
Measuring the Dimensionality of General Metric Spaces �Edgar Ch�avezy Gonzalo NavarrozAbstractSearching in metric spaces is the problem of, given a set of elements and a distance functionde�ned among them, �nd all the elements close enough to a given query element. For e�ciency,they try to minimize the number of evaluations of the distance function. This problem has alarge number of applications, and a well-known particular case is that of vector spaces, wherethe objects are `-dimensional coordinates.The search problem is known to be di�cult as the dimension ` grows. However, in practicethe \intrinsic" dimension of a real-world vector space is less than ` because the elements are notuniformly distributed. The behavior of all the search algorithms is known to be related to theintrinsic dimension, but de�ning it is di�cult. Moreover, a similar phenomenon is observed ingeneral metric spaces, where there are no coordinates.In this paper we introduce a new de�nition of intrinsic dimensionality that is simple ande�cient to estimate and which is shown analytically and experimentally to capture the essentialfeature of metric spaces that determine the behavior of all the search algorithms. We proveanalytically that our de�nition extends naturally that of vector spaces and that lower boundson the behavior of a large class of proximity search algorithms can be stated as a function ofour intrinsic dimensionality measure.1 IntroductionThe concept of \proximity" searching has applications in a vast number of �elds. Some examplesare non-traditional databases (where the concept of exact search is of no use and we search forsimilar objects, e.g. databases storing images, �ngerprints or audio clips); machine learning andclassi�cation (where a new element must be classi�ed according to its closest existing element);image quantization and compression (where only some vectors can be represented and those thatcannot must be coded as their closest representable point); text retrieval (where we look for wordsin a text database allowing a small number of errors, or we look for documents which are similarto a given query or document); computational biology (where we want to �nd a DNA or proteinsequence in a database allowing some errors due to typical variations); function prediction (wherewe want to search the most similar behavior of a function in the past so as to predict its probablefuture behavior); etc.The above scenarios require more general models and search algorithms than those classicallyused for simple data. A unifying concept is that of \similarity searching" or \proximity searching",�This project has been partially supported by CYTED VII.13 AMYRI Project.yEscuela de Ciencias F��sico-Matem�aticas, Universidad Michoacana. Edi�cio \B", Ciudad Universitaria, Morelia,Mich. M�exico 58000. elchavez@zeus.ccu.umich.mx. Partially supported by CONACyT under grant R-28923AzDepto. de Ciencias de la Computaci�on, Universidad de Chile. Blanco Encalada 2120, Santiago, Chile.gnavarro@dcc.uchile.cl. Partially supported by Fondecyt Grant 1-000929.1



i.e. searching for database elements which are similar or close to a given query element. Similarityis modeled with a distance function that satis�es the triangular inequality, and the set of objectsis called a metric space. Any query can be solved by comparing it against every element of thedatabase. However, as the distance function is costly to compute in most applications, the generalgoal is to preprocess the set so as to minimize the number of distance evaluations at query time.In some applications the metric space turns out to be of a particular type called vector space,where the elements consist of ` real-valued coordinates. A lot of work has been done on vectorspaces by exploiting their geometric properties, but normally these cannot be extended to generalmetric spaces where the only available information is the distance among objects.A well known phenomenon on vector spaces is that all the proximity searching algorithmsdegrade systematically as the dimension ` grows. If the vectors and queries are random anduniformly distributed, then the problem becomes intractable for about ` � 20. This has beencalled the curse of dimensionality. In real applications, however, higher dimensions can be dealtwith because the distribution is not uniform. For example, if in a 50-dimensional vector space allthe points lie in a plane, smart search algorithms can be have like if searching on a two-dimensionalspace. The same happens when searching clustered data. The value ` is called the representationaldimension of the space, while a more fuzzy concept of intrinsic dimension tries to capture the\real" dimension of the space.The general goal for proximity search algorithms is to make them behave according to theintrinsic and not the representational dimension of the space, and a number of dimensionalityreduction techniques have been proposed to achieve this. Despite these e�orts, just a few attemptsto de�ne the intrinsic dimension of a vector space have been made.On the other hand, general metric spaces present similar problems to proximity search algo-rithms. Some metric spaces are easily dealt with by all the algorithms while others are intractable.Despite the absence of coordinates in general metric spaces, many authors speak in terms of \in-trinsic dimensionality" of metric spaces as a measure of the di�culty of searching in them. Severalauthors have pointed out at the histogram of distances as a tool to measure the dimensionality,noting that in vector spaces the histogram of distances shrinks and shifts to the right as ` grows.However, no clear quantitative measure has been proposed up to now for the intrinsic dimension-ality, nor it has been established its relationship with the di�culty of the search problem.In this paper we propose a de�nition of intrinsic dimensionality of a set of points in a metricspace (which includes vector spaces) which is simply de�ned in terms of statistical properties of thehistogram of distances and is cheap to estimate. We show analytically that a random and uniformlydistributed vector space of dimension ` has intrinsic dimension �(`) according to our de�nition,and show experimentally that the constant is between 1.00 and 1.43.We also prove lower bounds on the performance of large classes of proximity searching algorithmsin terms of our de�nition of intrinsic dimensionality.This paper is organized as follows. In Section 2 we explain the basic concepts of proximitysearching in metric spaces. In Section 3 we brie
