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Abstract.

In this paper we discuss a new algorithm that for any input quality constrained
Delaunay triangulation with minimum interior angle greater than or equal to 30°,
produces a quality nonobtuse boundary and/or interface Delaunay triangulation by
the Delaunay insertion of a finite number of boundary and/or interface points. A
boundary (interface) obtuse triangle is a triangle that has an obtuse angle opposite
to a boundary (interface) edge. The output mesh might have a small number of
triangles with interior angles less than 30° in the neighborhood of the triangles with
boundary constrained angles.

The analysis of the algorithm considers two cases depending on the geomet-
ric complexity of the domain: (a) simple polygonal domains which may include
holes and (b) polygonal domains with interfaces. In case (a) every obtuse triangle
with one boundary edge is eliminated by the Delaunay insertion of one point, and
every obtuse triangle having both medium size edge and longest edge (of respective
lengths l and L) over the boundary and boundary constrained angle 8 ts eliminated
by building an isosceles triangle of boundary edges of lengths 1/2 (which maintains
the Delaunay triangulation) followed by the Delaunay insertion of a finite number

of points N, where N < K, and K = [2-|- ﬁ—| In case (b), there are inter-

face obtuse triangles either isolated or arranged into a group of adjacent interface
triangles. The isolated interface obtuse triangles are destroyed in a similar way to
boundary obtuse triangles of case (a), and on the contrary, the grouped interface
triangles are destroyed together by Delaunay insertion of a finite number of points.

It is proved that the algorithm produces an almost (non-constrained) Delaunay
triangulation in the sense that all pair of triangles sharing an interface edge sat-
isfy the Delaunay condition. Ezxamples of the practical behavior of the algorithm
combined with a Lepp-Delaunay algorithm to produce the initial triangulation are
also included.

keywords. Nonobtuse triangulation, Delaunay meshes, control volume method.
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1 Introduction

The numerical solution of partial differential equations (PDEs) is invaluable in design
and optimization in many fields of engineering. The spatial discretization (mesh) of
the structure to be simulated, is key to the accuracy of the computed solution. An
appropriate mesh should fulfill several requirements. First, it must provide a reasonable
approximation of the geometry to be modeled, in particular of its boundary and internal
material interfaces. Second, it is extremely important to accurately approximate all
internal quantities relevant to the solution of the PDEs. Third, each cell must fulfill
certain geometric constraints imposed by the numerical method: if the PDEs are solved
with the finite element method, no angle must be smaller than some bound supplied a
priori. If the equations are solved using a control volume discretization method(CcvMm)[1],
the center of the circumcircle that surrounds each boundary (interface) element must be
inside the element or inside the polygon that contains the element [2]. In case of a
triangulation, this means that the angle opposite to a boundary (interface) edge must
be an acute angle.

The CVM is very popular in the numerical simulation of semiconductor devices [1, 3, 4].
The meshes for the CVM can be classified into two groups: (1) nonobtuse meshes, i.e,
meshes without any obtuse angle, and (2) nonobtuse boundary (interface) meshes. In
the first group, we can find approaches such that nonobtuse triangulations [1, 3, 5] and
rectangle based meshes [6, 7]. The second group is still less developed than the first
group. One of the first approaches for simple polygonal domains is based on the sphere
packing technique [5] and was presented in [8].

This paper presents a new algorithm to generate 2-D nonobtuse boundary (interface)
meshes for the CVM for polygonal domains with interfaces. The algorithm receives as
input any quality constrained Delaunay triangulation (CDT'), whose angles are bounded
by 30° and 120° and eliminates all the boundary (interface) obtuse triangles. The do-
main is specified by a planar straight line graph (PSLG), which can include polygons,
polygons with holes, and complexes (objects made of multiple polygons); dangling edges
and isolated vertices are also allowed. Even when every algorithm able to produce an
initial good quality CDT could be used, we generate the CDT with the Lepp Delaunay
algorithm introduced by Rivara in [9, 10], which consists of: (a) The generation of an
initial CDT (which essentially uses the PSLG vertices), and (b) the use of an Lepp-
Delaunay algorithm which improves the quality of the mesh so that the minimum angle
is greater than or equal to 30°. The basic Lepp-Delaunay improvement strategy uses the
Longest-Edge Propagation Path (Lepp) of the target triangles in order to decide which is
the best point to be inserted, to produce a good-quality point distribution. This strategy
is repeatedly used until the target triangle is destroyed.

The analysis of the proposed algorithm is divided into two cases depending on the
domain complexity: (a) simple polygonal domains which may include holes and (b)
polygonal domains with interfaces. In case (a) an obtuse triangle with one boundary
edge is eliminated by the Delaunay insertion of the midpoint of the boundary edge,
and an obtuse triangle with two boundary edges is eliminated by building an isosceles
triangle and inserting Delaunay a finite number of points if they are required to eliminate



new boundary obtuse triangles with one boundary edge. The isosceles triangle has two
boundary edges of length equal to half of the length of the smallest boundary edge of
the target triangle. In case (b), in addition to the boundary obtuse triangles of case (a),
there exist interface obtuse triangles both isolated or arranged into a group of adjacent
interface triangles. The isolated interface obtuse triangles are destroyed in a similar way
to boundary obtuse triangles of case (a), and the interface triangles arranged into a group
are destroyed together by inserting Delaunay a finite number of points.

In addition, it is proved that the algorithm produces an almost (non-constrained)
Delaunay triangulation in the sense that triangles lying at the interfaces satisfy the
Delaunay condition.

Finally note that this kind of meshes can be very useful in semiconductor simulations
when the device simulation is solved combining finite element and control volume meth-
ods [3]. This requires the combination of good quality meshes and well shaped Voronoi
boxes. In particular, the minimum angle should be bounded and boundary triangles
should not have obtuse angles opposite to any boundary edge or interface edge.

2 Basic concepts and definitions

This section introduces name conventions for boundary and interface obtuse triangles,
the geometrical restrictions of the numerical method known as control volume, the Lepp
concept and some geometrical properties.

