
Regular Expression Searching over Ziv-Lempel Compressed TextGonzalo Navarro�AbstractWe present a solution to the problem of regular expression searching on compressed text. Theformat we choose is the Ziv-Lempel family, speci�cally the LZ78 and LZW variants. Given a textof length u compressed into length n, and a pattern of length m, we report all the R occurrencesof the pattern in the text in O(2m +mn + Rm logm) worst case time. On average this dropsto O(m2 + (n + R) logm) or O(m2 + n+ Ru=n) for most regular expressions. This is the �rstnontrivial result for this problem. The experimental results show that our compressed searchalgorithm needs half the time necessary for decompression plus searching, which is currently theonly alternative.1 IntroductionThe need to search for regular expressions arises in many text-based applications, such as textretrieval, text editing and computational biology, to name a few. A regular expression is a gener-alized pattern composed of (i) basic strings, (ii) union, concatenation and Kleene closure of otherregular expressions [1]. The problem of regular expression searching is quite old and has receivedcontinuous attention since the sixties until our days (see Section 2.1).A particularly interesting case of text searching arises when the text is compressed. Text com-pression [6] exploits the redundancies of the text to represent it using less space. There are manydi�erent compression schemes, among which the Ziv-Lempel family [31, 32] is one of the best inpractice because of its good compression ratios combined with e�cient compression and decom-pression times. The compressed matching problem consists of searching a pattern on a compressedtext without uncompressing it. Its main goal is to search the compressed text faster than thetrivial approach of decompressing it and then searching. This problem is important in practice.Today's textual databases are an excellent example of applications where both problems are crucial:the texts should be kept compressed to save space and I/O time, and they should be e�cientlysearched. Surprisingly, these two combined requirements are not easy to achieve together, as theonly solution before the 90's was to process queries by uncompressing the texts and then searchinginto them.Since then, a lot of research has been conducted on the problem. A wealth of solutions have beenproposed (see Section 2.2) to deal with simple, multiple and, very recently, approximate compressedpattern matching. Regular expression searching on compressed text seems to be the last goal whichstill de�es the existence of any nontrivial solution.This is the problem we solve in this paper: we present the �rst solution for compressed regularexpression searching. The format we choose is the Ziv-Lempel family, focusing in the LZ78 andLZW variants [32, 28]. Given a text of length u compressed into length n, we are able to �nd the Roccurrences of a regular expression of length m in O(2m+mn+Rm logm) worst case time, needing�Dept. of Computer Science, University of Chile. Blanco Encalada 2120, Santiago, Chile.gnavarro@dcc.uchile.cl. Supported in part by Fondecyt grant 1-990627.1

O(2m +mn) space. We also propose two modi�cations which achieve O(m2 + (n + R) logm) orO(m2 + n + Ru=n) average case time and, respectively, O(m + n logm) or O(m + n) space, for\reasonable" regular expressions, i.e. those whose automaton runs out of active states after readingO(1) text characters. These results are achieved using bit-parallelism and are valid for short enoughpatterns, otherwise the search times have to be multiplied by dm=we, where w is the number ofbits in the computer word.We have implemented our algorithm on LZW and compared it against the best existing algo-rithms on uncompressed text, showing that we can search the compressed text twice as fast as thenaive approach of uncompressing and then searching.2 Related Work2.1 Regular Expression SearchingThe traditional technique [25] to search a regular expression of length m (which means m letters,not counting the special operators such as "*", "|", etc.) in a text of length u is to convert theexpression into a nondeterministic �nite automaton (NFA) with O(m) nodes. Then, it is possibleto search the text using the automaton at O(mu) worst case time. The cost comes from the factthat more than one state of the NFA may be active at each step, and therefore all may need to beupdated.On top of the basic algorithm for converting a regular expression into an NFA, we have to adda self-loop at the initial state which guarantees that it keeps always active, so it is able to detect amatch starting anywhere in the text. At each text position where a �nal state gets active we signalthe end point of an occurrence.A more e�cient choice [1] is to convert the NFA into a deterministic �nite automaton (DFA),which has only one active state at a time and therefore allows searching the text at O(u) cost,which is worst-case optimal. The cost of this approach is that the DFA may have O(2m) states,which implies a preprocessing cost and extra space exponential in m.An easy way to obtain a DFA from an NFA is via bit-parallelism, which is a technique to codemany elements in the bits of a single computer word and manage to update all them in a singleoperation. In this case, the vector of active and inactive states is stored as the bits of a computerword. Instead of (ala Thompson [25]) examining the active states one by one, the whole computerword is used to index a table which, given the current text character, provides the new set of activestates (another computer word). This can be considered either as a bit-parallel simulation of anNFA, or as an implementation of a DFA (where the identi�er of each deterministic state is the bitmask as a whole). This idea was �rst proposed by Wu and Manber [30, 29].Later, Navarro and Ra�not [22] used a similar procedure, this time using Glushkov's [7] con-struction of the NFA. This construction has the advantage of producing an automaton of exactlym + 1 states, while Thompson's may reach 2m states. A drawback is that the structure is not soregular and therefore a table D : 2m+1 � (� + 1) ! 2m+1 is required, where � is the size of thepattern alphabet �. Thompson's construction, on the other hand, is more regular and only needsa table D : 22m ! 22m for the "-transitions. It has been shown [22] that Glushkov's constructionnormally yields faster search time. In any case, if the table is too big it can be split horizontally in2