y cover the existing data structures and algo-rithms for proximity searching in vector spaces and general metric spaces. In Section 4 we discussalternative notions of intrinsic dimensionality. In Section 5 we de�ne our quantitative measure ofintrinsic dimension and evaluate its consistency analytically and experimentally. In Section 6 weprove lower bounds on the behavior of proximity searching algorithms as a function of the intrinsic2



dimension. Finally, in Section 8 we give our conclusions.2 Basic ConceptsWe present now the formal tools necessary to understand the rest of the paper.2.1 Metric SpacesThe set Xwill denote the universe of valid objects. A �nite subset of it, U, of size n = jUj, is theset of objects where we search. Uwill be called the dictionary, database or simply our set of objectsor elements. The function d : X�X�! Rwill denote a measure of \distance" between objects (i.e. the smaller the distance, the closer ormore similar are the objects). Distance functions have the following properties:Positiveness: 8x; y 2X; d(x; y)� 0Symmetry: 8x; y 2X; d(x; y) = d(y; x)Re
exivity 8x 2X; d(x; x) = 0and in most casesStrict positiveness: 8x; y 2X; x 6= y ) d(x; y)> 0The similarity properties enumerated above only ensure a consistent de�nition of the function,and cannot be used to save comparisons in a proximity query. If d is indeed a metric, i.e. if itsatis�esTriangle inequality: 8x; y; z 2X; d(x; y) � d(x; z) + d(z; y)then the pair (X; d) is called a metric space.If the distance does not satisfy the strict positiveness property then the space is called a pseudo-metric space. Although for simplicity we do not consider pseudo-metric spaces in this work, all thepresented techniques are easily adapted to them by simply identifying all the objects at distancezero as a single object. This works because, if the triangle inequality holds, one can easily provethat d(x; y) = 0) 8z; d(x; z) = d(y; z).2.2 Proximity QueriesThere are basically two types of queries of interest in metric spaces:Range query: Retrieve all elements which are within distance r to q.This is, retrieve (q; r)d = fu 2 U = d(q; u) � rg.3



Nearest neighbor query: Retrieve the k closest elements to q in U.This is, retrieve nnd(q; k) � U such that jnnd(q; k)j = k and 8u 2 nnd(q; k); v 2 U�nnd(q; k); d(q; u) � d(q; v).The most basic type of query is the range query, which is a pair (q; r)d with q an element in Xand r a real number indicating the radius (or tolerance) of the query. The set fu 2U; d(q; u) � rgwill be called the outcome of the range query. The left part of Figure 1 illustrates a query on a setof points, using R2 as the metric space for clarity.In this work we concentrate on range queries for simplicity. Many of the results, however, canbe applied to nearest neighbor searching as well, since the corresponding algorithms are normallybuilt over those for range queries [15].In most applications the distance d() is very expensive to compute, and therefore the complexityof a search algorithm is measured in terms of number of evaluations of d(). It is clear that eithertype of query can be answered by examining the entire dictionary U. In fact if we are not allowedto preprocess the data, i.e. to build an index data structure, then this exhaustive examination isthe only way to proceed. An indexing algorithm is an o�-line procedure to build beforehand a datastructure (called index) designed to save distance computations when answering proximity querieslater. This data structure can be expensive to build, but this will be amortized by saving distanceevaluations over many queries to the database. The aim is therefore to design e�cient indexingalgorithms to reduce the number of distance evaluations. All these structures work on the basis ofdiscarding elements using the triangular inequality (which is the only property that allows savingdistance evaluations).2.3 Vector SpacesIf the elements of the metric space (X; d) are indeed tuples of real numbers (actually tuples in any�eld) then the pair is called a �nite dimensional vector space, or vector space for short.An `-dimensional vector space is a particular metric space where the objects are identi�ed with` real-valued coordinates (x1; :::; x`). There are a number of options for the distance function touse, but the most widely used is the family of Ls distances, de�ned asLs((x1; :::; x`); (y1; :::; y`)) =  X̀i=1 jxi � yijs!1=sThe right part of Figure 1 illustrates some of these distances. For instance, the L1 distanceaccounts for the sum of the di�erences along the coordinates. It is also called \block" or \Manhat-tan" distance, since in two dimensions it corresponds to the distance to walk between two pointsin a city of rectangular blocks. The L2 distance is better known as \Euclidean" distance, as itcorresponds to our notion of spatial distance. The other most used member of the family is L1,which corresponds to taking the limit of the Ls formula when s goes to in�nity. The result is thatthe distance between two points is the maximum di�erence along a coordinate:L1((x1; :::; x`); (y1; :::; y`)) = `maxi=1 jxi � yij4
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qFigure 1: On the left, an example of a range query on a set of points. On the right, the set ofpoints at the same distance to a center point, for di�erent Ls distances.3 Proximity Search AlgorithmsDi�erent data structures have been proposed to �lter out elements based on the triangular inequality(see [15] for a complete survey). We �rst discuss brie
