
Faster Bit-parallel Approximate String MatchingHeikki Hyyr�o ? and Gonzalo Navarro ??Abstract. We present a new bit-parallel technique for approximate string matching. We build ontwo previous techniques. The �rst one [Myers, J. of the ACM, 1999], searches for a pattern of lengthm in a text of length n permitting k di�erences in O(mn=w) time, where w is the width of thecomputer word. The second one [Navarro and Ra�not, ACM JEA, 2000], extends a sublinear-timeexact algorithm to approximate searching. The latter technique makes use of an O(kmn=w) timealgorithm [Wu and Manber, Comm. ACM, 1992] for its internal workings. This algorithm is slowbut exible enough to support all the required operations. In this paper we show that the fasteralgorithm of Myers can be adapted to support all those operations. This involves extending it tocompute edit distance, to search for any pattern su�x, and to detect in advance the impossibility ofa later match. The result is an algorithm that performs better than the original version of Navarroand Ra�not and that is the fastest for several combinations of m, k and alphabet sizes that areuseful, for example, in natural language searching and computational biology.1 IntroductionApproximate string matching is one of the main problems in classical string algorithms, withapplications to text searching, computational biology, pattern recognition, etc. Given a text oflength n, a pattern of length m, and a maximal number of di�erences permitted, k, we want to�nd all the text positions where the pattern matches the text up to k di�erences. The di�erencescan be substituting, deleting or inserting a character. We call � = k=m the di�erence ratio, and� the size of the alphabet �. All the average case �gures in this paper assume random text anduniformly distributed alphabet.In this paper we consider online searching, that is, the pattern can be preprocessed but thetext cannot. The classical solution to the problem is based on �lling a dynamic programmingmatrix and needs O(mn) time [16]. Since then, many improvements have been proposed (see[11] for a complete survey). These can be divided into four types.The �rst type is based on dynamic programming and has achieved O(kn) worst case time [7,9]. These algorithms are not really practical, but there exist also practical solutions that achieve,on the average, O(kn) [20] and even O(kn=p�) time [4].The second type reduces the problem to an automaton search, since approximate searchingcan be expressed in that way. A deterministic �nite automaton (DFA) is used in [20] so as toobtain O(n) search time, which is worst-case optimal. The problem is that the preprocessingtime and the space is O(3m), which makes the approach practical only for very small patterns.In [22] they trade time for space using a Four Russians approach, achieving O(kn= logs) timeon average and O(mn= logs) in the worst case, assuming that O(s) space is available for theDFAs.The third approach �lters the text to quickly discard large text areas, using a necessarycondition for an approximate occurrence that is easier to check than the full condition. Theareas that cannot be discarded are veri�ed with a classical algorithm [18,17, 5, 12,14]. Thesealgorithms achieve \sublinear" expected time in many cases for low di�erence ratios, that is,not all text characters are inspected. However, the �ltration is not e�ective for higher ratios.The typical average complexity is O(kn log�m=m) for � = O(1= log�m). The optimal averagecomplexity is O((k+log�m)n=m) for � < 1�O(1=p�) [5], which is achieved in the same paper.The algorithm, however, is not practical.Finally, the fourth approach is bit-parallelism [1, 21], which consists in packing several valuesin the bits of the same computer word and managing to update all them in a single operation.? Dept. of Computer Science, University of Tampere, Finland.?? Dept. of Computer Science, University of Chile.

The idea is to simulate another algorithm using bit-parallelism. The �rst bit-parallel algorithmfor approximate searching [21] parallelized an automaton-based algorithm: a nondeterministic�nite automaton (NFA) was simulated in O(kdm=wen) time, where w is the number of bits inthe computer word. We call this algorithm BPA (for Bit-Parallel Automaton) in this paper.BPA was improved to O(dkm=wen) [3] and �nally to O(dm=wen) time [10]. The latter simulatesthe classical dynamic programming algorithm using bit-parallelism, and we call it BPM (forBit-Parallel Matrix) in this paper.Currently the most successful approaches are �ltering and bit-parallelism. A promising ap-proach combining both [14] will be called ABNDM in this paper (for Approximate BNDM).The original ABNDM was built on BPA because the latter is the most exible for the partic-ular operations needed. The faster BPM was not used at that time because of the di�culty inmodifying it to be suitable for ABNDM.In this paper we extend BPM in several ways so as to permit it to be used in the frameworkof ABNDM. The result is a competitive approximate string matching algorithm. In particular,the algorithm turns out to be the fastest for a range of m and k that includes interesting casesof natural language searching and computational biology applications.2 Basic Concepts2.1 NotationWe will use the following notation on strings: jxj will be the length of string x; " will be theonly string of length zero; string positions will start at 1; substrings will be denoted as xi:::j ,meaning taking from the i-th to the j-th character of x, both inclusive; xi will denote the singlecharacter at position i in x. We say that x is a pre�x of xy, a su�x of yx, and a substring orfactor of yxz.Bit-parallel algorithms will be described using C-like notation for the operations: bitwise\and" (&), bitwise \or" (j), bitwise \xor" (^), bit complementation (�), and shifts to the left(<<) and to the right (>>), which are assumed to enter zero bits both ways. We also performnormal arithmetic operations (+, �, etc.) on the bit masks, which are treated as numbers inthis case. Constant bit masks are expressed as sequences of bits, the �rst to the right, usingexponentiation to denote bit repetition, for example 103 = 1000 has a 1 at the 4-th position.2.2 Problem DescriptionThe problem of approximate string matching can be stated as follows: given a (long) text Tof length n, and a (short) pattern P of length m, both being sequences of characters from analphabet � of size �, and a maximum number of di�erences permitted, k, �nd all the segmentsof T whose edit distance to P is at most k. Those segments are called \occurrences", and it iscommon to report only their start or end points.The edit distance between two strings x and y is the minimum number of di�erences thatwould transform x into y or vice versa. The allowed di�erences are deletion, insertion andsubstitution of characters. The problem is non-trivial for 0 < k < m. The di�erence ratio isde�ned as � = k=m.Formally, if ed() denotes the edit distance, we may want to report start points (i.e. fjxj; T =xP 0y; ed(P; P 0) � kg) or end points (i.e. fjxP 0j; T = xP 0y; ed(P; P 0) � kg) of occurrences.2.3 Dynamic ProgrammingThe oldest and still most exible (albeit slowest) algorithm to solve the problem is based ondynamic programming [16]. We �rst show how to compute the edit distance between two strings

