
Searching in Metric Spaces by Spatial Approximation �Gonzalo NavarroDept. of Computer Science, University of ChileBlanco Encalada 2120 - Santiago - Chilegnavarro@dcc.uchile.clAbstractWe propose a new data structure to search in metric spaces. A metric space is formedby a collection of objects and a distance function de�ned among them, which satis�es thetriangular inequality. The goal is, given a set of objects and a query, retrieve those objectsclose enough to the query. The number of distances computed to achieve this goal is thecomplexity measure. Our data structure, called sa-tree (\spatial approximation tree"), is basedon approaching spatially the searched objects, i.e., getting closer and closer to it, rather thanthe classical divide-and-conquer approach of other data structures. We analyze our methodand show that the number of distance evaluations to search among n objects is sublinear. Weshow experimentally that the sa-tree is the best existing technique when the metric space ishigh-dimensional or the query has low selectivity. These are the most di�cult cases in realapplications. As a practical advantage, our data structure is one of the few that do not need totune parameters, which makes it appealing for use by non-experts.1 IntroductionThe concept of \approximate" searching has applications in a vast number of �elds. Some examplesare non-traditional databases (where the concept of exact search is of no use and we search insteadfor similar objects, e.g. databases storing images, �ngerprints or audio clips); text retrieval (wherewe look for words and phrases in a text database allowing a small number of typographical orspelling errors, or we look for documents which are similar to a given query or document); machinelearning and classi�cation (where a new element must be classi�ed according to its closest existingelement); image quantization and compression (where only some vectors can be represented andthose that cannot must be coded as their closest representable point); computational biology (wherewe want to �nd a DNA or protein sequence in a database allowing some errors due to typicalvariations); function prediction (where we want to search the most similar behavior of a functionin the past so as to predict its probable future behavior); etc.All those applications have some common characteristics. There is a universe U of objects, anda nonnegative distance function d : U �U �! R+ de�ned among them. This distance satis�es the�This work has been supported in part by Fondecyt grant 1-000929.

three axioms that make the set a metric spaced(x; y) = 0 , x = yd(x; y) = d(y; x)d(x; z) � d(x; y) + d(y; z)where the last one is called the \triangular inequality" and is valid for many reasonable similarityfunctions. The smaller the distance between two objects, the more \similar" they are. We havea �nite database S � U , which is a subset of the universe of objects and can be preprocessed (tobuild an index, for example). Later, given a new object from the universe (a query q), we mustretrieve all similar elements found in the database. There are two typical queries of this kind:Range query: Retrieve all elements within distance r to q. This is, fx 2 S ; d(x; q)� rg.Nearest neighbor query (k-NN): Retrieve the k closest elements to q in S. This is, retrieve aset A � S such that jAj = k and 8x 2 A; y 2 S � A; d(x; q)� d(y; q).The distance is considered expensive to compute (think, for instance, in comparing two �nger-prints). Hence, it is customary to de�ne the complexity of the search as the number of distanceevaluations performed, disregarding other components such as CPU time for side computations,and even I/O time. Given a database of jSj = n objects, queries can be trivially answered byperforming n distance evaluations. The goal is to structure the database such that we perform lessdistance evaluations.A particular case of this problem arises when the space is a set of d-dimensional points andtheir distance belongs to the Minkowski Lr family: Lr = (P1�i�d jxi � yijr)1=r. The best knownspecial cases are r = 1 (Manhattan distance), r = 2 (Euclidean distance) and r = 1 (maximumdistance). This last distance deserves an explicit formula: L1 = max1�i�d jxi � yij.There are e�ective methods to search on d-dimensional spaces, such as kd-trees [Ben79, Ben75]or R-trees [Gut84]. However, for roughly 20 dimensions or more those structures cease to workwell. We focus in this paper in general metric spaces, although the solutions are well suitedalso for d-dimensional spaces. It is interesting to notice that the concept of \dimensionality" canbe translated to metric spaces as well: the typical feature in high dimensional spaces with Lrdistances is that the probability distribution of distances among elements has a very concentratedhistogram (with larger mean as the dimension grows), di�culting the work of any similarity searchalgorithm [Bri95, CM97, CNBYM01]. In the extreme case we have a space where d(x; x) = 0 and8y 6= x; d(x; y) = 1, where it is impossible to avoid a single distance evaluation at search time. Wesay that a general metric space is high dimensional when its histogram of distances is concentrated.There are a number of methods to preprocess the set in order to reduce the number of distanceevaluations. Some are tailored to continuous and others to discrete distance functions. All thosestructures work on the basis of discarding elements using the triangular inequality (there is no wayto avoid a single distance evaluation if the triangular inequality does not hold).In this work we present a new data structure to answer similarity queries in metric spaces.We call it sa-tree, or \spatial approximation tree". It is based on a completely di�erent concept,namely to approach the query spatially, getting closer and closer to it, instead of the generallyused technique of partitioning the set of candidate elements. We start by presenting an ideal2

data structure that, as we prove, cannot be built, and then design a tradeo� which can be built.We analyze the performance of the structure, showing that the number of distance evaluations iso(n). We also experimentally compare our data structure against previous work, showing that itoutperforms all the other schemes for high dimensional spaces or queries with large radii.There are many interesting applications whose space is high dimensional. On the other hand,one can argue that large radii may return too many results if one considers the particular case ofthe end user of a database, so all the interesting cases are of very small selectivity. However, thereare lots of applications where it is necessary to retrieve a relatively large portion of the database.Even in data retrieval applications, the similarity criterion may be just a �rst step from where weobtain a set of candidates which are further �ltered with more complex criteria before delivering asmall set of answers to the �nal user. This is indeed the ranking method of many existing systemsfor textual information retrieval [BYRN99].The sa-tree, unlike other data structures, does not have parameters to be tuned by the userof each application. This makes it very appealing as a general purpose data structure for metricsearching, since any non-expert seeking for a tool to solve his/her particular problem can use itas a black box tool, without the need of understanding the complications of an area he/she is notinterested in. Other data structures have many tuning parameters, hence requiring a big e�ortfrom the user in order to obtain an acceptable performance.This work is organized as follows. In Section 2 we cover the main We have found only one an-tecedent of our idea in the literature: in [Cla99] they start with this concept of spatially approach-ing the query and end up with a probabilistic algorithm based on a randomized data structure forsearching the nearest neighbor of the query. Our results are more general and rely on deterministicalgorithms.previous work. In Section 3 we present the ideal data structure and prove that it cannot bebuilt. In Section 4 we propose the simpli�ed structure. The structure is analyzed in Section 5.Section 6 shows experimental results verifying the analysis and comparing the structure againstothers. Some alternatives that permit incremental construction are discussed in Section 7. Wedraw our conclusions in Section 8. A partial and less mature earlier version of this work appearedin [Nav99].2 Previous WorkAlgorithms to search in general metric spaces can be divided in two large areas: pivot-based andclustering algorithms. (See [CNBYM01] for a more complete review.)Pivot-based algorithms. The idea is to use a set of k distinguished elements (\pivots") p1:::pk 2S and storing, for each database element x, its distance to the k pivots (d(x; p1):::d(x; pk)). Giventhe query q, its distance to the k pivots is computed (d(q; p1):::d(q; pk)). Now, if for some pivot piit holds that jd(q; pi) � d(x; pi)j > r, then we know by the triangular inequality that d(q; x) > rand therefore do not need to explicitly evaluate d(x; p). All the other elements that cannot beeliminated using this rule are directly compared against the query.Algorithms such as aesa [Vid86], laesa [MOV94], spaghettis and variants [CMBY99, NN97],fq-trees and variants [BYCMW94], and fq-arrays [CMN01], are almost direct implementations of3

