
Fast Filters for Two Dimensional String Matching AllowingRotationsKimmo Fredriksson � Gonzalo Navarro y Esko Ukkonen �March 3, 2000AbstractWe give faster algorithms for searching a 2-dimensional pattern in a 2-dimensional textallowing rotations, mismatches and/or insertion/deletion errors.1 IntroductionThe problem of searching a two-dimensional pattern of size m � m in a two-dimensional text ofsize n � n when the pattern can appear in the text in rotated form was �rstly addressed froma combinatorial point of view in [3]. They present an online algorithm for searching a patternallowing rotations that takes O(n2) average time [5].In [4] they extend the problem so that there may be a limited number (k) of mismatcehsbetween the pattern and its occurrence. They give an O(k3=2n2) average time algorithm to �ndthe occurrences. On the other hand, more general edit distances for two dimensions have beenconsidered in [7], where insertions and deletions along rows or columns are handled, but they havenot been combined with rotations.In this paper we present fast �lters of all these problems. Our main results are:� We give an O(n2=m) search algorithm for the problem of searching allowing rotations (thisraises to O(n2 log(m)=m) for other exact matching models, see next section).� We present a �lter for searching allowing rotations and mismatches that is O(n2pk=m) ifk < m2=(2 log� m)2. It still works better than the naive algorithm for higher error levels,although the complexity changes. The idea is to reduce the problem to exact searching ofpieces of the pattern.� The same is obtained for the more general model of searching allowing rotations, mismatches,insertions and deletions.�Dept. of Computer Science, University of Helsinki.yDept. of Computer Science, University of Chile. Work developed while the author was in a postdoctoral stay atthe Dept. of Computer Science, Univ. of Helsinki. Partially supported by the Academy of Finland and Fundaci�onAndes. 1



� For the problem of rotations and mismatches we present another �lter based on reducing theproblem to inexact searching of pattern pieces. The �lter is applicable for high error levelsand in a range of k values it is better than the one based on exact searching.� Finally, for one of the models of mismatches we present a �lter based on coarsening the graylevels of the image, which makes the problem independent on the number of gray levels.2 Matching ModelsThere are many di�erent models for matching a rotated pattern considered in [3, 5, 6]. These areA Each text cell involved should match the pattern cell that covers its center. The center of thepattern matches a text center.B Idem A, but the center of the pattern needs not match a text center.C Each pattern cell should match the text cell that covers its center. The center of the patternmatches a text center.D Idem C, but the center of the pattern needs not match a text center.E The text color must be between the minimal and maximal pattern colors among the 9 patterncells surrounding that containing the text center. (The alternate model on 9 text cells hasnot been considered but it is very similar.)F The pattern cell must match one of the text cells around that containing the pattern center.The pattern center does not need to match a text center.We consider mainly the model A, and add comments for models B, E and F. The number ofmatching possibilities for a given pattern position is O(m3) in models A, C and F; O(m7) in modelsB and D; and O(m) in model E.3 Exact Search Allowing RotationsAs explained in [3], any match of a pattern P in a text T allowing arbitrary rotations must containa so-called \feature", i.e. a one-dimensional string obtained by reading a line of the pattern in someangle and crossing the center.This property is used in [3] to build a �lter for the search: one feature per angle is extractedand the text is scanned row-wise for the occurence of some feature, and upon such an occurrencethe whole pattern is checked in the appropriate angle.The veri�cation takes O(m) time on average and O(m2) in the worst case in [3]. The reasonis that there are O(m2) cells in the pattern, and each one intersects O(m) di�erent text centersalong a rotation of 360 degrees (or any other constant angle). As shown in [3], the angles wherethose changes occur are truly di�erent and therefore there are O(m3) di�erent rotations for thepattern under model A. The number of relevant rotations for a feature of O(m) cells is, however,2



