
Algorithms for Transposition Invariant StringMathing ?
Veli Mäkinen a;1, Gonzalo Navarro b;2, and Esko Ukkonen a;1aDepartment of Computer Siene, P.O Box 26 (Teollisuuskatu 23), FIN-00014University of Helsinki, Finland.bCenter for Web Researh, Department of Computer Siene, University of ChileBlano Enalada 2120, Santiago, Chile.AbstratGiven strings A and B over an alphabet � � U, where U is some numerial universelosed under addition and subtration, and a distane funtion d(A;B) that givesthe sore of the best (partial) mathing of A and B, the transposition invariant dis-tane is mint2Ufd(A+t; B)g, where A+t = (a1+t)(a2+t) : : : (am+t). We study theproblem of omputing the transposition invariant distane for various distane (andsimilarity) funtions d, inluding Hamming distane, longest ommon subsequene(LCS), edit distane, and their versions where the exat mathing ondition is re-plaed by an approximate one. For all these problems we give algorithms whose timeomplexities are lose to the known upper bounds without transposition invariane,and for some we ahieve these upper bounds. In partiular, we show how sparsedynami programming an be used to solve transposition invariant problems.Key words: edit distane, musi sequene omparison, transposition invariane,sparse dynami programming, orthant searhing, range searhing with ativation,minimum searhing over two dimensional rangesPreprint submitted to Elsevier Siene 12 July 2002

1 IntrodutionTransposition invariant string mathing is the problem of mathing two stringswhen all the haraters of either of them an be �shifted� by some amount t.By �shifting� we mean that the strings are sequenes of numbers and we addor subtrat t from eah harater of one of them.Interest in transposition invariant string mathing problems has reently arisenin the �eld of musi information retrieval (MIR) [11,23,24℄. In musi analysisand retrieval, one often wants to ompare two musi piees to test how similarthey are. One way to do this is to de�ne a distane measure between the or-responding note sequenes. Transposition invariane is one of the propertiesthat suh a distane measure should ful�ll to re�et a human sense of similar-ity. There are other appliation areas where transposition invariane is useful,like time series omparison [7℄, image omparison [18℄, et. (see Setion 3).In this paper, we study how transposition invariane an be embedded inevaluating some of the lassial distane measures for strings. We fous onmeasures that have been used in pratie. We are interested in the intrinsidi�ulty of the problem, fousing on the essential aspets and in worst aseomplexities. Our aim is to build a foundation on whih one an developpratial improvements suh as good average ases, bit-parallel omputation,? A short version of this paper is submitted to a onferene.Email addresses: vmakinen�s.helsinki.fi (Veli Mäkinen),gnavarro�d.uhile.l (Gonzalo Navarro), ukkonen�s.helsinki.fi (EskoUkkonen).1 Supported by the Aademy of Finland under grant 22584.2 Supported by Millenium Nuleus Center for Web Researh, Grant P01-029-F,Mideplan, Chile. 2

and so on.Our prinipal result is that most of the distane measures studied allow in-luding transposition without a signi�ant inrease in the asymptoti runningtimes. The summary of our results is given in Setion 4.2 De�nitionsLet � be a �nite numerial alphabet, whih is a subset of some universe U thatis losed under addition and subtration (U is either Z or R in the sequel, and� is alled either integer or real alphabet, respetively). Let A = a1a2 : : : amand B = b1b2 : : : bn be two strings over ��, i.e. ai; bj 2 � for all 1 � i � m; 1 �j � n. We will assume w.l.o.g that m � n, sine the distane measures westudy are symmetri. String A0 is a substring of A if A0 = Ai:::j = ai : : : aj forsome 1 � i � j � m. String A00 is a subsequene of A, denoted by A00 v A, ifA00 = ai1ai2 : : : aijA00j for some indexes 1 � i1 < i2 < � � � < ijA00j � m.When m = n, the following distanes an be de�ned. The Hamming distanedH between strings A and B is dH(A;B) = jfi j ai 6= bi; 1 � i � mgj. Themaximum absolute di�erene distane dMAD between A and B is dMAD(A;B) =max1�i�mfjai�bij j 1 � i � mg. The sum of absolute di�erenes distane dSADbetween A and B is dSAD(A;B) = Pmi=1 jai� bij. Note that dMAD is in fat themaximum metri (l1 norm) and dSAD the Manhattan metri (l1 norm) whenwe interpret A and B as points in m dimensional Eulidean spae.The following measures an also be de�ned when m 6= n. The length of thelongest ommon subsequene (LCS) of A and B is ls(A;B) = maxfjSj j S vA; S v Bg. The edit distane [25,34,29℄ between A and B is the minimum3

number of edit operations that are needed to onvert A into B. Partiularly,in the unit ost Levenshtein distane dL the set of edit operations onsists ofharater insertions, deletions, and substitutions. If the substitution operationis forbidden, we get a distane dID, whih is atually a dual problem of eval-uating the LCS; it is easy to see that dID(A;B) = m + n � 2 � ls(A;B). Foronveniene, we will mainly use the minimization problem dID (not ls) in thesequel. If only deletion for haraters of B are allowed, we get a distane dD.String A is a transposed opy of B (denoted by A =t B) if B = (a1 + t)(a2 +t) � � � (am+t) = A+t for some t 2 U. De�nitions for a transposed substring anda transposed subsequene an be stated similarly. The transposition invariantversions of the above distane measures d� where � 2 fH;MAD; SAD;L; ID;Dgan now be stated as dt�(A;B) = mint2U d�(A+ t; B).So far our de�nitions allow either only exat (transposition invariant) mathesbetween some haraters (dtH; dtL; dtID; dtD), or approximate math between allharaters (dtMAD; dtSAD). To relax these onditions, we introdue a onstantÆ > 0. We write a =Æ b when ja� bj � Æ, a; b 2 �. By replaing the equalitiesa = b with a =Æ b, we get more error-tolerant versions of the distane measures:dt;ÆH ; dt;ÆL , dt;ÆID, and dt;ÆD . Similarly, by introduing another onstant � > 0, wean de�ne distanes dt;�MAD; dt;�SAD suh that the � largest di�erenes jai� bij aredisarded.We an also de�ne ��limited versions of the edit distane measures, wherethe distane (gap) between two mathes is limited by a onstant � > 0, i.e. if(ai0 ; bj0) and (ai; bj) are mathes, then ji� i0� 1j � � and jj� j 0� 1j � �. Weget distanes dt;Æ;�L ; dt;Æ;�ID , and dt;Æ;�D .The approximate string mathing problem, based on the above distane fun-4

tions, is to �nd the minimum distane between A and any substring of B. Inthis ase we all A the pattern and denote it P1:::m = p1p2 � � � pm, and all Bthe text and denote it T1:::n = t1t2 � � � tn, and usually assume that m << n. Alosely related problem is the thresholded searh problem where, given P , T ,and a threshold value k � 0, one wants to �nd all the text positions jr suhthat d(P; Tjl:::jr) � k for some jl. We will refer olletively to these two loselyrelated problems as the searh problem.In partiular, if distane dD is used in approximate string mathing, we ob-tain a problem known as episode mathing [27,15℄. It an also be stated asfollows: Find the shortest substring of the text that ontains the pattern as asubsequene.Our omplexity results are di�erent depending on the form of the alphabet �.We will distinguish two ases. An integer alphabet is any alphabet � � Z. Forinteger alphabets, j�j will denote max(�)�min(�) + 1. A real alphabet willbe any other � � R and we will omit any referene to j�j. On the other hand,for any string A = a1 : : : am, we will all �A = fai j 1 � i � mg the alphabetof A. In these ases we will use j�Aj = max(�A) � min(�A) + 1 � j�j when�A is taken as an integer alphabet. On real alphabets, j�Aj � m will denotethe ardinality of the set �A.
3 Related Work and MotivationThe �rst thing to notie is that the problem of exat transposition invariantstring mathing is extremely easy to solve. For the omparison problem, theonly possible transposition is t = b1� a1. For the searh problem, one an use5

the relative enoding of both the pattern (p01 = p2 � p1; p02 = p3 � p2; : : :) andthe text (t01 = t2�t1; t02 = t3�t2; : : :), and use the whole arsenal of methods de-veloped for exat string mathing. Unfortunately, this relative enoding seemsto be of no use when the exat omparison is replaed by an approximate one.Transposition invariane (as far as we know) was introdued in the stringmathing ontext in the work of Lemström and Ukkonen [24℄. They proposed(among other measures) transposition invariant longest ommon subsequene(LCTS) as a measure of similarity between two musi (pith) sequenes. Theygave a desriptive nik name for the measure: �Longest Common HiddenMelody�. As the alphabet of pithes is some limited integer alphabet � � Z,the transpositions that have to be onsidered are T = fb � a j a; b 2 �g.This gives a brute fore algorithm for omputing the length of the LCTS [24℄:Compute ls(A + t; B) using O(mn) dynami programming for eah t 2 T.The runtime of this algorithm is O(j�jmn), where typially j�j = 256. In thegeneral ase, where � ould be unlimited, one ould instead use the set oftranspositions T0 = fb � a j a 2 A; b 2 Bg. This is beause some haratersmust math in any meaningful transposition. The size of T0 ould be mn,whih gives O(m2n2) worst ase time for real alphabets. Thus it is both ofpratial and theoretial interest to improve this algorithm.The Levenshtein distane allows substituting a note by some other note. Anatural extension would be to make the ost of a substitution operation dependon the distane between the notes. This is however problemati sine there isno natural way of de�ning osts of insertions and deletions in this setting. Wehave hosen an alternative approah when onsidering distane funtions withthe parameter Æ; a tolerane Æ > 0 is allowed for mathing pith levels. Thisan be used to allow mathes between pith levels that are relatively lose. In6

pratie, one ould use di�erent values Æ for eah pith level to better re�etmusial loseness.While the LCS and the edit distane in general are useful tools for omparingtwo sequenes that represent whole musial piees, simpler measures ould beused in the searh problem. An espeially suitable relaxation of the LCS isepisode mathing [27,15℄. Assume that the pattern is (a disretized version ofa signal) given by humming. The goal is to searh for the mathing musialpiees in a large musi database. The pattern obtained by humming wouldusually ontain the melody in its simplest form, but the searhed ourrenesin the musi database might additionally ontain some �deorative� notes,whih were forgotten by the person humming the piee. Episode mathingwould �nd the ourrenes that ontain least deorative notes. This is a goodobjetive, sine an ourrene with large number of additional notes wouldnot be reognized as the same piee of musi. A version of episode mathinghas been proposed in the ontext of MIR [16,13℄, where the number of theseadditional notes between two mathes is limited by a onstant. This variant,as well as the original problem, an be solved using dynami programmingin O(mn) time. Inluding transposition invariane has not been onsidered.We will study this problem and �mathing with ��limited gaps� in general,where an additional restrition to the dID, dL and dD distanes is that the gapbetween two onseutive mathes is limited by an integer � > 0.Even simpler measures have been proposed for the searh problem; these in-lude variants of dÆH, dMAD and dSAD [8,12℄. In the �(Æ;)�mathing problem�,one wants to �nd all ourrenes jr suh that dMAD(P; Tjr�m+1:::jr) � Æ anddSAD(P; Tjr�m+1:::jr) � . Algorithms for exat string mathing an be gener-alized to this speial ase, and bit-parallel algorithms an be applied [8,26℄.7

