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Abstract

We propose a new data structure to search in metric spaces. A metric space is formed
by a collection of objects and a distance function defined among them, which satisfies the
triangular inequality. The goal is, given a set of objects and a query, retrieve those objects
close enough to the query. The number of distances computed to achieve this goal is the
complexity measure. Our data structure, called sa-tree (“spatial approximation tree”), is based
on approaching spatially the searched objects, i.e., getting closer and closer to it, rather than
the classical divide-and-conquer approach of other data structures. We analyze our method
and show that the number of distance evaluations to search among n objects is sublinear. We
show experimentally that the sa-iree is the best existing technique when the metric space is
high-dimensional or the query has low selectivity. These are the most difficult cases in real
applications. As a practical advantage, our data structure is one of the few that do not need to
tune parameters, which makes it appealing for use by non-experts.

1 Introduction

The concept of “approximate” searching has applications in a vast number of fields. Some examples
are non-traditional databases (where the concept of exact search is of no use and we search instead
for similar objects, e.g. databases storing images, fingerprints or audio clips); text retrieval (where
we look for words and phrases in a text database allowing a small number of typographical or
spelling errors, or we look for documents which are similar to a given query or document); machine
learning and classification (where a new element must be classified according to its closest existing
element); image quantization and compression (where only some vectors can be represented and
those that cannot must be coded as their closest representable point); computational biology (where
we want to find a DNA or protein sequence in a database allowing some errors due to typical
variations); function prediction (where we want to search the most similar behavior of a function
in the past so as to predict its probable future behavior); etc.

All those applications have some common characteristics. There is a universe U of objects, and
a nonnegative distance function d : U x U — R™ defined among them. This distance satisfies the
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three axioms that make the set a metric space

dz,y) = 0 & =z=y
d(az,y) = d(y,il))
d(z, 2) d(z,y) + d(y, )

where the last one is called the “triangular inequality” and is valid for many reasonable similarity
functions. The smaller the distance between two objects, the more “similar” they are. We have
a finite database S C U, which is a subset of the universe of objects and can be preprocessed (to
build an index, for example). Later, given a new object from the universe (a query ¢), we must
retrieve all similar elements found in the database. There are two typical queries of this kind:

IA

Range query: Retrieve all elements within distance » to ¢. This is, {z € S, d(z,¢) < r}.

Nearest neighbor query (k-NN): Retrieve the k closest elements to ¢ in S. This is, retrieve a
set A C S such that |[A|=k and Ve € A,y € S— A,d(z,q) < d(y,q).

The distance is considered expensive to compute (think, for instance, in comparing two finger-
prints). Hence, it is customary to define the complexity of the search as the number of distance
evaluations performed, disregarding other components such as CPU time for side computations,
and even I/O time. Given a database of |S| = n objects, queries can be trivially answered by
performing n distance evaluations. The goal is to structure the database such that we perform less
distance evaluations.

A particular case of this problem arises when the space is a set of d-dimensional points and
their distance belongs to the Minkowski L, family: L, = (3,c;cq|i — %]")/". The best known
special cases are 7 = 1 (Manhattan distance), » = 2 (Euclidean distance) and r» = co (maximum
distance). This last distance deserves an explicit formula: Lo = max;<i<d|z; — ¥;l.

There are effective methods to search on d-dimensional spaces, such as kd-trees [Ben79, Ben75]
or R-trees [Gut84]. However, for roughly 20 dimensions or more those structures cease to work
well. We focus in this paper in general metric spaces, although the solutions are well suited
also for d-dimensional spaces. It is interesting to notice that the concept of “dimensionality” can
be translated to metric spaces as well: the typical feature in high dimensional spaces with L,
distances is that the probability distribution of distances among elements has a very concentrated
histogram (with larger mean as the dimension grows), difficulting the work of any similarity search
algorithm [Bri95, CM97, CNBYMO1]. In the extreme case we have a space where d(z,2) = 0 and
Vy # z, d(z,y) = 1, where it is impossible to avoid a single distance evaluation at search time. We
say that a general metric space is high dimensional when its histogram of distances is concentrated.

There are a number of methods to preprocess the set in order to reduce the number of distance
evaluations. Some are tailored to continuous and others to discrete distance functions. All those
structures work on the basis of discarding elements using the triangular inequality (there is no way
to avoid a single distance evaluation if the triangular inequality does not hold).

In this work we present a new data structure to answer similarity queries in metric spaces.
We call it sa-tree, or “spatial approximation tree”. It is based on a completely different concept,
namely to approach the query spatially, getting closer and closer to it, instead of the generally
used technique of partitioning the set of candidate elements. We start by presenting an ideal



data structure that, as we prove, cannot be built, and then design a tradeoff which can be built.
We analyze the performance of the structure, showing that the number of distance evaluations is
o(n). We also experimentally compare our data structure against previous work, showing that it
outperforms all the other schemes for high dimensional spaces or queries with large radii.

There are many interesting applications whose space is high dimensional. On the other hand,
one can argue that large radii may return too many results if one considers the particular case of
the end user of a database, so all the interesting cases are of very small selectivity. However, there
are lots of applications where it is necessary to retrieve a relatively large portion of the database.
Even in data retrieval applications, the similarity criterion may be just a first step from where we
obtain a set of candidates which are further filtered with more complex criteria before delivering a
small set of answers to the final user. This is indeed the ranking method of many existing systems
for textual information retrieval [BYRN99].

The sa-tree, unlike other data structures, does not have parameters to be tuned by the user
of each application. This makes it very appealing as a general purpose data structure for metric
searching, since any non-expert seeking for a tool to solve his/her particular problem can use it
as a black box tool, without the need of understanding the complications of an area he/she is not
interested in. Other data structures have many tuning parameters, hence requiring a big effort
from the user in order to obtain an acceptable performance.

This work is organized as follows. In Section 2 we cover the main We have found only one an-
tecedent of our idea in the literature: in [Cla99] they start with this concept of spatially approach-
ing the query and end up with a probabilistic algorithm based on a randomized data structure for
searching the nearest neighbor of the query. Our results are more general and rely on deterministic
algorithms.

previous work. In Section 3 we present the ideal data structure and prove that it cannot be
built. In Section 4 we propose the simplified structure. The structure is analyzed in Section 5.
Section 6 shows experimental results verifying the analysis and comparing the structure against
others. Some alternatives that permit incremental construction are discussed in Section 7. We

draw our conclusions in Section 8. A partial and less mature earlier version of this work appeared
in [Nav99].

2 Previous Work

Algorithms to search in general metric spaces can be divided in two large areas: pivot-based and
clustering algorithms. (See [CNBYMO1] for a more complete review.)

Pivot-based algorithms. The idea is to use a set of k distinguished elements ( “pivots”) py...px €
S and storing, for each database element z, its distance to the k pivots (d(z,p1)...d(z, pr)). Given
the query g, its distance to the k pivots is computed (d(g, p1)...d(g, px)). Now, if for some pivot p;
it holds that |d(g,p;) — d(z,p;)| > r, then we know by the triangular inequality that d(q,z) > r
and therefore do not need to explicitly evaluate d(z,p). All the other elements that cannot be
eliminated using this rule are directly compared against the query.