only O(m2), and therefore there are O(m) di�erent angles in which the pattern has to be testedfor each angle in which a feature is found.In [5] the possibility of using features of length u � m is considered, since it reduces the spaceand number of rotations. In which follows we assume that the features are of length u � m, and�nd later the optimal u.We show now how to improve both search and veri�cation time.3.1 Faster SearchFollowing [7, 2] we propose to search more features of the pattern to reduce the number of textrows to consider. This has obvious advantages since the search time per character is independenton the number of patterns if an Aho-Corasick machine (AC) [1] is used. In [2] a 2-dimensionalsearch algorithm (not allowing rotations) is proposed by searching all the pattern rows in the text,so that only the text rows multiples of m need to be considered because one of them must containsome pattern row in any occurrence.We propose the same now. Instead of taking the O(u2) features that cross the center of thepattern, we also take those not crossing the center. For each angle, we take r features at consecutive(rotated) pattern rows. Figure 1 illustrates. This allows us to search only one out of r text rows,but there are O(ru2) features now. Figure 1 also shows that the features may become shorter thanm when they are far away from the center and the pattern is rotated. On the other hand, thereis no need to take features farther away from m=2 from the center, since in the case of unrotatedpatterns this is the limit. Therefore we have the limit r � m. If we take m features per angle thenthe shortest ones (for the pattern rotated at 45 degrees) are of length (p2� 1)m = �(m).
Figure 1: The pattern (dotted) is read from the text at a given angle. We not only extract thefeature that crosses its center (left plot) but also others (centeral and right plot).The features do not cross the pattern center now, but they are still �xed if the pattern centermatches a text center.3.2 Faster Veri�cationWe show how veri�cations can be performed faster, in O(1) time instead of O(m). Imagine that afeature taken at angle � has been found in the text. Since the feature has length u, there are only3



O(u2) di�erent angles, whose limits we call 
1 to 
u2 , and we have 
i � � < 
i+1.We �rst try to extend the match of the feature to a match of the complete rotated row of thepattern. There are O(m2=u2) possible angles for the complete row, which lie between 
i and 
i+1(as the feature is enlarged, the matching angles are re�ned). However, we perform the comparisonincrementally: �rst try to extend the feature by 1 character. There are O((u + 1)2=u2) = O(1)possible angles, and all them are tried. The probability that the (u + 1)-th character matchesin some of the O(1) permitted angles is O(1=�). Only if we succeed we try with the (u + 2)-thcharacter, where there would be O((u+ 2)2=(u+ 1)2) di�erent angles, and so on.In general, the probability of checking the (u + i + 1)-th character of the feature is that ofpassing the check for the (u+ 1)-th, then that of the (u+ 2)-th and so on. The average number oftimes it occurs is at most�u+ 1u �2 1� � �u+ 2u+ 1�2 1� � ::: � � u+ iu+ i� 1�2 1� = �u+ iu �2 1�iand by summing for i = 0 to (m+ u)=2 we obtain O(1). This is done in both directions from thecenter, which is still O(1).The same scheme can be applied to the rest of the pattern. Each time we add a new patternposition to the comparison we have only O(1) di�erent angles to test, and therefore an O(1=�)probability of success. The process is geometric and it �nishes in O(1) time on average.3.3 AnalysisThe search time for the features is O(n2=r) since we inspect one text row out of r and the costper inspected text character is constant. The veri�cation time per feature that matches is O(1) asexplained, and there are O(ru2=�u) features matching each inspected text position on average. Thismeans that the total search cost is O(n2=r(1 + ru2=�u)) = O(n2(1=r + u2=�u)). This shows thatthe optimum is r = u = �(m) for a total search cost of O(n2=m). However, the same complexity isachieved if u = x log� m with x > 1, which may be preferable because much less space is necessaryto store the features.Under model B, there are not O(m3) di�erent matches at the same center positions, but O(m7).The mechanism of incrementally testing the rotations can be extended to account for center displace-ment too, still keeping its O(1) complexity because the number of choices increases polynomiallywith m. The rest of the analysis is also the same since we still have to optimize poly(u)=�u.If we use the model E, then it is shown in [5] that a trie of color ranges can be built which is usedsimilarly to an Aho-Corasick machine, and the complexity would be the same as for the restrictedmodel. On the other hand, they show that if the failure links are not included then the automatoncan be compacted into a DAG, which takes less space, but the search time becomes O(logm)operations per character (since one has to enter into the trie of poly(m) features again for each textposition). The analysis in this case is similar: there are O(u) rotations, one veri�cation costs O(1),and there are O(ru) features to check, and the search for the features takes O(n2 log�0(ru)=r). Here�0 < � should be taken as the inverse probability that a random cell falls into the range of colorsof 9 neighbors at a random text position.The cost under model E becomes O(n2(log�0(ru)=r + u=�0u)), which shows that the maximalr = �(m) is optimal. Again, any u > log�0 m is optimal, and using the optimal setting the search4



