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Abstract. Let G(V, A) be a connected graph with a nonnegative cost function d : A — RT. Let
da(u,v) be the cost of the cheapest path between u,v € V. A t-spanner of G is a subgraph G'(V, E),
E C A, such that V u,v € V, dg(u,v) < t-da(u,v), t > 1. We focus on the metric space context,
which means that A = V x V, d is a metric, and ¢t < 2. Several algorithms to build ¢-spanners are
known, but they do not apply well to our case. We present four practical algorithms to build ¢-spanners
with empirical O(n*??) time cost and O(n'**) edges. These algorithms are useful on general graphs
as well.

1 Introduction

Let G be a connected graph G(V, A) with a nonnegative cost function d(e) assigned to its edges ¢ € A.
The shortest path among every pair of vertices u,v € V is the one minimizing the sum of the cost of the
edges traversed. This can be computed with Floyd’s algorithm or with |V iterations of Dijkstra’s algorithm
considering each vertex as the origin node [16]. A ¢-spanner it is a subgraph G'(V, E), with E C A, which
permits to compute paths with stretch t, that is, ensuring that Yu,v € V,de (u,v) < t-dg(u,v) [12]. We call
this the ¢-condition.

In this work we are interested in using ¢-spanners as tools for searching metric spaces [5]. A metric space
is a set of objects X and a distance function d defined among objects, which satisfies the metric properties
(positiveness, reflexivity, symmetry, triangle inequality). Given a finite subset U C X, of size n, the goal is
to build a data structure over U such that later, given a query object ¢ € X, one can find the elements of U
close to ¢ with as few distance computations as possible.

Omne of the best existing algorithms to search metric spaces is AESA [15]. AESA precomputes and stores
the matrix of n(n — 1)/2 distances among elements of U. This huge space requirement makes it unsuitable
for most applications, however.

This matrix can be seen as a complete graph G(V, A) where the set of vertices V = U corresponds to
the objects of the metric space, and the set of edges A corresponds to the n(n —1)/2 distances among these
objects. A t-spanner G’ of G would represent all these distances using a small number of edges E, E C A,
and still would be able to approximate all the distances with a maximum error ¢, that is:

d(u,v) < dgi(u,v) < t-d(u,v) (1)

In most metric spaces the distance histogram follows a distribution that becomes concentrated as the
dimension increases [5]. This means that in practice we are interested in the range t € (1, 2].

We pursue this line in [11], where we focus on the search process but not on ¢-spanner construction.
Hence our interest in this paper is in building ¢-spanners over metric spaces which work well in practice. Few
algorithms exist apart from the basic O(mn?) technique (m = |E|), which inserts the edges needed one by
one and recomputes all the shortest paths to every edge inserted.

Four t-spanner construction algorithms are presented in this paper, with the goals of decreasing CPU
and memory cost and of producing ¢-spanners of good quality, i.e., with few edges. Our four algorithms are:
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. An optimized basic algorithm, where we limit the propagation of an edge insertions.

2. A massive edge insertion algorithm, where we amortize the cost of recomputing distances among many
edge insertion.

. An incremental algorithm, where nodes are added one by one to a correct ¢-spanner.

4. A recursive algorithm applying a divide and conquer technique.
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Table 1 shows the complexities obtained. We obtain empirical O(n time cost and O(n edges.
This shows that good quality ¢-spanners can be built in reasonable time (just the minimum spanning tree
computation needs O(n?) time). We take no particular advantage of the metric properties of the edge weights,
so our algorithms can be used on general graphs too.

Basic Basic |Massive edge| Incremental | Recursive

optimized| insertion
CPU time O(mn?)| O(mk?) |O(nmlogm)|O(nmlogm)|O(nmlogm)
Memory Oo®*) | 0O O(m) O(m) O(m)

Distance evaluations| O(n?) | O(n?) O(nm) O(n?) O(n?)