These algorithms are fast in the average ase (and in pratie), but their worstase is still O(mn). In fat, for Æ =1 the problem is known as the weightedk-mismathes problem [28℄, and it has long been an open question to im-prove the quadrati bound. We will not improve this bound here, but we willshow that within the same bounds one an solve the harder problem wheretransposition invariane is inluded.So far we have disussed problems for monophoni musial sequenes. Poly-phoni musi is muh more hallenging. Usually one would be interested in�nding ourrenes of a monophoni pattern in a polyphoni musi. The ba-si approah would be to separate polyphoni musi into parallel monophonipith sequenes (eah instrument separately). This ase an be handled eas-ily by applying algorithms for monophoni musi. This would however losethe melodies that �jump� between instruments. To �nd these melodies oneshould represent the polyphoni musi as a sequene of subsets of pith lev-els. The exat mathing is in this ase alled subset mathing [10,9℄. Novel(but impratial) algorithms have been developed for this problem [10,9℄. Toallow transposition invariane, one ould simulate these algorithms with eahpossible transposition. The time omplexity would then be O(j�js log3m),where s is the sum of the subset sizes. A pratial approah has been takenby Lemström and Tarhio [23℄, who develop a fast �lter for the problem withtransposition invariane; they also give a simple veri�ation algorithm thathas running time O(j�jn + sm). To �nish the MIR part, we note that theproblems that lead to dynami programming (like LCS, edit distane, episodemathing) an easily be adapted to the ase in whih the text onsists ofsubsets.Other appliations for transposition invariane an be found, e.g., in image8

proessing and time series omparison. In image omparison, one ould for ex-ample use the sum of absolute di�erenes to �nd approximate ourrenes of atemplate pattern inside a larger image. This measure is used, e.g., by Fredriks-son in his study of rotation invariant template mathing [18℄. Transpositioninvariane would mean �lighting invariane� in this ontext. As images usuallyontain a lot of noise, the measure where � largest di�erenes an be disardedould be useful.In time series omparison, many of the measures an be used. In fat, theepisode mathing was �rst introdued in this ontext [27℄. Reently, a loselyrelated problem to the transposition invariant LCS was studied by Bollobás et.al [7℄. They studied a slightly more di�ult problem where not only transposi-tion (translation), but also saling was allowed. They also allowed a toleranebetween mathed values, byt did not onsider transpositions alone.
4 Summary of ResultsOur results are two-fold. For evaluating the easier distane measures(dt;ÆH ; dt;�MAD; dt;�SAD) we ahieve almost the same bounds that are known withoutthe transposition invariane. These results are ahieved by notiing that theoptimum transposition an be found without evaluating the distanes for eahpossible transposition.For the more di�ult measures (dt;Æ;�L , dt;Æ;�ID , and dt;Æ;�D) we still need to om-pute the distanes for eah possible transposition. This would be ostly ifthe standard dynami programming algorithms for these problems were used.However, we show that sparse dynami programming algorithms an be used9

to give muh better worst ase bounds. Then we show the onnetion betweenthe resulting sparse dynami programming problems and dynami range mini-mum queries. We obtain simple yet e�ient algorithms for the distanes dt;Æ;�L ,dt;Æ;�ID , and dt;Æ;�D .For LCS (and thus for dID) there already exists Hunt-Szymanski [22℄ type(sparse dynami programming) algorithms whose time omplexities depend onthe number r of mathing pairs between the ompared strings. The omplexityof the Hunt-Szymanski algorithm is O((r + n) log n). As the sum of values rover all di�erent transpositions is mn, we get the bound O(mn logn) for thetransposition invariant ase. Later improvements [2,17℄ yield O(mn log log n)time. We improve this to O(mn log logm) by giving a new sparse dynamialgorithm for LCS. This algorithm an also be generalized to the ase wheregaps are limited by a onstant �, giving O(mn logn) for evaluating dt;�ID (A;B).Eppstein et. al. [17℄ have proposed sparse dynami programming algorithmsfor more omplex distane omputations suh as Wilbur-Lipman fragmentalignment problem [35,36℄. Also the unit ost Levenshtein distane an besolved using these tehniques [20℄. Using this algorithm, the transpositioninvariant ase an be solved in O(mn log log n) time. However, the algorithmdoes not generalize to the ase of �-limited gaps, and thus we develop analternative solution that is based on semi-stati range minimum queries. Thisgives us O(mn log2 n log logm) for evaluating dt;�L (A;B).Finally, we give a new O(m + n + r) time sparse dynami programming al-gorithm for episode mathing. This gives us O(mn) time for transpositioninvariant episode mathing.Table 1 gives (a simpli�ed) list of upper bounds that are known for these10

problems without transposition invariane. Table 2 gives the ahieved upperbounds for the transposition invariant variants of these problems.Table 1Upper bounds for string mathing without transposition invariane. We omit boundsthat depend on the treshold k in the searh problems. For dÆ;�ID and dÆ;�L weould not �nd existing algorithms; naive dynami programming gives O(�2mn)for both, and our sparse dynami programming algorithms give O(mn log n) andO(mn log2 n log logm), respetively (bounds are simpli�ed by assigning r = mn).distane distane evaluation searhingexat O(m) O(m+ n)dH O(m) O(npm logm) [1℄dÆH O(m) O(mn)d�SAD O(m) O(mn)d�MAD O(m) O(mn)(Æ;)�mathing O(m) O(mn)dID; dL O(mn= logm) O(mn= logm) [14℄dD O(mn= logm) O(mn= logm) [15℄dÆ;�D O(mn) O(mn) [13℄
5 Computation of dt;ÆH ,dt;�SAD, and dt;�MADFor this setion, let T = fti = bi � ai j 1 � i � mg = ftig be the set oftranspositions that make some haraters in A and B math. Note that the11

Table 2Upper bounds for transposition invariant string mathing. In integer alphabet,� log � an be replaed by j�j+ �, and m logm by j�j+m for dt;ÆH . Also, use Æ + 1instead of Æ and log(2 + x) instead of log x to get orret bounds for small Æ and �values. We have not added, for larity, the size of the output in the (thresholded)searh omplexity, nor the preproessing time in Lemma 10 for the edit distanemeasures. The bounds on these distanes are valid in real alphabets provided wereplae Æ by Æ=�, where � is the minimum distane between two haraters in A orin B. distane distane evaluation searhingexat O(m) O(m+ n)dt;ÆH O(m logm) O(mn logm)dt;�SAD O(m+ � log �) O((m+ � log �)n)dt;�MAD O(m+ � log �) O((m+ � log �)n)(Æ;)�mathing O(m) O(mn)dt;ÆID O(Æmn log logm) O(Æmn log logm)dt;Æ;�ID O(Æmn log n) O(Æmn logm)dt;ÆL O(Æmn log log n) O(Æmn log logm)dt;Æ;�L O(Æmn log2 n log logm) O(Æmn log2m log logm)dt;Æ;�D O(Æmn) O(Æmn)optimal transposition does not need, in priniple, to be inluded in T, but wewill show that this is the ase for dtH and dt;�SAD. Note also that jTj = O(j�j)in integer alphabet and jTj = O(m) in any ase.12

5.1 Hamming DistaneWe onsider �rst the omputation of transposition invariant Hamming dis-tane dt;ÆH . Let A = a1 : : : am and B = b1 : : : bm, where ai; bi 2 �, 1 � i � m.Theorem 1 One an ompute dt;ÆH (A;B) in O(j�j + m) time with integeralphabet, or in O(m logm) time in real alphabet.
PROOF. It is lear that the Hamming distane is minimized for the trans-position in T that makes the maximal number of the haraters math. Whatfollows is a simple voting sheme, where the most voted ti wins. Addition-ally, it is extended to math Æ positions bak and forth from eah ti. Let �denote a don't are element, and p:x (p:y) denote the �rst (seond) elementof a pair p = (�; �). Construt sets S = f(ti � Æ; �open�) j 1 � i � mg andE = f(ti + Æ; �lose�) j 1 � i � mg. Sort S [E into a list I using order(x0; y0) <h (x; y) : x0 < x or (x0 = x and y0 < y);where �open�<�lose�. Initialize variable ount = 0. Do for i = 1 to jIj if I(i) =(�; �open�) then ount = ount+1 else ount = ount�1. Letmaxount be thelargest value of ount in the above algorithm. Then learly dt;ÆH (A;B) = m�maxount, and the optimal transposition is any value in the range [I(i):x; I(i+1):x℄, for any i where maxount is reahed. The omplexity of the algorithmis O(m logm). Sorting an be replaed by array indexing when � is an integeralphabet, whih gives the bound O(j�j+m) for that ase. 213

