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1 IntroductionAround the 1980's a great progress was achieved on the algorithmic decid-ability of elementary theories of free monoids and groups. In 1977 Makanin[17] proved that the existential theory of equations in free monoids is decid-able by presenting an algorithm which solves the satis�ability problem fora single word equation with constants. In 1983 he extended his result tothe more complicated framework in free groups [18]. In fact, using a resultby Merzlyakov [22] he also showed that the positive theory of equations infree groups is decidable [19], and Razborov was able to give a description ofthe whole solution set [28]. The algorithms of Makanin are very complex:For word equations the running time was �rst estimated by several towersof exponentials and it took more than 20 years to lower it down to the bestknown bound for Makanin's original algorithm, which is to date EXPSPACE[9]. For solving equations in free groups Ko�scielski and Pacholski [14] haveshown that the scheme proposed by Makanin is not primitive recursive.In 1999 Plandowski invented another method for solving word equations andhe showed that the satis�ability problem for word equations is in PSPACE,[26]. One ingredient of his work is to use data compression to reduce theexponential space to polynomial space. The importance of data compressionwas �rst recognized by Rytter and Plandowski when applying Lempel-Zivencodings to the minimal solution of a word equation [27]. Another importantnotion is the de�nition of an `-factorization of the solution being explainedbelow. Guti�errez extended Plandowski's method to the case of free groups,[10]. Thus, a non-primitive recursive scheme for solving equations in freegroups has been replaced by a polynomial space bounded algorithm. Hagenahand Diekert worked independently in the same direction and using some ideasof Guti�errez they obtained a result which includes the presence of rationalconstraints. This appeared as extended abstract in [4] and also as a part ofthe PhD-thesis of Hagenah [11].The present paper is a journal version of [4, 10]. It shows that the existentialtheory of equations in free groups with rational constraints is PSPACE{complete. Rational constraints mean that a possible solution has to respect aspeci�cation which is given by a regular word language. The idea to considerregular constraints for word equations goes back to Schulz [29] who alsopointed out the importance of this concept, see also [6, 8]. The PSPACE{completeness for the case of word equations with regular constraints has beenstated by Rytter already, as cited in [26, Thm. 1].2



Our proof reduces the case of equations with rational constraints in freegroups to the case equations with regular constraints in free monoids withinvolution, which turns out to be the central object. (Makanin uses thenotion of \paired alphabet", but a main di�erence is that he considered\non contractible" solutions only, whereas we deal with general solutionsand, in addition, we have constraints.) During our work we extend themethod of [26] such that it copes with the involution and the method of [10]such that it copes with rational constraints. The �rst step is a reductionto the satis�ability problem of a single equation with regular constraints ina free monoid with involution. In order to avoid an exponential blow-up,we do not use a reduction as in [19], but a simpler one. In particular, wecan handle negations simply by positive rational constraints. In the secondstep we show that the satis�ability problem of a single equation with regularconstraints in a free monoid with involution is still in PSPACE. This partis rather technical and we introduce several new notions like base-change,projection, partial solution, and free interval. The careful handling of freeintervals is necessary because of the constraints. In some sense this is theonly additional di�culty which we will meet when dealing with constraints.After these preparations we can follow Plandowski's method. Throughoutwe shall use many of the deep ideas which were presented in [26], and applythem in a di�erent setting. Hence, as we cannot use Plandowski's resultas a black box, we have to go through the whole construction again. As aresult our paper is (involuntarily) self-contained, up to standard knowledgein combinatorics on words and linear Diophantine equations.2 Free Groups and their Rational SubsetsLet � be a �nite alphabet. By F (�) we denote the free group over �.Elements of F (�) can be represented by words in (� [ �)�, where � = f a ja 2 � g. We read a as a�1 in F (�) and we use the convention that a = a.Hence the set � = � [ � is equipped with an involution : � ! �; theinvolution is extended to �� by a1 � � � an = an � � � a1 for n � 0 and ai 2 �,1 � i � n. The empty word as well as the unit element in other monoids isdenoted by 1. By  : �� ! F (�) we denote the canonical homomorphism.A word w 2 �� is freely reduced , if it contains no factor of the form aawith a 2 �. The reduction of a word w 2 �� can be computed by using theNoetherian and conuent rewriting system f aa! 1 j a 2 � g. For w 2 �� we3



denote by bw the freely reduced word which denotes the same group elementin F (�) as w. Hence,  (u) =  (v) if and only if bu = bv in ��.The class of rational languages in F (�) is inductively de�ned as follows:Every �nite subset of F (�) is rational. If P1; P2 � F (�) are rational, thenP1 [ P2, P1 � P2, and P �1 are rational. Hence, P � F (�) is rational if andonly if P =  (P 0) for some regular language P 0 � ��.1 In particular, we canuse a non-deterministic �nite automata over � for specifying rational grouplanguages over F (�).The following proposition is due to M. Benois [1], see also [2, Sect. III. 2].Proposition 1 Let P 0 � �� be a regular language and P =  (P 0) � F (�).Then we e�ectively �nd a regular language eP 0 � �� such that eP 0 = f bw 2�� j  (w) 62 P g. Hence, the complement of P is the rational group language ( eP 0) and the family of rational group languages is an e�ective Boolean al-gebra.Proof. (Sketch) Using the same state set (and some additional transitionswhich are labeled with the empty word) we can construct (in polynomialtime) a �nite automaton which accepts the following languageP 00 = f v 2 �� j 9u 2 P 0 : u �! v gwhere u �! v means that v is a descendant of u by the convergent rewritingsystem f aa! 1 j a 2 � g. Then we complement P 00 with respect to ��; andwe build the intersection with the regular set of freely reduced words. �3 The Existential TheoryIn the following 
 denotes a �nite set of variables (or unknowns) and we let: 
 ! 
 be an involution without �xed points. Clearly, if X 2 
 has aninterpretation in F (�), then we read X as X�1 2 F (�).The existential theory of equations with rational constraints in free groups isinductively de�ned as follows. Atomic formulae are either of the formW = 1,where W 2 (�[
)� or of the form X 2 P , where X is in 
 and P � F (�) is1We follow the usual convention to call a rational subset of a free monoid regular. Thisconvention is due to Kleene's Theorem stating that regular, rational, and recognizablehave the same meaning in free monoids. But in free groups these notions are di�erent andwe have to be more precise. 4



a rational language. A propositional formula is build up by atomic formulaeusing negations, conjunctions and disjunctions. The existential theory refersto closed existentially quanti�ed propositional formulae which evaluate totrue over F (�).Theorem 2 The following problem is PSPACE{complete.INPUT: A closed existentially quanti�ed propositional formula with rationalconstraints in the free group F (�) for some �nite alphabet �.QUESTION: Does the formula evaluate to true over F (�)?The PSPACE{hardness follows from a result of Kozen [15], since (due tothe constraints) the empty intersection problem of regular sets can easily beencoded in the problem above. The same argument applies to Theorems 4and 5 below and therefore the PSPACE{hardness is not discussed further inthe sequel: We have to show the inclusion in PSPACE, only.The PSPACE algorithm for solving Theorem 2 will be described by a (highly)non-deterministic procedure. We will make sure that if the input evaluates totrue, then at least one possible output is true. If it evaluates to false, then no(positive) output is possible. By standard methods (Savitch's Theorem) sucha procedure can be transformed into a polynomial space bounded determin-istic decision procedure, see any textbook on complexity theory, e.g. [12, 23].We start the procedure as follows. Using the rules of DeMorgan we mayassume that there are no negations at all, but the atomic formulae are nowof the either form: W = 1, W 6= 1, X 2 P , X 62 P with W 2 (� [ 
)�,X 2 
, and P � F (�) rational.2The next step is to replace every formula W 6= 1 by9X :WX = 1 ^X 62 f1g;where X is a fresh variable, hence we can put 9X to the front. Now weeliminate all disjunctions. More precisely, every subformula of type A _ Bis non-deterministically replaced either by A or by B. At this stage thepropositional formula has become a conjunction of formulae of type W = 1,X 2 P , X 62 P with W 2 (� [ 
)�, X 2 
, and P � F (�) rational.We may assume that jW j � 3, since if 1 � jW j < 3, then we may replaceW = 1 by Waa = 1 for some a 2 �. For the following it is convenient to2The reason that we keep X 62 P instead of X 2 eP where eP = F (�) n P is that thecomplementation may involve an exponential blow-up of the state space; this has to beavoided. 5



assume that jW j = 3 for all subformulae W = 1. This is also easy to achieve.As long as there is a subformula x1 � � � xk = 1, xi 2 � [ 
 for 1 � i � k andk � 4, we replace it by the conjunction9Y : x1x2Y = 1 ^ Y x3 � � �xk = 1;where Y is a fresh variable and 9Y is put to the front, and then proceedrecursively. This �nishes the �rst phase. The output of this phase is a systemof atomic formulae of typeW = 1, X 2 P , X 62 P withW 2 (�[
)3, X 2 
,and P � F (�) rational.At this point we switch to the existential theory of equations with regularconstraints in free monoids where these monoids have an involution. RecallthatX 2 P (resp. X 62 P ) means in factX 2  (P 0) (resp. X 62  (P 0)) whereP 0 � �� is a regular word language speci�ed by some �nite non-deterministicautomaton. Using  -symbols we obtain an interpretation over (��; ) withoutchanging the truth value by replacing syntactically each subformula X 2 P(resp. X 62 P ) by  (X) 2  (P 0) (resp.  (X) 62  (P 0)) and by replacingeach subformula W = 1 by  (W ) = 1.We keep the interpretation over words, but we eliminate now all occurrencesof  again. We begin with the occurrences of  in the constraints. LetP 0 � �� be regular being accepted by some �nite automaton with state setQ. As stated in the �rst part of the proof of Proposition 1, we constructa �nite automaton, using the same state set, which accepts the followinglanguage P 00 = f v 2 �� j 9u 2 P 0 : u �! v g:In particular,  (P 0) =  (P 00) and bP � P 00 where bP = f bu 2 �� j u 2 P 0 g.We replace all positive atomic subformulae of the form  (X) 2  (P 0) byX 2 P 00. A simple reection shows that the truth value has not changedsince we can think of X of being a freely reduced word. For a negativeformulae  (X) 62  (P 0) we have to be a little more careful. Let N � �� bethe regular set of all freely reduced words. The language N is accepted by adeterministic �nite automaton with j�j+1 states. We replace  (X) 62  (P 0)by X 62 P 00 ^X 2 N;where P 00 is as above. Again the truth value did not change.We now have to deal with the formulae  (xyz) = 1 where x; y; z 2 � [ 
.Observe that the underlying propositional formula is satis�able over �� if6