Table 1. t-Spanner algorithm complexities comparison. The value k refers to the number of nodes that have to be
checked when updating distances due to a new inserted edge.

2 Previous Work

Several studies on general graph t-spanners have been undertaken [7,12, 13]. Most of them resort to the naive
O(mn?) time construction approach detailed in the next section, where n = |V| and m = |E| refer to the

1+0(=7) edges on

resulting ¢-spanner. It was shown in [1,2] that this technique produces spanners with n
general graphs of n nodes. This result, however, is not interesting for ¢ < 2.

More sophisticated algorithms have been proposed in [6], producing t-spanners with O (n' T (2+=)(1+1og, m)/t)
edges in time O(mn(?Te)(1 410, M)/t where in this case m refers to the original graph. In a metric space
m = O(n?), which means that we need time O(n’) at least. Additionally, the algorithms in [6] work for
t € [2,logn], unsuitable for our application. Parallel algorithms have been pursued in [10], but they do not
give new sequential algorithms.

As it can be seen, none of these results is useful for our problem.

As it regards to Euclidean spanners, i.e., the subclass of metric spanners where the objects are points in
a D-dimensional space with Euclidean distance, much better results exist [7, 1,2, 9,8, 14], showing that one
can build #-spanners with O(n) edges in O(nlog” ' n) time. These results, unfortunately, make heavy use
of coordinate information and cannot be extended to general metric spaces.

Other related results refer to probabilistic approximations of metric spaces using tree metrics [3,4]. The
idea is to build a set of trees such that their union makes up a t-spanner with high probability. However, the
t values are of the form O(lognloglogn).

Hence the need to find algorithms that allow building appropriate ¢-spanners for metric spaces, that is,
with ¢ < 2, for complete graphs, and taking advantage of the triangle inequality.

3 Basic t-Spanner Construction Algorithm

The intuitive idea to solve this problem is iterative. We begin with an initial -spanner that contains all the
vertices and no edges, and calculate the distance estimations among all vertex pairs. These are all infinite



at step 0, except for the distances between a node and itself (d(u,u) = 0). The edges are then inserted until
all the distance estimations fulfill the ¢-condition.

The edges are considered in ascending cost order, so we start by sorting them. Using smaller-cost edges
first is in agreement with the geometric idea of inserting edges between near neighbors and making up paths
from low cost edges in order to use few edges overall.

Hence the algorithm uses two matrices. The first, real, contains the true distance between all the objects,
and the second, estim, contains the distance estimations obtained with the #-spanner under construction.
The t-spanner is stored in an adjacency list.

The insertion criterion is that an edge is added to the set E only when its current estimation does not
satisfy the t-condition. After inserting the edge, it is necessary to update all the distance estimations. The
update mechanism is similar to the distance calculation mechanism of Floyd’s algorithm, but considering
that edges, not nodes, are inserted into the set. Figure 1 depicts the basic t-spanner construction algorithm.

t-SpannerQ (Stretch t, Vertices U)

real < real distance matrix
estim < estimated distance matrix
t-Spanner ¢ {-spanner edge structure // initially ()

for e = (ey,€y) € real chosen in increasing cost order do
if estim(e) > t-real(e) // e is not well f-estimated
t-Spanner < t-Spanner U {e}
for v;,v; €U
d1 « estim(vi,eq) + estim(vj, €y)
da < estim(vj, ey) + estim(vs, ey)
estim(v;,vj) < min(estim(v;,v;), min(di,d2)+real(e))

Fig. 1. Basic t-spanner construction algorithmi (¢-Spanner 0).

This algorithm makes O(n?) distance evaluations, like AESA [15]; O(mn?) CPU time (recall that n = |V|
and m = |E|); and O(n* + m) = O(n?) memory. Its main deficiencies are excessive edge insertion cost and
too high memory requirements.

4 Optimized Basic Algorithm

Like the basic algorithm (section 3), this algorithm considers the use of real and estirm matrices, choosing
the edges in increasing weight order. The optimization focuses on the distance estimation update mechanism.

