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Abstract. We present a new bit-parallel technique for approximate string matching. We build on
two previous techniques. The first one [Myers, J. of the ACM, 1999], searches for a pattern of length
m in a text of length n permitting k differences in O(mn/w) time, where w is the width of the
computer word. The second one [Navarro and Raffinot, ACM JEA, 2000], extends a sublinear-time
exact algorithm to approximate searching. The latter technique makes use of an O(kmn/w) time
algorithm [Wu and Manber, Comm. ACM, 1992] for its internal workings. This algorithm is slow
but flexible enough to support all the required operations. In this paper we show that the faster
algorithm of Myers can be adapted to support all those operations. This involves extending it to
compute edit distance, to search for any pattern suffix, and to detect in advance the impossibility of
a later match. The result is an algorithm that performs better than the original version of Navarro
and Raffinot and that is the fastest for several combinations of m, k and alphabet sizes that are
useful, for example, in natural language searching and computational biology.

1 Introduction

Approximate string matching is one of the main problems in classical string algorithms, with
applications to text searching, computational biology, pattern recognition, etc. Given a text of
length n, a pattern of length m, and a maximal number of differences permitted, k, we want to
find all the text positions where the pattern matches the text up to k differences. The differences
can be substituting, deleting or inserting a character. We call a = k/m the difference ratio, and
o the size of the alphabet Y. All the average case figures in this paper assume random text and
uniformly distributed alphabet.

In this paper we consider online searching, that is, the pattern can be preprocessed but the
text cannot. The classical solution to the problem is based on filling a dynamic programming
matrix and needs O(mn) time [16]. Since then, many improvements have been proposed (see
[11] for a complete survey). These can be divided into four types.

The first type is based on dynamic programming and has achieved O(kn) worst case time [7,
9]. These algorithms are not really practical, but there exist also practical solutions that achieve,
on the average, O(kn) [20] and even O(kn/, /o) time [4].

The second type reduces the problem to an automaton search, since approximate searching
can be expressed in that way. A deterministic finite automaton (DFA) is used in [20] so as to
obtain O(n) search time, which is worst-case optimal. The problem is that the preprocessing
time and the space is O(3™), which makes the approach practical only for very small patterns.
In [22] they trade time for space using a Four Russians approach, achieving O(kn/logs) time
on average and O(mn/logs) in the worst case, assuming that O(s) space is available for the
DFAs.

The third approach filters the text to quickly discard large text areas, using a necessary
condition for an approximate occurrence that is easier to check than the full condition. The
areas that cannot be discarded are verified with a classical algorithm [18,17,5,12,14]. These
algorithms achieve “sublinear” expected time in many cases for low difference ratios, that is,
not all text characters are inspected. However, the filtration is not effective for higher ratios.
The typical average complexity is O(knlog, m/m) for a« = O(1/log, m). The optimal average
complexity is O((k +1log, m)n/m) for a < 1—0(1/+/0) [5], which is achieved in the same paper.
The algorithm, however, is not practical.

Finally, the fourth approach is bit-parallelism [1, 21], which consists in packing several values
in the bits of the same computer word and managing to update all them in a single operation.
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The idea is to simulate another algorithm using bit-parallelism. The first bit-parallel algorithm
for approximate searching [21] parallelized an automaton-based algorithm: a nondeterministic
finite automaton (NFA) was simulated in O(k[m/w]|n) time, where w is the number of bits in
the computer word. We call this algorithm BPA (for Bit-Parallel Automaton) in this paper.
BPA was improved to O([km/w]n) [3] and finally to O([m/w]|n) time [10]. The latter simulates
the classical dynamic programming algorithm using bit-parallelism, and we call it BPM (for
Bit-Parallel Matrix) in this paper.

Currently the most successful approaches are filtering and bit-parallelism. A promising ap-
proach combining both [14] will be called ABNDM in this paper (for Approximate BNDM).
The original ABNDM was built on BPA because the latter is the most flexible for the partic-
ular operations needed. The faster BPM was not used at that time because of the difficulty in
modifying it to be suitable for ABNDM.

In this paper we extend BPM in several ways so as to permit it to be used in the framework
of ABNDM. The result is a competitive approximate string matching algorithm. In particular,
the algorithm turns out to be the fastest for a range of m and k that includes interesting cases
of natural language searching and computational biology applications.

2 Basic Concepts

2.1 Notation

We will use the following notation on strings: |z| will be the length of string #; ¢ will be the
only string of length zero; string positions will start at 1; substrings will be denoted as z;._;,
meaning taking from the i-th to the j-th character of z, both inclusive; z; will denote the single
character at position 7 in 2. We say that z is a prefix of zy, a suffix of yz, and a substring or
factor of yzz.

Bit-parallel algorithms will be described using C-like notation for the operations: bitwise
“and” (&), bitwise “or” (|), bitwise “xor” (A), bit complementation (~), and shifts to the left
(<<) and to the right (>>), which are assumed to enter zero bits both ways. We also perform
normal arithmetic operations (4, —, etc.) on the bit masks, which are treated as numbers in
this case. Constant bit masks are expressed as sequences of bits, the first to the right, using
exponentiation to denote bit repetition, for example 102 = 1000 has a 1 at the 4-th position.

2.2 Problem Description

The problem of approximate string matching can be stated as follows: given a (long) text T’
of length n, and a (short) pattern P of length m, both being sequences of characters from an
alphabet X of size o, and a maximum number of differences permitted, k, find all the segments
of T whose edit distance to P is at most k. Those segments are called “occurrences”, and it is
common to report only their start or end points.

The edit distance between two strings # and y is the minimum number of differences that
would transform z into y or vice versa. The allowed differences are deletion, insertion and
substitution of characters. The problem is non-trivial for 0 < k < m. The difference ratio is
defined as a = k/m.

Formally, if ed() denotes the edit distance, we may want to report start points (i.e. {|z|, T =
zP'y, ed(P,P') < k}) or end points (i.e. {|zP'|, T = zP'y, ed(P, P') < k}) of occurrences.