2.1 Boundary and interface triangles

In general, we shall call a boundary triangle to any triangle that has either one, two or
three boundary edges and none interface edge, and an interface triangle to any triangle
that has at least one interface edge (note that an interface triangle can have a boundary
edge).

In order to distinguish the different cases to be considered which depends on the
number of edges that a triangle has along a boundary or an interface, the following
definitions will be considered:

Definition 1 A 1-edge boundary (interface) triangle is any triangle that has exactly one
boundary (interface) edge. A 2-edge boundary triangle is any triangle that has ezactly
two boundary edges; and a 2-edge interface triangle is any triangle that has either 2
interface edges or one interface and one boundary edge.

Other relevant definitions are:

Definition 2 A boundary (interface) obtuse triangle is any triangle that has a boundary
and/or interface edge opposite to its obtuse angle.

Definition 3 A boundary (interface) constrained angle is an angle that is defined by two
boundary (interface) edges. This angle can not be modified.



2.2 Triangulation restrictions for the control volume discretiza-
tion method

The following definition describes the main restriction imposed over triangulations by
the control volume discretization method (CVM).

Definition 4 Let P be any input PSLG. A triangulation T of P is appropriate for the
CVM (well-shaped) if

(i) T is a Delaunay triangulation,

(11) The center of the circumcircle (Voronoi point) of each boundary triangle lies inside
the boundary triangle or inside a neighboring triangle through interior edges.

The Delaunay triangulation and its dual, the Voronoi diagram fit very well with the
CVM, because the Voronoi cells act as the control volumes, which are in turn used to
compute the numerical integration around each mesh point. Figure 1(a) shows a well-
shaped triangulation and its corresponding Voronoi diagram. The Voronoi diagram is
shown with thick lines. Figure 1(b) shows a non-acceptable triangulation because it has
a boundary triangle (the triangle defined by the vertices p;, pr,p;) whose circumcircle
center (Voronoi point v) lies outside the mesh. This occurs when the angle opposite to
a boundary edge is an obtuse angle. For more information about the CVM and the
restrictions on the mesh see [1, 8].

Figure 1: 2-D Delaunay triangulations and their Voronoi diagrams: (a) acceptable tri-
angulation for the cvM, and (b) unacceptable triangulation

2.3 Basic definitions and geometrical properties

In this section, we introduce geometrical properties that we will use later to prove the
correctness of the proposed algorithm to eliminate boundary (interface) obtuse triangles.

Definition 5 The diameter circle of any edge of vertices A and B (Cap) is the circle
with center equal to the midpoint of edge AB and diameter AB.

The following property is a particular case of a theorem presented in [11].
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Figure 2: a is equal to 120° if and only if the distance between O and M (the midpoint
of AB) is equal to r/2

Proposition 1 Let t(A,B,C) be any triangle of longest edge AB and circumcircle C;.
Then, the angle a opposite to AB is equal to 120° iof and only if the distance between the
midpoint of AB and the center of the circumcircle is equal to v/2, where r is the radius
of the circumcircle Cy (see Figure 2).

Proof: Since from elementary geometry all the triangles t(A,B,C) with fixed edge
AB and vertex C over the same arc AB of the circumcircle C; have identical angle a
opposite to AB, the result will be proved for the particular case, where t(A,B,C) is an
isosceles triangle of longest edge AB and smallest edges AC and BC (length of AC equal
to length of BC) where the vertex C is over the smallest arc AB (note that the case
where C is over the biggest arc implies that AB is not the longest edge of triangle ABC)
as shown in Figure 2. Clearly in this case the triangle CBM is similar to triangle OMB
where M is the midpoint of edge AB (which implies that cos § = % and a = 120°) if and
only if the length of edge MO is equal to /2.0

The following theorem is an extension of the known theorem of Thales and charac-
terizes the properties of the diameter circle of any edge AB of any triangle t(A,B,C).
This theorem will be used in section 4 to prove Theorems 3 and 4.

Theorem 1 Let t(A,B,C) be any triangle defined by the vertices A,B,C, the circle Cap
the diameter circle of AB, and o the angle of vertex C (opposite to AB). Then (1)
the angle a 1s a right angle if and only if the diameter circle of AB is identical to the
circumcircle of t(A,B,C) (the vertez C lies on the arc AB as stated in the theorem of
Thales), (ii) the angle o is an acute angle if and only if the vertex C lies outside Cyp,
and (111) the angle a is an obtuse angle if and only if the vertex C lies inside Cap.

Proof: The case (i) corresponds to the theorem of Thales. In order to prove the case
(ii), let us consider any triangle AQB with vertex Q in the exterior of Cyp as shown in
Figure 3(a). Then the geometric median joining @ with the midpoint of AB intersects
the arc AB in a point C’ which defines a right triangle AC’B whose angles of vertices A
and B are respectively smaller than the angles of vertices A and B of the triangle ABQ.
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This implies that angle AQB is smaller that the angle AC’B and the result follows. In
order to prove case (iii), let us consider any triangle AQB with vertex Q in the interior
of Cap as shown in Figure 3(b). The line segment defined by the geometric median
joining the midpoint M of AB and C (in direction MC) intersects arc AB in a point C’
(outside the triangle) which defines a right triangle AC’B whose angles of vertices A and
B are respectively greater than the angles of vertices A and B of the triangle ABQ. This
implies that the angle of vertex Q is greater than 90° and the result follows. O

Q

Figure 3: (a) C; is identical to the diameter circle Cyp, then o = 90°) (b) C is outside
Cag, then a < 90° (¢) C is inside C4p, then a > 90°)

2.4 The Lepp(t)

This section reviews the Lepp concept and summarizes some geometrical properties [10,
11, 9]. This applies over general conforming unstructured triangulations, where a trian-
gulation is conforming if pairs of adjacent triangles have either a common vertex or a
common edge.

Definition 6 For any triangle ty of any conforming triangulation 7, the Longest-Edge
Propagation Path of to (Lepp(to)) will be the ordered list of all the triangles to , ti, ts,
voitpn_1, tn, such that t; is the neighbor triangle of t;_; by the longest edge of t;_1, for 1 =
1,2,.., n.