5.2 Sum of Absolute Di�erenes DistaneWe shall �rst look at the basi ase where � = 0.Theorem 2 One an ompute dtSAD(A;B) in O(m) time with both integerand real alphabet.PROOF. Sorting T in asending order gives a sequene ti1 ; ti2 ; : : : ; tim . Lettopt be the optimal transposition, where tij�1 � topt � tij for some 1 < j � m.The ases topt � ti1 or topt > tim an be disarded as we will see. We anrewrite dSAD(A + topt; B) as follows:dSAD(A+ topt; B) = j�1Xj0=1(topt � tij0) + mXj0=j(tij0 � topt): (1)We have two ases (i) j � 1 � m � j, and (ii) j � 1 > m � j. In ase (i) wean rearrange terms in (1) and getdSAD(A + topt; B) = j�1Xj0=1(tim�j0+1 � tij0) + m�j+1Xj0=j (tij0 � topt): (2)From equation (2) one an see that as long as there are terms in the seondsummation, one an inrease topt so that the overall ost will derease. Thisremains true even when we move from tij�1 � topt � tij to tij � topt � tij+1 .If m is odd the value of topt an be inreased until ti(m+1)=2�1 � topt � ti(m+1)=2 .Obviously topt = ti(m+1)=2 in that ase. If m is even the value of topt an beinreased until there are two terms left in the summation. Then the optimaltransposition topt is any value between and inluding tim=2 and tim=2+1 ; they allprodue the same ost. Case (ii) gives the same result, so we an onlude thatit is enough to ompute the distane with t = tibm=2+1. Sorting is not neededsine tibm=2+1 an be found with a linear time median �nding algorithm. 214

To get a fast algorithm for dt;�SAD when � > 0 mismathes are allowed, we needa lemma that shows that the distane omputation an be inrementalizedfrom one transposition to another. Let ti1 ; ti2 ; : : : ; tim be the sorted sequeneof T.Lemma 3 Given values j, Sj, and Lj suh that dSAD(A + tij ; B) = Sj + Lj,Sj = Pj�1j0=1 tij � tij0 , and Lj = Pmj0=j+1 tij0 � tij , the values of Sj+1 and Lj+1,an be omputed in O(1) time.PROOF. Value Sj+1 an be written asSj+1= jXj0=1 tij+1 � tij0 = jXj0=1 tij+1 � tij + tij � tij0= j(tij+1 � tij) + jXj0=1 tij � tij0 = j(tij+1 � tij) + Sj:Similarly Lj+1 an be written asLj+1= mXj0=j+2 tij0 � tij+1 = mXj0=j+2 tij0 � tij + tij � tij+1=(m� j � 1)(tij � tij+1) + mXj0=j+2 tij0 � tij = (m� j)(tij � tij+1) + Lj:Thus both values an be omputed in onstant time given the values of Sjand Lj, and tij+1 . 2Theorem 4 One an ompute dt;�SAD(A;B) in O(m + � log �) time with bothinteger and real alphabet.PROOF. Consider the sorted sequene ti1 ; ti2 ; : : : ; tim as in the proof ofTheorem 2. Clearly the andidates for the � outliers are M(k0; k00) =fti1 ; : : : ; tik0 ; tim�k00 ; : : : timg for some k0+k00 = �. The naive algorithm is then to15

ompute the distane in all these �+1 ases: Compute medians of TnM(k0 ; k00)and hoose the minimum distane indued by these medians. These �+1 me-dians an be found by �rst taking the median of TnM(0; �) and of TnM(�; 0),and then passing over the set olleting and sorting all the values in between,as these are the medians of TnM(k0; k00). The �+1 medians an thus be takenin O(m+ � log �) time, and the additional time to ompute the distanes forall of these � + 1 medians is O(�m). However, the omputation of distanesgiven by onseutive transpositions an be inrementalized using Lemma 3.First one has to ompute the distane for the median of T n M(0; �), andthen ontinue inrementally until we reah the median of T nM(�; 0) (this iswhere we need the medians sorted). Sine the set of mismathes hanges whenmoving from one median to another, one has to add value tik0 � tim to Sm andvalue tim � tik00 to Lm, where Sm and Lm are the values given by Lemma 3.The time omplexity of this algorithm is O(m+ � log �). 25.3 Maximum Absolute Di�erene DistaneWe onsider now how dt;�MAD an be omputed.Theorem 5 One an ompute dt;�MAD(A;B) in O(m + � log �) time with bothinteger and real alphabet.PROOF. When � = 0 the optimal distane is learly dtMAD(A;B) =(maxiftig � miniftig)=2, and the transposition giving this distane is(maxiftig + miniftig)=2. When � > 0, onsider again the sorted sequeneti1 ; ti2 ; : : : ; tim as in the proof of Theorem 2. Again the � outliers are M(k0; k00)for some k0+k00 = � in the optimal transposition. For eah hoie, the distane16

an be omputed in O(1) time (it is (tim�k00�1 � tik0+1)=2). The O(�) mediansan be found in linear time, but they must be sorted in order to onstrut setsindued by mismath sets inrementally from M(0; �) to M(�; 0). Thus theomplexity beomes O(m+ � log �). 2Remark 6 In integer alphabet, terms � log � in dt;�SAD and dt;�MAD ould be re-plaed by �+ j�j, sine the sorting ould then be replaed by array indexing.5.4 SearhingUp to now we have onsidered distane omputation. Any algorithm to om-pute the distane between A and B an be trivially onverted into a searhalgorithm for P in T by omparing P against every text window of the formTj�m+1:::j. Atually, we do not have a searh algorithm better than this.Lemma 7 For distanes dt;ÆH , dt;�SAD, and dt;�MAD, if the distane an be evalu-ated in O(f(m)) time, then the orresponding searh problem an be solved inO(f(m)n) time.On the other hand, it is not immediate how to perform transposition invariant(Æ;)�mathing. We show how the above results an be applied to this ase.5.4.1 Transposition invariant (Æ;)�mathing.Note that one an �nd in O(mn) time all the ourrenes fjg suhthat dtMAD(P; Tj�m+1:::j) � Æ, and all the ourrenes fj 0g wheredtSAD(P; Tj0�m+1:::j0) � . The (Æ;)�mathes are a subset of fjg \ fj 0g, butidentity does not neessarily hold; this is beause the optimal transposition17

an be di�erent for dtMAD and dtSAD.What we need to do is to verify this set of possible mathes fjg\fj 0g. This anbe done as follows. For eah possible math j 00 2 fjg \ fj 0g one an omputelimits s and l suh that dMAD(P + t; Tj00�m+1:::j00) � Æ for all s � t � l: If thedistane d = dMAD(P+topt; Tj00�m+1:::j00) is given, then s = topt�(Æ�d) and l =topt+(Æ�d). On the other hand, note that the funtion dSAD(P+t; Tj00:::j00+m�1),as a funtion of t, is dereasing until t reahes the median of the transpositions,and then inreasing. Thus, depending on the relative order of the median ofthe transpositions with respet to s and l, we only need to ompute the SADdistane in one of them (t = s, t = l, or t = tbm=2+1). This gives the minimumvalue for SAD in the range [s; t℄. If this value is � , we have found a math.One an see that using the results of Theorems 2 and 5 with � = 0, theabove proedures an be implemented so that only O(m) time at eah possibleourrene is needed. There are at most n ourrenes to test.Corollary 8 One an �nd all the transposition invariant (Æ;)�ourrenesin O(mn) time with both integer and real alphabet.
6 Computation of dt;ÆID, dt;ÆL , and dt;ÆDLet us �rst review how the edit distanes an be omputed using dynamiprogramming [25,34,29℄. Let A = a1a2 � � �am and B = b1b2 � � � bn. For dID,evaluate an (m + 1) � (n + 1) matrix (dij), 0 � i � m, 0 � j � n, using thereurrenedi;j =min((if ai = bj then di�1;j�1 else1); di�1;j + 1; di;j�1 + 1); (3)18

with initialization di;0 = i for 0 � i � m and d0;j = j for 0 � j � n.The matrix (dij) an be evaluated (in some suitable order, like row-by-row orolumn-by-olumn) in O(mn) time, and the value dmn equals dID(A;B).A similar method an be used to alulate the distane dL(A;B). Now, thereurrene isdi;j =min((di�1;j�1 + if ai = bj then 0 else + 1); di�1;j + 1; di;j�1 + 1);(4)with initialization di;0 = i for 0 � i � m and d0;j = j for 0 � j � n.The reurrene for the distane dD(A;B), that is used in episode mathing, isdi;j = if ai = bj then di�1;j�1 else di;j�1 + 1; (5)with initialization di;0 =1 for 0 � i � m and d0;j = j for 1 � j � n.The orresponding searh problems an be solved by assigning zero to thevalues in the �rst row (reall that we identify pattern P = A and text T = B).To �nd the best approximate math, we take min0�j�n dm;j. For thresholdedsearhing, we report the endpositions of the ourrenes, i.e., those j wheredm;j � k.For episode mathing there is an alternative (and more useful) reurrene [15℄di;j = if ai = bj then di�1;j�1 else di;j�1; (6)with initialization di;0 = 1 for 0 � i � m and d0;j = j for 1 � j � n. Thelength of the best episode math is then min1�j�nfjj � dm;jjg.To solve our transposition invariant problems, we ould try to prove that onlysome transpositions need to be heked, as is the ase with the problems in19

the previous setion. This does not seem to be possible with the more �exiblemeasures of similarity studied here. Therefore we hoose a di�erent approah:We ompute the distanes in all required transpositions, but we use algorithmsthat are more e�ient than the above basi dynami programming solutions,suh that the overall omplexity does not exeed by muh the worst aseomplexities of omputing the distanes in one transposition.Let M be the set of mathing haraters between strings A and B, i.e.M = M(A;B) = f(i; j) j ai = bj; 1 � i � m; 1 � j � ng. Letr = r(A;B) = jM(A;B)j. Let us rede�ne T in this setion to be the setof those transpositions that make some haraters math between A and B,that is T = fbj � ai j 1 � i � m; 1 � j � ng. One ould ompute the aboveedit distanes and solve the searh problems by running the above reurrenesover all pairs (A+ t,B), where t 2 T. In integer alphabet this takes O(j�jmn)time, and O(j�Ajj�Bjmn) time in real alphabet. This kind of proedure anbe signi�antly speeded up if the basi dynami programming algorithms arereplaed by suitable �sparse dynami programming� algorithms.Lemma 9 If an algorithm omputes a distane d(A;B) inO(g(r(A;B))f(m;n)) time, where g is a onave funtion, then the transpo-sition invariant distane dt(A;B) = mint2T d(A + t; B) an be omputed inO(g(mn)f(m;n)) time.
PROOF. Let rt = r(A + t; B) be the number of mathing harater pairsbetween A+ t and B. Then 20