2.3 Dynamic Programming

The oldest and still most flexible (albeit slowest) algorithm to solve the problem is based on
dynamic programming [16]. We first show how to compute the edit distance between two strings



z and y. To compute ed(z,y), a matrix My |5|0. |y is filled, where M; ; = ed(z; ;,91.;), so at
the end M, |, = ed(e,y). This matrix is computed as follows

Mi’o — i, Mo,j — j,
Mi’j «—if (a:z = yj) then Mi—l,j—l else 1 4+ min(Mi_l,j, Mi,j—l, Mi—l,j—l)

where the formula accounts for the three allowed operations. This matrix is usually filled colum-
nwise left to right, and each column top to bottom. The time to compute ed(z,y) is then
O(lz|lyl)-

This is easily extended to approximate searching, where ¢ = P and y = T, by letting an
occurrence start anywhere in T'. The only change is on the initial condition My ; < 0. The time
is still O(|z||y|) = O(mn). The space can be reduced to O(m) by storing only one column of
the matrix at the time, namely, the one corresponding to the current text position (going left
to right means examining the text sequentially).

In this case it is more appropriate to think of a column vector Cjy. ,,, which is initialized at
C; < i and updated to C’ after reading text character T using

C; «+ if (P, =Tj) then C;_; else 1 + min(C;_;,C;, Ci_1)

1

for all ¢ > 0, and hence we report every end position j where C; < k.

Several properties of the matrix M are discussed in [19]. The most important for us is that
adjacent cells in M differ at most by 1, that is, both M; ; — M;4, ; and M; ; — M; ;41 are in the
range {—1,0,+1}. Also, M;41 j+1 — M, ; is in the range {0,1}.

Fig. 1 shows examples of edit distance computation and approximate string matching.
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Fig. 1. The dynamic programming algorithm. On the left, to compute the edit distance between "survey" and
"surgery". On the right, to search for "survey" in the text "surgery". The bold entries show the cell with the
edit distance (left) and the end positions of occurrences for k = 2 (right).

2.4 The Cutoff Improvement

In [20] they consider the dynamic programming algorithm and observe that column values larger
than k can be assumed to be k + 1 without affecting the output of the computation. Cells of
C with value not exceeding k are called active. In the algorithm, the index £ of the last active
cell (i.e., largest ¢ such that C; < k) is maintained. All the values Cyy1. ., are assumed to be
k+1, so C needs to be updated only in the range C;. 4. Later [4] it was shown that, on average,
£ = O(k) and therefore the algorithm is O(kn).

The value £ has to be updated throughout the computation. Initially, £ = k because C; = 1.
It is shown that, at each new column, the last active cell can be incremented at most by one,
so we check whether Cyy; < k and in such a case we increment ¢. However, it is also possible
that which was the last active cell becomes inactive now, that is, Cy > k. In this case we have
to search upwards for the new last active cell. Despite that this search can take O(m) time at a
given column, we cannot work more than O(n) overall, because there are at most n increments
of £ in the whole process, and hence there are no more than n + k decrements. Hence, the last
active cell is maintained at O(1) amortized cost per column.



2.5 An Automaton View

An alternative approach is to model the search with a non-deterministic automaton (NFA) [2].
Consider the NFA for £ = 2 differences shown in Fig. 2. Every row denotes the number of
differences seen (the first row zero, the second row one, etc.). Every column represents matching
a pattern prefix. Horizontal arrows represent matching a character. All the others increment
the number of differences (i.e., move to the next row): vertical arrows insert a character in
the pattern, solid diagonal arrows substitute a character, and dashed diagonal arrows delete a
character of the pattern. The initial self-loop allows an occurrence to start anywhere in the text.
The automaton signals (the end of) a match whenever a rightmost state is active.

It is not hard to see that once a state in the automaton is active, all the states of the same
column and higher-numbered rows are active too. Moreover, at a given text position, if we collect
the smallest active rows at each column, we obtain the vector C' of the dynamic programming
(in this case [0,1,2,3,3,3,2], compare to Fig. 1).
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Fig. 2. An NFA for approximate string matching of the pattern "survey" with two differences. The shaded states
are those active after reading the text "surgery".

Note that the NFA can be used to compute edit distance by simply removing the self-loop,
although it cannot distinguish among different values larger than k.

2.6 A Bit-Parallel Automaton Simulation (BPA)

The idea of BPA [21] is to simulate the NFA of Fig. 2 using bit-parallelism, so that each row ¢
of the automaton fits in a computer word R; (each state is represented by a bit). For each new
text character, all the transitions of the automaton are simulated using bit operations among
the k& 4+ 1 computer words.

The update formula to obtain the new R} values at text position j from the current R; values
is as follows:

Ry + ((Ro << 1) | 0™ 1) & B[T}]
i1 — (R << 1) & BITy]) | R | (Ri<<1) | (R;<<1)

where Blc| is a precomputed table of o entries such that the r-th bit of B|c] is set whenever
P, = c. We start the search with R; = 0™~*1%. In the formula for R}, are expressed, in that
order, horizontal, vertical, diagonal and dashed diagonal arrows.

If m > w we need [m/w]| computer words to simulate every R; mask, and have to update
them one by one. The cost of this simulation is thus O(k[m/w]n). The algorithm is flexible, for
example in order to remove the initial self-loop one has to change the update formula for Ry to

Ry « (Ro << 1) & B[T}].



2.7 Mpyers’ Bit-Parallel Matrix Simulation (BPM)

A better way to parallelize the computation [10] is to represent the differences between consec-
utive rows or columns of the dynamic programming matrix instead of the NFA states. Let us
call

Hhij=M;;—M; € {-1,0,+1}
Avjj=M;— My € {-1,0,+1}
Ad;j=M;;— M1 ;-1 € {0,1}

the horizontal, vertical, and diagonal differences among consecutive cells. Their range of values
come from the properties of the dynamic programming matrix [19].

We present a version [8] that differs slightly from that of [10]: Although both perform the
same number of operations per text character, the one we present is easier to understand and
more convenient for our purposes.

Let us introduce the following boolean variables. The first four refer to horizontal /vertical
positive/negative differences and the last to the diagonal difference being zero:

VPi’j = Avi,j =+1 VNi’j = Avi,j = -1
HPi’j = Ahi’j =41 HNi’j = Ahi’j = -1

Note that Avi,j = VPi’j — VNi’j, Ahi’j = HPi’j — HNi’j, and Adi’j =1- DOi’j. It is clear
that these values completely define M; ; =3, , Mv, ;.

