
Indexing Text using the Ziv-Lempel TrieGonzalo Navarro ?Abstract. Let a text of u characters over an alphabet of size � be compressible to n symbolsby the LZ78 or LZW algorithm. We show that it is possible to build a data structure based onthe Ziv-Lempel trie that takes 4n log2 n(1 + o(1)) bits of space and reports the R occurrences of apattern of length m in worst case time O(m2 log(m�) + (m+ R) log n).1 IntroductionModern text databases have to face two opposed goals. On one hand, they have to providefast access to the text. On the other, they have to use as little space as possible. The goalsare opposed because, in order to provide fast access, an index has to be built on the text. Anindex is a data structure built on the text and stored in the database, hence increasing the spacerequirement. In recent years there has been much research on compressed text databases, focusingon techniques to represent the text and the index in succint form, yet permitting e�cient textsearching.Let our text T1:::u be a sequence of characters over an alphabet � of size �, and let thesearch pattern P1:::m be another (short) sequence over �. Then the text search problem consistsin �nding all the occurrences of P in T .Despite that there has been some work on succint inverted indexes for natural languagefor a while [22,19], until a short time ago it was believed that any general index for stringmatching would need
(u) space. In practice, the smaller indexes available were the su�xarrays [15], requiring u log2 u bits to index a text of u characters, which required u log2 � bits tobe represented, so the index is in practice larger than the text (typically 4 times the text size).In the last decade, several attempts to reduce the space of the su�x trees [2] or arrayshave been made by K�arkk�ainen and Ukkonen [9, 12], Kurtz [13] and M�akinen [14], obtainingreasonable improvements, albeit no spectacular ones (at best 9 times the text size). Moreover,they have concentrated on the space requirement of the data structure only, needing the textseparately available.Grossi and Vitter [7] presented a su�x array compression method for binary texts,which needed O(u) bits and was able to report all the R occurrences of P in T inO � mlogu + (R+ 1) log" u� time. However, they need the text apart from the index in order toanswer queries.Following this line, Sadakane [20] presented a su�x array implementation for general texts(not only binary) that requires u �1"H0 + 8+ 3 log2H0� (1 + o(1)) + � log2 � bits, where H0 isthe zero-order entropy of the text. This index can search in time O(m logu + R log" u) andcontains enough information to reproduce the text: any piece of text of length L is obtained inO(L + log" u) time. This means that the index replaces the text, which can hence be deleted.This is an opportunistic scheme, i.e., the index takes less space if the text is compressible. Yetthere is a minimum of 8u bits of space which has to be paid independently of the entropy of thetext.Ferragina and Manzini [5] presented a di�erent approach to compress the su�x array basedon the Burrows-Wheeler transform and block sorting. They need 5uHk + O �u log logu+� log�logu �bits and can answer queries in O(m + R log" u) time, where Hk is the k-th order entropy andthe formula is valid for any constant k. This scheme is also opportunistic. However, there is alarge constant � log� involved in the sublinear part which does not decrease with the entropy.? Dept. of Computer Science, Univ. of Chile. Blanco Encalada 2120, Santiago, Chile. gnavarro@dcc.uchile.cl.