cost becomes O(n2 log�0(m)=m).This is also the cost under the F model, because one cannot use AC but can use a trie offeatures and test it at each text position. Since on average one enters up to depth O(log�0 m) inthe trie, the complexity follows. The result is the same even when there are O(ru2) features andO(u2) rotations per feature.4 Search Allowing Rotations and MismatchesThere are two possible models for this case. In M1 we count the total number of cells that do notmatch, while in M2 we count the sum of the absolute values of the color di�erences.In [4] an O(k3=2n2) average time algorithm is presented to search a pattern in a text allowingrotations and at most k mismatches under model M1. We show now how to improve this timecomplexity and how to cope with M2.In principle any result for M1 holds for M2 because if a pattern matches with k errors in modelM2 it also matches with k errors in model M1. However, the typical k values are much larger inM2, so using the same algorithms as �lters is not e�ective if a naive approach is taken.4.1 Reducing to Exact PartitioningThe idea is to reduce the problem to an exact search problem. We cut the pattern in j pieces alongeach dimension, for j = bpkc + 1, thus obtaining j2 pieces of size (m=j) � (m=j), Now, in eachmatch with k errors or less necessarily one of those pieces is preserved without errors. So we searchfor all the j2 pieces and check each occurrence for a complete match.The search algorithm can look for all the features of all the j2 patterns together, so the searchtime has two parts: the AC machine takes O(n2=(m=j)) time (since the pieces are of ((m=j)2) size);and the veri�cation of the whole piece once each feature is found takes O(1). Since there are j2pieces of size (m=j)2, there are j2(m=j)u2 features that can match, and the total veri�cation timeis O(n2j2(m=j)u2=�u).Once an exact piece has been found (which happens with probability O((m=j)3=�m2=j2)) wemust check for the presence of the whole pattern with at most k errors. Although after compar-ing O(k) characters we will obtain a mismatch on average, we have to check for all the possiblerotations. A brute force checking of all the rotations gives m3=(m=j)3 = j3 checks, for a totalO(kj3) veri�cation time. We can incrementally check the valid rotations, but unlike the case ofexact searching, we cannot discard a rotation until k errors are made. However, if we enlarge thematch by checking points farther and farther from the center of the exact match, on average thematch disappears when we consider O(k) extra characters at each rotation, which means a squareof radius r where r2 � (m=j)2 = O(k). The total number of rotations considered up to that pointis r3=(m=j)3 � (pkj=m)3. Hence, we consider that we check all rotations by brute force up to thispoint, and hence O(k) comparisons are made for each such rotation. Then the veri�cation cost perpiece is O(k5=2=(m=j)3). This veri�cation has to be carried out O(j2(m=j)3n2=�m2=j2) times onaverage. Therefore the total search time is of the order ofn2  jm + j2(m=j)u2�u + k5=2j2(m=j)3(m=j)3�m2=j2 ! = n2 jm + jmu2�u + k5=2j2�m2=j2!5



where all the terms worsen as j grows. This is why we prefer to take the minimum possiblej = �(pk). Any u � x log� m for x > 2 yields optimal performance for u. The �rst term of theexpression dominates while the optimal u is feasible, i.e. for k � m2=(4 log2� m)(1 + o(1)), up towhere the whole scheme is O(n2pk=m) time. After that point we have to select maximal u = m=jand the whole scheme is O(n2m3=(pk�m=pk)) time for k � m2=(5 log� m)(1 + o(1)). Finally, thescheme is O(n2k7=2=�m2=k) for larger k.Under model B we can also check points farther and farther from the center, although this timethe cost grows as O(r7) for radius r. Hence the veri�cation cost per position is O(j2k9=2=(m=j)7).Therefore the total cost now is O(n2(j=m+ j2(m=j)u7=�u + k9=2j2=�m2=k). All the complexitiesare similar (that of the �rst term is the same) and the cut points di�er only in constant factors.In the models E and F all the terms and cut points are similar, but the �rst term of the searchtime is O(n2pk log(m=pk)=m).4.2 Reducing to Inexact PartitioningSince the search time worsens with j we may try to use a smaller j, although this time the piecesmust be searched allowing some errors. More speci�cally, we must allow bk=j2c errors in the pieces.In [4] an O(k3=2n2) search algorithm is given to search with k errors. Since we search j2 pieceswith k=j2 errors, the total search cost for the pieces is O(n2j2(k=j2)3=2) = O(n2k3=2=j).For the veri�cation cost of the pieces, we need to know the probability of a match with kerrors. Since we can choose the mismatching positions and the rest must be equal to the pattern,the probability of a match is � �m2k �=�m2�k, which has to be multiplied by m3 to account forrotations. By using Stirling's approximation to the factorial and calling � = k=m2, we have thatthe probability can be bounded by 
m2m3, where 
 = 1=(��=(1��)(1��)�)1�� � (e=((1��)�)1��.This improves as m grows and � stays constant. On the other hand, � < 1 � e=� is required sothat 
 < 1.Once a piece matches we check the complete match, which as explained before takesO(k5=2=(m=j)3).In our partitioning method � stays constant, which means that the veri�cation time worsens asj grows, since m is replaced by m=j in the formula of the matching probability. The search time,on the other hand, improves with j. The total cost isn2  k3=2j + j2
m2=j2(m=j)3 k5=2(m=j)3! = n2k3=2(1=j + j2k
m2=j2)whose optimum is j = �(m=qlog1=
 m), that can be achieved whenever it is smaller than pk,i.e. for k > m2=(5 log� m)(1 + o(1)) (for smaller k the scheme reduces to exact searching and theprevious technique applies). For this optimum value the complexity is O(n2k3=2plog� m=m).This competes where the area of reducing to exact searching where the third term dominates,so we would like to compare it against that third term. Reducing to inexact partitioning is indeedbetter for k > m2=(3 log� m)(1 + o(1)). The results should be quite similar with the other models.Under the model M2 all these complexities also hold by changing k by 3k=�. This is becausethe expected di�erence between two random pixel values is �=3.6