two or more tables [30]. For example, a table of size 2m can be split into 2 subtables of size 2m=2.We need to access two tables for a transition but need only the square root of the space.Some techniques have been proposed to obtain a tradeo� between NFAs and DFAs. In 1992,Myers [19] presented a four-russians approach which obtains O(mu= logu) worst-case time andextra space. The idea is to divide the syntax tree of the regular expression into \modules", whichare subtrees of a reasonable size. These subtrees are implemented as DFAs and are thereafterconsidered as leaf nodes in the syntax tree. The process continues with this reduced tree until asingle �nal module is obtained.The ideas presented up to now aim at a good implementation of the automaton, but theymust inspect all the text characters. Other proposals try to skip some text characters, as it isusual for simple pattern matching. For example, Watson [27, chapter 5] presented an algorithmthat determines the minimum length of a string matching the regular expression and forms a triewith all the pre�xes of that length of strings matching the regular expression. A multipatternsearch algorithm like Commentz-Walter [8] is run over those pre�xes as a �lter to detect text areaswhere a complete occurrence may start. Another technique of this kind is used in Gnu Grep 2.0,which extracts a set of strings which must appear in any match. This string is searched for andthe neighborhoods of its occurrences are checked for complete matches using a lazy deterministicautomaton.The most recent development, also in this line, is from Navarro and Ra�not [22]. They invertthe arrows of the DFA and make all states initial and the initial state �nal. The result is anautomaton that recognizes all the reverse pre�xes of strings matching the regular expression. Theidea is in this sense similar to that of Watson, but takes less space. The search method is alsodi�erent: instead of a Boyer-Moore like algorithm, it is based on BNDM [22].2.2 Compressed Pattern MatchingThe compressed matching problem was �rst de�ned in the work of Amir and Benson [2] as the taskof performing string matching in a compressed text without decompressing it. Given a text T , acorresponding compressed string Z = z1 : : :zn, and a pattern P , the compressed matching problemconsists in �nding all occurrences of P in T , using only P and Z. A naive algorithm, which �rstdecompresses the string Z and then performs standard string matching, takes time O(m+ u). Anoptimal algorithm takes worst-case time O(m+ n + R), where R is the number of matches (notethat it could be that R = u > n).Two di�erent approaches exist to search compressed text. The �rst one is rather practical.E�cient solutions based on Hu�man coding [10] on words have been presented by Moura et al.[18], but they need that the text contains natural language and is large (say, 10 Mb or more).Moreover, they allow only searching for whole words and phrases. There are also other practicalad-hoc methods [15], but the compression they obtain is poor. Moreover, in these compressionformats n = �(u), so the speedups can only be measured in practical terms.The second line of research considers Ziv-Lempel compression, which is based on �nding repe-titions in the text and replacing them with references to similar strings previously appeared. LZ77[31] is able to reference any substring of the text already processed, while LZ78 [32] and LZW [28]reference only a single previous reference plus a new letter that is added.String matching in Ziv-Lempel compressed texts is much more complex, since the pattern can3