Proposition 2 For any conforming triangulation 7 the following properties hold: (a)
for any t, the Lepp(t) is always finite; (b) The triangles to , ti,..., ta—1, have strictly
increasing longest edge (ifn > 1); (¢) For the triangle t,, of the Longest-Edge Propagation
Path of any triangle to, it holds that either: (i)t, has its longest edge along the boundary,
and this is greater than the longest edge of t,_1, or (it) t, and t,_1 share the same
common longest edge.

Definition 7 Two adjacent triangles (t, t*) will be called a pair of terminal triangles if
they share a common longest edge.



Definition 8 For any given triangulation T, any interior edge | will be called a terminal
edge in 7T if this edge corresponds to the common longest edge of the two triangles that
shares the edge | (1 is the common edge of a pair of terminal-triangles).

Note that the Lepp of any triangle t corresponds to an associated polygon (shadowed
in Figure 4), which in certain sense measures the local quality of the current point
distribution induced by t. To illustrate these ideas, see Figure 4, where the Lepp of £,
corresponds to the ordered list of triangles (to, 1, ¢a, ts, ts). Moreover the pair (ts, t4)
is a pair of terminal triangles in the mesh.

The definition 6 should be slightly modified to consider the case where the longest
edge is not unique. In such a case, the longest edge that produces the shortest path

should be selected.

Figure 4: Longest-edge propagation path of £,

3 Lepp-Delaunay improvement triangulation algo-
rithm and properties

This section describes briefly the algorithm we are using to generate good quality CDT.
For a detailed discussion of the algorithm and its properties [10, 9]. The algorithm
receives as input any CDT 7 and the value of the smallest angle §, and produces an
output triangulation whose angles are bounded between ¢ and 180° — 24, excepting for
the smallest boundary (interface) constrained angles.

The improvement algorithm uses two basic point insertion operations:

1. Terminal-edge point insertion. This operation refers to the Delaunay insertion
of the midpoint of the terminal edge of Lepp(t), whose main goal is the local
improvement of the point distribution in the interior of the 2-dimensional geometry.

2. Boundary point insertion. This operation refers to the Delaunay insertion
of the midpoint of a boundary edge, which is in turn the edge of a boundary
triangle whenever this boundary triangle is the first boundary triangle with interior
smallest edge in the current Lepp(t). Note that the main goal of this point insertion



operation is the local improvement of the point distribution over the boundary of
the geometry.

For an illustration of the use of the Terminal-edge point insertion operation, see
Figure 5 where the triangulation (a) is the initial Delaunay triangulation with Lepp(¢o)
= to,t1,t2,%3, and the triangulation (b), (c) and (d) illustrate the complete sequence of
point insertions needed to improve ¢o. In this example, the improvement (modification)
of to implies the automatic Delaunay insertion of three additional Steiner points. Each
one of these points is the midpoint of the terminal-edge of the current Lepp(¢o).
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Figure 5: Backward Longest-Edge Delaunay improvement of triangle £,

For an illustration of the Boundary point insertion operation consider the simple
example of Figure 6(a). In this case the naive use of the Lepp, i.e, the insertion of the
midpoint of the terminal-edge would produce undesirable interior points (as shown in
Figure 6(b)). The boundary point insertion operation as described above produces an
adequate point distribution as shown in Figure 6(c).

— ] =]

@ (b)

A

©

Figure 6: Boundary treatment technique

The overall improvement algorithm can be formulated as follows:



Lepp-Delaunay-quality-triangulation ( 7, ¢ )
Input: A CDT 7 of any PSLG domain; and a tolerance parameter (§ < 30°)
Find S, the set of the bad triangles t of 7 (of smallest angle less than §)
for eachtin S do
Lepp-Delaunay-Improvement (7, t)
Update the set S (by adding the new small-angled triangles and eliminating those
destroyed throughout the process)
end for
Lepp-Delaunay-Improvement (7, t)
while t remains without being modified do
Find the Lepp(t)
Find the first boundary triangle ¢* in Lepp(t)
with boundary edge | not equal to the smallest edge of t*
if 1 exists then
select p, the midpoint of 1
else
select p midpoint of the terminal-edge of Lepp(t)
end if
Perform the Delaunay insertion of p
end while

Remarks

1. The set S of 7 does not consider triangles with boundary constrained angles because
they cannot be improved in the mesh.

2. 4 is a parameter less than or equal to 30° that can be easily adjusted.

3. As it was pointed out in [9, 10, 12] the processing order of the triangles in the set
S is irrelevant from a practical point of view. Furthermore, the algorithm has a
kind of selfcorrective property in the sense that the initial (nonordered) processing
of any small subset of S indeed destroys and improves a big subset of the worst
triangles of S.

We have used the word improvement instead of bisection or refinement. This is to
explicit the fact that one step of the procedure does not necessarily produce a smaller
triangle. More important however, is the fact that the Lepp-Delaunay-Improvement
algorithm improves the triangle in the sense of Theorem 2 [10, 11].

Theorem 2 For any Delaunay triangulation 7, the repetitive use of the Lepp-Delaunay-
quality triangulation algorithm (with threshold parameter § = 30°) produces a quality
triangulation of smallest angle greater than or equal to 30°, excepting occasionally some
1solated angles 22.2° < a < 30° related with nonfrequent geometric conditions and bound-
ary restrictions.

Remark: In practice almost every CDT can be improved using the previous algo-
rithm, with threshold parameter § = 30°, producing a mesh whose internal angles are

bounded by 30° and 120°.



4 Nonobtuse boundary Delaunay triangulations

In this section we present the algorithm to eliminate boundary (interface) obtuse triangles
and prove its properties. In particular, it is proved that the resulting triangulation is
a non-constrained Delaunay triangulation over the interface edges (triangles sharing an
interface edge satisfy the Delaunay condition).

