
Fast Multipattern Sear
h Algorithms for Intrusion Dete
tionJosu�e Kuri� Gonzalo NavarroyAbstra
tWe present new sear
h algorithms to dete
t the o

urren
es of any pattern from a given patternset in a text, allowing in the o

urren
es a limited number of spurious text
hara
ters among thoseof the pattern. This is a
ommon requirement in intrusion dete
tion appli
ations. Our algorithmsexploit the ability to represent the sear
h state of one or more patterns in the bits of a singlema
hine word and update all the sear
h states in a single operation. We show analyti
ally andexperimentally that the algorithms are able of fast sear
hing large sets of patterns allowing a widenumber of spurious
hara
ters, yielding about a 75-fold improvement over the
lassi
al algorithm.1 Introdu
tionA major
hallenge in intrusion dete
tion is the e�e
tive dete
tion of atta
ks as they are o

urring, aproblem known as on-line intrusion dete
tion. Current resear
h trends aim to a simpli�ed representa-tion of the problem in order to improve eÆ
ien
y and performan
e. Pattern mat
hing te
hniques aregetting major attention as potential solutions be
ause they have solved analog problems in domains as
omputational biology and information retrieval. In intrusion dete
tion, pattern mat
hing algorithmshave been proposed as sear
h engines in two di�erent intrusion dete
tion models. One is based in the
on
ept of state transition analysis [9, 12℄ and the the other uses the
omputer immunology approa
hproposed in [8℄.We give an example to illustrate how the pattern mat
hing algorithms presented below
an be usedto solve an intrusion dete
tion problem. Auditable events in the target system
an be seen as lettersof an alphabet � and the audit trail as a large string of letters in �� (i.e. the text). The sequen
esof events representing atta
ks to be dete
ted are then substrings (i.e., patterns) to be lo
ated in themain string. Potential atta
kers may introdu
e spurious events among those that represent an a
tualatta
k in order to disperse their eviden
e, so a limited number of spurious letters must be allowedwhen sear
hing the pattern. We are interested in dete
ting a set of possible atta
ks at the same time.This intrusion dete
tion problem
an be regarded as a parti
ular
ase of the multiple approximatepattern mat
hing problem, where insertion in the pattern is the only allowed edit operation.There is a wide variety of audit fa
ilities,
overing di�erent sour
es of potential atta
ks. A
ommonproperty of these fa
ilities is that they generate huge amounts of audited data in a short time, in theorder of several millions of events per hour for large
omputing infrastru
tures. On the other hand,atta
ks are typi
ally short sequen
es of no more than 8
ommands. Finally, the number of knownatta
ks to system vulnerabilities is so large [11℄ that it is a
ommon request for an intrusion dete
tionsystem to sear
h atta
k sets of more than 100 elements. Under the approa
h of mapping events toletters, the typi
al values for � may vary from 60 to 80, depending on the number of di�erent auditableevents in a parti
ular system.�E
ole Sup�erieure d'Ele
tri
it�e, Avenue de la Boulaie { BP 28, 35511 Cesson S�evign�e { Fran
e. jkuri�enst.fr. Worksupported by CONACyT grant # 122688.yDept. of Computer S
ien
e, Univ. of Chile. Blan
o En
alada 2120, Santiago, Chile. gnavarro�d

.u
hile.
l.Work developed in part while the author was at postdo
toral stay at Institut Gaspard Monge, Univ. de Marne-la-Vall�ee,Fran
e. Supported in part by Fonde
yt grant 1-990627 and Funda
i�on Andes.1

With respe
t to the typi
al k values, it is important to avoid false mat
hes (i.e. triggering unne
-essary alarms for sequen
es that do not really represent an atta
k be
ause k is too large) and to avoidmissing true atta
ks. Empiri
al values of k are typi
ally between 6 and 10.We formalize the above problem as follows. Our text, T1::n, is a sequen
e of n
hara
ters froman alphabet � of size �. Our pattern, P1::m is a sequen
e of m
hara
ters from the same alphabet.We want to report all the text positions that mat
h the pattern, where at most k insertions between
hara
ters of P are allowed in its o

urren
e in T . We
all � = k=m the \error level".A lot of work has been
arried out on an extended version of this problem (
alled sear
h allowingk di�eren
es), where not only insertions, but also deletions and repla
ements are allowed. In a re
entsurvey [17℄ four approa
hes are distinguished to sear
h with k di�eren
es: dynami
 programming,automata, �ltering and bit-parallelism.However, very little has been done to sear
h with k insertions. Not all the algorithms for kdi�eren
es
an be su

essfully simpli�ed for our restri
ted
ase. The most naive algorithm (whi
h weshow in Se
tion 2) is a simpli�
ation of the
lassi
al dynami
 programming solution for k di�eren
es,and the same O(mn) sear
h time is maintained. We
onsider this
omplexity as the referen
e pointfor further improvements. Automata approa
hes
an be adapted with similar eÆ
ien
y results: O(n)sear
h time but impra
ti
ally high prepro
essing and spa
e requirements (exponential in m or k).Filtering approa
hes are very su

essful to sear
h with k di�eren
es and are generally based inthe
on
ept that some pattern substrings must mat
h even in inexa
t o

urren
es. This is also our
ase: for example, if k insertions are allowed in the mat
hes then at least one pattern pie
e of lengthbm=(k + 1)
 must be found inside every o

urren
e. Hen
e we
an sear
h for those pie
es and usea more expensive algorithm only in the text areas surrounding su
h o

urren
es of pattern pie
es.However, in most appli
ations of the k di�eren
es problem it is
ommon that k is mu
h smaller thanm and therefore reasonably long pattern pie
es have to be found. Instead, in intrusion dete
tion k isnormally large (in many
ases k > m) and therefore �ltering approa
hes are ine�e
tive in general.The most promising approa
h seems to be bit-parallelism (whi
h we explain in Se
tion 3), be
ausethe simpli
ity of the k insertions model allows devising faster algorithms. In parti
ular, we present inSe
tion 4 a sear
h algorithm with time
omplexity O(nm log(k)=w) where w is the length in bits ofthe
omputer word. This is O(n) for reasonably short patterns. Moreover, it is better than previousbit-parallel algorithms for the k di�eren
es, whi
h were O(nmk=w) time [20, 6℄, but it is worse than alater development [14℄ whi
h a
hieves O(mn=w). Interestingly, this last approa
h
annot be adaptedto our problem, but that of [20℄
an be adapted at the same O(nmk=w) time
ost. A related butdi�erent problem,
alled \episode mat
hing", is to �nd the pattern with the minimum number ofinsertions. Many algorithms are presented in [7℄, where the best one needing spa
e polynomial in mtakes O(mn= logm) time.A spe
ial requirement of our appli
ation is the need for multipattern sear
h. That is, we are givenr patterns P 1:::P r and we have to report all their o