Algorithms such as aesa [Vid86], laesa [MOV94], spaghettis and variants [CMBY99, NN97],
fg-trees and variants [BYCMW94], and fg-arrays [CMNO1], are almost direct implementations of



this idea, and differ basically in their extra structure used to reduce the CPU cost of finding the
candidate points, but not in the number of distance evaluations performed.

There are a number of tree-like data structures that use this idea in a more indirect way: they
select a pivot as the root of the tree and divide the space according to the distances to the root. One
slice corresponds to each subtree (the number and width of the slices differs across the strategies).
At each subtree, a new pivot is selected and so on. The search performs a backtrack on the tree
using the triangular inequality to prune subtrees, that is, if a is the tree root and b the root of a
children corresponding to d(a, b) € [21, 2], then we can avoid entering in the subtree of b whenever
[d(g,a) — r,d(g,a) + r] has no intersection with [z1, z2]. Data structures using this idea are the
bk-tree and its variants [BK73, Sha77|, metric trees [Uhl91b]|, tlaesa [MOC96], and wvp-trees and
variants [Yia93, BO97, Yia00].

Clustering algorithms. The second trend consists in dividing the space in zones as compact as
possible, normally recursively, and storing a representative point (“center”) for each zone plus a
few extra data that permits quickly discarding the zone at query time. Two criteria can be used
to delimit a zone.

The first one is the Voronoi area, where we select a set of centers and put each other point inside
the zone of its closest center. The areas are limited by hyperplanes and the zones are analogous to
Voronoi regions in vector spaces. Let {c;...cn} be the set of centers. At query time we evaluate
(d(g,c1),---,d(g,cm)), choose the closest center ¢ and discard every zone whose center ¢; satisfies
d(q, c;) > d(g,c)+ 2r, as its Voronoi area cannot have intersection with the query ball.

The second criterion is the covering radius cr(c;), which is the maximum distance between ¢;
and an element in its zone. If d(q, ¢;) — r > cr(c;), then there is no need to consider zone i.

The techniques can be combined. Some using only hyperplanes are the gh-trees and variants
[Uhl91b, NVZ92], and Voronoi trees [DN87, Nol89]. Some using only covering radii are the M-trees
[CPZ97] and lists of clusters [CN00]. One using both criteria is the gna-tree [Bri95].

To answer 1-NN queries, we simulate a range query with a radius that is initially » = oo, and
reduce r as we find closer and closer elements to q. At the end, we have in r the distance to the
closest elements and have seen them all. Unlike a range query, we are now interested in quickly
finding close elements in order to reduce r as early as possible, so there are a number of heuristics
to achieve this. One of the most interesting is proposed in [Uhl91a] for metric trees, where the
subtrees are stored in a priority queue in a heuristically promising ordering. The traversal is more
general than a backtracking. Each time we process the most promising subtree, we may add its
children to the priority queue. At some point we can preempt the search using a cutoff criterion
given by the triangular inequality.

k-NN queries are handled as a generalization of 1-NN queries. Instead of a closest element,
a priority queue of the k closest elements known is maintained. The r value is now that of the
element among the k current candidates which is farthest from ¢. Each new candidate is inserted
in the heap and may displace the farthest one out of the queue (hence reducing r for the rest of
the algorithm).

Note that all the previous work aims at dividing the database, inheriting from the classical
divide-and-conquer ideas of searching typical data (e.g. binary search trees). We propose in this



paper a new approach which is specific of spatial searching. Rather than dividing the set of
candidates along the search, we try to start at some point in the space and get closer to the query
g in a spatial sense.

3 The Spatial Approximation Approach

We concentrate in this section on 1-NN queries (at the end we will solve all types of queries).
Instead of the known algorithms to solve proximity queries by dividing the set of candidates, we
try a different approach here. In our model, we are always positioned at a given element of .S and
try to get “spatially” closer to the query (i.e. move to another element which is closer to the query
than the current one). When this is no longer possible, we are positioned at the nearest element
to the query in the set.

This approximation is performed only via “neighbors”. Each element ¢ € S has a set of
neighbors N (a), and we are allowed to move directly only to neighbors. The natural structure to
represent this restriction is a directed graph where the nodes are the elements of S and they have
direct edges to their neighbors. That is, there is an edge from a to b if it is possible to move from
a to b in a single step.

Once such graph is suitably defined, the search process for a query ¢ is simple: start positioned
at a random node a and consider all its neighbors. If no neighbor is closer to ¢ than a, then report
a as the closest element to ¢. Otherwise, select some neighbor b closer to ¢ than a and move to b.
We can choose b as the neighbor which is closest to ¢ or as the first one we find closer than a.

In order for that algorithm to work, the graph must contain enough edges. The simplest graph
that works is the complete graph, i.e. all pairs of nodes are neighbors. However, this implies
n distance evaluations just to check the neighbors of the last node! For this reason and also to
minimize the space required by the structure, we prefer the graph which has the least possible
number of edges and still allows answering correctly all queries. This graph G = (5,{(a,b), a €
S, b € N(a)}) must enforce the following property:

Condition 1: Va € S,VYqe U, if Vb € N(a), d(g,a) < d(q,b), then Vb € S, d(g,a) < d(q,b).

This means that, given any possible element g, if we cannot get closer to ¢ from a going to its
neighbors, then it is because a is already the element closest to ¢ in the whole set S. It is clear
that if G satisfies Condition 1 we can search by spatial approximation. We seek a minimal graph
of that kind.

This can be seen in another way: each a € S has a subset of U where it is the proper answer
(i.e. the set of objects closer to a than to any other element of S). This is the exact analogous of
a “Voronoi region” for Euclidean spaces in computational geometry [Aur91]!. The answer to the
query ¢ is the element a € S which owns the Voronoi region where ¢ lies. We need, if a is not the
answer, to be able to move to another element closer to ¢. It is enough to connect each a € S
with all its “Voronoi neighbors” (i.e. elements of S whose Voronoi area share a border with that
of a), since if a is not the answer, then a Voronoi neighbor will be closer to ¢ (this is exactly the
Condition 1 just stated).

! The proper name in a general metric space is “Dirichlet domain” [Bri95].



Consider the hyperplane between a and b (i.e. which divides the area of points z closer to a or
closer to b). Each neighbor b we add to a will allow the search to move from a to b provided ¢ is in
b’s part of the hyperplane. Therefore, if (and only if) we add all the Voronoi neighbors to a, then
the only zone where the query would not move away from a will be exactly the area where a is the
closest neighbor.

Therefore, in a vector space, the minimal graph we seek corresponds to the classical Delaunay
triangulation (a graph where the elements which are Voronoi neighbors are connected). The De-
launay graph, generalized to arbitrary spaces, would be therefore the ideal answer in terms of space
complexity, and it should permit fast searching too. Figure 1 shows an example.