(In a real implementation [6] they removed this constant at the price of a not guaranteed searchtime.)However, there are older attempts to produce succint indexes, by K�arkk�ainen and Ukkonen[11,10]. Their main idea is to use a su�x tree that indexes only the beginnings of the blocksproduced by a Ziv-Lempel compression (see next section if not familiar with Ziv-Lempel). Thisis the only index we are aware of which is based on this type of compression. In [10] they obtaina range of space-time trade-o�s. The smallest indexes need O �u �log� + 1"�� bits, i.e., the samespace of the original text, and are able to answer queries in O � log�logum2 +m logu+ 1"R log" u�time. Note, however, that this index is not opportunistic, as it takes space proportional to thetext, and indeed needs the text besides the data of the index.In this paper we propose a new index on these lines. Instead of using a generic Ziv-Lempelalgorithm, we stick to the LZ78/LZW format and its speci�c properties. We do not build asu�x tree on the strings produced by the LZ78 algorithm. Rather, we use the very same LZ78trie that is produced during compression, plus other related structures. We borrow some ideasfrom K�arkk�ainen and Ukkonen's work, but in our case we have to face additional complicationsbecause the LZ78 trie has less information than the su�x tree of the blocks. As a result, ourindex is smaller but has a higher search time. If we call n the number of blocks in the compressedtext, then our index takes 4n log2 n(1+o(1)) bits of space and answers queries in O(m2 log(m�)+(m+R) logn). It is well known that Ziv-Lempel compression asymptotically approaches the trueentropy H of the text [3]. Since the compressed text needs at least n log2 n bits of storage, wehave that our index is opportunistic, taking at most 4uH bits. There are no large constantsinvolved in the sublinear part.This representation, moreover, contains the information to reproduce the text. We can re-produce a text context of length L around an occurrence found (and in fact any sequence ofblocks) in O(L log�) time, or obtain the whole text in time O(u log�). The index can be built inO(u log�) time. Finally, the time can be reduced to O(m2 log(m�)+m logn+R log" n) providedwe pay O �1"n logn� space.2 Ziv-Lempel CompressionThe general idea of Ziv-Lempel compression is to replace substrings in the text by a pointerto a previous occurrence of them. If the pointer takes less space than the string it is replacing,compression is obtained. Di�erent variants over this type of compression exist, see for example[3]. We are particularly interested in the LZ78/LZW format, which we describe in depth.The Ziv-Lempel compression algorithm of 1978 (usually named LZ78 [23]) is based on adictionary of blocks, in which we add every new block computed. At the beginning of thecompression, the dictionary contains a single block b0 of length 0. The current step of thecompression is as follows: if we assume that a pre�x T1:::j of T has been already compressed ina sequence of blocks Z = b1 : : : br, all them in the dictionary, then we look for the longest pre�xof the rest of the text Tj+1:::u which is a block of the dictionary. Once we found this block, saybs of length `s, we construct a new block br+1 = (s; Tj+`s+1), we write the pair at the end ofthe compressed �le Z, i.e Z = b1 : : : brbr+1, and we add the block to the dictionary. It is easy tosee that this dictionary is pre�x-closed (i.e. any pre�x of an element is also an element of thedictionary) and a natural way to represent it is a trie.We give as an example the compression of the word ananas in Figure 1. The �rst block is(0; a), and next (0; n). When we read the next a, a is already the block 1 in the dictionary, butan is not in the dictionary. So we create a third block (1; n). We then read the next a, a isalready the block 1 in the dictionary, but as does not appear. So we create a new block (1; s).The compression algorithm is O(u) time in the worst case and e�cient in practice if thedictionary is stored as a trie, which allows rapid searching of the new text pre�x (for each

0

1

a

2

n

0

1

a

2

n

n

3

0

1

a

2

n

n

3

s

4

1

a

0

a

(0,a)

Prefix encoded

Dictionary

Compressed file

an

(0,a)(0,n)

anan

(0,a)(0,n)(1,n) (0,a)(0,n)(1,n)(1,s)