and only if it is satis�able in freely reduced words. The following lemma iswell-known. Its easy proof is left to the reader.Lemma 3 Let u; v; w 2 �� be freely reduced words. Then we have  (uvw) =1 (i.e. uvw = 1 in F (�)) if and only if there are words P;Q;R 2 �� suchthat u = PQ, v = QR, and w = RP holds in ��.Based on this lemma we replace each atomic subformulae  (xyz) = 1 withx; y; z 2 � [ 
 by a conjunction9P9Q9R : x = PQ ^ y = QR ^ z = RP;where P , Q, R are fresh variables and the existential block is put to the front.The new existential formula has no occurrence of  anymore. The atomicsubformulae are of the form x = yz, X 2 P , X 62 P , where x; y; z 2 � [ 
and P � �� is regular. The size of the formula is linear in the size of theoriginal formula. Therefore Theorem 2 is a consequence of Theorem 4.4 Free Monoids with InvolutionAs above, let � be an alphabet of constants and 
 be an alphabet of variables.There are involutions : � ! � and : 
 ! 
. The involution on 
 iswithout �xed points, but we explicitly allow �xed points for the involutionon �. 3 The involution is extended to (� [ 
)� by x1 � � �xn = xn � � �x1 forn � 0 and xi 2 � [ 
, 1 � i � n.From now on, all monoids M under consideration are equipped with aninvolution : M ! M , i.e. we have 1 = 1 for the unit element, x = x, andxy = y x for all x; y 2 M . A homomorphism between monoids M and M 0 istherefore a mapping h :M !M 0 such that h(1) = 1, h(xy) = h(x)h(y), andh(x) = h(x) for all x; y 2 M . The pair (��; ) is called a free monoid withinvolution. 4The existential theory of equations with regular constraints in free monoidswith involution is based on atomic formulae of type U = V where U; V 2(� [ 
)� and of type X 2 P where X 2 
 and P � �� is a regular language3Fixed points for the involution on constants are needed in the proof later anyhow andthis more general setting leads to further applications, [5]4Note that (��; ) is a free monoid which has an involution, but it is not a free objectin the category of monoids with involution, as soon as the involution has �xed points.7



speci�ed by some non-deterministic �nite automaton. Again, a propositionalformula is build up by atomic formulae using negations, conjunctions anddisjunctions. The existential theory refers to closed existentially quanti�edpropositional formulae which evaluate to true over (��; ).The following statement is the main result of the paper.Theorem 4 The following problem is PSPACE{complete.INPUT: A closed existentially quanti�ed propositional formula with regularconstraints in a free monoid with involution over (�; ).QUESTION: Does the formula evaluate to true over (��; )?The proof of Theorem 4 is in a �rst step (next section) a reduction to Theo-rem 5. The proof of Theorem 5 will be the essential technical contribution.5 From Regular Constraints to Boolean Ma-trices and a Single EquationThe �rst part of the proof is very similar to what we have done above. ByDeMorgan we have no negations and all subformulae are of type U = V ,U 6= V , X 2 P , X 62 P , where U; V 2 (� [ 
)�, X 2 
, and P � �� isregular.Since we work over a free monoid �� it is easy to handle inequalities U 6= Vwhere U; V 2 (� [ 
)�. We recall it under the assumption j�j � 2: Asubformulae U 6= V is replaced by9X9Y 9Z : _a6=b(U = V aX _ V = UaX _ (U = XaY ^ V = XbZ)):Making guesses we can eliminate all disjunctions and we obtain a proposi-tional formula which is a single conjunction over subformulae of type U = V ,X 2 P , and X 62 P where U; V 2 (� [ 
)�, X 2 
, and P � �� is regular.By another standard procedure we can replace a conjunction of word equa-tions over (� [ 
)� by a single word equation L = R with L;R 2 (� [ 
)+.For example, we may choose a new letter a and then we can replace a systemL1 = R1, L2 = R2; : : : ; Lk = Rk by L1aL2a � � � aLk = R1aR2a � � � aRk and alist X 2 �� for all X 2 
; this works since a 62 �.Therefore we may assume that our input is given by a single equation L = Rwith L;R 2 (� [ 
)+ and by two lists (Xj 2 Pj ; 1 � j � m) and (Xj 628



Pj ;m < j � k) where Xj 2 
 and each regular language Pj � �� is speci�edby some non-deterministic automaton Aj = (Qj;�; �j; Ij; Fj) where Qj is theset of states, �j � Qj � � � Qj is the transition relation, Ij � Qj is thesubset of initial states, and Fj � Qj is the subset of �nal states, 1 � j � k.Of course, a variable X may occur several times in the list with di�erentconstraints, therefore we might have k greater than j
j. The question iswhether there is a solution.A solution is a mapping � : 
 ! �� being extended to a homomorphism� : (� [ 
)� ! �� by leaving the letters from � invariant such that thefollowing conditions are satis�ed:�(L) = �(R);�(X) = �(X) for X 2 
;�(Xj) 2 Pj for 1 � j � m;�(Xj) 62 Pj for m < j � k:For the next steps it turns out to be more convenient to work within theframework of Boolean matrices instead of �nite automata: Let Q be thedisjoint union of the state spaces Qj, 1 � j � k. We may assume thatQ = f1; : : : ; ng. Let � = S1�j�k �j, then � � Q���Q and with each a 2 �we can associate a Boolean n � n matrix g(a) 2 B n�n such that g(a)i;j =\(i; a; j) 2 �" for 1 � i; j � n. Since our monoids should have an involution,we shall in fact work with 2n�2n matrices. HenceforthM � B 2n�2n denotesthe following monoid with involution:M = f�A 00 B� j A;B 2 B n�n g;where �A 00 B� = �BT 00 AT�and the operator T denotes the transposition. We de�ne a homomorphismh : �� !M by h(a) = �g(a) 00 g(a)T� for a 2 �;where the mapping g : �! B n�n is de�ned as above. The homomorphism hcan be computed in polynomial time and it respects the involution. Now, for9



each regular language Pj , 1 � j � k we compute vectors Ij; Fj 2 B 2n suchthat for all w 2 �� and 1 � j � k we have the equivalence:w 2 Pj , ITj h(w)Fj = 1:Having done these computations we make a non-deterministic guess �(X) 2M for each variable X 2 
. We verify �(X) = �(X) for all X 2 
 andwhenever there is a constraint of type X 2 Pj for some 1 � j � m (orX 62 Pj for some m < j � k), then we verify ITj �(X)Fj = 1, if 1 � j � m(or ITj �(X)Fj = 0, if m < j � k).After these preliminaries, we introduce the formal de�nition of an equationE with constraints: Let d; n 2 N and let M � B 2n�2n be the monoid withinvolution de�ned above. We consider an equation of length d over some� and 
 with constraints in M being speci�ed by a list E containing thefollowing items:� The alphabet (�; ) with involution.� The homomorphism h : �� ! M which is speci�ed by a mappingh : �!M such that h(a) = h(a) for all a 2 �.� The alphabet (
; ) with involution without �xed points.� A mapping � : 
!M such that �(X) = �(X) for all X 2 
.� The equation L = R where L;R 2 (� [ 
)+ and jLRj = d.We will denote this list simply byE = (�; h;
; �;L = R):A convenient de�nition for the input size is given by n+ d+ log2(j�j+ j
j).This de�nition takes into account that there might be constants or variableswith constraints which are not present in the equation. Recall that n refersto the dimension of the boolean matrices, and this parameter is part of theinput.A solution of E is a mapping � : 
! �� (being extended to a homomorphism� : (� [ 
)� ! �� by leaving the letters from � invariant) such that thefollowing three conditions are satis�ed:�(L) = �(R);10



�(X) = �(X) for allX 2 
;h�(X) = �(X) for allX 2 
:By the reduction above, Theorem 4 is a consequence of the next statementwhich says that the satis�ability problem of equations with constraints canbe solved in polynomial space.Theorem 5 The following problem is PSPACE{complete.INPUT: An equation E0 with constraints E0 = (�0; h0;
0; �0;L0 = R0):QUESTION: Is there a solution � : 
0 ! ��0?For the proof we need an explicit space bound. Therefore we �x some poly-nomial p and and we allow working space p(n + d + log2(j�j + j
j). Anappropriate choice of the polynomial p can be calculated from the presenta-tion below. What is important is that the notions of admissibility being usedin the next sections always refer to some �xed polynomials. The followinglemma states that some basic operations, which we have to perform severaltimes can be done in PSPACE.Lemma 6 The following two problems can be solved in polynomial space withrespect to the input size n+ log(j�j).INPUT: A matrix A 2M and a mapping h : �!M .QUESTION: Is there some w 2 �� such that h(w) = A?INPUT: A matrix A 2M and a mapping h : �!M .QUESTION: Is there some w 2 �� such that h(w) = A and w = w?Proof. The �rst question can be solved by guessing a word w letter byletter and calculating h(w). The second question can be solved since w = wimplies w = uau for some u 2 �� and a 2 � [ f1g with a = a. Hence we canguess u and a. During the guess we compute B = h(u) and then we verifyA = Bh(a)B. �Here is a �rst application of Lemma 6: Assume that an equation with con-straints E = (�; h;
; �;L = R) contains in the speci�cation some variableX which does not occur in LRLR, then the equation might be unsolvable,simply because �(X) 62 h(��). However, by the lemma above we can test thisin PSPACE. If �(X) 2 h(��), then we can safely cancel X and X . Thus,we put this test in the preprocessing, and in the following we shall assumethat all variables occur somewhere in LRLR. In particular, we may assumej
j � 2jLRj. 11



