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1 Introdu
tionTransposition invariant string mat
hing is the problem of mat
hing two stringswhen all the 
hara
ters of either of them 
an be �shifted� by some amount t.By �shifting� we mean that the strings are sequen
es of numbers and we addor subtra
t t from ea
h 
hara
ter of one of them.Interest in transposition invariant string mat
hing problems has re
ently arisenin the �eld of musi
 information retrieval (MIR) [11,23,24℄. In musi
 analysisand retrieval, one often wants to 
ompare two musi
 pie
es to test how similarthey are. One way to do this is to de�ne a distan
e measure between the 
or-responding note sequen
es. Transposition invarian
e is one of the propertiesthat su
h a distan
e measure should ful�ll to re�e
t a human sense of similar-ity. There are other appli
ation areas where transposition invarian
e is useful,like time series 
omparison [7℄, image 
omparison [18℄, et
. (see Se
tion 3).In this paper, we study how transposition invarian
e 
an be embedded inevaluating some of the 
lassi
al distan
e measures for strings. We fo
us onmeasures that have been used in pra
ti
e. We are interested in the intrinsi
di�
ulty of the problem, fo
using on the essential aspe
ts and in worst 
ase
omplexities. Our aim is to build a foundation on whi
h one 
an developpra
ti
al improvements su
h as good average 
ases, bit-parallel 
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and so on.Our prin
ipal result is that most of the distan
e measures studied allow in-
luding transposition without a signi�
ant in
rease in the asymptoti
 runningtimes. The summary of our results is given in Se
tion 4.2 De�nitionsLet � be a �nite numeri
al alphabet, whi
h is a subset of some universe U thatis 
losed under addition and subtra
tion (U is either Z or R in the sequel, and� is 
alled either integer or real alphabet, respe
tively). Let A = a1a2 : : : amand B = b1b2 : : : bn be two strings over ��, i.e. ai; bj 2 � for all 1 � i � m; 1 �j � n. We will assume w.l.o.g that m � n, sin
e the distan
e measures westudy are symmetri
. String A0 is a substring of A if A0 = Ai:::j = ai : : : aj forsome 1 � i � j � m. String A00 is a subsequen
e of A, denoted by A00 v A, ifA00 = ai1ai2 : : : aijA00j for some indexes 1 � i1 < i2 < � � � < ijA00j � m.When m = n, the following distan
es 
an be de�ned. The Hamming distan
edH between strings A and B is dH(A;B) = jfi j ai 6= bi; 1 � i � mgj. Themaximum absolute di�eren
e distan
e dMAD between A and B is dMAD(A;B) =max1�i�mfjai�bij j 1 � i � mg. The sum of absolute di�eren
es distan
e dSADbetween A and B is dSAD(A;B) = Pmi=1 jai� bij. Note that dMAD is in fa
t themaximum metri
 (l1 norm) and dSAD the Manhattan metri
 (l1 norm) whenwe interpret A and B as points in m dimensional Eu
lidean spa
e.The following measures 
an also be de�ned when m 6= n. The length of thelongest 
ommon subsequen
e (LCS) of A and B is l
s(A;B) = maxfjSj j S vA; S v Bg. The edit distan
e [25,34,29℄ between A and B is the minimum3



number of edit operations that are needed to 
onvert A into B. Parti
ularly,in the unit 
ost Levenshtein distan
e dL the set of edit operations 
onsists of
hara
ter insertions, deletions, and substitutions. If the substitution operationis forbidden, we get a distan
e dID, whi
h is a
tually a dual problem of eval-uating the LCS; it is easy to see that dID(A;B) = m + n � 2 � l
s(A;B). For
onvenien
e, we will mainly use the minimization problem dID (not l
s) in thesequel. If only deletion for 
hara
ters of B are allowed, we get a distan
e dD.String A is a transposed 
opy of B (denoted by A =t B) if B = (a1 + t)(a2 +t) � � � (am+t) = A+t for some t 2 U. De�nitions for a transposed substring anda transposed subsequen
e 
an be stated similarly. The transposition invariantversions of the above distan
e measures d� where � 2 fH;MAD; SAD;L; ID;Dg
an now be stated as dt�(A;B) = mint2U d�(A+ t; B).So far our de�nitions allow either only exa
t (transposition invariant) mat
hesbetween some 
hara
ters (dtH; dtL; dtID; dtD), or approximate mat
h between all
hara
ters (dtMAD; dtSAD). To relax these 
onditions, we introdu
e a 
onstantÆ > 0. We write a =Æ b when ja� bj � Æ, a; b 2 �. By repla
ing the equalitiesa = b with a =Æ b, we get more error-tolerant versions of the distan
e measures:dt;ÆH ; dt;ÆL , dt;ÆID, and dt;ÆD . Similarly, by introdu
ing another 
onstant � > 0, we
an de�ne distan
es dt;�MAD; dt;�SAD su
h that the � largest di�eren
es jai� bij aredis
arded.We 
an also de�ne ��limited versions of the edit distan
e measures, wherethe distan
e (gap) between two mat
hes is limited by a 
onstant � > 0, i.e. if(ai0 ; bj0) and (ai; bj) are mat
hes, then ji� i0� 1j � � and jj� j 0� 1j � �. Weget distan
es dt;Æ;�L ; dt;Æ;�ID , and dt;Æ;�D .The approximate string mat
hing problem, based on the above distan
e fun
-4



tions, is to �nd the minimum distan
e between A and any substring of B. Inthis 
ase we 
all A the pattern and denote it P1:::m = p1p2 � � � pm, and 
all Bthe text and denote it T1:::n = t1t2 � � � tn, and usually assume that m << n. A
losely related problem is the thresholded sear
h problem where, given P , T ,and a threshold value k � 0, one wants to �nd all the text positions jr su
hthat d(P; Tjl:::jr) � k for some jl. We will refer 
olle
tively to these two 
loselyrelated problems as the sear
h problem.In parti
ular, if distan
e dD is used in approximate string mat
hing, we ob-tain a problem known as episode mat
hing [27,15℄. It 
an also be stated asfollows: Find the shortest substring of the text that 
ontains the pattern as asubsequen
e.Our 
omplexity results are di�erent depending on the form of the alphabet �.We will distinguish two 
ases. An integer alphabet is any alphabet � � Z. Forinteger alphabets, j�j will denote max(�)�min(�) + 1. A real alphabet willbe any other � � R and we will omit any referen
e to j�j. On the other hand,for any string A = a1 : : : am, we will 
all �A = fai j 1 � i � mg the alphabetof A. In these 
ases we will use j�Aj = max(�A) � min(�A) + 1 � j�j when�A is taken as an integer alphabet. On real alphabets, j�Aj � m will denotethe 
ardinality of the set �A.
3 Related Work and MotivationThe �rst thing to noti
e is that the problem of exa
t transposition invariantstring mat
hing is extremely easy to solve. For the 
omparison problem, theonly possible transposition is t = b1� a1. For the sear
h problem, one 
an use5



the relative en
oding of both the pattern (p01 = p2 � p1; p02 = p3 � p2; : : :) andthe text (t01 = t2�t1; t02 = t3�t2; : : :), and use the whole arsenal of methods de-veloped for exa
t string mat
hing. Unfortunately, this relative en
oding seemsto be of no use when the exa
t 
omparison is repla
ed by an approximate one.Transposition invarian
e (as far as we know) was introdu
ed in the stringmat
hing 
ontext in the work of Lemström and Ukkonen [24℄. They proposed(among other measures) transposition invariant longest 
ommon subsequen
e(LCTS) as a measure of similarity between two musi
 (pit
h) sequen
es. Theygave a des
riptive ni
k name for the measure: �Longest Common HiddenMelody�. As the alphabet of pit
hes is some limited integer alphabet � � Z,the transpositions that have to be 
onsidered are T = fb � a j a; b 2 �g.This gives a brute for
e algorithm for 
omputing the length of the LCTS [24℄:Compute l
s(A + t; B) using O(mn) dynami
 programming for ea
h t 2 T.The runtime of this algorithm is O(j�jmn), where typi
ally j�j = 256. In thegeneral 
ase, where � 
ould be unlimited, one 
ould instead use the set oftranspositions T0 = fb � a j a 2 A; b 2 Bg. This is be
ause some 
hara
tersmust mat
h in any meaningful transposition. The size of T0 
ould be mn,whi
h gives O(m2n2) worst 
ase time for real alphabets. Thus it is both ofpra
ti
al and theoreti
al interest to improve this algorithm.The Levenshtein distan
e allows substituting a note by some other note. Anatural extension would be to make the 
ost of a substitution operation dependon the distan
e between the notes. This is however problemati
 sin
e there isno natural way of de�ning 
osts of insertions and deletions in this setting. Wehave 
hosen an alternative approa
h when 
onsidering distan
e fun
tions withthe parameter Æ; a toleran
e Æ > 0 is allowed for mat
hing pit
h levels. This
an be used to allow mat
hes between pit
h levels that are relatively 
lose. In6



pra
ti
e, one 
ould use di�erent values Æ for ea
h pit
h level to better re�e
tmusi
al 
loseness.While the LCS and the edit distan
e in general are useful tools for 
omparingtwo sequen
es that represent whole musi
al pie
es, simpler measures 
ould beused in the sear
h problem. An espe
ially suitable relaxation of the LCS isepisode mat
hing [27,15℄. Assume that the pattern is (a dis
retized version ofa signal) given by humming. The goal is to sear
h for the mat
hing musi
alpie
es in a large musi
 database. The pattern obtained by humming wouldusually 
ontain the melody in its simplest form, but the sear
hed o

urren
esin the musi
 database might additionally 
ontain some �de
orative� notes,whi
h were forgotten by the person humming the pie
e. Episode mat
hingwould �nd the o

urren
es that 
ontain least de
orative notes. This is a goodobje
tive, sin
e an o

urren
e with large number of additional notes wouldnot be re
ognized as the same pie
e of musi
. A version of episode mat
hinghas been proposed in the 
ontext of MIR [16,13℄, where the number of theseadditional notes between two mat
hes is limited by a 
onstant. This variant,as well as the original problem, 
an be solved using dynami
 programmingin O(mn) time. In
luding transposition invarian
e has not been 
onsidered.We will study this problem and �mat
hing with ��limited gaps� in general,where an additional restri
tion to the dID, dL and dD distan
es is that the gapbetween two 
onse
utive mat
hes is limited by an integer � > 0.Even simpler measures have been proposed for the sear
h problem; these in-
lude variants of dÆH, dMAD and dSAD [8,12℄. In the �(Æ; 
)�mat
hing problem�,one wants to �nd all o

urren
es jr su
h that dMAD(P; Tjr�m+1:::jr) � Æ anddSAD(P; Tjr�m+1:::jr) � 
. Algorithms for exa
t string mat
hing 
an be gener-alized to this spe
ial 
ase, and bit-parallel algorithms 
an be applied [8,26℄.7