urren
es. Very little work has been done onmultipattern sear
h for the k di�eren
es problem [13, 4, 15, 5, 16℄. In Se
tions 5 and 6 we adapt twoof those approa
hes to the k insertions problem. The �rst one obtains a speedup of ���=(1 + �)1+�(where � = k=m) over the basi
 bit-parallel algorithm of Se
tion 4. This speedup is larger than 1for � < �=e � 1. The se
ond one obtains a speedup of w= log2(m + k), but it works well only form+ k < �, i.e. short patterns.All the algorithms mentioned form the �rst nontrivial solutions to the k insertions problem, bothfor single and multiple patterns. In Se
tion 7 we show some experimental results about the pra
ti
alperforman
e of the algorithms. For typi
al
ases our bit-parallel version outperforms the
lassi
aldynami
 programming by a fa
tor of 3, while the multipattern �lters obtain a 25-fold speedups. The2

net result is a 75-fold speedup over a
lassi
al approa
h.2 The Insertion Distan
e and a Naive AlgorithmOur problem
an be modeled using the
on
ept of insertion distan
e. The insertion distan
e from a tob, denoted id(a; b), is the number of insertions ne
essary to
onvert a into b. We say that d(a; b) =1if this is not possible. Clearly, id(a; b) = jbj � jaj if a is a subsequen
e of b, and 1 otherwise.A more interesting de�nition arises when we sear
h for a pattern P in a text T allowing insertions.At ea
h text position j 2 1::n we are interested in the minimum number of insertions needed to
onvertP into some suÆx of T1::j. This is de�ned aslid(P; T1::j) = minj021::j id(P; Tj0::j)The sear
h problem
an therefore be formalized as follows: given P , T and k, report all textpositions j su
h that lid(P; T1::j) � k.An immediate solution to the problem
omes from adapting an algorithm for k di�eren
es [19℄. Ave
tor of values Ci (i 2 0::m) is updated for ea
h new text
hara
ter Tj . The invariant is that, afterpro
essing text position j, Ci = lid(P1::i; T1::j). Therefore, we report all text positions j satisfyingCm � k. Initially (for j = 0) we have C0 = 0 and Ci =1 for i > 0. When reading the text
hara
terTj the Ci values are updated to the new C 0i values using the formulaC 0i = if (Pi = Tj) then min(Ci�1; Ci + 1) else Ci + 1 (1)whi
h has the following rationale: if the new text
hara
ter Tj does not mat
h Pi, then we keep theprevious mat
h of Pi in a suÆx of T1::j�1 (the
ost is Ci) and add an insertion to re
e
t that undesiredlast
hara
ter Tj . If, on the other hand, the new text
hara
ter mat
hes Pi then we have also the
hoi
e of using it and mat
hing P1::i�1 with the best suÆx of T1::j�1 (the
ost is Ci�1).This algorithm is O(mn) time and O(m) spa
e.3 Bit-parallelismBit-parallelism is a te
hnique of
ommon use in string mat
hing [2℄, �rstly proposed in [1, 3℄. Thete
hnique
onsists in taking advantage of the intrinsi
 parallelism of the bit operations inside a
om-puter word. By using
leverly this fa
t, the number of operations that an algorithm performs
anbe
ut down by a fa
tor of at most w, where w is the number of bits in the
omputer word. Sin
ein
urrent ar
hite
tures w is 32 or 64, the speedup is very signi�
ant in pra
ti
e (and improves withte
hnologi
al progress). In order to relate the behavior of bit-parallel algorithms to other works, itis normally assumed that w = �(logn), as di
tated by the RAM model of
omputation. We prefer,however, to keep w as an independent value.We introdu
e now some notation we use for bit-parallel algorithms.� The length of the
omputer word (in bits) is w.�We denote as bs:::b1 the bits of a mask of length s. This mask is stored somewhere insidethe
omputer word. Sin
e the length w of the
omputer word is �xed, we are hiding thedetails on where we store the s bits inside it. We give su
h details when they are relevant.� We use exponentiation to denote bit repetition (e.g. 031 = 0001).3