ananas

Fig. 1. Compression of the word ananas with the algorithm LZ78.character of T we move once in the trie). The decompression needs to build the same dictionary(the pair that de�nes the block r is read at the r-th step of the algorithm).Many variations on LZ78 exist, which deal basically with the best way to code the pairs inthe compressed �le. A particularly interesting variant is from Welch, called LZW [21]. In thiscase, the extra letter (second element of the pair) is not coded, but it is taken as the �rst letterof the next block (the dictionary is started with one block per letter). LZW is used by Unix'sCompress program.In this paper we do not consider LZW separately but just as a coding variant of LZ78. Thisis because the �nal letter of LZ78 can be readily obtained by keeping count of the �rst letter ofeach block (this is copied directly from the referenced block) and then looking at the �rst letterof the next block.An interesting property of this compression format is that every block represents a di�erenttext substring. The only possible exception is the last block. We use this property in our algo-rithm, and deal with the exception by adding a special character \$" (not in the alphabet) atthe end of the text. The last block will contain this character and thus will be unique too.Another concept that is worth reminding is that a set of strings can be lexicographicallysorted, and we call the rank of a string its position in the lexicographically sorted set. Moreover,if the set is arranged in a trie data structure, then all the strings represented in a subtree form alexicographical interval of the universe. We remind that, in lexicographic order, " � x, ax � byif a < b, and ax � ay if x � y, for any strings x; y and characters a; b.3 Basic TechniqueWe now present the basic idea to search for a pattern P1:::m in a text T1:::u which has beencompressed using the LZ78 or LZW algorithm into n + 1 blocks T = B0 : : :Bn, such thatB0 = "; 8k 6= `; Bk 6= B`; and 8k � 1; 9` < k; c 2 �; Bk = B` � c.3.1 Data StructuresWe start by de�ning the data structures used, without caring for the exact way they are repre-sented. The problem of their succint representation, and consequently the space occupancy andtime complexity, is considered in the next section.1. LZTrie : is the trie formed by all the blocks B0 : : :Bn. Given the properties of LZ78 com-pression, this trie has exactly n+1 nodes, each one corresponding to a string. LZTrie storesenough information so as to permit the following operations on every node x:(a) idt(x) gives the node identi�er, i.e., the number k such that x represents Bk ;(b) leftrankt(x) and rightrankt(x) give the minimumand maximum lexicographical positionof the blocks represented by the nodes in the subtree rooted at x, among the set B0 : : :Bn;(c) parentt(x) gives the tree position of the parent node of x; and

(d) childt(x; c) gives the tree position of the child of node x by character c, or null if no suchchild exists.Additionally, the trie must implement the operation rtht(rank), which given a rank r givesthe r-th string in B0 : : :Bn in lexicographical order.2. RevTrie : is the trie formed by all the reverse strings Br0 : : :Brn. For this structure we donot have the nice properties that the LZ78/LZW algorithm gives to LZTrie: there could beinternal nodes not representing any block. We need the same operations for RevTrie thanfor LZTrie, which are called idr, leftrankr, rightrankr, parentr, childr and rthr .3. Node : is a mapping from block identi�ers to their node in LZTrie.4. Range : is a data structure for two-dimensional searching in the space [0 : : :n] � [0 : : :n].The points stored in this structure are f(revrank(Brk); rank(Bk+1)); k 2 0 : : :n� 1g, whererevrank is the lexicographical rank in Br0 : : :Brn and rank is the lexicographical rank inB0 : : :Bn.3.2 Search AlgorithmLet us now consider the search process. We distinguish three types of occurrences of P in T ,depending on the block layout (see Figure 2):
1 2 3 4 5 6 7

LZ78 block numbers

P inside a
block

P spans 2
blocks

P spans 4
blocksFig. 2. Di�erent situations in which P can match inside T .(a) the occurrence lies inside a single block;(b) the occurrence spans two blocks, Bk and Bk+1, such that a pre�x P1:::i matches a su�x ofBk and the su�x Pi+1:::m matches a pre�x of Bk+1; and(c) the occurrence spans three or more blocks, Bk : : :B`, such that Pi:::j = Bk+1 : : :B`�1, P1:::i�1matches a su�x of Bk and Pj+1:::m matches a pre�x of B`.Note that each possible occurrence of P lies exactly in one of the three cases above. Weexplain now how each type of occurrence is found.Occurrences lying inside a single block.Given the properties of LZ78/LZW, every block Bk containing P is formed by a shorterblock B` concatenated to a letter c. If P does not occur at the end of Bk , then B` contains P aswell. We want to �nd the shortest possible block B in the referencing chain for Bk that containsthe occurrence of P . This block B �nishes with the string P , hence it can be easily found bysearching for P r in RevTrie.Hence, in order to detect all the occurrences that lie inside a single block we do as follows:1. Search for P r in RevTrie. We arrive at a node x such that every string stored in the subtreerooted at x represents a block ending with P .2. Evaluate leftrankr(x) and rightrankr(x), obtaining the lexicographical interval (in the re-versed blocks) of blocks �nishing with P .