4.3 Reducing the ResolutionAs explained, the problem of using our algorithms to reduce the number of errors to the M2 modelis that the number of errors allowed k may be too high, to account reasonably for di�erences inabsolute values of gray levels. In this case, we can improve the search by reducing the number ofdi�erent colors, i.e. mapping s consecutive colors into a single one. In this case � is reduced to �=sand k is reduced to 1 + bk=sc = �(k=s) too.For instance, if we consider reduction to exact partitioning, the scheme is O(n2pk=m) timefor k < m2=(4 log2� m). This becomes now O(n2pk=s=m) time for k=s < �(m2= log2�=sm). Forexample binarizing the image means s = �=2 and gives a search time of O(n2pk=�=m) for k <�((m= log2m)2�).This seems to show that the best is to maximize s, but the price is that we now have to check thematches found for potential matches, because some may not really satisfy the matching criterionon the original gray levels. After a match with reduced alphabet is found we have to check for areal match, which costs O(m2) and occurs O(n2m3
 0m2) times, where 
 0 is the same as 
 where �is replaced by �=s.It is clear that this �nal veri�cation is negligible as long as 
 0 < 1, i.e. (e=((1� �=s)�=s) < 1.The maximum s satisfying this is (� + p�2 � 4e��)=(2e) = �(�). The search cost then becomesO(n2pk=�=m) for k < �(m2�= log2m). This means that if we duplicate the gray levels andconsequently duplicate k, we can keep the same performance by duplicating s.The same should happen with inexact partitioning and models B, E and F.5 Search Allowing Rotations and Di�erencesThe model allowing not only di�erences but also insertions and deletions along rows or columns [7]can be extended to permit rigid rotations as well. Without rotations, the pattern can be searchedin O(m4n2) time using dynamic programming. A naive extension which runs this algorithm usingall the O(m3) relevant angles takes O(m7n2).However, as shown in [7], we can reduce the problem to exact searching too by cutting thepattern into j � j pieces so that at least one is unaltered in any approximate occurrence. Thisis exactly as in Section 4.1, only the veri�cation changes. In particular, we have not devised anincremental test under this model. Redoing the analysis made before yieldsn2  jm + jmu2�u + j2m7�m2=j2!where now the second term dominates for k < m2=(28 log� m)(1 + o(1)).The models B, E and F should be similar.6 Conclusions and Future WorkWe have presented di�erent alternatives to speed up the search of two dimensional patterns in twodimensional texts allowing rotations and errors. The results can be extended to more dimensions.Figure 2 shows the main results obtained. 7



a b m20a = m2=(2 log� m)2b = m2=(5 log� m)c = m2=(3 log� m) Reduction to exact partitioningReduction to inexact partitioninga = m2=(2 log� m)2b = m2=(28 log� m)Mismatches pk=mpk=m timen2timen2 k kba0 m2c ErrorsFigure 2: The complexities obtained depending on k, for the model that allows only mismatchesand rotations (left) and for the model that allows di�erences and rotations (right).References[1] A. Aho and M. Corasick. E�cient string matching: an aid to bibliographic search. CACM,18(6):333{340, June 1975.[2] R. Baeza-Yates and M. R�egnier. Fast two dimensional pattern matching. Information ProcessingLetters, 45:51{57, 1993.[3] K. Fredriksson and E. Ukkonen. A rotation invariant �lter for two-dimensional string matching.In Proc. CPM'98, LNCS 1448, pages 118{125, 1998.[4] K. Fredriksson and E. Ukkonen. Algorithms for 2-d Hamming distance under rotations. 1999.[5] K. Fredriksson and E. Ukkonen. Combinatorialmethods for approximate image matching undertranslations and rotations. 1999.[6] K. Fredriksson and E. Ukkonen. Combinatorial methods for approximate pattern matchingunder rotations and translations in 3D arrays. 1999.[7] G. Navarro and R. Baeza-Yates. A new indexing method for approximate string matching. InProc. CPM'99, LNCS 1645, pages 163{185, 1999.8