� We use C-like syntax for operations on the bits of
omputer words: \j" is the bitwise-or, \&" is the bitwise-and, \ b " is the bitwise-xor and \�"
omplements all the bits.The shift-left operation, \<<", moves the bits to the left and enters zeros from the right,i.e. bsbs�1:::b2b1 << r = bs�r:::b2b10r. The shift-right, \>>" moves the bits in theother dire
tion. Finally, we
an perform arithmeti
 operations on the bits, su
h as addi-tion and subtra
tion, whi
h operates the bits as if they formed a number. For instan
e,bs:::bx10000 � 1 = bs:::bx01111.Many text sear
hing algorithms
an be seen as implementations of
lever automata (
lassi
ally,in their deterministi
 form). Bit-parallelism has sin
e its invention be
ame a general way to simulatesimple non-deterministi
 automata instead of
onverting them to deterministi
. It has the advantage ofbeing mu
h simpler, in many
ases faster (sin
e it makes better usage of the registers of the
omputerword), and easier to extend to handle
omplex patterns than its
lassi
al
ounterparts. Its maindisadvantage is the limitations it imposes with regard to the size of the
omputer word. In many
asesits adaptations to
ope with longer patterns are not so eÆ
ient. For our appli
ation, in parti
ular,bit-parallelism seems to be a very promising approa
h.4 A Bit-parallel SimulationWe show now how
an we pa
k the Ci values of Se
tion 2 in the bits of a
omputer word to speed upthe sear
h. Only the values from zero to k + 1 are of interest, sin
e if a Ci value is larger than k + 1then the out
ome of the sear
h is the same if we repla
e it by k+1. Therefore, we use ` = dlog2(k+1)ebits to hold ea
h Ci value, plus an extra over
ow bit whose purpose is made
lear shortly.Taking minima in parallel is not impossible, but it is diÆ
ult. We show that the update formula (1)
an be modi�ed to avoid taking minima. First note that Ci�1 � Ci + 1. That is, lid(P1::i�1; T1::j) �lid(P1::i; T1::j) + 1. This is
lear, sin
e any mat
h of P1::i against a suÆx of T1::j
an be
onverted intoa mat
h of P1::i�1 just by removing the alignment of Pi and
onsidering it as an extra insertion (the+1). Hen
e the best alignment must be at most of that
ost. Therefore, Eq. (1) is equivalent toC 0i = if (Pi = Tj) then Ci�1 else Ci + 1whi
h we now parallelize. We pre
ompute a table B : �! f0; 1gm(`+1) , de�ned asB[
℄ = 0 b(
; Pm) 0 b(
; Pm�1) � � � 0 b(
; P2) 0 b(
; P1)where b(
;
) = 1` and b(
;
0) = 0` for
 6=
0. That is, B[
℄ has m
hunks of zeros or ones, indi
atingwhi
h pattern positions mat
h
hara
ter
. The idea is to use B[
℄ to implement the test (Pi = Tj),assigning Ci�1 where it has ones and leaving Ci + 1 where it has zeros.The state of the sear
h is kept in a bit mask D,
omposed of m
hunks of ` bits ea
h (plus theover
ow bit), so that the i-th
hunk stores the
urrent Ci value, i.e.D = 0 [Cm℄` 0 [Cm�1℄` � � � 0 [C2℄` 0 [C1℄`where [x℄` is the number x represented in ` bits in the usual way (right-aligned). Note that C0 is notrepresented be
ause it is always zero. In prin
iple, the update formula
ould be as simple asD0 = (B[Tj ℄ & (D << (`+ 1))) j (� B[Tj ℄ & (D + (0`1)m))4

where B[Tj℄ is being used to sele
t between (D << (` + 1)) (whi
h puts the previous value Ci�1 atthe i-th
hunk) and (D+ (0`1)m) (whi
h adds 1 to the
urrent Ci values). In parti
ular, the left shiftbrings zero bits to the �rst
hunk C1, whi
h is adequate sin
e C0 = 0. The problem with this s
hemeis that the Ci values
ould surpass the barrier of k + 1.To over
ome the problem we use the over
ow bit. We let the Ci values grow over k + 1 providedthey �t in ` bits. As soon as they over
ow, the over
ow bit will be set. At this point, we subtra
t oneto them. The easiest way to subtra
t one to all the Ci values whose over
ow bit is set is to isolate theover
ow bits, shift them ` positions to the right and subtra
t the mask from D.The �nal problem is how to determine the text positions that mat
h. In the dynami
 programmingversion we simply
he
k Cm � k. In the bit-parallel version the Cm value
orresponds to the highestbits, and therefore we
an numeri
ally
ompare the whole bit mask D against [k℄`1(`+1)(m�1), whi
havoids any additional bit shift or masking. We also want to report only text positions that end agenuine mat
h, i.e. su
h that the last text
hara
ter mat
hes the last pattern
hara
ter. Otherwise wewould be reporting trivial extensions of previously found mat
hes. This
an be determined by lookingat the m-th
hunk of B[Tj℄. The �nal algorithm is shown in Figure 1.Sear
h (T,n,P,m,k)/* Prepro
essing */` dlog2(k + 1)efor
 2 � do B[
℄ 0m(`+1)for i 2 1::m do B[Pi℄ B[Pi℄ j 0(m�i)(`+1)01`0(i�1)(`+1)/* Sear
hing */for j 2 1::nDs D << (`+ 1)D D + (0`1)mD D � ((D >> `) & (0`1)m)D (B[Tj℄ & Ds) j (� B[Tj ℄ & D)if (D � [k℄`1(`+1)(m�1)) and ((B[Tj ℄ & 01`0(m�1)(`+1)) 6= 0m(`+1))then report a mat
h ending at jFigure 1: The bit parallel algorithm. All the
onstants and repeated expressions are of
ourse pre-
omputed.If the bits of the simulation do not �t in the
omputer word we set up as many
omputerwords as needed. Sin
e ea
h one is updated in O(1) time per text
hara
ter, the total
omplexityis O(nm log(k)=w). For short patterns (i.e. m log k = O(w)) this is O(n).5 A Multipattern FilterAs already noted in [4℄, the ability of bit-parallel algorithms to allow
lasses of
hara
ters
an be usedto build multipattern �lters. Imagine that the pattern is not a sequen
e of letters but a sequen
eof
lasses of letters. A letter a is said to mat
h P at position i if a 2 Pi, i.e. if it belongs to the
orresponding
lass. 5

If we have a pattern whi
h is a sequen
e of
lasses of
hara
ters, the algorithm of Se
tion 4
anstill be used, just by
hanging the prepro
essing phase. The idea is that we
an rede�ne the b fun
tionto b(
;
0) = 1` if
 2
0 and 0` otherwisewhi
h is equivalent to
hanging the third line in the prepro
essing of Figure 1 tofor i 2 1::m do for
 2 Pi do B[
℄ B[
℄ j 0(m�i)(`+1)01`0(i�1)(`+1)that is, we allow the value of Ci�1 to pass to position i for any
hara
ter
 that mat
hes patternposition i.Consider now that we have r patterns P 1:::P r of the same length m (otherwise we trun
ate themto the shortest one). From them we generate a mu
h more relaxed pattern with
lasses of
hara
ters,whi
h we
all the superimposition of P 1:::P r. This is de�ned asP = fP 11 ; :::; P r1 g fP 12 ; :::; P r2 g ::: fP 1m; :::; P rmgwhi
h ne
essarily mat
hes when one of the P j mat
hes, although the
onverse is not true. For instan
e,if we sear
h "ab
d" and "ad