We present the algorithm divided into two cases according to the domain complexity:
(a) simple polygonal domains which may include holes, and (b) polygonal domains with
interfaces (PSLG inputs). In case (a) only isolated 1-edge and 2-edge boundary obtuse
triangles must be considered and, in case (b), apart from the triangles of case (a), 1-
edge and 2-edge interface obtuse triangles either isolated or inside a group of adjacent of
interface triangles must be handled.

4.1 Nonobtuse boundary triangulation of simple polygonal do-
mains

Triangulations of simple polygonal domains present two cases of boundary obtuse tri-
angles: triangles with 1-boundary edge and triangles with 2-boundary edges. In this
section, we prove that the elimination of 1-edge boundary obtuse triangles is done by
the Delaunay insertion of one point, and the elimination of 2-edge boundary obtuse tri-
angles requires the Delaunay insertion of a finite number of points that depends on the
geometry of the target triangle.

4.1.1 1-edge boundary obtuse triangles

In order to demonstrate that 1-edge boundary obtuse triangles can be eliminated by

the Delaunay insertion of one point, we first characterize the 1-edge boundary obtuse

triangles, and then we demonstrate that the Delaunay insertion of the boundary edge

midpoint eliminates the obtuse angle not generating new boundary obtuse triangles.
The 1-edge boundary obtuse triangles are described in the following theorem:

Theorem 3 Let 7 be any quality CDT of any PSLG geometry with internal angles
bounded by 30° and 120°. Then any I-edge boundary obtuse triangle t(A,B,C) in 7
of boundary longest-edge AB has vertex C located in the region R, limited by Cyp and
the lines 1y, ly (respectively intersecting Cap in the points F' and G as shown in Fig-
ure 7), where lines l; and ly are defined so that the angles FBA and GAB are equal to
30°, respectively, and Cyp 1s the diameter circle of AB.

Proof: In order to define an obtuse triangle with all angles greater than 30°, the
vertex C must be inside the region R because of (1) if the vertex C would be outside the
diameter circle Cyp, the angle of vertex C would be acute (see Theorem 1); and (2) if
the vertex C would be located under /; or under /5, the angle FBA or GAB would be less
than 30°. Note that the largest obtuse angle 120° is produced when C becomes equal to
E. O.
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Figure 7: R defines the geometric region for the vertex C so that ABC is a quality obtuse
triangle

The elimination of any l-edge boundary obtuse triangle is done as described in the
following theorem:

Theorem 4 Let 7 be any quality CDT of any PSLG geometry with angles bounded by
30° and 120°. Let t(A,B,C) be a 1-edge boundary obtuse triangle in T with obtuse angle
of verter C and unique boundary edge AB. Then the Delaunay insertion of the midpoint
M of AB eliminates the obtuse angle BCA not generating new boundary obtuse triangles.

Proof: In order to prove this theorem, we shall show that (1) the insertion of the mid-
point M of AB generates two nonobtuse boundary triangles CBM and CMA of respective
boundary edges BM and MA as shown in Figure 8; and (2) in case that edge swapping
of edges AB and/or BC are required, the 1-edge boundary triangles of boundary edges
MA or BM (see Figure 9) are nonobtuse boundary triangles.

(a)

Figure 8: (a) R defines the geometric region for the vertex C for the quality obtuse
triangle ABC (b) Diameter circle Cpr4 does not intersect R assuring that the triangle
CMA is a nonobtuse triangle
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Clearly only one of the two triangles CBM and CMA in Figure 8(a) generated by the
bisection of the boundary edge AB can be an obtuse triangle of vertex C. Without loss
of generality, let assume that CBM is the nonobtuse boundary triangle and CMA is an
obtuse angle. According to Theorem 1(iii), this implies that C is in the interior of the
diameter circle Cpra of radius r; equal to half the length of edge MA (see Figure 8(b)).
This fact is impossible because the shortest distance d between any point C in R and the
center M; of Upra (produced when C lies on [; and C'M; is orthogonal to l;) is greater
than 7, (by elementary geometry d is equal to 2ry).

Let now assume that the circumcircle of triangle MAC includes the point D and
consequently there exist a triangle CAD (see Figure 9) which shares the edge CA with
triangle CMA so that an edge swapping occurs between MD and CA (MD replaces MA)
and a new l-edge boundary triangle AMD is generated. We shall show that triangle
ADM is nonobtuse of vertex D. By hypothesis, every internal angle is greater than or
equal to 30°, then the vertex D must be located in the region €2 limited by lines /3 and
l4 (see Figure 9(a)), where I3 contains the vertex A and forms an angle of 60° with
the boundary edge M A, and [, is defined by the vertices E and F, which respectively
correspond to the vertices C and D, when the angles BCA and CDA are equal to 120°.
The shortest distance d between the center M; of the diameter circle Cyr4 and any point
D of region ) occurs when the angle of vertex D is equal to 120° (D is on line l;). By
using Proposition 1, d is equal to § (where r is the radius of the circumcircle of the
triangle ABE), then D is always outside the Cpr4 because the radius of Cpr4 is less than
5+ Since D is in the exterior of U4, the triangle AMD is a nonobtuse boundary triangle

Theorem 1(ii)). The case of an edge swapping of CB is symmetric.0

(a) (b)

Figure 9: (a)The shadow region 2 shows the location of the vertex D so that an edge
swapping is possible (b) edge swapping (AC to MD) does not produce a new boundary
obtuse triangle
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Corollary 5 For any quality CDT of any PSLG geometry (without interfaces) with an-
gles lies between 30° and 120°, the number of point insertions (Nyp) required to eliminate
N I-edge boundary obtuse triangles is equal to N.

4.1.2 Triangles with two boundary edges

The elimination of 2-edge boundary obtuse triangles can be divided into two cases:

1. The smallest and the longest edge of the triangle are boundary edges, and the
medium size edge is an internal edge, as illustrated by triangle ABC in Figure 10(a).
(The vertex C must belong to the region R otherwise the length BC would be
greater than the length of CA.) The strategy presented in theorem 4 also applies
to this case since the Delaunay insertion of the midpoint of the edge AB can only
produce an obtuse angle (&) opposite to an internal edge, but not opposite to
a boundary edge. Then, this operation does not create a new boundary obtuse
triangle. (« is greater than or equal to 30° because of the previous application of
the Lepp improvement procedure).