x and y. To compute ed(x; y), a matrix M0::jxj;0::jyj is �lled, where Mi;j = ed(x1::i; y1::j), so atthe end Mjxj;jyj = ed(x; y). This matrix is computed as followsMi;0 i; M0;j j;Mi;j if (xi = yj) then Mi�1;j�1 else 1 +min(Mi�1;j ;Mi;j�1;Mi�1;j�1)where the formula accounts for the three allowed operations. This matrix is usually �lled colum-nwise left to right, and each column top to bottom. The time to compute ed(x; y) is thenO(jxjjyj).This is easily extended to approximate searching, where x = P and y = T , by letting anoccurrence start anywhere in T . The only change is on the initial conditionM0;j 0. The timeis still O(jxjjyj) = O(mn). The space can be reduced to O(m) by storing only one column ofthe matrix at the time, namely, the one corresponding to the current text position (going leftto right means examining the text sequentially).In this case it is more appropriate to think of a column vector C0:::m, which is initialized atCi i and updated to C 0 after reading text character Tj usingC 0i if (Pi = Tj) then Ci�1 else 1 +min(C 0i�1; Ci; Ci�1)for all i > 0, and hence we report every end position j where Ci � k.Several properties of the matrix M are discussed in [19]. The most important for us is thatadjacent cells in M di�er at most by 1, that is, both Mi;j �Mi�1;j and Mi;j �Mi;j�1 are in therange f�1; 0;+1g. Also, Mi+1;j+1 �Mi;j is in the range f0; 1g.Fig. 1 shows examples of edit distance computation and approximate string matching.s u r g e r y0 1 2 3 4 5 6 7s 1 0 1 2 3 4 5 6u 2 1 0 1 2 3 4 5r 3 2 1 0 1 2 3 4v 4 3 2 1 1 2 3 4e 5 4 3 2 2 1 2 3y 6 5 4 3 3 2 2 2 s u r g e r y0 0 0 0 0 0 0 0s 1 0 1 1 1 1 1 1u 2 1 0 1 2 2 2 2r 3 2 1 0 1 2 2 3v 4 3 2 1 1 2 3 3e 5 4 3 2 2 1 2 3y 6 5 4 3 3 2 2 2Fig. 1. The dynamic programming algorithm. On the left, to compute the edit distance between "survey" and"surgery". On the right, to search for "survey" in the text "surgery". The bold entries show the cell with theedit distance (left) and the end positions of occurrences for k = 2 (right).2.4 The Cuto� ImprovementIn [20] they consider the dynamic programming algorithm and observe that column values largerthan k can be assumed to be k + 1 without a�ecting the output of the computation. Cells ofC with value not exceeding k are called active. In the algorithm, the index ` of the last activecell (i.e., largest i such that Ci � k) is maintained. All the values C`+1:::m are assumed to bek+1, so C needs to be updated only in the range C1:::`. Later [4] it was shown that, on average,` = O(k) and therefore the algorithm is O(kn).The value ` has to be updated throughout the computation. Initially, ` = k because Ci = i.It is shown that, at each new column, the last active cell can be incremented at most by one,so we check whether C`+1 � k and in such a case we increment `. However, it is also possiblethat which was the last active cell becomes inactive now, that is, C` > k. In this case we haveto search upwards for the new last active cell. Despite that this search can take O(m) time at agiven column, we cannot work more than O(n) overall, because there are at most n incrementsof ` in the whole process, and hence there are no more than n+ k decrements. Hence, the lastactive cell is maintained at O(1) amortized cost per column.

2.5 An Automaton ViewAn alternative approach is to model the search with a non-deterministic automaton (NFA) [2].Consider the NFA for k = 2 di�erences shown in Fig. 2. Every row denotes the number ofdi�erences seen (the �rst row zero, the second row one, etc.). Every column represents matchinga pattern pre�x. Horizontal arrows represent matching a character. All the others incrementthe number of di�erences (i.e., move to the next row): vertical arrows insert a character inthe pattern, solid diagonal arrows substitute a character, and dashed diagonal arrows delete acharacter of the pattern. The initial self-loop allows an occurrence to start anywhere in the text.The automaton signals (the end of) a match whenever a rightmost state is active.It is not hard to see that once a state in the automaton is active, all the states of the samecolumn and higher-numbered rows are active too. Moreover, at a given text position, if we collectthe smallest active rows at each column, we obtain the vector C of the dynamic programming(in this case [0; 1; 2; 3; 3; 3; 2], compare to Fig. 1).
Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

εεεεεε

εεεεεε

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

s u

s

s u

u

v

v

v

r

r

r

e

e

no errors

2 errors

1 error

y

y

y

e

Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

Fig. 2. An NFA for approximate string matching of the pattern "survey"with two di�erences. The shaded statesare those active after reading the text "surgery".Note that the NFA can be used to compute edit distance by simply removing the self-loop,although it cannot distinguish among di�erent values larger than k.2.6 A Bit-Parallel Automaton Simulation (BPA)The idea of BPA [21] is to simulate the NFA of Fig. 2 using bit-parallelism, so that each row iof the automaton �ts in a computer word Ri (each state is represented by a bit). For each newtext character, all the transitions of the automaton are simulated using bit operations amongthe k + 1 computer words.The update formula to obtain the new R0i values at text position j from the current Ri valuesis as follows: R00 ((R0 << 1) j 0m�11) & B[Tj]R0i+1 ((Ri+1 << 1) & B[Tj]) j Ri j (Ri << 1) j (R0i << 1)where B[c] is a precomputed table of � entries such that the r-th bit of B[c] is set wheneverPr = c. We start the search with Ri = 0m�i1i. In the formula for R0i+1 are expressed, in thatorder, horizontal, vertical, diagonal and dashed diagonal arrows.If m > w we need dm=we computer words to simulate every Ri mask, and have to updatethem one by one. The cost of this simulation is thus O(kdm=wen). The algorithm is exible, forexample in order to remove the initial self-loop one has to change the update formula for R0 toR00 (R0 << 1) & B[Tj].

2.7 Myers' Bit-Parallel Matrix Simulation (BPM)A better way to parallelize the computation [10] is to represent the di�erences between consec-utive rows or columns of the dynamic programming matrix instead of the NFA states. Let uscall �hi;j =Mi;j �Mi;j�1 2 f�1; 0;+1g�vi;j =Mi;j �Mi�1;j 2 f�1; 0;+1g�di;j =Mi;j �Mi�1;j�1 2 f0; 1gthe horizontal, vertical, and diagonal di�erences among consecutive cells. Their range of valuescome from the properties of the dynamic programming matrix [19].We present a version [8] that di�ers slightly from that of [10]: Although both perform thesame number of operations per text character, the one we present is easier to understand andmore convenient for our purposes.Let us introduce the following boolean variables. The �rst four refer to horizontal/verticalpositive/negative di�erences and the last to the diagonal di�erence being zero:V Pi;j � �vi;j = +1 V Ni;j � �vi;j = �1HPi;j � �hi;j = +1 HNi;j � �hi;j = �1D0i;j � �di;j = 0Note that �vi;j = V Pi;j � VNi;j , �hi;j = HPi;j � HNi;j, and �di;j = 1 �D0i;j . It is clearthat these values completely de�ne Mi;j = Pr=1:::i�vr;j .The boolean matrices HN , VN , HP , V P , and D0 can be seen as vectors indexed by i,which change their value for each new text position j, as we traverse the text. These vectors arekept in bit masks with the same name. Hence, for example, the i-th bit of the bit mask HNwill correspond to the value HNi;j. The index j � 1 refers to the previous value of the bit mask(before processing Tj), whereas j refers to the new value, after processing Tj . By noticing somedependencies among the �ve variables [8, 15], one can arrive to identities that permit computingtheir new values (at j) from their old values (at j � 1) fast.Fig. 3 gives the pseudo-code. The value diff stores Cm = Mm;j explicitly and is updatedusing HPm;j and HNm;j .BPM (P1:::m; T1:::n; k)1. Preprocessing2. For c 2 � Do B[c] 0m3. For i 2 1 : : :m Do B[Pi] B[Pi] j 0m�i10i�14. V P 1m, V N 0m5. diff m6. Searching7. For j 2 1 : : : n Do8. X B[Tj] j V N9. D0 ((V P + (X & V P)) ^ V P) j X10. HN V P & D011. HP V N j � (V P j D0)12. X HP << 113. V N X & D014. V P (HN << 1) j � (X j D0)15. If HP & 10m�1 6= 0m Then diff diff + 116. If HN & 10m�1 6= 0m Then diff diff � 117. If diff � k Then report an occurrence at jFig. 3. BPM bit-parallel simulation of the dynamic programming matrix.