y the case of vector spaces and then covermetric spaces, dividing the exposition according to the two main techniques used.3.1 Vector SpacesIn many applications the metric space is indeed a vector space, i.e. the objects are `-dimensionalpoints and the similarity is interpreted geometrically. A vector space permits more freedom thana general metric space when designing search approaches, since it is possible to use geometric andcoordinate information which is unavailable in a general metric space.In this framework optimal algorithms (on the database size) exist in both the average and theworst case [7] for closest point search. Search structures for vector spaces are called spatial accessmethods (SAM). Among the most popular are kd-trees [5, 6], R-trees [25], quad-trees [35] andthe more recent X-trees [8]. These techniques make extensive use of coordinate information togroup and classify points in the space. For example kd-trees divide the space along di�erent coor-dinates and R-trees groups points in hyper-rectangles. Unfortunately the existing techniques arevery sensitive to the vector space dimension. Closest point search algorithms have an exponentialdependency on the dimension of the space (this is called the curse of dimensionality).Vector spaces may su�er from large di�erences between their representational dimension (`) andtheir intrinsic dimension (i.e. the real number of dimensions in which the points can be embeddedwhile keeping the distances among them). For example a plane embedded in a 50-dimensionalspace has intrinsic dimension 2 and representational dimension 50. This is in general the case ofreal applications, where the data is clustered, and it has lead to attempts to measure the intrinsicdimension such as the concept of \fractal dimension" [21]. Despite that no techniques can copewith intrinsic dimension higher than 20, much higher representational dimensions can be handled5



by dimensionality reduction techniques [22, 18, 26].Not all the applications can be modeled with vector spaces. For this reason several authorsresort to general metric spaces, even knowing that the search problem is much more di�cult. Ofcourse it is also possible to treat a vector space as a general metric space, by using only the distancesbetween points. One immediate advantage is that the intrinsic dimension of the space shows up,independent of any representational dimension (this requires extra care in vector spaces).Speci�c techniques for vector spaces can be found in good surveys [35, 38, 24].3.2 Pivot-based AlgorithmsPivot-based algorithms are built on a single general idea: select some elements from U (calledpivots), and identify all the other elements with to their distances to (some of) the pivots. Themethods di�er in how they select the pivots, how much information they store about the distancesamong elements and pivots, etc.Burkhard-Keller Trees (BKTs) [11] are designed for discrete distance functions: they select apivot element p as the root of the tree, and put at child i the elements which are at distance i tothe pivot. Each subtree is recursively built with the same technique until there are b elements orless, in which case the elements are simply stored in a \bucket" at the tree leaf. A range query qwith tolerance radius r is searched by measuring d(p; q), reporting p if appropriate, and enteringonly into subtrees numbered d(p; q)� r to d(p; q) + r. The rest need not be considered because ofthe the triangle inequality. The buckets reached are exhaustively compared against q.Fixed Queries Trees (FQTs) [3] are an evolution where the same pivot is used for all the nodesof the same level of the tree. In this case the pivot does not need to belong to the subtree. Manycomparisons are saved in the backtracking process because only one di�erent pivot per level exists.However, the tree is taller. A variant called Fixed Height FQT (FHQT) is also proposed where allthe leaves are at the same depth h, regardless of the bucket size.Vantage Point Trees (VPTs) [36, 39] are designed for continuous distance functions. The roothas two equal-size subtrees that divide the elements in closer to and farther from the root. Thiscan be extended to m-ary trees (MVPTs) [10, 9].Finally, algorithms like AESA [37], LAESA [31, 30] and its variants [33, 13] and Fixed QueriesArrays (FQAs [14]) are based in a common idea: k pivots are selected and each object is mappedto k coordinates which are its distances to the pivots. Later, the query q is also mapped and ifit di�ers from an object in more than r along some coordinate then the element is �ltered outby the triangle inequality. That is, if for some pivot pi and some element v of the set it holdsjd(q; pi) � d(v; pi)j > r, then we know that d(q; v) > r without need to evaluate d(v; q). Theelements that cannot be �ltered out using this rule are directly compared.An interesting feature of most of these algorithms is that they can reduce the number of distanceevaluations by increasing the number of pivots. De�ne Dk(x; y) = max1�j�k jd(x; pj)� d(y; pj)j.Using the pivots p1; :::; pk is equivalent to discarding elements u such that Dk(q; u) > r. As morepivots are added we need to perform more distance evaluations (exactly k) to compute Dk(q; �)(these are called internal evaluations), but on the other handDk(q; �) increases its value and hence ithas a higher chance of �ltering out more elements (those comparisons against elements that cannotbe �ltered our are called external). It follows that there exists an optimum k. This optimum,however, cannot be normally reached because it is too high in terms of space requirements: kn6



distances have to be precomputed and stored in order to use k pivots. Hence, in general thesemethods use as many pivots as they can, and they are normally well below their optimum.3.3 Clustering AlgorithmsClustering algorithms try to divide the space in zones as compact as possible. They select a setof centers, which are elements from U, and divide the space so that each center has its zone ofin