3. For every rank r 2 leftrankr(x) : : :rightrankr(x), obtain the corresponding node in LZTrie,y = Node(rthr(r)). Now we have identi�ed the nodes in the normal trie that �nish with Pand have to report all their extensions, i.e., all their subtrees.4. For every such y, traverse all the subtree rooted at y and report every node found. In thisprocess we can know the exact distance between the end of P and the end of the block. Notethat a single block containing several occurrences will report them several times, since wewill report a subtree that is contained in another subtree reported. To avoid this we keeptrack of the last m characters that the current node represents. When this string equals P ,we have arrived at another node that has been or will be reported elsewhere so we stop thatbranch. The equality condition can be tested in constant time using a KMP-like algorithm.Occurrences spanning two blocks.We do not know the position where P has been split, so we have to try them all. The ideais that, for every possible split, we search for the reverse pattern pre�x in RevTrie and thepattern su�x in LZTrie. Now we have two ranges, one in the space of reversed strings (i.e.,blocks �nishing with the �rst part of P) and one in that of the normal strings (i.e. blocks startingwith the second part of P), and need to �nd the pairs of blocks (k; k+ 1) such that k is in the�rst range and k + 1 is in the second range. This is what the range searching data structure isfor. Hence the steps are:1. For every i 2 1 : : :m� 1, split P in pref = P1:::i and suff = Pi+1:::m and do the next steps.2. Search for pref r in RevTrie, obtaining x. Search for suff in LZTrie, obtaining y.3. Search for the range [leftrankr(x) : : :rightrankr(x)]� [leftrankt(y) : : :rightrankt(y)] usingthe Range data structure.4. For every pair (k; k+ 1) found, report k. We know that Pi is aligned at the end of Bk .Occurrences spanning three blocks or more.We need one more observation for this part. Recall that the LZ78/LZW algorithm guaranteesthat every block represents a di�erent string. Hence, there is at most one block matching Pi:::jfor each choice of i and j. This fact severely limits the amount of occurrences of this class thatmay exist.The idea is, �rst, to identify the only possible block that matches every substring Pi:::j . Westore the block numbers in m arrays Ai, where Ai stores the blocks corresponding to Pi:::. Then,we try to �nd concatenations of successive blocks Bk, Bk+1, etc. that match contiguous patternsubstrings. Again, there is only one candidate (namely Bk+1) to follow an occurrence of Bk inthe pattern. Finally, for each maximal concatenation of blocks Pi:::j = Bk : : :B` contained in thepattern, we determine whether Bk�1 �nishes with P1:::i�1 and B`+1 starts with Pj+1:::m. If this isthe case we can report an occurrence. Note that there cannot be more than O(m2) occurrencesof this type. So the algorithm is as follows:1. For every 1 � i � j � m, search for Pi:::j in LZTrie and record the node x found in Ci;j = x,as well as add (idt(x); j) to array Ai. The search is made for increasing i and for each i valuewe increase j. This way we perform a single search in the trie for each i. If there is no nodecorresponding to Pi:::j we store a null value in Ci;j and don't modify Ai. At the end of everyi-turn, we sort Ai by block number. Mark every Ci;j as unused.2. For every 1 � i � j < m, for increasing j, try to extend the match of Pi:::j to the right.We do not extend to the left because this, if useful, has been done already (we mark usedranges to avoid working on a sequence that has been already tried from the left). Let S andS0 denote idt(Ci;j), and �nd (S + 1; r) in Aj+1. If r exists, mark Cj+1;r as used, incrementS and repeat the process from j = r. Stop when the occurrence cannot be extended further(no such r is found).