This algorithm uses the bits of the computer word better than previous bit-parallel algo-rithms, with a worst case of O(dm=wen) time. However, the algorithm is more di�cult to adaptto other related problems, and this has prevented it from being used as an internal tool of otheralgorithms.2.8 The ABNDM AlgorithmGiven a pattern P , a su�x automaton is an automaton that recognizes every su�x of P . This isused in [6] to design a simple exact pattern matching algorithm called BDM, which is optimalon average (O(n log�m=m) time). To search for a pattern P in a text T , the su�x automatonof P r = PmPm�1 : : :P1 (i.e the pattern read backwards) is built. A window of length m is slidalong the text, from left to right. The algorithm scans the window backwards, using the su�xautomaton to recognize a factor of P . During this scan, if a �nal state is reached that doesnot correspond to the entire pattern P , the window position is recorded in a variable last. Thiscorresponds to �nding a pre�x of the pattern starting at position last inside the window andending at the end of the window, because the su�xes of P r are the reverse pre�xes of P . Thisbackward search ends in two possible forms:1. We fail to recognize a factor, that is, we reach a letter a that does not correspond to atransition in the su�x automaton (Fig. 4). In this case we shift the window to the right soas to align its starting position to the position last.
�������
�������
�������
�������

�������
�������
�������
�������

��������������

Text

Pattern

Safe shift

a

Factor search

lastFig. 4. BDM search scheme.2. We reach the beginning of the window, and hence recognize P and report the occurrence.Then, we shift the window exactly as in case 1 (to the previous last value).In BNDM [14] this scheme is combined with bit-parallelism so as to replace the constructionof the deterministic su�x automaton by the bit-parallel simulation of a nondeterministic one.The scheme turns out to be exible and powerful, and permits other types of search, in particularapproximate search. The resulting algorithm is ABNDM.We modify the NFA of Fig. 2 so that it recognizes not only the whole pattern but also anysu�x thereof, allowing up to k di�erences. Fig. 5 illustrates the modi�ed NFA. Note that wehave removed the initial self-loop, so it does not search for the pattern but recognizes strings atedit distance k or less from the pattern. Moreover, we have built it on the reverse pattern. Wehave also added an initial state \I", with �-transitions leaving it. These allow the automaton torecognize, with up to k di�erences, any su�x of the pattern.In the case of approximate searching, the length of a pattern occurrence ranges from m� kto m+ k. To avoid missing any occurrence, we move a window of length m� k on the text, andscan backwards the window using the NFA described above.Each time we move the window to a new position we start the automaton with all its statesactive, which represents setting the initial state to active and letting the �-transitions ush thisactivation to all the automaton (the states in the lower-left triangle are also activated to allowinitial insertions). Then we start reading the window characters backward.We recognize a pre�x and update last whenever the �nal NFA state is activated. We stopthe backward scan when the NFA is out of active states.

Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

εεεεεε

εεεεεε

I

ε ε ε ε ε εε

s u

s

s u

u

v

v

v

r

r

r

e

e

no errors

2 errors

1 error

y

y

y

e

Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

Fig. 5. An NFA to recognize su�xes of the pattern "survey" reversed.If the automaton recognizes a pattern pre�x at the initial window position, then it is possible(but not necessary) that the window starts an occurrence. The reason is that strings of di�erentlength match the pattern with k di�erences, and all we know is that we have matched a pre�xof the pattern of length m� k.Therefore, in this case we need to verify whether there is a pattern occurrence starting exactlyat the beginning of the window. For this sake, we run the traditional automaton that computesedit distance (i.e., that of Fig. 2 without initial self-loop) from the initial window position inthe text. After reading at most m + k characters we have either found a match starting at thewindow position (that is, the �nal state becomes active) or determined that no match starts atthe window beginning (that is, the automaton runs out of active states).So we need two di�erent automata in this algorithm.A �rst one makes the backward scanning,recognizing su�xes of P r. A second one makes the forward scanning, recognizing P .The automata can be simulated in a number of ways. In [14] they choose BPA [21] becauseit is easy to adapt to the new scenario. To recognize all the su�xes we just need to initializeRi 1m. To make it compute edit distance, we remove the self-loop as explained in Sec. 2.6.The �nal state is active when Rk & 10m�1 6= 0m. The NFA is out of active states wheneverRk = 0m. Other approaches were discarded: an alternative NFA simulation [3] is not practicalto compute edit distance, and BPM [10] cannot easily tell when the corresponding automaton isout of active states, or which is the same, when all the cells of the current dynamic programmingcolumn are larger than k.Fig. 6 shows the algorithm.The algorithm is shown to be good for moderatem, low k and small �, which is an interestingcase, for example, in DNA searching. However, the use of BPA for the NFA simulation limitsits usefulness to very small k values. Our purpose in this paper is to show that BPM can beextended for this task, so as to obtain a faster version of ABNDM that works with larger k.Average Case Analysis of ABNDM. We show that ABNDM inspects on averageO(kn log�(m)=m)text positions. This is better than what was previously obtained [11]. Using previous results [11],we have that the total number of strings that match a su�x of a pattern of length m with kerrors is at least �mk �(� � 1)k (assuming only replacements and matching only the whole pat-tern) and at most m�mk �2�k (counting every su�x as if it had length m and assuming all thestrings di�erent). If we inserted those strings in a trie, the resulting height would be logarithmic(base �) in the number of strings inserted. This means a height of �(k +m log�m� k log� k �(m � k) log�(m � k)), which can be factorized as � �k +m log� mm�k + k log� m�km �. We havem log� mm�k = m log� �1 + km�k� � mm�kk � 2k. The latter is because we are interested in thecase k < m=2, as otherwise the algorithm cannot be sublinear time: the window is of length