6 The Exponent of PeriodicityA key step in proving Theorem 5 is to �nd a bound on the exponent ofperiodicity in a minimal solution. This idea is used in all known algorithmsfor solving word equations in general, c.f., [17, 26].Let w 2 �� be a word. The exponent of periodicity exp(w) is de�ned byexp(w) = supf� 2 N j 9u; v; p 2 ��; p 6= 1 : w = up�v g:We have exp(w) > 0 if and only if w is not the empty word. Let E =(�; h;
; �; L = R) be an equation with constraints. The exponent of period-icity of E is also denoted by exp(E). It is de�ned byexp(E) = infff exp(�(L)) j � is a solution of E g [ f1gg:By de�nitions we have exp(E) < 1 if and only if E is solvable. Here weshow that the well-known result from word equations [13] transfers to thesituation here. The exponent of periodicity of a solvable equation can bebounded by a singly exponential function. Thus, in the following sections weshall assume that if E0 is solvable, then exp(E0) 2 2O(d+n logn). This is thecontent of the next proposition.Proposition 7 Let E = (�; h;
; �;L = R) be an equation with constraintsand let � : 
 ! �� be a solution. Then we �nd e�ectively a solution �0 :
! �� such that exp(�0(L)) 2 2O(d+n logn).The rest of this section is devoted to prove Proposition 7. Since it followsstandard lines, the proof can be skipped in a �rst reading.Proof. Let p 2 A+ be a primitive word. In our setting the de�nition of thep-stable normal form of a word w 2 A� depends on the property whether ornot p is a factor of p2. So we distinguish two cases and in the following wealso write p�1 for denoting p. Then, for example, p�3 means the same as p3.First case: We assume that p is not a factor of p2. The idea is to replaceeach maximal factor of the form p� with � � 2 by a sequence p; �� 2; p andeach maximal factor of the form p� with � � 2 by a sequence p;�(�� 2); p.This leads to the following notion:The p-stable normal form (�rst kind) of w 2 A� is a shortest sequence (k isminimal) (u0; "1�1; u1; : : : ; "k�k; uk)12



such that k � 0, u0; ui 2 A�, "i 2 f+1;�1g, �i � 0 for 1 � i � k, and thefollowing conditions are satis�ed:� w = u0p"1�1u1 � � � p"k�kuk.� k = 0 if and only if neither p2 nor p2 is a factor of w:� If k � 1, then:u0 2 A�p"1 nA�p�2A�;ui 2 (A�p"i+1 \ p"iA�) nA�p�2A� for 1 � i < k;uk 2 p"kA� nA�p�2A�:The p-stable normal form of w becomes(uk;�"k�k; uk�1; : : : ;�"1�1; u0):Example 8 Let p = aabaa with b 6= b and w = p4baap�1aabp�2. Then thep-stable normal form of w is:(aaab; 2; aabaabaa;�1; aabaabaa; 0; aabaa):Second case: We assume that p is a factor of p2. Then we can write p = rswith p = sr and r = r, s = s. We allow r = 1, hence the second case includesthe case p = p. In fact, if r = 1, then below we obtain the usual de�nition ofp-stable normal form. Moreover, by switching to some conjugated word of pwe could always assume that r 2 f1; ag for some letter a being �xed by theinvolution, a = a, but this switch is not made here. The idea is to replaceeach maximal factor of the form (rs)�r with � � 2 by a sequence rs; ��2; sr.In this notation �� 2 is representing the factor (rs)��2r = p��2r = rp��2.The p-stable normal form (second kind) of w 2 A� is now a shortest sequence(k is minimal) (u0; �1; u1; : : : ; �k; uk)such that k � 0, u0; ui 2 A�; �i � 0 for 1 � i � k, and the followingconditions are satis�ed:� w = u0p�1ru1 � � � p�kruk.� k = 0 if and only if p2r is not a factor of w:13



� If k � 1, then:u0 2 A�rs n (A�p2rA� [ A�rsrs);ui 2 (A�rs \ srA�) n (srsrA� [A�p2rA� [ A�rsrs) for 1 � i < k;uk 2 srA� n (A�p2rA� [ srsrA�):Since rs = sr, the p-stable normal form of w becomes(uk; �k; u1; : : : ; �1; u0):So, for the second kind no negative integers interfere.Example 9 Let p = aab with b = b. Then r = aa and s = b. Let w =ap4ap3a Then the p-stable normal form of w is:(abaab; 2; baabaaab; 0; baaba):In both cases we can write the p-stable normal form of w as a sequence(u0; �1; u1; : : : ; �k; uk)where ui are words and �i are integers.For every �nite semigroup S there is a number c(S) such that for all s 2 Sthe element sc(S) is idempotent, i.e., sc(S) = s2c(S). It is clear that the numberc(M) for our monoid M � B 2n�2n is the same as the number c(B n�n ). It iswell-known [21] that we can take c(B n�n) = n! (it is however more convenientto de�ne c(M) = 3 for n = 1). Hence in the following c(M) = maxf3; n!g.For speci�c situations this might be an overestimation, but this choice guar-antees h(uvc(M)w) = h(uv2c(M)w) for all u; v; w 2 �� and all h : �� !M .Now, let w;w0 2 �� be words such that the p-stable normal forms are identicalup to one position where for w appears an integer �i and for w0 appears aninteger �0i. We know h(w) = h(w0) whenever the following conditions aresatis�ed: �i � �0i > 0, j�ij � c(M), j�0ij � c(M), and �i � �0i (mod c(M)).Then we have h(w) = h(w0). This is the reason to change the syntax of the p-stable normal form. Each non-zero integer �0 is written as �0 = "(q+�c(M))where "; q; � are uniquely de�ned by " 2 f+1;�1g, 0 � q < c(M), and� � 0. For �0 = 0 we may choose " = q = � = 0. We shall read � as avariable ranging over non-negative integers, but ", q, and c(M) are viewed14



as constants. In fact, if j�0j < c(M), then we best view � also as a constantin order to avoid problems with the constraints.Let u, v, and w be words such that uv = w holds. Write these words in theirp-stable normal forms:u : (u0; "1(q1 + �1c(S)); u1; : : : ; "k(qk + �kc(S)); uk);v : (v0; "01(s1 + �1c(S)); v1; : : : ; "0̀ (s` + �`c(S)); v`);w : (w0; "001(t1 + 1c(S)); w1; : : : ; "00m(tm + mc(S)); wm):Since uv = w there are many identities. For example, for k; ` � 2 we haveu0 = w0, vl = wm, q1 = t1, �1 = 1, etc. What exactly happens depends onlyon the p-stable normal form of the product ukv0. There are several cases,which easily can be listed. We treat only one of them, which is in some sensethe worst case in order to produce a large exponent of periodicity. Thisis the case where p = rs with r = r and s = s. Then it might be thatuk = srsr1 and v0 = r2srs with r1r2 = r (and r1 6= 1 6= r2). Hence wehave ukv0 = sp3 and k + ` = m + 1. It follows �1 = 1; : : : ; �k�1 = k�1,�2 = k+1; : : : ; �` = m, and there is only one non-trivial identity:qk + s1 + 4 + (�k + �1)c(S) = tk + kc(S):Since by assumption c(S) � 3, the case ukv0 = sp3 leads to the identity:k = �k + �1 + c with c 2 f0; 1; 2g:Assume now that �k � 1 and �1 � 1. If we replace �k, �1, and k by some�0k � 1, � 01 � 1, and  0k � 1 such that still  0k = �0k + � 01 + c, then we obtainnew words u0, v0, and w0 with the same images under h in M and still theidentity u0v0 = w0.What follows then is completely analogous to what has been done in detailin [13, 10, 11, 3]. Using the p-stable normal form we can associate with anequation L = R of denotational length d together with its solution � : 
! ��some linear Diophantine system of d equations in at most 3d variables. Thevariables range over natural numbers since zeros are substituted. (In fact thenumber of variables can be reduced to be at most 2j
j). The parameters ofthis system are such that maximal size of a minimal solution (with respect tothe component wise partial order of Nd) is inO(21:6d) with the same approachas in [13]. This tight bound is based in turn on the work of [30]; a more15



moderate bound 2O(d) (which is enough for our purposes) is easier to obtain,see e.g. [3]. The maximal size of a minimal solution of the linear Diophantinesystem has a backward translation to a bound on the exponent of periodicity.For this translation we have to multiply with the factor c(M) 2 2O(n logn)and to add c(M)+1. Putting everything together we obtain the claim of theproposition. �7 Exponential ExpressionsDuring the procedure which solves Theorem 5 various other equations withconstraints are considered but the monoid M will not change.There will be not enough space to write down the equation L = R in plainform, in general. In fact, there is a provable exponential lower bound for thelength jLRj in the worst case which we can meet during the procedure. Inorder to overcome this di�culty Plandowski's method uses data compressionfor words in (� [ 
)� in terms of exponential expressions.Exponential expressions (their evaluation and their size) are inductively de-�ned:� Every word w 2 �� denotes an exponential expression. The evaluationeval(w) is equal to w, its size kwk is equal to the length jwj.� Let e, e0 be exponential expressions. Then ee0 is an exponential expres-sion. Its evaluation is the concatenation eval(ee0) = eval(e)eval(e0), itssize is kee0k = kek+ ke0k.� Let e be an exponential expression and k 2 N. Then (e)k is an expo-nential expression. Its evaluation is eval((e)k) = (eval(e))k, its size isk(e)kk = log(k) + kek where log(k) = maxf1; dlog2(k)eg.It is not di�cult to show that the length of eval(e) is at most exponentialin the size of e, a fact which is, strictly speaking, not needed for the proofof Theorem 5. What we need however is the next lemma. Its proof can bedone easily by structural induction and it is omitted.Lemma 10 Let u 2 �� be a factor of a word w 2 ��. Assume that w canbe represented by some exponential expression of size p. Then we �nd anexponential expression of size at most p2 that represents u.16



We say that an exponential expression e is admissible, if its size kek isbounded by some �xed polynomial in the input size of E0. The lemma abovestates that if e is admissible, then we �nd admissible exponential expressionsfor all factors of eval(e). But now the admissibility is de�ned with respectto some polynomial which is the square of the original polynomial, so, in anested way, we can apply this procedure a constant number of times, only.In our application the nested depth does not go beyond two.The next lemma is straightforward since we allow a polynomial space boundwithout any time restriction. Again, the proof is left to the reader.Lemma 11 The following two problems can be solved in PSPACE.INPUT: Exponential expressions e and e0.QUESTION: Do we have eval(e) = eval(e0)?INPUT: A mapping h : �!M and an exponential expression e.OUTPUT: The matrix h(eval(e)) 2M .Remark 12 The computation above can actually be performed in polynomialtime, but this is not evident for the �rst question, see [24] for details.Henceforth we allow that the part L = R of an equation with constraints mayalso be given by a pair of exponential expressions (eL; eR) with eval(eL) = Land eval(eR) = R. We say that E = (�; h;
; �; eL = eR) is admissible, ifeLeR is admissible, j� n �0j has polynomial size, 
 � 
0, and h(a) = h0(a)for a 2 � \ �0.For two admissible equations with constraints E = (�; h;
; �; eL = eR) andE 0 = (�; h;
; �; e0L = e0R) we write E � E 0, if eval(eL) = eval(e0L) andeval(eR) = eval(e0R) as strings in (� [ 
)�. This means that they representexactly the same equations.8 Base ChangesIn this section we �x a mapping h : � ! M which respects the involution.Let (�0; ) be an alphabet with involution and let � : �0 ! �� be somemapping � such that �(a) = �(a) for all a 2 �0. We de�ne h0 : �0 !M suchthat h0 = h�. We also extend to a homomorphism � : (�0 [ 
)� ! (� [ 
)�by leaving the variables invariant. 17