appear in di�erent forms across the compressed text. The �rst algorithm for exact searching is from1994, by Amir, Benson and Farach [3], who search in LZ78 needing time and space O(m2 + n).The only search technique for LZ77 is by Farach and Thorup [9], a randomized algorithm todetermine in time O(m+ n log2(u=n)) whether a pattern is present or not in the text.An extension of the �rst work [3] to multipattern searching was presented by Kida et al. [13],together with the �rst experimental results in this area. They achieve O(m2 + n) time and space,although this time m is the total length of all the patterns.New practical results were presented by Navarro and Ra�not [23], who proposed a generalscheme to search on Ziv-Lempel compressed texts (simple and extended patterns) and specializedit for the particular cases of LZ77, LZ78 and a new variant proposed which was competitive andconvenient for search purposes. A similar result, restricted to the LZW format, was independentlyfound and presented by Kida et al. [14]. The same group generalized the existing algorithms andnicely uni�ed the concepts in a general framework [12]. Recently, Navarro and Tarhio [24] presenteda new, faster, algorithm based on Boyer-Moore.Approximate string matching on compressed text aims at �nding the pattern where a limitednumber of di�erences between the pattern and its occurrences are permitted. The problem, advo-cated in 1992 [2], had been solved for Hu�man coding of words [18], but the solution is limited tosearch a whole word and retrieve whole words that are similar. The �rst true solutions appearedvery recently, by K�arkk�ainen et al. [11] and by Matsumoto et al. [16].3 The Ziv-Lempel Compression Formats LZ78 and LZWThe general idea of Ziv-Lempel compression is to replace substrings in the text by a pointer toa previous occurrence of them. If the pointer takes less space than the string it is replacing,compression is obtained. Di�erent variants over this type of compression exist, see for example [6].We are particularly interested in the LZ78/LZW format, which we describe in depth.The Ziv-Lempel compression algorithm of 1978 (usually named LZ78 [32]) is based on a dictio-nary of blocks, in which we add every new block computed. At the beginning of the compression,the dictionary contains a single block b0 of length 0. The current step of the compression is asfollows: if we assume that a pre�x T1:::j of T has been already compressed in a sequence of blocksZ = b1 : : : br, all them in the dictionary, then we look for the longest pre�x of the rest of thetext Tj+1:::u which is a block of the dictionary. Once we found this block, say bs of length `s, weconstruct a new block br+1 = (s; Tj+`s+1), we write the pair at the end of the compressed �le Z, i.eZ = b1 : : : brbr+1, and we add the block to the dictionary. It is easy to see that this dictionary ispre�x-closed (i.e. any pre�x of an element is also an element of the dictionary) and a natural wayto represent it is a trie.We give as an example the compression of the word ananas in Figure 1. The �rst block is (0; a),and next (0; n). When we read the next a, a is already the block 1 in the dictionary, but an is notin the dictionary. So we create a third block (1; n). We then read the next a, a is already the block1 in the dictionary, but as do not appear. So we create a new block (1; s).The compression algorithm is O(u) time in the worst case and e�cient in practice if the dictio-nary is stored as a trie, which allows rapid searching of the new text pre�x (for each character ofT we move once in the trie). The decompression needs to build the same dictionary (the pair that4

0

1

a

2

n

0

1

a

2

n

n

3

0

1

a

2

n

n

3

s

4

1

a

0

a

(0,a)

Prefix encoded

Dictionary

Compressed file

an

(0,a)(0,n)

anan

(0,a)(0,n)(1,n) (0,a)(0,n)(1,n)(1,s)

ananas

Figure 1: Compression of the word ananas with the algorithm LZ78.de�nes the block r is read at the r-th step of the algorithm), although this time it is not convenientto have a trie, and an array implementation is preferable. Compared to LZ77, the compression israther fast but decompression is slow.Many variations on LZ78 exist, which deal basically with the best way to code the pairs in thecompressed �le, or with the best way to cope with limited memory for compression. A particularlyinteresting variant is from Welch, called LZW [28]. In this case, the extra letter (second element ofthe pair) is not coded, but it is taken as the �rst letter of the next block (the dictionary is startedwith one block per letter). LZW is used by Unix's Compress program.In this paper we do not consider LZW separately but just as a coding variant of LZ78. This isbecause the �nal letter of LZ78 can be readily obtained by keeping count of the �rst letter of eachblock (this is copied directly from the referenced block) and then looking at the �rst letter of thenext block.4 A Search AlgorithmWe present now our approach for regular expression searching over a text Z = b1 : : : bn, that isexpressed as a sequence of n blocks. Each block br represents a substring Br of T , such thatB1 : : :Bn = T . Moreover, each block Br is formed by a concatenation of a previously seen blockand an explicit letter. This comprises the LZ78 and LZW formats. Our goal is to �nd the positionsin T where the pattern occurrences end, using Z.Our approach is to modify the DFA algorithm based on bit-parallelism, which is designed toprocess T character by character, so that it processes T block by block using the fact that blocksare built from previous blocks and explicit letters. We assume that Glushkov's construction [7] isused, so the NFA has m+ 1 states. So we start by building the DFA in O(2m) time and space.Our bit masks will denote sets of NFA states, so they will be of widthm+1. For clarity we willwrite the sets of states, keeping in mind that we can compute A [B, A \ B, Ac, A = B, A B,a 2 A in constant time (or, for long patterns, in O(dm=we) time, where w is the number of bitsin the computer word). Another operation we will need to perform in constant time is to selectany element of a set. This can be achieved with \bit magic", which means precomputing the tablestoring the position of, say, the highest bit for each possible bit mask of length m+1, which is notmuch given that we already store � such tables. 5