(a) For each maximal occurrence Pi:::r found ending at block S, check whetherblock S + 1 starts with Pr+1:::m, i.e., whether leftrankt(Node(S + 1)) 2leftrankt(Cr+1;m) : : :rightrankt(Cr+1;m). Note that leftrankt(Node(S+1)) is the exactrank of node S + 1, since every internal node is the �rst among the ranks of its subtree.Note also that there cannot be an occurrence if Cr+1;m is null.(b) If block S + 1 starts with Pr+1:::m, check whether block S0 � 1 �nishes with P1:::i�1. Forthis sake, �nd Node(S0�1) and use the parentt operation to check whether the last i�1nodes, read backward, equal P r1:::i�1.(c) If this is the case, report node S0 � 1 as the one containing the beginning of the match.We know that Pi�1 is aligned at the end of this block.Note that we have to make sure that the occurrences reported span at least 3 blocks. Fig-ure 3.2 depicts the whole algorithm. Occurrences are reported in the format (k; offset), wherek is the identi�er of the block where the occurrence starts and offset is the distance betweenthe beginning of the occurrence and the end of the block.If we want to show the text surrounding an occurrence (k; offset), we just go to LZTrieusing Node(k) and use the parentt pointers to obtain the characters of the block in reverseorder. If the occurrence spans more than one block, we do the same for blocks k+ 1, k + 2 andso on until the whole pattern is shown. We can also show larger block numbers as well as blocksk � 1, k � 2, etc. in order to show a larger text context around the occurrence. Indeed, we canrecover the whole text by repeating this process for k 2 0 : : :n.4 A Succint Index RepresentationWe show now how the data structures used in the algorithm can be implemented using littlespace.Let us �rst consider the tries. Munro and Raman [17] show that it is possible to store abinary tree of N nodes using 2N + o(N) bits such that the operations parent(x), leftchild(x),rightchild(x) and subtreesize(x) can be answered in constant time. Munro et al. [18] showthat, using the same space, the following operations can also be answered in constant time:leafrank(x) (number of leaves to the left of node x), leafsize(x) (number of leaves in the subtreerooted at x), leftmost(x) and rightmost(x) (leftmost and rightmost leaves in the subtree rootedat x).In the same paper [18] they show that a trie can be represented using this same structure byrepresenting the alphabet � in binary. This trie is able to point to an array of identi�ers, so thatthe identity of each leaf can be known. Moreover, path compressed tries (where unary paths arecompressed and a skip value is kept to indicate how many nodes have been compressed) canbe represented without any extra space cost, as long as there exists a separate representationof the strings stored readily available to compare the portions of the pattern skipped at thecompressed paths.We use the above representation for LZTrie as follows. We do not use path compression, butrather convert the alphabet to binary and store the n + 1 strings corresponding to each block,in binary form, into LZTrie. For reasons that are made clear soon, we pre�x every binaryrepresentation with the bit \1". So every node in the binary LZTrie will have a path of length1+log2 � to its real parent in the original LZTrie, creating at most 1+log2 � internal nodes. Wemake sure that all the binary trie nodes that correspond to true nodes in the original LZTrieare leaves in the binary trie. For this sake, we use the extra bit allocated: at every true nodethat happens to be internal, we add a leaf by the bit \0", while all the other children necessarilydescend by the bit \1".Hence we end up with a binary tree of n(1 + log2 �) nodes, which can be represented using2n(1 + log2 �) + o(n log�) bits. The identity associated to each leaf x will be idt(x). This arrayof node identi�ers is stored in order of increasing rank, which requires n log2 n bits, and permitsimplementing rtht in constant time.