The boolean matrices HN, VN, HP, VP, and D0 can be seen as vectors indexed by %,
which change their value for each new text position j, as we traverse the text. These vectors are
kept in bit masks with the same name. Hence, for example, the i-th bit of the bit mask HN
will correspond to the value HN; ;. The index j — 1 refers to the previous value of the bit mask
(before processing T;), whereas j refers to the new value, after processing T;. By noticing some
dependencies among the five variables [8,15], one can arrive to identities that permit computing
their new values (at j) from their old values (at j — 1) fast.

Fig. 3 gives the pseudo-code. The value diff stores C,, = M,, ; explicitly and is updated
using HP,, ; and HN,, ;.

BPM (Pi..m; Ti..n, k)

1. Preprocessing

2. For ¢ € ¥ Do B[c] + 0™

3. For i € 1...m Do B[P;] « B[P;] | 0™ *10'*

4. VP« 1", VN « 0™

5. diff <« m

6. Searching

7. For j€1...n Do

8. X« B[T;]|VN

9. Do+ ((VP+ (X &VP)) AVP)| X

10. HN «+ VP & DO

11. HP+« VN | ~ (VP | Do)

12. X+ HP<<«1

13. VN« X & Do

14. VP« (HN <<1)| ~(X | Do)

15. If HP & 10™ ! # 0™ Then diff « diff +1
16. If HN & 10™ ! # 0™ Then diff « diff — 1
17. If diff < k Then report an occurrence at j

Fig. 3. BPM bit-parallel simulation of the dynamic programming matrix.



This algorithm uses the bits of the computer word better than previous bit-parallel algo-
rithms, with a worst case of O(m/w]n) time. However, the algorithm is more difficult to adapt
to other related problems, and this has prevented it from being used as an internal tool of other
algorithms.

2.8 The ABNDM Algorithm

Given a pattern P, a suffiz automaton is an automaton that recognizes every suffix of P. This is
used in [6] to design a simple exact pattern matching algorithm called BDM, which is optimal
on average (O(nlog, m/m) time). To search for a pattern P in a text T, the suffix automaton
of P" = P, Pp_1 ... P (i.e the pattern read backwards) is built. A window of length m is slid
along the text, from left to right. The algorithm scans the window backwards, using the suffix
automaton to recognize a factor of P. During this scan, if a final state is reached that does
not correspond to the entire pattern P, the window position is recorded in a variable last. This
corresponds to finding a prefiz of the pattern starting at position last inside the window and
ending at the end of the window, because the suffixes of P" are the reverse prefixes of P. This
backward search ends in two possible forms:

1. We fail to recognize a factor, that is, we reach a letter a that does not correspond to a
transition in the suffix automaton (Fig. 4). In this case we shift the window to the right so
as to align its starting position to the position last.

Factor search

Safe shift

Fig. 4. BDM search scheme.

2. We reach the beginning of the window, and hence recognize P and report the occurrence.
Then, we shift the window exactly as in case 1 (to the previous last value).

In BNDM [14] this scheme is combined with bit-parallelism so as to replace the construction
of the deterministic suffix automaton by the bit-parallel simulation of a nondeterministic one.
The scheme turns out to be flexible and powerful, and permits other types of search, in particular
approximate search. The resulting algorithm is ABNDM.

We modify the NFA of Fig. 2 so that it recognizes not only the whole pattern but also any
suffix thereof, allowing up to k differences. Fig. 5 illustrates the modified NFA. Note that we
have removed the initial self-loop, so it does not search for the pattern but recognizes strings at
edit distance k or less from the pattern. Moreover, we have built it on the reverse pattern. We
have also added an initial state “I”, with e-transitions leaving it. These allow the automaton to
recognize, with up to k differences, any suffix of the pattern.

In the case of approximate searching, the length of a pattern occurrence ranges from m — k
to m + k. To avoid missing any occurrence, we move a window of length m — k on the text, and
scan backwards the window using the NFA described above.

Each time we move the window to a new position we start the automaton with all its states
active, which represents setting the initial state to active and letting the e-transitions flush this
activation to all the automaton (the states in the lower-left triangle are also activated to allow
initial insertions). Then we start reading the window characters backward.

We recognize a prefix and update last whenever the final NFA state is activated. We stop
the backward scan when the NFA is out of active states.
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Fig. 5. An NFA to recognize suffixes of the pattern "survey" reversed.

If the automaton recognizes a pattern prefix at the initial window position, then it is possible
(but not necessary) that the window starts an occurrence. The reason is that strings of different
length match the pattern with k differences, and all we know is that we have matched a prefix
of the pattern of length m — k.

Therefore, in this case we need to verify whether there is a pattern occurrence starting exactly
at the beginning of the window. For this sake, we run the traditional automaton that computes
edit distance (i.e., that of Fig. 2 without initial self-loop) from the initial window position in
the text. After reading at most m + k characters we have either found a match starting at the
window position (that is, the final state becomes active) or determined that no match starts at
the window beginning (that is, the automaton runs out of active states).

So we need two different automatain this algorithm. A first one makes the backward scanning,
recognizing suffixes of P". A second one makes the forward scanning, recognizing P.

The automata can be simulated in a number of ways. In [14] they choose BPA [21] because
it is easy to adapt to the new scenario. To recognize all the suffixes we just need to initialize
R; + 1™. To make it compute edit distance, we remove the self-loop as explained in Sec. 2.6.
The final state is active when R & 10™~! # 0™. The NFA is out of active states whenever
Ry = 0™. Other approaches were discarded: an alternative NFA simulation [3] is not practical
to compute edit distance, and BPM [10] cannot easily tell when the corresponding automaton is
out of active states, or which is the same, when all the cells of the current dynamic programming
column are larger than k.

Fig. 6 shows the algorithm.

The algorithm is shown to be good for moderate m, low k and small o, which is an interesting
case, for example, in DNA searching. However, the use of BPA for the NFA simulation limits
its usefulness to very small k& values. Qur purpose in this paper is to show that BPM can be
extended for this task, so as to obtain a faster version of ABNDM that works with larger k.