About our automaton, we assume that the states are numbered 0 : : :m, being 0 the initial state.We call F the bit mask of �nal states and the transition function isD : bitmasks � � ! bitmasks.The general mechanism of the search is as follows: we read the blocks br one by one. For eachnew block b read, representing a string B, and where we have already processed T1:::j , we updatethe state of the search so that after working on the block we have processed T1:::j+jBj = T1:::jB. Toprocess each block, three steps are carried out: (1) its description is computed and stored, (2) theoccurrences ending inside the block B are reported, and (3) the state of the search is updated.Say that block b represents the text substring B. Then the description of b is formed by� a number len(b) = jBj, its length;� a block number ref(b), the referenced block;� a vector tr0:::m of bit masks, where tri gives the states of the NFA that remain active afterreading B if only the i-th state of the NFA is active at the beginning;� a bit mask act = [fi; tri 6= ;g, which indicates which states of the NFA may yield anysurviving state after processing B;� a bit mask fin, which indicates which states, if active before processing B, produce anoccurrence inside B (after processing at least one character of B); and� a vectormat0:::m of block numbers, where mati gives the most recent (i.e. longest) block b0 inthe referencing chain b; ref(b); ref(ref(b)); : : : such that i 2 fin(b0), or a null value if thereis no such block.The state of the search consists of two elements� the last text position considered, j (initially 0);� a bit mask S of m + 1 bits, which indicates which states are active after processing T1:::j .Initially, S has active only its initial state, S = f0g.As we show next, the total cost to search for all the occurrences with this scheme is O(2m +mn+Rm logm) in the worst case. The �rst term corresponds to building the DFA from the NFA,the second to computing block descriptions and updating the search state, and the last to reportthe occurrences. The existence problem is solved in time O(2m + mn). The space requirementis O(2m + mn). We recall that patterns longer than the computer word w get their search costmultiplied by dm=we.4.1 Computing Block DescriptionsWe show how to compute the description of a new block b0 that represents B0 = Ba, where B is thestring represented by a previous block b and a is an explicit letter. An initial block b0 representsthe string ", and its description is: len(b0) = 0; tri(b0) = fig; act(b0) = f0 : : :mg; fin(b0) = ;;mati(b0) = a null value. We give now the update formulas for B0 = Ba.� len(b0) len(b) + 1.� ref(b0) b.� tri(b0) D(tri(b); a) (we only need to do this for i 2 act(b)).6

� act(b0) fi 2 act(b); tri(b0) 6= ;g.� fin(b0) fin(b)[fi 2 act(b); tri(b0) \ F 6= ;g.� mati(b0) mati(b) if tri(b0) \ F = ;, and b0 otherwise.In the worst case we have to update all the cells of tr and mat, so we pay O(mn) time (recallthat bit parallelism permits performing set operations in constant time). The space required forthe block descriptions is O(mn) as well.4.2 Reporting Matches and Updating the Search StateThe fin(b0) mask tells us whether there are any occurrences to report depending on the activestates at the beginning of the block. Therefore, our �rst action is to compute S \ fin(b0), whichtells us which of the currently active states will produce occurrences inside B0. If this mask turnsout to be null, we can skip the process of reporting matches.If there are states in the intersection then we will have matches to report inside B0. Now, eachstate i in the intersection produces a list of positions which can be retrieved in decreasing orderusing mati(b0); mati(ref(mati(b0))); : : :. If B0 starts at text position j, then we have to report thetext positions j + len(mati(b0))� 1; j + len(mati(ref(mati(b0))))� 1; : : :. These positions appearin decreasing order, but we have to merge the decreasing lists of all the states in S \ fin(b0). Apriority queue can be used to obtain each position in O(logm) time. If there are R occurrencesoverall, then in the worst case each occurrence can be reported m times (reached from each state),which gives a total cost of O(Rm logm).Finally, we update S in O(m) time per block with S [i2S\act(b0)tri(b0).5 A Faster Algorithm on AverageAn average case analysis of our algorithm reveals that, except for mat, all the other operationscan be carried out in linear time. This leads to a variation of the algorithm that is linear time onaverage.The main point is that, on average, jact(b)j = jtri(b)j = O(1), that is, the number of states ofthe automaton which can survive after processing a block is constant. We prove in the Appendixthat this holds under very general assumptions and for \admissible" regular expressions (i.e. thosewhose automata run out of active states after processing O(1) text characters). Note that, thanksto the self loop in the initial state 0, this state is always in act(b) and in tr0(b).Except for mat, all the computation of the block description is proportional to the size of actand hence it takes O(n) time: tri(b0) needs to be computed only for those i 2 act(b); and act(b0)and fin(b0) can also be computed in time proportional to jact(b)j. The update to S needs only toconsider the states in act(b0). Each active bit in act is obtained in constant time by bit magic.What we need is a mechanism to update mat in constant time per block. Note that it may notbe true that jfinj = O(1) on average, because as soon as a state belongs to fin(b), it belongs toall its descendants in the LZ78 trie. However, it is still true that just O(1) values of mat(b) changein mat(b0), where ref(b0) = b, since mat changes only on those fi; tri(b0) \ F 6= ;g � act(b0), andjact(b0)j = O(1)). 7