uence. Each zone is normally divided recursively. The algorithms di�er in how the centers areselected, how the zones are delimited, etc.Generalized Hyperplane Trees (GHTs) [36] use two \centers" for each tree node and divide thespace according to which of the two centers is closer to each object. This is like dividing the spacewith a hyperplane formed by the points at the same distance from both centers. At search timethe query enters into the subtrees whose zone of in
uence has a nonempty intersection with thequery ball.Bisector Trees [27, 34] are similar but the zones are not de�ned according to which is the closestcenter but using the concept of \covering radius". The covering radius of a zone is the minimumradius of a sphere that is necessary to contain all the points in the zone, and the elements are insertedin the subtrees trying to minimize covering radii. Voronoi Trees (VTs) [19] are a modi�cation thattries reduce the covering radii.GHTs are generalized to an m-ary partition in the Geometric Near-neighbor Access Tree(GNATs) [10], which makes a Voronoi-like partition of the space [1] among the m pivots at eachnode of the tree. However, the GNAT uses also the covering radius criterion to prune the searcheven more.The M-tree (MT) [16] also takes m elements and divides the space among its zones of in
uence,but it uses only the covering radius information to classify and search the elements. The MT isable of dynamic insertion and deletion of points and is optimized for secondary memory.Spatial Approximation Trees (SATs) [32] are based on approaching the query spatially: thesearch starts at the root of the tree and moves to neighbors that are closer to the query. The idealdata structure to obtain this is a Voronoi graph, which in the paper is proven impossible to buildon a general metric space. Therefore the SAT is a simpli�cation which forces some backtracking inthe tree.4 Alternative Notions of Intrinsic DimensionalityWe cover in this section other existing attempts to de�ne the intrinsic dimensionality. Unfortu-nately, they are not easy to apply to general metric spaces.4.1 The Mapping DimensionA natural de�nition of the intrinsic dimensionality of a metric space is: \the lowest k so that Ucan be mapped onto Rk and keep all the inter-object distances reasonably well". If we call �the mapping from U to Rk, then the following de�nition of how \well" have the distances been7



preserved has been proposed [29]stress = sPa;b2U(D(�(u);�(v))� d(u; v))2Pa;b2Ud(u; v)2where D is the distance in the target space. The better the distances are preserved, the smallerthe stress.All the existing work uses the L2 (Euclidean) distance for the target space. If the originalmetric space is indeed a vector space of ` > k dimensions, then the optimal solution is given by theKarhunen-Lo�eve (KL) transform [20, 23].However, in the general case the KL transform cannot be applied. For general metric spacesthere exist only heuristics that, given a k value, try to map the objects from Uminimizing thedistortion in distances [26]. We survey two techniques which aim at minimizing the stress.A �rst technique is Multidimensional Scaling (MDS) [29, 18]. In its simplest version, thealgorithm makes an initial assignment of objects to points (this can be even at random) and thentries to improve the assignment iteratively until a local minimum is found. At each iteration itexamines each point, computes its distance to the other n � 1 points, and relocates it so that thestress is minimized with respect to that point. MDS has the problem of requiring at least O(n2)time to obtain a reasonable guess (in fact it has only been used for applications where n � 100).A faster technique is called Fastmap [22], which tries to minimize the stress as follows. Theidea is to assume that U is indeed an `-dimensional vector space. It �rst chooses two elementsv1; v2 which are far apart from each other, and decides that the �rst coordinate of the target spacewill be the \line" joining v1 and v2. In that coordinate, v1 will have value 0 and v2 will have value1. The rest of the points u are mapped to the line by considering a triangle v1uv2 and using thecosine law: d(u; v2)2 = d(u; v1)2 + d(v1; v2)2 � 2xud(v1; v2)which is valid for Euclidean spaces, where xu is the projection of u on the line v1v2. The formulapermits obtaining xu, which will be the coordinate of u along the selected axis.In a second step, all the points have to be mapped onto the (k � 1)-dimensional hyperplanewhich is perpendicular to the axis. In this projection, the original distances d(u; v) are transformedusing the equation d0(u; v)2 = d(u; v)2� (xu � xv)2The above process is repeated k times, and each point u is then mapped to the k-tuple of xuvalues obtained for each of the k axis selected. A good feature of Fastmap is that it takes onlyO(kn) time.Finally, it is interesting to consider that a large subclass of the pivoting algorithms can beregarded as relying on a mapping of this kind. A widely used method is to select fp1 : : : pkg � Uand map each u 2 U to (Rk; L1) using �(u) = (d(u; p1); : : : ; d(u; pk)). This is becauseDk(u; v) = max1�i�k jd(u; pi)� d(v; pi)j = L1(�(u);�(v))can be used to discard potential candidates (recall that d(u; v) � Dk(u; v)).8