this idea, and di�er basically in their extra structure used to reduce the CPU cost of �nding thecandidate points, but not in the number of distance evaluations performed.There are a number of tree-like data structures that use this idea in a more indirect way: theyselect a pivot as the root of the tree and divide the space according to the distances to the root. Oneslice corresponds to each subtree (the number and width of the slices di�ers across the strategies).At each subtree, a new pivot is selected and so on. The search performs a backtrack on the treeusing the triangular inequality to prune subtrees, that is, if a is the tree root and b the root of achildren corresponding to d(a; b) 2 [x1; x2], then we can avoid entering in the subtree of b whenever[d(q; a) � r; d(q; a) + r] has no intersection with [x1; x2]. Data structures using this idea are thebk-tree and its variants [BK73, Sha77], metric trees [Uhl91b], tlaesa [MOC96], and vp-trees andvariants [Yia93, BO97, Yia00].Clustering algorithms. The second trend consists in dividing the space in zones as compact aspossible, normally recursively, and storing a representative point (\center") for each zone plus afew extra data that permits quickly discarding the zone at query time. Two criteria can be usedto delimit a zone.The �rst one is the Voronoi area, where we select a set of centers and put each other point insidethe zone of its closest center. The areas are limited by hyperplanes and the zones are analogous toVoronoi regions in vector spaces. Let fc1 : : : cmg be the set of centers. At query time we evaluate(d(q; c1); : : : ; d(q; cm)), choose the closest center c and discard every zone whose center ci satis�esd(q; ci) > d(q; c) + 2r, as its Voronoi area cannot have intersection with the query ball.The second criterion is the covering radius cr(ci), which is the maximum distance between ciand an element in its zone. If d(q; ci)� r > cr(ci), then there is no need to consider zone i.The techniques can be combined. Some using only hyperplanes are the gh-trees and variants[Uhl91b, NVZ92], and Voronoi trees [DN87, Nol89]. Some using only covering radii are the M-trees[CPZ97] and lists of clusters [CN00]. One using both criteria is the gna-tree [Bri95].To answer 1-NN queries, we simulate a range query with a radius that is initially r = 1, andreduce r as we �nd closer and closer elements to q. At the end, we have in r the distance to theclosest elements and have seen them all. Unlike a range query, we are now interested in quickly�nding close elements in order to reduce r as early as possible, so there are a number of heuristicsto achieve this. One of the most interesting is proposed in [Uhl91a] for metric trees, where thesubtrees are stored in a priority queue in a heuristically promising ordering. The traversal is moregeneral than a backtracking. Each time we process the most promising subtree, we may add itschildren to the priority queue. At some point we can preempt the search using a cuto� criteriongiven by the triangular inequality.k-NN queries are handled as a generalization of 1-NN queries. Instead of a closest element,a priority queue of the k closest elements known is maintained. The r value is now that of theelement among the k current candidates which is farthest from q. Each new candidate is insertedin the heap and may displace the farthest one out of the queue (hence reducing r for the rest ofthe algorithm).Note that all the previous work aims at dividing the database, inheriting from the classicaldivide-and-conquer ideas of searching typical data (e.g. binary search trees). We propose in this4

paper a new approach which is speci�c of spatial searching. Rather than dividing the set ofcandidates along the search, we try to start at some point in the space and get closer to the queryq in a spatial sense.3 The Spatial Approximation ApproachWe concentrate in this section on 1-NN queries (at the end we will solve all types of queries).Instead of the known algorithms to solve proximity queries by dividing the set of candidates, wetry a di�erent approach here. In our model, we are always positioned at a given element of S andtry to get \spatially" closer to the query (i.e. move to another element which is closer to the querythan the current one). When this is no longer possible, we are positioned at the nearest elementto the query in the set.This approximation is performed only via \neighbors". Each element a 2 S has a set ofneighbors N(a), and we are allowed to move directly only to neighbors. The natural structure torepresent this restriction is a directed graph where the nodes are the elements of S and they havedirect edges to their neighbors. That is, there is an edge from a to b if it is possible to move froma to b in a single step.Once such graph is suitably de�ned, the search process for a query q is simple: start positionedat a random node a and consider all its neighbors. If no neighbor is closer to q than a, then reporta as the closest element to q. Otherwise, select some neighbor b closer to q than a and move to b.We can choose b as the neighbor which is closest to q or as the �rst one we �nd closer than a.In order for that algorithm to work, the graph must contain enough edges. The simplest graphthat works is the complete graph, i.e. all pairs of nodes are neighbors. However, this impliesn distance evaluations just to check the neighbors of the last node! For this reason and also tominimize the space required by the structure, we prefer the graph which has the least possiblenumber of edges and still allows answering correctly all queries. This graph G = (S; f(a; b); a 2S; b 2 N(a)g) must enforce the following property:Condition 1: 8a 2 S, 8q 2 U , if 8b 2 N(a); d(q; a) � d(q; b), then 8b 2 S; d(q; a) � d(q; b).This means that, given any possible element q, if we cannot get closer to q from a going to itsneighbors, then it is because a is already the element closest to q in the whole set S. It is clearthat if G satis�es Condition 1 we can search by spatial approximation. We seek a minimal graphof that kind.This can be seen in another way: each a 2 S has a subset of U where it is the proper answer(i.e. the set of objects closer to a than to any other element of S). This is the exact analogous ofa \Voronoi region" for Euclidean spaces in computational geometry [Aur91]1. The answer to thequery q is the element a 2 S which owns the Voronoi region where q lies. We need, if a is not theanswer, to be able to move to another element closer to q. It is enough to connect each a 2 Swith all its \Voronoi neighbors" (i.e. elements of S whose Voronoi area share a border with thatof a), since if a is not the answer, then a Voronoi neighbor will be closer to q (this is exactly theCondition 1 just stated).1The proper name in a general metric space is \Dirichlet domain" [Bri95].5

Consider the hyperplane between a and b (i.e. which divides the area of points x closer to a orcloser to b). Each neighbor b we add to a will allow the search to move from a to b provided q is inb's part of the hyperplane. Therefore, if (and only if) we add all the Voronoi neighbors to a, thenthe only zone where the query would not move away from a will be exactly the area where a is theclosest neighbor.Therefore, in a vector space, the minimal graph we seek corresponds to the classical Delaunaytriangulation (a graph where the elements which are Voronoi neighbors are connected). The De-launay graph, generalized to arbitrary spaces, would be therefore the ideal answer in terms of spacecomplexity, and it should permit fast searching too. Figure 1 shows an example.
p4

p2

p12
p3

p11
p10p6

p15

p5
p1

p8

q

p9

p14

p13

p7

Figure 1: An example of the search process with a Delaunay graph (solid edges) corresponding toa Voronoi partition (areas delimited by dashed lines). We start from p11 and reach p9, the nodeclosest to q, moving always to neighbors closer and closer to q.Unfortunately, it is not possible to compute the Delaunay graph of a general metric space givenonly the set of distances among elements of S and no further indication of the structure of thespace. This is because, given the set of jSj2 distances, di�erent spaces will have di�erent graphs.Moreover, it is not possible to prove that a single edge from any node a to b is not in the Delaunaygraph. Therefore, the only superset of the Delaunay graph that works for an arbitrary metric spaceis the complete graph, and as explained this graph is useless. This outrules the data structure forgeneral applications. We formalize this notion as a theorem.Theorem: given a set S of elements in an unknown metric space U , and given the distances amongeach pair of elements in S, then for each a; b 2 S there exists a valid metric space U where a andb are connected in the Delaunay graph of S.Proof: given the set of distances, we create a new element x 2 U such that d(a; x) = M + �,d(b; x) = M , and d(y; x) = M + 2� for every other y 2 S. This satis�es all triangle inequalities6

provided � � 1=2 miny;z2Sfd(y; z)g and M � 1=2 maxy;z2Sfd(y; z)g. Therefore, such an x mayexist in U . Now, given the query q = x and given that we are currently at element a, we have thatb is the element nearest to x and the only way to move to b without getting farther from q is adirect edge from a to b (see Figure 2). This argument can be repeated for any pair a; b 2 S.
a b

