
Fast Multipattern Searh Algorithms for Intrusion DetetionJosu�e Kuri� Gonzalo NavarroyAbstratWe present new searh algorithms to detet the ourrenes of any pattern from a given patternset in a text, allowing in the ourrenes a limited number of spurious text haraters among thoseof the pattern. This is a ommon requirement in intrusion detetion appliations. Our algorithmsexploit the ability to represent the searh state of one or more patterns in the bits of a singlemahine word and update all the searh states in a single operation. We show analytially andexperimentally that the algorithms are able of fast searhing large sets of patterns allowing a widenumber of spurious haraters, yielding about a 75-fold improvement over the lassial algorithm.1 IntrodutionA major hallenge in intrusion detetion is the e�etive detetion of attaks as they are ourring, aproblem known as on-line intrusion detetion. Current researh trends aim to a simpli�ed representa-tion of the problem in order to improve eÆieny and performane. Pattern mathing tehniques aregetting major attention as potential solutions beause they have solved analog problems in domains asomputational biology and information retrieval. In intrusion detetion, pattern mathing algorithmshave been proposed as searh engines in two di�erent intrusion detetion models. One is based in theonept of state transition analysis [9, 12℄ and the the other uses the omputer immunology approahproposed in [8℄.We give an example to illustrate how the pattern mathing algorithms presented below an be usedto solve an intrusion detetion problem. Auditable events in the target system an be seen as lettersof an alphabet � and the audit trail as a large string of letters in �� (i.e. the text). The sequenesof events representing attaks to be deteted are then substrings (i.e., patterns) to be loated in themain string. Potential attakers may introdue spurious events among those that represent an atualattak in order to disperse their evidene, so a limited number of spurious letters must be allowedwhen searhing the pattern. We are interested in deteting a set of possible attaks at the same time.This intrusion detetion problem an be regarded as a partiular ase of the multiple approximatepattern mathing problem, where insertion in the pattern is the only allowed edit operation.There is a wide variety of audit failities, overing di�erent soures of potential attaks. A ommonproperty of these failities is that they generate huge amounts of audited data in a short time, in theorder of several millions of events per hour for large omputing infrastrutures. On the other hand,attaks are typially short sequenes of no more than 8 ommands. Finally, the number of knownattaks to system vulnerabilities is so large [11℄ that it is a ommon request for an intrusion detetionsystem to searh attak sets of more than 100 elements. Under the approah of mapping events toletters, the typial values for � may vary from 60 to 80, depending on the number of di�erent auditableevents in a partiular system.�Eole Sup�erieure d'Eletriit�e, Avenue de la Boulaie { BP 28, 35511 Cesson S�evign�e { Frane. jkuri�enst.fr. Worksupported by CONACyT grant # 122688.yDept. of Computer Siene, Univ. of Chile. Blano Enalada 2120, Santiago, Chile. gnavarro�d.uhile.l.Work developed in part while the author was at postdotoral stay at Institut Gaspard Monge, Univ. de Marne-la-Vall�ee,Frane. Supported in part by Fondeyt grant 1-990627 and Fundai�on Andes.1



With respet to the typial k values, it is important to avoid false mathes (i.e. triggering unne-essary alarms for sequenes that do not really represent an attak beause k is too large) and to avoidmissing true attaks. Empirial values of k are typially between 6 and 10.We formalize the above problem as follows. Our text, T1::n, is a sequene of n haraters froman alphabet � of size �. Our pattern, P1::m is a sequene of m haraters from the same alphabet.We want to report all the text positions that math the pattern, where at most k insertions betweenharaters of P are allowed in its ourrene in T . We all � = k=m the \error level".A lot of work has been arried out on an extended version of this problem (alled searh allowingk di�erenes), where not only insertions, but also deletions and replaements are allowed. In a reentsurvey [17℄ four approahes are distinguished to searh with k di�erenes: dynami programming,automata, �ltering and bit-parallelism.However, very little has been done to searh with k insertions. Not all the algorithms for kdi�erenes an be suessfully simpli�ed for our restrited ase. The most naive algorithm (whih weshow in Setion 2) is a simpli�ation of the lassial dynami programming solution for k di�erenes,and the same O(mn) searh time is maintained. We onsider this omplexity as the referene pointfor further improvements. Automata approahes an be adapted with similar eÆieny results: O(n)searh time but impratially high preproessing and spae requirements (exponential in m or k).Filtering approahes are very suessful to searh with k di�erenes and are generally based inthe onept that some pattern substrings must math even in inexat ourrenes. This is also ourase: for example, if k insertions are allowed in the mathes then at least one pattern piee of lengthbm=(k + 1) must be found inside every ourrene. Hene we an searh for those piees and usea more expensive algorithm only in the text areas surrounding suh ourrenes of pattern piees.However, in most appliations of the k di�erenes problem it is ommon