ABNDM (P1:::m; T1:::n; k)1. Preprocessing2. Build forward and backward NFA simulations (fNFA and bNFA)3. Searching4. j 05. While pos � n� (m� k) Do6. j m� k, last m� k7. Initialize bNFA8. While j 6= 0 and bNFA has active states Do9. Feed bNFA with Tpos+j10. j j � 111. If bNFA's �nal state is active Then /* pre�x recognized */12. If j > 0 Then last j13. Else check with fNFA a possible occurrence starting at pos+ 114. pos pos+ lastFig. 6. The generic ABNDM algorithm.m� k and we read at least k+ 1 characters before the NFA can run out of active states. Hencewe have that the height is �(k + k log�(m=k)). This is �(k log�m), for example consider thecase k = m�.Traversing the window backwards until the NFA runs out of active states is equivalent toentering the above trie with the reverse window. On average, we reach the end of the trie in�(k log�m) steps. Then we shift the window forward in m � �(k log�m) positions. Overall,we inspect O(kn log�(m)=m) text positions, for � < 1=2. If we use BPA, the complexity isO(k2n log�(m)=w). If we manage to use BPM, this goes down to O(kn log�(m)=w).3 Forward Scanning with the BPM SimulationWe �rst focus on how to adapt the BPM algorithm to perform the forward scanning requiredby the ABNDM algorithm. Two modi�cations are necessary. The �rst is to make the algorithmcompute edit distance instead of performing text searching. The second is making it able todetermine when it is not possible to obtain edit distance � k by reading more characters.3.1 Computing Edit DistanceWe recall that BPM implements the dynamic programming algorithm of Sec. 2.3 in such a waythat di�erential values, rather than absolute ones, are stored. Therefore, we must consider whichis the change required in the dynamic programming matrix in order to compute edit distance.As explained in Sec. 2.3, the only change is that M0;j = j. In di�erential terms (Sec. 2.7), thismeans �h0;j = 1 instead of zero, or which is the same, that the lowest bit of HP should alwaysbe 1.However, since this bit is always zero in the original BPM algorithm, it is not represented.The only place where the assumption �h0;j = 0 makes a di�erence is on line 12 of the algorithm(Fig. 3). On this line, HP is shifted to the left, and the assumed bit zero enters automaticallyfrom the right. Hence we change line 12 of the algorithm to X (HP << 1) j 0m�11.Since we will use this technique several times from now on, we give in Fig. 7 the code for asingle step of edit distance computation.3.2 Preempting the ComputationAlbeit in the forward scan we could always run the automaton through m + k text characters,stopping only if diff � k to signal a match, it is also possible to determine that diff will alwaysbe larger than k in the characters to come. This happens when all the cells of the vector Ci are

BPMStep (Bc)1. X Bc j V N2. D0 ((V P + (X & V P)) ^ V P) j X3. HN V P & D04. HP V N j � (V P j D0)5. X (HP << 1) j 0m�116. V N X & D07. V P (HN << 1) j � (X j D0)Fig. 7. Single step of the adaptation of BPM to compute edit distance. It receives the bit mask B of the currenttext character and shares all the other variables with the calling process.larger than k, because there is no way in the recurrence to introduce a value smaller than thecurrent ones. In the automaton view, this is the same as the NFA running out of active states(since an active state at column i and row r would mean Ci = r � k).This is more di�cult in the dynamic programming matrix simulation of BPM. The onlycolumn value that is explicitly stored is diff = Cm. The others are implicitly represented asCi = Pr=1:::i V Pr � VNr. It is not easy to check whether 8i; Ci > k using this incrementalrepresentation.Our solution is inspired in the cuto� algorithm of Sec. 2.4. This algorithm permits knowingall the time the largest ` such that C` � k, at constant amortized time per text position.Although designed for text searching, the technique can be applied without any change to theedit distance computation algorithm. Clearly 9i; Ci � k , ` � 0.So we have to �gure out how to compute ` using BPM. Initially, since Ci = i, we set ` k.Later, we have to update ` for each new text character read. Recall that, given that neighboringcells in M di�er by at most one, and that by de�nition M`+1;j�1 > k, we have that M`;j�1 = k.Since ` can increase at most by one at the new text position, we start by e�ectively increasingit. This increment is correct whenM`+1;j � k before doing the increment. SinceM`+1;j�M`;j�1 =�d`+1;j 2 f0; 1g, we have that it was correct to increase ` if and only if D0`;j after the increment.If it was not correct to increase `, we later decrease it as much as necessary to obtain M`;j � k.Since we know that now M`;j = k+1, we obtainM`�1;j =M`;j �V P`;j +V N`;j , and so on with`� 2, `� 3, etc. If we reach ` = 0 and still M`;j > k, then all the rows are larger than k and westop the scanning process.The above arguments assume ` < m. Note that, as soon as ` = m, we have that Cm � k andtherefore the forward scan will then terminate because we have found an occurrence.Fig. 8 shows the forward scanning algorithm. It scans from text position j and determineswhether there is an occurrence starting at j. Instead of P , the routine receives the mask Balready computed (see Fig. 3). Note that for e�ciency ` is maintained in unary.4 Backward Scanning with the BPM SimulationThe backward scan has the particularity that all the NFA states start active. This is equivalentto initializing C as Ci = 0 for all i. The place where this initialization is expressed in BPM ison line 4 of Fig. 3. Since V P = 1m, we have Ci = i. We change it to V P 0m and obtain thedesired e�ect. Also, like in forward scanning, M0;j = j, so we apply the same change to line 12that sets the 0-th bit in HP .With these tools at hand, we could simply apply the forward scan algorithm with B builton P r and reading the window backwards. We could use ` to determine when the NFA is outof active states. Every time ` = m we know that we have recognized a pre�x and hence updatelast. There are a few changes, though: (i) we start with ` = m because Mi;0 = 0; and (ii) wehave to deal with the case ` = m when updating `, because now we do not stop the backwardscanning in that case but just update last.

BPMFwd (B; Tj:::n; k)1. V P 1m, V N 0m2. ` 0m�k10k�13. While j � n Do4. BPMStep (B[Tj])5. ` ` << 16. If D0 & ` = 0m Then7. val k + 18. While val > k Do9. If ` = 0m�11 Then Return false10. If V P & ` 6= 0m Then val val � 111. If V N & ` 6= 0m Then val val + 112. ` ` >> 113. Else If ` = 10m�1 Then Return true14. j j + 115. Return falseFig. 8. Adaptation of BPM to perform a forward scan from text position j and return whether there is anoccurrence starting at j.The latter problem is solved as follows. As soon as ` = m we stop tracking ` and initializediff k as the known value for Cm. We keep updating diff using HP and HN just as inFig. 3, until diff > k. At this moment we switch to updating ` again, moving it upwards asnecessary.The above scheme works correctly but it is terribly slow. The reason is that ` starts at mand it has to reach zero before we can leave the window. This requires m shifting operations` ` >> 1, which is a lot considering that on average one traverses O(k log�m) characters inthe window. The O(k + n) complexity given in Sec. 2.4 becomes here O(m+ k log�m). So, theproblem is that all the column values reach a value larger than k quite soon, but we take toomuch time traversing all them to determine that this has happened.We present two solutions to determine fast that all the Ci values have surpassed k.4.1 Bit-Parallel CountersIn the original BPM algorithm the integer value diff = Cm is explicitly maintained in order todetermine which text positions match. The way is to use the m-th bit of HP and HN to keeptrack of Cm. This part of the algorithm is not bit-parallel, so in principle one cannot do thesame with all the Ci values and still hope to update all of them in a single operation.However, it is possible to store several such counters in the same computer wordMC and usethem to upper bound the others. Since the Ci values start at zero and the window is of lengthm � k, we need in principle dlog2(m � k)e bits to store any Ci value (their value after readingthe last window character is not important). Hence we have space for O(m= logm) counters inMC.To determine the minimum number Q of bits needed for each counter we must look a bitahead in our algorithm. We will need to determine that all the counters have exceeded k0 =k + bQ=2c. For this sake, we initialize the counters at a value b that makes sure that their lastbit will be activated when they surpass this threshold. So we need that b + k0 + 1 = 2Q�1. Onthe other hand, we have to ensure that the Q-th bit is always set for any counter value up tob+m�k (and that Q bits are still enough to represent the counter), which means b+m�k < 2Q.This can be resolved by �rst �nding the minimal Q� such that k+1 � 2Q��1 and m� k � 2Q�.The solution is Q� = 1 + dlog2(max(m� 2k � 1; k + 1))e. Then Q = Q� if 2Q��1 � 1 � k0, andotherwise Q = Q� + 1. Finally we set b = 2Q�1 � k0 � 1.