Hence, we do not represent a newmat vector for each block, but only its di�erences with respectto the referenced block. This must be done such that (i) the mat vector of the referenced block isnot altered, as it may have to be used for other descendants; and (ii) we are able to quickly �ndthe last block (in the referenced chain) where a given state i produced an occurrence.A solution is to represent mat as a complete tree (i.e. perfectly balanced), which will alwayshave m+ 1 nodes and associates the keys f0 : : :mg to their value mati. This permits obtaining inO(logm) time the value mati. We start with a complete tree, and later need only to modify thevalues associated to tree keys, but never add or remove keys (otherwise an AVL would have beena good choice). When a new value has to be associated to a key in the tree of the referenced blockin order to obtain the tree of the referencing block, we �nd the key in the old tree and create ofcopy of the path from the root to the key. Then we change the value associated to the new nodeholding the key. Except when the new nodes are involved, the created path points to the samenodes where the old paths points, hence sharing part of the tree. The new root corresponds tothe modi�ed tree of the new block. The cost of each such modi�cation is O(logm). We have toperform this operation O(1) times per block, yielding O(n logm) time.Figure 2 illustrates the idea. This kind of technique is usual when implementing the logicalstructure of WORM (write once read many) devices, in order to re
ect the modi�cations of theuser on a medium that does not permit alterations.
1

5 7 9

8

6

4

2

3

6

5’

4

old tree

new tree

Figure 2: Changing node 5 to 5' in a read-only tree.We have to add now the cost to report the R matches. Since jtri(b)j = O(1) on average, thereare only O(1) states able to trigger an occurrence at the end of a block, and hence each occurrenceis triggered by O(1) states on average. The priority queue gives us those positions in O(logm) perposition, so the total cost to trigger occurrences is on average O(R logm).The fact that jtri(b)j = O(1) on average shows another possible improvement. We have chosena DFA representation of our automaton which needs O(2m) space and preprocessing time. Instead,an NFA representation would require O(m2). The problem with the NFA is that, in order to buildtri(b0) for b0 = (b; a), we need to make the union of the NFA states reachable via the letter afrom each state in tr(b). This has a worst case of O(m), yielding O(m2) worst case search timeto update a block. However, this drops to O(1) since only O(1) states i have tri(b) 6= ; (because8

jact(b)j = O(1)) and each such tri(b) has constant size.Therefore, we have obtained average complexityO(m2+(n+R) logm). The space requirementsare lowered as well. The NFA requires only O(m) space. The block descriptions take O(n) spacebecause there are only O(1) nonempty tri masks. With respect to the mat trees, we have thatthere are on average O(1) modi�cations per block and each creates O(logm) new nodes, so thespace required for mat is on average O(n logm). Hence the total space is O(m+ n logm).If R is really small we may prefer an alternative implementation. Instead of representing mat,we store for each block a bit mask ffin, which tells whether there is a match exactly at the endof the block. While fin is active we go backward in the referencing chain of the block reportingall those blocks whose ffin mask is active in a state of S. This yields O(m2 + n+Ru=n) time onaverage instead of O(m2 + (n+R) logm). The space becomes O(m+ n).6 Experimental ResultsWe have implemented our algorithm in order to determine its practical value. We chose to usethe LZW format by modifying the code of Unix's uncompress, so our code is able to search �lescompressed with compress (.Z). This implies some small changes in the design, but the algorithm isessentially the same. We have used bit parallelism, with a single table (no horizontal partitioning)and map (at search time) the character set to an integer range representing the di�erent patterncharacters, to reduce space. Finally, we have chosen to use the ffin masks instead of representingmat.We ran our experiments on an Intel Pentium III machine of 550 MHz and 64 Mb of RAM.We have compressed 10 Mb of Wall Street Journal articles, which gets compressed to 42% of itsoriginal size with compress. We measure user time, as system times are negligible. Each data pointhas been obtained by repeating the experiment 10 times.In the absence of other algorithms for compressed regular expression searching, we have com-pared our algorithm against the naive approach of decompressing and searching. The WSJ �leneeded 3.58 seconds to be decompressed with uncompress. After decompression, we run two dif-ferent search algorithms. A �rst one, DFA, uses a bit-parallel DFA to process the text. This isinteresting because it is the algorithm we are modifying to work on compressed text. A secondone, the software nrgrep [21], uses a character skipping technique for searching [22], which is muchfaster. In any case, the time to uncompress is an order of magnitude higher than that to searchthe uncompressed text, so the search algorithm used does not signi�cantly a�ect the results.A major problem when presenting experiments on regular expressions is that there is not aconcept of \random" regular expression, so it is not possible to search, say, 1,000 random patterns.Lacking such good choice, we �xed a set of 7 patterns which were selected to illustrate di�erentinteresting cases. The patterns are given in Table 1, together with some parameters and theobtained search times. We use the normal operators to denote regular expressions plus someextensions, such as "[a-z]" = (ajbjcj:::jz) and "." = all the characters. Note that the 7th patternis not \admissible" and the search time gets a�ected.As the table shows, we can actually improve over the decompression of the text followed bythe application of any search algorithm (indeed, just the decompression takes much more time). Inpractical terms, we can search the original �le at about 4{5 Mb/sec. This is about half the time9