The main idea is to control the propagation of the computation, that is, only updating the distance
estimations that are affected by the insertion of a new edge. Figure 2 shows the insertion of a new edge. In
the first update we must modify only the edge that was inserted, between nodes a; and as. The computation
then propagates to the neighbors of the a; nodes, namely the nodes {b, b, b3}; then to the nodes {c1,c2}
and finally d;. The propagation stops when a node does not improve its current estimation or when it does
not have further neighbors.

In order to control the propagation, the algorithm uses two sets, ok and check.

— ok: The nodes that already have updated their shortest path estimations due to the inserted edge.
— check: The adjacency of ok, check = adyacency(ok) — ok = {u € U,3v € ok, (u,v) € E} — ok. These are
the nodes that we still need to update.



Fig. 2. Propagation of distance estimations.

Note that it is necessary to propagate the computation only to the nodes that improve their estimation
to a; or as. The complete algorithm reviews all the edges of the graph. For each edge, it iterates until no
further propagation is necessary. Figure 3 depicts the optimized basic algorithm.

t-Spannerl (Stretch t, Vertices U)

real < real distance matrix
estim ¢ estimated distance matrix
t-Spanner < t-spanner edge structure // initially ()

for e = (eu,€y) € real chosen in increasing cost order do
if estim(e) >t -real(e) // e is not well t-estimated
t-Spanner <« t-Spanner U {e}
ok +— {eu,€v}
check < adjacency(ok) — ok
for c € check
if ((estim(c,e,) + real(e) < estim(c,e,) or (estim(c,e,) + real(e) < estim(c,ey))
for o € ok
dy + estim(c, ey) + estim(o, ey)
da + estim(c, ey) + estim(o, ey)
estim(c,0) < min (estim(c,0), min(di,d2) +real(e))
check < check U (adjacency(c) - ok)
ok + ok U {c}
check < check — {c}

Fig. 3. Optimized basic algorithm (¢-Spannerl).

This algorithm takes O(n?) distances evaluations. In terms of CPU time it takes O(mk?), where k is
the number of neighbors to check when inserting an edge. In the worst case this becomes O(mn?) just like
the basic algorithm, but the average is much better. From the point of view of the memory it still takes
O(n? + m) = O(n?). This algorithm reduces the CPU time used, but even so this is still very high, and the
memory requirements are still too high.

A good feature of this algorithm is that it produces good-quality spanners (few edges), just like the basic
algorithm. So we have used its results to predict the expected number of edges per node in order to speed
up other algorithms that rely on massive edge insertion. We call E;_gpanner1(n, d, 1) the expected number of



edges in a metric space of n objects, distance function d, and stretch ¢. In section 8 we show some estimations
obtained, see Eq. (2).

5 Massive Edges Insertion Algorithm

This algorithm tries to reduce both the CPU processing time and memory requirements. To reduce the CPU
time, the algorithm updates the distance estimations only after performing many edge insertions, using an
O(mlogn)-time Dijkstra’s algorithm to update distances. To reduce the memory requirement, it computes
the distances between objects on the fly.

Since we insert edges less carefully than before, the resulting spanner is necessarily of lower quality. Our
effort is in minimizing this effect.

The algorithm has three stages. In the first one, it builds the ¢-spanner backbone by inserting whole
minimum spanning trees (MSTs), and determines the global wrongly ¢-estimated edge list (pending); in the
second one, it refines the ¢-spanner by adding more edges to improve the wrongly ¢-estimated edges; and in
the third one, it inserts all the remaining “hard” edges.

This algorithm uses two heuristic values:

H;, determines the expected number of edges per node, and it is obtained from the ¢-Spannerl edge model:
Hy = |Ei_spanner1(n,d, t)|/n. With H; we will define thresholds to determine whether or not to insert
the remaining edges (those still wrongly t-estimated) of the current node.