" then the superimposed pattern is "fagfb,dgf
gfd,
g", and the textwindow "ad
d" will mat
h with zero insertions, even if it is not in the set of patterns.To make this more
lear,
onsider the NFA of Figure 2. The rows represent the number of insertions.The �rst one zero, the se
ond one 1, and so on. Ea
h
olumn represents a pattern pre�x. Horizontalarrows represent mat
hing a pattern letter with a text letter, while verti
al arrows represent skippinga text letter (sin
e we advan
e in the text but not in the pattern, and in
rement the number ofinsertions). The initial state has a self-loop to allow any text position to start a mat
h. State inrow s 2 0::k and
olumn i 2 0::m is a
tive ea
h time a suÆx of the text read mat
hes P1::i with sinsertions, so ea
h time the lower right state is a
tive we have an o

urren
e of the pattern in the textwith at most k insertions.Indeed, it
an be proved that if state (s; i) is a
tive then any state (s0; i) with s0 > s is a
tiveas well, and that the Ci value of Se
tion 2 is the minimum row of an a
tive state at NFA
olumn i.Therefore, our bit-parallel simulation
an be thought of as a me
hanism to pa
k the information ofthis NFA in bits and to simulate the transitions that o

ur along the arrows of the automaton.The NFA of Figure 2 has been built for the superimposition of "ab
d" and "ad

". For instan
e,the arrows in the se
ond
olumn
an be traversed either by the letter "b" or "d". Clearly thisautomaton will re
ognize any o

urren
e of the two patterns, and some others as well.Therefore, the te
hnique
onsists in superimposing the sear
h patterns, sear
h the superimpositionwith the same algorithm of Se
tion 4, and then
he
king the areas where the superimposition isfound for the presen
e of any of the individual patterns. That is, ea
h time the algorithm �nds thesuperimposed pattern at text position j, we
he
k ea
h of the patterns separately (with the samealgorithm) in the text area Tj�m�k+1::j. A similar idea was proposed in [4, 5, 16℄ for the k-di�eren
esproblem.To avoid re-veri�
ation due to overlapping areas, we keep tra
k of the last position veri�ed andthe state of the veri�
ation algorithm. If a new veri�
ation requirement starts before the last veri�edposition, we start the veri�
ation from the last veri�ed position, avoiding to re-verify the pre
edingarea.
6

a

a

a

c

c

no insertions

2 insertions

1 insertion

c

Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ

Σ

b,d

b,d

b,d

d,c

d,c

d,cFigure 2: An NFA to sear
h the superimposition "ab
d" and "ad

" allowing 2 insertions.5.1 Hierar
hi
al Veri�
ationInstead of
he
king one by one the patterns for ea
h o

urren
e of the superimposed pattern, we
anbuild up a hierar
hy of superimpositions [18, 16℄. Imagine that r = 8. Then we build, at prepro
essingtime, the superimposition of the 8 patterns,
alled P 1::8. We
onsider this the root of a binary tree,whose two
hildren are P 1::4 and P 5::8, i.e. they superimpose only 4 patterns. The �rst one has two
hildren P 1::2 and P 3::4, and so on. Finally, the leaves of the tree are the a
tual patterns. If r is nota power of two we build the tree as balan
ed as possible. Figure 3 illustrates.
1
2
3
4

1
2

3
4

1 2 3 4Figure 3: Hierar
hi
al veri�
ation for 4 superimposed patterns.We sear
h P 1::8 in the text. When it is found, we do not
he
k immediately all the leaves P 1 toP 8, but just its two
hildren P 1::4 and P 5::8. It is possible that, despite that the root was found, noneof the two
hildren appears (and therefore no leaf
an appear as well). So we
an avoid performing 8veri�
ations at the
ost of 2. Of
ourse it is also possible that one and even both of the
hildren appearsin the text area and then their
hildren have to be
he
ked in turn until the leaves are found (andthese are a
tually reported). In parti
ular, if a leaf appears it will require all the path of veri�
ations.However, as we show next, hierar
hi
al veri�
ation pays o�.5.2 AnalysisSuperimposing r patterns gives of
ourse better sear
h time be
ause only one sear
h is
arried outinstead of r. On the other hand, however, it makes ne
essary to
he
k the o

urren
es of the superim-posed pattern for the presen
e of the a
tual ones. Moreover, the probability of mat
hing raises as wesuperimpose more patterns, be
ause up to r
hara
ters of the alphabet mat
h ea
h pattern position.7

We start by giving an upper bound on the mat
hing probability of a random pattern of length mat a random text position, with up to k insertions. Consider a random text position j. The patternP appears with k insertions at a text position ending at j if and only if the text window Tj�m�k+1::j
ontains the m pattern letters in order. The window positions that mat
h the pattern letters
anbe
hosen in �m+km � ways. Those letters are �xed but the other k
an take any value. Therefore theprobability that the text window mat
hes the pattern with k insertions is at most m+ km ! �k�m+k = m+ km ! 1�mwhere we are overestimating be
ause not all the sele
tions of window positions give di�erent windows.For instan
e the pattern "ab
d" mat
hes in text window "ab

d" with k = 1 in two ways, but onlyone text window should be
ounted. In parti
ular, our overestimation in
ludes the
ase of k0 < kinsertions, whi
h is obtained by sele
ting the �rst k � k0
hara
ters of the text window as insertionsand distributing the k0 remaining insertions in the remaining text window of length m+ k0.If we are given r patterns and superimpose them in groups of r0, there are at most r0 out of �alphabet letters that will mat
h ea
h pattern position now. The net e�e
t is that of dividing � byr0 in the formulas. If we
onsider that no hierar
hi
al veri�
ation is used, then ea
h mat
h of thesuperimposed pattern triggers a veri�
ation of r0 original patterns in a text area of width m + k.Therefore the total sear
h
ost is on average (assuming that the patterns �t in a
omputer word)nrr0 1 + m+ km !(m+ k)r0(�=r0)m ! = nr 1r0 + m+ km !(m+ k)r0m�m !Assume now that we use hierar
hi
al veri�
ation. In this
ase, 2 sear
hes with r0=2 patterns aretriggered for ea
h o

urren
e of the superimposed pattern. For ea
h o

urren
e of those superim-positions of r0=2 patterns we will have to
he
k a text window with 2 patterns superimposing r0=4original patterns, and so on. Abstra
ting from the me
hanism we use to �nd the nodes of the treeof superimpositions, we have that in total, in the hierar
hy there are 2i groups of r0=2i patterns, fori = 0:: log2(r0)� 1. Ea
h su
h group mat
hes with probability �m+km �=(�2i=r0)m, and ea
h mat
h
oststhe veri�
ation of a window of length m+ k for other two patterns. The total veri�
ation
ost is m+ km !2(m+ k)r0m�m log2(r0)�1Xi=0 2i(2i)m = m+ km !2(m+ k)r0m�m (1 +O(1=2m))whi
h is r0=2 times
heaper than without hierar
hi
al veri�
ation. The sear
h
ost be
omes nownr 1r0 + m+ km !2(m+ k)r0m�1�m !whi
h is minimized for r0 = ��2�m+km �(m+ k)(m� 1)�1=mand gives a sear
h time of nr� mm� 1 m+ km !2(m+ k)(m� 1)!1=m8