Average Case Analysis of ABNDM. We show that ABNDM inspects on average O(knlog,(m)/m)
text positions. This is better than what was previously obtained [11]. Using previous results [11],
we have that the total number of strings that match a suffix of a pattern of length m with k

errors is at least (7)(o — 1)* (assuming only replacements and matching only the whole pat-
tern) and at most m(’,:)2crk (counting every suffix as if it had length m and assuming all the
strings different). If we inserted those strings in a trie, the resulting height would be logarithmic
(base o) in the number of strings inserted. This means a height of &(k + mlog, m — klog, k —

(m — k)log,(m — k)), which can be factorized as © (k +mlog, " + klog, mT_k> We have

mlog, "+ = mlog, (1 + ﬁ) < 2k < 2k. The latter is because we are interested in the

case k < m/2, as otherwise the algorithm cannot be sublinear time: the window is of length



ABNDM (Pi...m, Th..cn, k)

1. Preprocessing

2. Build forward and backward NFA simulations (fNFA and bNF A)

3. Searching

4. j<0

5. While pos <n — (m — k) Do

6. je—m—k,last —m—k

7. Initialize BN F A

8. While j#0 AND bNFA has active states Do

9. Feed bNF A with Tposyj

10. jej—1

11. If bN F A’s final state is active Then /* prefix recognized */
12. If 7 > 0 Then last + j

13. Else check with fNF A a possible occurrence starting at pos + 1
14. pos < pos + last

Fig. 6. The generic ABNDM algorithm.

m — k and we read at least k + 1 characters before the NFA can run out of active states. Hence
we have that the height is ©(k + klog,(m/k)). This is @(klog, m), for example consider the
case k = m>.

Traversing the window backwards until the NFA runs out of active states is equivalent to
entering the above trie with the reverse window. On average, we reach the end of the trie in
O(klog, m) steps. Then we shift the window forward in m — @(klog, m) positions. Overall,
we inspect O(knlog,(m)/m) text positions, for a < 1/2. If we use BPA, the complexity is

O(k*nlog,(m)/w). If we manage to use BPM, this goes down to O(knlog,(m)/w).

3 Forward Scanning with the BPM Simulation

We first focus on how to adapt the BPM algorithm to perform the forward scanning required
by the ABNDM algorithm. Two modifications are necessary. The first is to make the algorithm
compute edit distance instead of performing text searching. The second is making it able to
determine when it is not possible to obtain edit distance < k by reading more characters.

3.1 Computing Edit Distance

We recall that BPM implements the dynamic programming algorithm of Sec. 2.3 in such a way
that differential values, rather than absolute ones, are stored. Therefore, we must consider which
is the change required in the dynamic programming matrix in order to compute edit distance.
As explained in Sec. 2.3, the only change is that M ; = j. In differential terms (Sec. 2.7), this
means Ahg ; = 1 instead of zero, or which is the same, that the lowest bit of H P should always
be 1.

However, since this bit is always zero in the original BPM algorithm, it is not represented.
The only place where the assumption Ahg ; = 0 makes a difference is on line 12 of the algorithm
(Fig. 3). On this line, H P is shifted to the left, and the assumed bit zero enters automatically
from the right. Hence we change line 12 of the algorithm to X «+ (HP << 1) | 0™ 11.

Since we will use this technique several times from now on, we give in Fig. 7 the code for a
single step of edit distance computation.

3.2 Preempting the Computation

Albeit in the forward scan we could always run the automaton through m + k text characters,
stopping only if di ff < k to signal a match, it is also possible to determine that diff will always
be larger than k in the characters to come. This happens when all the cells of the vector C; are



BPMStep (Bc)

X+ Bc|VN

DO« (VP4+(X & VP)) A VP)| X
HN «+ VP & DO

HP « VN | ~ (VP | Do)

X+ (HP<<1)|0m 1
VN« X & D0

VP« (HN <<1)| ~ (X | Do)

No g W

Fig. 7. Single step of the adaptation of BPM to compute edit distance. It receives the bit mask B of the current
text character and shares all the other variables with the calling process.

larger than k, because there is no way in the recurrence to introduce a value smaller than the
current ones. In the automaton view, this is the same as the NFA running out of active states
(since an active state at column ¢ and row » would mean C; = r < k).

This is more difficult in the dynamic programming matrix simulation of BPM. The only
column value that is explicitly stored is diff = C,,. The others are implicitly represented as
Ci=5%,-1 VP —VN,. It is not easy to check whether Vi, C; > k using this incremental
representation.

Our solution is inspired in the cutoff algorithm of Sec. 2.4. This algorithm permits knowing
all the time the largest £ such that C; < k, at constant amortized time per text position.
Although designed for text searching, the technique can be applied without any change to the
edit distance computation algorithm. Clearly 3¢, C; <k < £> 0.

So we have to figure out how to compute £ using BPM. Initially, since C; = 7, we set £ + k.
Later, we have to update £ for each new text character read. Recall that, given that neighboring
cells in M differ by at most one, and that by definition My ;_1 > k, we have that M, ;_; = k.

Since £ can increase at most by one at the new text position, we start by effectively increasing
it. This increment is correct when My, ; < k before doing the increment. Since My 1 ;—M; ;-1 =
Adyyq ; € {0,1}, we have that it was correct to increase £ if and only if D0, ; after the increment.
If it was not correct to increase £, we later decrease it as much as necessary to obtain M, ; < k.
Since we know that now M, ; = k+1, we obtain My_ ; = M, ; —V P, ; +V Ny ;, and so on with
£ —2,{— 3, etc. If we reach £ = 0 and still M, ; > k, then all the rows are larger than k and we
stop the scanning process.

The above arguments assume ¢ < m. Note that, as soon as £ = m, we have that C,, < k and
therefore the forward scan will then terminate because we have found an occurrence.

Fig. 8 shows the forward scanning algorithm. It scans from text position j and determines
whether there is an occurrence starting at j. Instead of P, the routine receives the mask B
already computed (see Fig. 3). Note that for efficiency ¢ is maintained in unary.

4 Backward Scanning with the BPM Simulation

The backward scan has the particularity that all the NFA states start active. This is equivalent
to initializing C' as C; = 0 for all . The place where this initialization is expressed in BPM is
on line 4 of Fig. 3. Since VP = 1™, we have C; = 7. We change it to VP «+ 0™ and obtain the
desired effect. Also, like in forward scanning, My ; = j, so we apply the same change to line 12
that sets the 0-th bit in H P.

With these tools at hand, we could simply apply the forward scan algorithm with B built
on P" and reading the window backwards. We could use £ to determine when the NFA is out
of active states. Every time £ = m we know that we have recognized a prefix and hence update
last. There are a few changes, though: (i) we start with £ = m because M;o = 0; and (ii) we
have to deal with the case £ = m when updating ¢, because now we do not stop the backward
scanning in that case but just update last.