H, is used to determine the pending list size and will give a criterion to determine when to insert an
additional MST. The maximum pending list size is Hy = 1.2-|E|, where E refers to the ¢-spanner under
construction.

The algorithm stages are:

1. We insert successive MSTs to the ¢-spanner. The first MST follows the basics Prim algorithm [16], but

the next MSTs are built using Prim over the edges that have not been inserted yet.
We traverse the nodes sequentially, building the list of pending edges (wrongly t-estimated). At the same
time, we insert successive MSTs and remove pending edges accordingly. Additionally, when the current
node has no more than H; /2 pending edges, we just insert them. The insertion of MSTs continues as
long as there are more than Hs pending edges (note that H, depends on the current ¢-spanner size |E|).
This stage continues until we review all the nodes. The output is the t-spanner backbone (t-Spanner)
and the gobal list of pending edges (pending).

2. In the second stage we reduce the pending list. For this sake, we traverse the list of nodes with pending
edges (pendingN odes), from more to less pending edges. For each such node, we check which edges have
to improve their t-estimation and which do not (edges originally in the pending list may have become
well t-estimated along the process). From the still wrongly t-estimated edges, we insert the H; /4 smaller
cost edges and proceed to the next node.
This allows us to review in the first place the nodes that require more attention, without concentrating
all the efforts in the same node.
The process considers two special cases. The first one is that we have inserted more than n edges, in
which case we regenerate and re-sort the pendingNodes list and restart the process. The second one is
that the pending list of the current node is so small that we simply insert its elements.
The output condition of the second stage is that the pending list size is smaller than n/2.

3. We insert the pending list to the t-spanner.

Figure 4 depicts the massive edges insertion algorithm. This algorithm takes O(nm) distance evaluations,
O(nmlogm) CPU time (since we run Dijkstra’s algorithm once per node), and O(n + m) = O(m) memory.
It is easy to see that the space requirement is O(m): the pending list is never larger than O(m) because at



each iteration of stage 1 it grows at most by n, and if it becomes larger than 1.2-m we take out n edges from
it by adding a new MST. The CPU time comes from running Dijkstra’s algorithm once per node at stage
1. At stage 2 we insert edges in groups of O(m/n), running Dijkstra’s algorithm after each insertion, until
we have inserted |pending| —n/2 = O(m) edges overall. This accounts for other n times we run Dijkstra’s
algorithm. Hence the O(nmlogm) complexity.

This algorithm reduces both CPU time and memory requirements, but the amount of distance evaluations
is very high (O(nm) > O(n?)).

t-Spanner2 (Stretch t, Vertices U)

t-Spanner < l-spanner edge structure // initially has the first MST
pending < ) // global pending egde list
H1 — ‘Et—Spannerl(n7d7t)| / n

Stage 1: generating t-Spanner and pending
for uelU
if |pending| > 1.2 -|t-Spanner| // using H>
t-Spanner < t-Spanner U MST // built over the edges not yet inserted
distances < Dijkstra(t-Spanner, wu) // distances(v) = di-spanner(u,v)
for veU
if distance(v) <t-d(u,v) then pending < pending — {(u,v)}
else pending « pending U {(u,v)}
if |pending(u)| < H1/2
t-Spanner < t-Spanner U pending(u), pending < pending — pending(u)

Stage 2: Reducing pending
while |pending| > n/2
pendingNodes < nodes sorted in decreasing number of pending edges
for u € pendingNodes
if more than n edges have been inserted break // special case 1
if |pending(u)| < H1/4 // special case 2
t-Spanner < t-Spanner U pending(u), pending < pending — pending(u)
else
distances < Dijkstra(t-Spanner, u)
for v € pending(u)
if distances(v) < t-d(u,v) then pending + pending — {(u,v)}
smallest < H1/4 smallest edges € pending(u)
t-Spanner < t-Spanner U smallest, pending ¢ pending — smallest

Stage 3: t-Spanner ¢ t-Spanner U pending

Fig. 4. Massive edges insertion algorithm ({-Spanner 2), pending(u) denotes {e € pending, v, e = (u,v)}.