We decide to store t = dm=Qe counters, for Cm; Cm�Q; Cm�2Q; : : : ; Cm�(t�1)Q. Thecounter for Cm�rQ uses the bits of the region m � rQ : : :m � rQ +Q � 1, both inclusive. Thismeans that we need m+Q� 1 bits for MC1.The counters can be used as follows. Since every cell is at distance at most bQ=2c to somerepresented counter and the di�erence between consecutive cells is at most 1, it is enough thatall the counters are � k0 + 1 = k + bQ=2c+ 1, to be sure that all the cells of C exceed k.So the idea is to traverse the window until all the counters exceed k0 and then shift thewindow. We will examine a few more cells than if we had controlled exactly all the C values:The backward scan will behave as if we permitted k0 = k + bQ=2c di�erences, so the number ofcharacters inspected is �(n(k+ logm) log�m=m). Note that we have only m=Q su�xes to testbut this does not a�ect the complexity. Note also that the amount of shifting is not a�ectedbecause we have Cm correctly represented.We have to face two problems. The �rst one is how to update all the counters in a singleoperation. This is not hard because counter Cm�rQ can be updated from its old to its newvalue by considering the (m� rQ)-th bits of HP and HN . That is, we de�ne a mask sMask =(0Q�11)t0m+Q�1�tQ and update MC using MC MC + (HP & sMask) � (HN & sMask).The second problem is how to determine that all the counters have exceeded k0. For thissake we have de�ned b and Q so that the Q-th bits of the counters get activated when theyexceed k0. If we de�ne eMask = (10Q�1)t0m+Q�1�tQ, then we can stop the scanning wheneverMC & eMask = eMask.Finally, note that our assumption that every cell in C is at distance at most bQ=2c to arepresented cell may not be true for the �rst bQ=2c cells. However, we know that, at the j-thiteration, C0 = j, so we may assume there is an implicit counter at row zero. Moreover, sincethis counter is always incremented, it is larger than any other counter, so it will surely surpassk0 when other counters do. The initial bQ=2c cells are close enough to this implicit counter.Fig. 9 shows the pseudocode of the algorithm. All the bit masks are of length m, exceptsMask, eMask and MC, which are of length m+Q� 1.In case our upper bound turns out to be too loose, we can use several interleaved sets ofcounters, each set in its own bit-parallel counter. For example we could use two interleavedMCcounters and hence the limit would be Q=4. In general we could use c counters and have a limitof the form Q=2c. The cost would be O(nc(k + log(m)=2c) log�m=m), which is optimized forc = log2(log�(m)=k), where the complexity is O(nk log�m log log�m=m) for k = o(log�m) andthe normal O(nk log�m=m) otherwise.4.2 Bit-Parallel Cuto�The previous technique, although simple, has the problem that it changes the complexity of thesearch and inspects more cells than necessary. We can instead produce, using a similar approach,an algorithm with the same complexity as the basic version. This time the idea is to mix thebit-parallel counters with a bit-parallel version of the cuto� algorithm (Sec. 2.4).Consider regions m�rQ�Q+1 : : :m�rQ of length Q. Instead of having the counters �xedat the end of each region (as in the previous section), we let the counters \oat" inside theirregion. The distance between consecutive counters is still Q, so they all oat together and allare at the same distance � to the end of their regions. We use sMask and eMask with the samemeanigs as before, but they are displaced so as to be all the time aligned to the counters.The invariant is that the counters will be as close as possible to the end of their regions, aslong as all the cells past the counters exceed k. That is,� = minfd 2 0 : : :Q; 8r 2 f0 : : :t � 1g; 2 f0 : : :d� 1g; Cm�rQ� > kg1 If sticking to m bits is necessary we can store Cm separately in the diff variable, at the same complexity butmore cost in practice.

ABNDMCounters (P1:::m; T1:::n; k)1. Preprocessing2. For c 2 � Do Bf [c] 0m ; Bb[c] 03. For i 2 1 : : :m Do4. Bf [Pi] Bf [Pi] j 0m�i10i�15. Bb[Pi] Bb[Pi] j 0i�110m�i6. Q 1 + dlog2(max(m� 2k � 1; k+ 1))e7. If 2Q�1 � k � 1 � bQ=2c Then Q Q+ 18. b 2Q�1 � k� bQ=2c � 19. t dm=Qe10. sMask (0Q�11)t0m+Q�1�tQ11. eMask (10Q�1)t0m+Q�1�tQ12. Searching13. j 014. While pos � n� (m� k) Do15. j m� k, last m� k16. V P 0m, V N 0m17. MC [b]tQ0m+Q�1�tQ18. While j 6= 0 and MC & eMask 6= eMask Do19. BPMStep (Bb[Tpos+j])20. MC MC + (HP & sMask)� (HN & sMask)21. j j � 122. If MC & 10m+Q�2 6= 0m+Q�1 Then /* pre�x recognized */23. If j > 0 Then last j24. Else If BPMFwd (Bf; Tpos+1:::n) Then25. Report an occurrence at pos+ 126. pos pos+ lastFig. 9. The ABNDM algorithm using bit-parallel counters. The expression [b]Q denotes the number b seen as abit mask of length Q. Note that BPMFwd can share its variables with the calling code because these are notneeded anymore at that point.where we assume that C yields values larger than k when accessed at negative indexes. When �reaches Q, this means that all the cell values are larger than k and we can suspend the scanning.Pre�x reporting is easy since no pre�x can match unless � = 0, as otherwise Cm = Cm�0�Q > k,and if � = 0 then the last oating counter has exactly the value Cm.The oating counters are a bit-parallel version of the cuto� technique, where each countercares of its region. Consequently the way of moving the counters up and down resembles thecuto� technique. We �rst move down and use D0 to determine if we should have moved down.If not, we move up as necessary using V P and V N . To determine if we should have moveddown, we need to know whether there is a counter that exceeds k. Using a similar mechanismas with computing Q� in the previous section, we let Q = 1 + dlog2(max(m� 2k; k + 1))e andb = 2Q�1 � k � 1, and use eMask. In order to increment and decrement the counters we usesMask. We have to deal with the case where the counters are at the end of their region andhence cannot move down further. In this case we update them using HP and HN .It is possible that the upmost counter goes out of bounds while shifting the counters, whichin e�ect results in that counter being removed. But this is not a problem, because since C0 > kafter the counters are shifted upwards for the �rst time, and since a disappearing counter willbe equal to C0 just before getting out of bounds, we have that this counter will be inactive.Moreover, it should be inactive from then on, because if all the �rst block in C is larger than k,it will not become � k again.As for the case of a single counter, we work O(1) amortized time per text position. Morespeci�cally, if we read u window characters then we work O(u + Q) because we have to movefrom � = 0 to � = Q. But O(u + Q) = O(k log�m) on average because Q = O(logm), andtherefore the classical complexity is not altered.