BPMFwd (B, Tj..n, k)

1. VP« 1™, VN« 0™

2. £ ok okt

3. While j <n Do

4. BPMStep (B[T}])

5. L L<<1

6. If DO & £ = 0™ Then

7. val — k+1

8. ‘While val > k Do

9. If £ = 0™ '1 Then Return FALSE

10. IfVP & ¢ # 0™ Then val < val — 1
11. IfVN & £ # 0™ Then val < val +1
12. L—L>>1

13. Else If { = 10™~! Then Return TRUE

14. i 41

15. Return FALSE

Fig. 8. Adaptation of BPM to perform a forward scan from text position j and return whether there is an
occurrence starting at j.

The latter problem is solved as follows. As soon as £ = m we stop tracking £ and initialize
diff + k as the known value for C,,. We keep updating diff using HP and HN just as in
Fig. 3, until diff > k. At this moment we switch to updating ¢ again, moving it upwards as
necessary.

The above scheme works correctly but it is terribly slow. The reason is that £ starts at m
and it has to reach zero before we can leave the window. This requires m shifting operations
£+ £ >> 1, which is a lot considering that on average one traverses O(klog, m) characters in
the window. The O(k + n) complexity given in Sec. 2.4 becomes here O(m + klog, m). So, the
problem is that all the column values reach a value larger than k quite soon, but we take too
much time traversing all them to determine that this has happened.

We present two solutions to determine fast that all the C; values have surpassed k.

4.1 Bit-Parallel Counters

In the original BPM algorithm the integer value diff = C,, is explicitly maintained in order to
determine which text positions match. The way is to use the m-th bit of HP and HN to keep
track of C,,. This part of the algorithm is not bit-parallel, so in principle one cannot do the
same with all the C; values and still hope to update all of them in a single operation.

However, it is possible to store several such counters in the same computer word M C and use
them to upper bound the others. Since the C; values start at zero and the window is of length
m — k, we need in principle [log,(m — k)| bits to store any C; value (their value after reading
the last window character is not important). Hence we have space for O(m/logm) counters in

MC.

To determine the minimum number ) of bits needed for each counter we must look a bit
ahead in our algorithm. We will need to determine that all the counters have exceeded k' =
k+ |Q/2]. For this sake, we initialize the counters at a value b that makes sure that their last
bit will be activated when they surpass this threshold. So we need that 6 + k' + 1 = 29-1 On
the other hand, we have to ensure that the Q-th bit is always set for any counter value up to
b+m—k (and that Q bits are still enough to represent the counter), which means b4+m—k < 29.
This can be resolved by first finding the minimal Q* such that £ +1 < 29"~ and m — k < 297,
The solution is Q* = 1 4 [log,(max(m — 2k — 1,k + 1))]. Then Q = Q*if 29"~ —1 > ¥’, and
otherwise Q = Q* + 1. Finally we set b =291 — ¢/ — 1.



We decide to store t = [m/Q] counters, for Cr,, Cr—q, Cm-29, ---1 Cm_(t-1)¢- The
counter for Cp,_,¢ uses the bits of the region m —rQ ...m — rQ + @ — 1, both inclusive. This
means that we need m + Q — 1 bits for MC.

The counters can be used as follows. Since every cell is at distance at most |Q/2] to some
represented counter and the difference between consecutive cells is at most 1, it is enough that
all the counters are > k' + 1=k + |Q/2] + 1, to be sure that all the cells of C' exceed k.

So the idea is to traverse the window until all the counters exceed k' and then shift the
window. We will examine a few more cells than if we had controlled exactly all the C' values:
The backward scan will behave as if we permitted ¥’ = k 4 |@Q/2] differences, so the number of
characters inspected is @ (n(k + log m) log, m/m). Note that we have only m/Q suffixes to test
but this does not affect the complexity. Note also that the amount of shifting is not affected
because we have (), correctly represented.

We have to face two problems. The first one is how to update all the counters in a single
operation. This is not hard because counter C,,_,g can be updated from its old to its new
value by considering the (m — rQ)-th bits of HP and HN. That is, we define a mask sMask =
(09-11)t0m+@-1-tQ and update MC using MC < MC + (HP & sMask) — (HN & sMask).

The second problem is how to determine that all the counters have exceeded k’. For this
sake we have defined b and @ so that the Q-th bits of the counters get activated when they
exceed k'. If we define eMask = (10971)t0™+2-1-*@ then we can stop the scanning whenever
MC & eMask = eMask.

Finally, note that our assumption that every cell in C is at distance at most |Q/2] to a
represented cell may not be true for the first [Q/2] cells. However, we know that, at the j-th
iteration, Cy = j, so we may assume there is an implicit counter at row zero. Moreover, since
this counter is always incremented, it is larger than any other counter, so it will surely surpass
k' when other counters do. The initial [Q/2] cells are close enough to this implicit counter.

Fig. 9 shows the pseudocode of the algorithm. All the bit masks are of length m, except
sMask, eMask and MC, which are of length m + @Q — 1.

In case our upper bound turns out to be too loose, we can use several interleaved sets of
counters, each set in its own bit-parallel counter. For example we could use two interleaved M C
counters and hence the limit would be Q/4. In general we could use ¢ counters and have a limit
of the form Q/2¢. The cost would be O(nc(k + log(m)/2°)log, m/m), which is optimized for
¢ = log,(log,(m)/k), where the complexity is O(nk log, mloglog, m/m) for k = o(log, m) and
the normal O(nk log, m/m) otherwise.

4.2 Bit-Parallel Cutoff

The previous technique, although simple, has the problem that it changes the complexity of the
search and inspects more cells than necessary. We can instead produce, using a similar approach,
an algorithm with the same complexity as the basic version. This time the idea is to mix the
bit-parallel counters with a bit-parallel version of the cutoff algorithm (Sec. 2.4).

Consider regions m—rQ —Q+1...m—rQ of length Q. Instead of having the counters fixed
at the end of each region (as in the previous section), we let the counters “float” inside their
region. The distance between consecutive counters is still @, so they all float together and all
are at the same distance ¢ to the end of their regions. We use sMask and eMask with the same
meanigs as before, but they are displaced so as to be all the time aligned to the counters.

The invariant is that the counters will be as close as possible to the end of their regions, as
long as all the cells past the counters exceed k. That is,

0 = min{de0...Q, Vre{0...t -1}, y€{0...d -1}, Cri_rg—y > k}

1 If sticking to m bits is necessary we can store C,, separately in the diff variable, at the same complexity but
more cost in practice.