Despite that all these methods take k as a parameter and are not designed to de�ne the intrinsicdimension, one can state that the intrinsic dimension is the minimum k which obtains low enoughstress. It is clear that the necessary k to minimize the stress can be reduced by an intelligentselection of pivots, but little is known about which are good selection policies [15, 28]. Moreover,the resulting dimension would depend on the stress permitted, which is a disadvantage.4.2 The Fractal DimensionThis concept is proposed in [21] to �nd the intrinsic dimension of non-uniformly distributed datain vector spaces. For a �nite set of points U, the idea is to split the space with an `-dimensionalgrid of blocks of width r. Let N(r) be the number of such blocks that contain some point of U.Then the fractal dimension is de�ned as �� log(N(r))� log(r)which should stabilize for small enough r. In practical terms this can be computed as the slope ofa plot obtained by sampling.The authors show that, for instance, a straight line from (0; 0) to (1; 1) will touch i blocks ifthe cell is partitioned in i � i squares, and therefore N(r) = 1=r and hence the fractal dimensionwill be 1. A solid disk of radius 1=2 will touch a �xed proportion of the blocks, tending to �=4 as rtends to zero. Therefore N(r) = �=4(1=r)2 and logN(r) = log(�=4)� 2 log r, which gives a fractaldimension of 2. Clustered 2-dimensional data is shown to have fractal dimensions between 1 and 2.This is designed for vector spaces, and it seems di�cult to extend to general metric spaces.We could try to generalize the technique by replacing the grid by the random choice of many ballscentered around selected elements of U. That is, we make m attempts of choosing x 2Xrandomlyand measure N(r) as the number of balls that contain some element of U. This, however, wouldproduce a positive derivative of logN(r) with respect to r. A key factor that makes it negative onvector spaces is that the grid covers all the space, and therefore the number of cells increase as ris reduced. The amount of the increase is exponential on the representational dimension, and thisis a key fact for the result. It seems not possible to obtain something similar on a general metricspace.5 A New De�nition of Intrinsic DimensionThe previous de�nitions of intrinsic dimension try to capture geometrical properties of the space,they are complex and expensive to evaluate and some are di�cult to extend to a general metricspace. Our goal is to have a simple and easy to compute measure of intrinsic dimension, whichadditionaly explains the curse of dimensionality. So we start by the other end: we try to capturethe essence of the di�culty of searching in a metric space and later show that this matches withthe classical de�nition of dimension.Many authors [10, 12, 17] have proposed to use the histogram of distances to characterizethe di�culty of searching in an arbitrary metric space, but no quantitative de�nition has beenattempted. We present in this section a quantitative measure in this line and study its suitability.9



Let us start with a well-known example. Consider a distance such that d(x; x) = 0 and d(x; y) =1 for all x 6= y. Under this distance (in fact an equality test), we do not obtain any informationfrom a comparison except that the element considered is or is not our query. It is clear that it is notpossible to avoid a sequential search in this case, no matter how smart is our indexing technique.Let us consider the histogram of distances between points in the metric space X. This can beapproximated by using the dictionary U as a random sample of X. The idea is that, as the spacehas higher intrinsic dimension, the mean � of the histogram grows and/or its variance �2 is reduced(at least this is the case on random vector spaces). Our previous example is an extreme case.Figure 2 gives an intuitive explanation of why the search problem is harder when the histogramis concentrated. If we consider a random query q and an indexing scheme based on random pivots,then the possible distances between q and a pivot p are distributed according to the histogramof the �gure. The elimination rule says that we can discard any point u such that d(p; u) 62[d(p; q)� r; d(p; q)+ r]. The grayed areas in the �gure show the points that we cannot discard. Asthe histogram is more and more concentrated around its mean, less and less points can be discardedusing the information given by d(p; q). Moreover, in many cases the search radius r must grow asthe mean distance � grows, which makes the problem even harder.
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d(p,x) d(p,x)Figure 2: A low-dimensional (left) and high-dimensional (right) histogram of distances, showingthat on high dimensions virtually all the elements become candidates for exhaustive evaluation.This phenomenon is independent on the nature of the metric space (vectorial or not, in partic-ular) and gives us a way to quantify how hard is to search on an arbitrary metric space.De�nition. The intrinsic dimensionality of a metric space is de�ned as � = �22�2 , where � and �2are the mean and variance of its histogram of distances.The technical convenience of the exact de�nition is made clear shortly. Observe that the intrinsicdimensionality grows with the mean and with the inverse of the variance of the histogram. Moreover,measuring this intrinsic dimension on an arbitrary and unknown metric space can be accomplishedby simple statistical means via a reasonable number of distance evaluations among random pointsof the set. This is much simpler and cheaper than all previous approaches.Let us check our de�nition on vector spaces. As shown in [40], a uniformly distributed `-dimensional vector space under the Ls distance has mean �(`1=s) and standard deviation �(`1=s�1=2).Therefore its intrinsic dimensionality is �(`) (although the constant is not necessarily 1). So the10



intuitive concept of dimensionality in vector spaces matches our general concept of intrinsic dimen-sionality.Figure 3 shows an experimental veri�cation of the above analytical result. We have generatedrandom uniformly distributed points in the real `-dimensional vector space [0; 1)` for ` between 2and 20, using three di�erent distances L1, L2 and L1. We have selected one million pairs of pointsfor each combination of dimension ` and distance Ls and have computed the intrinsic dimension ofthe resulting histogram of distances (by computing � and � using the classical statistical formulas).As can be seen, the intrinsic dimension grows linearly with the representational dimension whenthe points are chosen at random. We have included a table with the least squares estimations,which shows that a vector space of dimension ` has intrinsic dimension from 1:00� ` to 1:43� `,depending on the Ls distance used (any Ls with s � 3 generates lines between those of L2 andL1).