Let E 0 = (�0; h0;
; �;L0 = R0): be an equation with constraints. The basechange ��(E 0) is de�ned by��(E 0) = (�; h;
; �;�(L0) = �(R0)):We also refer to � : �0 ! �� as a base change and we say that � is admissible,if j�0j has polynomial size and if �(a) can be represented by some admissibleexponential expression for all a 2 �0.Remark 13 If � : �0 ! �� is an admissible base change and if L0 = R0 isgiven by a pair of admissible exponential expressions, then we can represent��(E 0) by some admissible equation with constraints. A representation of��(E 0) is computable in polynomial time.Lemma 14 Let E 0 be an equation with constraints and � : �0 ! �� be abase change. If �0 is a solution of E 0, then � = ��0 is a solution of ��(E 0).Proof. Clearly �(X) = �(X) and h�(X) = h��0(X) = h0�0(X) = �(X) forall X 2 
. Next by de�nition �(a) = a for a 2 � and �(X) = X for X 2 
.Hence ��(a) = ��0(a) for a 2 �0 and therefore �� = ��0 : (�0 [ 
)� ! ��.This means ��(L) = ��0(L) = ��0(R) = ��(R) since �0(L) = �0(R). �The lemma above leads to the �rst rule.Rule 1 If E is of the form ��(E 0) and if we are looking for a solution of E,then it is enough to �nd a solution for E 0. Hence, during a non-deterministicsearch we may replace E by E 0.Example 15 Consider the following equation E with constraints over � =fa; b; c;�a;�b; �cg: XX = Y �b�c�b�a�b�c�bY ZabcbY :Let there be the constraints for X and Z saying X 2 �300�� and Z 2 �b�c�b�a��.De�ne �0 = fa; b; �a;�bg and a base change � : �0 ! �� by �(a) = abcb and�(b) = bcb. Then the equation E is of the form ��(E 0) where E 0 is given byXX = Y �a�bY ZaYand the new (and sharper) constraint for Z is simply Z 2 �a�0�, for X wemay sharpen the constraint to X 2 �0100�0� According to Rule 1 it is enough18



to solve E 0. The e�ect of the base change � is that the equation E 0 is shorterand the alphabet of constants becomes smaller, since the letter c is not usedanymore. Note also that the length restriction on X became smaller, too.However this has a prize; in general, E = ��(E 0) might have a solution,whereas E 0 is unsolvable. As we will see later, our guess has been correct inthe sense that E 0 still has a solution.9 ProjectionsLet (�; ) and (�0; ) be alphabets with involution such that (�; ) � (�0; ).A projection is a homomorphism � : �0� ! �� such that both �(a) = a fora 2 � and �(a) = �(a) for all a 2 �0. If h : �!M is given, then a projection� de�nes also h0 : �0 !M by h0 = h�.Let E be an equation with constraints E = (�; h;
; �;L = R): Then we cande�ne an equation with constraints ��(E) by��(E) = (�0; h�;
; �;L = R):The di�erence between E and ��(E) is only in the alphabets of constantsand in the mappings h and h0 = h�. Note that every projection � : �0� ! ��de�nes a base change �� such that ����(E) = E.Lemma 16 Let E = (�; h;
; �;L = R) and E 0 = (�0; h0;
; �;L = R) beequations with constraints. Then the following two statements hold.i) There is a projection � : �0� ! �� such that ��(E) = E 0, if and only ifboth h0(�0) � h(��) and for all a 2 �0 with a = a there is some w 2 ��with w = w such that h0(a) = h(w).ii) If we have ��(E) = E 0 and if �0 : 
! �0� is a solution of E 0, then wee�ectively �nd a solution � for E such that j�(L)j � 2jM jj�0(L)j.Proof. i) Clearly, the only-if condition is satis�ed by the de�nition of aprojection since then h0 = h�. For the converse, assume that h0(�0) � h(��)and that a = a implies h0(a) 2 h(fw 2 �� j w = wg). Then for each a 2 �0n�we can choose a word wa 2 �� such that h0(a) = h(wa). We can make thechoice such that wa = wa for all a 2 �0 n �. If a 6= a, then we can �nd wasuch that jwaj < jM j, since we can take the shortest word wa 2 �� such thath(wa) = h0(a) 2M . For a = a we know that there is some word wa 2 �� with19



h0(a) = h(wa) and wa = wa. Hence we can write wa = vbv with b 2 � [ f1gand b = b. For b 6= 1 we can demand jwaj � 2jM j � 1. For b = 1 we candemand jwaj � 2jM j � 2. Thus, we �nd a projection � : �0� ! �� such that��(E) = E 0 and moreover, j�(a)j < 2jM j for all a 2 �0.ii) Using the reasoning in the proof of i) we may assume that � : �0� ! ��satis�es j�(a)j < 2jM j for all a 2 �0. Since � de�nes a base change with��(E 0) = E, we know by Lemma 14 that � = ��0 is a solution of E. Clearly,j�(L)j = j��0(L)j � 2jM jj�0(L)j. �Remark 17 In the following we will meet the problem to decide whetherthere is a projection � : �0� ! �� such that ��(E) = E 0. We actually neednot too much space for this test. It is not necessary to write down �. We canuse the criterion in the lemma above and Lemma 6. Then we have to storein the working space only some Boolean matrices of B 2n�2n . In particular, ifn is a constant (or logarithmically bounded in the input size), then the test9� : ��(E) = E 0 can be done in polynomial time. However, if n becomes asubstantial part of the input size, then the test might be di�cult in the sensethat we might need the full power of PSPACE.The lemma above leads now to the second rule.Rule 2 If � is a projection and if we are looking for a solution of E, thenit is enough to �nd a solution for ��(E). Hence, during a non-deterministicsearch we may replace E by ��(E).Example 18 Let us continue with the equation which has been obtained bythe transformation in Example 15. In order to simplify notations, we willcall E the equation XX = Y �a�bY ZaY , and � = fa; b; �a;�bg.Remember that the constraint on X demanded a rather long solution. There-fore we may reintroduce a letter c and put �0 = fa; b; c;�a;�b; �cg. Then wemay de�ne a projection � : �0 ! �� by, say, �(c) = b100. The equationE 0 = ��(E) looks as above, but in E 0 we may change the constraint for X.We may sharpen the new constraint for X to be X 2 ��c��. Thus, thesolution for X might be very short now.20



10 Partial SolutionsLet 
0 � 
 be a subset of the variables which is closed under involution. Weassume that there is a mapping �0 : 
0 ! M with �0(x) = �0(x), but we donot require that �0 is the restriction of � : 
 ! M . Consider an equationwith constraints E = (�; h;
; �;L = R): A partial solution is a mapping� : 
! ��
0�� [ �� such that the following conditions are satis�ed:i) �(X) 2 ��X�� for all X 2 
0,ii) �(X) 2 �� for all X 2 
 n 
0,iii) �(X) = �(X) for all X 2 
.The mapping � is extended to a homomorphism � : (� [ 
)� ! (� [ 
0)� byleaving the elements of � invariant. Let E 0 = (�; h;
0; �0;L0 = R0) be anotherequation with constraints (using the same � and h). We write E 0 = ��(E),if there exists some partial solution � : 
 ! ��
�� [ �� such that thefollowing conditions hold: L0 = �(L), R0 = �(R), �(X) = h(u)�0(X)h(v) for�(X) = uXv, and �(X) = h(w) for �(X) = w 2 ��.Lemma 19 In the notation of above, let E 0 = ��(E) for some partial solution� : 
 ! ��
�� [ ��. If �0 is a solution of E 0, then � = �0� is a solution ofE. Moreover, we have �(L) = �0(L0) and �(R) = �0(R0).Proof. By de�nition, � and �0 are extended to homomorphisms � : (�[
)� !(� [ 
0)� and �0 : (� [ 
0)� ! �� leaving the letters of � invariant. SinceE 0 = ��(E) we have �(L) = L0 and �(R) = R0. Since �0 is a solution, we have�(L) = �0�(L) = �0(L0) = �0(R0) = �0�(R) = �(R) and � leaves the letters of� invariant. The solution �0 satis�es h�0(X) = �0(X) for all X 2 
0. Hence,if �(X) = uXv, then �(X) = h(u)�0(X)h(v) = h(u�0(X)v) = h�0(uXv) =h�0�(X) = h�(X). If �(X) = w 2 ��, then �(X) = �0�(X) = w and�(X) = h(w), again by the de�nition of a partial solution. �Lemma 20 The following problem can be solved in PSPACE.INPUT: Two equations with constraints E = (�; h;
; �; eL = eR) and E 0 =(�; h;
0; �0; eL0 = eR0).QUESTION: Is there some partial solution � such that ��(E) � E 0?21



Moreover, if ��(E) � E 0 is true, then there are admissible exponential ex-pressions eu, ev for each X 2 
0 and an admissible exponential expressionew for each X 2 
 n 
0 such that�(X) = eval(eu)Xeval(ev) for X 2 
0;�(X) = eval(ew) for X 2 
 n 
0:Proof. Let L = eval(eL), R = eval(eR), L0 = eval(eL0), and R0 = eval(eR0).The non-deterministic algorithm works as follows:For each X 2 
0 we guess admissible exponential expressions eu and ev witheval(eu); eval(ev) 2 ��. We de�ne an exponential expressions eX = euXevand �(X) = eval(eX). For eachX 2 
n
0 we guess an admissible exponentialeX with eval(eX) 2 �� and �(X) = eval(eX).Next we verify whether or not ��(E) � E 0. During this test we have tocreate an exponential expression fL (and fR, resp.) by replacing X in eL(and eR, resp.) with the expression eX. This increases the size in the worstcase by a factor of maxfjjeXjj j X 2 
g. The other tests whether �(X) =h(u)�0(X)h(v) for �(X) = uXv and �(X) = h(w) for �(X) = w 2 �� involveadmissible exponential expressions over Boolean matrices and can be donein polynomial time.The correctness of the algorithm follows from our general assumption thatall X 2 
 appear in LRLR. Therefore, if we have ��(E) � E 0, then �(X) (or�(X)) appears necessarily as a factor in L0R0 = �(LR). Hence �(X) has anexponential expression of polynomial size by Lemma 10. Therefore guessesof eu, ev, and ew as above are possible without running out of space. �Remark 21 Actually, the test for ��(E) � E 0 can be performed in non-deterministic polynomial time by Remark 12.The lemma above leads to the third and last rule.Rule 3 If � is a partial solution and if we are looking for a solution of E, thenit is enough to �nd a solution for ��(E). Hence, during a non-deterministicsearch we may replace E by ��(E).Remark 22 We can think of a partial solution � : 
 ! ��
0�� [ �� inthe following sense. Assume we have an idea about �(X) for some X 2 
.Then we might guess �(X) entirely. In this case we can de�ne �(X) = �(X)22



and we have X 62 
0. For some other X we might guess only some pre�xu and some su�x v of �(X). Then we de�ne �(X) = uXv and we haveto guess some �0(X) 2 M such that �(x) : h(u)�0(X)h(v). If our guess wascorrect, then such a matrix �0(X) 2M must exist. We have partially speci�edthe solution and applying Rule 3, we continue this process by replacing theequation L = R by the new equation �(L) = �(R).Example 23 We continue with our running example. After renaming, theequation E is given by XX = Y �a�bY ZaY ;and the alphabet of constant is given by � = fa; b; c; �a;�b; �cg. The constraintsare X 2 ��c�� and Z 2 �afa; b;�a;�bg�.We may guess the partial solution as follows: �(X) = aX, �(Y ) = Y , and�(Z) = �ab. The new equation ��(E) isaXX�a = Y �a�bY �abaY :The remaining constraint is that the solution for X has to use the letter c.The process can continue, for example, we can apply Rule 1 again by de�ninganother base change �(b) = ba to get the equationaXX�a = Y �bY �abYover � = fa; b; c;�a;�b; �cg. Since the last equation has a solution (e.g., givenby �(X) = bc�c�b�babc and �(Y ) = abc�c�b), the �rst equation with constraints inExample 15 has a solution too.11 The Search Graph and Plandowski's Al-gorithmIn the following we show that there is some �xed polynomial (which can becalculated from the presentation below) such that the high-level descriptionof Plandowski's algorithm is as follows: On input E0 compute the maximalspace bound, given by the polynomial, to be used by the procedure. Thenapply non-deterministically Rules 1, 2, and 3 until an equation with a trivialsolution is found. 23