These algorithms are fast in the average 
ase (and in pra
ti
e), but their worst
ase is still O(mn). In fa
t, for Æ =1 the problem is known as the weightedk-mismat
hes problem [28℄, and it has long been an open question to im-prove the quadrati
 bound. We will not improve this bound here, but we willshow that within the same bounds one 
an solve the harder problem wheretransposition invarian
e is in
luded.So far we have dis
ussed problems for monophoni
 musi
al sequen
es. Poly-phoni
 musi
 is mu
h more 
hallenging. Usually one would be interested in�nding o

urren
es of a monophoni
 pattern in a polyphoni
 musi
. The ba-si
 approa
h would be to separate polyphoni
 musi
 into parallel monophoni
pit
h sequen
es (ea
h instrument separately). This 
ase 
an be handled eas-ily by applying algorithms for monophoni
 musi
. This would however losethe melodies that �jump� between instruments. To �nd these melodies oneshould represent the polyphoni
 musi
 as a sequen
e of subsets of pit
h lev-els. The exa
t mat
hing is in this 
ase 
alled subset mat
hing [10,9℄. Novel(but impra
ti
al) algorithms have been developed for this problem [10,9℄. Toallow transposition invarian
e, one 
ould simulate these algorithms with ea
hpossible transposition. The time 
omplexity would then be O(j�js log3m),where s is the sum of the subset sizes. A pra
ti
al approa
h has been takenby Lemström and Tarhio [23℄, who develop a fast �lter for the problem withtransposition invarian
e; they also give a simple veri�
ation algorithm thathas running time O(j�jn + sm). To �nish the MIR part, we note that theproblems that lead to dynami
 programming (like LCS, edit distan
e, episodemat
hing) 
an easily be adapted to the 
ase in whi
h the text 
onsists ofsubsets.Other appli
ations for transposition invarian
e 
an be found, e.g., in image8



pro
essing and time series 
omparison. In image 
omparison, one 
ould for ex-ample use the sum of absolute di�eren
es to �nd approximate o

urren
es of atemplate pattern inside a larger image. This measure is used, e.g., by Fredriks-son in his study of rotation invariant template mat
hing [18℄. Transpositioninvarian
e would mean �lighting invarian
e� in this 
ontext. As images usually
ontain a lot of noise, the measure where � largest di�eren
es 
an be dis
arded
ould be useful.In time series 
omparison, many of the measures 
an be used. In fa
t, theepisode mat
hing was �rst introdu
ed in this 
ontext [27℄. Re
ently, a 
loselyrelated problem to the transposition invariant LCS was studied by Bollobás et.al [7℄. They studied a slightly more di�
ult problem where not only transposi-tion (translation), but also s
aling was allowed. They also allowed a toleran
ebetween mat
hed values, byt did not 
onsider transpositions alone.
4 Summary of ResultsOur results are two-fold. For evaluating the easier distan
e measures(dt;ÆH ; dt;�MAD; dt;�SAD) we a
hieve almost the same bounds that are known withoutthe transposition invarian
e. These results are a
hieved by noti
ing that theoptimum transposition 
an be found without evaluating the distan
es for ea
hpossible transposition.For the more di�
ult measures (dt;Æ;�L , dt;Æ;�ID , and dt;Æ;�D ) we still need to 
om-pute the distan
es for ea
h possible transposition. This would be 
ostly ifthe standard dynami
 programming algorithms for these problems were used.However, we show that sparse dynami
 programming algorithms 
an be used9



to give mu
h better worst 
ase bounds. Then we show the 
onne
tion betweenthe resulting sparse dynami
 programming problems and dynami
 range mini-mum queries. We obtain simple yet e�
ient algorithms for the distan
es dt;Æ;�L ,dt;Æ;�ID , and dt;Æ;�D .For LCS (and thus for dID) there already exists Hunt-Szymanski [22℄ type(sparse dynami
 programming) algorithms whose time 
omplexities depend onthe number r of mat
hing pairs between the 
ompared strings. The 
omplexityof the Hunt-Szymanski algorithm is O((r + n) log n). As the sum of values rover all di�erent transpositions is mn, we get the bound O(mn logn) for thetransposition invariant 
ase. Later improvements [2,17℄ yield O(mn log log n)time. We improve this to O(mn log logm) by giving a new sparse dynami
algorithm for LCS. This algorithm 
an also be generalized to the 
ase wheregaps are limited by a 
onstant �, giving O(mn logn) for evaluating dt;�ID (A;B).Eppstein et. al. [17℄ have proposed sparse dynami
 programming algorithmsfor more 
omplex distan
e 
omputations su
h as Wilbur-Lipman fragmentalignment problem [35,36℄. Also the unit 
ost Levenshtein distan
e 
an besolved using these te
hniques [20℄. Using this algorithm, the transpositioninvariant 
ase 
an be solved in O(mn log log n) time. However, the algorithmdoes not generalize to the 
ase of �-limited gaps, and thus we develop analternative solution that is based on semi-stati
 range minimum queries. Thisgives us O(mn log2 n log logm) for evaluating dt;�L (A;B).Finally, we give a new O(m + n + r) time sparse dynami
 programming al-gorithm for episode mat
hing. This gives us O(mn) time for transpositioninvariant episode mat
hing.Table 1 gives (a simpli�ed) list of upper bounds that are known for these10



problems without transposition invarian
e. Table 2 gives the a
hieved upperbounds for the transposition invariant variants of these problems.Table 1Upper bounds for string mat
hing without transposition invarian
e. We omit boundsthat depend on the treshold k in the sear
h problems. For dÆ;�ID and dÆ;�L we
ould not �nd existing algorithms; naive dynami
 programming gives O(�2mn)for both, and our sparse dynami
 programming algorithms give O(mn log n) andO(mn log2 n log logm), respe
tively (bounds are simpli�ed by assigning r = mn).distan
e distan
e evaluation sear
hingexa
t O(m) O(m+ n)dH O(m) O(npm logm) [1℄dÆH O(m) O(mn)d�SAD O(m) O(mn)d�MAD O(m) O(mn)(Æ; 
)�mat
hing O(m) O(mn)dID; dL O(mn= logm) O(mn= logm) [14℄dD O(mn= logm) O(mn= logm) [15℄dÆ;�D O(mn) O(mn) [13℄
5 Computation of dt;ÆH ,dt;�SAD, and dt;�MADFor this se
tion, let T = fti = bi � ai j 1 � i � mg = ftig be the set oftranspositions that make some 
hara
ters in A and B mat
h. Note that the11



Table 2Upper bounds for transposition invariant string mat
hing. In integer alphabet,� log � 
an be repla
ed by j�j+ �, and m logm by j�j+m for dt;ÆH . Also, use Æ + 1instead of Æ and log(2 + x) instead of log x to get 
orre
t bounds for small Æ and �values. We have not added, for 
larity, the size of the output in the (thresholded)sear
h 
omplexity, nor the prepro
essing time in Lemma 10 for the edit distan
emeasures. The bounds on these distan
es are valid in real alphabets provided werepla
e Æ by Æ=�, where � is the minimum distan
e between two 
hara
ters in A orin B. distan
e distan
e evaluation sear
hingexa
t O(m) O(m+ n)dt;ÆH O(m logm) O(mn logm)dt;�SAD O(m+ � log �) O((m+ � log �)n)dt;�MAD O(m+ � log �) O((m+ � log �)n)(Æ; 
)�mat
hing O(m) O(mn)dt;ÆID O(Æmn log logm) O(Æmn log logm)dt;Æ;�ID O(Æmn log n) O(Æmn logm)dt;ÆL O(Æmn log log n) O(Æmn log logm)dt;Æ;�L O(Æmn log2 n log logm) O(Æmn log2m log logm)dt;Æ;�D O(Æmn) O(Æmn)optimal transposition does not need, in prin
iple, to be in
luded in T, but wewill show that this is the 
ase for dtH and dt;�SAD. Note also that jTj = O(j�j)in integer alphabet and jTj = O(m) in any 
ase.12