Figure 1: An example of the search process with a Delaunay graph (solid edges) corresponding to
a Voronoi partition (areas delimited by dashed lines). We start from p;; and reach pg, the node
closest to ¢, moving always to neighbors closer and closer to g.

Unfortunately, it is not possible to compute the Delaunay graph of a general metric space given
only the set of distances among elements of .S and no further indication of the structure of the
space. This is because, given the set of |S|? distances, different spaces will have different graphs.
Moreover, it is not possible to prove that a single edge from any node a to b is not in the Delaunay
graph. Therefore, the only superset of the Delaunay graph that works for an arbitrary metric space
is the complete graph, and as explained this graph is useless. This outrules the data structure for
general applications. We formalize this notion as a theorem.

Theorem: given a set S of elements in an unknown metric space U, and given the distances among
each pair of elements in S, then for each a,b € S there exists a valid metric space U where a and
b are connected in the Delaunay graph of S.

Proof: given the set of distances, we create a new element # € U such that d(a,z) = M + ¢,
d(b,z) = M, and d(y,z) = M + 2¢ for every other y € S. This satisfies all triangle inequalities



provided € < 1/2 miny ,cs{d(y,2)} and M > 1/2 max, cs5{d(y, z)}. Therefore, such an z may
exist in U. Now, given the query ¢ = z and given that we are currently at element a, we have that
b is the element nearest to ¢ and the only way to move to b without getting farther from ¢ is a
direct edge from a to b (see Figure 2). This argument can be repeated for any pair a,b € S.
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Figure 2: Illustration of the theorem.

4 The Spatial Approximation Tree

We make two crucial simplifications to the general idea so as to achieve a feasible solution. The
resulting simplification answers only a reduced set of queries, namely 1-NN queries for ¢ € S, which
is no more than exact searching. However, we show later (Section 4.2) how to combine the spatial
approximation approach with backtracking so as to answer any query ¢ € U (not only ¢ € S), for
both range queries and nearest neighbor queries.

(1) We do not start traversing the graph from a random node but from a fixed one, and therefore
there is no need of all the Voronoi edges.

(2) Our graph will only be able to answer correctly queries ¢ € S, i.e. only elements already
present in the database.

4.1 Construction Process

We select a random element @ € S to be the root of the tree. We then select a suitable set of
neighbors N (a) satisfying the following property:

Condition 2: (given a,S) Va €S, z € N(a) & Vy € N(a) — {z}, d(z,y) > d(z, a).

That is, the neighbors of a form a set such that any neighbor is closer to a than to any other
neighbor. The “only if” (<) part of the definition guarantees that if we can get closer to any b € S
then an element in N (a) is closer to b than a, because we put as direct neighbors all those elements
that are not closer to another neighbor. The “if” part (=) aims at puting as few neighbors as
possible.

Notice that the set N(a) is defined in terms of itself in a non-trivial way and that multiple
solutions fit the definition. For example, if a is far from b and ¢ and these are close to each other,

then both N(a) = {b} and N(a) = {c} satisfy the definition.



Finding the smallest possible set N(a) seems to be a nontrivial combinatorial optimization
problem, since by including an element we need to take out others (this happens between b and ¢
in the example of the previous paragraph). However, simple heuristics which add more neighbors
than necessary work well. We begin with the initial node a and its “bag” holding all the rest of
S. We first sort the bag by distance to a. Then, we start adding nodes to N(a) (which is initially
empty). Each time we consider a new node b, we see if it is closer to some element of N(a) than to
a itself. If that is not the case, we add b to N(a).

At this point we have a suitable set of neighbors. Note that Condition 2 is satisfied thanks to
the fact that we have considered the elements in order of increasing distance to a. The “only if”
part of the Condition is clearly satisfied because any element satisfying the clause on the right is
inserted in N(a). The “if” part is more delicate. Let z # y € N(a). If y is closer to a than z then
y was considered first. Our construction algorithm guarantees that if we inserted z in N(a) then
d(z,a) < d(z,y). If, on the other hand, z is closer to a than y, then d(y,z) > d(y,a) > d(z,a)
(that is, a neighbor cannot be removed by a new neighbor inserted later).

We now must decide in which neighbor’s bag we put the rest of the nodes. We put each node
not in {a} U N(a) in the bag of its closest element of N (a) (best-fit strategy). Observe that this
requires a second pass once N (a) is fully determined.

We are done now with a, and process recursively all its neighbors, each one with the elements of
its bag. Note that the resulting structure is not a graph but a tree, which can be searched for any
g € S by spatial approximation for nearest neighbor queries. The reason why this works is that,
at search time, we repeat exactly what happened with ¢ during the construction process (i.e. we
enter into the subtree of the neighbor closest to ¢), until we reach ¢. This is is because ¢ is present
in the tree, i.e., we are doing an exact search.

Finally, we save some comparisons at search time by storing at each node a its covering radius,
i.e. the maximum distance R(a) between a and any element in the subtree rooted by a. The way
to use this information is made clear in Section 4.2.

Figure 3 depicts the construction process.

4.2 Range Searching

Of course it is of little interest to search only for elements ¢ € S. The tree we have described can,
however, be used as a device to solve queries of any type for any ¢ € U. We start with range queries
with radius r.

The key observation is that, even if ¢ ¢ S, the answers to the query are elements ¢’ € S. So
we use the tree to pretend that we are searching an element ¢’ € S. We do not know ¢', but
since d(g, ¢') < r, we can obtain from ¢ some distance information regarding ¢’: by the triangular
inequality it holds that for any z € U, d(z,q) — r < d(z,¢’) < d(z,q) + .

Therefore, instead of simply going to the closest neighbor, we first determine the closest neighbor
c of g among {a} U N (a). We then enter into all neighbors b € N (a) such that d(g, b) < d(q,c)+2r.
This is because the virtual element ¢’ we are searching for can differ from ¢ by at most r at any
distance evaluation, so it could have been inserted inside such b nodes. In the process, we report
all the nodes ¢’ we have seen which are close enough to gq.

Moreover, notice that, in an exact search for a ¢ € S, the distances between ¢ and the nodes
we traverse gets reduced as we step down the tree. That is,



BuildTree (Node a, Set of nodes S)

N(a) « 0 /* neighbors of a */
R(a) <« © /* covering radius */
Sort S by distance to a (closer first)
for v€ S do

R(a) <+ max(R(a),d(v,a))
if Vb € N(a), d(v,a) < d(v,b) then N(a) < N(a)U{v}
for b€ N(a) do S(b) — 0 /* subtrees */
for ve S—N(a) d
Let ¢ € N(a) be the one minimizing d(v,c)
S(c) < S(c)u{v}
for b€ N(a) do BuildTree (b, S(b)) /* build subtrees */

Figure 3: Algorithm to build the sa-tree. It is firstly invoked as BuildTree(a,S — {a}) where a
is a random element of the set S. Note that, except for the first level of the recursion, we already
know all the distances d(v, a) for every v € S and hence do not need to recompute them. Similarly,
d(v,c) at line 9 is already known from line 6. The information stored by the data structure is the
root a and the N() and R() values of all the nodes.