An asymptoti
 simpli�
ation (for large m and � = k=m
onsidered
onstant) of the
ost
an beobtained using Stirling's approximation to the fa
torial m! = (m=e)mp2�m(1 +O(1=m)):nr� (1 + �)1+���whi
h monotoni
ally worsens with �, as expe
ted.This shows that in the best
ase we may expe
t a speedup of O(�) by superimposing the subpat-terns. The speedup is � for k = 0 and it moves to 1 as � grows. A natural question up to whi
h errorlevel the speedup is larger than 1 (i.e. useful). This is, when it happens that ��� > (1 + �)1+�, i.e.� > (1 + �)(1 + 1=�)�. A suÆ
ient
ondition
an be obtained by noti
ing that 1 � (1 + 1=�)� � e,and therefore � < �=e� 1 suÆ
es. In general it has to hold � < �=(r0e)� 1.For longer patterns all sear
h
osts get multiplied by m log2(k)=w. On the other hand, if thepatterns are very short, we may do multipattern sear
h by pa
king the states of many patterns insidethe same
omputer word, so that we update the states of all the sear
hes in a single operation. The sizeof the representation of ea
h pattern, however, is nearly m log2(k), whi
h makes the idea impra
ti
alex
ept for very short patterns. In the next se
tion we present a �lter that needs mu
h less informationper pattern and therefore is suitable for this approa
h.6 A Counting FilterA di�erent approa
h to �lter the sear
h for multiple patterns is to use a \
ounting" �lter. The �lteris based on the notion that if a pattern is found at text position j, then all its
hara
ters must appearin the text window Tj�m�k+1::j. The idea is to keep
ount at any text position j of how many pattern
hara
ters are present in the text window, updating this information in O(1) operations per text
hara
ter. Note that we
annot ensure that the pattern
hara
ters appear in the
orre
t order, so we�lter with a ne
essary
ondition whi
h is not suÆ
ient to guarantee a mat
h. Moreover, we show thatfor a multipattern sear
h many
ounters (one per pattern)
an be stored in a single
omputer wordand all
an be updated in O(1) operations per text
hara
ter. Ea
h time a
ounter rea
hes the
riti
alvalue m, it means that all its
hara
ters are in the text window and therefore the window is
he
kedusing the algorithm of Se
tion 4. A similar idea has been proposed in [10, 15, 16℄ for the k-di�eren
esproblem. We now des
ribe the algorithm and later show how to adapt it for multiple patterns (by
ombining it with bit-parallelism).6.1 One PatternThe �lter passes over the text examining an (m+ k)-letters long window. It keeps tra
k of how many
hara
ters of P are present in the
urrent text window (a

ounting for multipli
ities too). If, at agiven text position j, the m
hara
ters of P are in the window Tj�m�k+1::j, the window area is veri�edwith a
lassi
al algorithm (in this paper, with the bit-parallel algorithm of Se
tion 4).We implement the �ltering algorithm as follows: we build a table A[℄ where, for ea
h
hara
ter
 2 �, the number of times that
 appears in P is initially stored. Throughout the algorithm, ea
hentry of A[℄ indi
ates how many o

urren
es of that
hara
ter
an (still) be taken as belonging toP . We also keep a
ounter
ount of mat
hing
hara
ters. To advan
e the window, we must in
ludethe new
hara
ter Tj+1 and ex
lude the last
hara
ter, Tj�m�k+1. To in
lude the new
hara
ter, wesubtra
t one at the proper entry of A[℄. If the entry was greater than zero before the operation, it isbe
ause the
hara
ter is in P , so we in
rement the
ounter
ount. To ex
lude the old
hara
ter, we9

add one at the proper entry of A[℄. If the entry is greater than zero after the operation, it is be
ausethe
hara
ter was in P , so we de
rement
ount. When the
ounter
ount rea
hes m we verify thepre
eding area.When A[
℄ is negative, it means that the
hara
ter
 must leave the window �A[
℄ times before wea

ept it again as belonging to the pattern. For example, if we run the pattern "ab
a" over the text"aaaaaaaa", with k = 1 it will hold A[0a0℄ = �3, and the value of
ount will be 2. Figure 4 showsanother example.
X

X

X

X

h e l l o a

l

1

-1

0

0

-1

a

o

h

e

Searching ’aloha’

c A[c]

(k=1)

X

Figure 4: An example of the
ounting �lter. The
rosses represent elements whi
h A[℄ a

epts, andthe
ir
les are the elements that appeared in the window. A[
℄ stores
rosses minus
ir
les, and
ount
ounts
ir
led
rosses.Figure 5 shows the pseudo
ode of the algorithm. As it
an be seen, the algorithm is not only lineartime (ex
luding veri�
ations), but the number of operations per
hara
ter is very small.CountFilter (T,n,P,m,k)/* Prepro
essing */for
 2 � do A[
℄ 0for i 2 1::m do A[Pi℄ A[Pi℄ + 1
ount 0/* Sear
hing */for j 2 1::m+ k do /* fill the initial window */if A[Tj ℄ > 0 then
ount
ount+ 1A[Tj ℄ A[Tj ℄� 1for j 2 m+ k + 1::n do /* move the window */if
ount = m then verify Tj�m�k::j�1if A[Tj ℄ > 0 then
ount
ount+ 1A[Tj ℄ A[Tj ℄� 1A[Tj�m�k℄ A[Tj�m�k℄ + 1if A[Tj�m�k℄ > 0 then
ount
ount� 1Figure 5: The �ltering algorithm for one pattern.
10