Xt2Tg(rt)f(m;n) = f(m;n)Xt2T mXi=1 g (jfj j ai + t = bj; 1 � j � ngj)� f(m;n)g0� mXi=1Xt2T jfj j ai + t = bj; 1 � j � ngj1A= f(m;n)g mXi=1 n! = g(mn)f(m;n): 2The rest of the setion devotes to developing algorithms that depend on r.6.1 PreproessingAs a �rst step, we need a way of onstruting the math set M sorted in someorder that enables sparse evaluation of matrix (dij). We use olumn-by-olumnorder (i0; j 0) < (i; j) in the sequel, that is de�ned as follows: j 0 < j or (j 0 = jand i0 < i). The math set orresponding to a transposition t will be alledMt = f(i; j) j ai + t = bjg.We must be areful in onstruting these math sets for all transpositionsso that the overall preproessing time will not exeed the time needed forthe atual distane omputations. For example, one ould easily onstrut amath set by onsidering all the mn pairs (i; j) in any desired order (suh asolumn-by-olumn) and adding eah pair (i; j) to Mbj�ai , �rst initializing it ifthe transposition t = bj � ai did not previously exist. This method gives usO(j�j+mn) time in integer alphabet and O(mn log(j�Ajj�Bj)) = O(mn logn)in real alphabet (by using a balaned tree of existing transpositions).Also, one should pay attention to the spae usage: The sum of all the sizesjMtj is O(mn) spae, whih an be too muh espeially in the searh problem.This an be redued to O(m2) in the searh problems for dtID and dtL; values in21

olumn j annot a�et the values at olumn j+2m, and thus one an partitionB = T into substrings of length 3m so that the onseutive substrings overlapby m haraters. Then one an run the algorithms over all pairs (A;B0), whereB0 is a substring desribed above. To ahieve O(m2) spae (with algorithmsthat depend on r), we need to be able to produe math sets for eah (A;B0)separately. For dtD this trik does not apply, but as we will see, only the mathesin the urrent olumn are needed.Lemma 10 The math sets Mt = f(i; j) j ai+t = bjg, eah sorted in olumn-by-olumn order, for all transpositions t 2 T, an be onstruted with thefollowing omplexities. On integer alphabet, O(j�j +mn). On real alphabet ,O(m log j�Aj+n log j�Bj+ j�Ajj�Bj log(j�Ajj�Bj)+mn). Both bounds an beahieved using O(mn) spae. If B an be partitioned into O(n=p) overlappingsubstrings of length O(p) or a window of length p an be slid over B, we getO(mp) spae on integer alphabet and O(mp+ j�Ajj�Bj) on real alphabet. Thelatter an be redued to O(mp) at a time ost of O(nj�Aj log(j�Ajj�Bj)+mn).For the versions that relax the mathing ondition using parameter Æ, weget O(j�j + Æmn) on integer alphabet and O(m log j�Aj + n log j�Bj +j�Ajj�Bj log(j�Ajj�Bj) + mn(Æ=�) log(Æ=�)) on real alphabet, where � =minfjai � ajj j 1 � i < j � m; ai 6= ajg [fjbi � bjj j 1 � i < j � n; bi 6=bjg. For real alphabet and O(m2) spae, the ost is O(nj�Aj log(j�Ajj�Bj) +mn(Æ=�) log(Æ=�)).PROOF. In the integer ase we an proeed naively to obtain O(j�j+mn)time using array indexing to get the transposition where eah pair (i; j) hasto be added. For Æ > 0 eah pair (i; j) is added to entries from bj � ai � Æ tobj � ai + Æ, in O(j�j + Æmn) time. If B is proessed by bloks, the previous22

blok an be used to empty the lists reated when proessing it in O(Æm)instead of the O(j�j) time that would be neessary for a full reinitialization,hene retaining the O(j�j+ Æmn) omplexity for this ase too.The ase of real alphabets with O(mn) memory is solved as follows. Let us�rst onsider the ase Æ = 0. Create a balaned tree TA where every haratera = ai of A is inserted, maintaining for eah suh a 2 �A a list La of thepositions i of A, in inreasing order, suh that a = ai. Do the same for Band TB. This osts O(m log j�Aj+ n log j�Bj). In whih follows we will speakindistintly of haraters of �A (�B) and nodes of TA (TB). For eah node a inTA and b in TB, initialize Mb�a = ; and insert it into a tree of transpositions,TT. At the same time, reate a simple list Pb for eah node b in TB ontaining,for eah node a of TA, a pointer to the node a of TA and to the node b �a in TT. This takes O(j�Ajj�Bj log(j�Ajj�Bj)) time, sine jTj � j�Ajj�Bj.Finally, traverse all the lists of positions Lb of TB in synhronization, gettingonseutive positions j in B (this is done, e.g., by putting all the tree nodes bin a heap sorted by the �rst position in the list Lb, extrating the smallest, andreinserting it with the next position in the list). For eah extrated position jof B orresponding to a node b in TB, traverse its list of pairs Pb = f(i; t) 2(TA node, TT node)g. For eah suh list element, add (i; j) to set Mt in TT.This takes overall O(n log j�Bj+mn) time.Let us onsider now how we an modify the above algorithm for the ase wherewe have to proess B by bloks of length O(p), so that we use less spae. Thepoint is to show that we an move from one blok to the next fast, removingthe positions of B that we leave behind and adding the new positions wereah. In order to remove the smallest position j from the struture desribedabove, we have to loate b = bj in TB, remove the �rst element of Lb, and then23

traverse Pb removing the j�Aj positions (�; j) from the sets Mb�a� in TT. Sinewe have diret pointers for the latter operation, all this an be arried out intime O(log j�Bj + j�Aj). Sine eah harater of B is removed only one, weget overall remotion time O(n log j�Bj+ nj�Aj) = O(n log j�Bj+mn), whihdoes not a�et our omplexities. Insertion of a new harater b = bj is similar:we loate b in TB, add j at the end of Lb and add (�; j) to the sets Mb�a� inTT. The omplexity is the same.However, there is a detail that must be onsidered. In order to have O(mp)spae, we must ensure that, whenever a list Lb beomes empty, we deleteLb and Pb (indeed, the whole node b from TB). The same happens to anempty set Mt in TT. However, this means that we may have to rebuild Pbfor eah new harater b that is inserted, resulting in an overall ost ofO(j�Aj log(j�Ajj�Bj)). This turns out to be larger than most of the other om-plexities and results in an overall time of O(nj�Aj log(j�Ajj�Bj)+mn). Alter-natively, we an leave those urrently unused omputations in P so as to retainour previous omplexity, but the spae in this ase an reah O(mp+j�Ajj�Bj).Finally, let us onsider the ase where Æ > 0. Note that now we have rangesof relevant transpositions rather than individual transpositions. Inside eahrange, the set of Æ-mathing pairs is the same. The �rst point is to notethat there are at most 4j�Ajj�Bj relevant ranges. Consider that eah bj ofB indues a segment [bj � Æ; bj + Æ℄ of alphabet values it mathes. Imaginea sequene of these segments in inreasing order (they are all of the samelength). Now, for eah ai of A we onsider the indued segment [ai� Æ; ai+ Æ℄.If we slide this segment in the alphabet range, the upper limit will touh all the2j�Bj beginnings and endings of segments, and the same will happen to thelower limit. Exept for those points, the set of mathing pairs between A and24

B annot hange. Hene there are at most 4j�Ajj�Bj relevant transpositionranges.We proeed as before, with the only di�erene that eah pair (ai; bj) willprodue a segment [bj � ai � Æ; bj � ai + Æ℄ where (i; j) is ative, so TT willstore (equal length) segments, whih an overlap. We will �ll the values in TTas before; eah pair (i; j) will be added to a single segment of TT. The onlynew problem that appears is that, before, we had at the end all the Mt setsalready omputed in TT at the end, but now we are not yet ready.We have to traverse TT in inreasing order of range endpoints. For eah newrange endpoint (beginning or ending) we have a new transposition range toproess. For eah suh range, we know whih ranges of TT are urrently open,and we merge all the (i; j) pairs of all the open ranges (the pairs are alreadysorted inside eah node of TT). This merging an be done at O(log(Æ=�))ost per element extrated, sine there an be at most O(Æ=�) overlappingtranspositions. Sine overall we produe O(mnÆ=�) pairs, the extra ost overthe above sheme is O(mn(Æ=�) log(Æ=�)). 2
6.2 Computing the Longest Common SubsequeneFor LCS (and thus for dID) there exist algorithms that depend on r. Thelassial Hunt-Szymanski [22℄ algorithm has running time O(r log n) if theset of mathes M is already given in the proper order. Using Lemma 9 wean onlude that there is an algorithm for transposition invariant LCS thathas time omplexity O(mn logn). There are even faster algorithms for LCS[2,17℄; Eppstein et. al. [17℄ improved an algorithm of Apostolio and Guerra [2℄25