No. Pattern m R Ours Uncompress Uncompress+ Nrgrep + DFA1 American|Canadian 17 1801 1.81 3.75 3.852 Amer[a-z]*can 9 1500 1.79 3.67 3.743 Amer[a-z]*can|Can[a-z]*ian 16 1801 2.23 3.73 3.874 Ame(i|(r|i)*)can 10 1500 1.62 3.70 3.725 Am[a-z]*ri[a-z]*an 9 1504 1.88 3.68 3.726 (Am|Ca)(er|na)(ic|di)an 15 1801 1.70 3.70 3.757 Am.*er.*ic.*an 12 92945 2.74 3.68 3.74Table 1: The patterns used on Wall Street Journal articles and the search times in seconds.necessary for decompression plus searching with the best algorithm.We have used compress because it is the format we are dealing with. In some scenarios, LZWis the preferred format because it maximizes compression (e.g. it compressed DNA better thanLZ77). However, we may prefer a decompress plus search approach under the LZ77 format, whichdecompresses faster. For example, Gnu gzip needs 2.07 seconds for decompression in our machine.If we compare our search algorithm on LZW against decompressing on LZ77 plus searching, we arestill 20% faster.7 ConclusionsWe have presented the �rst solution to the open problem of regular expression searching over Ziv-Lempel compressed text. Our algorithm can �nd the R occurrences of a regular expression oflength m over a text of size u compressed by LZ78 or LZW into size n in O(2m +mn+Rm logm)worst-case time and, for most regular expressions, O(m2 + (n + R) logm) or O(m2 + n + Ru=n)average case time. We have shown that this is also of practical interest, as we are able to searchon compressed text twice as fast as decompressing plus searching.An interesting question is whether we can improve the search time using character skippingtechniques [27, 22]. The �rst would have to be combined with multipattern search techniques onLZ78/LZW [13]. For the second type of search (BNDM [22]), there is no existing algorithm oncompressed text yet. We are also pursuing on extending these ideas to other compression formats,e.g. a Ziv-Lempel variant where the new block is the concatenation of the previous and the currentone [17]. The existence problem seems to require O(m2n) time for this format.References[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools. Addison-Wesley, 1985.[2] A. Amir and G. Benson. E�cient two-dimensional compressed matching. In Proc. DCC'92,pages 279{288, 1992. 10

[3] A. Amir, G. Benson, and M. Farach. Let sleeping �les lie: Pattern matching in Z-compressed�les. J. of Comp. and Sys. Sciences, 52(2):299{307, 1996. Earlier version in Proc. SODA'94.[4] R. Baeza-Yates. E�cient Text Searching. PhD thesis, Dept. of Computer Science, Univ. ofWaterloo, May 1989. Also as Research Report CS-89-17.[5] R. Baeza-Yates and G. Gonnet. Fast text searching for regular expressions or automatonsearching on a trie. J. of the ACM, 43(6):915{936, 1996.[6] T. Bell, J. Cleary, and I. Witten. Text Compression. Prentice Hall, 1990.[7] G. Berry and R. Sethi. From regular expression to deterministic automata. Theoretical Com-puter Science, 48(1):117{126, 1986.[8] B. Commentz-Walter. A string matching algorithm fast on the average. In Proc. ICALP'79,LNCS v. 6, pages 118{132, 1979.[9] M. Farach and M. Thorup. String matching in Lempel-Ziv compressed strings. Algorithmica,20:388{404, 1998.[10] D. Hu�man. A method for the construction of minimum-redundancy codes. Proc. of theI.R.E., 40(9):1090{1101, 1952.[11] J. K�arkk�ainen, G. Navarro, and E. Ukkonen. Approximate string matching over Ziv-Lempelcompressed text. In Proc. CPM'2000, LNCS 1848, pages 195{209, 2000.[12] T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. A unifying framework forcompressed pattern matching. In Proc. SPIRE'99, pages 89{96. IEEE CS Press, 1999.[13] T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple pattern matchingin LZW compressed text. In Proc. DCC'98, pages 103{112, 1998.[14] T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Shift-And approach topattern matching in LZW compressed text. In Proc. CPM'99, LNCS 1645, pages 1{13, 1999.[15] U. Manber. A text compression scheme that allows fast searching directly in the compressed�le. ACM Trans. on Information Systems, 15(2):124{136, 1997.[16] T. Matsumoto, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Bit-parallel approach toapproximate string matching in compressed texts. In Proc. SPIRE'2000, pages 221{228. IEEECS Press, 2000.[17] V. Miller and M. Wegman. Variations on a theme by Ziv and Lempel. In CombinatorialAlgorithms on Words, volume 12 of NATO ASI Series F, pages 131{140. Springer-Verlag,1985.[18] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and
exible word searching oncompressed text. ACM Trans. on Information Systems, 18(2):113{139, 2000.11