6.2 Multiple PatternsThe previous algorithm
an sear
h for one pattern only. However, we
an extend it to handle multiplepatterns. To sear
h r patterns in the same text, we use bit-parallelism to keep all the
ounters in asingle ma
hine word. We must do that for the A[℄ table and for
ount.The values of the entries of A[℄ lie in the range [�m � k::m℄, so we need exa
tly 1 + ` bits tostore them, where ` = dlog2(m+ k+1)e. This is also enough for
ount, sin
e it is in the range [0::m℄.Hen
e, we
an pa
k � w1 + dlog2(m+ k)e�patterns in a single sear
h (re
all that w is the number of bits in the
omputer word). If we have morepatterns, we must divide the set in subsets of at most this size and sear
h ea
h subset separately. Wefo
us our attention on a single subset now.The algorithm simulates the simple one as follows. We have a table MA[℄ that pa
ks all theA[℄ tables. Ea
h entry of MA[℄ is divided in bit areas of length 1 + `. In the area of the ma
hineword
orresponding to ea
h pattern, we store 2`+A[℄� 1. When, in the algorithm, we have to add orsubtra
t 1, we
an easily do it in parallel without
ausing over
ow from an area to the next. Moreover,the
orresponding A[℄ value is not positive if and only if the most signi�
ant bit of the area is zero.Figure 6 illustrates. 10000
m = 5; k = 1; ` = 3 MA [a℄MA [l℄MA [o℄MA [h℄MA [e℄A[
℄ > 0

0 0 0111 111 1 11 01 M
ount0 1 1 1
0

ount � mMA[
℄M
ount
A[
℄
ount+2`�1+2`�mFigure 6: S
heme (left) and an example (right) of the bit-parallel
ounters. The example follows thatof Figure 4.We have a parallel
ounter M
ount, where the areas are aligned with MA[℄. It is initialized with2` �m in ea
h area. Later, we
an add or subtra
t 1 in parallel without
ausing over
ow. Moreover,the window must be veri�ed for a pattern whenever the most signi�
ant bit of its area rea
hes 1.The
ondition
an be
he
ked in parallel, although if some
ounter rea
hes zero we sequentially verifywhi
h one did it.Observe that the
ounters that we want to sele
tively in
rement or de
rement
orrespond exa
tlyto the MA[℄ areas that have a 1 in their most signi�
ant bit (i.e. those whose A[℄ value is positive).This yields a bit mask-shift-add me
hanism to perform this operation in parallel on all the
ounters.Figure 7 shows the pseudo
ode of the parallel algorithm. As it
an be seen, the algorithm is more
omplex than the simple version but the number of operations per
hara
ter is still very low.

11

CountFilter (T,n,P 1::r,m,k)/* Prepro
essing */` = dlog2(m+ k)e;for
 2 � do MA[
℄ (01`)rfor s 2 1::r dofor i 2 1::m do MA[P si ℄ MA[P si ℄ + 10(s�1)(`+1)M
ount (10` �m)) � (0`1)r/* Sear
hing */for j 2 1::m+ k do /* fill the initial window */M
ount M
ount + ((MA[Tj ℄ >> `) & (0`1)r)MA[Tj ℄ MA[Tj ℄ � (0`1)rfor j 2 m+ k + 1::n do /* move the window */if M
ount & (10`)r 6= 0r(`+1) thenfor s 2 1::r doif M
ount & 0(r�s)(`+1)10`0(s�1)(`+1) 6= 0r(`+1) thenverify Tj�m�k::j�1 for pattern P sM
ount M
ount + ((MA[Tj ℄ >> `) & (0`1)r)MA[Tj ℄ MA[Tj ℄ � (0`1)rMA[Tj�m�k℄ MA[Tj�m�k℄ + (0`1)rM
ount M
ount � ((MA[Tj�m�k℄ >> `) & (0`1)r)Figure 7: The multiple-pattern algorithm. All the
onstants are of
ourse pre
omputed.6.3 AnalysisWe want to determine the probability that the �lter triggers a veri�
ation for a given pattern. Sin
ethe m
hara
ters of P
an appear at any window position in any order, the probability
an be upperbounded by (re
all Se
tion 5.2) m+ km !m!�m = (m+ k)!k!�mwhi
h,
ompared to the real mat
hing probability we have been using, has an extra m! fa
tor. Sin
ewe pa
k a pattern in dlog2(m+ k)e bits, the total sear
h
ost isnr� log2(m+ k)w + (m+ k)!k!�m (m+ k)�where, unlike the
ase of superimposed automata, we have to pa
k the maximum number of patternstogether, sin
e the number of veri�
ations triggered does not depend on how the pa
king is done. Weare interested, on the other hand, in the maximum error level � for whi
h this �lter is useful.Applying Stirling's approximation to the mat
hing probability formula we get an asymptoti
 sim-pli�
ation for large m: (1 + �)1+�me��� !m
12

whi
h is exponentially de
reasing with m as long as the base is smaller than 1. When this happens,all the veri�
ation
osts be
ome negligible. When, on the other hand, the
ost is not exponentiallyde
reasing with m, the veri�
ations dominate the sear
h
ost and the �lter is no longer useful.So the simpli�ed
ondition for the �lter to be useful is(1 + �)1+��� < e�mwhi
h worsens as m or � grow. A simpli�ed
ondition
an be obtained by noti
ing again that (1 +�)1+�=�� = (1 + �)(1 + 1=�)� � e(1 + �), and therefore it suÆ
es that� < �=m� 1to ensure that the �lter is useful. Note that the
ondition is equivalent to m+ k < �.7 Experimental ResultsIn this se
tion we present some experimental results about our algorithms and their analyses.7.1 Probability of Mat
hingWe test experimentally the probability that a random pattern mat
hes at a random text position. Wegenerated a random text and 100 random patterns for ea
h experimental value shown. Figure 8 (left)shows the number of mat
hes found in a text of 3 Mb for a pattern with m = 300, where pattern andtext were randomly generated over an alphabet of size � = 68. As
an be seen, there is a k valuefrom where the mat
hing probability starts to grow abruptly, moving from almost 0 to almost 1 in ashort range of values. Despite that this phenomenon is not as abrupt as for the k di�eren
es problem[6, 16℄, it is sharp enough to make this k value the most important parameter governing the behaviorof the algorithm. We
all k� this point, and �� = k�=m the
orresponding error level.
0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

pr
ob

ab
ili

ty
 o

f m
at

ch

0 500 1000 1500
40

45

50

55

60

65

m

α∗

Figure 8: On the left, number of mat
hes found for in
reasing k values and �xed m = 300. On theright, the �� limit as m grows. [eje y℄On the right part of Figure 8 we have shown this limiting �� value for di�erent pattern lengths,showing that �� tends to a
onstant for large m, despite that it is smaller for short patterns.Finally, we show in Figure 9 how the alphabet size � a�e
ts the �� value. As
an be seen, the
urve looks as a straight line, where least squares estimation yields �� = �=1:0856 � 0:8878.13

