6 1 2 3 4 5 6 7 8
k k

Figure 6: Comparison for fixed pattern length m = 15 (left) and m = 20 (right) and increasing k.
We show density a = 0.10.

Finally, we show in Figure 7 the effect of increasing m where k is a fixed fraction of m. The
results bring no new surprises. Our algorithm is faster than RUS (k = 0) up to m = 20, and

12

consistently faster than our extrapolation of RUS. On the other hand, DP is much slower and
GREP is significantly faster than our algorithm.

Increasing m, k = 10% of m, alpha = 0.10 Increasing m, k = 20% of m, alpha = 0.10
25 \ 25 ‘
DP —+— DP —
RUS (k=0) —— RUS (k=0) ——
2 L GREP —*— 2 L GREP —*—
o OURS —— o OURS ——
= RUS (extrap) —=— = RUS (extrap) —=—
g 15 g 15
[} [}
£ £
o) 1 o) 1
o o
O O
0.5 0.5
o == + L ! 0 T W
5 10 15 20 25 5 10 15 20 25
m m

Figure 7: Comparison for increasing m and fixed fraction k/m = 10% (left) and k/m = 20% (right).
We show density a = 0.10.

7 Conclusions

We have presented a bit-parallel algorithm to solve the problem of approximate searching for regular
expressions with arbitrary integer weights. The algorithm is simple and has the same complexity
of the best previous solution, namely O(mn/log; s) time with O(s) space. In practice, however,
we show that our algorithm clearly outperforms all previous solutions.

In our way, we have found a new recurrence for the problem, where the current values depend
only on previous values. This is usually the main complication when combining the circular de-
pendence of the classical recurrence (current values depending on current values) with the possible
cycles of the automaton. We believe that our solution can be useful in other scenarios.

It is easy to extend the solution to the case where the regular expression contains classes of
characters, that is, positions that match several possible characters. We simply have to take the
minimum over the characters of the class when precomputing tables I and S.

It is also interesting that our solution is also relevant for approximate searching of simple strings
using arbitrary weights. Current bit-parallel solutions handle only the case of unitary costs, or at
most a fixed integer cost per operation [Nav0Ola]. It would be interesting to study how can one
take advantage of the simpler structure of a string pattern in order to simplify our algorithm in
this case.

On the other hand, we have also shown that much better solutions exist for the case of searching
for regular expressions with unit-cost differences. Even when these solutions, also based on bit-
parallelism, have worse complexity, O(kmn/log s), they are significantly faster in practice. Despite
that unit-costs is an oversimplification for many real-world applications, a clear goal for future work
is to develop an algorithm whose efficiency approaches that of the best algorithms for the unit-cost
case. A way to simplify the computation of bit-parallel minimum would be important in this sense.

13

References

[ASUS5)

[BSS6]

[Glu61]

[Har95]

[MM89]

[Mye92]

[NavOla]

[Nav01b]

[NRO1]

[Sel80]

[Tho68)]

[UkkS5]

[WM92a]

[WM92b]

[WMMO95]

[WMMO02]

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools. Addison-
Wesley, 1985.

G. Berry and R. Sethi. From regular expression to deterministic automata. Theoretical
Computer Science, 48(1):117-126, 1986.

V-M. Glushkov. The abstract theory of automata. Russian Mathematical Surveys,
16:1-53, 1961.

D. Harman. Overview of the Third Text REtrieval Conference. In Proc. Third Text
REtrieval Conference (TREC-3), pages 1 19, 1995. NIST Special Publication 500-207.

E. W. Myers and W. Miller. Approximate matching of regular expressions. Bulletin of
Mathematical Biology, 51:7-37, 1989.

E. Myers. A four-russian algorithm for regular expression pattern matching. Journal of
the ACM, 39(2):430 448, 1992.

G. Navarro. A guided tour to approximate string matching. ACM Computing Surveys,
33(1):31-88, 2001.

G. Navarro. Nr-grep: a fast and flexible pattern matching tool. Software Practice and
Ezperience, 31:1265 1312, 2001.

G. Navarro and M. Raffinot. Compact DFA representation for fast regular expression
search. In Proc. 5th Workshop on Algorithm Engineering (WAE’01), LNCS 2141, pages
1 12, 2001.

P. H. Sellers. The theory and computation of evolutionary distances: Pattern recogni-
tion. Journal of Algorithms, 1(4):359-373, 1980.

K. Thompson. Regular expression search algorithm. Communications of the ACM,
11(6):419 422, 1968.

E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms, 6:132-137,
1985.

S. Wu and U. Manber. Agrep a fast approximate pattern-matching tool. In Proc. of
the USENIX Technical Conference, pages 153-162, 1992.

S. Wu and U. Manber. Fast text searching allowing errors. Communications of the
ACM, 35(10):83 91, October 1992.

S. Wu, U. Manber, and E. W. Myers. A subquadratic algorithm for approximate regular
expression matching. Journal of Algorithms, 19(3):346-360, 1995.

S. Wu, U. Manber, and G. Myers. Personal communication. 2002.

14