ahieving running time O(D log logmin(D; mnD)), where D � r is the numberof dominant mathes (see, e.g., [2℄ for a de�nition). Using this algorithm, wehave the bound O(mn log logn) for the transposition invariant ase (note thatthis is tight estimate, sine it an be ahieved when D = O(mn=D) at eahtransposition).The existing sparse dynami programming algorithms for LCS, however, donot extend to the ase of ��limited gaps. We will give a simple but e�-ient algorithm for LCS that generalizes to this ase. We will also use thesame tehnique when developing an e�ient algorithm for the Levenshteindistane with ��limited gaps. Moreover, by replaing the data struture usedin the algorithm by a more e�ient one desribed in Set. 6.4, we an ahieveO(r log logm) omplexity, whih gives O(mn log logm) for the transpositioninvariant LCS (whih is better than the previous bound, sine m � n).We will need the following (sparsity) lemma to give a fast algorithm for dID.Let (i0; j 0) <p (i; j) denote the partial order de�ned as i0 < i and j 0 < j.Lemma 11 The reurrene (3) an be replaed bydi;j = min f d(i0; j 0) + i� i0 + j � j 0 + if ai = bj then � 2 else 0j ai0 = bj0; (i0; j 0) <p (i; j)g; (7)where d0;0 = 0 and a0 = b0.PROOF. Consider the evaluation of the matrix (dij) as a shortest path om-putation in whih one an either proeed one ell down (ost 1), one ell to theright (ost 1) or one ell forward in the diagonal (ost 1 if the orrespondingharaters do not math, otherwise 0). The paths that take only horizontal26

and vertial steps from ell (i0; j 0) to ell (i; j) have ost i � i0 + j � j 0. Thepaths that onsist of one diagonal movement (from (i� 1; j� 1) to (i; j)) andotherwise of horizontal and vertial movements (from (i0; j 0) to (i� 1; j � 1))from ell (i0; j 0) to ell (i; j) have ost i� i0� 1+ j� j 0� 1, when ai = bj. Thepaths that take more diagonal steps either have ost 1 or pass through someell (i00; j 00) 6= (i0; j 0) suh that (i00; j 00) <p (i; j), ai00 = bj00 . Using indution, onean see that the path ost from (i00; j 00) plus di00;j00 is always smaller or equalto the path ost from (i0; j 0) plus di0;j0. 2The obvious strategy to use the above lemma is to keep the already omputedvalues d(i0; j 0) for eah i0; j 0 suh that ai0 = bj0 in some data struture so thattheir minimum an be retrieved e�iently when omputing the value of d(i; j).One di�ulty here is that the values stored are not omparable as suh sinewe want the minimum just after i� i0+ j� j 0� 2 is added. This an be solvedby storing values d(i0; j 0)� i0� j 0 instead. Then, after retrieving the minimumvalue, one an add i + j � 2 to get the orret value for d(i; j). To get theminimum value from range (i0; j 0) 2 [�1; i) � [�1; j), we need a dynamidata struture that an support one-dimensional range queries (the olumn-by-olumn traversal order guarantees that all points are in range [�1; j)). Inaddition, the range query should not be output sensitive; it should only reportthe minimum value, not all the points in the range.A balaned binary tree an be used as suh a data struture. We an use therow number i0 as a sort key, and store values d(i0; j 0)�i0�j 0 in the leaves. Thenwe an store in eah internal node the minimum of the values d(i0; j 0)� i0� j 0in its subtree.Lemma 12 A balaned binary tree T supports the following operations in27

O(logn) amortized time, where n is the amount of elements inserted in thetree.� T :Insert(k; v): Inserts value v into tree with key k.� T :Delete(v): Deletes all elements with value � v.� v = T :Minimum(k;+): Returns the minimum of values that have key > k.� v = T :Minimum(k;�): Returns the minimum of values that have key < k.� v = T :Minimum(l; r): Returns the minimum of values that have key > land < r.PROOF. The balaned tree desribed above is easily updated when a newkey k is inserted, as the only additional operation is to hange the value v0of any traversed internal node by min(v; v0). Deletion needs a parallel treeorganized by value v, so that deleting all the values larger than v an be doneby disonneting O(logn) subtrees. This parallel tree stores pointers to theoriginal tree T , so we an remove also the nodes from T . Sine we removeall values larger than v, minimum values omputed at internal nodes in Tneed not be updated. So the deletion of eah node takes O(logn) time. Sineone annot delete more elements than those inserted, the amortized time fordeletions is O(logn). Minimum over ranges of keys are obtained by taking theminimum value over the O(logn) nodes that are traversed when searhing forthe keys. For simpliity we will speak of the balaned tree T , ignoring thefat that the data struture is omposed of two trees. (We note, however, thatdeletions are stritly neessary only when mathing with ��limited gaps.) 2We are ready to give the algorithm. To simplify the exposition, we assume �rstthat there is only one math in eah olumn. Now, initialize a balaned binary28

tree T by adding the value of d0;0� i� j = 0 with key i = 0 (T :Insert(0; 0)).Proeed with the math set M that is sorted in olumn-by-olumn order andmake the following operations at eah pair (i; j):(1) Take the minimum value from T whose key is smaller than the urrentrow number i (d = T :Minimum(i;�)). Add i + j � 2 to this value (d d+ i + j � 2).(2) Add the urrent value dminus the urrent row number i and urrent olumnnumber j into T with the urrent row number as a key (T :Insert(i; d� i�j)).Finally, if am = bn then dID(A;B) = d, otherwise dID(A;B) =T :Minimum(m + 1) +m+ n.One an easily see that the above algorithm works orretly; the olumn-by-olumn evaluation and the range query restrited by the row number in Tguarantee that the (i0; j 0) <p (i; j) ondition holds, as long as there is only onemath in eah olumn. To remove the �one math per olumn assumption�,one an simply bath and delay the insert-operations until all the minimum-operations in that olumn are exeuted 3 .Clearly, the time omplexity is O(r log r). Figure 1 gives an example.The algorithm also generalizes easily to the searh problem; the 0 values in the�rst row an be added impliitly by using d min(i; d+ i+ j � 2) in step (1)above. Also, every value di;j = d omputed in step (2) above indues a value3 We note, however, that inluding those ells as soon as they are omputed doesnot alter the result, as Lemma 11 ould have also been proved using the de�nitionof (i0; j0) <p (i; j) as i0 < i and j0 � j. 29

13

32

24
13 [-2] {-2} 26 [-2] {-2}

22 [-1] {-2}3 [-1] {-1}

26 0 [0] { 0}

0

0 9 20 23 26 39 48
0

8
28-1

22
31-1

36

8 [-1] {-2}

39-2

49-2
63-3

80-3

3
39-1

Fig. 1. Example of omputation of dID on a sparse matrix. The blak irles representthe mathing pairs (i; j). Eah suh matrix position has an in�uene area representedby a gray retangle (darker grays represent larger di�erenes from the standard valuei+ j). Near to eah position we represent the matrix value we ompute, in the formi+j�x. The value of interest is the lowest rightmost position. In partiular, we depitthe omputation of the ell (24,39), for whih we have to onsider all the positionsinluded in the dashed retangle. On the right we show our tree data struture. Eahnode orresponds to a ell (i; j) and is represented as i [x℄ fyg, where i is the treekey, x means that the ell value is i + j � x, and y is the minimum x value in thesubtree. The searh for ell (24,39) inludes all the nodes to the left of the dashedline, and has to take the minimum m over all the underlined values. Its new valueis 24 + 39 +m� 1.dm;j+s � d+ (m� i) + s in the last row, whih an be used either to keep theminimum dm;j value, or to report all values dm;j � k in thresholded searhing(eah di;j indues a range at last row where values are � k; after omputingall values di;j, the last row an be traversed by keeping book on the ativeranges in order to report eah ourrene only one). The time omplexitydoes not hange exept for the size of the output, but it an be improvedsine n >> m; we an delete those nodes that annot give the minima, i.e.,values d suh that min(i; d + i + j � 2) = i. This means that, before weproess elements in olumn j, we an remove all the values v � �j + 2. The30

running time beomes O(r logm) with O(m2) spae, sine this is the numberof possibly relevant mathes at any time.We will show in Set. 6.4 that the balaned binary tree an be replaed by apriority queue. Moreover an implementation of priority queue an be used thatsupports operations in O(log log u) time, where 1 : : : u is the range of valuesinserted in the struture. The struture does not store the values of di;j butthe row numbers i, and thus we an replae log n with log logm.Let us now onsider the ase with ��limited gaps. There are ouple of hangeswe need in our algorithms to make sure that, in order to ompute di;j, weonly take into aount the mathes that are in the range (i0; j 0) 2 [i � � �1; i)� [j � �� 1; j). What we need to do is to hange the range [�1; i) into[i � � � 1; i) in T , as well as to delete elements in olumn � j � � � 1 afterproessing elements in olumn j. The former is easily aomplished by usingquery T :Minimum(i � � � 2; i) at phase (1) of the algorithm. The latterneeds an extra tree organized by j values, similar to the one used for theDelete operation. In fat, for searhing, this tree an replae the one used forDelete and we would obtain the same running time, as the relevant � valuesannot exeed m in the searh problem. However, the redution to priorityqueues does not work anymore, and the log logm fator must be replaed bylog n in the bounds.There is one more ompliation in the ase of ��limited gaps. IfT :Minimum(i � � � 2; i) = 1 and thus there is no math inside the queryretangle, we must delete substrings A1:::i�1 and B1:::j�1. In this ase we mustuse update rule d i + j � 2 in phase (1) of the algorithm. Symmetri asehappens in the end of the sequenes (if (i; j) is the last math, then substrings31

Ai+1:::m and Bj+1:::n must be deleted); when omputing the value of dID(A;B),we must take the minimum over di;j+m� i+n�j, where values di;j are thoseomputed during the exeution of the algorithm. This minimum an easily bemaintained during the exeution of the algorithm.An illustration of the algorithm for LCS with ��limited gaps is given in Fig-ure 2.
20 39 48