ABNDMCounters (Pi..;m, T1..n, k)

1. Preprocessing

2. For ¢ € ¥ Do Bf[c] + 0™, Bb[c] « 0

3. For:c1l...m Do

4. Bf[P;] « Bf[P;] | 0™ 10!

5. Bb[P;] « Bb[P;] | 0'~*10™"

6. Q + 1+ [logy(max(m — 2k — 1,k + 1))]

7. If2°7' —k—1>|Q/2] ThenQ « Q+1

8. be 297 —k—|Q/2] -1

9. t+— [m/Q]

10. sMask « (097 11)tomte-1-tQ

11. eMask « (10971)tgmte-1-tQ

12. Searching

13. j«0

14. While pos < n— (m — k) Do

15. jem—k,last+— m—k

16. VP« 0", VN « 0™

17. MC « [blyomte—1-tQ

18. While j#0 aND MC & eMask # eMask Do
19. BPMStep (Bb[Tpostj5])

20. MC + MC + (HP & sMask) — (HN & sMask)
21. je—i—1

22. If MC & 10™T972 £ 0™*9~! Then /* prefix recognized */
23. If 5 > 0 Then last + j

24. Else If BPMFwd (Bf,Tpos+1..n) Then
25. Report an occurrence at pos + 1

26. pos — pos + last

Fig. 9. The ABNDM algorithm using bit-parallel counters. The expression [b]g denotes the number b seen as a
bit mask of length Q. Note that BPMFwd can share its variables with the calling code because these are not
needed anymore at that point.

where we assume that C yields values larger than k when accessed at negative indexes. When ¢
reaches @), this means that all the cell values are larger than k and we can suspend the scanning.
Prefix reporting is easy since no prefix can match unless 6 = 0, as otherwise C,;, = Cro_0.9 > &,
and if § = 0 then the last floating counter has exactly the value C,,.

The floating counters are a bit-parallel version of the cutoff technique, where each counter
cares of its region. Consequently the way of moving the counters up and down resembles the
cutoff technique. We first move down and use D0 to determine if we should have moved down.
If not, we move up as necessary using VP and V N. To determine if we should have moved
down, we need to know whether there is a counter that exceeds k. Using a similar mechanism
as with computing Q* in the previous section, we let Q = 1 + [log,(max(m — 2k, k 4 1))] and
b=29!'_k—1, and use eMask. In order to increment and decrement the counters we use
sMask. We have to deal with the case where the counters are at the end of their region and
hence cannot move down further. In this case we update them using HP and HN.

It is possible that the upmost counter goes out of bounds while shifting the counters, which
in effect results in that counter being removed. But this is not a problem, because since Cy > k
after the counters are shifted upwards for the first time, and since a disappearing counter will
be equal to Cy just before getting out of bounds, we have that this counter will be inactive.
Moreover, it should be inactive from then on, because if all the first block in C is larger than k,
it will not become < k again.

As for the case of a single counter, we work O(1) amortized time per text position. More
specifically, if we read u window characters then we work O(u 4 Q) because we have to move
from 6 = 0 to § = Q. But O(u+ Q) = O(klog, m) on average because Q = O(logm), and

therefore the classical complexity is not altered.



We also tried a practical version of using cutoff, in which the counters are not shifted. Instead
they are updated in a similar fashion to the algorithm of Fig. 9, and when all counters have a
value > k, we try to shift a copy of them up until either a cell with value < k is found or Q — 1
consecutive shifts are made. In the latter case we can stop the search, since then we have covered
checking the whole column C'. This version has a worse complexity, O(Qk logm) = O(klog® m),
as at each processed character it is possible to make O(Q) shifts. But in practice it turned out
to be very similar to the present cutoff algorithm.

Fig. 10 shows the algorithm. The counters are not physically shifted, we use ¢ instead.

ABNDMCutoff (Py...;m, T1...n, k)

1 Preprocessing

2 For ¢ € ¥ Do Bf[c] + 0™, Bb[c] «+ 0

3 For:c1l...m Do

4. Bf[P;] « Bf[P;] | 0™*10° !

5. Bb[P;] « Bb[P;] | 0'~*10™"

6 Q + 2+ [log,(m — 2k — 2)]

7 b 29—k -1

8 t [m/Q]

9. sMask « (097 '1)tom+e-1-¢Q

10. eMask « (10971)tgmte-1-tQ

11. Searching

12. j+<0

13. While pos <n — (m —k) Do

14. jem—k,last —m—k

15. VP« 0™ VN 0™

16. MC « [b)y0mte-1te

17. §«0

18. While 7#0 AND § < @ Do

19. BPMStep (Bb[Tpos+j5])

20. If § =0 Then MC + MC + ((HP & sMask) — (HN & sMask)
21. Else

22. §+45-1

23. MC + MC + (~ (D0 << §) & sMask)

24. While § < Q AND MC & eMask = eMask Do
25. MC + MC — ((VP << 6) & sMask) + (VN << §) & sMask)
26. §—45+1

27. jeg—1

28. If§ =0 AND MC & 10™%972 £ 0™*9~! Then /* prefix recognized */
29. If 7 > 0 Then last + j

30. Else If BPMFwd (Bf,Tpos+1...n) Then
31. Report an occurrence at pos + 1

32. pos + pos + last

Fig. 10. The ABNDM algorithm using bit-parallel cutoff. The same comments of Fig. 9 apply.

5 Experimental Results

We compared our BPM-based ABNDM against the original BPA-based ABNDM, as well as
those other algorithms that, according to a recent survey [11], are the best for moderate pattern
lengths. We tested with random patterns and text over uniformly distributed alphabets. Each
individual test run consisted of searching for 100 patterns a text of size 10 Mb. We measured
total elapsed times.

The computer used in the tests was a 64-bit Alphaserver ES45 with four 1 Ghz Alpha
EV68 processors, 4 GB of RAM and Tru64 UNIX 5.1A operating system. All test programs
were compiled with the DEC CC C-compiler and full optimization. There were no other active



significant processes running on the computer during the tests. All algorithms were set to use a
64 KB text buffer. The tested algorithms were:

ABNDM/BPA (regular): ABNDM implemented on BPA [21], using a generic implementa-
tion for any k.

ABNDM/BPA (special code): Same as before but especially coded for each value of k to
avoid using an array of bit masks.