x y

Μ+ε
Μ

Μ+2ε

arc needed

nearest to x

Figure 2: Illustration of the theorem.4 The Spatial Approximation TreeWe make two crucial simpli�cations to the general idea so as to achieve a feasible solution. Theresulting simpli�cation answers only a reduced set of queries, namely 1-NN queries for q 2 S, whichis no more than exact searching. However, we show later (Section 4.2) how to combine the spatialapproximation approach with backtracking so as to answer any query q 2 U (not only q 2 S), forboth range queries and nearest neighbor queries.(1) We do not start traversing the graph from a random node but from a �xed one, and thereforethere is no need of all the Voronoi edges.(2) Our graph will only be able to answer correctly queries q 2 S, i.e. only elements alreadypresent in the database.4.1 Construction ProcessWe select a random element a 2 S to be the root of the tree. We then select a suitable set ofneighbors N(a) satisfying the following property:Condition 2: (given a; S) 8x 2 S, x 2 N(a), 8y 2 N(a)� fxg; d(x; y) > d(x; a).That is, the neighbors of a form a set such that any neighbor is closer to a than to any otherneighbor. The \only if" (() part of the de�nition guarantees that if we can get closer to any b 2 Sthen an element in N(a) is closer to b than a, because we put as direct neighbors all those elementsthat are not closer to another neighbor. The \if" part ()) aims at puting as few neighbors aspossible.Notice that the set N(a) is de�ned in terms of itself in a non-trivial way and that multiplesolutions �t the de�nition. For example, if a is far from b and c and these are close to each other,then both N(a) = fbg and N(a) = fcg satisfy the de�nition.7

Finding the smallest possible set N(a) seems to be a nontrivial combinatorial optimizationproblem, since by including an element we need to take out others (this happens between b and cin the example of the previous paragraph). However, simple heuristics which add more neighborsthan necessary work well. We begin with the initial node a and its \bag" holding all the rest ofS. We �rst sort the bag by distance to a. Then, we start adding nodes to N(a) (which is initiallyempty). Each time we consider a new node b, we see if it is closer to some element of N(a) than toa itself. If that is not the case, we add b to N(a).At this point we have a suitable set of neighbors. Note that Condition 2 is satis�ed thanks tothe fact that we have considered the elements in order of increasing distance to a. The \only if"part of the Condition is clearly satis�ed because any element satisfying the clause on the right isinserted in N(a). The \if" part is more delicate. Let x 6= y 2 N(a). If y is closer to a than x theny was considered �rst. Our construction algorithm guarantees that if we inserted x in N(a) thend(x; a) < d(x; y). If, on the other hand, x is closer to a than y, then d(y; x) > d(y; a) � d(x; a)(that is, a neighbor cannot be removed by a new neighbor inserted later).We now must decide in which neighbor's bag we put the rest of the nodes. We put each nodenot in fag [N(a) in the bag of its closest element of N(a) (best-�t strategy). Observe that thisrequires a second pass once N(a) is fully determined.We are done now with a, and process recursively all its neighbors, each one with the elements ofits bag. Note that the resulting structure is not a graph but a tree, which can be searched for anyq 2 S by spatial approximation for nearest neighbor queries. The reason why this works is that,at search time, we repeat exactly what happened with q during the construction process (i.e. weenter into the subtree of the neighbor closest to q), until we reach q. This is is because q is presentin the tree, i.e., we are doing an exact search.Finally, we save some comparisons at search time by storing at each node a its covering radius,i.e. the maximum distance R(a) between a and any element in the subtree rooted by a. The wayto use this information is made clear in Section 4.2.Figure 3 depicts the construction process.4.2 Range SearchingOf course it is of little interest to search only for elements q 2 S. The tree we have described can,however, be used as a device to solve queries of any type for any q 2 U . We start with range querieswith radius r.The key observation is that, even if q 62 S, the answers to the query are elements q0 2 S. Sowe use the tree to pretend that we are searching an element q0 2 S. We do not know q0, butsince d(q; q0) � r, we can obtain from q some distance information regarding q0: by the triangularinequality it holds that for any x 2 U , d(x; q)� r � d(x; q0) � d(x; q) + r.Therefore, instead of simply going to the closest neighbor, we �rst determine the closest neighborc of q among fag[N(a). We then enter into all neighbors b 2 N(a) such that d(q; b)� d(q; c)+2r.This is because the virtual element q0 we are searching for can di�er from q by at most r at anydistance evaluation, so it could have been inserted inside such b nodes. In the process, we reportall the nodes q0 we have seen which are close enough to q.Moreover, notice that, in an exact search for a q 2 S, the distances between q and the nodeswe traverse gets reduced as we step down the tree. That is,8

BuildTree (Node a, Set of nodes S)N(a) ; /* neighbors of a */R(a) 0 /* covering radius */Sort S by distance to a (closer first)for v 2 S doR(a) max(R(a); d(v; a))if 8b 2 N(a); d(v; a)< d(v; b) then N(a) N(a)[fvgfor b 2 N(a) do S(b) ; /* subtrees */for v 2 S �N(a) doLet c 2 N(a) be the one minimizing d(v; c)S(c) S(c)[fvgfor b 2 N(a) do BuildTree (b, S(b)) /* build subtrees */Figure 3: Algorithm to build the sa-tree. It is �rstly invoked as BuildTree(a,S � fag) where ais a random element of the set S. Note that, except for the �rst level of the recursion, we alreadyknow all the distances d(v; a) for every v 2 S and hence do not need to recompute them. Similarly,d(v; c) at line 9 is already known from line 6. The information stored by the data structure is theroot a and the N() and R() values of all the nodes.Observation 1: Let a; b; c 2 S such that b descends from a and c descends from b in the tree.Then d(c; b)� d(c; a).The same happens, allowing a tolerance of 2r, with a range search with radius r. That is, forany b in the path from a to q0 it holds that d(q0; b) � d(q0; a), so d(q; b)� d(q; a)+2r. Hence, whileat �rst we need to enter into all the neighbors b 2 N(a) such that d(q; b)� d(q; c) � 2r, when weenter into those b the tolerance is not 2r anymore but it gets reduced to 2r � (d(q; b)� d(q; c)).Therefore, what was originally conceived as a search by spatial approximation along a singlepath is combined now with backtracking, so that we search by a number of paths. This is theprice of not being able to build a true spatial approximation graph. Figure 4 illustrates the searchprocess.The covering radius R(a) is used to reduce the search cost as follows. We never enter into asubtree such that d(q; a) > R(a) + r, since there cannot be useful elements there. Figure 5 depictsthe algorithm.4.3 Nearest Neighbor SearchingWe can also perform nearest neighbor searching by simulating a range search where the searchradius is reduced as we get more and more information. To solve 1-NN queries, we start searchingwith r =1, and reduce r each time a new comparison is performed which gives a distance smallerthan r. We �nally report the closest element seen along all the search. For k-NN queries we storeall the time a priority queue with the k closest elements to q we have seen up to now. The radiusr is the distance between q and its farthest candidate in the queue (1 if we still have less than k9

p13

p4

p2

p12
p3

p7

p15

p6

p8

p9
p14

p11

p1
q

p5

p10

Figure 4: An example of the search process, starting from p11 (tree root). Only p9 is in the result,but all the bold edges are traversed.candidates). Each time a new candidate appears we insert it into the queue, which may displaceanother element and hence reduce r. At the end, the queue contains the k closest elements to q(recall Section 2).In a normal range search with �xed r, the order in which we backtrack in the tree is unimportant.This is not the case now, as we would like to quickly �nd elements close to q so as to reduce r early.A general idea proposed in [Uhl91a] can be adapted to our data structure. We have a priorityqueue of subtrees, most promising �rst. Initially, we insert the whole sa-tree in the data structure.Iteratively, we extract the most promising subtree, process its root, and insert all its subtrees in thequeue. This is repeated until the queue gets empty or its most promising subtree can be discarded(i.e., its promise value is bad enough).How promising is a subtree rooted at a and how can it be discarded is measured, in our case,RangeSearch (Node a, Query q, Radius r, Tolerance t)if d(a; q) � r then Report aif d(a; q) � R(a) + r thenmind minfd(c; q); c 2 fag [N(a)gfor b 2 N(a) doif d(b; q)�mind � t then RangeSearch (b,q,r,t� (d(b; q)�mind))Figure 5: Algorithm to search q with radius r in a sa-tree under the best-�t strategy. It is �rstlyinvoked as RangeSearch(a,q,r,2r), where a is the root of the tree. Notice that in the recursiveinvocations d(a; q) is already computed. 10