We also tried a practical version of using cuto�, in which the counters are not shifted. Insteadthey are updated in a similar fashion to the algorithm of Fig. 9, and when all counters have avalue > k, we try to shift a copy of them up until either a cell with value � k is found or Q� 1consecutive shifts are made. In the latter case we can stop the search, since then we have coveredchecking the whole column C. This version has a worse complexity, O(Qk logm) = O(k log2m),as at each processed character it is possible to make O(Q) shifts. But in practice it turned outto be very similar to the present cuto� algorithm.Fig. 10 shows the algorithm. The counters are not physically shifted, we use � instead.ABNDMCuto� (P1:::m; T1:::n; k)1. Preprocessing2. For c 2 � Do Bf [c] 0m ; Bb[c] 03. For i 2 1 : : :m Do4. Bf [Pi] Bf [Pi] j 0m�i10i�15. Bb[Pi] Bb[Pi] j 0i�110m�i6. Q 2 + dlog2(m� 2k � 2)e7. b 2Q�1 � k � 18. t dm=Qe9. sMask (0Q�11)t0m+Q�1�tQ10. eMask (10Q�1)t0m+Q�1�tQ11. Searching12. j 013. While pos � n� (m� k) Do14. j m� k, last m� k15. V P 0m, V N 0m16. MC [b]tQ0m+Q�1�tQ17. � 018. While j 6= 0 and � < Q Do19. BPMStep (Bb[Tpos+j])20. If � = 0 ThenMC MC + ((HP & sMask)� (HN & sMask)21. Else22. � � � 123. MC MC + (� (D0 << �) & sMask)24. While � < Q and MC & eMask = eMask Do25. MC MC � ((V P << �) & sMask) + ((V N << �) & sMask)26. � � + 127. j j � 128. If � = 0 and MC & 10m+Q�2 6= 0m+Q�1 Then /* pre�x recognized */29. If j > 0 Then last j30. Else If BPMFwd (Bf; Tpos+1:::n) Then31. Report an occurrence at pos+ 132. pos pos+ lastFig. 10. The ABNDM algorithm using bit-parallel cuto�. The same comments of Fig. 9 apply.5 Experimental ResultsWe compared our BPM-based ABNDM against the original BPA-based ABNDM, as well asthose other algorithms that, according to a recent survey [11], are the best for moderate patternlengths. We tested with random patterns and text over uniformly distributed alphabets. Eachindividual test run consisted of searching for 100 patterns a text of size 10 Mb. We measuredtotal elapsed times.The computer used in the tests was a 64-bit Alphaserver ES45 with four 1 Ghz AlphaEV68 processors, 4 GB of RAM and Tru64 UNIX 5.1A operating system. All test programswere compiled with the DEC CC C-compiler and full optimization. There were no other active

signi�cant processes running on the computer during the tests. All algorithms were set to use a64 KB text bu�er. The tested algorithms were:ABNDM/BPA(regular): ABNDM implemented on BPA [21], using a generic implementa-tion for any k.ABNDM/BPA(special code): Same as before but especially coded for each value of k toavoid using an array of bit masks.ABNDM/BPM(count): ABDNM implemented using BPM and counters (Sec. 4.1). The im-plementation di�ered slightly from Fig. 9 due to optimizations.ABNDM/BPM(cuto�): ABDNM implemented using BPM and cuto� (Sec 4.2). The imple-mentation di�ered slightly from Fig. 10 due to optimizations.ABNDM/BPM(static): The version of ABNDM/cuto� that does not actively shift the coun-ters.BPM: The sequential BPM algorithm [10]. The implementation was from us and used theslightly di�erent (but practically equivalent in terms of performance) formulation from [8].BPP: A combined heuristic using pattern partitioning, superimposition and hierarchical veri�-cation, together with a diagonally bit-parallelized NFA [3, 13]. The implementation was fromthe original authors.EXP: Partitioning the pattern into k + 1 pieces and using hierachical veri�cation with a di-agonally bit-parallelized NFA in the checking phase [12]. The implementation was from theoriginal authors.Fig. 11 shows the test results for � = 4, 13 and 52 and m = 30 and 55. This is only a smallpart of our complete tests, which included � = 4; 13; 20; 26 and 52, and m = 10; 15; 20; : : : ; 55.We chose � = 4 because it behaves like DNA, � = 13 because it behaves like English, and � = 52to show that our algorithms are useful even on large alphabets.First of all it can be seen that ABNDM/BPM(cuto�) is always faster than ABNDM/BPM(counters)by a nonnegligible margin.It can be seen that our ABNDM/BPM versions are often faster than ABNDM/BPA(specialcode) when k = 4, and always when k > 4. Compared to ABNDM/BPA(regular), our versionis always faster for k > 1. We note that writing down a di�erent procedure for every possible kvalue, as done for ABNDM/BPA(special code), is hardly a real alternative in practice.With moderate pattern length m = 30, our ABNDM/BPM versions are competitive for lowerror levels. However, BPP is better for small alphabets and EXP is better for large alphabets.In the intermediate area � = 13, we are the best for k = 4 : : :6. This area is rather interestingwhen searching natural language text.Whenm = 55, our ABNDM/BPM versions become much more competitive, being the fastestin many cases: For k = 5 : : :9 with � = 4, and for k = 4 : : :11 both with � = 13 and � = 52,with the single exception of the case � = 52 and k = 9, where EXP is faster (this seems to be avariance problem, however).6 ConclusionsThe most successful approaches to approximate string matching are bit-parallelism and �lter-ing. A promising algorithm combining both is ABNDM [14]. However, ABNDM uses a slowO(kmn=w) time bit-parallel algorithm (BPA [21]) for its internal working because no other al-ternative exists with the necessary exibility. In this paper we have shown how to extend BPM[10] to replace BPA. Since BPM is O(mn=w) time, we obtain a much faster version of ABNDM.For this sake, BPM was extended to permit backward scanning of the window and forwardveri�cation. The extensions involved making it compute edit distance, making it able to recog-nize any su�x of the pattern with k di�erences, and, the most complicated, being able to tellin advance that a match cannot occur ahead, both for backward and forward scanning. We pre-sented two alternatives for the backward scanning: a simple one that may read more characters