ABNDM/BPM(count): ABDNM implemented using BPM and counters (Sec. 4.1). The im-
plementation differed slightly from Fig. 9 due to optimizations.

ABNDM/BPM(cutoff): ABDNM implemented using BPM and cutoff (Sec 4.2). The imple-
mentation differed slightly from Fig. 10 due to optimizations.

ABNDM/BPM(static): The version of ABNDM/cutoff that does not actively shift the coun-
ters.

BPM: The sequential BPM algorithm [10]. The implementation was from us and used the
slightly different (but practically equivalent in terms of performance) formulation from [8].

BPP: A combined heuristic using pattern partitioning, superimposition and hierarchical verifi-
cation, together with a diagonally bit-parallelized NFA [3,13]. The implementation was from
the original authors.

EXP: Partitioning the pattern into k 4+ 1 pieces and using hierachical verification with a di-
agonally bit-parallelized NFA in the checking phase [12]. The implementation was from the
original authors.

Fig. 11 shows the test results for o = 4, 13 and 52 and m = 30 and 55. This is only a small
part of our complete tests, which included ¢ = 4,13, 20,26 and 52, and m = 10,15, 20, ..., 55.
We chose o = 4 because it behaves like DNA, o = 13 because it behaves like English, and o = 52
to show that our algorithms are useful even on large alphabets.

First of all it can be seen that ABNDM/BPM(cutoff) is always faster than ABNDM /BPM(counters)
by a nonnegligible margin.

It can be seen that our ABNDM/BPM versions are often faster than ABNDM/BPA (special
code) when k = 4, and always when k > 4. Compared to ABNDM/BPA (regular), our version
is always faster for £ > 1. We note that writing down a different procedure for every possible k
value, as done for ABNDM/BPA (special code), is hardly a real alternative in practice.

With moderate pattern length m = 30, our ABNDM/BPM versions are competitive for low
error levels. However, BPP is better for small alphabets and EXP is better for large alphabets.
In the intermediate area ¢ = 13, we are the best for k = 4...6. This area is rather interesting
when searching natural language text.

When m = 55, our ABNDM/BPM versions become much more competitive, being the fastest
in many cases: For k = 5...9 with ¢ = 4, and for ¥ = 4...11 both with ¢ = 13 and ¢ = 52,
with the single exception of the case ¢ = 52 and k = 9, where EXP is faster (this seems to be a
variance problem, however).

6 Conclusions

The most successful approaches to approximate string matching are bit-parallelism and filter-
ing. A promising algorithm combining both is ABNDM [14]. However, ABNDM uses a slow
O(kmn/w) time bit-parallel algorithm (BPA [21]) for its internal working because no other al-
ternative exists with the necessary flexibility. In this paper we have shown how to extend BPM
[10] to replace BPA. Since BPM is O(mn/w) time, we obtain a much faster version of ABNDM.

For this sake, BPM was extended to permit backward scanning of the window and forward
verification. The extensions involved making it compute edit distance, making it able to recog-
nize any suffix of the pattern with k differences, and, the most complicated, being able to tell
in advance that a match cannot occur ahead, both for backward and forward scanning. We pre-
sented two alternatives for the backward scanning: a simple one that may read more characters
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Fig. 11. Comparison between algorithms, showing total elapsed time as a function of the number of differences
permitted, k. From top to bottom row we show o = 4, 13 and 52. On the left we show m = 30 and on the right
m = 55.

than necessary, and a more complicated (and more costly per processed character) that reads
exactly the required characters.

The experimental results show that our new algorithm beats the old ABNDM, even when
BPA is especially coded with a different procedure for every possible k value, often for k¥ = 4 and
always for £ > 4, and that it beats a general BPA implementation for k£ > 2. Moreover it was
seen that our version of ABNDM becomes the fastest algorithm for many cases with moderately
long pattern and fairly low error level, provided the counters fit in a single computer word. This
includes several interesting cases in searching DNA, natural language text, proteic sequences,
etc.
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APPENDIX — To be read at the discretion of the reviewer

We explain in more detail (still less than in the full version) the basic algorithms that have to
be understood in order to follow our paper.

6.1 Dynamic Programming

The oldest and still most flexible (albeit slowest) algorithm to solve the problem is based on
dynamic programming [16]. We first show how to compute the edit distance between two strings
z and y. To compute ed(z,y), a matrix My |5|0. |y is filled, where M; ; = ed(z; ;,91.;), so at
the end M, |, = ed(e,y). This matrix is computed as follows

Mi’o — i, Mo,j — j,
Mi’j +—if (a:z = yj) then Mi—l,j—l else 1 + min(Mi_l,j, Mi,j—l, Mi—l,j—l)

where the formula accounts for the three allowed operations. This matrix is usually filled colum-
nwise left to right, and each column top to bottom. The time to compute ed(z,y) is then
O(l=llyl)-

This is easily extended to approximate searching, where ¢ = P and y = T, by letting an
occurrence start anywhere in T'. The only change is on the initial condition My ; < 0. The time
is still O(|z||y|) = O(mn). The space can be reduced to O(m) by storing only one column of
the matrix at the time, namely, the one corresponding to the current text position (going left
to right means examining the text sequentially).

In this case it is more appropriate to think of a column vector Cjy. ,,, which is initialized at
C; < i and updated to C’ after reading text character T using

C; «+ if (P, =Tj) then C;_; else 1 + min(C;_;,C;, Ci_1)

for all ¢ > 0, and hence we report every end position j where C; < k.

Several properties of the matrix M are discussed in [19]. The most important for us is that
adjacent cells in M differ at most by 1, that is, both M; ; — M;4, ; and M; ; — M; ;41 are in the
range {—1,0,+1}. Also, M;41 j+1 — M, ; is in the range {0,1}.

6.2 The Cutoff Improvement

In [20] they consider the dynamic programming algorithm and observe that column values larger
than k can be assumed to be k + 1 without affecting the output of the computation. Cells of
C with value not exceeding k are called active. In the algorithm, the index £ of the last active
cell (i.e., largest ¢ such that C; < k) is maintained. All the values Cyy1. ., are assumed to be
k+1, so C needs to be updated only in the range C;. 4. Later [4] it was shown that, on average,
£ = O(k) and therefore the algorithm is O(kn).