6 Incremental Node Insertion Algorithm

This version reduces the amount of distance evaluations to just n(n—1)/2, while preserving the amortization
update cost idea.

This algorithm, unlike the previous ones, makes a local analysis of nodes and edges. We insert the nodes
one by one, not the edges. The invariant is that for nodes 1...7 — 1 we have a well formed ¢-spanner, and



we want to insert the i-th node to the growing t-spanner. Since the insertion process only locally analyzes
the edge set, the resulting t-spanner is suboptimal.

For each new node 7, the algorithm makes two operations: the first is to connect the node to the growing
t-spanner using the cheapest edge (towards a node < i); the second one is to verify that the distance
estimations satisfy the t-condition, adding some edges to node 7 until the invariant is restored. We repeat
this process until we insert the whole node set.

We also use the H; heuristic, with the difference that we recompute H; at every iteration (since the
t-spanner size changes). We fixed that the number of edges to insert at a time should be 6 = H; /(5 - ).

For the distance verification we use an incremental Dijkstra’s algorithm with limited propagation, that is,
the first time, Dijkstra’s algorithm takes an array with precomputed distances initialized at ¢ - d(u;, u;) + &,
with € > 0, j € [1,7 — 1]. For the next iterations, Dijkstra’s algorithm reuses the previously computed array.
This is used to limit the propagation of the recomputations: a node adds its edges to the process only if its
estimation improves.

Figure 5 depicts the incremental node insertion algorithm. This algorithm takes O(n?) distance evalu-
ations, O(nmlogm) CPU time, and O(n + m) = O(m) memory. The CPU time comes from the fact that
every node runs Dijkstra’s algorithm n/d = O(1) times.

t-Spanner3 (Stretch t, Vertices U)
t-Spanner ¢ {-spanner edge structure // initially ()

for i € [1,n]
0 < |Ft—spanner1(i,d,t)| / (i-5) // incremental H;
k « argmin;c[; ;_11{d(node;, node;)}
t-Spanner ¢« t-Spanner U {(node;,noder)} // inserting the cheapest edge
distances < {(nodej,t - d(node;, node;) +€),j € [1,i — 1]} // defining the propagation limit
while node; has wrongly (-estimated edges
distances < Dijkstra(t-Spanner, wu, distances)// incremental Dijkstra
pending; <— {(node;,node;),j < i,distance(node;) > t - d(node;, node;)}
smallest < § cheapest edges in pending;
t-Spanner < t-Spanner U smallest

Fig. 5. Incremental node insertion algorithm (¢-Spanner 3).

7 Recursive Algorithm

The incremental algorithm is a good approach to construct ¢-spanners, but it does not consider spatial
proximity (or remoteness) among the objects. A way to solve this is that the set in which the t-spanner is
incrementally built is made up of near objects. Following this principle, we present a solution that recursively
divides the object set into two compact subsets, builds sub-t-spanners in the subsets, and then merges them.

For the initial set division we take two far away objects, p; and po, that we call representatives, and then
generate two subsets: objects nearer to p; and nearer to py. Figure 6 (left) shows the concept graphically.
For the recursive divisions we reuse the representative as one of the two objects, and the element farthest to
it as the other. The recursion finishes when we have less than 3 objects.

The merge step also takes into account the spatial proximity among the objects. When we merge the
sub-t-spanners, we have two node subsets Vi and Vs, where |Vi| > |V| (otherwise we swap the subsets).
Then, in the sub-t-spanner represented by ps (stsps), we choose the object closest to p; (u), and insert it into
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Fig. 6. On the left, we select p; and p2, and then divide the set. On the right, the merge step takes the objects
according to their distances towards p;.

the sub-t-spanner represented by p; (stspy) verifying that all the distances towards V; are well t-estimated.
Note that this is equivalent to consider that we use the incremental algorithm, where we insert u into the
growing t-spanner stsp;. We continue with the second closest and repeat the procedure until all the stsp,
nodes are inserted into stsp;. Figure 6 (right) illustrates. Note that the edges already present in stsps are
conserved.