5.1 Hamming Distan
eWe 
onsider �rst the 
omputation of transposition invariant Hamming dis-tan
e dt;ÆH . Let A = a1 : : : am and B = b1 : : : bm, where ai; bi 2 �, 1 � i � m.Theorem 1 One 
an 
ompute dt;ÆH (A;B) in O(j�j + m) time with integeralphabet, or in O(m logm) time in real alphabet.
PROOF. It is 
lear that the Hamming distan
e is minimized for the trans-position in T that makes the maximal number of the 
hara
ters mat
h. Whatfollows is a simple voting s
heme, where the most voted ti wins. Addition-ally, it is extended to mat
h Æ positions ba
k and forth from ea
h ti. Let �denote a don't 
are element, and p:x (p:y) denote the �rst (se
ond) elementof a pair p = (�; �). Constru
t sets S = f(ti � Æ; �open�) j 1 � i � mg andE = f(ti + Æ; �
lose�) j 1 � i � mg. Sort S [ E into a list I using order(x0; y0) <h (x; y) : x0 < x or (x0 = x and y0 < y);where �open�<�
lose�. Initialize variable 
ount = 0. Do for i = 1 to jIj if I(i) =(�; �open�) then 
ount = 
ount+1 else 
ount = 
ount�1. Letmax
ount be thelargest value of 
ount in the above algorithm. Then 
learly dt;ÆH (A;B) = m�max
ount, and the optimal transposition is any value in the range [I(i):x; I(i+1):x℄, for any i where max
ount is rea
hed. The 
omplexity of the algorithmis O(m logm). Sorting 
an be repla
ed by array indexing when � is an integeralphabet, whi
h gives the bound O(j�j+m) for that 
ase. 213



5.2 Sum of Absolute Di�eren
es Distan
eWe shall �rst look at the basi
 
ase where � = 0.Theorem 2 One 
an 
ompute dtSAD(A;B) in O(m) time with both integerand real alphabet.PROOF. Sorting T in as
ending order gives a sequen
e ti1 ; ti2 ; : : : ; tim . Lettopt be the optimal transposition, where tij�1 � topt � tij for some 1 < j � m.The 
ases topt � ti1 or topt > tim 
an be dis
arded as we will see. We 
anrewrite dSAD(A + topt; B) as follows:dSAD(A+ topt; B) = j�1Xj0=1(topt � tij0 ) + mXj0=j(tij0 � topt): (1)We have two 
ases (i) j � 1 � m � j, and (ii) j � 1 > m � j. In 
ase (i) we
an rearrange terms in (1) and getdSAD(A + topt; B) = j�1Xj0=1(tim�j0+1 � tij0 ) + m�j+1Xj0=j (tij0 � topt): (2)From equation (2) one 
an see that as long as there are terms in the se
ondsummation, one 
an in
rease topt so that the overall 
ost will de
rease. Thisremains true even when we move from tij�1 � topt � tij to tij � topt � tij+1 .If m is odd the value of topt 
an be in
reased until ti(m+1)=2�1 � topt � ti(m+1)=2 .Obviously topt = ti(m+1)=2 in that 
ase. If m is even the value of topt 
an bein
reased until there are two terms left in the summation. Then the optimaltransposition topt is any value between and in
luding tim=2 and tim=2+1 ; they allprodu
e the same 
ost. Case (ii) gives the same result, so we 
an 
on
lude thatit is enough to 
ompute the distan
e with t = tibm=2
+1. Sorting is not neededsin
e tibm=2
+1 
an be found with a linear time median �nding algorithm. 214



To get a fast algorithm for dt;�SAD when � > 0 mismat
hes are allowed, we needa lemma that shows that the distan
e 
omputation 
an be in
rementalizedfrom one transposition to another. Let ti1 ; ti2 ; : : : ; tim be the sorted sequen
eof T.Lemma 3 Given values j, Sj, and Lj su
h that dSAD(A + tij ; B) = Sj + Lj,Sj = Pj�1j0=1 tij � tij0 , and Lj = Pmj0=j+1 tij0 � tij , the values of Sj+1 and Lj+1,
an be 
omputed in O(1) time.PROOF. Value Sj+1 
an be written asSj+1= jXj0=1 tij+1 � tij0 = jXj0=1 tij+1 � tij + tij � tij0= j(tij+1 � tij) + jXj0=1 tij � tij0 = j(tij+1 � tij ) + Sj:Similarly Lj+1 
an be written asLj+1= mXj0=j+2 tij0 � tij+1 = mXj0=j+2 tij0 � tij + tij � tij+1=(m� j � 1)(tij � tij+1) + mXj0=j+2 tij0 � tij = (m� j)(tij � tij+1) + Lj:Thus both values 
an be 
omputed in 
onstant time given the values of Sjand Lj, and tij+1 . 2Theorem 4 One 
an 
ompute dt;�SAD(A;B) in O(m + � log �) time with bothinteger and real alphabet.PROOF. Consider the sorted sequen
e ti1 ; ti2 ; : : : ; tim as in the proof ofTheorem 2. Clearly the 
andidates for the � outliers are M(k0; k00) =fti1 ; : : : ; tik0 ; tim�k00 ; : : : timg for some k0+k00 = �. The naive algorithm is then to15




ompute the distan
e in all these �+1 
ases: Compute medians of TnM(k0 ; k00)and 
hoose the minimum distan
e indu
ed by these medians. These �+1 me-dians 
an be found by �rst taking the median of TnM(0; �) and of TnM(�; 0),and then passing over the set 
olle
ting and sorting all the values in between,as these are the medians of TnM(k0; k00). The �+1 medians 
an thus be takenin O(m+ � log �) time, and the additional time to 
ompute the distan
es forall of these � + 1 medians is O(�m). However, the 
omputation of distan
esgiven by 
onse
utive transpositions 
an be in
rementalized using Lemma 3.First one has to 
ompute the distan
e for the median of T n M(0; �), andthen 
ontinue in
rementally until we rea
h the median of T nM(�; 0) (this iswhere we need the medians sorted). Sin
e the set of mismat
hes 
hanges whenmoving from one median to another, one has to add value tik0 � tim to Sm andvalue tim � tik00 to Lm, where Sm and Lm are the values given by Lemma 3.The time 
omplexity of this algorithm is O(m+ � log �). 25.3 Maximum Absolute Di�eren
e Distan
eWe 
onsider now how dt;�MAD 
an be 
omputed.Theorem 5 One 
an 
ompute dt;�MAD(A;B) in O(m + � log �) time with bothinteger and real alphabet.PROOF. When � = 0 the optimal distan
e is 
learly dtMAD(A;B) =(maxiftig � miniftig)=2, and the transposition giving this distan
e is(maxiftig + miniftig)=2. When � > 0, 
onsider again the sorted sequen
eti1 ; ti2 ; : : : ; tim as in the proof of Theorem 2. Again the � outliers are M(k0; k00)for some k0+k00 = � in the optimal transposition. For ea
h 
hoi
e, the distan
e16




an be 
omputed in O(1) time (it is (tim�k00�1 � tik0+1)=2). The O(�) medians
an be found in linear time, but they must be sorted in order to 
onstru
t setsindu
ed by mismat
h sets in
rementally from M(0; �) to M(�; 0). Thus the
omplexity be
omes O(m+ � log �). 2Remark 6 In integer alphabet, terms � log � in dt;�SAD and dt;�MAD 
ould be re-pla
ed by �+ j�j, sin
e the sorting 
ould then be repla
ed by array indexing.5.4 Sear
hingUp to now we have 
onsidered distan
e 
omputation. Any algorithm to 
om-pute the distan
e between A and B 
an be trivially 
onverted into a sear
halgorithm for P in T by 
omparing P against every text window of the formTj�m+1:::j. A
tually, we do not have a sear
h algorithm better than this.Lemma 7 For distan
es dt;ÆH , dt;�SAD, and dt;�MAD, if the distan
e 
an be evalu-ated in O(f(m)) time, then the 
orresponding sear
h problem 
an be solved inO(f(m)n) time.On the other hand, it is not immediate how to perform transposition invariant(Æ; 
)�mat
hing. We show how the above results 
an be applied to this 
ase.5.4.1 Transposition invariant (Æ; 
)�mat
hing.Note that one 
an �nd in O(mn) time all the o

urren
es fjg su
hthat dtMAD(P; Tj�m+1:::j) � Æ, and all the o

urren
es fj 0g wheredtSAD(P; Tj0�m+1:::j0) � 
. The (Æ; 
)�mat
hes are a subset of fjg \ fj 0g, butidentity does not ne
essarily hold; this is be
ause the optimal transposition17




an be di�erent for dtMAD and dtSAD.What we need to do is to verify this set of possible mat
hes fjg\fj 0g. This 
anbe done as follows. For ea
h possible mat
h j 00 2 fjg \ fj 0g one 
an 
omputelimits s and l su
h that dMAD(P + t; Tj00�m+1:::j00) � Æ for all s � t � l: If thedistan
e d = dMAD(P+topt; Tj00�m+1:::j00) is given, then s = topt�(Æ�d) and l =topt+(Æ�d). On the other hand, note that the fun
tion dSAD(P+t; Tj00:::j00+m�1),as a fun
tion of t, is de
reasing until t rea
hes the median of the transpositions,and then in
reasing. Thus, depending on the relative order of the median ofthe transpositions with respe
t to s and l, we only need to 
ompute the SADdistan
e in one of them (t = s, t = l, or t = tbm=2
+1). This gives the minimumvalue for SAD in the range [s; t℄. If this value is � 
, we have found a mat
h.One 
an see that using the results of Theorems 2 and 5 with � = 0, theabove pro
edures 
an be implemented so that only O(m) time at ea
h possibleo

urren
e is needed. There are at most n o

urren
es to test.Corollary 8 One 
an �nd all the transposition invariant (Æ; 
)�o

urren
esin O(mn) time with both integer and real alphabet.
6 Computation of dt;ÆID, dt;ÆL , and dt;ÆDLet us �rst review how the edit distan
es 
an be 
omputed using dynami
programming [25,34,29℄. Let A = a1a2 � � �am and B = b1b2 � � � bn. For dID,evaluate an (m + 1) � (n + 1) matrix (dij), 0 � i � m, 0 � j � n, using there
urren
edi;j =min((if ai = bj then di�1;j�1 else1); di�1;j + 1; di;j�1 + 1); (3)18