Observation 1: Let a,b,¢ € S such that b descends from a and ¢ descends from b in the tree.

Then d(c, b) < d(c, a).

The same happens, allowing a tolerance of 2r, with a range search with radius . That is, for
any b in the path from a to ¢’ it holds that d(¢’,b) < d(¢’, a), so d(g,b) < d(g, a) + 2r. Hence, while
at first we need to enter into all the neighbors b € N(a) such that d(q,b) — d(q,c) < 2r, when we
enter into those b the tolerance is not 2r anymore but it gets reduced to 2r — (d(g, b) — d(g, ¢)).

Therefore, what was originally conceived as a search by spatial approximation along a single
path is combined now with backtracking, so that we search by a number of paths. This is the
price of not being able to build a true spatial approximation graph. Figure 4 illustrates the search
process.

The covering radius R(a) is used to reduce the search cost as follows. We never enter into a
subtree such that d(g,a) > R(a) + r, since there cannot be useful elements there. Figure 5 depicts
the algorithm.

4.3 Nearest Neighbor Searching

We can also perform nearest neighbor searching by simulating a range search where the search
radius is reduced as we get more and more information. To solve 1-NN queries, we start searching
with » = oo, and reduce r each time a new comparison is performed which gives a distance smaller
than r. We finally report the closest element seen along all the search. For k-NN queries we store
all the time a priority queue with the k closest elements to ¢ we have seen up to now. The radius
7 is the distance between ¢ and its farthest candidate in the queue (oo if we still have less than k



Figure 4: An example of the search process, starting from p;; (tree root). Only pg is in the result,
but all the bold edges are traversed.

candidates). Each time a new candidate appears we insert it into the queue, which may displace
another element and hence reduce r. At the end, the queue contains the k closest elements to ¢
(recall Section 2).

In a normal range search with fixed r, the order in which we backtrack in the tree is unimportant.
This is not the case now, as we would like to quickly find elements close to ¢ so as to reduce r early.
A general idea proposed in [Uhl91a] can be adapted to our data structure. We have a priority
queue of subtrees, most promising first. Initially, we insert the whole sa-tree in the data structure.
Iteratively, we extract the most promising subtree, process its root, and insert all its subtrees in the
queue. This is repeated until the queue gets empty or its most promising subtree can be discarded
(i-e., its promise value is bad enough).

How promising is a subtree rooted at a and how can it be discarded is measured, in our case,

RangeSearch (Node a, Query ¢, Radius r, Tolerance t)

if d(a,q) <7 then Report a
if d(a,q) < R(a) +r then
mind <+ min{d(c,q), c € {a}UN(a)}
for b e N(a) do
if d(b,q) — mind <t then RangeSearch (b,q,r,t— (d(b,q)— mind))

Figure 5: Algorithm to search ¢ with radius » in a sa-tree under the best-fit strategy. It is firstly
invoked as RangeSearch(a,q,r,27), where a is the root of the tree. Notice that in the recursive
invocations d(a, ¢) is already computed.
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in two possible ways:

1. By the lower bound to the distance between ¢ and an element in the subtree, namely d(g, b) —

R(b) <.

2. By the fact that we find the closest neighbor ¢ and then enter into any other neighbor b such
that d(g,b) — d(g,c) < 27, i.e, (d(g,b) — d(g,¢))/2 < r. As in fact the tolerance is 27 at the
beginning and it gets reduced across the search, we add up the reductions. That is, let ¢ be
the accumulated differences between the distances to the selected neighbor and the closest
neighbor. Then we continue the search as long as t + (d(g,b) — d(g,¢)) < 2r. Hence the new
limit is (¢ + d(g,b) — d(g,¢))/2

Since r gets reduced along the search, we can store together with b the two values, d(q, b) — R(b)
and (¢ + d(g,b) — d(g,c))/2, and avoid entering into those where any of these two value is larger
than r. From these two criteria, we must choose one as our “primary” criterion, so as to sort the
queue by it and stop the whole process when its value is larger than r. The other can be used as
a “secondary” criterion, just to avoid entering some subtrees but not sorting by it and hence not
using it as a global stopping criterion. Our experiments show that the second option is slightly
better as the primary criterion. Figure 6 depicts the algorithm.

NN-Search (Tree a, Query ¢, Neighbors wanted k)

Q <« {(a,0,d(q,a) — R(a))} /* promising subtrees */
A« 0 /* best answer so far */
P o 00
while ) is not empty
(b,t,d) < element in @ with smallest ¢ , Q « Q—{(b¢d)}
if ¢ > r then Return the answer A /* global stopping criterion */
if d<r then /* secondary criterion */
A « A U {(b,d+ R(b))}
if |A|=%k+ 1 then
(c,d’) < element in A with largest d , A < A—{(c,d)}
if |A| =k then
(c,d’) < element in A with largest d' , r <« d
¢ ¢ closest to g among N (b)
for each ve N(b), Q@ + Q U (v, (t+d(g,v)—d(q,¢))/2, d(q,v)— R(v))

Return the answer A

Figure 6: Algorithm to search the k nearest neighbors of ¢ in a sa-tree. A and @ are priority queues
of pairs (subtree,distancel) and (element,distancel, distance2), respectively, delivering the smallest
distancel first.
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5 Analysis

We analyze now our sa-tree structure. Our analysis is simplified in many aspects, for instance it
assumes that the distance distribution of nodes that go into a subtree is the same as in the global
space. We also do not take into account that we sort the bag before selecting neighbors (the results
are pessimistic in this sense, since it looks as if we had more neighbors). As seen in the experiments
however, the fitting with real data is excellent. This analysis is done for a continuous distance
function, although adapting it to the discrete case is immediate.

Our results can be summarized as follows. The sa-tree needs linear space O(n), reasonable
construction time O(nlog?n/loglogn) and sublinear search time O(n!~®(1/loglogn)y in high di-
mensions and O(n®) (0 < a < 1) in low dimensions.

5.1 Construction Cost and Tree Shape

Let us consider first the construction process. We select a random node as the root and determine
which others are going to be neighbors. Imagine that a is the selected as root and b is an already
present neighbor. The probability that a given node c¢ is closer to a than to b is simply 1/2 because
the situation is symmetric: if we draw a hyperplane at the same distance from a and b, then ¢ can
equally lie at either side of the hyperplane.

If j neighbors are already present, the probability that we add another neighbor is that of being
closer to @ than to any neighbor. If we assume that all the hyperplanes are independent, then this
probability is 1/27. This is a simplification for several reasons. First, the neighbors are chosen from
a’s part of the hyperplane, never from the part of the hyperplane of another neighbor (which is the
same to say that neighbors are closer to a than to each other). Second, in low dimensions it is not
possible to set up too many different hyperplanes because the space becomes filled.