From the description above it follows that the speci�cation of the algorithmjust uses Rules 1, 2, 3. The algorithm is simple but it demands a goodheuristics to explore the search graph. The hard part is to prove that thisschema is correct; for this we have to be more precise.The search graph is a directed graph: The nodes are admissible equationswith constraints. For two nodes E, E 0, we de�ne an arc E ! E 0, if there arean admissible base change �, a projection �, and a partial solution � suchthat ��(��(E)) � ��(E 0).Lemma 24 The following problem can be decided in PSPACE.INPUT: Admissible equations with constraints E and E 0.QUESTION: Is there an arc E ! E 0 in the search graph?Proof. We �rst guess some alphabet (�00; ) of polynomial size together withh00 : �00 !M . Then we guess some admissible base change � : �0 ! �00� suchthat h0 = h00� and we compute ��(E 0).Next we guess some admissible equation with constraints E 00 which uses�00 and 
. We check using Lemma 20 that there is some partial solution� : 
 ! �00�
0�00� [ �00� such that ��(E 00) � ��(E 0). (Note that every equa-tion with constraints E 00 satisfying ��(E 00) � ��(E 0) for some � is admissibleby Lemma 10.) Finally we check using Remark 22 and that there is someprojection � : �00 ! � such that ��(E) � E 00. We obtain ��(��(E)) � ��(E 0).�Remark 25 Following Remarks 12 and 21 the problem in Lemma 24 can bedecided in non-deterministic polynomial time, if the monoid M is not partof the input and viewed as a constant. If, as in our setting, M is part ofthe input, then PSPACE is the best we can prove, because the test for theprojection becomes di�cult.Plandowski's algorithm works as follows:beginE := E0while 
 6= ; doGuess an admissible equation E 0 with constraintsVerify that E ! E 0 is an arc in the search graphE := E 0endwhilereturn \eval(eL) = eval(eR)"end 24



By Rules 1{3 (Lemmata 14, 16 ii), and 19), if E ! E 0 is an arc in the searchgraph and E 0 is solvable, then E is solvable, too. Thus, if the algorithmreturns true, then E0 is solvable. The proof of Theorem 5 is therefore reducedto the statement that if E0 is solvable, then the search graph contains a pathto some node without variables and the exponential expressions de�ning theequation evaluate to the same word. This existence proof is the hard part,it covers the rest of the paper.Remark 26 If E ! E 0 is due to some � : �00� ! ��, � : 
! �00�
0�00�[�00�,and � : �0� ! �00�, then a solution �0 : 
0 ! �0� of E 0 yields the solution � =�(��0)�. Hence we may assume that the length of a solution has increasedby at most an exponential factor by Lemma 16 ii). Since we are going toperform the search in a graph of at most exponential size, we get automaticallya doubly exponential upper bound for the length of a minimal solution bybackwards computation on such a path. This is still the best known upperbound (although an singly exponential bound is conjectured), see [25].12 Free IntervalsIn this section we introduce the notion of free interval in order to cope withlong factors in the solution which are not related to any cut. If there wereno constraints, then these factors would not appear in a minimal solution.In our setting we cannot avoid these factors.For a word w 2 �� we let f0; : : : ; jwjg be the set of its positions. Theinterpretation is that factors of w are between positions. To be more speci�clet w = a1 � � � am, ai 2 � for 1 � i � m. Then [�; �] with 0 � � < � � mis called a positive interval and the factor w[�; �] is de�ned by the wordw[�; �] = a�+1 � � � a�.It is convenient to have an involution on the set of intervals. Therefore [�; �]is also called an interval (but it is never positive), and we de�ne w[�; �] =w[�; �]. We allow also � = � and we de�ne w[�;�] to be the empty word.For all 0 � �; � � m we let [�; �] = [�; �], then always w[�; �] = w[�; �].Let us focus on the word w0 2 ��0 which in our notation is the solution w0 =�(L0) = �(R0), where L0 = x1 � � �xg and R0 = xg+1 � � � xd, xi 2 (�0 [ 
0)for 1 � i � d. We are going to de�ne an equivalence relation � on the setof intervals of w0. For this we have to �x some few more notations. We letm0 = jw0j and for i 2 f1; : : : ; dg we de�ne positions l(i) 2 f0; : : : ;m0 � 1g25



and r(i) 2 f1; : : : ;m0g by the congruencesl(i) � j�(x1 � � �xi�1)j mod m0;r(i) � j�(xi+1 � � � xd)j mod m0:This means, the factor �(xi) starts in w0 at the left position l(i) and it endsat the right position r(i). In particular, we have l(1) = l(g + 1) = 0 andr(g) = r(d) = m0. The set of l and r positions is called the set of cuts.Thus, the set of cuts is f l(i); r(i) j 1 � i � d g. There are at most d cuts.These positions cut the word w0 in at most d � 1 factors. For conveniencewe henceforth assume 2 � g < d < m0 whenever necessary. We make alsothe assumption that �(xi) 6= 1 for all 1 � i � d. This assumption can berealized e.g. by a �rst step in Plandowski's algorithm using a partial solution� which sends a variable X to the empty word, if �(X) = 1 and sends X toitself otherwise. Another choice to realize this assumption is by a guess insome preprocessing.We have �(xi) = w0[l(i); r(i)] and �(xi) = w0[r(i); l(i)] for 1 � i � d. By ourassumption, the interval [l(i); r(i)] is positive. Let us consider a pair (i; j)such that i; j 2 1; : : : ; d and xi = xj or xi = xj. For �; � 2 f0; : : : ; r(i)� l(i)gwe de�ne a relation � by:[l(i) + �; l(i) + �] � [l(j) + �; l(j) + �]; if xi = xj;[l(i) + �; l(i) + �] � [r(j)� �; r(j)� �]; if xi = xj:Note that � is a symmetric relation. Moreover, [�; �] � [�0; � 0] implies both[�; �] � [� 0; �0] and w0[�; �] = w0[�0; � 0]. By � we denote the reexiveand transitive closure of �. Then � is an equivalence relation and again,[�; �] � [�0; � 0] implies both [�; �] � [� 0; �0] and w0[�; �] = w0[�0; � 0].Next we de�ne the notion of free interval . An interval [�; �] is called free,if whenever [�; �] � [�0; � 0], then there is no cut  0 with minf�0; � 0g <  0 <maxf�0; � 0g. Clearly, the set of free intervals is closed under involution, i.e., if[�; �] is free, then [�; �] is free, too. It is also clear that [�; �] is free wheneverj� � �j � 1.Example 27 The last equation in Example 23, namelyaXX�a = Y �bY �abY ;26



has a solution which yields the wordw0 = 0j a 1j bc�c�b 5j �b 6j abc 9j �c�b 11j �a 12j b 13j bc�c�b 17j �a 18j :The set of cuts is shown by the bars. The intervals [1; 5], [13; 17], and [6; 9]are not free, since [1; 5] � [17; 13] � [7; 11] and [6; 9] � [0; 3] and [7; 11], [0; 3]contain cuts. There is only one equivalence class of free intervals of lengthlonger than 1 (up to involution), which is given by [1; 3] � [17; 15] � [7; 9] �[11; 9] � [5; 3] � [13; 15].The next lemma says that subintervals of free intervals are free again.Lemma 28 Let [�; �] be a free interval and �; � such that minf�; �g ��; � � maxf�; �g. Then the interval [�; �] is also free.Proof. We may assume that � � � < � � �. By contradiction assume that[�; �] is not free. Then there is some k � 0 and some cut  0 such that[�; �] = [�0; �0] � [�1; �1] � � � � � [�k; �k]with minf�k; �kg <  0 < maxf�k; �kg. If k = 0, then we have a immediatecontradiction. For k � 1 the relation [�; �] � [�1; �1] is due to some pairxi, xj with xi = xj or xi = xj. Since [�; �] contains no cut, we can usethe same pair to �nd an interval [�1; �1] such that [�; �] � [�1; �1] and�1; �1 2 fminf�1; �1g; : : : ;maxf�1; �1gg. Using induction on k we see that[�1; �1] cannot be free. A contradiction, because then [�; �] is not free. �Next we introduce the notion of implicit cut for non-free intervals. For ourpurpose it is enough to de�ne it for positive intervals. So, let 0 � � < � � m0such that [�; �] is not free. A position  with � <  < � is called an implicitcut of [�; �], if we meet the following situation. There is a cut  0 and aninterval [�0; � 0] such thatminf�0; � 0g <  0 < maxf�0; � 0g;[�; �] � [�0; � 0]; � � = j 0 � �0j:The following observation will be used throughout. If we have � � � <  <� � � and  is an implicit cut of [�; �], then  is also an implicit cut of [�; �].In particular, neither [�; �] nor [�; �] is a free interval.55However, if  is an implicit cut of [�; �], then it might happen that  is no implicitcut of [�; �], although [�; �] is certainly not free.27



Lemma 29 Let 0 � � � �0 < � � � 0 � m0 such that [�; �] and [�0; � 0] arefree intervals. Then the interval [�; � 0] is free, too.Proof. Assume by contradiction that [�; � 0] is not free. Then it contains animplicit cut  with � <  < � 0. By the observation above: If  < �, then is an implicit cut of [�; �] and [�; �] is not free. Otherwise, �0 <  and �0; � 0is not free. �We now consider the maximal elements. A free interval [�; �] is called maxi-mal free, if there is no free interval [�0; � 0] such that both �0 � minf�; �g �maxf�; �g � � 0 and � 0 � �0 > j� � �j. With this notion Lemma 29 statesthat maximal free intervals do not overlap.Lemma 30 Let [�; �] be a maximal free interval. Then there are intervals[; �] and [ 0; �0] such that [�; �] � [; �] � [ 0; �0] and  and �0 are cuts.Proof. We may assume that [�; �] is a positive interval, i.e., � < �. We showthe existence of [; �] where [�; �] � [; �] and  is a cut. The existence of[ 0; �0] where [�; �] � [ 0; �0] and �0 is a cut follows by a symmetric argument.If � = 0, then � itself is a cut and we can choose � = �. Hence let 1 � �and consider the positive interval [�� 1; �]. This interval is not free, but theonly possible position for an implicit cut is �. Thus for some cut  we have[�� 1; �] � [�0; � 0] with minf�0; � 0g <  < maxf�0; � 0g and j � �0j = 1. Asimple reection shows that we have [� � 1; �] � [�0; ] and [�; �] � [; � 0].Hence we can choose � = � 0. �Proposition 31 Let � be the set of words w 2 ��0 such that there is a max-imal free interval [�; �] with w = w0[�; �]. Then � is a subset of �+0 of sizeat most 2d � 2. The set � is closed under involution.Proof. Let [�; �] be maximal free. Then j� � �j � 1 and [�; �] is maximalfree, too. Hence � � �+0 and � is closed under involution. By Lemma 30 wemay assume that � is a cut. Say � < �. Then � 6= m0 and there is no othermaximal free interval [�; � 0] with � < � 0 because of Lemma 29. Hence thereare at most d�1 such intervals [�; �]. Symmetrically, there are at most d�1maximal free intervals [�; �] where � < � and � is a cut. �For a moment let �00 = �0 [ � where � � �+0 is the set de�ned in Proposi-tion 31. The inclusion �00 � �+0 de�nes a natural projection � : �00 ! ��0 anda mapping h00 : �00 !M by h00 = h0�. Consider the equation with constraints��(E), this is a node in the search graph, because the size of � is linear in d.28