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hence can be used to lower bound the performance of the indexing algorithms. We come back tothis shortly.Let (q; r)d be a range query over a metric space indexed by means of k random pivots, andlet u be an element of U. The probability that u cannot be excluded from direct veri�cation afterconsidering the k pivots is exactlyPr(jd(q; p1)� d(u; p1)j � r; : : : ; jd(q; pk)� d(u; pk)j � r) (1)Since all the pivots are assumed to be random and their distance distributions i.i.d. randomvariables, this expression is the product of probabilitiesPr(jd(q; p1)� d(u; p1)j � r) � : : : � Pr(jd(q; pk)� d(u; pk)j � r) (2)which for the same reason can be simpli�ed toPr(not discarding u) = Pr(jd(q; p)� d(u; p)j � r)k (3)for a random pivot p.If X and Y are two i.i.d. random variables with mean � and variance �2, then the mean ofX�Yis 0 and its variance is 2�2. Using Chebyschev's inequality1 we have that Pr(jX�Y j > ") < 2�2="2.Therefore, Pr(jd(q; p)� d(u; p)j � r) � 1� 2�2r2where �2 is precisely the variance of the distance distribution in our metric space. The argumentthat follows is valid for 2�2=r2 < 1, or r > p2� (large enough radii), otherwise the lower bound iszero. Then, we have Pr(not discarding u) � �1� 2�2r2 �kWe have now that the total search cost is the number of internal distance evaluations (k) plusthe external evaluations (those to check the remaining candidates), whose number is on averagen � Pr(not discarding u). ThereforeCost � k + n �1� 2�2r2 �kis a lower bound to the average search cost by using pivots. Optimizing we obtain that the best kis k� = lnn + ln ln(1=t)ln(1=t)where t = 1� 2�2=r2. Using this optimal k�, we obtain an absolute (i.e. independent on k) lowerbound for the average cost of any random pivot-based algorithm:Cost � lnn + ln ln(1=t) + 1ln(1=t) � lnnln(1=t) � r22�2 lnn1For an arbitrary distribution Z with mean �z and variance �2z , Pr(jZ � �zj > ") < �2z="2.12



which shows that the cost depends strongly on �=r. As r increases t tends to 1 and the schemerequires more and more pivots and it is anyway more and more costly.A nice way to represent this result is to assume that we are interested in retrieving at most a�xed fraction f of the elements, in which case r can be written as r = � � �=pf by Chebyschev'sinequality. In this case the lower bound becomesr22�2 lnn = (� � �=pf)22�2 lnn = �p�� 1p2f �2 lnnwhich is valid for f � 1=(2�). We have just provedTheorem 1 Any pivot based algorithm using random pivots has a lower bound (p��1=p2f)2 lnnin the average number of distance evaluations performed for a random range query retrieving atmost a fraction f of the set, where � is the intrinsic dimension of the metric space.This result matches that of [2, 4] on FHQTs, about obtaining �(logn) search time using �(logn)pivots, but here we are more interested in the \constant" term, which depends on the dimension.The theorem shows clearly that the parameters governing the performance of range searchingalgorithms are � and f . As � grows and f stays �xed, this tends to � lnn.We have considered i.i.d. random variables for each pivot and the query. This is a reasonableapproximation, as we do not expect much di�erence between the \view points" from the generaldistribution of distances to the individual distributions, a subject discussed in depth in [17]. Theexpression given in Eq. (3) cannot be obtained without this simpli�cation.A stronger assumption comes from considering all the variables as independent. This is anoptimistic consideration equivalent to assuming that in order to discard each element u of the setwe take k new pivots at random. The real algorithm �xes k random pivots and uses them to tryto discard all the elements u of the set. The latter alternative can su�er from dependencies from apoint u to another, which cannot happen in the former case (for example, if u is close to a pivot pand u0 is close to u then the distance from u0 to p carries less information). Since the assumptionis optimistic, using it to reduce the joint distribution in Eq. (1) to the expression given in Eq. (2)keeps the lower bound valid.Figure 4 shows an experiment on the search cost in (R`; L2) using di�erent number of pivots kand dimensions `. The n = 100; 000 elements are generated at random and the pivots are randomlychosen from the set. We average over 1,000 random queries whose radius is set to retrieve 10elements of the set. We count the number of distance evaluations. The left plot shows the existenceof an optimum k� = 110 in 8 dimensions, while the right plot shows the predicted O(n(1�1=�(`))k)behavior for �xed k.Figure 5 shows the growth of the optimum k� and of the search cost using the optimal k� asthe dimension grows. Note that despite that our lower bound is linear on �, in practice the searchcost grows faster.6.2 The Target SpaceIt is interesting to study which is the behavior of the mapped space after selecting k pivots. Letus start with the mean of the distance Dk in the target space. As already seen, Dk(�(u);�(v)) is13
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Figure 4: On the left, internal, external and overall distance evaluations in 8 dimensions, usingdi�erent number of pivots k. On the right, overall distance evaluations as the dimension grows for�xed k.