with initialization di;0 = i for 0 � i � m and d0;j = j for 0 � j � n.The matrix (dij) 
an be evaluated (in some suitable order, like row-by-row or
olumn-by-
olumn) in O(mn) time, and the value dmn equals dID(A;B).A similar method 
an be used to 
al
ulate the distan
e dL(A;B). Now, there
urren
e isdi;j =min((di�1;j�1 + if ai = bj then 0 else + 1); di�1;j + 1; di;j�1 + 1);(4)with initialization di;0 = i for 0 � i � m and d0;j = j for 0 � j � n.The re
urren
e for the distan
e dD(A;B), that is used in episode mat
hing, isdi;j = if ai = bj then di�1;j�1 else di;j�1 + 1; (5)with initialization di;0 =1 for 0 � i � m and d0;j = j for 1 � j � n.The 
orresponding sear
h problems 
an be solved by assigning zero to thevalues in the �rst row (re
all that we identify pattern P = A and text T = B).To �nd the best approximate mat
h, we take min0�j�n dm;j. For thresholdedsear
hing, we report the endpositions of the o

urren
es, i.e., those j wheredm;j � k.For episode mat
hing there is an alternative (and more useful) re
urren
e [15℄di;j = if ai = bj then di�1;j�1 else di;j�1; (6)with initialization di;0 = 1 for 0 � i � m and d0;j = j for 1 � j � n. Thelength of the best episode mat
h is then min1�j�nfjj � dm;jjg.To solve our transposition invariant problems, we 
ould try to prove that onlysome transpositions need to be 
he
ked, as is the 
ase with the problems in19



the previous se
tion. This does not seem to be possible with the more �exiblemeasures of similarity studied here. Therefore we 
hoose a di�erent approa
h:We 
ompute the distan
es in all required transpositions, but we use algorithmsthat are more e�
ient than the above basi
 dynami
 programming solutions,su
h that the overall 
omplexity does not ex
eed by mu
h the worst 
ase
omplexities of 
omputing the distan
es in one transposition.Let M be the set of mat
hing 
hara
ters between strings A and B, i.e.M = M(A;B) = f(i; j) j ai = bj; 1 � i � m; 1 � j � ng. Letr = r(A;B) = jM(A;B)j. Let us rede�ne T in this se
tion to be the setof those transpositions that make some 
hara
ters mat
h between A and B,that is T = fbj � ai j 1 � i � m; 1 � j � ng. One 
ould 
ompute the aboveedit distan
es and solve the sear
h problems by running the above re
urren
esover all pairs (A+ t,B), where t 2 T. In integer alphabet this takes O(j�jmn)time, and O(j�Ajj�Bjmn) time in real alphabet. This kind of pro
edure 
anbe signi�
antly speeded up if the basi
 dynami
 programming algorithms arerepla
ed by suitable �sparse dynami
 programming� algorithms.Lemma 9 If an algorithm 
omputes a distan
e d(A;B) inO(g(r(A;B))f(m;n)) time, where g is a 
on
ave fun
tion, then the transpo-sition invariant distan
e dt(A;B) = mint2T d(A + t; B) 
an be 
omputed inO(g(mn)f(m;n)) time.
PROOF. Let rt = r(A + t; B) be the number of mat
hing 
hara
ter pairsbetween A+ t and B. Then 20



Xt2Tg(rt)f(m;n) = f(m;n)Xt2T mXi=1 g (jfj j ai + t = bj; 1 � j � ngj)� f(m;n)g0� mXi=1Xt2T jfj j ai + t = bj; 1 � j � ngj1A= f(m;n)g  mXi=1 n! = g(mn)f(m;n): 2The rest of the se
tion devotes to developing algorithms that depend on r.6.1 Prepro
essingAs a �rst step, we need a way of 
onstru
ting the mat
h set M sorted in someorder that enables sparse evaluation of matrix (dij). We use 
olumn-by-
olumnorder (i0; j 0) <
 (i; j) in the sequel, that is de�ned as follows: j 0 < j or (j 0 = jand i0 < i). The mat
h set 
orresponding to a transposition t will be 
alledMt = f(i; j) j ai + t = bjg.We must be 
areful in 
onstru
ting these mat
h sets for all transpositionsso that the overall prepro
essing time will not ex
eed the time needed forthe a
tual distan
e 
omputations. For example, one 
ould easily 
onstru
t amat
h set by 
onsidering all the mn pairs (i; j) in any desired order (su
h as
olumn-by-
olumn) and adding ea
h pair (i; j) to Mbj�ai , �rst initializing it ifthe transposition t = bj � ai did not previously exist. This method gives usO(j�j+mn) time in integer alphabet and O(mn log(j�Ajj�Bj)) = O(mn logn)in real alphabet (by using a balan
ed tree of existing transpositions).Also, one should pay attention to the spa
e usage: The sum of all the sizesjMtj is O(mn) spa
e, whi
h 
an be too mu
h espe
ially in the sear
h problem.This 
an be redu
ed to O(m2) in the sear
h problems for dtID and dtL; values in21




olumn j 
annot a�e
t the values at 
olumn j+2m, and thus one 
an partitionB = T into substrings of length 3m so that the 
onse
utive substrings overlapby m 
hara
ters. Then one 
an run the algorithms over all pairs (A;B0), whereB0 is a substring des
ribed above. To a
hieve O(m2) spa
e (with algorithmsthat depend on r), we need to be able to produ
e mat
h sets for ea
h (A;B0)separately. For dtD this tri
k does not apply, but as we will see, only the mat
hesin the 
urrent 
olumn are needed.Lemma 10 The mat
h sets Mt = f(i; j) j ai+t = bjg, ea
h sorted in 
olumn-by-
olumn order, for all transpositions t 2 T, 
an be 
onstru
ted with thefollowing 
omplexities. On integer alphabet, O(j�j +mn). On real alphabet ,O(m log j�Aj+n log j�Bj+ j�Ajj�Bj log(j�Ajj�Bj)+mn). Both bounds 
an bea
hieved using O(mn) spa
e. If B 
an be partitioned into O(n=p) overlappingsubstrings of length O(p) or a window of length p 
an be slid over B, we getO(mp) spa
e on integer alphabet and O(mp+ j�Ajj�Bj) on real alphabet. Thelatter 
an be redu
ed to O(mp) at a time 
ost of O(nj�Aj log(j�Ajj�Bj)+mn).For the versions that relax the mat
hing 
ondition using parameter Æ, weget O(j�j + Æmn) on integer alphabet and O(m log j�Aj + n log j�Bj +j�Ajj�Bj log(j�Ajj�Bj) + mn(Æ=�) log(Æ=�)) on real alphabet, where � =minfjai � ajj j 1 � i < j � m; ai 6= ajg [ fjbi � bjj j 1 � i < j � n; bi 6=bjg. For real alphabet and O(m2) spa
e, the 
ost is O(nj�Aj log(j�Ajj�Bj) +mn(Æ=�) log(Æ=�)).PROOF. In the integer 
ase we 
an pro
eed naively to obtain O(j�j+mn)time using array indexing to get the transposition where ea
h pair (i; j) hasto be added. For Æ > 0 ea
h pair (i; j) is added to entries from bj � ai � Æ tobj � ai + Æ, in O(j�j + Æmn) time. If B is pro
essed by blo
ks, the previous22



blo
k 
an be used to empty the lists 
reated when pro
essing it in O(Æm)instead of the O(j�j) time that would be ne
essary for a full reinitialization,hen
e retaining the O(j�j+ Æmn) 
omplexity for this 
ase too.The 
ase of real alphabets with O(mn) memory is solved as follows. Let us�rst 
onsider the 
ase Æ = 0. Create a balan
ed tree TA where every 
hara
tera = ai of A is inserted, maintaining for ea
h su
h a 2 �A a list La of thepositions i of A, in in
reasing order, su
h that a = ai. Do the same for Band TB. This 
osts O(m log j�Aj+ n log j�Bj). In whi
h follows we will speakindistin
tly of 
hara
ters of �A (�B) and nodes of TA (TB). For ea
h node a inTA and b in TB, initialize Mb�a = ; and insert it into a tree of transpositions,TT. At the same time, 
reate a simple list Pb for ea
h node b in TB 
ontaining,for ea
h node a of TA, a pointer to the node a of TA and to the node b �a in TT. This takes O(j�Ajj�Bj log(j�Ajj�Bj)) time, sin
e jTj � j�Ajj�Bj.Finally, traverse all the lists of positions Lb of TB in syn
hronization, getting
onse
utive positions j in B (this is done, e.g., by putting all the tree nodes bin a heap sorted by the �rst position in the list Lb, extra
ting the smallest, andreinserting it with the next position in the list). For ea
h extra
ted position jof B 
orresponding to a node b in TB, traverse its list of pairs Pb = f(i; t) 2(TA node, TT node)g. For ea
h su
h list element, add (i; j) to set Mt in TT.This takes overall O(n log j�Bj+mn) time.Let us 
onsider now how we 
an modify the above algorithm for the 
ase wherewe have to pro
ess B by blo
ks of length O(p), so that we use less spa
e. Thepoint is to show that we 
an move from one blo
k to the next fast, removingthe positions of B that we leave behind and adding the new positions werea
h. In order to remove the smallest position j from the stru
ture des
ribedabove, we have to lo
ate b = bj in TB, remove the �rst element of Lb, and then23