in two possible ways:1. By the lower bound to the distance between q and an element in the subtree, namely d(q; b)�R(b) � r.2. By the fact that we �nd the closest neighbor c and then enter into any other neighbor b suchthat d(q; b)� d(q; c) � 2r, i.e., (d(q; b)� d(q; c))=2 � r. As in fact the tolerance is 2r at thebeginning and it gets reduced across the search, we add up the reductions. That is, let t bethe accumulated di�erences between the distances to the selected neighbor and the closestneighbor. Then we continue the search as long as t+ (d(q; b)� d(q; c))� 2r. Hence the newlimit is (t + d(q; b)� d(q; c))=2Since r gets reduced along the search, we can store together with b the two values, d(q; b)�R(b)and (t + d(q; b)� d(q; c))=2, and avoid entering into those where any of these two value is largerthan r. From these two criteria, we must choose one as our \primary" criterion, so as to sort thequeue by it and stop the whole process when its value is larger than r. The other can be used asa \secondary" criterion, just to avoid entering some subtrees but not sorting by it and hence notusing it as a global stopping criterion. Our experiments show that the second option is slightlybetter as the primary criterion. Figure 6 depicts the algorithm.NN-Search (Tree a, Query q, Neighbors wanted k)Q f(a; 0; d(q; a)�R(a))g /* promising subtrees */A ; /* best answer so far */r 1while Q is not empty(b; t; d) element in Q with smallest t , Q Q� f(b; t; d)gif t > r then Return the answer A /* global stopping criterion */if d � r then /* secondary criterion */A A [f(b; d+ R(b))gif jAj = k + 1 then(c; d0) element in A with largest d0 , A A� f(c; d0)gif jAj = k then(c; d0) element in A with largest d0 , r d0c closest to q among N(b)for each v 2 N(b), Q Q [(v; (t+ d(q; v)� d(q; c))=2; d(q; v)�R(v))Return the answer AFigure 6: Algorithm to search the k nearest neighbors of q in a sa-tree. A and Q are priority queuesof pairs (subtree,distance1) and (element,distance1,distance2), respectively, delivering the smallestdistance1 �rst. 11

5 AnalysisWe analyze now our sa-tree structure. Our analysis is simpli�ed in many aspects, for instance itassumes that the distance distribution of nodes that go into a subtree is the same as in the globalspace. We also do not take into account that we sort the bag before selecting neighbors (the resultsare pessimistic in this sense, since it looks as if we had more neighbors). As seen in the experimentshowever, the �tting with real data is excellent. This analysis is done for a continuous distancefunction, although adapting it to the discrete case is immediate.Our results can be summarized as follows. The sa-tree needs linear space O(n), reasonableconstruction time O(n log2 n= log logn) and sublinear search time O(n1��(1= log logn)) in high di-mensions and O(n�) (0 < � < 1) in low dimensions.5.1 Construction Cost and Tree ShapeLet us consider �rst the construction process. We select a random node as the root and determinewhich others are going to be neighbors. Imagine that a is the selected as root and b is an alreadypresent neighbor. The probability that a given node c is closer to a than to b is simply 1=2 becausethe situation is symmetric: if we draw a hyperplane at the same distance from a and b, then c canequally lie at either side of the hyperplane.If j neighbors are already present, the probability that we add another neighbor is that of beingcloser to a than to any neighbor. If we assume that all the hyperplanes are independent, then thisprobability is 1=2j. This is a simpli�cation for several reasons. First, the neighbors are chosen froma's part of the hyperplane, never from the part of the hyperplane of another neighbor (which is thesame to say that neighbors are closer to a than to each other). Second, in low dimensions it is notpossible to set up too many di�erent hyperplanes because the space becomes �lled.Since each attempt to obtain the (j + 1)-th neighbor has a probability of success of 1=2j, wehave a hypergeometric process with mean 2j . The total number of attempts to obtain N neighborsis a sum of hypergeometric variables with means 20, 21, and so on. Since the mean commutes withthe sum, the average number of attempts necessary to obtain N neighbors is PN�1j=0 2j = 2N � 1.Inverting, we have that with n elements (attempt) we obtain on average log2(n + 1) neighbors.This is a lower bound because we are taking the inverse of the average instead of the average of theinverse, and the inverse function is concave down. It is possible, although tedious, to prove that infact the average number of neighbors isN(n) = �(logn)under our simpli�cations stated above. The constant is between 1.00 and 3.28. Recall also thatthere is a constant part that should be specially relevant in low dimensions. However, for ouranalysis �(logn) su�ces.This allows determining some parameters of our index. For instance, since on average �(n= logn)elements go into each subtree, the average depth of a leaf in the tree isH(n) = 1 +H � nlogn� = �� lognlog logn�12

The construction cost is as follows (in terms of distance evaluations). The bag of n elements iscompared against the root node. �(logn) elements are selected as neighbors and then all the otherelements are compared against the neighbors and are inserted into one bag. Then, all neighborsare recursively built.B(n) = n logn+ log(n)B � nlogn� = � n log2 nlog logn!The space needed by the index (number of links) is O(n) because it is a tree.5.2 Query TimeWe analyze the search time now. Since we enter into many neighbors, we must determine whichis the amount of backtracking performed. Let D0; : : : ; Dj random variables corresponding to thedistances D0 = d(a; q) and Di = d(vi; q), where vi is the i-th neighbor of q. Let us call f(x) theprobability density function of Di �min(D0; : : : ; Dj), for any Di corresponding to a neighbor. Itis clear that f(x) > 0 only when x � 0. We also call F (y) = R y0 f(y)dy its cumulative distribution.Now, we will enter into neighbor i whenever X = Di � min(D0; : : : ; Dj) � t, where t is thetolerance (initially 2r). The probability of such a fact is F (t). Moreover, if X � t we enter into theneighbor with tolerance t�X .There are �(logn) neighbors, and we enter into each one with the same probability. The sizeof the set inside a neighbor is O(n= logn). Hence if we call T (n; t) the search cost with n elementsand tolerance t (initially t = 2r), then the following recurrence holdsT (n; t) = logn + logn Z t0 f(x)T � nlogn; t� x� dxwhich is hard to solve exactly. We set the inductive hypothesis of T (n; t) = cn�g(t) for 0 < � < 1and an increasing function g(t). Trying to prove the inductive thesis yieldsT (n; 2r) = O0@n1� g(2r)R 2r0 f(x)g(2r�x)dx 1log log n g(2r)1A = O �n1��(1= log logn)�for any function g(t). The complexity in terms of n is more or less settled, but �nding it in termsof the search radius involves obtaining the optimal g(t), i.e. the one minimizing the constant1g(2r) Z 2r0 f(x)g(2r� x) dxwhich is not trivial. Fast growing functions work better, for example g(t) = st yields 1= R t0 f(x)s�xdx,independent of r, but it is not clear which is the optimum s.On the other hand, note that when the intrinsic dimension is small compared to O(logn), N(n)is closer to a constant because there cannot be too many neighbors. In this case the analysis yieldsO(n�) for constant 0 < � < 1. We prefer, however, to stick to the more conservative complexity.13