This algorithm also uses an incremental Dijkstra’s algorithm with limited propagation, but this time we
are only interested in limiting the propagation towards stsp; nodes (because we know that towards stsps
we already satisfy the ¢-condition). Hence, Dijkstra’s algorithm takes an array with precomputed distances
initialized at ¢ - d(u;,u;) + ¢ for (u;,u;) € Vo x Vi, and oo for (u;,u;) € Vo x Vs, where ¢ is a small positive
constant. For the next iterations, Dijkstra’s algorithm reuses the previously computed array.

Figure 7 depicts the recursive algorithm and the auxiliary functions used to build and merge sub-t¢-
spanners. This algorithm takes O(n?) distance evaluations, O(nmlogm) CPU time, and O(n +m) = O(m)
memory. The cost of dividing the sets does not affect that of the underlying incremental construction.

8 Experimental Results

We have tested our algorithms on a synthetic set of random points in a k-dimensional space. However, we
have not used the fact that the space has coordinates, treating the points as abstract objects in an unknown
metric space. This choice permits us to show how the algorithms perform as a function of the dimension. In
the final version we will include experiments on other metric spaces such as strings using edit distance.

We are interested in measuring the CPU time needed and the amount of edges generated by each al-
gorithm. Figures 8 and 9 show a comparison among the four algorithms. As it can be seen, the optimized
basic algorithm is impractically costly, but it produces the best ¢-spanners. Depending on the dimension,
the next best-quality spanners are produced by the recursive algorithm (low dimensions) or by the massive
edge insertion algorithm (high dimensions). Note, however, that the differences in spanner quality become
less important for higher dimensions.

It is interesting to notice that, even in dimension 28 and for ¢t = 1.8, the number of edges in the spanners
is still less than 10% of the complete graph. Fitting the experimental results of t-spannerl we obtain the
following empirical model, which we use for the H; heuristic:

| B Spanner 1(n,dim, )] = 0.036 dim#T 37w 117 (2)

We show now more massive tests excluding ¢-spannerl, which is too costly. Figures 10, 11 and 12 give
the results. The conclusions are quite similar, except that for large n it is not always clear which is faster
between the incremental and the recursive algorithms.

Table 2 shows our least squares fittings on the data. As it can be seen, for dim € [4,28] and ¢ € [1.3,2.0],
all our algorithms except the basic optimized algorithm take from O(n?!®) to O(n?:3?) time and produce t-
spanners with O(n!12) to O(n!-!*) edges. The basic optimized algorithm, on the other hand, is O(n?-1?) time,



t-Spanner4 (Stretch t, Vertices U)

t-Spanner ¢ {-spanner edge structure // initially ()

(p1, p2) <+ two distant objects

(Vi, Vo) 4 U divided according to distances towards (pi, p2)
stsp1 + makeSubtSpanner(p;,V:1), stsp2 < makeSubtSpanner(p>,V?)
t-Spanner <{— mergeSubtSpanner (stspi, stsp2)

makeSubtSpanner(representative p, Vertices V)
if |V| =1 return {-spanner (nodes = {p}, edges = ()
else if |V| =2 return t-spanner (nodes = V = {vi,v2}, edges = {(vi,v2)})
else
Premote < argmax,cVv {d(p77))}
(V, Viemote) ¢ V divided according to distances towards (p, premote)
stspp < makeSubtSpanner(p,V), stspremote ¢ makeSubtSpanner (premote » Viemote)
return mergeSubtSpanner (stspp, stsPremote)