5

10

15

20

25

30

1 2 3 4 5 6

tim
e

k

BPM
BPP
EXP

ABNDM/BPA(special code)
ABNDM/BPA(regular)
ABNDM/BPM(cutoff)

ABNDM/BPM(counters)

5

10

15

20

25

30

2 4 6 8 10 12

tim
e

k

BPM
BPP
EXP

ABNDM/BPA(special code)
ABNDM/BPA(regular)
ABNDM/BPM(cutoff)

ABNDM/BPM(counters)

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9

tim
e

k

BPM
BPP
EXP

ABNDM/BPA(special code)
ABNDM/BPA(regular)
ABNDM/BPM(cutoff)

ABNDM/BPM(counters)

5

10

15

20

25

30

2 4 6 8 10 12 14 16

tim
e

k

BPM
BPP
EXP

ABNDM/BPA(special code)
ABNDM/BPA(regular)
ABNDM/BPM(cutoff)

ABNDM/BPM(counters)

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

tim
e

k

BPM
BPP
EXP

ABNDM/BPA(special code)
ABNDM/BPA(regular)
ABNDM/BPM(cutoff)

ABNDM/BPM(counters)

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18

tim
e

k

BPM
BPP
EXP

ABNDM/BPA(special code)
ABNDM/BPA(regular)
ABNDM/BPM(cutoff)

ABNDM/BPM(counters)Fig. 11. Comparison between algorithms, showing total elapsed time as a function of the number of di�erencespermitted, k. From top to bottom row we show � = 4, 13 and 52. On the left we show m = 30 and on the rightm = 55.than necessary, and a more complicated (and more costly per processed character) that readsexactly the required characters.The experimental results show that our new algorithm beats the old ABNDM, even whenBPA is especially coded with a di�erent procedure for every possible k value, often for k = 4 andalways for k > 4, and that it beats a general BPA implementation for k � 2. Moreover it wasseen that our version of ABNDM becomes the fastest algorithm for many cases with moderatelylong pattern and fairly low error level, provided the counters �t in a single computer word. Thisincludes several interesting cases in searching DNA, natural language text, proteic sequences,etc.References1. R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World Computer Congress, volume I,pages 465{476. Elsevier Science, 1992.2. R. Baeza-Yates. A uni�ed view of string matching algorithms. In Proc. Theory and Practice of Informatics(SOFSEM'96), LNCS 1175, pages 1{15, 1996.

3. R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica, 23(2):127{158, 1999.4. W. Chang and J. Lampe. Theoretical and empirical comparisons of approximate string matching algorithms.In Proc. 3rd Combinatorial Pattern Matching (CPM'92), LNCS 644, pages 172{181, 1992.5. W. Chang and T. Marr. Approximate string matching and local similarity. In Proc. 5th CombinatorialPattern Matching (CPM'94), LNCS 807, pages 259{273, 1994.6. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, Oxford, UK, 1994.7. Z. Galil and K. Park. An improved algorithm for approximate string matching. SIAM Journal on Computing,19(6):989{999, 1990.8. H. Hyyr�o. Explaining and extending the bit-parallel algorithm of Myers. Technical Report A-2001-10,University of Tampere, Finland, 2001.9. G. Landau and U. Vishkin. Fast parallel and serial approximate string matching. Journal of Algorithms,10:157{169, 1989.10. G. Myers. A fast bit-vector algorithm for approximate string matching based on dynamic progamming.Journal of the ACM, 46(3):395{415, 1999.11. G. Navarro. A guided tour to approximate string matching. ACM Computing Surveys, 33(1):31{88, 2001.12. G. Navarro and R. Baeza-Yates. Very fast and simple approximate string matching. Information ProcessingLetters, 72:65{70, 1999.13. G. Navarro and R. Baeza-Yates. Improving an algorithm for approximate string matching. Algorithmica,30(4):473{502, 2001.14. G. Navarro and M. Ra�not. Fast and exible string matching by combining bit-parallelism and su�xautomata. ACM Journal of Experimental Algorithmics (JEA), 5(4), 2000.15. G. Navarro and M. Ra�not. Flexible Pattern Matching in Strings { Practical on-line search algorithms fortexts and biological sequences. Cambridge University Press, 2002. To appear.16. P. Sellers. The theory and computation of evolutionary distances: pattern recognition. Journal of Algorithms,1:359{373, 1980.17. E. Sutinen and J. Tarhio. On using q-gram locations in approximate string matching. In Proc. EuropeanSymposium on Algorithms (ESA'95), LNCS 979, pages 327{340, 1995.18. J. Tarhio and E. Ukkonen. Approximate Boyer-Moore string matching. SIAM Journal on Computing,22(2):243{260, 1993.19. E. Ukkonen. Algorithms for approximate string matching. Information and Control, 64:100{118, 1985.20. E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms, 6:132{137, 1985.21. S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM, 35(10):83{91, 1992.22. S. Wu, U. Manber, and G. Myers. A sub-quadratic algorithm for approximate limited expression matching.Algorithmica, 15(1):50{67, 1996.

APPENDIX { To be read at the discretion of the reviewerWe explain in more detail (still less than in the full version) the basic algorithms that have tobe understood in order to follow our paper.6.1 Dynamic ProgrammingThe oldest and still most exible (albeit slowest) algorithm to solve the problem is based ondynamic programming [16]. We �rst show how to compute the edit distance between two stringsx and y. To compute ed(x; y), a matrix M0::jxj;0::jyj is �lled, where Mi;j = ed(x1::i; y1::j), so atthe end Mjxj;jyj = ed(x; y). This matrix is computed as followsMi;0 i; M0;j j;Mi;j if (xi = yj) then Mi�1;j�1 else 1 +min(Mi�1;j ;Mi;j�1;Mi�1;j�1)where the formula accounts for the three allowed operations. This matrix is usually �lled colum-nwise left to right, and each column top to bottom. The time to compute ed(x; y) is thenO(jxjjyj).This is easily extended to approximate searching, where x = P and y = T , by letting anoccurrence start anywhere in T . The only change is on the initial conditionM0;j 0. The timeis still O(jxjjyj) = O(mn). The space can be reduced to O(m) by storing only one column ofthe matrix at the time, namely, the one corresponding to the current text position (going leftto right means examining the text sequentially).In this case it is more appropriate to think of a column vector C0:::m, which is initialized atCi i and updated to C 0 after reading text character Tj usingC 0i if (Pi = Tj) then Ci�1 else 1 +min(C 0i�1; Ci; Ci�1)for all i > 0, and hence we report every end position j where Ci � k.Several properties of the matrix M are discussed in [19]. The most important for us is thatadjacent cells in M di�er at most by 1, that is, both Mi;j �Mi�1;j and Mi;j �Mi;j�1 are in therange f�1; 0;+1g. Also, Mi+1;j+1 �Mi;j is in the range f0; 1g.6.2 The Cuto� ImprovementIn [20] they consider the dynamic programming algorithm and observe that column values largerthan k can be assumed to be k + 1 without a�ecting the output of the computation. Cells ofC with value not exceeding k are called active. In the algorithm, the index ` of the last activecell (i.e., largest i such that Ci � k) is maintained. All the values C`+1:::m are assumed to bek+1, so C needs to be updated only in the range C1:::`. Later [4] it was shown that, on average,` = O(k) and therefore the algorithm is O(kn).The value ` has to be updated throughout the computation. Initially, ` = k because Ci = i.It is shown that, at each new column, the last active cell can be incremented at most by one,so we check whether C`+1 � k and in such a case we increment `. However, it is also possiblethat which was the last active cell becomes inactive now, that is, C` > k. In this case we haveto search upwards for the new last active cell. Despite that this search can take O(m) time at agiven column, we cannot work more than O(n) overall, because there are at most n incrementsof ` in the whole process, and hence there are no more than n+ k decrements. Hence, the lastactive cell is maintained at O(1) amortized cost per column.