that k is muh smaller thanm and therefore reasonably long pattern piees have to be found. Instead, in intrusion detetion k isnormally large (in many ases k > m) and therefore �ltering approahes are ine�etive in general.The most promising approah seems to be bit-parallelism (whih we explain in Setion 3), beausethe simpliity of the k insertions model allows devising faster algorithms. In partiular, we present inSetion 4 a searh algorithm with time omplexity O(nm log(k)=w) where w is the length in bits ofthe omputer word. This is O(n) for reasonably short patterns. Moreover, it is better than previousbit-parallel algorithms for the k di�erenes, whih were O(nmk=w) time [20, 6℄, but it is worse than alater development [14℄ whih ahieves O(mn=w). Interestingly, this last approah annot be adaptedto our problem, but that of [20℄ an be adapted at the same O(nmk=w) time ost. A related butdi�erent problem, alled \episode mathing", is to �nd the pattern with the minimum number ofinsertions. Many algorithms are presented in [7℄, where the best one needing spae polynomial in mtakes O(mn= logm) time.A speial requirement of our appliation is the need for multipattern searh. That is, we are givenr patterns P 1:::P r and we have to report all their ourrenes. Very little work has been done onmultipattern searh for the k di�erenes problem [13, 4, 15, 5, 16℄. In Setions 5 and 6 we adapt twoof those approahes to the k insertions problem. The �rst one obtains a speedup of ���=(1 + �)1+�(where � = k=m) over the basi bit-parallel algorithm of Setion 4. This speedup is larger than 1for � < �=e � 1. The seond one obtains a speedup of w= log2(m + k), but it works well only form+ k < �, i.e. short patterns.All the algorithms mentioned form the �rst nontrivial solutions to the k insertions problem, bothfor single and multiple patterns. In Setion 7 we show some experimental results about the pratialperformane of the algorithms. For typial ases our bit-parallel version outperforms the lassialdynami programming by a fator of 3, while the multipattern �lters obtain a 25-fold speedups. The2



net result is a 75-fold speedup over a lassial approah.2 The Insertion Distane and a Naive AlgorithmOur problem an be modeled using the onept of insertion distane. The insertion distane from a tob, denoted id(a; b), is the number of insertions neessary to onvert a into b. We say that d(a; b) =1if this is not possible. Clearly, id(a; b) = jbj � jaj if a is a subsequene of b, and 1 otherwise.A more interesting de�nition arises when we searh for a pattern P in a text T allowing insertions.At eah text position j 2 1::n we are interested in the minimum number of insertions needed to onvertP into some suÆx of T1::j. This is de�ned aslid(P; T1::j) = minj021::j id(P; Tj0::j)The searh problem an therefore be formalized as follows: given P , T and k, report all textpositions j suh that lid(P; T1::j) � k.An immediate solution to the problem omes from adapting an algorithm for k di�erenes [19℄. Avetor of values Ci (i 2 0::m) is updated for eah new text harater Tj . The invariant is that, afterproessing text position j, Ci = lid(P1::i; T1::j). Therefore, we report all text positions j satisfyingCm � k. Initially (for j = 0) we have C0 = 0 and Ci =1 for i > 0. When reading the text haraterTj the Ci values are updated to the new C 0i values using the formulaC 0i = if (Pi = Tj) then min(Ci�1; Ci + 1) else Ci + 1 (1)whih has the following rationale: if the new text harater Tj does not math Pi, then we keep theprevious math of Pi in a suÆx of T1::j�1 (the ost is Ci) and add an insertion to reet that undesiredlast harater Tj . If, on the other hand, the new text harater mathes Pi then we have also thehoie of using it and mathing P1::i�1 with the best suÆx of T1::j�1 (the ost is Ci�1).This algorithm is O(mn) time and O(m) spae.3 Bit-parallelismBit-parallelism is a tehnique of ommon use in string mathing [2℄, �rstly proposed in [1, 3℄. Thetehnique onsists in taking advantage of the intrinsi parallelism of the bit operations inside a om-puter word. By using leverly this fat, the number of operations that an algorithm performs anbe ut down by a fator of at most w, where w is the number of bits in the omputer word. Sinein urrent arhitetures w is 32 or 64, the speedup is very signi�ant in pratie (and improves withtehnologial progress). In order to relate the behavior of bit-parallel algorithms to other works, itis normally assumed that w = �(logn), as ditated by the RAM model of omputation. We prefer,however, to keep w as an independent value.We introdue now some notation we use for bit-parallel algorithms.� The length of the omputer word (in bits) is w.�We denote as bs:::b1 the bits of a mask of length s. This mask is stored somewhere insidethe omputer word. Sine the length w of the omputer word is �xed, we are hiding thedetails on where we store the s bits inside it. We give suh details when they are relevant.� We use exponentiation to denote bit repetition (e.g. 031 = 0001).3