[19] G. Myers. A four-russian algorithm for regular expression pattern matching. J. of the ACM,39(2):430{448, 1992.[20] G. Navarro. A guided tour to approximate string matching. ACM Computing Surveys, 2000.To appear.[21] G. Navarro. Nr-grep: A fast and
exible pattern matching tool. Technical Report TR/DCC-2000-3, Dept. of Computer Science, Univ. of Chile, August 2000.[22] G. Navarro and M. Ra�not. Fast regular expression search. In Proceedings of the 3rd Workshopon Algorithm Engineering (WAE'99), LNCS 1668, pages 198{212, 1999.[23] G. Navarro and M. Ra�not. A general practical approach to pattern matching over Ziv-Lempelcompressed text. In Proc. CPM'99, LNCS 1645, pages 14{36, 1999.[24] G. Navarro and J. Tarhio. Boyer-Moore string matching over Ziv-Lempel compressed text. InProc. CPM'2000, LNCS 1848, pages 166{180, 2000.[25] K. Thompson. Regular expression search algorithm. Comm. of the ACM, 11(6):419{422, 1968.[26] J. Vitter and P. Flajolet. Average-case analysis of algorithms and data structures. In Handbookof Theoretical Computer Science, chapter 9. Elsevier Science, 1990.[27] B. Watson. Taxonomies and Toolkits of Regular Language Algorithms. Phd. dissertation,Eindhoven University of Technology, The Netherlands, 1995.[28] T. Welch. A technique for high performance data compression. IEEE Computer Magazine,17(6):8{19, June 1984.[29] S. Wu and U. Manber. Agrep { a fast approximate pattern-matching tool. In Proc. of USENIXTechnical Conference, pages 153{162, 1992.[30] S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM, 35(10):83{91,1992.[31] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans.Inf. Theory, 23:337{343, 1977.[32] J. Ziv and A. Lempel. Compression of individual sequences via variable length coding. IEEETrans. Inf. Theory, 24:530{536, 1978.Appendix: Average Number of Active BitsThe goal of this Appendix is to show that, on average, jact(b)j = jtri(b)j = O(1). In this section �denotes the size of the text alphabet.Let us consider the process of generating the LZ78/LZW trie. A string from the text is readand the current trie is followed, until the new string read \falls out" of the trie. At that point12

we add a new node to the trie and restart reading the text. It is clear that, at least for Bernoullisources, the resulting trie is the same as the result of inserting n random strings of in�nite length.Let us now consider initializing our NFA with just state i active. Now, we backtrack on theLZ78 trie, entering into all possible branches and feeding the automaton with the correspondingletter. We stop when the automaton runs out of active states.The total amount of trie nodes touched in this process is exactly the amount of text blocks bwhose i-th bit in act(b) is active, i.e. the blocks such that if we start with state i active, we �nishthe block with some active state. Hence the total amount of states in act over all the blocks ofthe text corresponds to the sum of trie nodes touched when starting the NFA initialized with eachpossible state i.As shown by Baeza-Yates and Gonnet [4, 5], the cost of backtracking on a trie of n nodes witha regular expression is O(polylog(n)n�), where 0 � � < 1 depends on the structure of the regularexpression. This result applies only to random tries over a uniformly distributed alphabet and foran arbitrary regular expression which has no outgoing edges from �nal states. We remark thatthe letter probabilities on the trie are more uniform than on the text, so even on biased text theuniform model is not so bad approximation. In any case the result can probably be extended tobiased cases.Despite being suggestive, the previous result cannot be immediately applied to our case. First,it is not meaningful to consider such a random text in a compression scenario, since in this casecompression would be impossible. Even a scenario where the text follows a biased Bernoulli orMarkov model can be restrictive. Second, our DFAs can perfectly have outgoing transitions fromthe �nal states (the previous result is relevant because as soon as a �nal state is reached theyreport the whole subtrie). On the other hand, we cannot a�ord an arbitrary text and patternsimultaneously because it will always be possible to design a text tailored to the pattern that yieldsa low e�ciency. Hence, we consider the most general scenario which is reasonable to face:De�nition: 1 Our arbitrariness assumption states that text and pattern are arbitrary but indepen-dent, in the sense that there is zero correlation between text substrings and strings generated by theregular expression.The arbitrariness assumption permits us extending our analysis to any text and pattern, underthe condition that the text cannot be especially designed for the pattern. Our second step is to seta reasonable condition over the pattern. The number of strings of length ` that are accepted by anautomaton is [26] N(`) = Xj �j!j̀ = O(c`)where the sum is �nitary and �j and !j are constants. The result is simple to obtain with generatingfunctions: for each state i the function fi(z) counts the number of strings of each length that canbe generated from state i of the DFA, so if edges labeled a1 : : :ak reach states i1 : : : ik from i wehave fi(z) = z(fi1(z) + : : :+ fik (z) + 1 � [i �nal]), which leads to a system of equations formed bypolynomials and possibly fractions of the form 1=(1� z). The solution to the system is a rationalfunction, i.e. a quotient between polynomials P (z)=Q(z), which corresponds to a sequence of theformPj �j!j̀ . We are ready now to establish our condition over the admissible regular expressions.13