traverse Pb removing the j�Aj positions (�; j) from the sets Mb�a� in TT. Sin
ewe have dire
t pointers for the latter operation, all this 
an be 
arried out intime O(log j�Bj + j�Aj). Sin
e ea
h 
hara
ter of B is removed only on
e, weget overall remotion time O(n log j�Bj+ nj�Aj) = O(n log j�Bj+mn), whi
hdoes not a�e
t our 
omplexities. Insertion of a new 
hara
ter b = bj is similar:we lo
ate b in TB, add j at the end of Lb and add (�; j) to the sets Mb�a� inTT. The 
omplexity is the same.However, there is a detail that must be 
onsidered. In order to have O(mp)spa
e, we must ensure that, whenever a list Lb be
omes empty, we deleteLb and Pb (indeed, the whole node b from TB). The same happens to anempty set Mt in TT. However, this means that we may have to rebuild Pbfor ea
h new 
hara
ter b that is inserted, resulting in an overall 
ost ofO(j�Aj log(j�Ajj�Bj)). This turns out to be larger than most of the other 
om-plexities and results in an overall time of O(nj�Aj log(j�Ajj�Bj)+mn). Alter-natively, we 
an leave those 
urrently unused 
omputations in P so as to retainour previous 
omplexity, but the spa
e in this 
ase 
an rea
h O(mp+j�Ajj�Bj).Finally, let us 
onsider the 
ase where Æ > 0. Note that now we have rangesof relevant transpositions rather than individual transpositions. Inside ea
hrange, the set of Æ-mat
hing pairs is the same. The �rst point is to notethat there are at most 4j�Ajj�Bj relevant ranges. Consider that ea
h bj ofB indu
es a segment [bj � Æ; bj + Æ℄ of alphabet values it mat
hes. Imaginea sequen
e of these segments in in
reasing order (they are all of the samelength). Now, for ea
h ai of A we 
onsider the indu
ed segment [ai� Æ; ai+ Æ℄.If we slide this segment in the alphabet range, the upper limit will tou
h all the2j�Bj beginnings and endings of segments, and the same will happen to thelower limit. Ex
ept for those points, the set of mat
hing pairs between A and24



B 
annot 
hange. Hen
e there are at most 4j�Ajj�Bj relevant transpositionranges.We pro
eed as before, with the only di�eren
e that ea
h pair (ai; bj) willprodu
e a segment [bj � ai � Æ; bj � ai + Æ℄ where (i; j) is a
tive, so TT willstore (equal length) segments, whi
h 
an overlap. We will �ll the values in TTas before; ea
h pair (i; j) will be added to a single segment of TT. The onlynew problem that appears is that, before, we had at the end all the Mt setsalready 
omputed in TT at the end, but now we are not yet ready.We have to traverse TT in in
reasing order of range endpoints. For ea
h newrange endpoint (beginning or ending) we have a new transposition range topro
ess. For ea
h su
h range, we know whi
h ranges of TT are 
urrently open,and we merge all the (i; j) pairs of all the open ranges (the pairs are alreadysorted inside ea
h node of TT). This merging 
an be done at O(log(Æ=�))
ost per element extra
ted, sin
e there 
an be at most O(Æ=�) overlappingtranspositions. Sin
e overall we produ
e O(mnÆ=�) pairs, the extra 
ost overthe above s
heme is O(mn(Æ=�) log(Æ=�)). 2
6.2 Computing the Longest Common Subsequen
eFor LCS (and thus for dID) there exist algorithms that depend on r. The
lassi
al Hunt-Szymanski [22℄ algorithm has running time O(r log n) if theset of mat
hes M is already given in the proper order. Using Lemma 9 we
an 
on
lude that there is an algorithm for transposition invariant LCS thathas time 
omplexity O(mn logn). There are even faster algorithms for LCS[2,17℄; Eppstein et. al. [17℄ improved an algorithm of Apostoli
o and Guerra [2℄25



a
hieving running time O(D log logmin(D; mnD )), where D � r is the numberof dominant mat
hes (see, e.g., [2℄ for a de�nition). Using this algorithm, wehave the bound O(mn log logn) for the transposition invariant 
ase (note thatthis is tight estimate, sin
e it 
an be a
hieved when D = O(mn=D) at ea
htransposition).The existing sparse dynami
 programming algorithms for LCS, however, donot extend to the 
ase of ��limited gaps. We will give a simple but e�-
ient algorithm for LCS that generalizes to this 
ase. We will also use thesame te
hnique when developing an e�
ient algorithm for the Levenshteindistan
e with ��limited gaps. Moreover, by repla
ing the data stru
ture usedin the algorithm by a more e�
ient one des
ribed in Se
t. 6.4, we 
an a
hieveO(r log logm) 
omplexity, whi
h gives O(mn log logm) for the transpositioninvariant LCS (whi
h is better than the previous bound, sin
e m � n).We will need the following (sparsity) lemma to give a fast algorithm for dID.Let (i0; j 0) <p (i; j) denote the partial order de�ned as i0 < i and j 0 < j.Lemma 11 The re
urren
e (3) 
an be repla
ed bydi;j = min f d(i0; j 0) + i� i0 + j � j 0 + if ai = bj then � 2 else 0j ai0 = bj0; (i0; j 0) <p (i; j)g; (7)where d0;0 = 0 and a0 = b0.PROOF. Consider the evaluation of the matrix (dij) as a shortest path 
om-putation in whi
h one 
an either pro
eed one 
ell down (
ost 1), one 
ell to theright (
ost 1) or one 
ell forward in the diagonal (
ost 1 if the 
orresponding
hara
ters do not mat
h, otherwise 0). The paths that take only horizontal26



and verti
al steps from 
ell (i0; j 0) to 
ell (i; j) have 
ost i � i0 + j � j 0. Thepaths that 
onsist of one diagonal movement (from (i� 1; j� 1) to (i; j)) andotherwise of horizontal and verti
al movements (from (i0; j 0) to (i� 1; j � 1))from 
ell (i0; j 0) to 
ell (i; j) have 
ost i� i0� 1+ j� j 0� 1, when ai = bj. Thepaths that take more diagonal steps either have 
ost 1 or pass through some
ell (i00; j 00) 6= (i0; j 0) su
h that (i00; j 00) <p (i; j), ai00 = bj00 . Using indu
tion, one
an see that the path 
ost from (i00; j 00) plus di00;j00 is always smaller or equalto the path 
ost from (i0; j 0) plus di0;j0. 2The obvious strategy to use the above lemma is to keep the already 
omputedvalues d(i0; j 0) for ea
h i0; j 0 su
h that ai0 = bj0 in some data stru
ture so thattheir minimum 
an be retrieved e�
iently when 
omputing the value of d(i; j).One di�
ulty here is that the values stored are not 
omparable as su
h sin
ewe want the minimum just after i� i0+ j� j 0� 2 is added. This 
an be solvedby storing values d(i0; j 0)� i0� j 0 instead. Then, after retrieving the minimumvalue, one 
an add i + j � 2 to get the 
orre
t value for d(i; j). To get theminimum value from range (i0; j 0) 2 [�1; i) � [�1; j), we need a dynami
data stru
ture that 
an support one-dimensional range queries (the 
olumn-by-
olumn traversal order guarantees that all points are in range [�1; j)). Inaddition, the range query should not be output sensitive; it should only reportthe minimum value, not all the points in the range.A balan
ed binary tree 
an be used as su
h a data stru
ture. We 
an use therow number i0 as a sort key, and store values d(i0; j 0)�i0�j 0 in the leaves. Thenwe 
an store in ea
h internal node the minimum of the values d(i0; j 0)� i0� j 0in its subtree.Lemma 12 A balan
ed binary tree T supports the following operations in27



O(logn) amortized time, where n is the amount of elements inserted in thetree.� T :Insert(k; v): Inserts value v into tree with key k.� T :Delete(v): Deletes all elements with value � v.� v = T :Minimum(k;+): Returns the minimum of values that have key > k.� v = T :Minimum(k;�): Returns the minimum of values that have key < k.� v = T :Minimum(l; r): Returns the minimum of values that have key > land < r.PROOF. The balan
ed tree des
ribed above is easily updated when a newkey k is inserted, as the only additional operation is to 
hange the value v0of any traversed internal node by min(v; v0). Deletion needs a parallel treeorganized by value v, so that deleting all the values larger than v 
an be doneby dis
onne
ting O(logn) subtrees. This parallel tree stores pointers to theoriginal tree T , so we 
an remove also the nodes from T . Sin
e we removeall values larger than v, minimum values 
omputed at internal nodes in Tneed not be updated. So the deletion of ea
h node takes O(logn) time. Sin
eone 
annot delete more elements than those inserted, the amortized time fordeletions is O(logn). Minimum over ranges of keys are obtained by taking theminimum value over the O(logn) nodes that are traversed when sear
hing forthe keys. For simpli
ity we will speak of the balan
ed tree T , ignoring thefa
t that the data stru
ture is 
omposed of two trees. (We note, however, thatdeletions are stri
tly ne
essary only when mat
hing with ��limited gaps.) 2We are ready to give the algorithm. To simplify the exposition, we assume �rstthat there is only one mat
h in ea
h 
olumn. Now, initialize a balan
ed binary28