� We use C-like syntax for operations on the bits of omputer words: \j" is the bitwise-or, \&" is the bitwise-and, \ b " is the bitwise-xor and \�" omplements all the bits.The shift-left operation, \<<", moves the bits to the left and enters zeros from the right,i.e. bsbs�1:::b2b1 << r = bs�r:::b2b10r. The shift-right, \>>" moves the bits in theother diretion. Finally, we an perform arithmeti operations on the bits, suh as addi-tion and subtration, whih operates the bits as if they formed a number. For instane,bs:::bx10000 � 1 = bs:::bx01111.Many text searhing algorithms an be seen as implementations of lever automata (lassially,in their deterministi form). Bit-parallelism has sine its invention beame a general way to simulatesimple non-deterministi automata instead of onverting them to deterministi. It has the advantage ofbeing muh simpler, in many ases faster (sine it makes better usage of the registers of the omputerword), and easier to extend to handle omplex patterns than its lassial ounterparts. Its maindisadvantage is the limitations it imposes with regard to the size of the omputer word. In many asesits adaptations to ope with longer patterns are not so eÆient. For our appliation, in partiular,bit-parallelism seems to be a very promising approah.4 A Bit-parallel SimulationWe show now how an we pak the Ci values of Setion 2 in the bits of a omputer word to speed upthe searh. Only the values from zero to k + 1 are of interest, sine if a Ci value is larger than k + 1then the outome of the searh is the same if we replae it by k+1. Therefore, we use ` = dlog2(k+1)ebits to hold eah Ci value, plus an extra overow bit whose purpose is made lear shortly.Taking minima in parallel is not impossible, but it is diÆult. We show that the update formula (1)an be modi�ed to avoid taking minima. First note that Ci�1 � Ci + 1. That is, lid(P1::i�1; T1::j) �lid(P1::i; T1::j) + 1. This is lear, sine any math of P1::i against a suÆx of T1::j an be onverted intoa math of P1::i�1 just by removing the alignment of Pi and onsidering it as an extra insertion (the+1). Hene the best alignment must be at most of that ost. Therefore, Eq. (1) is equivalent toC 0i = if (Pi = Tj) then Ci�1 else Ci + 1whih we now parallelize. We preompute a table B : �! f0; 1gm(`+1) , de�ned asB[℄ = 0 b(; Pm) 0 b(; Pm�1) � � � 0 b(; P2) 0 b(; P1)where b(; ) = 1` and b(; 0) = 0` for  6= 0. That is, B[℄ has m hunks of zeros or ones, indiatingwhih pattern positions math harater . The idea is to use B[℄ to implement the test (Pi = Tj),assigning Ci�1 where it has ones and leaving Ci + 1 where it has zeros.The state of the searh is kept in a bit mask D, omposed of m hunks of ` bits eah (plus theoverow bit), so that the i-th hunk stores the urrent Ci value, i.e.D = 0 [Cm℄` 0 [Cm�1℄` � � � 0 [C2℄` 0 [C1℄`where [x℄` is the number x represented in ` bits in the usual way (right-aligned). Note that C0 is notrepresented beause it is always zero. In priniple, the update formula ould be as simple asD0 = (B[Tj ℄ & (D << (`+ 1))) j (� B[Tj ℄ & (D + (0`1)m))4



where B[Tj℄ is being used to selet between (D << (` + 1)) (whih puts the previous value Ci�1 atthe i-th hunk) and (D+ (0`1)m) (whih adds 1 to the urrent Ci values). In partiular, the left shiftbrings zero bits to the �rst hunk C1, whih is adequate sine C0 = 0. The problem with this shemeis that the Ci values ould surpass the barrier of k + 1.To overome the problem we use the overow bit. We let the Ci values grow over k + 1 providedthey �t in ` bits. As soon as they overow, the overow bit will be set. At this point, we subtrat oneto them. The easiest way to subtrat one to all the Ci values whose overow bit is set is to isolate theoverow bits, shift them ` positions to the right and subtrat the mask from D.The �nal problem is how to determine the text positions that math. In the dynami programmingversion we simply hek Cm � k. In the bit-parallel version the Cm value orresponds to the highestbits, and therefore we an numerially ompare the whole bit mask D against [k℄`1(`+1)(m�1), whihavoids any additional bit shift or masking. We also want to report only text positions that end agenuine math, i.e. suh that the last text harater mathes the last pattern harater. Otherwise wewould be reporting trivial extensions of previously found mathes. This an be determined by lookingat the m-th hunk of B[Tj℄. The �nal algorithm is shown in Figure 1.Searh (T,n,P,m,k)/* Preproessing */` dlog2(k + 1)efor  2 � do B[℄ 0m(`+1)for i 2 1::m do B[Pi℄ B[Pi℄ j 0(m�i)(`+1)01`0(i�1)(`+1)/* Searhing */for j 2 1::nDs D << (`+ 1)D  D + (0`1)mD  D � ((D >> `) & (0`1)m)D  (B[Tj℄ & Ds) j (� B[Tj ℄ & D)if (D � [k℄`1(`+1)(m�1)) and ((B[Tj ℄ & 01`0(m�1)(`+1)) 6= 0m(`+1))then report a math ending at jFigure 1: The bit parallel algorithm. All the onstants and repeated expressions are of ourse pre-omputed.If the bits of the simulation do not �t in the omputer word we set up as many omputerwords as needed. Sine eah one is updated in O(1) time per text harater, the total omplexityis O(nm log(k)=w). For short patterns (i.e. m log k = O(w)) this is O(n).5 A Multipattern FilterAs already noted in [4℄, the ability of bit-parallel algorithms to allow lasses of haraters an be usedto build multipattern �lters. Imagine that the pattern is not a sequene of letters but a sequeneof lasses of letters. A letter a is said to math P at position i if a 2 Pi, i.e. if it belongs to theorresponding lass. 5