Since each attempt to obtain the (j + 1)-th neighbor has a probability of success of 1/27, we
have a hypergeometric process with mean 27. The total number of attempts to obtain N neighbors
is a sum of hypergeometric variables with means 2°, 2!, and so on. Since the mean commutes with
the sum, the average number of attempts necessary to obtain N neighbors is Zj:_ol 27 =2V _1,
Inverting, we have that with n elements (attempt) we obtain on average log,(n + 1) neighbors.
This is a lower bound because we are taking the inverse of the average instead of the average of the
inverse, and the inverse function is concave down. It is possible, although tedious, to prove that in
fact the average number of neighbors is

N(n) = O(logn)

under our simplifications stated above. The constant is between 1.00 and 3.28. Recall also that
there is a constant part that should be specially relevant in low dimensions. However, for our
analysis ©(log n) suffices.

This allows determining some parameters of our index. For instance, since on average ©(n/logn)
elements go into each subtree, the average depth of a leaf in the tree is

n logn
H(n) = 1+H<logn> - ®<loglogn>

12



The construction cost is as follows (in terms of distance evaluations). The bag of n elements is
compared against the root node. ©(logn) elements are selected as neighbors and then all the other
elements are compared against the neighbors and are inserted into one bag. Then, all neighbors
are recursively built.

B(n) = nlogn+log(n)B <L> = @(

nlog®n
logn

loglogn

The space needed by the index (number of links) is O(n) because it is a tree.

5.2 Query Time

We analyze the search time now. Since we enter into many neighbors, we must determine which
is the amount of backtracking performed. Let Dy, ..., D; random variables corresponding to the
distances Doy = d(a, q) and D; = d(v;, ¢), where v; is the i-th neighbor of ¢. Let us call f(z) the
probability density function of D; — min(Dsy, ..., D;), for any D; corresponding to a neighbor. It
is clear that f(z) > 0 only when z > 0. We also call F(y) = [J f(y)dy its cumulative distribution.

Now, we will enter into neighbor ¢ whenever X = D; — min(Dy,...,D;) < t, where ¢ is the
tolerance (initially 2r). The probability of such a fact is F'(t). Moreover, if X < ¢ we enter into the
neighbor with tolerance ¢t — X.

There are ©(logn) neighbors, and we enter into each one with the same probability. The size
of the set inside a neighbor is O(n/logn). Hence if we call T'(n,t) the search cost with n elements
and tolerance ¢ (initially ¢ = 27), then the following recurrence holds

t
T(n,t) = logn + logn /0 f(@)T <$,t—m> de

which is hard to solve exactly. We set the inductive hypothesis of T'(n,t) = cn®g(t) for 0 < a < 1
and an increasing function g(¢). Trying to prove the inductive thesis yields

loglogn

y— 9(2r) 1
T(n,27‘) = O (n foz 1(=)g(2r—z)dz 9(27,)) — O(,nl—@(l/loglogn))

for any function g(¢). The complexity in terms of n is more or less settled, but finding it in terms
of the search radius involves obtaining the optimal g(¢), i.e. the one minimizing the constant

7 " H@)g(er— 2) da

which is not trivial. Fast growing functions work better, for example g(t) = s yields 1/ fg f(z)s *de,
independent of r, but it is not clear which is the optimum s.

On the other hand, note that when the intrinsic dimension is small compared to O(logn), N(n)
is closer to a constant because there cannot be too many neighbors. In this case the analysis yields
O(n®) for constant 0 < a < 1. We prefer, however, to stick to the more conservative complexity.

13



6 Experimental Results

We have tested our sa-tree and previous work on a synthetic set of random points in a d-dimensional
space. However, we have not used the fact that the space has coordinates, treating the points as
abstract objects in an unknown metric space. This choice allows us to control the exact dimen-
sionality we are working with, which is not so easy if the space is a general metric space or the
points come from a real situation (where, despite that they are immersed in a d-dimensional space,
their real dimension can be lower). Our tests use the Euclidean distance (L;) and four different
dimensions: 5, 10, 15 and 20. For each dimension, we generated 10 incremental groups of data
sets, from n = 10,000 to » = 100, 000 elements. Later, when comparing our data structure against
others, we show some real metric spaces too.

The results were averaged over 100 index constructions (recall that the construction algorithm
is randomized) and 100 queries run over each index. Hence, each data point about the structure
itself or its construction is an average over 100 iterations, while each data point about query costs
is an average over 10,000 iterations.

6.1 Construction Cost and Tree Shape

Our first experiment aims at measuring the construction cost of the sa-tree, as well as the shape
of the resulting tree. Figure 7 shows how the cost grows as n increases. We show the number
of evaluations per element, which according to the analysis is O(log? /loglogn). A least squares
estimation shows an excellent fitting with this analysis (better for low dimensions, as in higher
dimension there is more variance), with an accompanying constant factor that seems to depend
linearly on the dimension.

Construction cost per element

180 T T
Dim=5 ——

|l Dim=10 —— ]
160 Dim=15 ——

g 140 | Dim=20 Dim | Approximation | Error
= 2
g 5 112622 1 g 007
g 120 In(n)?
> 10 1.5697 1"~ 0.008
8 100 In(n)?
c 15 2.155 5 0.025
z % 20 | 2722202 [ 049
60 ¥ 3
40 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90 100
Database size n (x 10,000)

Figure 7: Construction cost, measured in number of distance evaluations per element. The cost
grows with n and with the dimension of the database. On the right, the formula obtained by least
squares and the relative error.

We consider now the arity of the tree root. The analytical prediction, O(logn), fits again very

14



well with the experiments. Using a model of the form a + b1nn we obtain relative errors below 1%.
The constant b seems to grow exponentially with the dimension. The results are shown in Figure 8.

Arity of the tree root

40 —
Dim=5 ———

|l Dim=10 —— ]
35 Dim=15 ——

Dim Approximation Error
5 3.892+4+ 0.3271nn 0.002
10 2.126 4+ 1.1541nn 0.005
15 —8.965 + 2.4811lnn | 0.007
20 | —16.971+ 4.1941nn | 0.009

Arity

5 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

Database size n (x 10,000)

Figure 8: Arity of the tree root. It grows with n and with the dimension of the database. On the
right, the formula obtained by least squares and the relative error.

Let us now focus on the average leaf depth of the trees. The analysis predicts O(logn/ loglogn).
Again, we have obtained a very good approximation, with relative error well below 1%, with the
model a + blnn/Inlnn. This time the constant b decreases with the dimension. Figure 9 shows

the results.

Average depth of a leaf

Dim Approximation Error
g 5 —17.857 + 6.63011?" 0.006
Q I Dim =20 —=— | son
o 10 —2.283 + 2.058; 7 | 0.003

I ] 15 | —0.082+ 1.319-22 | 0.003

Inlnn
T 20 | 1.136+0.934712~ | 0.002

10 20 30 40 50 60 70 80 90 100
Database size n (x 10,000)

g O N 0 ©

Figure 9: Average leaf depth in the tree. It grows with n and decreases with the dimension of the
database. On the right, the formula obtained by least squares and the relative error.

The results show that our analysis is quite accurate, despite the simplifications made. We

have been able to predict how the tree behaves as a function of the database size n. However,
the experiments give additional information on an aspect that we could not capture analytically,
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namely the behavior of the trees as the dimension of the set grows. As the experiments show, the
trees get fatter and shorter for higher dimensions, and consequently they are harder to build.