The reason to switch from �0 to �00 is that, due to the constraints, the wordw0 may have long free intervals, even in a minimal solution. Over �00 longfree intervals can be avoided. Formally, we replace w0 by a solution w00 wherew00 2 ��. The de�nition of w00 is based on a factorization of w0 in maximalfree intervals. There is a unique sequence 0 = �0 < �1 < � � � < �k = m0 suchthat [�i�1; �i] is a maximal free interval for each 1 � i � k andw0 = w0[�0; �i] � � �w0[�k�1; �k]:Note that all cuts occur as some �p, therefore we can think of the factorsw0[�i�1; �i] as letters in � for 1 � i � k. Moreover, all constants whichappear in L0R0 are elements of �. We replace w0 by the word w00 2 ��.Then we can de�ne � : 
 ! �� such that both �(L0) = �(R0) = w00 and�0 = h00�. In other terms, � is a solution of ��(E0). We have w0 = �(w00) andexp(w00) � exp(w0). The crucial point is that w00 has no long free intervalsanymore. With respect to w00 and �00 all maximal free intervals have lengthexactly one.In the next step we show that we can reduce the alphabet of constants tobe �. The inclusion of � in �00 de�nes an admissible base change � : � !�00. Consider E 00 = (�; h;
0; �0;L0 = R0) where h is the restriction of themapping h00. Then we have ��(E0) = ��(E 00). The search graph contains anarc from E0 to E 00, since we may choose � to be the identity. The equationwith constraints E 00 has a solution � with �(L0) = w00 and exp(w00) � exp(w0).In order to avoid too many notations we identify E0 and E 00, hence we alsoassume w0 = w00. However, as a reminder that we have changed the alphabetof constants (recall that some words became letters), we prefer to use thenotation � rather than �0. Thus, in what follows we shall make the followingassumptions: E0 = (�; h;
0; �0;L0 = R0);L0 = x1 � � �xg and g � 2;R0 = xg+1 � � � xd and d > g;j�j � 2d � 2;j
0j � 2d;M � B 2n�2n :Moreover: All variables X occur in L0R0L0R0. There is a solution � suchthat w0 = �(L0) = �(R0) with �(Xi) 6= 1 for 1 � i � d and �0 = h� = h0�.29



We have jw0j = m0 and exp(w0) 2 2O(d+n logn). All maximal free intervalshave length exactly one, i.e., every positive interval [�; �] with � � � > 1contains an implicit cut.It is because of the last sentence that we have worked out the details aboutfree intervals. This di�culty is due to the constraints. Without them thereasoning would have been much simpler. But the good news are that fromnow on, the presence of constraints will not interfere very much.Example 32 Following Example 27, we use the same equation aXX�a =Y �bY �abY and we consider the solution w0.The new solution is de�ned by replacing in w0 each factor bc by a new letterd which represents a maximal free interval. The new w0 has the formw0 = 0j a 1j d�d 3j �b 4j ad 6j �d 7j �a 8j b 9j d�d 11j �a 12j :Now all maximal intervals have length one.13 Critical Words and BlocksIn the following ` denotes an integer which varies between 1 and m0. Foreach ` we de�ne the set of critical words C` byC` = fw0[ � `;  + `]; w0[ + `;  � `] j  is a cut and ` �  � m0 � ` g:We have 1 � jC`j � 2d� 4 and C` is closed under involution. Each word u 2C` has length 2`, it can be written in the form u = u1u2 with ju1j = ju2j = `.Then u1 (resp. u2) appears as a su�x, left of some cut and u2 (resp. u1)appears as a pre�x, right of the same cut.A triple (u;w; v) 2 (f1g [ �`) � �+ � (f1g [ �`) is called a block if �rst,up to a possible pre�x or su�x no other factor of the word uwv is a criticalword, second, u 6= 1 if and only if a pre�x of uwv of length 2` belongs toC`, and third, v 6= 1 if and only if a su�x of uwv of length 2` belongsto C`. The set of blocks is denoted by B`. It is viewed (as a possiblyin�nite) alphabet where the involution is de�ned by (u;w; v) = (v;w; u).We can de�ne a homomorphism �` : B �̀ ! �� by �`(u;w; v) = w 2 �+being extended to a projection �` : (B` [ �)� ! �� by leaving � invariant.We de�ne h` : (B` [ �) ! M by h` = h�`. In the following we shallconsider �nite subsets �` � B` [ � which are closed under involution. Then30



by �` : ��̀ ! �� and h` : ��̀ ! M we understand the restrictions of therespective homomorphisms.For every non-empty word w 2 �+ we de�ne its `-factorization as follows.We write F`(w) = (u1; w1; v1) � � � (uk; wk; vk) 2 B+̀such that w = w1 � � �wk and for 1 � i � k the following conditions aresatis�ed:� vi is a pre�x of wi+1 � � �wk,� vi = 1 if and only if i = k,� ui is a su�x of w1 � � �wi�1,� ui = 1 if and only if i = 1.Note that the `-factorization of a word w is unique. For k � 2 we have jw1j �` and jwkj � `, but all other wi may be short. If no critical word appears as afactor of w, then F`(w) = (1; w; 1). In particular, this is the case for jwj < 2`.If we have w = puvq with juj = jvj = ` and uv 2 C`, then there is a uniquei 2 f1; : : : ; k � 1g such that u = ui+1, v = vi, and pu = w1 � � �wi, vq =wi+1 � � �wk. Thus, F`(w) contains a factor (ui; wi; v)(u;wi+1; vi+1) where v isa pre�x of wi+1vi+1 and u is a su�x of uiwi. For example, the `-factorizationof uv 2 C` with juj = jvj = ` isF`(uv) = (1; u; v)(u; v; 1):We de�ne the head, body, and tail of a word w based on its `-factorizationF`(w) = (u1; w1; v1) � � � (uk; wk; vk)in B �̀ and �� as follows:Head`(w) = (u1; w1; v1) 2 B`;head`(w) = w1 2 �+;Body`(w) = (u2; w2; v2) � � � (uk�1; wk�1; vk�1) 2 B �̀;body`(w) = w2 � � �wk�1 2 ��;Tail`(w) = (uk; wk; vk) 2 B`;tail`(w) = wk 2 �+: 31



For k � 2 (in particular, if body`(w) 6= 1) we haveF`(w) = Head`(w)Body`(w)Tail`(w);w = head`(w)body`(w)tail`(w):Moreover, u2 is a su�x of w1 and vk�1 is a pre�x of wk.Assume body`(w) 6= 1 and let u; v 2 �� be any words. Then we can vieww in the context uwv and Body`(w) appears as a proper factor in the `-factorization of uwv. More precisely, letF`(uwv) = (u1; w1; v1) � � � (uk; wk; vk):Then there are unique 1 � p < q � k such that:F`(uwv) = (u1; w1; v1) � � � (up; wp; vp)Body`(w)(uq; wq; vq) � � � (uk; wk; vk);w1 � � �wp = uhead`(w);wq � � �wk = tail`(w)vFinally, we note that the above de�nitions are compatible with the involution.We have F`(w) = F`(w), Head`(w) = Tail`(w), and Body`(w) = Body`(w).14 The `-TransformationOur equation with constraints is E0 = (�; h;
0; �0;x1 � � � xg = xg+1 � � �xd):We start with the `-factorization of w0 = �(x1 � � �xg) = �(xg+1 � � �xd). LetF`(w0) = (u1; w1; v1) � � � (uk; wk; vk):A sequence S = (up; wp; vp) � � � (uq; wq; vq) with 1 � p � q � k is calledan `-factor . We say that S is a cover of a positive interval [�; �], if bothjw1 � � �wp�1j � � and jwq+1 � � �wkj � m0��. Thus, w0[�; �] becomes a factorof wp � � �wq. It is a minimal cover , if neither (up+1; wp+1; vp+1) � � � (uq; wq; vq)nor (up; wp; vp) � � � (uq�1; wq�1; vq�1) is a cover of [�; �]. The minimal coverexists and it is unique.We let 
` = fX 2 
0 j body`(�(X)) 6= 1 g, and we are going to de�ne a newleft-hand side L` 2 (B` [ 
`)� and a new right-hand side R` 2 (B` [ 
`)�.For L` we consider those 1 � i � g where body`(�(xi)) 6= 1. Note that thisimplies xi 2 
` since ` � 1 and then the body of a constant is always empty.32