0

13 [-2] {-2}

3 [-1] {-1} 26 [-2] {-2}

80-4

8

13

63-3
49-2

0

0 9

22

23 26

24

32

26

36

3

31-1

28-1

39-1

39-2

Fig. 2. Example of ��gapped omputation of dID on a sparse matrix, for � = 15. Thesame onventions of Figure 1 apply. The di�erene is that now the in�uene areasare restrited to width and height �, so we delete values with too small olumns andperform a two-sided range searh over the tree, so only its middle part quali�es. Inthis example, the �nal result does not hange.By using Lemma 9 and the above algorithms, we get the following result.Theorem 13 The transposition invariant distane dtID(A;B) an be omputedin O(mn log logm) time and O(mn) spae. The orresponding searh probleman be solved in O(mn log logm) time and in O(m2) spae. For the ase of��limited gaps, dt;�ID (A;B), the spae requirements remain the same, but thetime bounds are O(mn logn) for distane omputation and O(mn logm) forsearhing. The preproessing bounds in Lemma 10 need to be added to thesebounds. 32

Note that to ahieve spae omplexity O(m2) we need to slide a window oflength 2m over the text, and run preproessing and omputation in parallelso that all transpositions are evaluated in eah window.6.3 Computing the Levenshtein DistaneFor the Levenshtein distane, there exists a O(r log logmin(r;mn=r)) sparsedynami programming algorithm [17,20℄. Using this algorithm, the transposi-tion invariant ase an be solved in O(mn log log n) time. As with the LCS,this algorithm does not generalize to the ase of ��limited gaps. We developan alternative solution for the Levenshtein distane by generalizing our rangequery approah to the LCS. This new algorithm an be further generalized tosolve the problem of ��limited gaps.The Levenshtein distane dL has a sparsity property similar to the one given fordID in Lemma 11. The following lemma an be proven using similar argumentsas in the proof of Lemma 11.Lemma 14 The reurrene (4) an be replaed bydi;j = min f d(i0; j 0) + j � j 0 + if ai = bj then � 1 else 0j ai0 = bj0; i0 < i; i� i0 � j � j 0g[fd(i0; j 0) + i� i0 + if ai = bj then � 1 else 0 (8)j ai0 = bj0; j 0 < j; i� i0 > j � j 0g;where d0;0 = 0 and a0 = b0.As with the LCS, our goal is to ompute only values di;j suh that ai = bj. Thereurrene relation is however muh more omplex than the one for dID. Inthe ase of dID we ould store values di0;j0 (suh that ai0 = bj0) in a omparable33

format (by storing di0;j0�i0�j 0 instead) so that the minimum of range (i0; j 0) <p(i; j) ould be retrieved e�iently. For dL there does not seem to be suh aomparable format, sine the path length from (i0; j 0) to (i; j) may be eitheri� i0 � 1 or j � j 0 � 1, when ai = bj.Let us all the two sets in the above lemma as the lower region and the upperregion, respetively. Our strategy is to maintain separate data strutures forboth regions. Eah value di0;j0 (suh that ai0 = bj0) will be stored in both stru-tures in suh a way that the stored values in eah struture are omparable.Let L denote the data struture for the lower region and U the data struturefor the upper region. If we store values di0;j0�j 0 in L, we an take the minimumover those values plus j � 1 to get the value of di;j. However, we want thisminimum over a subset of values stored in L, i.e. over those di0;j0 � j 0 whoseoordinates satisfy i0 < i; j 0 � i0 � j � i. Similarly, if we store values di0;j0 � i0in U , we an take minimum over those values whose oordinates satisfy j 0 <j; j 0� i0 > j� i, plus i� 1 to get the value of di;j (the atual minimum is thenthe minimum of upper region and the lower region).What is left to be explained is how the minima of subsets of L and U an beobtained. For the upper region, we an use the same struture as for dID; if wekeep values di0;j0 � i0 in a balaned binary tree U with key j 0� i0, we an makeone-dimensional range searh to loate the minimum of values di0;j0 � i0 whoseoordinates satisfy j 0� i0 > j� i. The olumn-by-olumn traversal guaranteesthat U only ontains values di0;j0 � i0 for whose oordinates hold j 0 < j. Thus,the upper region an be handled e�iently.The problem now is the lower region. We ould use row-by-row traversalto handle this ase e�iently, but then we would have the symmetri prob-34

lem with the upper region. No traversal order will allow us to limit to one-dimensional range searhes in both regions simultaneously; we will need two-dimensional range searhes in one of them. Let us onsider the two-dimensionalrange searh for the lower region. We would need a query that retrieves theminimum of values di0;j0 � j 0 whose oordinates satisfy i0 < i; j 0 � i0 � j � i.We make a oordinate transformation to make this triangle region into a ret-angle; we map eah value di0;j0 � j 0 into an xy-plane to oordinate i0; j 0 � i0.What we need in this plane, is a retangle query [�1; i) � [�1; j � i). Wewill in Lemma 15 speify an abstrat data struture for L that supports thisoperation, and will later in this setion show that suh a struture exists.Lemma 15 There is a data struture R that, after O(n logn) time prepro-essing, supports the following operations in amortized O(logn log log n) timeand O(n logn) spae, where n is the number of elements in the struture:� R:Update(x; y; v): Update value at oordinate x; y to v (under ondition thatthe urrent value must be larger than v).� v = R:Minimum(l1; l2;�;�): Retrieve the minimum of values whose x-oordinate is smaller than l1 and y-oordinate is smaller than l2.We are now ready to give the sparse dynami programming algorithm for theLevenshtein distane. As with the algorithm for LCS, we �rst assume thatthere is only one math in eah olumn, to simplify the exposition. Initializea balaned binary tree U for the upper region by adding the value of d0;0 �i = 0 with key i = 0 (U :Insert(0; 0)). Initialize a data struture L for thelower region (R of Lemma 15) with the triples (i; j;1) suh that (i; j) 2M [f(0; 0)g. Update value of d0;0 � j = 0 with keys i = 0 and j � i = 0(L:Update(0; 0; 0)). Proeed with the math set M = f(i; j) j ai = bjg that is35

sorted in olumn-by-olumn order and make the following operations at eahpair (i; j):(1) Take the minimum value from U whose key is larger or equal to the urrentdiagonal j � i (d0 = U :Minimum(j � i � 1;+)). Add i � 1 to this value(d0 d0 + i� 1).(2) Take the minimum value from L inside the retangle [�1; i)� [�1; j � i)(d00 = L:Minimum(i; j� i;�;�)). Add j�1 to this value (d00 d00+j�1).(3) Choose the minimum of d0 and d00 as the urrent value d = di;j.(4) Add the urrent value d minus i into U with key j�i (U :Insert(j�i; d�i)).(5) Add the urrent value d minus j into L with keys i and j�i (L:Update(i; j�i; d� j)).Finally, dL(A;B) = min(U :Minimum(n �m � 1;+) +m;L:Minimum(m +1; n�m;�;�) + n).The orretness of the algorithm should be lear from the above disussion.To remove the �one math per olumn assumption�, one an bath and de-lay the insert-operations until all the minimum-operations in that olumnare exeuted, just like in the algorithm for LCS (again, we note that this isnot really neessary). The time omplexity is O(r log r log log r) (r elementsare inserted and updated into the lower region struture, and r times it isqueried). The spae usage is O(r log r). We an redue the time omplexity toO(r log r log logm) sine the log log n fator in Lemma 15 is atually log log u,where 1 : : : u is the the range of values added to the (seondary) struture (seeSet. 6.4). We an implement the struture in Lemma 15 so that u = m.Figure 3 gives an example. 36

39

13

0

8

(13,13) [24-26]

(26,-3) [25-23]

(0,0) [0]

(22,-13) [21-9]

22

query: min([-inf,24) x [-inf,15))+39-1 = -2+39-1 = 36

0

0 9 20 23 26

24

48

22-1

26-2

39-3

(8,12) [19-20]

26

32

20-1

3

36

36-1

26-1

48-4

(3,33) [35-36]

i-j

i

Fig. 3. Example of omputation of dL on a sparse matrix. The same onventions ofFigure 1 apply. To represent the value of ell (i; j) we use the notation a� x, whihindiates that this value was obtained from ell (i0; j0), with value a0� x0, suh thata = a0+max(i�i0; j�j0) and x = x0�1. We also distinguish in the matrix the lowerand upper regions onsidered to solve ell (24,39). Sine the upper region is handledjust like for dID, we show on the right only the data struture of the lower region.It supports minimum operations over two dimensional ranges. Eah relevant matrixposition (i; j) is represented in the range searh struture at position (i; j � i). Thevalue in brakets is [y � j℄, where y = a � x is the value of ell (i; j). To solve ell(24,39) we take the minimum in the range [�1; 24) � [�1; 39 � 24) (inside thedashed retangle on the right), whih returns �2, and add j � 1 to it to obtain 36.The algorithm an be modi�ed for the searh problem similarly as dID, byimpliitly adding values 0 in the �rst row of the urrent olumn and onsideringthe e�et of eah omputed di;j value in the last row of the matrix. However,removing unneessary elements from the strutures (those that an not giveminima for the urrent olumn) is not anymore possible, sine the struturefor the lower region is semi-stati; points an not be removed so that thestruture would remain balaned. However, we an partition the text intoO(n=m) substrings of length 3m so that the onseutive substrings overlapby m haraters. Then we an run the algorithm on eah piee at a time,and no ourrenes will be missed, sine the values in olumn j an not a�et37