6 Experimental ResultsWe have tested our sa-tree and previous work on a synthetic set of random points in a d-dimensionalspace. However, we have not used the fact that the space has coordinates, treating the points asabstract objects in an unknown metric space. This choice allows us to control the exact dimen-sionality we are working with, which is not so easy if the space is a general metric space or thepoints come from a real situation (where, despite that they are immersed in a d-dimensional space,their real dimension can be lower). Our tests use the Euclidean distance (L2) and four di�erentdimensions: 5, 10, 15 and 20. For each dimension, we generated 10 incremental groups of datasets, from n = 10; 000 to n = 100; 000 elements. Later, when comparing our data structure againstothers, we show some real metric spaces too.The results were averaged over 100 index constructions (recall that the construction algorithmis randomized) and 100 queries run over each index. Hence, each data point about the structureitself or its construction is an average over 100 iterations, while each data point about query costsis an average over 10,000 iterations.6.1 Construction Cost and Tree ShapeOur �rst experiment aims at measuring the construction cost of the sa-tree, as well as the shapeof the resulting tree. Figure 7 shows how the cost grows as n increases. We show the numberof evaluations per element, which according to the analysis is O(log2 = log logn). A least squaresestimation shows an excellent �tting with this analysis (better for low dimensions, as in higherdimension there is more variance), with an accompanying constant factor that seems to dependlinearly on the dimension.
40

60

80

100

120

140

160

180

10 20 30 40 50 60 70 80 90 100

D
is

ta
nc

e
ev

al
ua

tio
ns

Database size n (x 10,000)

Construction cost per element

Dim = 5
Dim = 10
Dim = 15
Dim = 20 Dim Approximation Error5 1:126 ln(n)2ln lnn 0.00710 1:569 ln(n)2ln lnn 0.00815 2:155 ln(n)2ln lnn 0.02520 2:722 ln(n)2ln lnn 0.049Figure 7: Construction cost, measured in number of distance evaluations per element. The costgrows with n and with the dimension of the database. On the right, the formula obtained by leastsquares and the relative error.We consider now the arity of the tree root. The analytical prediction, O(logn), �ts again very14

well with the experiments. Using a model of the form a+ b lnn we obtain relative errors below 1%.The constant b seems to grow exponentially with the dimension. The results are shown in Figure 8.
5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90 100

A
rit

y

Database size n (x 10,000)

Arity of the tree root

Dim = 5
Dim = 10
Dim = 15
Dim = 20 Dim Approximation Error5 3:892+ 0:327 lnn 0.00210 2:126+ 1:154 lnn 0.00515 �8:965 + 2:481 lnn 0.00720 �16:971+ 4:194 lnn 0.009Figure 8: Arity of the tree root. It grows with n and with the dimension of the database. On theright, the formula obtained by least squares and the relative error.Let us now focus on the average leaf depth of the trees. The analysis predicts O(logn= log logn).Again, we have obtained a very good approximation, with relative error well below 1%, with themodel a + b lnn= ln lnn. This time the constant b decreases with the dimension. Figure 9 showsthe results.

5

6

7

8

9

10

11

12

13

14

10 20 30 40 50 60 70 80 90 100

D
ep

th

Database size n (x 10,000)

Average depth of a leaf

Dim = 5
Dim = 10
Dim = 15
Dim = 20

Dim Approximation Error5 �17:857 + 6:630 lnnln lnn 0.00610 �2:283 + 2:058 lnnln lnn 0.00315 �0:082 + 1:319 lnnln lnn 0.00320 1:136 + 0:934 lnnln lnn 0.002Figure 9: Average leaf depth in the tree. It grows with n and decreases with the dimension of thedatabase. On the right, the formula obtained by least squares and the relative error.The results show that our analysis is quite accurate, despite the simpli�cations made. Wehave been able to predict how the tree behaves as a function of the database size n. However,the experiments give additional information on an aspect that we could not capture analytically,15

namely the behavior of the trees as the dimension of the set grows. As the experiments show, thetrees get fatter and shorter for higher dimensions, and consequently they are harder to build.This phenomenon is interesting because it shows how the sa-tree adapts itself to the dimensionof the data without need of external tuning, a feature that very few data structures posess. Otherarticles, such as that of gna-trees [Bri95], suggest to use a larger arity for higher dimensions and toreduce the arity in lower levels of the tree, but all this occurs naturally in sa-trees.6.2 Querying CostWe consider now the cost of searching the index. We have tried both range and nearest neighborsearching. For range searching, we have selected manually the radii that recover 0.01%, 0.1% and1% of the set. For nearest neighbor searching, we have directly requested to retrieve that numberof elements. As our algorithm for nearest neighbor searching is a range search algorithm thatadjusts the radius as it gets more and more information on the set, we expect that nearest neighborsearching takes more time than range searching in order to retrieve the same amount of elements.How close is the time with respect to range searching gives us an idea of how good is the heuristic.Figure 10 shows the results, in terms of percentage of the set traversed for a query. Severalobservations are in order. First, note that the sublinearity is clear. Moreover, our analysis holdswith extreme accuracy using the model an1�b= ln lnn (the relative error is 0.5% at most). Second, theresults worsen fast as the dimension or the search radius grows, which is re
ected in a reductionof the constant b. Third, note that the nearest neighbor search algorithm has a cost close butsometimes noticeable higher than that of range searching.6.3 Comparison against OthersFinally, we compare our sa-trees against other data structures. This time we �x n = 100; 000 andshow how the results change with the dimension. We also show the case of real-world metric spaces.There are too many proposals to compare them all, so we have selected a small set of good rep-resentatives. Some structures do behave better than our sa-tree, but at the expense of impracticalamounts of memory (e.g. aesa [Vid86] needs O(n2) space) or construction time (e.g. aesa [Vid86]and the list of clusters [CN00] need O(n2) construction time). To make a fair comparison we �xthe amount of memory or construction time that we permit and limit these structures accordingly.The structures chosen are:Pivot(s): is a generic pivoting algorithm, where we limit the amount of space permitted to s timesthat of our sa-tree. A reasonable implementation shows that our data structure takes spaceequivalent to storing 4 pivots per element of the set. Hence Pivot(s) is equivalent to usingk = 4s pivots.The speci�c algorithm consists of executing the �rst k steps of aesa, i.e. choosing a pivotp from the remaining set of elements and discarding every candidate element x such thatjd(q; x)� d(q; p)j > r. This is better than �xing the k pivots in advance as done by manypivoting algorithms, because it is well known that better results are obtained by choosing thepivots from the remaining set. Some tree schemes permit adapting the pivot to the remainingset, at the cost of not using all the information given by their distances. So in fact we are16

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Database size n (x 10,000)

Query cost in dimension = 5

0.01% range
0.1% range

1% range
0.01% NN
0.1% NN

1% NN

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80 90 100
P

er
ce

nt
ag

e
of

 d
at

ab
as

e
ex

am
in

ed

Database size n (x 10,000)

Query cost in dimension = 10

55

60

65

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Database size n (x 10,000)

Query cost in dimension = 15

86

88

90

92

94

96

98

100

10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Database size n (x 10,000)

Query cost in dimension = 20

Dimension range 0.01% range 0.1% range 1%5 3:801n1�0:957=ln lnn (.005) 5:141n1�0:877=ln lnn (.004) 5:726n1�0:742=ln lnn (.002)10 9:392n1�0:792=ln lnn (.002) 6:851n1�0:627=ln lnn (.002) 3:748n1�0:397=ln lnn (.002)15 3:939n1�0:407=ln lnn (.003) 2:475n1�0:255=ln lnn (.002) 1:522n1�0:112=ln lnn (.002)20 1:674n1�0:140=ln lnn (.002) 1:272n1�0:064=ln lnn (.001) 1:063n1�0:016=ln lnn (.000)Figure 10: Percentage of the set traversed when searching using the sa-tree. Each plot considers adi�erent dimension, showing range and nearest neighbor queries that retrieve 0.01%, 0.1% and 1%of the database. On the bottom, least squares estimations for the range queries, with the relativeerror in parenthesis. 17