This phenomenon is interesting because it shows how the sa-tree adapts itself to the dimension
of the data without need of external tuning, a feature that very few data structures posess. Other
articles, such as that of gna-trees [Bri95], suggest to use a larger arity for higher dimensions and to
reduce the arity in lower levels of the tree, but all this occurs naturally in sa-trees.

6.2 Querying Cost

We consider now the cost of searching the index. We have tried both range and nearest neighbor
searching. For range searching, we have selected manually the radii that recover 0.01%, 0.1% and
1% of the set. For nearest neighbor searching, we have directly requested to retrieve that number
of elements. As our algorithm for nearest neighbor searching is a range search algorithm that
adjusts the radius as it gets more and more information on the set, we expect that nearest neighbor
searching takes more time than range searching in order to retrieve the same amount of elements.
How close is the time with respect to range searching gives us an idea of how good is the heuristic.

Figure 10 shows the results, in terms of percentage of the set traversed for a query. Several
observations are in order. First, note that the sublinearity is clear. Moreover, our analysis holds
with extreme accuracy using the model an!=/12In" (the relative error is 0.5% at most). Second, the
results worsen fast as the dimension or the search radius grows, which is reflected in a reduction
of the constant b. Third, note that the nearest neighbor search algorithm has a cost close but
sometimes noticeable higher than that of range searching.

6.3 Comparison against Others

Finally, we compare our sa-trees against other data structures. This time we fix n = 100,000 and
show how the results change with the dimension. We also show the case of real-world metric spaces.

There are too many proposals to compare them all, so we have selected a small set of good rep-
resentatives. Some structures do behave better than our sa-tree, but at the expense of impractical
amounts of memory (e.g. aesa [Vid86] needs O(n?) space) or construction time (e.g. aesa [Vid86]
and the list of clusters [CN00] need O(n?) construction time). To make a fair comparison we fix
the amount of memory or construction time that we permit and limit these structures accordingly.
The structures chosen are:

Pivot(s): is a generic pivoting algorithm, where we limit the amount of space permitted to s times
that of our sa-tree. A reasonable implementation shows that our data structure takes space
equivalent to storing 4 pivots per element of the set. Hence Pivot(s) is equivalent to using
k = 4s pivots.

The specific algorithm consists of executing the first k steps of aesa, i.e. choosing a pivot
p from the remaining set of elements and discarding every candidate element # such that
|d(g,z) — d(g,p)| > r. This is better than fixing the k pivots in advance as done by many
pivoting algorithms, because it is well known that better results are obtained by choosing the
pivots from the remaining set. Some tree schemes permit adapting the pivot to the remaining
set, at the cost of not using all the information given by their distances. So in fact we are
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Figure 10: Percentage of the set traversed when searching using the sa-tree. Each plot considers a
different dimension, showing range and nearest neighbor queries that retrieve 0.01%, 0.1% and 1%
of the database. On the bottom, least squares estimations for the range queries, with the relative
error in parenthesis.
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simulating an algorithm which has the best of both worlds: we assume that we need only the
space for k fixed pivots, that we can use all the information they yield, and that we are able
to choose those pivots at query time and yet have all the d(p;, ) precomputed.

Clusters(t): is the scheme proposed in [CN00]. This structure takes linear space and it is shown
to behave better than sa-trees in high dimensions. However, for this to happen it is necessary
to pay a quadratic construction cost, which is unrealistic even compared to our (relatively
expensive) construction cost.

The data structure consists of a list of balls containing a center and the m — 1 elements closest
to it. For the second ball we exclude the elements of the first, and so on. At search time every
center ¢; is compared against ¢. Its ball is discarded if d(g,c;) — 7 > ¢r(c;), otherwise it is
exhaustively searched (we can stop traversing the list of centers if d(q, ¢;) + » < ¢r(¢;)). The
construction cost needs n?/(2m) distance evaluations and the optimum m is constant. For a
fair comparison, the parameter ¢ will indicate how many times was the construction cost of
the list of clusters superior to that of the sa-tree. Given our constructions costs, this implies
cluster sizes of 817/t, 582/t, 415/t and 322/t for dimensions 5, 10, 15 and 20, respectively.

Gna-tree: is the structure proposed in [Bri95]. A set of m centers is selected and the rest are sent
to their Voronoi region. The structure is built recursively inside each region. The covering
radius is used too. This structure uses linear space and a construction time close to ours, so
we do not put a parameter on it. Rather, we choose manually the best m for each case, which
turns out to be 4 for 5 and 10 dimensions and 16 for 15 and 20 dimensions.

Figure 11 shows a comparison between sa-trees and the idealized pivoting algorithms. As it can
be seen, the sa-tree tolerates better higher dimensions or larger radii. A pivoting index using the
same amount of memory as the sa-tree is faster only for 5 dimensions and a radius that retrieves less
than 0.1% of the database. As the dimension or the search radius grows, pivoting algorithms need
more and more memory in order to compete. In high dimensions or large search radii, pivoting
algorithms cannot compete even when they take 16 times the amount of memory required by
sa-trees.

Figure 12 shows a comparison between sa-trees and clustering algorithms. These algorithms
tolerate better high dimensions and large search radii, with a growth rate similar to that of sa-trees.
Our structure is better than gna-trees for more than 10 dimensions. Lists of clusters, on the other
hand, need more and more times the construction time of sa-trees to beat them as the dimension
or the search radii grows: 2 times in 5 dimensions, 4 times in 10 dimensions, 4 to 8 times in 15
dimensions and 8 times in 20 dimensions.

Finally, we show a couple of real life metric spaces. The first one is a dictionary of 86,061
Spanish words under the edit distance, defined as the number of character insertions, deletions and
replacements needed to convert one string into the other. This distance is discrete and has many
applications in text retrieval, signal processing and computational biology [Nav01]. The particular
case of a dictionary is of interest in spelling applications.

The second metric spaces is that of documents under the cosine similarity measure [BYRN99].
We took 1,263 documents of about 1 Mb each from the TREC-3 collections [Har95], namely from
the collections AP, DOE, FR, WsJ and ZIFF. We took the vocabulary of each document (considering
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Figure 11: Comparison between the cost of range searching using the sa-tree and an indealized
pivoting algorithm. We show each dimension separately and the cost for growing radius (i.e.
queries that retrieve 0.01%, 0.1% and 1% of the database).
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letters and digits and mapping them to lower case) and created for each document a vector where
each vocabulary word is a coordinate and each document is a point. If the vocabulary word t;
appears f;; in document d; and it appears in n; documents out of a total of N, then the value of
document d; at the coordinate t; is f;;In(N/n;). The distance is the angle between the vectors,
i.e., the inverse cosine of the dot product between the two normalized vectors. This distance is of
great use in Information Retrieval applications, and it is quite expensive to compute.