Figure 10: (a) C belongs to the Region R (b) insertion of the midpoint of AB

2. The medium size edge and the longest edge of the triangle are boundary edges,
and the smallest edge is an interior edge opposite to the boundary constrained
angle B (the smallest angle of the triangle). In this case, we can not apply the
strategy described in theorem 4 because after two applications of the strategy, a
new triangle similar to the target triangle will be obtained, as shown in Figure 11
(t, is similar to ¢4). One additional problem is that the boundary constrained angle
can be less than 30° and consequently, the obtuse angle can be greater than 120°.

The essential ideas of the strategy to handle case 2 are as follows: An 2-edge boundary

isosceles triangle of boundary edges equal to half the smallest boundary edge of the target
triangle is constructed (triangle AMN in Figure 12(b)) by Delaunay insertion of the points

13



Figure 11: ¢, is similar to ¢4

M and N. This construction can produce an l-edge boundary obtuse triangle ¢;, which
is in turn destroyed by the Delaunay insertion of the midpoint of the longest edge of ¢;
(Figure 12(c)). Since ¢; might have maximum angle greater than 120°, the elimination of
t; can again produce a new boundary obtuse triangle ¢;, with largest angle smaller than
the previous one and so on. The boundary obtuse triangles are finally eliminated after
the insertion of a finite number of points. The next algorithm implements this strategy:

C C
! 112 M
B ! L
B (a) L A B 1/2 (b) L-1/2 A
C C
M M
t, M
B N N, A B N N A
© @

Figure 12: Elimination of 2-edge boundary obtuse triangles

Eliminate-2-edge-boundary-obtuse-triangle(¢s, 7)
Input: ¢, is a 2-edge boundary obtuse triangle with smallest interior
edge and 7 is the current triangulation (Figure 12)
Compute the midpoint M of the smallest boundary edge of ¢,
Compute the point N so that the length of segment BM
is equal to the length of segment BN (see Figure 12(b))
Perform the Delaunay insertion of N and M (see Figure 12(b))
(This reduces to join points N and M, and points N and C)
S=¢
if triangle ¢; of vertices NAC is a 1-edge boundary obtuse triangle then
S={t;}
end if
while S is not empty do
Get any triangle t; of S
Perform Delaunay insertion of the longest edge midpoint of ¢,
Update S with the new 1-edge boundary obtuse triangles

14



end while

Remark: Since the previous algorithm does not bisect the longest boundary edge, the
angle MCN can be less than the boundary constrained angle 3 (see Figure 12(b)), which
for the longest-edge partition of an obtuse triangle is guaranteed to be greater than [.
Then, the final triangulation can have angles smaller than the boundary constrained
angles in the neighborhood of the 2-edge boundary isosceles triangles.

The next theorem computes an upper bound for the number of points inserted using
the previous algorithm which depends on the boundary constrained angle and on the
lengths of the boundary edges. It is worth to point out that the proof of this theorem
will be used later to determine upper bounds of the number of point insertions in the
elimination of interface obtuse triangles.

Theorem 6 Let ¢ be a 2-edge boundary obtuse triangle having the boundary medium size
edge and the boundary longest edge of respective lengths | and L and boundary constrained
angle 3. Then the algorithm produces a set of nonobtuse boundary triangles by Delaunay

insertion of a number of points bounded by N, where N = [2 + ﬁ1

Proof. In order to eliminate a 2-edge boundary obtuse triangle with smallest interior
edge (0 is the smallest angle of the triangle), first two points Np and M, are inserted
so that B, No, My is a 2-edge boundary isosceles triangle of two equal boundary edges
BN, and BM, (see Figure 13). Then, the 1-edge boundary obtuse triangles generated
inside the quadrilateral C, My, Ny, A are eliminated by the Delaunay insertion of points
on the boundary edges. An upper bound of the number of point insertions is obtained
by using the fact that no more point insertions are required whenever the lengths of
the boundary edges of the new 1-edge boundary triangles have a size less than or equal
V2e, where e = NyM is the smallest edge of the quadrilateral, because for any 1-edge
boundary obtuse triangle with ¢, b, a as the respective lengths of the longest, medium size
and smallest edge, holds that ¢ > a?+b% > 2e? and ¢ > v/2e. Subsequently, the number

of point insertions on each boundary edge is bounded by n, = [%1 = [%1

(JA— No| = L — 1/2 and using the cosine theorem /2 |My — No| = I1/1 — cos(3)). Note
that the point insertions done on the boundary edges MyC and NyA never destroys
the isosceles triangle BMyNy, because either the angle M;MyN, is obtuse or the angle
N;NoM, is obtuse. This means that the internal edge M; Ny or N; M, is the longest edge
of the triangle that contains the edge MyNy, then the edge swapping operation is applied
over M;Ny or N;M,. The final expression considers then twice n. (one for each edge)
and the two points My and Ny.O

Corollary 7 The number of points inserted (Vap,) to eliminate N 2-edge boundary obtuse
triangles t;,1 < 3 < N, where each t; has boundary longest edge L;, boundary medium
size edge l; and boundary constrained angle 3;, s:

N oL — 1.
Vap <2N + > [ Ll

=1 11— cos(ﬂj)1
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Figure 13: Boundary obtuse triangle with a constrained angle less than 8

Proof: The previous expression corresponds to the sum of the points inserted in each
2-edge boundary obtuse triangle. O

In order to show that a small number of point insertions is indeed needed in practice
let us discuss a particular case of Theorem 6 where only two points are required to
eliminate 2-edge boundary obtuse triangles. This case is described in the following
proposition:

Proposition 3 Let t be a 2-edge boundary obtuse triangle with smallest interior edge.
If the boundary constrained angle 3 is greater than or equal to By = 32.54°, the boundary
obtuse triangle 1s eliminated by the Delaunay insertion of the two points N and M that
forms the 2-edge boundary isosceles triangle t(B,M,N).