simulating an algorithm which has the best of both worlds: we assume that we need only thespace for k �xed pivots, that we can use all the information they yield, and that we are ableto choose those pivots at query time and yet have all the d(pi; x) precomputed.Clusters(t): is the scheme proposed in [CN00]. This structure takes linear space and it is shownto behave better than sa-trees in high dimensions. However, for this to happen it is necessaryto pay a quadratic construction cost, which is unrealistic even compared to our (relativelyexpensive) construction cost.The data structure consists of a list of balls containing a center and the m�1 elements closestto it. For the second ball we exclude the elements of the �rst, and so on. At search time everycenter ci is compared against q. Its ball is discarded if d(q; ci) � r > cr(ci), otherwise it isexhaustively searched (we can stop traversing the list of centers if d(q; ci) + r � cr(ci)). Theconstruction cost needs n2=(2m) distance evaluations and the optimumm is constant. For afair comparison, the parameter t will indicate how many times was the construction cost ofthe list of clusters superior to that of the sa-tree. Given our constructions costs, this impliescluster sizes of 817=t, 582=t, 415=t and 322=t for dimensions 5, 10, 15 and 20, respectively.Gna-tree: is the structure proposed in [Bri95]. A set of m centers is selected and the rest are sentto their Voronoi region. The structure is built recursively inside each region. The coveringradius is used too. This structure uses linear space and a construction time close to ours, sowe do not put a parameter on it. Rather, we choose manually the best m for each case, whichturns out to be 4 for 5 and 10 dimensions and 16 for 15 and 20 dimensions.Figure 11 shows a comparison between sa-trees and the idealized pivoting algorithms. As it canbe seen, the sa-tree tolerates better higher dimensions or larger radii. A pivoting index using thesame amount of memory as the sa-tree is faster only for 5 dimensions and a radius that retrieves lessthan 0.1% of the database. As the dimension or the search radius grows, pivoting algorithms needmore and more memory in order to compete. In high dimensions or large search radii, pivotingalgorithms cannot compete even when they take 16 times the amount of memory required bysa-trees.Figure 12 shows a comparison between sa-trees and clustering algorithms. These algorithmstolerate better high dimensions and large search radii, with a growth rate similar to that of sa-trees.Our structure is better than gna-trees for more than 10 dimensions. Lists of clusters, on the otherhand, need more and more times the construction time of sa-trees to beat them as the dimensionor the search radii grows: 2 times in 5 dimensions, 4 times in 10 dimensions, 4 to 8 times in 15dimensions and 8 times in 20 dimensions.Finally, we show a couple of real life metric spaces. The �rst one is a dictionary of 86,061Spanish words under the edit distance, de�ned as the number of character insertions, deletions andreplacements needed to convert one string into the other. This distance is discrete and has manyapplications in text retrieval, signal processing and computational biology [Nav01]. The particularcase of a dictionary is of interest in spelling applications.The second metric spaces is that of documents under the cosine similarity measure [BYRN99].We took 1,263 documents of about 1 Mb each from the trec-3 collections [Har95], namely fromthe collections ap, doe, fr, wsj and ziff. We took the vocabulary of each document (considering18

0

5

10

15

20

25

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=100,000 and dimension 5

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=100,000 and dimension 10

20

30

40

50

60

70

80

90

100

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=100,000 and dimension 15

82

84

86

88

90

92

94

96

98

100

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=100,000 and dimension 20

sa-tree
pivots(1)
pivots(2)
pivots(4)
pivots(8)

pivots(16)Figure 11: Comparison between the cost of range searching using the sa-tree and an indealizedpivoting algorithm. We show each dimension separately and the cost for growing radius (i.e.queries that retrieve 0.01%, 0.1% and 1% of the database).
19

0

5

10

15

20

25

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=100,000 and dimension 5

10

20

30

40

50

60

70

80

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=100,000 and dimension 10

40

50

60

70

80

90

100

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=100,000 and dimension 15

75

80

85

90

95

100

0.01 0.1 1

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=100,000 and dimension 20

sa-tree
gna-tree

clusters(1)
clusters(2)
clusters(4)
clusters(8)Figure 12: Comparison between the cost of range searching using the sa-tree and other clusteringalgorithms. We show each dimension separately and the cost for growing radius (i.e. queries thatretrieve 0.01%, 0.1% and 1% of the database).

20

letters and digits and mapping them to lower case) and created for each document a vector whereeach vocabulary word is a coordinate and each document is a point. If the vocabulary word tiappears fij in document dj and it appears in ni documents out of a total of N , then the value ofdocument dj at the coordinate ti is fij ln(N=ni). The distance is the angle between the vectors,i.e., the inverse cosine of the dot product between the two normalized vectors. This distance is ofgreat use in Information Retrieval applications, and it is quite expensive to compute.In the space of words under the edit distance, a byte su�ces to store each distance, and hencethe space taken by the sa-tree is equivalent to that of 10 pivots. The gna-tree gives its best resultswith arity 6. A list of clusters of equivalent construction cost uses clusters of size 594, as the sa-treeneeded 72.43 comparisons per element. We show the results of searching with radius 1 to 4, whichretrieved 0.00343%, 0.0286%, 0.245% and 1.460% of the set, respectively.In the space of documents under the cosine similarity, the distance is a real number and hencewe assume that the space taken by the sa-tree is equivalent to that of 4 pivots. The gna-tree givesits best results with arity 8. A list of clusters of equivalent construction cost uses clusters of size14, as the sa-tree needed 45.05 comparisons per element (note that the clusters would be bigger ifwe had more elements in the set). We show the results of searching with radius retrieving 0.1%,0.5% and 5% of the set. Each distance evaluation involves reading about 400 Kb from disk, so it isreally expensive. For this reason we contented ourselves with building the indexes only once, andquerying it 100 times.Figure 13 shows the results. In the space of words, the sa-tree clearly outperforms the gna-tree.A pivoting algorithm needs 4 and even 8 times more space to beat sa-trees when the search radiusbecomes large (3 or 4). The lists of clusters needs to pay 4 times the construction cost of sa-treesin order to achieve better e�ciency.In the space of documents, the sa-tree outperforms again the gna-tree. A curious phenomenonoccurs with the list of clusters: a cluster size of 14 seems to be too small, and we �nd the optimumat size 28 (with half the construction time of the sa-tree). However, our structure is superior for anychoice of cluster size. (Previous datasets were too large to permit us reaching the optimal point;the smaller clusters were always better.) With respect to pivots, the sa-tree is quickly improvedwhen searching with very small radii, but in order to beat it at searching with larger radii it isnecessary to spend 8 times more memory.As it can be seen, sa-trees provide a good tradeo� between space or construction cost. It isnecessary to pay much more space or construction time to beat them when the dimension is highor the search radius is large. These are the most di�cult cases in practice.7 Incremental ConstructionThe sa-tree is a structure whose construction algorithm needs to know all the elements of S inadvance. In particular, it is di�cult to add new elements under the best-�t strategy once the treeis already built. Each time a new element is inserted, we must go down the tree by the closestneighbor until the new element must become a neighbor of the current node a. All the subtreerooted at a must be rebuilt from scratch, since some nodes that went into another neighbor couldprefer now to get into the new neighbor.Permitting the insertion of new elements into an already built sa-tree is the main issue in our21

0

10

20

30

40

50

60

70

80

1 2 3 4

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Search radius

Query cost for n=86,061 words under Levenshtein distance

sa-tree
pivots(1)
pivots(2)
pivots(4)
pivots(8)

0

10

20

30

40

50

60

70

80

1 2 3 4

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Search radius

Query cost for n=86,061 words under Levenshtein distance

sa-tree
gna-tree

clusters(1)
clusters(2)
clusters(4)

10

15

20

25

30

35

40

45

0.1 1 10

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=1,263 documents under the cosine similarity

sa-tree
pivots(1)
pivots(2)
pivots(4)
pivots(8)

15

20

25

30

35

40

0.1 1 10

P
er

ce
nt

ag
e

of
 d

at
ab

as
e

ex
am

in
ed

Percentage of database retrieved

Query cost for n=1,263 documents under the cosine similarity

sa-tree
gna-tree

clusters(1/4)
clusters(1/2)

clusters(1)
clusters(2)