tree T by adding the value of d0;0� i� j = 0 with key i = 0 (T :Insert(0; 0)).Pro
eed with the mat
h set M that is sorted in 
olumn-by-
olumn order andmake the following operations at ea
h pair (i; j):(1) Take the minimum value from T whose key is smaller than the 
urrentrow number i (d = T :Minimum(i;�)). Add i + j � 2 to this value (d  d+ i + j � 2).(2) Add the 
urrent value dminus the 
urrent row number i and 
urrent 
olumnnumber j into T with the 
urrent row number as a key (T :Insert(i; d� i�j)).Finally, if am = bn then dID(A;B) = d, otherwise dID(A;B) =T :Minimum(m + 1) +m+ n.One 
an easily see that the above algorithm works 
orre
tly; the 
olumn-by-
olumn evaluation and the range query restri
ted by the row number in Tguarantee that the (i0; j 0) <p (i; j) 
ondition holds, as long as there is only onemat
h in ea
h 
olumn. To remove the �one mat
h per 
olumn assumption�,one 
an simply bat
h and delay the insert-operations until all the minimum-operations in that 
olumn are exe
uted 3 .Clearly, the time 
omplexity is O(r log r). Figure 1 gives an example.The algorithm also generalizes easily to the sear
h problem; the 0 values in the�rst row 
an be added impli
itly by using d min(i; d+ i+ j � 2) in step (1)above. Also, every value di;j = d 
omputed in step (2) above indu
es a value3 We note, however, that in
luding those 
ells as soon as they are 
omputed doesnot alter the result, as Lemma 11 
ould have also been proved using the de�nitionof (i0; j0) <p (i; j) as i0 < i and j0 � j. 29
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Fig. 1. Example of 
omputation of dID on a sparse matrix. The bla
k 
ir
les representthe mat
hing pairs (i; j). Ea
h su
h matrix position has an in�uen
e area representedby a gray re
tangle (darker grays represent larger di�eren
es from the standard valuei+ j). Near to ea
h position we represent the matrix value we 
ompute, in the formi+j�x. The value of interest is the lowest rightmost position. In parti
ular, we depi
tthe 
omputation of the 
ell (24,39), for whi
h we have to 
onsider all the positionsin
luded in the dashed re
tangle. On the right we show our tree data stru
ture. Ea
hnode 
orresponds to a 
ell (i; j) and is represented as i [x℄ fyg, where i is the treekey, x means that the 
ell value is i + j � x, and y is the minimum x value in thesubtree. The sear
h for 
ell (24,39) in
ludes all the nodes to the left of the dashedline, and has to take the minimum m over all the underlined values. Its new valueis 24 + 39 +m� 1.dm;j+s � d+ (m� i) + s in the last row, whi
h 
an be used either to keep theminimum dm;j value, or to report all values dm;j � k in thresholded sear
hing(ea
h di;j indu
es a range at last row where values are � k; after 
omputingall values di;j, the last row 
an be traversed by keeping book on the a
tiveranges in order to report ea
h o

urren
e only on
e). The time 
omplexitydoes not 
hange ex
ept for the size of the output, but it 
an be improvedsin
e n >> m; we 
an delete those nodes that 
annot give the minima, i.e.,values d su
h that min(i; d + i + j � 2) = i. This means that, before wepro
ess elements in 
olumn j, we 
an remove all the values v � �j + 2. The30



running time be
omes O(r logm) with O(m2) spa
e, sin
e this is the numberof possibly relevant mat
hes at any time.We will show in Se
t. 6.4 that the balan
ed binary tree 
an be repla
ed by apriority queue. Moreover an implementation of priority queue 
an be used thatsupports operations in O(log log u) time, where 1 : : : u is the range of valuesinserted in the stru
ture. The stru
ture does not store the values of di;j butthe row numbers i, and thus we 
an repla
e log n with log logm.Let us now 
onsider the 
ase with ��limited gaps. There are 
ouple of 
hangeswe need in our algorithms to make sure that, in order to 
ompute di;j, weonly take into a

ount the mat
hes that are in the range (i0; j 0) 2 [i � � �1; i)� [j � �� 1; j). What we need to do is to 
hange the range [�1; i) into[i � � � 1; i) in T , as well as to delete elements in 
olumn � j � � � 1 afterpro
essing elements in 
olumn j. The former is easily a

omplished by usingquery T :Minimum(i � � � 2; i) at phase (1) of the algorithm. The latterneeds an extra tree organized by j values, similar to the one used for theDelete operation. In fa
t, for sear
hing, this tree 
an repla
e the one used forDelete and we would obtain the same running time, as the relevant � values
annot ex
eed m in the sear
h problem. However, the redu
tion to priorityqueues does not work anymore, and the log logm fa
tor must be repla
ed bylog n in the bounds.There is one more 
ompli
ation in the 
ase of ��limited gaps. IfT :Minimum(i � � � 2; i) = 1 and thus there is no mat
h inside the queryre
tangle, we must delete substrings A1:::i�1 and B1:::j�1. In this 
ase we mustuse update rule d i + j � 2 in phase (1) of the algorithm. Symmetri
 
asehappens in the end of the sequen
es (if (i; j) is the last mat
h, then substrings31



Ai+1:::m and Bj+1:::n must be deleted); when 
omputing the value of dID(A;B),we must take the minimum over di;j+m� i+n�j, where values di;j are those
omputed during the exe
ution of the algorithm. This minimum 
an easily bemaintained during the exe
ution of the algorithm.An illustration of the algorithm for LCS with ��limited gaps is given in Fig-ure 2.
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Fig. 2. Example of ��gapped 
omputation of dID on a sparse matrix, for � = 15. Thesame 
onventions of Figure 1 apply. The di�eren
e is that now the in�uen
e areasare restri
ted to width and height �, so we delete values with too small 
olumns andperform a two-sided range sear
h over the tree, so only its middle part quali�es. Inthis example, the �nal result does not 
hange.By using Lemma 9 and the above algorithms, we get the following result.Theorem 13 The transposition invariant distan
e dtID(A;B) 
an be 
omputedin O(mn log logm) time and O(mn) spa
e. The 
orresponding sear
h problem
an be solved in O(mn log logm) time and in O(m2) spa
e. For the 
ase of��limited gaps, dt;�ID (A;B), the spa
e requirements remain the same, but thetime bounds are O(mn logn) for distan
e 
omputation and O(mn logm) forsear
hing. The prepro
essing bounds in Lemma 10 need to be added to thesebounds. 32



Note that to a
hieve spa
e 
omplexity O(m2) we need to slide a window oflength 2m over the text, and run prepro
essing and 
omputation in parallelso that all transpositions are evaluated in ea
h window.6.3 Computing the Levenshtein Distan
eFor the Levenshtein distan
e, there exists a O(r log logmin(r;mn=r)) sparsedynami
 programming algorithm [17,20℄. Using this algorithm, the transposi-tion invariant 
ase 
an be solved in O(mn log log n) time. As with the LCS,this algorithm does not generalize to the 
ase of ��limited gaps. We developan alternative solution for the Levenshtein distan
e by generalizing our rangequery approa
h to the LCS. This new algorithm 
an be further generalized tosolve the problem of ��limited gaps.The Levenshtein distan
e dL has a sparsity property similar to the one given fordID in Lemma 11. The following lemma 
an be proven using similar argumentsas in the proof of Lemma 11.Lemma 14 The re
urren
e (4) 
an be repla
ed bydi;j = min f d(i0; j 0) + j � j 0 + if ai = bj then � 1 else 0j ai0 = bj0; i0 < i; i� i0 � j � j 0g[ fd(i0; j 0) + i� i0 + if ai = bj then � 1 else 0 (8)j ai0 = bj0; j 0 < j; i� i0 > j � j 0g;where d0;0 = 0 and a0 = b0.As with the LCS, our goal is to 
ompute only values di;j su
h that ai = bj. There
urren
e relation is however mu
h more 
omplex than the one for dID. Inthe 
ase of dID we 
ould store values di0;j0 (su
h that ai0 = bj0) in a 
omparable33



format (by storing di0;j0�i0�j 0 instead) so that the minimum of range (i0; j 0) <p(i; j) 
ould be retrieved e�
iently. For dL there does not seem to be su
h a
omparable format, sin
e the path length from (i0; j 0) to (i; j) may be eitheri� i0 � 1 or j � j 0 � 1, when ai = bj.Let us 
all the two sets in the above lemma as the lower region and the upperregion, respe
tively. Our strategy is to maintain separate data stru
tures forboth regions. Ea
h value di0;j0 (su
h that ai0 = bj0) will be stored in both stru
-tures in su
h a way that the stored values in ea
h stru
ture are 
omparable.Let L denote the data stru
ture for the lower region and U the data stru
turefor the upper region. If we store values di0;j0�j 0 in L, we 
an take the minimumover those values plus j � 1 to get the value of di;j. However, we want thisminimum over a subset of values stored in L, i.e. over those di0;j0 � j 0 whose
oordinates satisfy i0 < i; j 0 � i0 � j � i. Similarly, if we store values di0;j0 � i0in U , we 
an take minimum over those values whose 
oordinates satisfy j 0 <j; j 0� i0 > j� i, plus i� 1 to get the value of di;j (the a
tual minimum is thenthe minimum of upper region and the lower region).What is left to be explained is how the minima of subsets of L and U 
an beobtained. For the upper region, we 
an use the same stru
ture as for dID; if wekeep values di0;j0 � i0 in a balan
ed binary tree U with key j 0� i0, we 
an makeone-dimensional range sear
h to lo
ate the minimum of values di0;j0 � i0 whose
oordinates satisfy j 0� i0 > j� i. The 
olumn-by-
olumn traversal guaranteesthat U only 
ontains values di0;j0 � i0 for whose 
oordinates hold j 0 < j. Thus,the upper region 
an be handled e�
iently.The problem now is the lower region. We 
ould use row-by-row traversalto handle this 
ase e�
iently, but then we would have the symmetri
 prob-34