Recall the de�nition of l(i) and r(i), and de�ne � = l(i) + jhead`(�(xi))jand � = r(i) � jtail`(�(xi))j. Then we have w0[�; �] = body`(�(xi)). Nextconsider the `-factor Si = (up; wp; vp) � � � (uq; wq; vq) which is the minimalcover of [�; �]. Then we have 1 < p � q < k and wp � � �wq = w0[�; �] =body`(�(xi)). The de�nition of Si depends only on xi, but not on the choiceof the index i.We replace the `-factor Si in F`(w0) by the variable xi. Having done thisfor all 1 � i � g with body`(�(xi)) 6= 1 we obtain the left-hand side L` 2(B` [ 
`)� of the `-transformation E`. For R` we proceed analogously byreplacing those `-factors Si where body`(�(xi)) 6= 1 and g + 1 � i � d.For E` we cannot use the alphabet B`, because it might be too large or evenin�nite. Therefore we let �`0 be the smallest subset of B` which is closedunder involution and which satis�es L`R` 2 (�`0 [
`)�. We let �` = �`0 [ �.The projection �` : ��̀ ! �� and the mapping h` : �` ! M are de�ned bythe restriction of �` : B` ! ��, �`(u;w; v) = w and h`(u;w; v) = h(w) 2 Mand by �`(a) = a and h`(a) = h(a) for a 2 �.Finally, we de�ne the mapping �` : 
` ! M by �`(X) = h(body`(�(X))).This completes the de�nition of the `-transformation:E` = (�`; h`;
`; �`;L` = R`):Remark 33 One can verify that �` : 
` ! ��̀, �`(X) = '`(Body`(�(X)))de�nes a solution of E`, where '` is the identity on �` and �` on B` n �`0 .Although, up to the trivial case ` = m0, we make no explicit use of this fact.Example 34 We continue with our example aXX�a = Y �bY �abY and thesolution � which has been given byw0 = j a j d�d j �b j ad j �d j �a j b j d�d j �a j;where the bars show the cuts.Up to involution, the set C1 is given by fad; bd; �ab; d�dg and C2 is given byfd�d�ba; �d�bad; ad�d�a; d�d�abg. The 1-factorization of w0 can be obtained letter byletter. The 2-factorization of w0 is given by the following sequence:(1; ad�d;�ba)(d�d;�b; ad)(�d�b; ad; �d�a)(ad; �d; �ab)(d�d; �a; bd)(�d�a; b; d�d)(�ab; d�da; 1):Recall �(X) = d�d�bad and �(Y ) = ad�d. Hence their 2-factorizations are(1; ad�d;�ba)(d�d;�b; ad)(�d�b; ad; 1) and (1; ad�d; 1), respectively.33



By renaming letters, the 2-factorization of w0 becomes a�bcdeb�a and the equa-tion E reduces to E2 : aXcdeX�a = a�bcdeb�a since the body of �(Y ) is empty.The reader can check that the 3-factorization of w0 after renaming is the verysame word as the 2-factorization, but the 3-factorization of �(X) is now oneletter, (1; d�d�bad; 1), so E3 becomes a trivial equation. Plandowski's algorithmwill return true at this stage.Remark 35 i) In the extreme case ` = m0, the `-transformation becomestrivial. Let a = (1; w0; 1). Then a = (1; w0; 1) and �m0 = fa; ag [ �. More-over, we have Lm0 = Rm0 = a, and hm0(a) = h(w0) 2 M . Since 
m0 = ;,the equation with constraints Em0 has trivially a solution. It is clear that Em0is a node in the search graph, and if we reach Em0 , then the algorithm willreturn true.ii) The other extreme case is ` = 1. The situation again is simple, butthe precise de�nition is technically more involved. Consider a block (u;w; v)which appears in F1(w0). Then w = w0[�; �] for some � � � � 1. Wecannot have � � � � 2, because then [�; �] would have an implicit cut , butw0[ � 1;  + 1] 2 C1 and no critical word is a factor of w. An immediateconsequence is j�1j � (j�j+1)3 2 O(d3). Let X 2 
0. Then Body1(�(X)) 6=1 if and only if j�(X)j � 3. Thus, for X 2 
1 we have �(X) = bcu = vdewith b; c; d; e 2 � and u; v 2 �+. It follows:F1(�(X)) = (1; b; c)(b; c; v2) � � � (ujvj+1; d; e)(d; e; 1):For example, for jvj = 1 this means b = ujvj+1, c = d, and v2 = e.We can describe L1 2 ��1 as follows:For 1 � i � g let wi = �(xi) and ai the last letter of �(xi�1) if i > 1 anda1 = 1. Let fi the �rst letter of �(xi+1) if i < g and fg = 1. Let bi the �rstletter of wi and ei the last letter of wi.For jwij = 1 we replace xi by the 1-factor (ai; bi; fi).For jwij = 2 we replace xi by the 1-factor (ai; bi; ei)(bi; ei; fi).For jwij � 3 we let ci be the second letter of wi and di its second last. In thiscase we replace xi by (ai; bi; ci)xi(di; ei; fi).The de�nition of R1 is analogous. Thus, we obtain jL1R1j � 3jL0R0j = 3d,and E1 is admissible. We also see that there was an overestimation of thesize of j�1j. For each xi we need at most two constants together with theirinvolutions. Since �1 contains also �, we obtain j�1j � 6d.By the remark above, E1 and Em0 are admissible and hence nodes of thesearch graph. The goal is to reach Em0 via E1 when starting with E0. For34



the moment it is even not clear that the `-transformations with 1 < ` < m0belongs to the search graph. We prove this statement in the next section.15 The `-transformation E` is admissibleProposition 36 There is a polynomial p (of degree at most 4) such thateach E` is admissible for all ` � 1.Proof. It is enough to show that L` and R` can be represented by exponentialexpressions of sizeO(d2(d+n log n)). Then �` can have size at most O(d2(d+n log n)) and the assertion follows. We will estimate the size of an exponentialexpression for L`, only.We start again with the `-transformation ofF`(w0) = (u1; w1; v1) � � � (uk; wk; vk):If k is small there is nothing to do since jL`j � jF`(w0)j. An easy reectionshows that jL`j can become large, only if there is some 1 � i � g suchthat head`(�(xi)) or tail`(�(xi)) is long. By symmetry we treat the casehead`(�(xi)) only and we �x some notation. We let 1 � i � g, � = l(i), and� = �+ jhead`(�(xi))j. Let(up�1; wp�1; vp�1) � � � (uq+1; wq+1; vq+1)be a minimal cover of [�; �]. We may assume that q�p is large. It is enoughto �nd an exponential expression for the `-factor(up; wp; vp) � � � (uq; wq; vq)having size in O(d(d + n log n)), because we want the whole expression tohave size in O(d2(d+ n log n)).Note that wp � � �wq is a proper factor of head`(�(xi)). Hence no critical wordof C` can appear as a factor inside wp � � �wq. This means there is somep � s � q such that both jwp � � �ws�1j < ` and jws+1 � � �wqj < `. Indeed,if jwp � � �wq�1j < `, then we choose s = q. Otherwise we let p � s � qbe minimal such that jwp � � �wsj � `. Then jws+1 � � �wqj � ` is impossiblebecause us+1vs 2 C` would appear as a factor in wp � � �wq. We can write(up; wp; vp) � � � (uq; wq; vq) = S1(us; ws; vs)S2;35



and since (us; ws; vs) 2 �` is a letter, it is enough to �nd exponential expres-sions for Si, i = 1; 2, of size O(d(d + n log n)) each. As a conclusion it isenough to prove the following lemma. �The statement of the next lemma is slightly more general as we need it above.There we need the lemma for c = 1, but later we will apply the lemma withvalues c � 32d.Lemma 37 Let c > 0 be a number andS = (u1; w1; v1) � � � (uk; wk; vk) 2 B �̀be a sequence which appears as some `-factor in F`(w0). If we have k � 3 orjw2 � � �wk�1j � c`, then we can represent the sequence by some exponentialexpression of size O(cd(d+ n log n)).Proof. We show that there is an exponential expression of size O(d(d +n log n)) under the assumption jw1 � � �wkj < `. This is enough, because wealways can write S as a0S1a1 � � �Sc0ac0, where c0 � c, the ai are letters, andeach Si satis�es the assumption. Note that the assumption implies u1 6=1 6= vk and we may de�ne uk+1 as the su�x of length ` of u1w1 � � �wk. For1 � i � k let zi = ui+1vi. Then zi 2 C` is a critical word which appearsas a factor in z = u1w1w2 � � �wkvk. If the words zi, 1 � i < k are pairwisedi�erent, then k � 1 � jC`j 2 O(d) and we are done. Hence we may assumethat there are repetitions. Let j be the smallest index such that a criticalword is seen for the second time and let i < j be the �rst appearance of zj.This means for 1 � i < j the words z1; � � � ; zj�1 are pairwise di�erent andzi = zj. Now, jw1 � � �wkj < ` and jzij = 2`, hence zi and zj overlap in z. Wecan choose r maximal such that u1w1 � � �wi(wi+1 � � �wj)rvj is a pre�x of theword z. (Note that the last factor vj insures that the pre�x ends with zj).For some index s > j we can writez = u1w1 � � �wi(wi+1 � � �wj)rws � � �wkvk:We claim that zi 62 fzs; : : : ; zkg. Indeed, let t be maximal such that zi = ztand assume that j 6= t. Then both jwi+1 � � �wj j and jwj+1 � � �wtj are periodsof zi, but jwi+1 � � �wtj � jzj. Hence by Fine and Wilf's Theorem [16] weobtain that the greatest common divisor of jwi+1 � � �wjj and jwj+1 � � �wtj isa period, too. Due to the de�nition of an `-factorization (zj was the �rst36



repetition) the length jwj+1 � � �wtj is therefore a multiple of jwi+1 � � �wjj andwe must have t = s� 1. This shows the claim. Moreover, we have(u1; w1; v1) � � � (uk; wk; vk)= (u1; w1; v1) � � � (ui; wi; vi)[(ui+1; wi+1; vi+1) � � � (uj; wj; vj)]r S0where S 0 = (us; ws; vs) � � � (uk; wk; vk) for s = i + 1 + r(j � i). We haver � exp(w0), hence r 2 2O(d+n logn). It follows that(u1; w1; v1) � � � (ui; wi; vi)[(ui+1; wi+1; vi+1) � � � (uj; wj; vj)]ris an exponential expression of size j+log(r) 2 O(d+n log n). More precisely,for some suitable constant ec its size is at most ec(d + n log n). The constantec depends only on the constant which is hidden when writing exp(w0) 22O(d+n logn). By induction on the size of the set fz1; : : : ; zkg we may assumethat S 0 = (us; ws; vs) � � � (uk; wk; vk) has an exponential expression of size atmost jfzs; : : : ; zkgjec(d+ n). Hence the exponential expression for S has sizeat mostec(d + n log n) + jfzs; : : : ; zkgjec(d+ n log n) � jfz1; : : : ; zkgjec(d+ n log n):Thus, the size is in O(d(d + n log n)). �At this stage we know that all `-transformations are admissible (with respectto some suitable polynomial of degree 4). Thus E1; : : : ; Em0 are nodes of thesearch graph. Next we show that the search graph contains arcs E0 ! E1and E` ! E`0 for 1 � ` < `0 � 2`. Hence the graph contains a path (oflogarithmic length in m0) from E0 to Em0 . The non-deterministic procedureis able to �nd this path and on input E0 Plandowski's algorithm gives thecorrect answer.In order to establish the existence of arcs from E` to E`0 for 0 � ` < `0 �maxf1; 2`g we shall de�ne intermediate equations E`;`0 such that there is anadmissible base change �, a projection �, and a partial solution � with��(��(E`)) � E`;`0 � ��(E`0):16 The arc from E0 to E1Recall the de�nition of E1 = (�1; h1;
1; �1;L1 = R1): The letters of �1 canbe written either as (a; b; c) or as b with a; c 2 � [ f1g and b 2 �. We de�ne37