Figure 13: Comparison between the cost of range searching using the sa-tree and other algorithms.On top the space of words and on the bottom that of documents. On the left we compare againstpivoting algorithms and on the right against clustering algorithms.
22

ongoing work [Rey01]. In this section we comment some alternatives we are working on.7.1 Rebuilding the SubtreeThe naive approach is that, once a new element x being inserted has to become a neighbor of a treenode a, we rebuild the whole subtree rooted at a. This may or may not be too costly depending onhow close are we typically from the tree leaves at the moment of rebuilding the subtree. In generalwe expect to be quite close to the leaves, as the tree has sublogarithmic depth and the probabilityof becoming a neighbor is quite low (it grows exponentially with the depth).It is possible to analyze the expected cost of this choice. Let us assume that we enter at the rootof a tree of n elements with a new element. There are �(logn) neighbors. Hence the probability ofbecoming a new neighbor is at most 1=2�(logn) = n�� for some � > 0 (recall Section 5). With thisprobability our new element becomes a neighbor and we have to rebuild the whole tree of size n.Otherwise we go to the closest neighbor and work on a tree of size �(n= logn). The average size ofthe tree to rebuild is thenR(n) = n�� n + (1� n��) R� nlogn� � n1�� +R� nlogn� = O �n1���which, given the cost B(n) = O(n log2 n= log logn) of rebuilding a subtree of size n, gives an updatecost of O(n1�� log2 n= log logn). This shows that, on average, we only rebuild a small part of thetree, but the update cost is far away from the ideal logarithmic time.7.2 Over
ow BagsWe can have an over
ow bag per node with \extra" neighbors against which the query must bedirectly compared but have no subtree to follow. When the new element x must become a neighborof a, we put it in the over
ow bag of a. Each time we reach a at query time, we also compare qagainst its over
ow bag and report any element near enough.At periodic intervals, the structure must be rebuilt from scratch in order to maintain a reason-able search e�ciency. For example we may rebuild a subtree when its over
ow bag exceeds a givensize. The main question is which is the tradeo� in practice between reconstruction cost and querycost. The more often we rebuild the tree, the smaller are the over
ow bags and the query timeimproves. Note that the naive strategy of Section 7.1 is a particular case of over
ow bags with zerotolerance.7.3 A First-Fit StrategyYet another solution is to change our best-�t strategy to put elements inside the bags of the neighborsof a at construction time. An alternative strategy, �rst-�t, is to put each node in the bag of the�rst neighbor closer than a. The determination of N(a) and the assignment of the other elementsto their bag in N(a) can now be done in one pass.With the �rst-�t strategy, however, we can easily add more elements by pretending that thenew incoming element x was the last one in the bag, which means that when it becomes a neighborof a it can be simply added as the last neighbor of a, and there were no later elements that hadthe chance of getting into x. This allows building the structure by successive insertions.23

The range search under the �rst-�t construction strategy is a little di�erent. We considerthe neighbors fv1; : : : ; vkg of a in order. We perform the minimization while we traverse theneighbors. That is, we enter into the subtree of v1 if d(q; v1) � d(q; a) + 2r; we enter into thesubtree of v2 if d(q; v2) � min(d(q; a); d(q; v1))+2r; and in general we enter into the subtree of vi ifd(q; vi) � min(d(q; a); d(q; v1); : : : ; d(q; vi�1)) + 2r. This is because a neighbor vi+j can never takeout an element from vi.Our preliminary experiments, however, show that the �rst-�t strategy works much worse inpractice because of its asymmetry (the �rst subtrees are much larger than the last ones, and theyare searched more often). Therefore, although this solution is elegant, it is not really promising.7.4 Keeping Track of HistoryAn alternative that has resemblances with the two previous, but seems more promising, consists inkeeping a timestamp of the insertion time of each element. When inserting a new element, we addit as a neighbor at the appropriate point using best-�t and do not rebuild the tree. Let us considerthat neighbors are added at the end, so by reading them left to right we have increasing insertiontimes. It also holds that the parent is always older than its children.At search time, we consider the neighbors fv1; : : : ; vkg of a from oldest to newest. We performthe minimization while we traverse the neighbors, exactly as in Section 7.3. This is because betweenthe insertion of vi and vi+j there may have appeared new elements that preferred vi just becausevi+j was not yet a neighbor, so we may miss an element if we do not enter into vi because of theexistence of vi+j .Note that, although the search process is the same as under �rst-�t, the insertion puts theelements into their closest neighbor, so the structure is balanced.Up to now we do not really need timestamps but just keeping the neighbors sorted. Yet a moresophisticated scheme is to use the timestamps to reduce the work done inside older neighbors. Saythat d(q; vi) > d(q; vi+j) + 2r. We have to enter into vi because it is older. However, only theelements with timestamp smaller than that of vi+j should be considered when searching inside vi;younger elements have seen vi+j and they cannot be interesting for the search if they are inside vi.As parent nodes are older than their descendants, as soon as we �nd a node inside the subtree of viwith timestamp larger than that of vi+j we can stop the search in that branch, because its subtreeis even younger.7.5 Inserting at the LeavesAnother promising alternative we are considering is as follows. We can relax Condition 2 (Sec-tion 4.1), whose main goal is to guarantee that if q is closer to a than to any neighbor in N(a) thenwe can stop the search at that point. The idea is that, at search time, instead of �nding the closestc among fag [N(a) and entering into any b 2 N(a) such that d(q; b) � d(q; c) + 2r, we excludethe subtree root fag from the minimization. Hence, we always continue to the leaves by the closestneighbor and others close enough.This makes the search time slightly worse, but our preliminary experiments show that in practicethe di�erence is negligible. The bene�t is that we are not forced anymore to put a new insertedelement x as a neighbor of a, even when Condition 2 would require it. That is, at insertion time,24

even if x is closer to a than to any element in N(a), we have the choice of not putting it as aneighbor of a but inserting it into its closest neighbor of N(a). At search time we will reach xbecause the search and insertion processes are similar.This freedom opens a number of new possibilities that deserve a much deeper study, but animmediate consequence is that we can insert always at the leaves of the tree. Hence, the tree is read-only in its top part and it changes only in the fringe. Our insertion cost becomes sublogarithmic(proportional to the average leaf depth). However, it is not clear how good is to do this all the time,since we are not optimizing the neighbors. It is possible that if we build all the tree in this waythe search quality gets a�ected. An intermediate alternative is to permit inserting x as a neighborwhen the size of the subtree to rebuild is small enough, which leads to a tradeo� between insertioncost and quality of the tree at search time. For example we can permit rebuilding subtrees of sizeO(logn=(log logn)2) only, and hence the insertion cost becomes logarithmic.An ideal scenario would be to estimate how much we improve the search time by inserting x asa neighbor of the current node a versus how costly is it to rebuild the tree.8 ConclusionsWe have presented a new data structure, the sa-tree, to search in metric spaces. Our idea is toapproach the query spatially rather than by dividing the set of candidates as in other approaches.We �rst show that the ideal structure for spatial approximation cannot be built and then pro-pose a structure which provides a reasonable trade-o� by combining spatial approximation withbacktracking. We show analytically that the number of distance evaluations at search time iso(n), and present experimental evidence showing that our structure outperforms all the others onhigh-dimensional spaces or queries with low selectivity. These are the harder cases in proximitysearching.Some issues for future work which we are already pursuing follow.� We have made some heuristic decisions in order to �nd a data structure that can be built inreasonable time, e.g. selecting the root at random or using a simple heuristic to select a setof neighbors N(a). It may be possible to �nd better solutions that improve the search time.� The sa-tree outperforms the other structures on high dimensions (where the problem is moredi�cult) but is inferior to others when the problem is easier (low dimensions). Moreover,it cannot trade space for query time as pivoting schemes do. This enables the possibility ofdesigning hybrid schemes, such as replacing all the small enough subtrees (where the intrinsicdimension is lower) by another data structure better suited for that case. A simple twist isto store the distance of each node to its k ancestors in the tree, so as to use them as pivotsto prune the search space. This does not require more distance evaluations at constructionor at query time, but it increases the index space by kn distances.� It is interesting to try to reduce the backtracking, although our attempts up to now havefailed. A �rst choice is to re�ne a tolerance radius R and insert each element into its closestneighbor and any other that di�ers from it in at most R. The backtracking can now bedone with tolerance 2(r � R). The problem is that the structure is now a DAG (directed25