the values in olumn j + 2m. This gives O(r logm log logm) searh time andO(m2 logm) spae usage.Using this algorithm, the transposition invariant distane omputationan be solved in O(mn logn log logm) time, and the searh problem inO(mn logm log logm) time. These are, by a log n fator, worse than whatan be ahieved by using the algorithm of Eppstein et. al [17℄ (that algorithman be also generalized to the searh problem similarly as above).However, the advantage of our range query approah is that we an now easilysolve the ase of ��limited gaps. Consider the lower region. We need theminimum over the values whose oordinates (i0; j 0) satisfy i0 2 [i � � � 1; i),j 0 2 [j � � � 1; j), and j 0 � i0 2 [�1; j � i). We map eah di0;j0 � j 0 intothree dimensional spae to oordinate (i0; j 0; j 0 � i0). As we will show in thenext subsetion, the data struture of Lemma 15 an be generalized to answerthree-dimensional (orthant) queries of the formR:Minimum(l1; l2; l3;�;+;�)(minimum value of points whose �rst oordinate is smaller than l1, seondlarger than l2, and third smaller than l3). We an use query R:Minimum(i; j��� 2; j � i;�;+;�) when omputing the value of di;j from the lower region,sine i0 � i���2 when j 0�i0 � j�i, and olumn-by-olumn order guaranteesthat j 0 < j. The upper region ase is now symmetri and an be handledsimilarly. The data strutureR an be implemented so that we get overall timeomplexity O(r log2 r log logm). For the searh problem, this an be reduedto O(r log2m log logm).As in the ase of LCS with ��limited gaps, we still need to onsider sep-arately the ase where the query area ontains no mathes. Then we mustdelete/substitute substrings A1:::i�1 and B1:::j�1. In this ase we must use up-38

date rule d max(i; j)� 1 when omputing the value of di;j = d. Symmetriase happens in the end of the sequenes (if (i; j) is the last math, then sub-strings Ai+1:::m and Bj+1:::n must be deleted/substituted); when omputing thevalue of d�L(A;B), we must take the minimum over di;j + max(m � i; n � j),where values di;j are those omputed during the exeution of the algorithm.This minimum an easily be maintained during the exeution of the algorithm.An illustration of the algorithm for Levenshtein distane with ��limited gapsis given in Figure 4.
26

9 39 48
0

8

48-4

39-3

26-2

query: min([-inf,24) x (22,inf] x [-inf,15))+39-1 = -2+39-1 = 36

0

0

13

20 23 26

22
24

26-1

32

36

3

20-1

22-1

36-1

i

j

(0,0,0) [0]

(13,26,13) [-2]

(22,9,-13) [12]

j-i (3,36,33) [-1]

(8,20,12) [-1]

(26,23,-3) [2]

Fig. 4. Example of omputation of ��gapped dL on a sparse matrix. The sameonventions of Figure 3 apply. On the right we show now the three-dimensionalrange searh struture, where ell (i; j) is represented at position (i; j; j � i) and itsvalue is [y � j℄, where y is the ell value. This time, a similar struture is neededfor the upper area, but we have not represented it. To solve ell (24,39) we take theminimum in the range [�1; 24)� (39� 15� 2;1℄� [�1; 39� 24). The area is thatinside the dashed ube on the right, where we have underlined the only point thatfalls inside. This query returns �2, and we add j � 1 to it to obtain 36.Using Lemma 9 with the above algorithms, we obtain the following result forthe transposition invariant ase.Theorem 16 Transposition invariant Levenshtein distane dtL(A;B) an be39

omputed in O(mn log log n) time and in O(mn) spae. The orrespond-ing searh problem an be solved in O(mn log logm) time and O(m2)spae. For the ase of ��limited gaps, dt;�L (A;B), the time requirements areO(mn log2 n log logm) and O(mn log2m log logm), and spae requirementsO(mn log2 n) and O(m2 log2m), respetively, for distane omputation and forsearhing. The preproessing bounds in Lemma 10 need to be added to thesebounds.6.4 Range Searhing for Minima.We will now desribe the data struture R of Lemma 15. Let S be a labeled�nite set of points in two-dimensional Eulidean spae. The size of S is n =jSj. By �labeled� we mean that there is a funtion ` : S ! R that gives alabel `(s) for eah point s 2 S. The minimum label range query problem isto retrieve the minimum label `(s) over points s 2 S that belong to somequery retangle [l; r℄ � [b; t℄. E�ient solutions for this problem are given byGabow, Bentley, and Tarjan [19℄. We review these solutions here and givesome alternative (easier to desribe) solutions to keep our exposition as self-ontained as possible.When the set S is stati, the one-dimensional ase of the problem an be solvedas follows [19℄. Sort S in inreasing order and onstrut an array A[1 : : : n℄ ofthe labels in that order. Then onstrut a Cartesian tree [33℄ on the arrayA, and preproess the tree for least ommon anestor queries (LCA). Rangeminimum queries an now be answered by two binary searhes on A to �ndthe �rst i and the last j entry inside the query, and a least ommon anestorquery to �nd the minimum value among A[i℄; A[i + 1℄; : : : A[j℄ in O(1) time40

[21℄. See [4℄ for a more detailed desription of the onnetion between rangeminimum queries and LCA.The two-dimensional version an then be solved by �rst onstruting a bal-aned binary tree with points in S as leaves and x-oordinate as the searhkey (atually this an be seen as a range tree [6℄). Eah internal node v ofthe tree ontains a list of points in S (in order of y-oordinate); the lists arede�ned reursively as follows. Node v ontains a subset of the points in the listof its parent suh that the x-oordinate of eah point is less than the parent'skey if v is the left hild, or suh that the x-oordinate is greater or equal tothe parent's key if v is the right hild. An array A like above is onstruted foreah suh list, and eah of them is preproessed to answer (disrete) minimumrange queries in O(1) time. The two-dimensional range query [l; r℄� [b; t℄ annow be answered as follows. Find eah node of the tree suh that the assoi-ated point list is totally inside the x-range [l; r℄, and whose parent's list is not.For eah suh node make two binary searhes and a range minimum query to�nd the minimum value from the y-range [b; t℄. The minimum over all thesenodes is the minimum value from range [l; r℄� [b; t℄. The overall searh time isO(log2 n), sine there are at most O(logn) nodes whose lists must be queried,and eah binary searh takes at most O(logn) time. This an be further re-dued to O(logn) by using frational asading (see e.g. [5℄); the arrays ofa parent and a hild an be linked suh a way that if the �rst and the lastentries that belong to the query range in the parent array are known, then theorresponding entries in the hild array an be found by following the linksfrom the parent array. This has the e�et that the binary searhes are onlyneeded in one node; in its subtree the entries are found by following the links.So far we have disussed the stati ase. We would need a semi-stati version,41

where the labels of the points an be updated. This ase an be handled byreplaing the above arrays with balaned binary trees; eah node of the pri-mary x-oordinate searh tree ontains a seondary tree whih is the balanedbinary tree of Lemma 12 with y-oordinate as the key, and the label as thevalue. We an onlude that updates and two dimensional range queries forminimum an be supported in O(log2 n) time in this struture. It is also easyto see that the struture an be onstruted in O(n logn) time (we an sortthe points in both x- and y-order, and then onstrut eah binary tree in lineartime).What is left is to redue O(log2 n) to O(logn log log n). This improvementhardly an be ahieved for the general ase where the query retangle is limitedin all diretions. However, we are interested in a query of the form [�1; l)�[�1; t) (this is alled orthant searhing [19℄). Consider the one-dimensionalase [�1; l). We will show (following [19℄) that it is enough to use a priorityqueue to solve this problem. First, it is enough to store those points s whoselabel is the minimum in the range [�1; s℄. We keep these points (atually theirindies in the sequential order) in a queue Q and assoiate the labels with thepriorities. When inserting a new point p, we an test whether its label is smallerthan the label of the point s = Q:predeessor(p) that would preede it in thequeue. If it is not, we do not insert the point. Otherwise we insert the point,and remove points Q:suessor(p); Q:suessor(Q:suessor(p)); : : : until we�nd a point t whose label is smaller than the label of p. This guarantees thata range query [�1; l) an be answered by Q:predeessor(l).These operations on a queue an be supported in O(log logn) time (amor-tized time for insert) using the priority queue of Van Emde Boas [31,32℄.Note that this O(log log n) bound requires that the inserted values are in the42

range [1 : : : n℄, whih is the ase here. Replaing the balaned binary tree ofLemma 12 with this priority queue, we have proven Lemma 15.The general ase of d > 2-dimensional orthant searhing for minimum an besolved in O(logd�1 n log logn) time and in O(n logd�1 n) spae, by onstrutingthese range trees for higher dimensions reursively.
6.5 Episode MathingFinally we look at the episode mathing problem and the dtD distane, whihhas a simple sparse dynami programming solution. The following lemma fordD is easy to prove.Lemma 17 The reurrene (5) an be replaed bydi;j = d(i� 1; j 0) + j � j 0 � 1; (9)where j 0 is the largest j 0 < j suh that ai�1 = bj0, d0;0 = 0, and a0 = b0.Consider an algorithm that traverses the math set M = f(i; j) j ai = bjgin the olumn-by-olumn order. We will maintain for eah row a value (i)that gives the largest j 0 < j suh that ai = bj0 , and a value d(i) = di;j0. First,initialize these values to1, exept that (0) = 0 and d(0) = 0. Let (i; j) 2Mbe the urrent pair whose value we need to evaluate. Then d = di;j = d(i�1)+j�(i�1)�1. We an now update the values of the urrent row: (i) = j andd(i) = d. One an easily see that the above reurrenies an be implementedusing dynami programming in O(r) time, r = jM j (preproessing time foronstruting M needs to be added to this).43