In the space of words under the edit distance, a byte suffices to store each distance, and hence
the space taken by the sa-tree is equivalent to that of 10 pivots. The gna-tree gives its best results
with arity 6. A list of clusters of equivalent construction cost uses clusters of size 594, as the sa-tree
needed 72.43 comparisons per element. We show the results of searching with radius 1 to 4, which
retrieved 0.00343%, 0.0286%, 0.245% and 1.460% of the set, respectively.

In the space of documents under the cosine similarity, the distance is a real number and hence
we assume that the space taken by the sa-tree is equivalent to that of 4 pivots. The gna-tree gives
its best results with arity 8. A list of clusters of equivalent construction cost uses clusters of size
14, as the sa-tree needed 45.05 comparisons per element (note that the clusters would be bigger if
we had more elements in the set). We show the results of searching with radius retrieving 0.1%,
0.5% and 5% of the set. Each distance evaluation involves reading about 400 Kb from disk, so it is
really expensive. For this reason we contented ourselves with building the indexes only once, and
querying it 100 times.

Figure 13 shows the results. In the space of words, the sa-tree clearly outperforms the gna-tree.
A pivoting algorithm needs 4 and even 8 times more space to beat sa-trees when the search radius
becomes large (3 or 4). The lists of clusters needs to pay 4 times the construction cost of sa-trees
in order to achieve better efficiency.

In the space of documents, the sa-tree outperforms again the gna-tree. A curious phenomenon
occurs with the list of clusters: a cluster size of 14 seems to be too small, and we find the optimum
at size 28 (with half the construction time of the sa-tree). However, our structure is superior for any
choice of cluster size. (Previous datasets were too large to permit us reaching the optimal point;
the smaller clusters were always better.) With respect to pivots, the sa-tree is quickly improved
when searching with very small radii, but in order to beat it at searching with larger radii it is
necessary to spend 8 times more memory.

As it can be seen, sa-trees provide a good tradeoff between space or construction cost. It is
necessary to pay much more space or construction time to beat them when the dimension is high
or the search radius is large. These are the most difficult cases in practice.

7 Incremental Construction

The sa-tree is a structure whose construction algorithm needs to know all the elements of S in
advance. In particular, it is difficult to add new elements under the best-fit strategy once the tree
is already built. Each time a new element is inserted, we must go down the tree by the closest
neighbor until the new element must become a neighbor of the current node a. All the subtree
rooted at @ must be rebuilt from scratch, since some nodes that went into another neighbor could
prefer now to get into the new neighbor.

Permitting the insertion of new elements into an already built sa-tree is the main issue in our

21



Percentage of database examined

Percentage of database examined

Query cost for n=86,061 words under Levenshtein distance Query cost for n=86,061 words under Levenshtein distance

80 . . - 80 . .
sa-tree o sa-tree ——
70 |+ pivots(1) —— 3 € 70t gna-tree ——
pivots(2) —— g clusters(1) —<—
60 pivots(4) —— o 60 r clusters(2) ——
ivots(8) —=— [} clusters(4
o | PVots® % 50 @)
40 | 1 8 a0 ]
©
30 1 S 30 1
(0]
20 | 1 g 20 1
c
10 f 1 8 10 1
0 8_) 0 L L
1 4 1 2 3 4
Search radius Search radius
Query cost for n=1,263 documents under the cosine similarity Query cost for n=1,263 documents under the cosine similarity
45 sa-tree ' § 40 sa-tree ——— '
40 + pivots(1) —— ] = gna-tree ——
pivots(2) —=— g 35 |clusters(1/4) —— ]
pivots(4) —— & clusters(1/2) ——
35 pivots(8) —=— 1 o c:us{ersgg
© 30 f clusters i
30 1 g
25 | ] 3
s 25 1
20 f 1 =2
e 20 ]
15 1 g
10 . s 15 .
0.1 1 10 0.1 1 10
Percentage of database retrieved Percentage of database retrieved

Figure 13: Comparison between the cost of range searching using the sa-tree and other algorithms.
On top the space of words and on the bottom that of documents. On the left we compare against
pivoting algorithms and on the right against clustering algorithms.
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ongoing work [Rey01]. In this section we comment some alternatives we are working on.

7.1 Rebuilding the Subtree

The naive approach is that, once a new element z being inserted has to become a neighbor of a tree
node a, we rebuild the whole subtree rooted at a. This may or may not be too costly depending on
how close are we typically from the tree leaves at the moment of rebuilding the subtree. In general
we expect to be quite close to the leaves, as the tree has sublogarithmic depth and the probability
of becoming a neighbor is quite low (it grows exponentially with the depth).

It is possible to analyze the expected cost of this choice. Let us assume that we enter at the root
of a tree of n elements with a new element. There are ©(log n) neighbors. Hence the probability of
becoming a new neighbor is at most 1/22(°6") = p=% for some a > 0 (recall Section 5). With this
probability our new element becomes a neighbor and we have to rebuild the whole tree of size n.
Otherwise we go to the closest neighbor and work on a tree of size ®(n/logn). The average size of
the tree to rebuild is then

_ —a o n l—-a n _ l—-a
R(n) = n%n+ (1-n )R<logn> < n +R<logn> = O(n )

which, given the cost B(n) = O(nlog® n/loglogn) of rebuilding a subtree of size n, gives an update
cost of O(n'~*log?n/loglogn). This shows that, on average, we only rebuild a small part of the
tree, but the update cost is far away from the ideal logarithmic time.

7.2 Overflow Bags

We can have an overflow bag per node with “extra” neighbors against which the query must be
directly compared but have no subtree to follow. When the new element z must become a neighbor
of a, we put it in the overflow bag of a. Each time we reach a at query time, we also compare ¢
against its overflow bag and report any element near enough.

At periodic intervals, the structure must be rebuilt from scratch in order to maintain a reason-
able search efficiency. For example we may rebuild a subtree when its overflow bag exceeds a given
size. The main question is which is the tradeoff in practice between reconstruction cost and query
cost. The more often we rebuild the tree, the smaller are the overflow bags and the query time
improves. Note that the naive strategy of Section 7.1 is a particular case of overflow bags with zero
tolerance.

7.3 A First-Fit Strategy

Yet another solution is to change our best-fit strategy to put elements inside the bags of the neighbors
of a at construction time. An alternative strategy, first-fit, is to put each node in the bag of the
first neighbor closer than a. The determination of N(a) and the assignment of the other elements
to their bag in N(a) can now be done in one pass.

With the first-fit strategy, however, we can easily add more elements by pretending that the
new incoming element z was the last one in the bag, which means that when it becomes a neighbor
of a it can be simply added as the last neighbor of a, and there were no later elements that had
the chance of getting into #. This allows building the structure by successive insertions.
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The range search under the first-fit construction strategy is a little different. We consider
the neighbors {vy,...,vt} of a in order. We perform the minimization while we traverse the
neighbors. That is, we enter into the subtree of v; if d(g,v1) < d(g,a) 4+ 2r; we enter into the
subtree of vy if d(g, v2) < min(d(qg, a), d(g, v1)) + 2r; and in general we enter into the subtree of v; if
d(q,v;) < min(d(q, a),d(q,v1),...,d(q,vi—1)) + 2r. This is because a neighbor v;y; can never take
out an element from v;.