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

σ

α∗

Figure 9: The �� limit as � grows.All this mat
hes our analyti
al results in the sense that (a) there is a
lear error level �� where themat
hing probability goes almost from 0 to 1; (b) this point does not depend on m asymptoti
ally;and (
) it depends on � linearly as predi
ted by the analysis (�� = �=e� 1) ex
ept be
ause the e hasbeen
hanged to about 1.09. Interestingly, this is similar to the result obtained for the k di�eren
esproblem in [6, 16℄ when relating their analyti
al predi
tions (�� = 1 � e=p�) with the experiments(�� = 1� 1:09=p�) and shows a
onsistent behavior of the pessimisti
 analyti
al model used in both
ases.7.2 The AlgorithmsWe experimentally study our algorithms now. We tested with 35 Mb of random text (� = 68) anda set of 100 random patterns of lengths m 2 f4; 5; 6g. This is a typi
al setup for intrusion dete
tionappli
ations. We use a Sun Enterprise 450 server (4 x UltraSPARC-II 250MHz) running SunOS 5.6with 512 Mb of RAM and w = 32. Ea
h data point was obtained by averaging the Unix's real timeover 10 trials.A �rst
on
ern is whi
h is the s
anning eÆ
ien
y of the algorithms
ompared to plain dynami
programming for one pattern, independently of their �ltering eÆ
ien
y to deal with multiple patterns.Figure 10 shows the s
anning eÆ
ien
y of the dynami
 programming, the bit-parallel simulation andthe
onting �lter (using the bit-parallel simulation as the veri�
ation engine) for single random patternswithm = 4. We measure the megabytes per se
ond (Mb/s) pro
essed by the algorithms as k in
reases.As
an be seen, the bit-parallel simulation is 2.5 to 3 times faster than the
lassi
al solution even forvery large k values. The
ounting �lter is in between.We
ompare now the impa
t of the number of patterns r0 in the multipattern �lter based onsuperimposed automata. We take m = 4 (i.e., the length of the shortest pattern in the set) and � = 68for our analyti
al estimation of optimal superimposition, whi
h yields r0k=4 = 8:93, r0k=6 = 6:41 andr0k=8 = 4:94. Figure 11 (left) shows the Mb/s pro
essed when using di�erent values of r0 over a set of100 patterns. As the analysis predi
ts, there is an optimal amount of superimposition that is redu
edas k grows. The analyti
ally estimated optima are below the pra
ti
al ones, sin
e our analysis usesa pessimisti
 bound on the mat
hing probability. We use the experimental optima in the tests thatfollow.We now show the degree of parallelism a
hieved by the superimposition and
ounting �lters al-gorithms, in terms of the ratio between the parallel version and r appli
ations of the
orrespondingsingle-pattern algorithm. We sear
h the same set of randomly sele
ted patterns (m 2 f4; 5; 6g) with14

20 40 60 80 100 120
2

4

6

8

10

12

14

16

18

k

M
b/

s

 Dynamic Prog
 Bit−parallel Simulation
 Counting Filter

Figure 10: S
anning eÆ
ien
y of the bit-parallel simulation and the
ounting �lter
ompared to the
lassi
al dynami
 programming algorithm.
0 5 10 15 20 25 30 35 40 45 50

0

1

2

3

4

5

6

7

r’

M
b/

s

 k = 4
 k = 6
 k = 8

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

pa
ra

lle
l/s

eq
ue

nt
ia

l

 Superimposition Filter
 Counting Filter

Figure 11: On the left, Mb/s vs partition size for k = 4, k = 6 and k = 8 over a set of 100 patternswith m 2 f4; 5; 6g. On the right, ratio between parallel and sequential versions of the algorithms.k = 8. Figure 11 (right) shows the behavior in terms of r. We observe that the multipattern �lterqui
kly
onverges to a 5-fold improvement over its sequential version as r in
reases. The
ounting�lter a
hieves a lower degree of parallelism, taking 0.27 of its sequential
ounterpart.Figure 12 shows the impa
t of sear
hing allowing di�erent numbers of insertions for both algo-rithms, for pattern sets of r = f1::100g. We observe that performan
e remains stable up to a limitaround r = 25 with low k. For higher k values, however, performan
e drops drasti
ally from the be-ginning. The
ounting �lter resists more this behavior, whi
h shows its higher toleran
e to insertionsfor short patterns. To see this, note that the
ase m = 6, k = 25 and � = 68 is totally inside the s
opeof the
ounting �lter a

ording to the analysis, while the superimposition �lter
an only superimpose3 patterns under this setup.8 Con
lusionsWe have presented a string mat
hing approa
h to the problem of intrusion dete
tion, whi
h is for-malized as the problem of multipattern mat
hing allowing insertions. Besides the
lassi
al solutionfor one pattern adapted from the �eld of approximate pattern mat
hing, we have presented two newsear
h algorithms whi
h we also extended to handle multiple patterns. Ea
h of the two algorithms15

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

r

M
b/

s

 Conting Filter
 Superimposition Filter

(a) 0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

r

M
b/

s

 Conting Filter
 Superimposition Filter

(b)