Figure 14: Parameters in the computation of a lower bound for 8

Proof: Let be t(A,B,C) a 2-edge boundary obtuse triangle with obtuse angle of
vertex C, longest-edge AB, and medium edge BC as shown in Figure 14(a). Since (o
is a lower bound of 3, we have to identify the triangle with smallest value of # and
the largest value of v, for which the insertion of N and M generates a triangle NCA
with angle 4; < 90° (Figure 14(b)). Note that the largest value of v is used because it
produces the largest value of v;. By using the isosceles properties of triangle BNM and
the cosine theorem, we obtain the following three equations, respectively for the angles

G, 90—|—§and d:

m? = 2d* — 2d° cos(B3)

g

22 =m?+d®— 2md cos(90 + 5)
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m?=d? + 2% — 2dz cos(4)

Let us assume that d is equal to 1, since the result is valid for any similar triangle.
Then, the previous three equations allow us to compute § for any given value of 3. The
value of v; can be computed by adding the interior angles of the triangle t and replacing
~ by 8 + 41. Then, the expression for v, is as follows:

=180 —a—fB -6

For a fixed value of 3, the biggest value of v; is obtained when a = 3 (remember
that for these triangles a must be greater than or equal to 3). Then, the new expression
for v, is:

v =180 — 28 — & < 90°

Numerically, we have obtained that a lower bound of 3 (8o) is 32.54°. Then, for any
value of (8 greater than or equal to By = 32.54°, v, > 90°. O

4.2 Nonobtuse boundary (interface) triangulations of PSLG in-
puts

The elimination of interface obtuse triangles of a quality CDT is in particular a difficult
task when interface obtuse triangles are arranged into groups. In order to discuss the
strategies designed to solve the different cases that arise when the domain includes inter-
faces, we consider four cases: (a) 1-edge interface obtuse triangles, (b) 2-edge interface
obtuse triangles, (c) adjacent 2-edge obtuse triangles, and (d) 1-edge interface obtuse
triangles adjacent to a 2-edge interface triangle.

4.2.1 Two 1-edge interface obtuse triangles share the interface edge

There exist two cases of 1l-edge interface obtuse triangles: (1) two l-edge interface tri-
angles share the interface edge, and (2) a l-edge interface obtuse triangle shares the
interface edge with a 2-edge interface triangle. In this section, we consider only case (1),
because case (2) requires a different strategy that will be discussed in section 4.2.4.

Figure 15 shows two l-edge interface obtuse triangles. Note that the Delaunay in-
sertion of the midpoint on the interface (common) edge AB destroys the two obtuse
angles and does not generate new obtuse angles opposite to the interface edge because
the vertices C and D are outside the diameter circles Cprs and Cyp. (Theorem 4 also
applies to this case with the only difference that the insertion of one point may destroy
one or two boundary obtuse angles.)

Proposition 4 The number of vertices (Vi;) inserted to eliminate N 1-edge interface
obtuse triangles is bounded as follows: % <V <N
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Proof: The lowest value of V;; ( equal to %) is obtained when Vj; is an even number
and each interface edge is shared by two interface obtuse triangles. The highest value
of Vi; (equal to N) is obtained when each interface edge is opposite to only one obtuse
angle.O

Figure 15: Obtuse angles opposite to an interface edge

4.2.2 2-edge interface obtuse triangles

Isolated 2-edge interface obtuse triangles, i.e, triangles whose interface edges are not
shared with other 2-edge interface triangles, are eliminated by using the strategy applied
to 2-edge boundary obtuse triangles. This strategy inserts points on the interface edges
so that the local triangulation inside the 2-edge interface obtuse triangle ¢ is a nonobtuse
boundary triangulation. Since now the points are inserted on interface edges instead
of boundary edges, the 1-edge interface triangles adjacent to ¢ are destroyed and new
1-edge interface triangles generated, with angles opposite to the interface edges smaller
than the original angles. Then, the new 1-edge interface triangles are nonobtuse interface
triangles, because the original 1-edge interface triangles adjacent to ¢ were also nonobtuse
interface triangles.

4.2.3 Adjacent 2-edge interface obtuse triangles

Adjacent 2-edge interface obtuse triangles can be produced by (a) a chain of connected
interface edges (AB, BC, DE, EF, FG and GH) where the interface constrained angle
between each pair of consecutive edges is small (Figure 16(a)), and (b) several interface
edges AB; that converge to a common vertex A (Figure 16(b)).

The case (a) is solved by inserting points on the interface edges of the 2-edge obtuse
interface triangles in the same way as for isolated 2-edge interface obtuse triangles. Note
that in this case a sequence of point insertions might be needed over the chain of interface
edges, because the Delaunay insertion of points to destroy one 2-edge interface triangle
might generate a new 2-edge interface obtuse triangle. In order to illustrate this case,
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Figure 16: (a) 2-edge interface triangles formed by a chain of connected interface edges
(b) interface edges that converge to a common vertex

let us assume that triangle EFG in Figure 16(a) is obtuse of vertex G. Then, the points
I and J are inserted to form the 2-edge interface isosceles triangle IJF as shown in
Figure 17(a). Note that the point J generates a new 2-edge interface obtuse triangle
EJD which is destroyed by the Delaunay insertion of two new points K and L that forms
2-edge interface isosceles triangle KLE as shown in Figure 17(b). The number of inserted
points is finite, and in the worst case involves all the interface triangles of the chain.

@ (b)

Figure 17: (a) Elimination of the 2-edge interface triangle EFG (b) Elimination of the
new generated 2-edge interface obtuse triangle EJD

The case (b) requires a global strategy over all the 2-edges interface triangles of the
group because the one by one elimination of 2-edge interface triangles in general produces
an infinite insertion of points. Consequently, we propose the elimination of the interface
obtuse triangles by computing the midpoint M of the smallest interface edge of the group
and by Delaunay inserting a point /V; on each edge j so that the distance between V; and
A is equal to the distance between M and A (a set of isosceles triangles are generated
around A as shown in Figure 18); we then eliminate each 1-edge interface triangle by
Delaunay insertion of the midpoint of its interface edge until no new 1l-edge interface
obtuse triangles are generated. Since the interface obtuse triangles are adjacent, the
number of points inserted on shared edges is defined by the triangle that requires the
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Figure 18: 2-edge interface triangles formed by interface edges converging to a common
vertex A

bigger number of point insertions.