If we have a pattern whih is a sequene of lasses of haraters, the algorithm of Setion 4 anstill be used, just by hanging the preproessing phase. The idea is that we an rede�ne the b funtionto b(; 0) = 1` if  2 0 and 0` otherwisewhih is equivalent to hanging the third line in the preproessing of Figure 1 tofor i 2 1::m do for  2 Pi do B[℄ B[℄ j 0(m�i)(`+1)01`0(i�1)(`+1)that is, we allow the value of Ci�1 to pass to position i for any harater  that mathes patternposition i.Consider now that we have r patterns P 1:::P r of the same length m (otherwise we trunate themto the shortest one). From them we generate a muh more relaxed pattern with lasses of haraters,whih we all the superimposition of P 1:::P r. This is de�ned asP = fP 11 ; :::; P r1 g fP 12 ; :::; P r2 g ::: fP 1m; :::; P rmgwhih neessarily mathes when one of the P j mathes, although the onverse is not true. For instane,if we searh "abd" and "ad" then the superimposed pattern is "fagfb,dgfgfd,g", and the textwindow "add" will math with zero insertions, even if it is not in the set of patterns.To make this more lear, onsider the NFA of Figure 2. The rows represent the number of insertions.The �rst one zero, the seond one 1, and so on. Eah olumn represents a pattern pre�x. Horizontalarrows represent mathing a pattern letter with a text letter, while vertial arrows represent skippinga text letter (sine we advane in the text but not in the pattern, and inrement the number ofinsertions). The initial state has a self-loop to allow any text position to start a math. State inrow s 2 0::k and olumn i 2 0::m is ative eah time a suÆx of the text read mathes P1::i with sinsertions, so eah time the lower right state is ative we have an ourrene of the pattern in the textwith at most k insertions.Indeed, it an be proved that if state (s; i) is ative then any state (s0; i) with s0 > s is ativeas well, and that the Ci value of Setion 2 is the minimum row of an ative state at NFA olumn i.Therefore, our bit-parallel simulation an be thought of as a mehanism to pak the information ofthis NFA in bits and to simulate the transitions that our along the arrows of the automaton.The NFA of Figure 2 has been built for the superimposition of "abd" and "ad". For instane,the arrows in the seond olumn an be traversed either by the letter "b" or "d". Clearly thisautomaton will reognize any ourrene of the two patterns, and some others as well.Therefore, the tehnique onsists in superimposing the searh patterns, searh the superimpositionwith the same algorithm of Setion 4, and then heking the areas where the superimposition isfound for the presene of any of the individual patterns. That is, eah time the algorithm �nds thesuperimposed pattern at text position j, we hek eah of the patterns separately (with the samealgorithm) in the text area Tj�m�k+1::j. A similar idea was proposed in [4, 5, 16℄ for the k-di�erenesproblem.To avoid re-veri�ation due to overlapping areas, we keep trak of the last position veri�ed andthe state of the veri�ation algorithm. If a new veri�ation requirement starts before the last veri�edposition, we start the veri�ation from the last veri�ed position, avoiding to re-verify the preedingarea.
6
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d,cFigure 2: An NFA to searh the superimposition "abd" and "ad" allowing 2 insertions.5.1 Hierarhial Veri�ationInstead of heking one by one the patterns for eah ourrene of the superimposed pattern, we anbuild up a hierarhy of superimpositions [18, 16℄. Imagine that r = 8. Then we build, at preproessingtime, the superimposition of the 8 patterns, alled P 1::8. We onsider this the root of a binary tree,whose two hildren are P 1::4 and P 5::8, i.e. they superimpose only 4 patterns. The �rst one has twohildren P 1::2 and P 3::4, and so on. Finally, the leaves of the tree are the atual patterns. If r is nota power of two we build the tree as balaned as possible. Figure 3 illustrates.
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1 2 3 4Figure 3: Hierarhial veri�ation for 4 superimposed patterns.We searh P 1::8 in the text. When it is found, we do not hek immediately all the leaves P 1 toP 8, but just its two hildren P 1::4 and P 5::8. It is possible that, despite that the root was found, noneof the two hildren appears (and therefore no leaf an appear as well). So we an avoid performing 8veri�ations at the ost of 2. Of ourse it is also possible that one and even both of the hildren appearsin the text area and then their hildren have to be heked in turn until the leaves are found (andthese are atually reported). In partiular, if a leaf appears it will require all the path of veri�ations.However, as we show next, hierarhial veri�ation pays o�.5.2 AnalysisSuperimposing r patterns gives of ourse better searh time beause only one searh is arried outinstead of r. On the other hand, however, it makes neessary to hek the ourrenes of the superim-posed pattern for the presene of the atual ones. Moreover, the probability of mathing raises as wesuperimpose more patterns, beause up to r haraters of the alphabet math eah pattern position.7



We start by giving an upper bound on the mathing probability of a random pattern of length mat a random text position, with up to k insertions. Consider a random text position j. The patternP appears with k insertions at a text position ending at j if and only if the text window Tj�m�k+1::jontains the m pattern letters in order. The window positions that math the pattern letters anbe hosen in �m+km � ways. Those letters are �xed but the other k an take any value. Therefore theprobability that the text window mathes the pattern with k insertions is at most m+ km ! �k�m+k =  m+ km ! 