Search (P1:::m, LZTrie, RevTrie, Node, Range)1. /* Lying inside a single block */2. x search for P r in RevTrie3. For r 2 leftrankr(x) : : : rightrankr (x) Do4. y Node(rthr(r))5. For z in the subtree rooted at y not containing P again Do Report (idt(z);m+ depth(y)� depth(z))6. /* Spanning two blocks */7. For i 2 1 : : :m� 1 Do8. x search for P r1:::i in RevTrie9. y search for Pi+1:::m in LZTrie10. Search for [leftrankr(x) : : : rightrankr (x)]� [leftrankt(y) : : : rightrankt(y)] in Range11. For (k; k + 1) in the result of this search Do Report (k; i)12. /* Spanning three or more blocks */13. For i 2 1 : : :m Do14. x root node of LZTrie15. Ai ;16. For j 2 i : : :m Do17. If x 6= null Then x childt(x;Pj)18. Ci;j x19. usedi;j false20. If x 6= null Then Ai Ai [(idt(x); j)21. For j 2 1 : : :m Do22. For i 2 i : : : j Do23. If Ci;j 6= null and usedi;j = false Then24. S0 idt(Ci;j)25. S S0 � 1; r j � 126. While (S + 1; r0) 2 Ar+1 Do /* always exists the 1st time */27. usedr+1;r0 true28. r r0; S S + 129. span S � S0 + 130. If i > 1 Then span span+ 131. If r < m Then span span+ 132. If span � 3 and Cr+1;m 6= null Then33. If leftrankt(Node(S + 1)) 2 leftrankt(Cr+1;m) : : : rightrankt(Cr+1;m) Then34. x Node(S0 � 1); i0 i� 135. While i0 > 0 and parentt(x) 6= null and x = child(parentt(x); Pi0) Do36. x parentt(x); i0 i0 � 137. If i0 = 0 Then Report (S0 � 1; i� 1)Fig. 3. The search algorithm. The value depth(y) � depth(z) is determined on the y since we traverse all thesubtree of z.

The operations parentt and childt can therefore be implemented in O(log�) time. Theremaining operations, leftrank(x) and rightrank(x), are computed in constant time usingleafrank(leftmost(x)) and leafrank(rightmost(x)), since the number of leafs to the left cor-responds to the rank in the original trie.For RevTrie we have up to n leaves, but there may be up to u internal nodes. We usealso the binary string representation and the trick of the extra bit to ensure that every nodethat represents a block is a leaf. In this trie we do use path compression to ensure that, evenafter converting the alphabet to binary, there are only n nodes to be represented. Hence, all theoperations can be implemented using only 2n + o(n) bits, plus n log2 n bits for the identi�ers.Searching in RevTrie has the same cost as in LZTrie.It remains to explain how we store the representation of the strings in the reverse trie,since in order to compress paths one needs the strings readily available elsewhere. Instead of anexplicit representation, we use the same LZTrie: given the target node x of an edge we want totraverse, we obtain using Node(rthr(leftrankr(x))) a node in LZTrie that represents a binarystring whose (reversed) su�x matches the edge we want to traverse. Then, we use the parenttpointers to read upwards the (reverse) string associated to the block in the reverse trie.For the Node mapping we simply pay a full array of n log2 n bits.Finally, we need to represent the data structure for range searching, Range, where we storen block identi�ers k (representing the pair (k; k + 1)). Among the plethora of data structureso�ering di�erent space-time tradeo�s for range searching [1, 10], we prefer one of minimal spacerequirement by Chazelle [4]. This structure is a perfect binary tree dividing the points alongone coordinate plus a bucketed bitmap for every tree node indicating which points (ranked bythe other coordinate) belong to the left child. There are in total n log2 n bits in the bucketedbitmaps plus an array of the point identi�ers ranked by the �rst coordinate which representsthe leaves of the tree.This structure permits two dimensional range searching in a grid of n pairs of integers inthe range [0 : : :n]� [0 : : :n], answering queries in O((R+ 1) logn) time, where R is the numberof occurrences reported. A newer technique for bucketed bitmaps [8, 16] needs N + o(N) bitsto represent a bitmap of length N , and permits the rank operation and its inverse in constanttime. Using this technique, the structure of Chazelle requires just n log2 n(1+ o(1)) bits to storeall the bitmaps. Moreover, we do not need the information at the leaves, which maps rank (in acoordinate) to block identi�ers: as long as we know that the r-th block quali�es in normal (orreverse) lexicographical order, we can use rtht (or rthr) to obtain the identi�er k + 1 (or k).5 Space and Time ComplexityFrom the previous section it becomes clear that the total space requirement of our index isndlog2 ne(4 + o(1)). The o(1) term does not hide large constants, just 5+2 log2 �+2 log2 log2 nlog2 n +o(1= logn). The tries and Node can be built in O(u log�) time, while Range needs O(n logn)construction time. Since n logn = O(u log�) [3], the overall construction time is O(u log�).Let us now consider the search time of the algorithm.Finding the blocks that totally contain P requires a search in RevTrie of cost O(m log�).Later, we may do an indeterminate amount of work, but for each unit of work we report adistinct occurrence, so we cannot work more than R, the size of the result.Finding the occurrences that span two blocks requires m searches in LZTrie and m searchesin RevTrie, for a total cost of O(m2 log�), as well as m range searches requiring O(m logn +R logn) (since every distinct occurrence is reported only once).Finally, searching for occurrences that span three blocks or more requires m searches inLZTrie (all the Ci;j for the same i are obtained with a single search), at a cost of O(m2 log�).Extending the occurrences costs O(m2 logm). To see this, consider that, for each unit of workdone in the loop of lines 26{28, we mark one C cell as used and never work again on that cell.There are O(m2) such cells. This means that we make O(m2) binary searches in the Ai arrays.