lem with the upper region. No traversal order will allow us to limit to one-dimensional range sear
hes in both regions simultaneously; we will need two-dimensional range sear
hes in one of them. Let us 
onsider the two-dimensionalrange sear
h for the lower region. We would need a query that retrieves theminimum of values di0;j0 � j 0 whose 
oordinates satisfy i0 < i; j 0 � i0 � j � i.We make a 
oordinate transformation to make this triangle region into a re
t-angle; we map ea
h value di0;j0 � j 0 into an xy-plane to 
oordinate i0; j 0 � i0.What we need in this plane, is a re
tangle query [�1; i) � [�1; j � i). Wewill in Lemma 15 spe
ify an abstra
t data stru
ture for L that supports thisoperation, and will later in this se
tion show that su
h a stru
ture exists.Lemma 15 There is a data stru
ture R that, after O(n logn) time prepro-
essing, supports the following operations in amortized O(logn log log n) timeand O(n logn) spa
e, where n is the number of elements in the stru
ture:� R:Update(x; y; v): Update value at 
oordinate x; y to v (under 
ondition thatthe 
urrent value must be larger than v).� v = R:Minimum(l1; l2;�;�): Retrieve the minimum of values whose x-
oordinate is smaller than l1 and y-
oordinate is smaller than l2.We are now ready to give the sparse dynami
 programming algorithm for theLevenshtein distan
e. As with the algorithm for LCS, we �rst assume thatthere is only one mat
h in ea
h 
olumn, to simplify the exposition. Initializea balan
ed binary tree U for the upper region by adding the value of d0;0 �i = 0 with key i = 0 (U :Insert(0; 0)). Initialize a data stru
ture L for thelower region (R of Lemma 15) with the triples (i; j;1) su
h that (i; j) 2M [ f(0; 0)g. Update value of d0;0 � j = 0 with keys i = 0 and j � i = 0(L:Update(0; 0; 0)). Pro
eed with the mat
h set M = f(i; j) j ai = bjg that is35



sorted in 
olumn-by-
olumn order and make the following operations at ea
hpair (i; j):(1) Take the minimum value from U whose key is larger or equal to the 
urrentdiagonal j � i (d0 = U :Minimum(j � i � 1;+)). Add i � 1 to this value(d0  d0 + i� 1).(2) Take the minimum value from L inside the re
tangle [�1; i)� [�1; j � i)(d00 = L:Minimum(i; j� i;�;�)). Add j�1 to this value (d00  d00+j�1).(3) Choose the minimum of d0 and d00 as the 
urrent value d = di;j.(4) Add the 
urrent value d minus i into U with key j�i (U :Insert(j�i; d�i)).(5) Add the 
urrent value d minus j into L with keys i and j�i (L:Update(i; j�i; d� j)).Finally, dL(A;B) = min(U :Minimum(n �m � 1;+) +m;L:Minimum(m +1; n�m;�;�) + n).The 
orre
tness of the algorithm should be 
lear from the above dis
ussion.To remove the �one mat
h per 
olumn assumption�, one 
an bat
h and de-lay the insert-operations until all the minimum-operations in that 
olumnare exe
uted, just like in the algorithm for LCS (again, we note that this isnot really ne
essary). The time 
omplexity is O(r log r log log r) (r elementsare inserted and updated into the lower region stru
ture, and r times it isqueried). The spa
e usage is O(r log r). We 
an redu
e the time 
omplexity toO(r log r log logm) sin
e the log log n fa
tor in Lemma 15 is a
tually log log u,where 1 : : : u is the the range of values added to the (se
ondary) stru
ture (seeSe
t. 6.4). We 
an implement the stru
ture in Lemma 15 so that u = m.Figure 3 gives an example. 36
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Fig. 3. Example of 
omputation of dL on a sparse matrix. The same 
onventions ofFigure 1 apply. To represent the value of 
ell (i; j) we use the notation a� x, whi
hindi
ates that this value was obtained from 
ell (i0; j0), with value a0� x0, su
h thata = a0+max(i�i0; j�j0) and x = x0�1. We also distinguish in the matrix the lowerand upper regions 
onsidered to solve 
ell (24,39). Sin
e the upper region is handledjust like for dID, we show on the right only the data stru
ture of the lower region.It supports minimum operations over two dimensional ranges. Ea
h relevant matrixposition (i; j) is represented in the range sear
h stru
ture at position (i; j � i). Thevalue in bra
kets is [y � j℄, where y = a � x is the value of 
ell (i; j). To solve 
ell(24,39) we take the minimum in the range [�1; 24) � [�1; 39 � 24) (inside thedashed re
tangle on the right), whi
h returns �2, and add j � 1 to it to obtain 36.The algorithm 
an be modi�ed for the sear
h problem similarly as dID, byimpli
itly adding values 0 in the �rst row of the 
urrent 
olumn and 
onsideringthe e�e
t of ea
h 
omputed di;j value in the last row of the matrix. However,removing unne
essary elements from the stru
tures (those that 
an not giveminima for the 
urrent 
olumn) is not anymore possible, sin
e the stru
turefor the lower region is semi-stati
; points 
an not be removed so that thestru
ture would remain balan
ed. However, we 
an partition the text intoO(n=m) substrings of length 3m so that the 
onse
utive substrings overlapby m 
hara
ters. Then we 
an run the algorithm on ea
h pie
e at a time,and no o

urren
es will be missed, sin
e the values in 
olumn j 
an not a�e
t37



the values in 
olumn j + 2m. This gives O(r logm log logm) sear
h time andO(m2 logm) spa
e usage.Using this algorithm, the transposition invariant distan
e 
omputation
an be solved in O(mn logn log logm) time, and the sear
h problem inO(mn logm log logm) time. These are, by a log n fa
tor, worse than what
an be a
hieved by using the algorithm of Eppstein et. al [17℄ (that algorithm
an be also generalized to the sear
h problem similarly as above).However, the advantage of our range query approa
h is that we 
an now easilysolve the 
ase of ��limited gaps. Consider the lower region. We need theminimum over the values whose 
oordinates (i0; j 0) satisfy i0 2 [i � � � 1; i),j 0 2 [j � � � 1; j), and j 0 � i0 2 [�1; j � i). We map ea
h di0;j0 � j 0 intothree dimensional spa
e to 
oordinate (i0; j 0; j 0 � i0). As we will show in thenext subse
tion, the data stru
ture of Lemma 15 
an be generalized to answerthree-dimensional (orthant) queries of the formR:Minimum(l1; l2; l3;�;+;�)(minimum value of points whose �rst 
oordinate is smaller than l1, se
ondlarger than l2, and third smaller than l3). We 
an use query R:Minimum(i; j��� 2; j � i;�;+;�) when 
omputing the value of di;j from the lower region,sin
e i0 � i���2 when j 0�i0 � j�i, and 
olumn-by-
olumn order guaranteesthat j 0 < j. The upper region 
ase is now symmetri
 and 
an be handledsimilarly. The data stru
tureR 
an be implemented so that we get overall time
omplexity O(r log2 r log logm). For the sear
h problem, this 
an be redu
edto O(r log2m log logm).As in the 
ase of LCS with ��limited gaps, we still need to 
onsider sep-arately the 
ase where the query area 
ontains no mat
hes. Then we mustdelete/substitute substrings A1:::i�1 and B1:::j�1. In this 
ase we must use up-38



date rule d max(i; j)� 1 when 
omputing the value of di;j = d. Symmetri

ase happens in the end of the sequen
es (if (i; j) is the last mat
h, then sub-strings Ai+1:::m and Bj+1:::n must be deleted/substituted); when 
omputing thevalue of d�L(A;B), we must take the minimum over di;j + max(m � i; n � j),where values di;j are those 
omputed during the exe
ution of the algorithm.This minimum 
an easily be maintained during the exe
ution of the algorithm.An illustration of the algorithm for Levenshtein distan
e with ��limited gapsis given in Figure 4.
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Fig. 4. Example of 
omputation of ��gapped dL on a sparse matrix. The same
onventions of Figure 3 apply. On the right we show now the three-dimensionalrange sear
h stru
ture, where 
ell (i; j) is represented at position (i; j; j � i) and itsvalue is [y � j℄, where y is the 
ell value. This time, a similar stru
ture is neededfor the upper area, but we have not represented it. To solve 
ell (24,39) we take theminimum in the range [�1; 24)� (39� 15� 2;1℄� [�1; 39� 24). The area is thatinside the dashed 
ube on the right, where we have underlined the only point thatfalls inside. This query returns �2, and we add j � 1 to it to obtain 36.Using Lemma 9 with the above algorithms, we obtain the following result forthe transposition invariant 
ase.Theorem 16 Transposition invariant Levenshtein distan
e dtL(A;B) 
an be39




omputed in O(mn log log n) time and in O(mn) spa
e. The 
orrespond-ing sear
h problem 
an be solved in O(mn log logm) time and O(m2)spa
e. For the 
ase of ��limited gaps, dt;�L (A;B), the time requirements areO(mn log2 n log logm) and O(mn log2m log logm), and spa
e requirementsO(mn log2 n) and O(m2 log2m), respe
tively, for distan
e 
omputation and forsear
hing. The prepro
essing bounds in Lemma 10 need to be added to thesebounds.6.4 Range Sear
hing for Minima.We will now des
ribe the data stru
ture R of Lemma 15. Let S be a labeled�nite set of points in two-dimensional Eu
lidean spa
e. The size of S is n =jSj. By �labeled� we mean that there is a fun
tion ` : S ! R that gives alabel `(s) for ea
h point s 2 S. The minimum label range query problem isto retrieve the minimum label `(s) over points s 2 S that belong to somequery re
tangle [l; r℄ � [b; t℄. E�
ient solutions for this problem are given byGabow, Bentley, and Tarjan [19℄. We review these solutions here and givesome alternative (easier to des
ribe) solutions to keep our exposition as self-
ontained as possible.When the set S is stati
, the one-dimensional 
ase of the problem 
an be solvedas follows [19℄. Sort S in in
reasing order and 
onstru
t an array A[1 : : : n℄ ofthe labels in that order. Then 
onstru
t a Cartesian tree [33℄ on the arrayA, and prepro
ess the tree for least 
ommon an
estor queries (LCA). Rangeminimum queries 
an now be answered by two binary sear
hes on A to �ndthe �rst i and the last j entry inside the query, and a least 
ommon an
estorquery to �nd the minimum value among A[i℄; A[i + 1℄; : : : A[j℄ in O(1) time40