The above algorithm generalizes to the searh problem and to the episodemathing problem by impliitly initializing values (0) = j � 1 and d(0) = 0for the values in the �rst row.A similar algorithm an be derived from the reurrene (6), whih also gives thestart points of the ourrenes without needing to baktrak the omputationas when (9) is used.Also the problem of ��limited gaps an be handled easily; we simply avoidupdating d(i) as de�ned when j�(i�1)�1 > �. In this ase we set d(i) =1.Theorem 18 The episode mathing problem an be solved in O(j�j+m+n+r)time in integer alphabet and O((m+n) log j�Aj+r) time in real alphabet (bothin O(m+n+ r) spae). The transposition invariant episode mathing probleman be solved in O(mn) time. The same bound applies in the ase of ��limitedgaps. The preproessing bounds in Lemma 10 need to be added to the boundsfor the transposition invariant ases.6.6 Generalizations to dt;Æ DistanesIf we allow a tolerane Æ > 0 between mathed haraters then Pt2T rÆt =(1 + 2bÆ)mn, where rÆt is the number of mathed haraters between A + tand B (in integer alphabet), and T = fbj�ai�Æg[fbj�ai+Æg. As in the proofof Lemma 10, it is easy to see that T is the relevant set of transpositions. There-fore we get omplexities O(Æmn log log(Æn)), O(Æmn log log(Æn)), and O(Æmn)for dt;ÆID,dt;ÆL , and dt;ÆD , respetively. These �nally redue to O(Æmn log logn),O(Æmn log log n), and O(Æmn), beause in the worst ase every harater maymath every other, and in this ase we would proess m2n2 pairs of hara-44

ters, and still log(m2n2) = O(logn). In real alphabet the result still holdsprovided we replae Æ by Æ=�, where � = minfjai � ajj j 1 � i < j � m; ai 6=ajg [fjbi � bjj j 1 � i < j � n; bi 6= bjg.
7 Conlusions and Future WorkWe have studied two tehniques for solving transposition invariant stringmathing problems. The �rst one was to identify the optimal transpositionand ompute the distane in that transposition. This identi�ation was shownto be e�iently omputable for several distane measures where the i-th har-ater of one string is ompared only against the i-th harater of the other.The seond tehnique, for more general �edit distane� measures, was a morebrute fore approah sine all transpositions were onsidered. However, sinemost of the transpositions produe sparse instanes for the edit distane ma-trix, speialized algorithms ould be used to solve these sparse instanes e�-iently. These kind of sparse dynami programming algorithms already existedin the literature; we gave new sparse dynami algorithms for episode math-ing and for mathing with ��limited gaps in the LCS and in the unit ostLevenshtein distane. The problem of mathing with ��limited gaps demon-strated the onnetion between sparse dynami programming and the problemof semi-stati range searhing for minima.An interesting remaining question is whether the log fators ould be avoidedto ahieve O(mn) for transposition invariant edit distane. For episode math-ing we ahieved the O(mn) bound, exept that the preproessing an (in veryunommon situations on real alphabets) take O(mn logn) time.45

Also, we are on�dent that the searh times for the easier measures that westudied an be improved at least in the average ase. For the edit distanemeasures, algorithms that depend on the minimum (transposition invariant)distane an be derived. For example, an algorithm that proesses only diago-nal areas of the dynami programming matrix [30℄ an be generalized to givebounds like O(jTjdn), where T is the set of transpositions and d = dt�(A;B).This algorithm an be ombined with the sparse evaluation to get an algorithmthat is fast both in pratie and in the worst ase.Referenes[1℄ K. Abrahamson. Generalized string mathing. SIAM J. Computing, 16(6):1039�1051, 1987.[2℄ A. Apostolio and C. Guerra. The longest ommon subsequene problemsrevisited. Algorithmia 2:315�336, 1987.[3℄ B. S. Baker and R. Gianarlo. Sparse dynami programming for longest ommonsubsequene from fragments. J. of Algorithms, 42:231�254, 2002.[4℄ M. A. Bender and M. Farah-Colton. The LCA problem revisited. In Pro.4th Latin Amerian Symposium on Theoretial Informatis (LATIN 2000), pp.88-94, 2000.[5℄ M. de Berg, M. van Kreveld, M. Overmars, and O. Shwarzkopf. ComputationalGeometry: Algorithms and Appliations. Springer-Verlag, 2nd rev. ed. 2000.[6℄ J. L. Bentley. Multidimensional divide-and-onquer. Comm. ACM, 23:214�229,1980.[7℄ B. Bollobás, G. Das, D. Gunopulos, and H. Mannila. Time-series similarity46

problems and well-separated geometri sets. Nordi Journal of Computing,8(4):409�423, Winter 2001.[8℄ E. Cambouropoulos, M. Crohemore, C.S. Iliopoulos, L. Mouhard, and Yoan J.Pinzón. Algorithms for omputing approximate repetitions in musial sequenes.In Pro. 10th Australian Workshop on Combinatorial Algorithms, AWOCA'99,R. Raman and J. Simpson, eds., Curtin University of Tehnology, Perth, WesternAustralia, pp. 129�144, 1999.[9℄ R. Cole, R. Hariharan, and P. Indyk. Tree pattern mathing and subset mathingin deterministi O(n log3m)time. In Pro. 10th Annual ACM-SIAM Symposiumon Disrete Algorithms (SODA'99), pp. 245�254, 1999.[10℄ R. Cole and R. Hariharan. Tree pattern mathing and subset mathing inrandomized O(n log3m)time. In Pro. 29th Annual Symposium on the Theoryof Computing (STOC'97), pp. 66�75, 1997.[11℄ T. Crawford, C.S. Iliopoulos, and R. Raman. String mathing tehniques formusial similarity and melodi reognition. Computing in Musiology 11:71�100,1998.[12℄ M. Crohemore, C.S. Iliopoulos, T. Leroq, and Y.J. Pinzón. Approximatestring mathing in musial sequenes. In Pro. Prague Stringology Club (PSC2001), M. Baliik and M. Simanek, eds, Czeh Tehnial University of Prague,pp. 26�36, DC-2001-06, 2001.[13℄ M. Crohemore, C. Iliopoulos, C. Makris, W. Rytter, A. Tsakalidis, and K.Tsihlas. Approximate string mathing with gaps. Nordi Journal of Computing9(1):54�65, Spring 2002.[14℄ M. Crohemore, G. Landau, and M. Ziv-Ukelson. A sub-quadrati sequenealignment algorithm for unrestrited ost matries. In Pro. 13th Symposiumon Disrete Algorithms (SODA'2002), pp. 679�688. ACM-SIAM, 2002.47

[15℄ G. Das, R. Fleisher, L. Gasienie, D. Gunopulos, and J. Kärkkäinen. Episodemathing. In Pro. 8th Symposium on Combinatorial Pattern Mathing(CPM'97), LNCS 1264, Springer, pp. 12�27, 1997.[16℄ M.J. Dovey. A tehnique for �regular expression� style searhing in polyphonimusi. In Pro. 2nd Annual International Symposium on Musi InformationRetrieval (ISMIR 2001), pp. 179�185, Otober 2001.[17℄ D. Eppstein, Z. Galil, R. Gianarlo, and G. F. Italiano. Sparse dynamiprogramming I: linear ost funtions. J. of the ACM 39(3):519�545, July 1992.[18℄ K. Fredriksson. Rotation Invarinat Template Mathing. PhD Thesis,Department of Computer Siene, University of Helsinki, 139 pages, 2001.[19℄ H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Saling and related tehniquesfor geometry problems. Pro. 16th ACM Symposium on Theory of Computing(STOC'84), pp. 135�143, 1984.[20℄ Z. Galil and K. Park. Dynami programming with onvexity, onavity andsparsity. Theoretial Computer Siene 92:49�76, 1992.[21℄ D. Harel and R. E. Tarjan. Fast algorithms for �nding nearest ommonanestors. SIAM Journal of Computing, 13:338�355, 1984.[22℄ J. W. Hunt and T. G. Szymanski. A fast algorithm for omputing longestommon subsequenes. Commun. ACM, 20(5):350�353, May 1977.[23℄ K. Lemström and J. Tarhio. Searhing monophoni patterns within polyphonisoures. In Pro. Content-Based Multimedia Information Aess (RIAO 2000),pp. 1261�1279 (vol 2), Paris, Frane, April 12-14, 2000.[24℄ K. Lemström and E. Ukkonen. Inluding interval enoding into edit distanebased musi omparison and retrieval. In Pro. Symposium on Creative &Cultural Aspets and Appliations of AI & Cognitive Siene (AISB 2000), pp.53�60, Birmingham, United Kingdom, April 17-20, 2000.48

[25℄ V. Levenshtein. Binary odes apable of orreting deletions, insertions andreversals. Soviet Physis Doklady 6:707�710, 1966.[26℄ C. Iliopoulos, M. Crohemore, G. Navarro, and Y. Pinzón. A bit-parallelsu�x automaton approah for (Æ;)�mathing in musi retrieval. Submittedfor publiation, 2002.[27℄ H. Mannila and H. Toivonen, and A. I. Verkamo. Disovering frequent episodesin sequenes. In Pro. 1st International Conferene on Knowledge Disoveryand Data Mining (KDD'95), AAAI Press, pp. 210�215, 1995.[28℄ S. Muthukrishnan. New results and open problems related to non-standardstringology. In Pro. 6th Annual Symposium on Combinatorial Pattern Mathing(CPM'95), LNCS Vol. 937, pp. 298�317, 1995.[29℄ P. Sellers. The theory and omputation of evolutionary distanes: Patternreognition. J. of Algorithms, 1(4):359�373, 1980.[30℄ E. Ukkonen. Algorithms for approximate string mathing. Information andControl 64(1�3):100�118, 1985.[31℄ P. van Emde Boas, R. Kaas, E. Zijlstra. Design and implementation of ane�ient priority queue. Math. Systems Theory, 10:99�127, 1977.[32℄ P. van Emde Boas. Preserving order in a forest in less than logarithmi timeand linear spae. Inf. Pro. Letters 6(3):80�82, 1977.[33℄ J. Vuillemin. A unifying look at data strutures. Comm. ACM, 23(4):229�239,1980.[34℄ R. Wagner and M. Fisher. The string-to-string orretion problem. J. of theACM 21(1):168�173, 1974.[35℄ W. J. Wilbur and D. J. Lipman. Rapid similarity searhes of nulei aid andprotein data banks. In Pro. Nat. Aad. Si., USA, 80:726�730, 1983.49

[36℄ W. J. Wilbur and D. J. Lipman. The ontext-dependent omparison of biologialsequene. SIAM J. Appl. Math. 44(3):557-567, 1984.

50