6.3 An Automaton ViewAn alternative approach is to model the search with a non-deterministic automaton (NFA) [2].Consider the NFA for k = 2 di�erences shown in Fig. 12. Every row denotes the number ofdi�erences seen (the �rst row zero, the second row one, etc.). Every column represents matchinga pattern pre�x. Horizontal arrows represent matching a character. All the others incrementthe number of di�erences (i.e., move to the next row): vertical arrows insert a character inthe pattern, solid diagonal arrows substitute a character, and dashed diagonal arrows delete acharacter of the pattern. The initial self-loop allows an occurrence to start anywhere in the text.The automaton signals (the end of) a match whenever a rightmost state is active.It is not hard to see that once a state in the automaton is active, all the states of the samecolumn and higher-numbered rows are active too. Moreover, at a given text position, if we collectthe smallest active rows at each column, we obtain the vector C of the dynamic programming(in this case [0; 1; 2; 3; 3; 3; 2]).
Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

εεεεεε

εεεεεε

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

s u

s

s u

u

v

v

v

r

r

r

e

e

no errors

2 errors

1 error

y

y

y

e

Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

Fig. 12. An NFA for approximate string matching of the pattern "survey" with two di�erences. The shadedstates are those active after reading the text "surgery".Note that the NFA can be used to compute edit distance by simply removing the self-loop,although it cannot distinguish among di�erent values larger than k.6.4 The ABNDM AlgorithmGiven a pattern P , a su�x automaton is an automaton that recognizes every su�x of P . This isused in [6] to design a simple exact pattern matching algorithm called BDM, which is optimalon average (O(n log�m=m) time). To search for a pattern P in a text T , the su�x automatonof P r = PmPm�1 : : :P1 (i.e the pattern read backwards) is built. A window of length m is slidalong the text, from left to right. The algorithm scans the window backwards, using the su�xautomaton to recognize a factor of P . During this scan, if a �nal state is reached that doesnot correspond to the entire pattern P , the window position is recorded in a variable last. Thiscorresponds to �nding a pre�x of the pattern starting at position last inside the window andending at the end of the window, because the su�xes of P r are the reverse pre�xes of P . Thisbackward search ends in two possible forms:1. We fail to recognize a factor, that is, we reach a letter a that does not correspond to atransition in the su�x automaton (Fig. 13). In this case we shift the window to the right soas to align its starting position to the position last.2. We reach the beginning of the window, and hence recognize P and report the occurrence.Then, we shift the window exactly as in case 1 (to the previous last value).In BNDM [14] this scheme is combined with bit-parallelism so as to replace the constructionof the deterministic su�x automaton by the bit-parallel simulation of a nondeterministic one.

�������
�������
�������
�������

�������
�������
�������
�������

��������������

Text

Pattern

Safe shift

a

Factor search

lastFig. 13. BDM search scheme.The scheme turns out to be exible and powerful, and permits other types of search, in particularapproximate search. The resulting algorithm is ABNDM.We modify the NFA of Fig. 12 so that it recognizes not only the whole pattern but also anysu�x thereof, allowing up to k di�erences. Fig. 14 illustrates the modi�ed NFA. Note that wehave removed the initial self-loop, so it does not search for the pattern but recognizes strings atedit distance k or less from the pattern. Moreover, we have built it on the reverse pattern. Wehave also added an initial state \I", with �-transitions leaving it. These allow the automaton torecognize, with up to k di�erences, any su�x of the pattern.
Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

εεεεεε

εεεεεε

I

ε ε ε ε ε εε

s u

s

s u

u

v

v

v

r

r

r

e

e

no errors

2 errors

1 error

y

y

y

e

Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

Fig. 14. An NFA to recognize su�xes of the pattern "survey" reversed.In the case of approximate searching, the length of a pattern occurrence ranges from m� kto m+ k. To avoid missing any occurrence, we move a window of length m� k on the text, andscan backwards the window using the NFA described above.Each time we move the window to a new position we start the automaton with all its statesactive, which represents setting the initial state to active and letting the �-transitions ush thisactivation to all the automaton (the states in the lower-left triangle are also activated to allowinitial insertions). Then we start reading the window characters backward.We recognize a pre�x and update last whenever the �nal NFA state is activated. We stopthe backward scan when the NFA is out of active states.If the automaton recognizes a pattern pre�x at the initial window position, then it is possible(but not necessary) that the window starts an occurrence. The reason is that strings of di�erentlength match the pattern with k di�erences, and all we know is that we have matched a pre�xof the pattern of length m� k.Therefore, in this case we need to verify whether there is a pattern occurrence starting exactlyat the beginning of the window. For this sake, we run the traditional automaton that computesedit distance (i.e., that of Fig. 12 without initial self-loop) from the initial window position inthe text. After reading at most m + k characters we have either found a match starting at the

window position (that is, the �nal state becomes active) or determined that no match starts atthe window beginning (that is, the automaton runs out of active states).So we need two di�erent automata in this algorithm.A �rst one makes the backward scanning,recognizing su�xes of P r. A second one makes the forward scanning, recognizing P .The automata can be simulated in a number of ways. In [14] they choose BPA [21] becauseit is easy to adapt to the new scenario. Other approaches were discarded: an alternative NFAsimulation [3] is not practical to compute edit distance, and BPM [10] cannot easily tell whenthe corresponding automaton is out of active states, or which is the same, when all the cells ofthe current dynamic programming column are larger than k.Fig. 15 shows the algorithm.ABNDM (P1:::m; T1:::n; k)1. Preprocessing2. Build forward and backward NFA simulations (fNFA and bNFA)3. Searching4. j 05. While pos � n� (m� k) Do6. j m� k, last m� k7. Initialize bNFA8. While j 6= 0 and bNFA has active states Do9. Feed bNFA with Tpos+j10. j j � 111. If bNFA's �nal state is active Then /* pre�x recognized */12. If j > 0 Then last j13. Else check with fNFA a possible occurrence starting at pos+ 114. pos pos+ lastFig. 15. The generic ABNDM algorithm.The algorithm is shown to be good for moderatem, low k and small �, which is an interestingcase, for example, in DNA searching. However, the use of BPA for the NFA simulation limitsits usefulness to very small k values. Our purpose in this paper is to show that BPM can beextended for this task, so as to obtain a faster version of ABNDM that works with larger k.