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Figure 5: Optimum k� and cost using that k� as the dimension grows.the maximum of k random variables jd(u; pi)� d(v; pi)j, and thereforePr(Dk(�(u);�(v))� ") = Pr(jd(u; p)� d(v; p)j � ")k � �1� 2�2"2 �kwhere the last inequality comes from applying Chebyschev as in the previous section. Calling Zthe random variable associated to Dk, we have that its cummulative probability function isFz(x) = Pr(Dk(�(u);�(v))� x) � �1� 2�2x2 �kif x � p2�. F � z(x) can be optimistically assumed to be zero otherwise (\optimistically" meansthat we will obtain an upper bound on E(Z)). To obtain the density function fz(x) we derive the14



cumulative distribution and getfz(x) = k(1� 2�2=x2)k�14�2=x3if x � p2� and zero otherwise. Now to obtain the mean we computeE(Z) � Z 1p2� xfz(x) dx = 4k�2 Z 1p2�(1� 2�2=x2)k�1=x2 dxNow doing the change y = 2�2=x2 (and hence dy = �4�2=x3 dx) we haveE(Z) � p2k� Z 10 (1� y)k�1y�1=2 dy = p2k��k + 1212 �This is the exact solution (recall that �k+1=21=2 � = (k+1=2)(k� 1=2)(k� 3=2) � � �(5=2)(3=2)). Forlarge k this converges to E(Z) � �p2�kThis means that the mean value ofDk is independent on the mean � of the original metric space.Rather, it is proportional to the standard deviation (this is reasonable because it is a maximum ofdi�erences between distances). On the other hand, this mean grows with the square root of thenumber of pivots. Recall that, since this comes from using Chebyschev's inequality, the result isjust an upper bound on the mean of Dk.It is clear that Dk, as a lower bound for d, should be as close to d as possible in order to �lterout most of the irrelevant elements. Therefore, we could like that both means be equal. Solving� = �p2�k yields k = �=�, which means that we must have at least a number of pivots proportionalto the intrinsic dimensionality of the space (as shown in Theorem 1, the optimum is indeed larger).This is an optimistic bound and in practice k has to be much larger.We have tried to obtain an upper bound on the variance of Dk, but the integral R x2fz(x) dxdoes not converge. This does not mean that Dk does not have variance, because ours is just anupper bound.Figure 6 shows an experimental result related to this analysis. As the dimension grows, thehistogram of L2 moves to the right (� = �(p`)) and its variance �2 remains constant. Yet thepivot distance Dk (in the projected space (Rk; L1)) remains about the same for �xed k. Increasingk from 32 to 512 moves the histogram slightly to the right. This shift is e�ective in low dimensionalmetric spaces, but in high dimensions both histograms are still far away. The plots of these twohistograms can measure how good are the pivoting algorithms. As the overlap increases the searchalgorithms become more e�ective.This also shows that we could search in the mapped space with radiusr0 = rp2k��k+1=21=2 �� = rk�k+1=21=2 �p� � p�kp� rand still get most of the results. This opens the door to probabilistic algorithms which, with thepenalty of a small error probability, are much faster than the exact versions.15
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Figure 6: Histograms comparing the L2 distance in di�erent `-dimensional Euclidean spaces andthe pivot distance (MaxDist) obtained using di�erent numbers k of pivots. In the top row ` = 16and in the bottom row ` = 128. On the left k = 32 and on the right k = 512.6.3 A Lower Bound for Clustering AlgorithmsWe now try to obtain lower bounds to the search cost of clustering algorithms. The result issurprisingly similar to that of pivoting algorithms. One lower bound considers only the hyperplanecriterion to delimit Voronoi regions, and the other considers covering radii. Both results are similar.We assume just the same facts about the distribution of distances as in the previous section: all ofthem are i.i.d. random variables.Let (q; r)d be a range query over a metric space indexed by means of m random centersfc1 : : : cmg. The m distances d(q; ci) can be considered random variables X1 : : :Xm whose dis-tribution is that of the histogram of the metric space. The distribution of the distance from qto its closest center c is that of Y = minfX1 : : :Xmg. The hyperplane criterion speci�es that aclass [ci] cannot be excluded if d(q; c) + r � d(q; ci) � r. The probability that this happens isPr(Y � Xi � 2r). But since Y is the minimum over m variables with the same distribution, theprobability is Pr(Z � X � 2r)m, where X and Z are two random variables distributed accordingto the histogram. Using Chebyschev's inequality and noticing that if Z < X � 2r then X or Z are16



at distance at least r from their mean, we can say thatPr(not discarding [ci]) = Pr(Z � X � 2r)m � �1� �2r2�mOn average each class has n=m elements, so that the external complexity is n�Pr( not discarding[ci]). The internal cost to �nd the intersected classes deserves some discussion. In all the hierarchicalschemes that exist, we consider that the real partition is that induced by the leaves of the trees, i.e.the most re�ned ones. We see all the rest of the hierarchy as a mechanism to reduce the internalcomplexity of �nding the small classes (hence the m we use here is not, say, the m of GNATs, butthe total number of �nal classes). It is di�cult to determine this internal complexity (an upperbound is m), so we call it CI(m), knowing that it is between 