The cost to sort the m arrays of size m is also O(m2 logm). The �nal veri�cations to the rightand to the left cost O(1) and O(m log�), respectively.Hence the total search cost to report the R occurrences of pattern P1:::m is O(m2 log(m�)+(m+R) logn). If we consider the alphabet size as constant then the algorithm is O(m2 logm+(m+R) logn). The existence problem can be solved in O(m2 log(m�)+m logn) time (note thatwe can disregard in this case blocks totally containing P , since these occurrences extend othersof the other two types). Finally, we can uncompress and show the text of length L surroundingany occurrence reported in O(L log�) time, and uncompress the whole text T1:::u in O(u log�)time.Chazelle [4] permits several space-time tradeo�s in his data structure. In particular, bypaying O �1"n logn� space, reporting time can be reduced to O(log" n). If we pay for this spacecomplexity, then our search time becomes O(m2 log(m�) +m logn +R log" n).6 ConclusionsWe have presented an index for text searching based on the LZ78/LZW compression. At theprice of 4n log2 n(1 + o(1)) bits, we are able to �nd the R occurrences of a pattern of length min a text of n blocks in O(m2 log(m�) + (m+ R) logn) time.Future work involves obtaining a real implementation of this index. Some numerical exercisesshow that the index should be practical. For example, assume a typical English text of 1 Mb,which is compressed by Unix's Compress to about 1=3 of its size. Given the space used by thisprogram to code each block, we have that there are about n � u=10 blocks. Our index needs4n log2 n(1 + o(1)) � 9:7u bits, little more than the size of the uncompressed text (8u bits inASCII). This should stabilize for longer texts: the 11-th order entropy of English text has beenfound to be 2.4 bits per symbol [3], and our index takes under this model 4uH11 = 9:6u bits ofspace. It is estimated [3] that the true entropy H of English text is around 1.3 bits per symbol(considering orders of 100 or more). Under this model our index takes 4uH = 5:2u bits, smallerthan the uncompressed text. Note that in this space we also store the compressed representationof the text.References1. P. Agarwal and J. Erickson. Geometric range searching and its relatives. Contemporary Mathematics, 23:Advances in Discrete and Computational Geometry:1{56, 1999.2. A. Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithms on Words, NATO ISISeries, pages 85{96. Springer-Verlag, 1985.3. T. Bell, J. Cleary, and I. Witten. Text compression. Prentice Hall, 1990.4. B. Chazelle. A functional approach to data structures and its use in multidimensional searching. SIAMJournal on Computing, 17(3):427{462, 1988.5. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc. 41st IEEE Symp.Foundations of Computer Science (FOCS'2000), pages 390{398, 2000.6. P. Ferragina and G. Manzini. An experimental study of an opportunistic index. In Proc. 12th ACM Symp.on Discrete Algorithms (SODA'2001), pages 269{278, 2001.7. R. Grossi and J.S. Vitter. Compressed su�x arrays and su�x trees with applications to text indexing andstring matching. In Proc. 32nd ACM Symp. Theory of Computing (STOC'2000), pages 397{406, 2000.8. G. Jacobson. Space-e�cient static trees and graphs. In Proc. 30th IEEE Symp. Foundations of ComputerScience (FOCS'89), pages 549{554, 1989.9. J. K�arkk�ainen. Su�x cactus: a cross between su�x tree and su�x array. In Proc. 6th Ann. Symp. Combina-torial Pattern Matching (CPM'95), LNCS 937, pages 191{204, 1995.10. J. K�arkk�ainen. Repetition-based text indexes. PhD thesis, Dept. of Computer Science, University of Helsinki,Finland, 1999. Also available as Report A-1999-4, Series A.11. J. K�arkk�ainen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index structures for string matching.In Proc. 3rd South American Workshop on String Processing (WSP'96), pages 141{155. Carleton UniversityPress, 1996.12. J. K�arkk�ainen and E. Ukkonen. Sparse su�x trees. In Proc. 2nd Ann. Intl. Conference on Computing andCombinatorics (COCOON'96), LNCS 1090, 1996.