acyclic graph), not a tree, and that they may appear loops in the construction, a problemwe have solved by restarting a new DAG with the elements involved in the loop. This haslead to a large number of small DAGs, each of which has to be traversed almost completely(the sublinearity plays against us in this case). Another choice is to put as neighbor anyelement whose di�erence of distances between the root and the closest neighbor is at mostR, and reduce the backtracking to 2(r�R) again. The problem is that the balance betweennumber of neighbors and backtracking is delicate: too many neighbors are generated and thee�ciency is reduced.� A problem still open is how to allow dynamic insertions and deletions of elements withoutdegrading the performance. This is our main focus at the moment [Rey01]. We have presenteda number of possible solutions for dynamic insertions, some of which are promising. Deletionsseem more di�cult but always can be treated by marking the nodes as deleted and makingperiodic rebuilds. The average cost of a deletion is anyway sublinear, O(n1��) for 0 < � < 1,just like the insertion.� Secondary memory issues have not been considered. A simple solution is to try to store wholesubtrees in disk pages so as to minimize the number of pages read at search time. This hasan interesting relationship with the last proposal for dynamic insertions (Section 7.5), notonly because we can insert always at the leaves but also because we can control the maximumarity of the tree so as to make the neighbors �t in a disk page.� It would be interesting to build approximate or probabilistic algorithms based on this struc-ture, as they have proved to be of great interest in high dimensional metric spaces using otherdata structures that typically work well only on low dimensional spaces [CN01].� Our data structure was born in the quest for a more powerful structure, which we could calla spatial approximation graph. Such a directed graph should permit us to reach any elementfrom each other by always reducing the distance to it. Fast algorithms to build and exploitthis structure and a mathematical characterization of it is interesting by itself. Moreover,other simpli�ed structures, di�erent from the sa-tree, could be created based on the spatialapproximation approach.References[Aur91] F. Aurenhammer. Voronoi diagrams { a survey of a fundamental geometric datastructure. ACM Computing Surveys, 23(3):345{405, 1991.[Ben75] J. Bentley. Multidimensional binary search trees used for associative searching. Com-munications of the ACM, 18(9):509{517, 1975.[Ben79] J. Bentley. Multidimensional binary search trees in database applications. IEEETransactions on Software Engineering, 5(4):333{340, 1979.[BK73] W. Burkhard and R. Keller. Some approaches to best-match �le searching. Commu-nications of the ACM, 16(4):230{236, 1973.26

[BO97] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional metricspaces. In Proc. ACM Conference on Management of Data (SIGMOD'97), pages357{368, 1997. Sigmod Record 26(2).[Bri95] S. Brin. Near neighbor search in large metric spaces. In Proc. of the 21st Conferenceon Very Large Databases (VLDB'95), pages 574{584, 1995.[BYCMW94] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proximity matching using �xed-queries trees. In Proc. 5th Conference on Combinatorial Pattern Matching (CPM'94),LNCS 807, pages 198{212, 1994.[BYRN99] R. Baeza-Yates and B. Ribeiro-Neto.Modern Information Retrieval. Addison-Wesley,1999.[CM97] E. Ch�avez and J. Marroqu��n. Proximity queries in metric spaces. In Proc. 4thSouth American Workshop on String Processing (WSP'97), pages 21{36. CarletonUniversity Press, 1997.[CMBY99] E. Ch�avez, J. Marroqu��n, and R. Baeza-Yates. Spaghettis: an array based algorithmfor similarity queries in metric spaces. In Proc. 6th South American Symposiumon String Processing and Information Retrieval (SPIRE'99), pages 38{46. IEEE CSPress, 1999.[CMN01] E. Ch�avez, J. Marroqu��n, and G. Navarro. Fixed queries array: A fast and eco-nomical data structure for proximity searching. Multimedia Tools and Applications,14(2):113{135, 2001. Kluwer. To appear.[CN00] E. Ch�avez and G. Navarro. An e�ective clustering algorithm to index high dimen-sional metric spaces. In Proc. 7th South American Symposium on String Processingand Information Retrieval (SPIRE'00), pages 75{86. IEEE CS Press, 2000.[CN01] E. Ch�avez and G. Navarro. A probabilistic spell for the curse of dimensionality.In Proc. 3rd Workshop on Algorithm Engineering and Experiments (ALENEX'01),LNCS, 2001. To appear.[CNBYM01] E. Ch�avez, G. Navarro, R. Baeza-Yates, and J. Marroqu��n. Searching in metricspaces. ACM Computing Surveys, 2001. To appear.[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-tree: an e�cient access method for similaritysearch in metric spaces. In Proc. of the 23rd Conference on Very Large Databases(VLDB'97), pages 426{435, 1997.[DN87] F. Dehne and H. Nolteimer. Voronoi trees and clustering problems. InformationSystems, 12(2):171{175, 1987. Pergamon Journals.[Gut84] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proc. ACMConference on Management of Data (SIGMOD'84), pages 47{57, 1984.27

[Har95] D. Harman. Overview of the Third Text REtrieval Conference. In Proc. ThirdText REtrieval Conference (TREC-3), pages 1{19, 1995. NIST Special Publication500-207.[MOC96] L. Mic�o, J. Oncina, and R. Carrasco. A fast branch and bound nearest neighborclassi�er in metric spaces. Pattern Recognition Letters, 17:731{739, 1996. Elsevier.[MOV94] L. Mic�o, J. Oncina, and E. Vidal. A new version of the nearest-neighbor approx-imating and eliminating search (aesa) with linear preprocessing-time and memoryrequirements. Pattern Recognition Letters, 15:9{17, 1994. Elsevier.[Nav99] G. Navarro. Searching in metric spaces by spatial approximation. In Proc. 6th SouthAmerican Symposium on String Processing and Information Retrieval (SPIRE'99),pages 141{148. IEEE CS Press, 1999.[Nav01] G. Navarro. A guided tour to approximate string matching. ACM Computing Sur-veys, 2001. To appear.[NN97] S. Nene and S. Nayar. A simple algorithm for nearest neighbor search in high dimen-sions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(9):989{1003, 1997.[Nol89] H. Nolteimer. Voronoi trees and applications. In Proc. International Workshop onDiscrete Algorithms and Complexity, pages 69{74, 1989.[NVZ92] H. Nolteimer, K. Verbarg, and C. Zirkelbach. Monotonous Bisector� Trees { a toolfor e�cient partitioning of complex schenes of geometric objects. In Data Structuresand E�cient Algorithms, LNCS 594, pages 186{203, 1992.[Rey01] N. Reyes. Dynamic data structures for searching metric spaces. MSc. Thesis, Univ.Nac. de San Luis, Argentina, 2001. In progress. G. Navarro, advisor.[Sha77] M. Shapiro. The choice of reference points in best-match �le searching. Communi-cations of the ACM, 20(5):339{343, 1977.[Uhl91a] J. Uhlmann. Implementing metric trees to satisfy general proximity/similarityqueries. Manuscript, 1991.[Uhl91b] J. Uhlmann. Satisfying general proximity/similarity queries with metric trees. In-formation Processing Letters, 40:175{179, 1991. Elsevier.[Vid86] E. Vidal. An algorithm for �nding nearest neighbors in (approximately) constantaverage time. Pattern Recognition Letters, 4:145{157, 1986.[Yia93] P. Yianilos. Data structures and algorithms for nearest neighbor search in gen-eral metric spaces. In Proc. 4th ACM-SIAM Symposium on Discrete Algorithms(SODA'93), pages 311{321, 1993.[Yia00] P. Yianilos. Locally lifting the curse of dimensionality for nearest neighbor search.In Proc. 11th ACM-SIAM Symposium on Discrete Algorithms (SODA'00), 2000.28