1�mwhere we are overestimating beause not all the seletions of window positions give di�erent windows.For instane the pattern "abd" mathes in text window "abd" with k = 1 in two ways, but onlyone text window should be ounted. In partiular, our overestimation inludes the ase of k0 < kinsertions, whih is obtained by seleting the �rst k � k0 haraters of the text window as insertionsand distributing the k0 remaining insertions in the remaining text window of length m+ k0.If we are given r patterns and superimpose them in groups of r0, there are at most r0 out of �alphabet letters that will math eah pattern position now. The net e�et is that of dividing � byr0 in the formulas. If we onsider that no hierarhial veri�ation is used, then eah math of thesuperimposed pattern triggers a veri�ation of r0 original patterns in a text area of width m + k.Therefore the total searh ost is on average (assuming that the patterns �t in a omputer word)nrr0  1 +  m+ km !(m+ k)r0(�=r0)m ! = nr 1r0 +  m+ km !(m+ k)r0m�m !Assume now that we use hierarhial veri�ation. In this ase, 2 searhes with r0=2 patterns aretriggered for eah ourrene of the superimposed pattern. For eah ourrene of those superim-positions of r0=2 patterns we will have to hek a text window with 2 patterns superimposing r0=4original patterns, and so on. Abstrating from the mehanism we use to �nd the nodes of the treeof superimpositions, we have that in total, in the hierarhy there are 2i groups of r0=2i patterns, fori = 0:: log2(r0)� 1. Eah suh group mathes with probability �m+km �=(�2i=r0)m, and eah math oststhe veri�ation of a window of length m+ k for other two patterns. The total veri�ation ost is m+ km !2(m+ k)r0m�m log2(r0)�1Xi=0 2i(2i)m =  m+ km !2(m+ k)r0m�m (1 +O(1=2m))whih is r0=2 times heaper than without hierarhial veri�ation. The searh ost beomes nownr 1r0 +  m+ km !2(m+ k)r0m�1�m !whih is minimized for r0 = ��2�m+km �(m+ k)(m� 1)�1=mand gives a searh time of nr� mm� 1   m+ km !2(m+ k)(m� 1)!1=m8



An asymptoti simpli�ation (for large m and � = k=m onsidered onstant) of the ost an beobtained using Stirling's approximation to the fatorial m! = (m=e)mp2�m(1 +O(1=m)):nr� (1 + �)1+���whih monotonially worsens with �, as expeted.This shows that in the best ase we may expet a speedup of O(�) by superimposing the subpat-terns. The speedup is � for k = 0 and it moves to 1 as � grows. A natural question up to whih errorlevel the speedup is larger than 1 (i.e. useful). This is, when it happens that ��� > (1 + �)1+�, i.e.� > (1 + �)(1 + 1=�)�. A suÆient ondition an be obtained by notiing that 1 � (1 + 1=�)� � e,and therefore � < �=e� 1 suÆes. In general it has to hold � < �=(r0e)� 1.For longer patterns all searh osts get multiplied by m log2(k)=w. On the other hand, if thepatterns are very short, we may do multipattern searh by paking the states of many patterns insidethe same omputer word, so that we update the states of all the searhes in a single operation. The sizeof the representation of eah pattern, however, is nearly m log2(k), whih makes the idea impratialexept for very short patterns. In the next setion we present a �lter that needs muh less informationper pattern and therefore is suitable for this approah.6 A Counting FilterA di�erent approah to �lter the searh for multiple patterns is to use a \ounting" �lter. The �lteris based on the notion that if a pattern is found at text position j, then all its haraters must appearin the text window Tj�m�k+1::j. The idea is to keep ount at any text position j of how many patternharaters are present in the text window, updating this information in O(1) operations per textharater. Note that we annot ensure that the pattern haraters appear in the orret order, so we�lter with a neessary ondition whih is not suÆient to guarantee a math. Moreover, we show thatfor a multipattern searh many ounters (one per pattern) an be stored in a single omputer wordand all an be updated in O(1) operations per text harater. Eah time a ounter reahes the ritialvalue m, it means that all its haraters are in the text window and therefore the window is hekedusing the algorithm of Setion 4. A similar idea has been proposed in [10, 15, 16℄ for the k-di�erenesproblem. We now desribe the algorithm and later show how to adapt it for multiple patterns (byombining it with bit-parallelism).6.1 One PatternThe �lter passes over the text examining an (m+ k)-letters long window. It keeps trak of how manyharaters of P are present in the urrent text window (aounting for multipliities too). If, at agiven text position j, the m haraters of P are in the window Tj�m�k+1::j, the window area is veri�edwith a lassial algorithm (in this paper, with the bit-parallel algorithm of Setion 4).We implement the �ltering algorithm as follows: we build a table A[ ℄ where, for eah harater 2 �, the number of times that  appears in P is initially stored. Throughout the algorithm, eahentry of A[ ℄ indiates how many ourrenes of that harater an (still) be taken as belonging toP . We also keep a ounter ount of mathing haraters. To advane the window, we must inludethe new harater Tj+1 and exlude the last harater, Tj�m�k+1. To inlude the new harater, wesubtrat one at the proper entry of A[ ℄. If the entry was greater than zero before the operation, it isbeause the harater is in P , so we inrement the ounter ount. To exlude the old harater, we9



add one at the proper entry of A[ ℄. If the entry is greater than zero after the operation, it is beausethe harater was in P , so we derement ount. When the ounter ount reahes m we verify thepreeding area.When A[℄ is negative, it means that the harater  must leave the window �A[℄ times before weaept it again as belonging to the pattern. For example, if we run the pattern "aba" over the text"aaaaaaaa", with k = 1 it will hold A[0a0℄ = �3, and the value of ount will be 2. Figure 4 showsanother example.