13. S. Kurtz. Reducing the space requirements of su�x trees. Report 98-03, Technische Kakult�at, Universit�atBielefeld, 1998.14. V. M�akinen. Compact su�x array. In Proc. 11th Ann. Symp. Combinatorial Pattern Matching (CPM'2000),LNCS 1848, pages 305{319, 2000.15. U. Manber and G. Myers. Su�x arrays: a new method for on-line string searches. SIAM Journal on Com-puting, pages 935{948, 1993. Earlier version in Proc. SODA'90.16. I. Munro. Tables. In Proc. 16th Foundations of Software Technology and Theoretical Computer Science(FSTTCS'96), LNCS 1180, pages 37{42, 1996.17. I. Munro and V. Raman. Succint representation of balanced parentheses, static trees and planar graphs. InProc. 38th IEEE Symp. Foundations of Computer Science (FOCS'97), pages 118{126, 1997.18. I. Munro, V. Raman, and S. Rao. Space e�cient su�x trees. In Proc. 18th Foundations of Software Technologyand Theoretical Computer Science (FSTTCS'98), LNCS 1530, pages 186{195, 1998.19. G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding compression to block addressinginverted indexes. Information Retrieval, 3(1):49{77, 2000.20. K. Sadakane. Compressed text databases with e�cient query algorithms based on the compressed su�x array.In Proc. 11th Intl. Symp. Algorithms and Computation (ISAAC'2000), LNCS 1969, pages 410{421, 2000.21. T. Welch. A technique for high performance data compression. IEEE Computer Magazine, 17(6):8{19, June1984.22. I. Witten, A. Mo�at, and T. Bell. Managing Gigabytes. Morgan Kaufmann Publishers, New York, secondedition, 1999.23. J. Ziv and A. Lempel. Compression of individual sequences via variable length coding. IEEE Trans. onInformation Theory, 24:530{536, 1978.