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

r

M
b/

s

 Conting Filter
 Superimposition Filter

(
) 0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

r

M
b/

s

 Conting Filter
 Superimposition Filter

(d)Figure 12: Mb/s pro
essed by both algorithms for a set of patterns with m 2 f4; 5; 6g with (a) k = 4,(b) k = 6, (
) k = 8 and (d) k = 25.
an be better than the other depending on the number of insertions allowed.We have presented analyti
al and experimental results
on
erning the performan
e of the newalgorithms. As an example, we illustrate the
ase of 4-letters patterns sear
hed allowing 4 insertions,whi
h is a
ase of interest in intrusion dete
tion appli
ations. The single pattern versions are typi
ally3 times faster than the
lassi
al solution. The multipattern algorithms allow sear
hing 100 patternsat the same
ost of 4 single pattern sear
hes (a 25-fold speedup). As a result, our new algorithmsallow sear
hing for 100 patterns at a rate of 4 Mb/s in our ma
hine, while the
lassi
al algorithm
ansear
h for just one single pattern at 5 Mb/s.In the �eld of approximate string mat
hing, the fastest algorithms are �lters able to dis
ard mostof the text by
he
king a ne
essary
ondition. In general, those �lters
annot easily be applied herebe
ause the error levels typi
al in intrusion dete
tion appli
ations are too high for the standards ofthe approximate string mat
hing problem. We have shown, however, that some �ltration te
hniques
an be adapted to this problem to obtain a large improvement in the performan
e of multipattern16

sear
hing.Future work involves �nding new algorithms, as well as a detailed study of optimization andextensions on the
urrent ones:� In the multipattern �lter algorithm, if the patterns have di�erent length, we trun
atethem to the shortest one when superimposing the automata. We
an sele
t
leverly thesubstrings to use, sin
e having the same
hara
ter at the same position in two patternsimproves the �ltering me
hanism.� We used simple heuristi
s to group subpatterns in the superimposed automata. These
an be improved to maximize
ommon letters too.� The multipattern �lter is limited to patterns of size m(dlog2(k+1)e+1) � w. Automa-ton and pattern partition te
hniques [6℄
an be in
orporated to sear
h longer patterns.Furthermore, the
ombination of te
hniques
an be
onsidered in order to in
rease thetoleran
e to insertions.Related to this last point about the length of the patterns, we point out that we have
on
entratedin the parameters typi
al of intrusion dete
tion, where the patterns are rather short, the error level isquite high, and the number of patterns is large. The new algorithms we have presented are very wellsuited to this setup, but other variants of the problem
ould be of interest in other appli
ations and
ould demand (or permit) di�erent approa
hes. In parti
ular, more sophisti
ated models of atta
ksmay yield more
pomplex pattern mat
hing iproblems.Referen
es[1℄ R. Baeza-Yates. EÆ
ient Text Sear
hing. PhD thesis, Dept. of Computer S
ien
e, Univ. ofWaterloo, May 1989. Also as Resear
h Report CS-89-17.[2℄ R. Baeza-Yates. Text retrieval: Theory and pra
ti
e. In 12th IFIP World Computer Congress,volume I, pages 465{476. Elsevier S
ien
e, September 1992.[3℄ R. Baeza-Yates and G. Gonnet. A new approa
h to text sear
hing. Comm. of the ACM, 35(10):74{82, O
tober 1992.[4℄ R. Baeza-Yates and G. Navarro. Multiple approximate string mat
hing. In Pro
. WADS'97,LNCS 1272, pages 174{184, 1997.[5℄ R. Baeza-Yates and G. Navarro. New and faster �lters for multiple approximate string mat
hing.Te
hni
al Report TR/DCC-98-10, Dept. of Computer S
ien
e, Univ. of Chile, 1998. Submitted.ftp://ftp.d

.u
hile.
l/pub/users/gnavarro/multi.ps.gz.[6℄ R. Baeza-Yates and G. Navarro. Faster approximate string mat
hing. Algorithmi
a, 23(2):127{158, 1999.[7℄ G. Das, R. Fleis
her, L. Gasienie
, D. Gunopulos, and J. K�arkk�ainen. Episode mat
hing. In Pro
.CPM'97, LNCS 1264, pages 12{27, 1997.[8℄ S. Forrest, A.S. Perelson, L. Allen, and R. Cherukuri. Self-nonself dis
rimination in a
omputer.In Pro
. IEEE Symp. on Resear
h in Se
urity and Priva
y, 1994.17

[9℄ K. Ilgun. USTAT: A real-time intrusion dete
tion system for UNIX. Master's thesis, ComputerS
ien
e Dept., University of California, Santa Barbara, July 1992.[10℄ P. Jokinen, J. Tarhio, and E. Ukkonen. A
omparison of approximate string mat
hing algorithms.Software Pra
ti
e and Experien
e, 26(12):1439{1458, 1996.[11℄ K. Kendall. A database of
omputer atta
ks for the evaluation of intrusion dete
tion systems.Master's thesis, MIT, Dept. of Ele
tri
al Engineering and Computer S
ien
e, June 1999.[12℄ S. Kumar. Classi�
ation and Dete
tion of Computer Intrusions. PhD thesis, Dept. of ComputerS
ien
e, Purdue University, August 1995.[13℄ R. Muth and U. Manber. Approximate multiple string sear
h. In Pro
. CPM'96, LNCS 1075,pages 75{86, 1996.[14℄ G. Myers. A fast bit-ve
tor algorithm for approximate pattern mat
hing based on dynami
progamming. In Pro
. CPM'98, LNCS 1448, pages 1{13, 1998.[15℄ G. Navarro. Multiple approximate string mat
hing by
ounting. In Pro
. WSP'97, pages 125{139.Carleton University Press, 1997.[16℄ G. Navarro. Approximate Text Sear
hing. PhD thesis, Dept. of Computer S
ien
e, Univ. of Chile,De
ember 1998. Te
hni
al Report TR/DCC-98-14. ftp://ftp.d

.u
hile.
l/pub/users/-gnavarro/thesis98.ps.gz.[17℄ G. Navarro. A guided tour to approximate string mat
hing. Te
hni
al Report TR/DCC-99-5,Dept. of Computer S
ien
e, Univ. of Chile, 1999. Submitted. ftp://ftp.d

.u
hile.
l/pub/-users/gnavarro/survasm.ps.gz.[18℄ G. Navarro and R. Baeza-Yates. Improving an algorithm for approximate pattern mat
hing.Te
hni
al Report TR/DCC-98-5, Dept. of Computer S
ien
e, Univ. of Chile, 1998. Submitted.ftp://ftp.d

.u
hile.
l/pub/users/gnavarro/dexp.ps.gz.[19℄ P. Sellers. The theory and
omputation of evolutionary distan
es: pattern re
ognition. J. ofAlgorithms, 1:359{373, 1980.[20℄ S. Wu and U. Manber. Fast text sear
hing allowing errors. Comm. of the ACM, 35(10):83{91,O
tober 1992.

18