mergeSubtSpanner ({-Spanner stspi, (-Spanner stsps)
if |nodes(stsp1)| < |nodes(stsp2)| stspi < stsps
nodes < nodes(stsp1) U nodes(stspz2)
edges <« edges(stsp1) U edges(stsp2)
0 < |Et—spanner1(|nodes|,d,t)| / (i-5) // incremental H;
p1 +— representative(stsp;)
for u €nodes(stsp2) in increasing order of d(u,p1)
for v € nodes(stsp;) do distances(v) < t-d(u,v) + ¢ // defining the propagation limit towards stsp;
for v €nodes(stspz) do distances(v) + oo
while u has wrongly (-estimated edges towards sisp:
distances < Dijkstra(edges, wu, distances)// incremental Dijkstra
pending, — {(u,v),v € stspy, distance(v) >t - d(u,v)}
smallest < § cheapest edges € pending,
edges < edges U smallest
return t-Spanner (nodes = nodes, edges = edges)

Fig. 7. Recursive algorithm (¢-Spanner 4).

and it corresponds to the currently most widely used technique. This shows that our algorithms represent
in practice a giant improvement over the current state of the art.

9 Conclusions

We have presented several algorithms for ¢-spanner construction when the underlying graph is the complete
graph representing distances in a metric space. This is motivated by our recent research on searching metric
spaces and shows that t-spanners are well suited as data structures for this problem. For this sake, we need
practical construction algorithms for 1 < ¢ < 2. To the best of our knowledge, no existing technique works
well under this scenario (complete graph, metric distances, small ¢, practical construction time). However,
our algorithms are also well suited to general graphs.

Our focus has been on practical algorithms. We have shown that it is possible to build good quality t-
spanners in reasonable time. For example, where the metric space turns out to be the Euclidean unitary cube
in d dimensions, for 4 < d < 28, and 1.4 <t < 2.0 (which is quite stringent compared to the literature), we
have built ¢-spanners with O(n'*?) edges in O(n?-?*) time. Note that just computing the minimum spanning




CPU time for n = 2000 nodes Edges generated for n = 2000 nodes
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Fig. 8. On the left, construction time versus dimension. On the right, number of edges generated versus dimension.
The number of elements is n = 1000. {-Spannerl reaches 2,500 seconds in dim = 28.

CPU time in dimension dim =5 Edges generated in dimension dim =5
100 T T 45 T T T
1.4- Spanner 1 — 1.4-Spanner 1 ——
1.4-Spanner 2 —=— 40 - 1.4-Spanner2 ——
1.4-Spanner 3 —x— 1.4-Spanner 3 —*—
80 1.4-Spanner 4 —s— - 35| 1.4-Spanner4 —e—
1.8-Spanner 1 —=— 1.8-Spanner 1 —=—
1.8-Spanner 2 —e— 30 I 1.8-Spanner 2 —e—
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Fig. 9. On the left, construction time versus number of nodes n. On the right, number of edges generated versus n.
The dimension is dim = 5. t-Spanner] reaches 1,250 seconds for n = 2000 and ¢ = 1.4.

tree requires O(n?) time. Compared to the existing algorithms, our contribution represents in practice a
giant improvement over the current state of the art.

It is possible to add and remove elements from the spanner in reasonable time while preserving its quality.
The incremental algorithm permits adding new elements. Remotion of a node can be arranged by adding a
clique among its neighbors and periodically reconstructing the spanner with the recursive algorithm.

Future work involves using t-spanners where ¢ depends on the actual distance between the nodes. Ba-
sically, we are more interested in approximating well short rather than long distances. Another trend is on
probabilistic ¢-spanners, where distances are well t-estimated with high probability.
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Basic |Massive edge|Incremental|Recursive
optimized| insertion
CPU time| O(n*°) | O(n*'®) om**) [o(n**)

Edges O(nl.lﬁ) O(n1.12) O(n1.14) O(n1.13)

Table 2. Empirical complexities of our algorithms. For simplicity we are hiding the dependence with the dimension
and ¢.
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