Note that the strategy of case (b) must be applied to any group of adjacent 2-edge
interface triangles where at least one of them is a 2-edge interface obtuse triangle because
if the point insertions destroy only the 2-edge interface obtuse triangles of the group, new
2-edge interface obtuse triangles might be generated in the adjacent interface nonobtuse
triangles.

Theorem 8 The number of vertices Vs, inserted to eliminate N adjacent 2-edge interface
triangles that share a vertex A, where at least one of them s a 2-edge interface obtuse
triangle (Figure 18) is bounded by:

Vaa(4) <= (N +1)(1 + max NV(t;))

|B; — N;|  |Bjy1 — Njjl
|Njy1 — Nj|” | Njy1 — N

NV (t;) = [max( ),1<j<N

Proof: It is easy to see that the number of point insertions required to build the N
isosceles triangles requires the Delaunay insertion of (N+1) points around vertex A, as
illustrated in Figure 18. This step might generate one or more l-edge interface obtuse
triangles with interface edge NV;B;, 1 <1 < (N+1). Each 1-edge interface obtuse triangle
is destroyed by Delaunay insertion of the midpoint of its interface edge until no one new
1-edge interface obtuse triangle is generated. If the 2-edge interface triangle were isolated
(Theorem 6), the number of point insertions on each interface edge of triangle ¢; would

be at most NV (¢;) = [max( IJLT?il_iVJJ\TLI’ |]|31<r:,1_ivzjvj|l|ﬂ71 < j < N. Since each interface
edge N;B; is shared by two quadrilaterals, this normally requires two different number
of point insertions NV (¢;) and NV (¢;41). Then, an upper bound to the number of point
insertions on each edge is the value given by the maximum value of NV(¢;). As the
number of edges are N + 1, an upper bound for V2,(A) is obtained by multiplying the

number of edges by max(NV(¢;)).0

20



4.2.4 1-edge interface obtuse triangles adjacent to 2-edge interface triangles

The elimination of a 1-edge interface obtuse triangle (A, B, C') whose interface edge (AB)
also belongs to an isolated 2-edge interface (obtuse or nonobtuse) triangle t'(A4, B,C")
with smallest interior edge (Figure 19(a)) can not be done by the insertion of one point
(the midpoint M of edge AB) [13], because this point will probably generate a new 2-edge
boundary obtuse triangle ¢;(A, M,C") (see Figure 19(b)). In this case, the elimination
of £, would require the insertion of several points, those required to eliminate a 2-edge
interface obtuse triangle. In particular, a point between A and M would be inserted to
generate a new 2-edge interface isosceles triangle.

In order insert as few points as possible, ¢ is destroyed indirectly by inserting two
points (N,M) in the 2-edge interface triangle ¢’ so that ANM is an isosceles triangle
(see Figure 19(c)). Note that this strategy always eliminates the 1-edge interface obtuse
triangle ¢ and does not generate a new l-edge interface obtuse triangle ANC even in
the case N is not the midpoint of AB because the angle ACN (Figure 19(c)) is smaller
than the angle ACM (Figure 19(d)). In the case that ABC' is a nonobtuse triangle, it is
not necessary to insert additional points along NB y MC because neither triangle NC'B
(Figure 19(c)) nor triangle NBC(Figure 19(d)) are l-edge interface obtuse triangles.
In case ABC' is obtuse, the number of point insertions is bounded by the expression
obtained in Theorem 6.

In the case that t is adjacent to a 2-edge interface triangle that belongs to a group of
adjacent 2-edge interface triangles (case (b) of section 4.2.3), t is destroyed by generating
2-edge interface isosceles triangles around A. The number of point insertions is bounded
by the number of points computed in Theorem 8.

Figure 19: 1-edge interface obtuse triangle adjacent to a 2-edge interface triangle

5 Important properties of the algorithm

The following theorem follows directly from the results of theorems 4, 6, 8.

Theorem 9 Let 7 be a quality triangulation with N boundary triangles and M interface
triangles, where Ny are boundary obtuse triangles and M; are interface obtuse triangles.
Then, the boundary obtuse triangles are eliminated by inserting a finite number of points.

Furthermore, the elimination of the boundary (interface) obtuse triangles improves
the mesh in the following sense:
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Theorem 10 Let T be a nonobtuse boundary (interface) triangulation. Then, any nonob-
tuse boundary (interface) Delaunay triangulation is a non-constrained Delaunay trian-
gulation with respect to triangles that share an interface edge.

Proof: Let assume that segment AB is an interface edge and C the vertex opposite
vertex edge AB. In a nonobtuse boundary Delaunay triangulation, the angles opposite to
an interface edge are less than or equal to 90°. Therefore, the center of the circumcircle
of t is located in the triangle ABC or in a neighboring triangle through interior edges.
The same occurs for the triangle t'(A, B, C') that shares AB with ¢. Then, the Delaunay
criteria is fulfilled because both the circumcircle of £ does not include C’ and the circum-
circle of t' does not include C. Notice that the Delaunay criteria is also fulfilled when
the angle on vertex C and the angle on vertex C’ are equal to 90°, because the vertices
A B,C and C’ are co-circular. O