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Figure 4: An example of the ounting �lter. The rosses represent elements whih A[ ℄ aepts, andthe irles are the elements that appeared in the window. A[℄ stores rosses minus irles, and ountounts irled rosses.Figure 5 shows the pseudoode of the algorithm. As it an be seen, the algorithm is not only lineartime (exluding veri�ations), but the number of operations per harater is very small.CountFilter (T,n,P,m,k)/* Preproessing */for  2 � do A[℄ 0for i 2 1::m do A[Pi℄ A[Pi℄ + 1ount 0/* Searhing */for j 2 1::m+ k do /* fill the initial window */if A[Tj ℄ > 0 then ount ount+ 1A[Tj ℄ A[Tj ℄� 1for j 2 m+ k + 1::n do /* move the window */if ount = m then verify Tj�m�k::j�1if A[Tj ℄ > 0 then ount ount+ 1A[Tj ℄ A[Tj ℄� 1A[Tj�m�k℄ A[Tj�m�k℄ + 1if A[Tj�m�k℄ > 0 then ount ount� 1Figure 5: The �ltering algorithm for one pattern.
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6.2 Multiple PatternsThe previous algorithm an searh for one pattern only. However, we an extend it to handle multiplepatterns. To searh r patterns in the same text, we use bit-parallelism to keep all the ounters in asingle mahine word. We must do that for the A[ ℄ table and for ount.The values of the entries of A[ ℄ lie in the range [�m � k::m℄, so we need exatly 1 + ` bits tostore them, where ` = dlog2(m+ k+1)e. This is also enough for ount, sine it is in the range [0::m℄.Hene, we an pak � w1 + dlog2(m+ k)e�patterns in a single searh (reall that w is the number of bits in the omputer word). If we have morepatterns, we must divide the set in subsets of at most this size and searh eah subset separately. Wefous our attention on a single subset now.The algorithm simulates the simple one as follows. We have a table MA[ ℄ that paks all theA[ ℄ tables. Eah entry of MA[ ℄ is divided in bit areas of length 1 + `. In the area of the mahineword orresponding to eah pattern, we store 2`+A[ ℄� 1. When, in the algorithm, we have to add orsubtrat 1, we an easily do it in parallel without ausing overow from an area to the next. Moreover,the orresponding A[ ℄ value is not positive if and only if the most signi�ant bit of the area is zero.Figure 6 illustrates. 10000
m = 5; k = 1; ` = 3 MA [a℄MA [l℄MA [o℄MA [h℄MA [e℄A[℄ > 0

0 0 0111 111 1 11 01 Mount0 1 1 1
0

ount � mMA[℄Mount
A[℄ount+2`�1+2`�mFigure 6: Sheme (left) and an example (right) of the bit-parallel ounters. The example follows thatof Figure 4.We have a parallel ounter Mount, where the areas are aligned with MA[ ℄. It is initialized with2` �m in eah area. Later, we an add or subtrat 1 in parallel without ausing overow. Moreover,the window must be veri�ed for a pattern whenever the most signi�ant bit of its area reahes 1.The ondition an be heked in parallel, although if some ounter reahes zero we sequentially verifywhih one did it.Observe that the ounters that we want to seletively inrement or derement orrespond exatlyto the MA[ ℄ areas that have a 1 in their most signi�ant bit (i.e. those whose A[ ℄ value is positive).This yields a bit mask-shift-add mehanism to perform this operation in parallel on all the ounters.Figure 7 shows the pseudoode of the parallel algorithm. As it an be seen, the algorithm is moreomplex than the simple version but the number of operations per harater is still very low.