(logm) and O(m). Then a lowerbound to the search complexity isCost � CI(m) + n �1� �2r2�mwhich indeed is very similar to the lower bound on pivot based algorithms. Optimizing on m yieldsm� = lnn + ln ln(1=t0)� lnC 0I(m�)ln(1=t0)where t0 = 1� �2=r2. Using the optimal m� the search cost is lower bounded byCost = 
�CI(log1=t0 n)� = 
�CI � r2�2 lnn��which also shows an increase in the cost as the dimensionality grows. As before we can writer = �� �=pf . We have just provedTheorem 2 Any Voronoi based algorithm using on random centers has a lower bound CI(2(p��1=p2f)2) in the average number of distance evaluations performed for a random range query re-trieving a fraction of at most f of the database, where � is the intrinsic dimension of the space andCI() is the internal complexity to �nd the relevant classes, satisfying 
(logm) = CI(m) = O(m).This result is weaker than Theorem 1 because of our inability to give a good lower bound on CI ,so we cannot ensure more than a logarithmic increase with respect to �. However, even assumingCI(m) = �(m) (i.e. exhaustive search of the classes), when the theorem becomes very similar toTheorem 1, there is an important reason that explains why the Voronoi based algorithms can inpractice be better than pivot based ones. We can in this case achieve the optimal number of centersm�, which is impossible in practice for pivot-based algorithms. The reason is that it is much moreeconomical to represent the Voronoi partition using m centers than the pivot partition using kpivots.Let us now consider the other property, namely the covering radius. We show a similar lowerbound. Assume that the set has been partitioned intom = n=M clusters ofM elements each, wherewe optimistically assume that the cluster of each center contains its M closest elements. Now, a17



query q will need to be compared against the elements of the cluster if the query ball intersects it.The discarding rule of the covering radius says that if we call cr(ci) the distance between a centerci and the farthest element of its ball, then we cannot discard [ci] if d(ci; q)� r � cr(ci).Since we have assumed that the clusters are the best possible, i.e. they contain the M closestneighbors of ci, the probability of not discarding [ci] is that of d(ci; q) � r being among the Msmallest values in the set fd(u; ci); u 2 Ug. Let Yu = d(u; ci) be random variables that aredistributed according to the histogram, and let X = d(q; ci), which has the same distribution.Now, let us de�ne p> = Pr(X � r > Yu) and p� = Pr(X � r � Yu). The probability of X � rbeing exactly the (i+ 1)-th value in the set of Yu's is�ni�pi>pn�i�and therefore the probability that X � r is among the �rst M positions isM�1Xi=0 �ni�pi>pn�i� � M�1Xi=0 �ni�pn�i� � � nM � 1�pn�M+1� � � nM � 1� �1� 2�2r2 �n�M+1where we have used Chebyschev at the end. Each cluster visited costs M comparisons and thiscan happen for each of the n=M = m clusters. On the other hand, we have as before the CI(m)internal complexity to �nd the relevant clusters. Hence the cost isCost � CI(n=M) + n � nM � 1� �1� 2�2r2 �n�M+1which we can derive to obtain the optimumM :M� = n1 + r22�2 lnnand hence the optimal cost is Cost � 
�CI �1 + r22�2 lnn��which is basically the same as for the case of Voronoi partitions. This leads toTheorem 3 Any covering radius based algorithm using random centers has a lower bound CI(1 +(p��1=p2f)2) in the average number of distance evaluations performed for a random range queryretrieving a fraction of at most f of the database, where � is the intrinsic dimension of the space andCI() is the internal complexity to �nd the relevant classes, satisfying 
(logm) = CI(m) = O(m).Figure 7 shows an experiment on the same dataset, where we have used di�erentm values and ahierarchical clustering partitioning based on them. We have used the hyperplane and the coveringradius criteria to prune the search. As can be seen, the dependency on the dimension of the spaceis not so sharp as for pivot based algorithms, and is closer to a dependency of the form �(`).18
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Figure 7: Overall distance evaluations using a hierarchical clustering partitioning with di�erentarities.The general conclusion is that, even if the lower bounds using pivot based or clustering basedalgorithms look similar, the �rst ones need much more space to store the index resulting from kpivots than the last ones using the same number of pivots. Hence, the latter can reallistically usethe optimal number of centers, while the former cannot. If pivot based algorithms are given all thenecessary memory, then using the optimal number of pivots they can improve over clustering basedalgorithms, because t is better than t0, but this is more and more di�cult as the dimension grows.Figure 8 compares both types of partitioning. As can be seen, the pivoting algorithm improvesover the clustering algorithms if we give it enough pivots. However, \enough" is a number thatincreases with the dimension and with the fraction retrieved (i.e. � and f). For � and f largeenough, the required number of pivots will be unacceptably high in terms of memory requirements.
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