The value £ has to be updated throughout the computation. Initially, £ = k because C; = 1.
It is shown that, at each new column, the last active cell can be incremented at most by one,
so we check whether Cyy; < k and in such a case we increment ¢. However, it is also possible
that which was the last active cell becomes inactive now, that is, Cy > k. In this case we have
to search upwards for the new last active cell. Despite that this search can take O(m) time at a
given column, we cannot work more than O(n) overall, because there are at most n increments
of £ in the whole process, and hence there are no more than n + k decrements. Hence, the last
active cell is maintained at O(1) amortized cost per column.



6.3 An Automaton View

An alternative approach is to model the search with a non-deterministic automaton (NFA) [2].
Consider the NFA for k& = 2 differences shown in Fig. 12. Every row denotes the number of
differences seen (the first row zero, the second row one, etc.). Every column represents matching
a pattern prefix. Horizontal arrows represent matching a character. All the others increment
the number of differences (i.e., move to the next row): vertical arrows insert a character in
the pattern, solid diagonal arrows substitute a character, and dashed diagonal arrows delete a
character of the pattern. The initial self-loop allows an occurrence to start anywhere in the text.
The automaton signals (the end of) a match whenever a rightmost state is active.

It is not hard to see that once a state in the automaton is active, all the states of the same
column and higher-numbered rows are active too. Moreover, at a given text position, if we collect
the smallest active rows at each column, we obtain the vector C' of the dynamic programming
(in this case [0,1,2,3,3,3,2]).

@ no errors
b3 S\Z
\ z A z
£ £\
e y
3 ! 1 error
s z
z AN z
€ N
e . y
2 \k@ 2 errors

Fig.12. An NFA for approximate string matching of the pattern "survey" with two differences. The shaded
states are those active after reading the text "surgery".

Note that the NFA can be used to compute edit distance by simply removing the self-loop,
although it cannot distinguish among different values larger than k.

6.4 The ABNDM Algorithm

Given a pattern P, a suffiz automaton is an automaton that recognizes every suffix of P. This is
used in [6] to design a simple exact pattern matching algorithm called BDM, which is optimal
on average (O(nlog, m/m) time). To search for a pattern P in a text T, the suffix automaton
of P" = P, Pp_1 ... P (i.e the pattern read backwards) is built. A window of length m is slid
along the text, from left to right. The algorithm scans the window backwards, using the suffix
automaton to recognize a factor of P. During this scan, if a final state is reached that does
not correspond to the entire pattern P, the window position is recorded in a variable last. This
corresponds to finding a prefiz of the pattern starting at position last inside the window and
ending at the end of the window, because the suffixes of P" are the reverse prefixes of P. This
backward search ends in two possible forms:

1. We fail to recognize a factor, that is, we reach a letter a that does not correspond to a
transition in the suffix automaton (Fig. 13). In this case we shift the window to the right so
as to align its starting position to the position last.

2. We reach the beginning of the window, and hence recognize P and report the occurrence.
Then, we shift the window exactly as in case 1 (to the previous last value).

In BNDM [14] this scheme is combined with bit-parallelism so as to replace the construction
of the deterministic suffix automaton by the bit-parallel simulation of a nondeterministic one.
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Fig. 13. BDM search scheme.

The scheme turns out to be flexible and powerful, and permits other types of search, in particular
approximate search. The resulting algorithm is ABNDM.

We modify the NFA of Fig. 12 so that it recognizes not only the whole pattern but also any
suffix thereof, allowing up to k differences. Fig. 14 illustrates the modified NFA. Note that we
have removed the initial self-loop, so it does not search for the pattern but recognizes strings at
edit distance k or less from the pattern. Moreover, we have built it on the reverse pattern. We
have also added an initial state “I”, with e-transitions leaving it. These allow the automaton to
recognize, with up to k differences, any suffix of the pattern.

no errors

1 error

\\\Q 2 errors

Fig. 14. An NFA to recognize suffixes of the pattern "survey" reversed.

In the case of approximate searching, the length of a pattern occurrence ranges from m — k
to m + k. To avoid missing any occurrence, we move a window of length m — k on the text, and
scan backwards the window using the NFA described above.

Each time we move the window to a new position we start the automaton with all its states
active, which represents setting the initial state to active and letting the e-transitions flush this
activation to all the automaton (the states in the lower-left triangle are also activated to allow
initial insertions). Then we start reading the window characters backward.

We recognize a prefix and update last whenever the final NFA state is activated. We stop
the backward scan when the NFA is out of active states.

If the automaton recognizes a pattern prefix at the initial window position, then it is possible
(but not necessary) that the window starts an occurrence. The reason is that strings of different
length match the pattern with k differences, and all we know is that we have matched a prefix
of the pattern of length m — k.

Therefore, in this case we need to verify whether there is a pattern occurrence starting exactly
at the beginning of the window. For this sake, we run the traditional automaton that computes
edit distance (i.e., that of Fig. 12 without initial self-loop) from the initial window position in
the text. After reading at most m + k characters we have either found a match starting at the



window position (that is, the final state becomes active) or determined that no match starts at
the window beginning (that is, the automaton runs out of active states).

So we need two different automatain this algorithm. A first one makes the backward scanning,
recognizing suffixes of P". A second one makes the forward scanning, recognizing P.

The automata can be simulated in a number of ways. In [14] they choose BPA [21] because
it is easy to adapt to the new scenario. Other approaches were discarded: an alternative NFA
simulation [3] is not practical to compute edit distance, and BPM [10] cannot easily tell when
the corresponding automaton is out of active states, or which is the same, when all the cells of
the current dynamic programming column are larger than k.

Fig. 15 shows the algorithm.

ABNDM (Pi..my Th..ny k)

1. Preprocessing

2. Build forward and backward NFA simulations (fNFA and bNF A)

3. Searching

4. j<0

5. While pos <n — (m — k) Do

6. je—m—k,last —m—k

7. Initialize BN F A

8. While j#0 AND bNFA has active states Do

9. Feed bNF A with Tposyj

10. jej—1

11. If bN F A’s final state is active Then /* prefix recognized */
12. If 7 > 0 Then last + j

13. Else check with fNF A a possible occurrence starting at pos + 1
14. pos < pos + last

Fig. 15. The generic ABNDM algorithm.

The algorithm is shown to be good for moderate m, low k and small o, which is an interesting
case, for example, in DNA searching. However, the use of BPA for the NFA simulation limits
its usefulness to very small k& values. Qur purpose in this paper is to show that BPM can be
extended for this task, so as to obtain a faster version of ABNDM that works with larger k.