[21℄. See [4℄ for a more detailed des
ription of the 
onne
tion between rangeminimum queries and LCA.The two-dimensional version 
an then be solved by �rst 
onstru
ting a bal-an
ed binary tree with points in S as leaves and x-
oordinate as the sear
hkey (a
tually this 
an be seen as a range tree [6℄). Ea
h internal node v ofthe tree 
ontains a list of points in S (in order of y-
oordinate); the lists arede�ned re
ursively as follows. Node v 
ontains a subset of the points in the listof its parent su
h that the x-
oordinate of ea
h point is less than the parent'skey if v is the left 
hild, or su
h that the x-
oordinate is greater or equal tothe parent's key if v is the right 
hild. An array A like above is 
onstru
ted forea
h su
h list, and ea
h of them is prepro
essed to answer (dis
rete) minimumrange queries in O(1) time. The two-dimensional range query [l; r℄� [b; t℄ 
annow be answered as follows. Find ea
h node of the tree su
h that the asso
i-ated point list is totally inside the x-range [l; r℄, and whose parent's list is not.For ea
h su
h node make two binary sear
hes and a range minimum query to�nd the minimum value from the y-range [b; t℄. The minimum over all thesenodes is the minimum value from range [l; r℄� [b; t℄. The overall sear
h time isO(log2 n), sin
e there are at most O(logn) nodes whose lists must be queried,and ea
h binary sear
h takes at most O(logn) time. This 
an be further re-du
ed to O(logn) by using fra
tional 
as
ading (see e.g. [5℄); the arrays ofa parent and a 
hild 
an be linked su
h a way that if the �rst and the lastentries that belong to the query range in the parent array are known, then the
orresponding entries in the 
hild array 
an be found by following the linksfrom the parent array. This has the e�e
t that the binary sear
hes are onlyneeded in one node; in its subtree the entries are found by following the links.So far we have dis
ussed the stati
 
ase. We would need a semi-stati
 version,41



where the labels of the points 
an be updated. This 
ase 
an be handled byrepla
ing the above arrays with balan
ed binary trees; ea
h node of the pri-mary x-
oordinate sear
h tree 
ontains a se
ondary tree whi
h is the balan
edbinary tree of Lemma 12 with y-
oordinate as the key, and the label as thevalue. We 
an 
on
lude that updates and two dimensional range queries forminimum 
an be supported in O(log2 n) time in this stru
ture. It is also easyto see that the stru
ture 
an be 
onstru
ted in O(n logn) time (we 
an sortthe points in both x- and y-order, and then 
onstru
t ea
h binary tree in lineartime).What is left is to redu
e O(log2 n) to O(logn log log n). This improvementhardly 
an be a
hieved for the general 
ase where the query re
tangle is limitedin all dire
tions. However, we are interested in a query of the form [�1; l)�[�1; t) (this is 
alled orthant sear
hing [19℄). Consider the one-dimensional
ase [�1; l). We will show (following [19℄) that it is enough to use a priorityqueue to solve this problem. First, it is enough to store those points s whoselabel is the minimum in the range [�1; s℄. We keep these points (a
tually theirindi
es in the sequential order) in a queue Q and asso
iate the labels with thepriorities. When inserting a new point p, we 
an test whether its label is smallerthan the label of the point s = Q:prede
essor(p) that would pre
ede it in thequeue. If it is not, we do not insert the point. Otherwise we insert the point,and remove points Q:su

essor(p); Q:su

essor(Q:su

essor(p)); : : : until we�nd a point t whose label is smaller than the label of p. This guarantees thata range query [�1; l) 
an be answered by Q:prede
essor(l).These operations on a queue 
an be supported in O(log logn) time (amor-tized time for insert) using the priority queue of Van Emde Boas [31,32℄.Note that this O(log log n) bound requires that the inserted values are in the42



range [1 : : : n℄, whi
h is the 
ase here. Repla
ing the balan
ed binary tree ofLemma 12 with this priority queue, we have proven Lemma 15.The general 
ase of d > 2-dimensional orthant sear
hing for minimum 
an besolved in O(logd�1 n log logn) time and in O(n logd�1 n) spa
e, by 
onstru
tingthese range trees for higher dimensions re
ursively.
6.5 Episode Mat
hingFinally we look at the episode mat
hing problem and the dtD distan
e, whi
hhas a simple sparse dynami
 programming solution. The following lemma fordD is easy to prove.Lemma 17 The re
urren
e (5) 
an be repla
ed bydi;j = d(i� 1; j 0) + j � j 0 � 1; (9)where j 0 is the largest j 0 < j su
h that ai�1 = bj0, d0;0 = 0, and a0 = b0.Consider an algorithm that traverses the mat
h set M = f(i; j) j ai = bjgin the 
olumn-by-
olumn order. We will maintain for ea
h row a value 
(i)that gives the largest j 0 < j su
h that ai = bj0 , and a value d(i) = di;j0. First,initialize these values to1, ex
ept that 
(0) = 0 and d(0) = 0. Let (i; j) 2Mbe the 
urrent pair whose value we need to evaluate. Then d = di;j = d(i�1)+j�
(i�1)�1. We 
an now update the values of the 
urrent row: 
(i) = j andd(i) = d. One 
an easily see that the above re
urren
ies 
an be implementedusing dynami
 programming in O(r) time, r = jM j (prepro
essing time for
onstru
ting M needs to be added to this).43



The above algorithm generalizes to the sear
h problem and to the episodemat
hing problem by impli
itly initializing values 
(0) = j � 1 and d(0) = 0for the values in the �rst row.A similar algorithm 
an be derived from the re
urren
e (6), whi
h also gives thestart points of the o

urren
es without needing to ba
ktra
k the 
omputationas when (9) is used.Also the problem of ��limited gaps 
an be handled easily; we simply avoidupdating d(i) as de�ned when j�
(i�1)�1 > �. In this 
ase we set d(i) =1.Theorem 18 The episode mat
hing problem 
an be solved in O(j�j+m+n+r)time in integer alphabet and O((m+n) log j�Aj+r) time in real alphabet (bothin O(m+n+ r) spa
e). The transposition invariant episode mat
hing problem
an be solved in O(mn) time. The same bound applies in the 
ase of ��limitedgaps. The prepro
essing bounds in Lemma 10 need to be added to the boundsfor the transposition invariant 
ases.6.6 Generalizations to dt;Æ Distan
esIf we allow a toleran
e Æ > 0 between mat
hed 
hara
ters then Pt2T rÆt =(1 + 2bÆ
)mn, where rÆt is the number of mat
hed 
hara
ters between A + tand B (in integer alphabet), and T = fbj�ai�Æg[fbj�ai+Æg. As in the proofof Lemma 10, it is easy to see that T is the relevant set of transpositions. There-fore we get 
omplexities O(Æmn log log(Æn)), O(Æmn log log(Æn)), and O(Æmn)for dt;ÆID,dt;ÆL , and dt;ÆD , respe
tively. These �nally redu
e to O(Æmn log logn),O(Æmn log log n), and O(Æmn), be
ause in the worst 
ase every 
hara
ter maymat
h every other, and in this 
ase we would pro
ess m2n2 pairs of 
hara
-44



ters, and still log(m2n2) = O(logn). In real alphabet the result still holdsprovided we repla
e Æ by Æ=�, where � = minfjai � ajj j 1 � i < j � m; ai 6=ajg [ fjbi � bjj j 1 � i < j � n; bi 6= bjg.
7 Con
lusions and Future WorkWe have studied two te
hniques for solving transposition invariant stringmat
hing problems. The �rst one was to identify the optimal transpositionand 
ompute the distan
e in that transposition. This identi�
ation was shownto be e�
iently 
omputable for several distan
e measures where the i-th 
har-a
ter of one string is 
ompared only against the i-th 
hara
ter of the other.The se
ond te
hnique, for more general �edit distan
e� measures, was a morebrute for
e approa
h sin
e all transpositions were 
onsidered. However, sin
emost of the transpositions produ
e sparse instan
es for the edit distan
e ma-trix, spe
ialized algorithms 
ould be used to solve these sparse instan
es e�-
iently. These kind of sparse dynami
 programming algorithms already existedin the literature; we gave new sparse dynami
 algorithms for episode mat
h-ing and for mat
hing with ��limited gaps in the LCS and in the unit 
ostLevenshtein distan
e. The problem of mat
hing with ��limited gaps demon-strated the 
onne
tion between sparse dynami
 programming and the problemof semi-stati
 range sear
hing for minima.An interesting remaining question is whether the log fa
tors 
ould be avoidedto a
hieve O(mn) for transposition invariant edit distan
e. For episode mat
h-ing we a
hieved the O(mn) bound, ex
ept that the prepro
essing 
an (in veryun
ommon situations on real alphabets) take O(mn logn) time.45



Also, we are 
on�dent that the sear
h times for the easier measures that westudied 
an be improved at least in the average 
ase. For the edit distan
emeasures, algorithms that depend on the minimum (transposition invariant)distan
e 
an be derived. For example, an algorithm that pro
esses only diago-nal areas of the dynami
 programming matrix [30℄ 
an be generalized to givebounds like O(jTjdn), where T is the set of transpositions and d = dt�(A;B).This algorithm 
an be 
ombined with the sparse evaluation to get an algorithmthat is fast both in pra
ti
e and in the worst 
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