6 Examples

This section illustrate the practical behavior of the algorithm using four test examples
with different geometrical complexity: the right angled spiral of Figure 20(a); the strip
geometry with "interior” interface edge of Figure 21(a), the two circle polygon with ad-
ditional interior interface edges of Figure 22(a) and the polygon with several constrained
angles of Figure 23(a). The geometrical information of these examples is given respec-
tively in Tables 1, 2, 3 and 4. The first column corresponds to the CDT of the vertices,
the second one to the quality mesh generated by the Lepp-algorithm, and the third
column shows the result of applying the algorithm discussed in this paper. Since the
examples 1 and 2 have a minimum boundary (interface) constrained angle equal to 90°,
the algorithm that eliminate the boundary (interface) obtuse angles preserves the qual-
ity of the input mesh as it can be observed in Tables 1 and 2, respectively. Examples 3
and 4 have boundary (interface) constrained angles less than 15°, and as expected, few
triangles with interior angles less than the boundary (interface) constrained angles are
introduced in the neighborhood of the 2-edge boundary (interface) obtuse triangles. In
each case the number of inserted points is in complete agreement with our theoretical
results. This can be appreciated in Table 5 which shows the expected number (for exam-
ple 1 and 2) or an upper bound (for example 3 and 4) of the number of point insertions
versus the number of point insertions obtained in practice. An upper bound is given
when the example contains 2-edge boundary (interface) obtuse triangles.
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Figure 20: Example 1 (a) geometry (b) CDT of the vertices (c¢) quality mesh, and (d)
nonobtuse boundary (interface) mesh

Example 1

CDT of the quality mesh | Nonobtuse boundary
vertices | (30° < a < 120°) (interface) mesh
Number of vertices 16 130 158
Number of triangles 18 128 156
Minimum angle 2.59 30.53 30.53
Minimum angle (average) 6.62 40.76 43.31
Maximum angle 145.53 111.03 112.52
Maximum angle (average) 126.00 83.96 80.00
Number of boundary ) 8 28 0

(interface) obtuse triangles

Table 1: Statistical information for the example 1 (Figure 20)
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Figure 21: Example 2 (a) geometry (b) CDT of the vertices (c¢) quality mesh, and (d)
nonobtuse boundary (interface) mesh

(interface) obtuse triangles

Example 2

CDT of the Quality mesh | Nonobtuse boundary

vertices | (30° < a < 120°) (interface) mesh

Number of vertices 6 99 116
Number of triangles 6 128 149
Minimum angle 1.00 30.77 30.77
Minimum angle (average) 4.10 43.53 44.72
Maximum angle 175.52 108.16 106.60
Maximum angle (average) 144.80 83.65 81.68
Number of boundary 2 21 0

Table 2: Statistical information for the example 2 (Figure 21)

Example 3

(Minimum geometric constrained angle 14.99°)

(interface) obtuse triangles

CDT of the Quality mesh | Nonobtuse boundary

vertices | (30° < a < 120°) (interface) mesh

Number of vertices 100 272 291
Number of triangles 104 434 463
Minimum angle 0.84 30.06 12.40!
Minimum angle (average) 15.73 43.15 42.39
Maximum angle 172.49 115.17 126.82
Maximum angle (average) 111.87 79.80 80.49
Number of boundary 9 8 0

(1) 16 nonconstrained angles less than 30° are produced

Table 3: Statistical information for the example 3 (Figure 22)
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Figure 22: Example 3 (a) geometry (b) CDT of the vertices (c) quality mesh, and (d)
nonobtuse boundary (interface) mesh
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Figure 23: Example 4 (a) geometry (b) CDT of the vertices (c¢) quality mesh, and (d)
nonobtuse boundary (interface) mesh
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Example 4
(Minimum geometric constrained angle 10.30°)

CDT of the Quality mesh | Nonobtuse boundary
vertices | (30° < a < 120°) (interface) mesh
Number of vertices 19 65 (s
Number of triangles 18 80 94
Minimum angle 5.19 30.34 17.912
Minimum angle (average) 25.91 43.34 41.88
Maximum angle 168.69 112.61 113.62
Maximum angle (average) 105.85 80.29 80.78
Number of boundary 10 6 0

(interface) obtuse triangles

(2) 5 nonconstrained angles less than 30° are produced

Table 4: Statistical information for the example 4 (Figure 23)

Number of point insertions during
the elimination of boundary (interface) obtuse triangles

Nip | Ny; Ny or No; Expected or | Inserted

upper bound or
Example 1 | 28 0 0 28 28
Example 2 | 13 8 0|105< N <21 17
Example 3 4 0 4 46 19
Example 4 4 0 2 25 12

Table 5: Number of point insertions needed to eliminate boundary (interface) obtuse
angles
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7 Conclusions

In this paper we present an automatic algorithm that for any input quality constrained
Delaunay triangulation with minimum interior angle greater than or equal to 30°, pro-
duces a quality nonobtuse boundary and/or interface Delaunay triangulation by elimi-
nating the boundary and/or interface obtuse triangles. The algorithm indeed produces a
non-constrained Delaunay triangulation with respect to the interface edges. Even when
any quality mesh generation algorithm guaranteeing these bounds can be used to con-
struct the input mesh, the longest-edge Lepp-Delaunay strategy was used in this paper
to construct the quality input mesh.

The proposed algorithm guarantees that: (1) if the quality input mesh has only iso-
lated 1-edge boundary (interface) obtuse triangles, the angles of the final triangulation
are bounded by 30° and 120°. (2) For general meshes with small boundary (interface)
constrained angles, some few triangles not satisfying the bound can appear in the neigh-
borhood of the 2-edge boundary (interface) isosceles triangles.

The elimination of boundary (interface) obtuse triangles introduces a finite number
of points for which an upper bound can be previously computed from the input quality
mesh. In particular, for meshes with boundary (interface) constrained angles greater than
or equal to 32.54° and having non-grouped interface triangles, the number of inserted
points is bounded by twice the number of boundary (interface) obtuse triangles.

Finally, two extensions of the results presented in this paper can be envisaged: (1)
A more general algorithm able to deal with quality meshes with interior angles greater
than or equal to € with € < 30° can be designed, where depending on the value of ¢, the
elimination of 1-edge boundary (interface) obtuse triangles will require of the Delaunay
insertion of more than one boundary (interface) point. (2) An iterative algorithm able
to produce quality nonobtuse boundary (interface) triangulations with all interior angles
greater than or equal to € with € < 30° can be also designed. To this end, the boundary
(interface) point insertion algorithm described in this paper followed by an interior point
insertion algorithm will be repeatedly used until an acceptable quality triangulation is
produced.
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