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CountFilter (T,n,P 1::r,m,k)/* Preproessing */` = dlog2(m+ k)e;for  2 � do MA[℄ (01`)rfor s 2 1::r dofor i 2 1::m do MA[P si ℄ MA[P si ℄ + 10(s�1)(`+1)Mount (10` �m)) � (0`1)r/* Searhing */for j 2 1::m+ k do /* fill the initial window */Mount Mount + ((MA[Tj ℄ >> `) & (0`1)r)MA[Tj ℄ MA[Tj ℄ � (0`1)rfor j 2 m+ k + 1::n do /* move the window */if Mount & (10`)r 6= 0r(`+1) thenfor s 2 1::r doif Mount & 0(r�s)(`+1)10`0(s�1)(`+1) 6= 0r(`+1) thenverify Tj�m�k::j�1 for pattern P sMount Mount + ((MA[Tj ℄ >> `) & (0`1)r)MA[Tj ℄ MA[Tj ℄ � (0`1)rMA[Tj�m�k℄ MA[Tj�m�k℄ + (0`1)rMount Mount � ((MA[Tj�m�k℄ >> `) & (0`1)r)Figure 7: The multiple-pattern algorithm. All the onstants are of ourse preomputed.6.3 AnalysisWe want to determine the probability that the �lter triggers a veri�ation for a given pattern. Sinethe m haraters of P an appear at any window position in any order, the probability an be upperbounded by (reall Setion 5.2)  m+ km !m!�m = (m+ k)!k!�mwhih, ompared to the real mathing probability we have been using, has an extra m! fator. Sinewe pak a pattern in dlog2(m+ k)e bits, the total searh ost isnr� log2(m+ k)w + (m+ k)!k!�m (m+ k)�where, unlike the ase of superimposed automata, we have to pak the maximum number of patternstogether, sine the number of veri�ations triggered does not depend on how the paking is done. Weare interested, on the other hand, in the maximum error level � for whih this �lter is useful.Applying Stirling's approximation to the mathing probability formula we get an asymptoti sim-pli�ation for large m:  (1 + �)1+�me��� !m
12



whih is exponentially dereasing with m as long as the base is smaller than 1. When this happens,all the veri�ation osts beome negligible. When, on the other hand, the ost is not exponentiallydereasing with m, the veri�ations dominate the searh ost and the �lter is no longer useful.So the simpli�ed ondition for the �lter to be useful is(1 + �)1+��� < e�mwhih worsens as m or � grow. A simpli�ed ondition an be obtained by notiing again that (1 +�)1+�=�� = (1 + �)(1 + 1=�)� � e(1 + �), and therefore it suÆes that� < �=m� 1to ensure that the �lter is useful. Note that the ondition is equivalent to m+ k < �.7 Experimental ResultsIn this setion we present some experimental results about our algorithms and their analyses.7.1 Probability of MathingWe test experimentally the probability that a random pattern mathes at a random text position. Wegenerated a random text and 100 random patterns for eah experimental value shown. Figure 8 (left)shows the number of mathes found in a text of 3 Mb for a pattern with m = 300, where pattern andtext were randomly generated over an alphabet of size � = 68. As an be seen, there is a k valuefrom where the mathing probability starts to grow abruptly, moving from almost 0 to almost 1 in ashort range of values. Despite that this phenomenon is not as abrupt as for the k di�erenes problem[6, 16℄, it is sharp enough to make this k value the most important parameter governing the behaviorof the algorithm. We all k� this point, and �� = k�=m the orresponding error level.
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Figure 8: On the left, number of mathes found for inreasing k values and �xed m = 300. On theright, the �� limit as m grows. [eje y℄On the right part of Figure 8 we have shown this limiting �� value for di�erent pattern lengths,showing that �� tends to a onstant for large m, despite that it is smaller for short patterns.Finally, we show in Figure 9 how the alphabet size � a�ets the �� value. As an be seen, theurve looks as a straight line, where least squares estimation yields �� = �=1:0856 � 0:8878.13
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Figure 9: The �� limit as � grows.All this mathes our analytial results in the sense that (a) there is a lear error level �� where themathing probability goes almost from 0 to 1; (b) this point does not depend on m asymptotially;and () it depends on � linearly as predited by the analysis (�� = �=e� 1) exept beause the e hasbeen hanged to about 1.09. Interestingly, this is similar to the result obtained for the k di�erenesproblem in [6, 16℄ when relating their analytial preditions (�� = 1 � e=p�) with the experiments(�� = 1� 1:09=p�) and shows a onsistent behavior of the pessimisti analytial model used in bothases.7.2 The AlgorithmsWe experimentally study our algorithms now. We tested with 35 Mb of random text (� = 68) anda set of 100 random patterns of lengths m 2 f4; 5; 6g. This is a typial setup for intrusion detetionappliations. We use a Sun Enterprise 450 server (4 x UltraSPARC-II 250MHz) running SunOS 5.6with 512 Mb of RAM and w = 32. Eah data point was obtained by averaging the Unix's real timeover 10 trials.A �rst onern is whih is the sanning eÆieny of the algorithms ompared to plain dynamiprogramming for one pattern, independently of their �ltering eÆieny to deal with multiple patterns.Figure 10 shows the sanning eÆieny of the dynami programming, the bit-parallel simulation andthe onting �lter (using the bit-parallel simulation as the veri�ation engine) for single random patternswithm = 4. We measure the megabytes per seond (Mb/s) proessed by the algorithms as k inreases.As an be seen, the bit-parallel simulation is 2.5 to 3 times faster than the lassial solution even forvery large k values. The ounting �lter is in between.We ompare now the impat of the number of patterns r0 in the multipattern �lter based onsuperimposed automata. We take m = 4 (i.e., the length of the shortest pattern in the set) and � = 68for our analytial estimation of optimal superimposition, whih yields r0k=4 = 8:93, r0k=6 = 6:41 andr0k=8 = 4:94. Figure 11 (left) shows the Mb/s proessed when using di�erent values of r0 over a set of100 patterns. As the analysis predits, there is an optimal amount of superimposition that is reduedas k grows. The analytially estimated optima are below the pratial ones, sine our analysis usesa pessimisti bound on the mathing probability. We use the experimental optima in the tests thatfollow.We now show the degree of parallelism ahieved by the superimposition and ounting �lters al-gorithms, in terms of the ratio between the parallel version and r appliations of the orrespondingsingle-pattern algorithm. We searh the same set of randomly seleted patterns (m 2 f4; 5; 6g) with14