a projection which is used here as a base change � : �1 ! � by �(a; b; c) = band leaving the letters of � invariant. Clearly, h1 = h�, and � de�nes anadmissible base change. De�ne E0;1 = ��(E1). Then we have L0;1 = �(L1)and R0;1 = �(R1) where � : (�1 [ 
1)� ! (� [ 
1)� is the extension with�(X) = X for all X 2 
1. We have �0;1 = �It is now obvious how to de�ne the partial solution � : 
0 ! �
1� [ ��such that ��(E0) = E0;1. If j�(X)j � 2, then we let �(X) = �(X). Forj�(X)j � 3 we write �(X) = aub with a; b 2 � and u 2 �+. Then we haveX 2 
1 = 
0;1 and we de�ne �(X) = aXb and �0;1(X) = h(u). For X 2 
1we have �1(X) = h(body1(�(X))), hence �0;1 = �1, too. This shows that,indeed, ��(E0) = ��(E1). Formally, we can write this as ��(��(E0)) = ��(E1),where � is the identity. Hence there is an arc from E0 to E1.17 The equations E`;`0 for 1 � ` < `0 � 2`In this section we de�ne for each 1 � ` < `0 � 2` an intermediate equationwith constraints��(E`0) = E`;`0 = (�`;`0 ; h`;`0 ;
`0 ; �`0;L`;`0 = R`;`0)by some base change � : �`0 ! (B` [�)�, then we show that � is admissible.Recall � � �`0 � B`0 [�. The base change � leaves the letters of � invariant.Consider some (u;w; v) 2 �`0n�. It is enough to de�ne �(u;w; v) or �(v;w; u).Hence we may assume that (u;w; v) appears as a letter in the `0-factorizationF`0(w0). Therefore we �nd a positive interval [�; �] such that w = w0[�; �]and such that the following two conditions are satis�ed:1) We have u = 1 and � = 0 or juj = `0, � � `0, and u = w0[�� `0; �].2) We have v = 1 and � = m0 or jvj = `0, � � m0� `0, and v = w0[�; �+ `0].Let (up; wp; vp) � � � (uq; wq; vq) be the `-factor which is the minimal cover of[�; �] with respect to the `-factorization F`(w0). Since ` � `0 we havewp � � �wq = w. Moreover, the word up is a su�x of u and vq is a pre�xof v. We de�ne �(u;w; v) = (up; wp; vp) � � � (uq; wq; vq) 2 B+̀:The de�nition does not depend on the choice of [�; �] as long as 0 � � < � �m0 and 1) and 2) are satis�ed. We have �(u;w; v) = �(v;w; u) and h`� = h`0.Now let �`;`0 � B` [ � be the smallest subset such that �(�`0) � ��̀;`0 . Then38



�`;`0 contains � and it is closed under involution (since �`0 has this property).A crucial, but easy reection shows that �` � �`;`0 . This will become essentiallater.We view � as a homomorphism � : ��̀0 ! ��̀;`0 and de�ne E`;`0 = ��(E`0).Let us show that � de�nes an admissible base change. Since E`0 is alreadyknown to be admissible with respect to some polynomial of degree 4, it isenough to �nd some admissible exponential expression (again with respectto some polynomial of degree 4) for the `-factor�(u;w; v) = (up; wp; vp) � � � (uq; wq; vq)where (u;w; v) 2 �`0 n �. We use the same notations as above. Thus, forsome positive interval [�; �] we have wp � � �wq = w0[�; �], the word u is asu�x of w0[0; �], and v is a pre�x of w0[�;m0]. If q � p is small, there isnothing to do. By Lemma 37 we may also assume that � � � > 32d`. Weare to de�ne inductively a sequence of positions� = �0 < �1 < � � � < �i < � � � < �i < � � � < �1 < �0 = �:Each time we let Wi = w0[�i; �i]. Thus, W0 = wp � � �wq. Assume thatWi = w0[�i; �i] is already de�ned such that �i � �i � 2. The interval [�i; �i]is not free. Hence, there is some implicit cut i with �i < i < �i. Theword Wi is a factor of w, hence no factor of Wi belongs to the set of criticalwords C`0 . This implies �i � i < `0 or i � �i < `0. If we have �i � i < `0then we let �i+1 = �i and �i+1 = i. In the other case we let �i+1 = i and�i+1 = �i. Thus Wi+1 is de�ned such that Wi+1 is a proper factor of Wi withjWij � jWi+1j < `0.We need some additional book keeping. We de�ne ri 2 fl; rg by ri = r if�i = �i+1 and ri = l otherwise (i.e., �i = �i+1). Furthermore the implicit cuti corresponds to some real cut  0i and �0i <  0i < � 0i such that Wi = w0[�0i; � 0i]or Wi = w0[� 0i; �0i]. We de�ne si 2 f+;�g by si = + if Wi = w0[�0i; � 0i] andsi = � otherwise (in particular, si = � implies Wi = w0[�0i; � 0i]). The triple( 0i; ri; si) is denoted by (i). There are at most 4(d � 2) such triples and(i) is de�ned whenever Wi+1 is de�ned. We stop the induction procedureafter the �rst repetition. Thus we �nd 0 � i < j < 4d such that (i) = (j).We obtain a sequence W0;W1; : : : ;Wi; : : : ;Wj where each word is a properfactor of the preceding one. We have jW0j � jWj j < 4d`0 � 8d` and due tojW0j > 32d` the sequence above really exists, moreover jWj j > 8d`.Next, we show that Wj has a non-trivial overlap with itself. We treat thecase (i) = (j) = (; r;+) only. The other three cases (; r;�), (; l;+),39



and (; l;�) can be treated analogously. For some �0 <  < � 0 we haveWi = w0[�0; � 0] andWi+1 = w0[; � 0]. Thus, for some  � � < � � � 0 we haveWj = w0[�; �] and we can assume that �� < (j� i)`0 � 4d`0�`0 � 8d`�`0.On the other hand we have (j) = (; r;+), too. Hence for some �0 <  < � 0with  � �0 < `0 we have Wj = w0[�0; � 0], too. Therefore 0 < � � �0 < 8d`and Wj has some non-trivial overlap. We can write Wj = W eW 0 such that1 � jW j < 8d` and W 0 is a pre�x of W .Putting everything together, we arrive in all cases at a factorization W0 =UW eV with e � exp(w0), 1 � jW j < 8d`, and jU j+ jV j < 16d`. However, wehave not �nished yet. Recall that we are looking for an admissible exponentialexpression for �(u;w; v) = (up; wp; vp) � � � (uq; wq; vq):Due to jW0j > ` we can choose r minimal, p < r � q + 1, and s maximalp � 1 � s < q such that jwp � � �wr�1j > jU j + ` and jws+1 � � �wqj > jV j + `.By Lemma 37 we may assume r < s and it is enough to �nd an exponentialexpression for S = (ur; wr; vr) � � � (us; ws; vs):Note that the word urwrwr+1 � � �wsvs is a factor of W e. Again, we mayassume that wrwr+1 � � �ws > 32d`. By switching to some conjugated wordW 0 if necessary, we may assume that urwrwr+1 � � �wsvs is a pre�x of W e.Moreover, by symmetry we may choose a positive interval [�; �] such thatw0[�; �] = urwrwr+1 � � �wsvs. Clearly, we have w0[i; j] = w0[i+ jW j; j+ jW j]for all � � i < j � � � jW j. In particular, the critical word w0[�;� + 2`]appears as w0[�+ jW j; � + jW j+ 2`] again. This means that there is somer � t < s such that jwr � � �wtj = jW j. More precisely, we can choose r � t <t0 � s and a maximal e0 � e such thatS = �(ur; wr; vr) � � � (ut; wt; vt)�e0(ut0; wt0; vt0) � � � (us; ws; vs):Since it holds e0 � exp(w0), jwr � � �wtj = jW j, and jwt0 � � �wsj � jW j, theexistence of an admissible exponential expression for �(u;w; v) follows. Hence� is an admissible base change.18 Passing from E` to E`;`0 for 1 � ` < `0 � 2`In the �nal step we have to show that there exists some projection � :��̀;`0 ! ��̀ and some partial solution � : 
` ! ��̀;`0
`0��̀;`0 [ ��̀;`0 such that��(��(E`)) � E`;`0 . We don't have to care about admissibility anymore.40



For the projection we have to consider a letter in �`;`0 n�`. Such a letter hasthe form (u;w; v) 2 B` and we may de�ne �(u;w; v) = w since � � �`.Clearly �((u;w; v)) = �(u;w; v) and h`;`0(u;w; v) = h`0(u;w; v) = h(w) =h`(�(u;w; v)) are veri�ed. Thus � : ��̀;`0 ! ��̀ de�nes a projection such that��(E`) = (�`;`0 ; h`;`0;
`; �`;L` = R`):We have to de�ne a partial solution � : 
` ! ��̀;`0
`0��̀;`0 [ ��̀;`0 such that�(L`) = �(L`0) and �(R`) = �(R`0). For this, we have to consider a variableX 2 
 with body`(�(X)) 6= 1. By symmetry, we may assume that X = xifor some 1 � i � g. Hence �(X) = w0[l(i); r(i)].Let � = l(i) + jhead`(�(X))j and � = r(i) � jtail`(�(X))j. Then l(i) + ` �� < � � r(i)�`. Let (up; wp; vp) � � � (uq; wq; vq) be the minimal cover of [�; �]with respect to the `-factorization. We have wp � � �wq = body`(�(X)).For body`0(X) = 1 we have X 2 
` n 
`0 and we de�ne�(X) = (up; wp; vp) � � � (uq; wq; vq):Then �(X) 2 B �̀ and h`�(X) = �`(X) since �`(X) = h(body`(�(X))). It isalso clear that the de�nition does not depend on the choice of i, and we have�(X) = �(X).Recall the de�nition of L`0 . Since body`0(�(X)) = 1, there is a factor f1 � � � frof L`0 which belongs to ��̀0 and f1 � � � fr covers [�; �] with respect to the `0-factorization F`0(w0). It follows that �(X) is a factor of �(f1 � � � fr), hence�(X) 2 ��̀;`0 by de�nition of �`;`0 .For body`0(X) 6= 1 we have X 2 
`0 and we �nd positions � < � such that� = l(i) + jhead`0(�(X))j and � = r(i)� jtail`0(�(X))j.For some p � r � s � q we have w0[�; �] = wp � � �wr�1, w0[�; �] =ws+1 � � �wq, and body`0(�(X)) = wr � � �ws. We de�ne�(X) = (up; wp; vp) � � � (ur�1; wr�1; vr�1)X(us+1; ws+1; vs+1) � � � (uq; wq; vq):As above, we can verify that �(X) = UXV with U; V 2 ��̀;`0 such that�(X) = V X U and �`(X) = h`;`0(U)�`0(X)h`;`0(V ). Finally, �(L`) = L`0 and�(R`) = R`0. Hence ��(��(E`)) = ��(E`0). This proves Theorem 5.19 ConclusionIn this paper we were dealing with the existential theory, only. For free groupsit is also known that the positive theory without constraints is decidable,41
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