De�nition: 2 A regular expression is admissible if the number of strings of length ` that it gener-ates is at most c`, where c < �, for any ` = !(1).Unadmissible regular expressions are those which basically match all the strings of every length,e.g. a(ajb)�a over the alphabet fa; bg, which matches 2`=4 = �(2`) strings of length `. However,there are other cases. For example, pattern matching allowing k errors can be modeled as a regularexpression which matches every string for ` = O(k) [20]. As we see shortly, we can handle someunadmissible regular expressions anyway.If a regular expression is admissible and the arbitrariness assumption holds, then if we feedit with characters from a random text position the automaton runs out of active states afterO(1) iterations. The reason is that the automaton recognizes c` strings of length `, out of the �`possibilities. Since text and pattern are uncorrelated, the probability that the automaton recognizesthe selected text substring after ` iterations is O((c=�)`) = O(�`), where we have de�ned � =c=� < 1. Hence the expected amount of steps until the automaton runs out of active states isP`>=0 �` = 1=(1� �) = O(1).Let us consider a perfectly balanced trie of n nodes obtained from the text. Hence its height ish = log� n. If we start an automaton at the root of the trie, it will touch O(c`) nodes at the trielevel `. This means that the total number of nodes traversed isO �ch� = O �clog� n� = O �nlog� c� = O �n��for � < 1. So in this particular case we repeat the result that exists for random tries, which is notsurprising. Let us now consdier an arbitrary trie, which has f(`) nodes at depth `, wherehX̀=0 f(`) = n ^ f(0) = 1; f(`� 1) � f(`) � �`By the arbitrariness assumption, those f(`) strings cannot have correlation with the pattern, sothe traversal of the trie touches �`f(`) of those nodes at level `. Therefore the total number ofnodes traversed is C = hX̀=0�`f(`)Let us now start with an arbitrary trie and try to modify it in order to increase the number oftraversed nodes while keeping the same total number of nodes n. Let us move a node from level ito level j. The new cost is C 0 = C��i+�j . Clearly we increase the cost by moving nodes upward.This means that the worst possible trie is the perfectly balanced one, where all nodes are as closeto the root as possible. On the other hand, tries obtained from texts tend to be quite balanced, sothe worst and average case are quite close anyway. As an example of the other extreme, considera trie with maximum unbalancing (e.g. for the text au). In this case the total number of nodestraversed is O(1).So we have that, under the arbitrariness assumption, the total number of trie nodes traversed byan admissible regular expression is O(n�) for some � < 1. We use now this result for our analysis.14

It is clear that if we take our NFA and make state i the initial state, the result correspondsto a regular expression because any NFA can be converted into a regular expression. So the totalamount of states in act is O �n�0 + n�1 + : : : + n�m�where �i corresponds to taking i as the initial state. We say that a state is admissible if, when thatstate is considered as the initial state, the regular expression becomes admissible.Note that, given the self-loop we added at state 0, we have �0 = 1, i.e. state 0 is unadmissible.However, all the other states must be admissible because otherwise the original regular expressionwould not be admissible. That is, there is a �xed probability p of reaching the unadmissible stateand from there the automaton recognizes all the �` strings, which gives at least p�` = �(�`).Hence, calling � = max(�1; : : : ; �m) < 1we have that the total number of active states in all the act bit masks isO �n + mn�� = O(n)where we made the last simpli�cation considering that m = O(polylog(n)), which is weaker thanusual assumptions and true in practice. Therefore, we have proved that, under mild restrictions(much more general than the usual randomness assumption), the amortized number of active statesin the act masks is O(1).Note that we can a�ord even that the unadmissible states are reachable only from O(1) otherstates, and the result still holds. For example, if our regular expression is a(ajb)�am we have onlyO(1) initial states that yield unadmissible expressions, and our result holds. On the other hand,if we have am(ajb)�a then the unadmissible state can be reached from �(m) other states and ourresult does not hold.We focus now on the size of the tri(b) sets for admissible regular expressions. Let us considerthe text substring B corresponding to a block b.We �rst consider the initial state, which is always active. How many states can get activatedfrom the initial state? At each step, the initial state may activate O(�) admissible states, but giventhe arbitrariness assumption, the probability of each such state being active ` steps later is O(�`).While processing B1::k, the initial state is always active, so at the end of the processing we havePk̀=0 ��` = O(1) active states (the term �` corresponds to the point where we were processingBk�`).We consider now the otherm admissible states, whose activation vanishes after examining O(1)text positions. In their case the probability of yielding an active state after processing B is O(�k).Hence they totalize O(m�k) active states. As before, the worst trie is the most balanced one,in which case there are �k blocks of lengths 0 to h = log� n. The total number of active statestotalizes hX̀=0 �`m�` = O(mch) = O �mn��Hence, we have in total O(n+mn�) = O(n) active bits in the tri sets, where the n comes fromthe O(1) states activated from the initial state and the mn� from the other states.15