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Figure 11: On the left, Mb/s vs partition size for k = 4, k = 6 and k = 8 over a set of 100 patternswith m 2 f4; 5; 6g. On the right, ratio between parallel and sequential versions of the algorithms.k = 8. Figure 11 (right) shows the behavior in terms of r. We observe that the multipattern �lterquikly onverges to a 5-fold improvement over its sequential version as r inreases. The ounting�lter ahieves a lower degree of parallelism, taking 0.27 of its sequential ounterpart.Figure 12 shows the impat of searhing allowing di�erent numbers of insertions for both algo-rithms, for pattern sets of r = f1::100g. We observe that performane remains stable up to a limitaround r = 25 with low k. For higher k values, however, performane drops drastially from the be-ginning. The ounting �lter resists more this behavior, whih shows its higher tolerane to insertionsfor short patterns. To see this, note that the ase m = 6, k = 25 and � = 68 is totally inside the sopeof the ounting �lter aording to the analysis, while the superimposition �lter an only superimpose3 patterns under this setup.8 ConlusionsWe have presented a string mathing approah to the problem of intrusion detetion, whih is for-malized as the problem of multipattern mathing allowing insertions. Besides the lassial solutionfor one pattern adapted from the �eld of approximate pattern mathing, we have presented two newsearh algorithms whih we also extended to handle multiple patterns. Eah of the two algorithms15
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(d)Figure 12: Mb/s proessed by both algorithms for a set of patterns with m 2 f4; 5; 6g with (a) k = 4,(b) k = 6, () k = 8 and (d) k = 25.an be better than the other depending on the number of insertions allowed.We have presented analytial and experimental results onerning the performane of the newalgorithms. As an example, we illustrate the ase of 4-letters patterns searhed allowing 4 insertions,whih is a ase of interest in intrusion detetion appliations. The single pattern versions are typially3 times faster than the lassial solution. The multipattern algorithms allow searhing 100 patternsat the same ost of 4 single pattern searhes (a 25-fold speedup). As a result, our new algorithmsallow searhing for 100 patterns at a rate of 4 Mb/s in our mahine, while the lassial algorithm ansearh for just one single pattern at 5 Mb/s.In the �eld of approximate string mathing, the fastest algorithms are �lters able to disard mostof the text by heking a neessary ondition. In general, those �lters annot easily be applied herebeause the error levels typial in intrusion detetion appliations are too high for the standards ofthe approximate string mathing problem. We have shown, however, that some �ltration tehniquesan be adapted to this problem to obtain a large improvement in the performane of multipattern16



searhing.Future work involves �nding new algorithms, as well as a detailed study of optimization andextensions on the urrent ones:� In the multipattern �lter algorithm, if the patterns have di�erent length, we trunatethem to the shortest one when superimposing the automata. We an selet leverly thesubstrings to use, sine having the same harater at the same position in two patternsimproves the �ltering mehanism.� We used simple heuristis to group subpatterns in the superimposed automata. Thesean be improved to maximize ommon letters too.� The multipattern �lter is limited to patterns of size m(dlog2(k+1)e+1) � w. Automa-ton and pattern partition tehniques [6℄ an be inorporated to searh longer patterns.Furthermore, the ombination of tehniques an be onsidered in order to inrease thetolerane to insertions.Related to this last point about the length of the patterns, we point out that we have onentratedin the parameters typial of intrusion detetion, where the patterns are rather short, the error level isquite high, and the number of patterns is large. The new algorithms we have presented are very wellsuited to this setup, but other variants of the problem ould be of interest in other appliations andould demand (or permit) di�erent approahes. In partiular, more sophistiated models of attaksmay yield more pomplex pattern mathing iproblems.Referenes[1℄ R. Baeza-Yates. EÆient Text Searhing. PhD thesis, Dept. of Computer Siene, Univ. ofWaterloo, May 1989. Also as Researh Report CS-89-17.[2℄ R. Baeza-Yates. Text retrieval: Theory and pratie. In 12th IFIP World Computer Congress,volume I, pages 465{476. Elsevier Siene, September 1992.[3℄ R. Baeza-Yates and G. Gonnet. A new approah to text searhing. Comm. of the ACM, 35(10):74{82, Otober 1992.[4℄ R. Baeza-Yates and G. Navarro. Multiple approximate string mathing. In Pro. WADS'97,LNCS 1272, pages 174{184, 1997.[5℄ R. Baeza-Yates and G. Navarro. New and faster �lters for multiple approximate string mathing.Tehnial Report TR/DCC-98-10, Dept. of Computer Siene, Univ. of Chile, 1998. Submitted.ftp://ftp.d.uhile.l/pub/users/gnavarro/multi.ps.gz.[6℄ R. Baeza-Yates and G. Navarro. Faster approximate string mathing. Algorithmia, 23(2):127{158, 1999.[7℄ G. Das, R. Fleisher, L. Gasienie, D. Gunopulos, and J. K�arkk�ainen. Episode mathing. In Pro.CPM'97, LNCS 1264, pages 12{27, 1997.[8℄ S. Forrest, A.S. Perelson, L. Allen, and R. Cherukuri. Self-nonself disrimination in a omputer.In Pro. IEEE Symp. on Researh in Seurity and Privay, 1994.17
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