Our preliminary experiments, however, show that the first-fit strategy works much worse in
practice because of its asymmetry (the first subtrees are much larger than the last ones, and they
are searched more often). Therefore, although this solution is elegant, it is not really promising.

7.4 Keeping Track of History

An alternative that has resemblances with the two previous, but seems more promising, consists in
keeping a timestamp of the insertion time of each element. When inserting a new element, we add
it as a neighbor at the appropriate point using best-fit and do not rebuild the tree. Let us consider
that neighbors are added at the end, so by reading them left to right we have increasing insertion
times. It also holds that the parent is always older than its children.

At search time, we consider the neighbors {vy, ..., v} of a from oldest to newest. We perform
the minimization while we traverse the neighbors, exactly as in Section 7.3. This is because between
the insertion of v; and v;y; there may have appeared new elements that preferred v; just because
v;+; was not yet a neighbor, so we may miss an element if we do not enter into v; because of the
existence of v;4;.

Note that, although the search process is the same as under first-fit, the insertion puts the
elements into their closest neighbor, so the structure is balanced.

Up to now we do not really need timestamps but just keeping the neighbors sorted. Yet a more
sophisticated scheme is to use the timestamps to reduce the work done inside older neighbors. Say
that d(g,v;) > d(g,vi+;) + 2r. We have to enter into v; because it is older. However, only the
elements with timestamp smaller than that of v;; ; should be considered when searching inside v;;
younger elements have seen v;,; and they cannot be interesting for the search if they are inside v;.
As parent nodes are older than their descendants, as soon as we find a node inside the subtree of v;
with timestamp larger than that of v;;; we can stop the search in that branch, because its subtree
is even younger.

7.5 Inserting at the Leaves

Another promising alternative we are considering is as follows. We can relax Condition 2 (Sec-
tion 4.1), whose main goal is to guarantee that if ¢ is closer to a than to any neighbor in N (a) then
we can stop the search at that point. The idea is that, at search time, instead of finding the closest
¢ among {a} U N(a) and entering into any b € N(a) such that d(q,b) < d(q,c) + 2r, we exclude
the subtree root {a} from the minimization. Hence, we always continue to the leaves by the closest
neighbor and others close enough.

This makes the search time slightly worse, but our preliminary experiments show that in practice
the difference is negligible. The benefit is that we are not forced anymore to put a new inserted
element # as a neighbor of a, even when Condition 2 would require it. That is, at insertion time,
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even if @ is closer to a than to any element in N(a), we have the choice of not putting it as a
neighbor of a but inserting it into its closest neighbor of N(a). At search time we will reach
because the search and insertion processes are similar.

This freedom opens a number of new possibilities that deserve a much deeper study, but an
immediate consequence is that we can insert always at the leaves of the tree. Hence, the tree is read-
only in its top part and it changes only in the fringe. Our insertion cost becomes sublogarithmic
(proportional to the average leaf depth). However, it is not clear how good is to do this all the time,
since we are not optimizing the neighbors. It is possible that if we build all the tree in this way
the search quality gets affected. An intermediate alternative is to permit inserting # as a neighbor
when the size of the subtree to rebuild is small enough, which leads to a tradeoff between insertion
cost and quality of the tree at search time. For example we can permit rebuilding subtrees of size
O(logn/(loglog n)?) only, and hence the insertion cost becomes logarithmic.

An ideal scenario would be to estimate how much we improve the search time by inserting z as
a neighbor of the current node a versus how costly is it to rebuild the tree.

8 Conclusions

We have presented a new data structure, the sa-tree, to search in metric spaces. Our idea is to
approach the query spatially rather than by dividing the set of candidates as in other approaches.
We first show that the ideal structure for spatial approximation cannot be built and then pro-
pose a structure which provides a reasonable trade-off by combining spatial approximation with
backtracking. We show analytically that the number of distance evaluations at search time is
o(n), and present experimental evidence showing that our structure outperforms all the others on
high-dimensional spaces or queries with low selectivity. These are the harder cases in proximity
searching.
Some issues for future work which we are already pursuing follow.

e We have made some heuristic decisions in order to find a data structure that can be built in
reasonable time, e.g. selecting the root at random or using a simple heuristic to select a set
of neighbors N (a). It may be possible to find better solutions that improve the search time.

e The sa-tree outperforms the other structures on high dimensions (where the problem is more
difficult) but is inferior to others when the problem is easier (low dimensions). Moreover,
it cannot trade space for query time as pivoting schemes do. This enables the possibility of
designing hybrid schemes, such as replacing all the small enough subtrees (where the intrinsic
dimension is lower) by another data structure better suited for that case. A simple twist is
to store the distance of each node to its k ancestors in the tree, so as to use them as pivots
to prune the search space. This does not require more distance evaluations at construction
or at query time, but it increases the index space by kn distances.

e It is interesting to try to reduce the backtracking, although our attempts up to now have
failed. A first choice is to refine a tolerance radius R and insert each element into its closest
neighbor and any other that differs from it in at most R. The backtracking can now be
done with tolerance 2(r — R). The problem is that the structure is now a DAG (directed
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acyclic graph), not a tree, and that they may appear loops in the construction, a problem
we have solved by restarting a new DAG with the elements involved in the loop. This has
lead to a large number of small DAGs, each of which has to be traversed almost completely
(the sublinearity plays against us in this case). Another choice is to put as neighbor any
element whose difference of distances between the root and the closest neighbor is at most
R, and reduce the backtracking to 2(r — R) again. The problem is that the balance between
number of neighbors and backtracking is delicate: too many neighbors are generated and the
efficiency is reduced.

e A problem still open is how to allow dynamic insertions and deletions of elements without
degrading the performance. This is our main focus at the moment [Rey01]. We have presented
a number of possible solutions for dynamic insertions, some of which are promising. Deletions
seem more difficult but always can be treated by marking the nodes as deleted and making
periodic rebuilds. The average cost of a deletion is anyway sublinear, O(n!~%) for 0 < a < 1,
just like the insertion.

e Secondary memory issues have not been considered. A simple solution is to try to store whole
subtrees in disk pages so as to minimize the number of pages read at search time. This has
an interesting relationship with the last proposal for dynamic insertions (Section 7.5), not
only because we can insert always at the leaves but also because we can control the maximum
arity of the tree so as to make the neighbors fit in a disk page.

e It would be interesting to build approximate or probabilistic algorithms based on this struc-
ture, as they have proved to be of great interest in high dimensional metric spaces using other
data structures that typically work well only on low dimensional spaces [CNO01].

e Our data structure was born in the quest for a more powerful structure, which we could call
a spatial approzimation graph. Such a directed graph should permit us to reach any element
from each other by always reducing the distance to it. Fast algorithms to build and exploit
this structure and a mathematical characterization of it is interesting by itself. Moreover,
other simplified structures, different from the sa-tree, could be created based on the spatial
approximation approach.
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