
Adding Compression toBlock Addressing Inverted Indices�Gonzalo Navarroz Edleno Silva de Mouray Marden NeubertyNivio Zivianiy Ricardo Baeza-Yateszy Department of Computer Science z Department of Computer ScienceUniv. Federal de Minas Gerais, Brazil Univ. de Chile, Chilefedleno,marden,niviog@dcc.ufmg.br fgnavarro,rbaezag@dcc.uchile.clAbstractInverted index compression, block addressing and sequential search on compressed textare three techniques that have been separately developed for e�cient, low-overhead textretrieval. Modern text compression techniques can reduce the text to less than 30% of itssize and allow searching it directly and faster than the uncompressed text. Inverted indexcompression obtains signi�cant reduction of their original size at the same processingspeed. Block addressing makes the inverted lists point to text blocks instead of exactpositions and pay the reduction in space with some sequential text scanning.In this work we combine the three ideas in a single scheme. We present a compressedinverted �le that indexes compressed text and uses block addressing. We consider di�erenttechniques to compress the index and study their performance with respect to the blocksize. We compare the index against three separate techniques for varying block sizes,showing that our index is superior to each isolated approach. For instance, with just 4%of overhead the index has to scan less than 15% of the text for exact searches and about20% allowing one error in the matches.1 IntroductionThe large sizes of today's text collections demand specialized indexing techniques to allowfast access to documents searched by the users. An index is a persistent data structure builton the text in advance to speed up query processing. A simple indexing structure for largetext collections are the inverted indices [6, 22]. Inverted indices are the most popular indexingtechnique for large text databases storing natural language documents.An inverted index is typically composed of a vector containing all distinct words of thetext collection in lexicographical order (which is called the vocabulary) and, for each wordin the vocabulary, a list of all text positions in which that word occurs (which is called thelist of occurrences). The search for a word in an inverted index �rst locates the word in the�This work has been partially supported by SIAM/DCC/UFMG Project, grant MCT/FINEP/PRONEX76.97.1016.00, AMYRI/CYTED Project, CONICYT grant 1990627 (Gonzalo Navarro and Ricardo Baeza-Yates), CAPES scholarship (Edleno Silva de Moura), Miner Technology Group scholarship (Marden Neubert),and CNPq grant 520916/94-8 (Nivio Ziviani). 1

vocabulary and then retrieves its list of text positions. To search for a phrase or proximitypattern (where the words must appear consecutively or close to each other, respectively), eachword is searched separately and the lists of occurrences are later intersected taking care ofthe consecutiveness or closeness of the word positions in the text. Another choice is to indexpairs of consecutive words, but then the vocabulary is much larger.The most important considerations to evaluate the e�ciency of an indexing scheme are itsconstruction, updating and querying times, and its space requirements. Both the time andspace requirements are a function of the granularity of the index, which de�nes what is theunit of information represented. Three di�erent types of inverted indices can be identi�ed bytheir granularity, going from the faster to process queries, but slower to build the index andmore space demanding; to the slower to process queries, but faster to build the index and lessspace demanding.The �rst one is called \full inverted index". It is the fastest index to solve queries andit uses the simplest scheme, where the index points to all the positions of all the words inthe text. However, the construction times and the space requirements are higher in this case.The occurrences take nearly 60% of the text size. This can be reduced to 35% by omitting thestopwords from the vocabulary [1]. Stopwords are articles, prepositions, and other words thatcarry no meaning and therefore do not appear in or that can be removed from user queries.Stopwords represent 40% to 50% of all the text words. However, 35% of extra space can stillbe a high space requirement for a large text collection, and therefore di�erent techniques existto reduce the space taken by the lists of occurrences.The second type is known as \inverted �le". In an inverted �le the lists of occurrencesdo not point to the exact occurrences of the words but just to the documents where eachword appears. This saves space because all the occurrences of the same word in the samedocument are referenced only once, and the pointers may be smaller because there are lessdocuments than text positions. Normal space requirements of inverted �les are around 25%of the text size. Single word queries are solved directly in inverted �les, without access tothe text. This is because if a word appears in a document the whole document is retrieved.However, phrase or proximity queries cannot be solved with the information that the indexstores. Two words can be in the same document but they may or may not form a phrase orbe close. For these queries we must search directly the text of those documents where all therelevant words appear.The third type, called \block addressing index", goes one step further [16, 4]. It dividesthe text in blocks of �xed size (which may span many documents, be part of a documentor overlap with document boundaries). The index stores only the blocks where each wordappears. Since normally there are much less blocks than documents, the space occupied bythe index is very small and can be chosen according to the user needs. On the other hand,almost any query must be solved using some sequential searching on the text because it isnot known in which documents of the block the word appears. The index is used just as adevice to �lter out some blocks of the collection that cannot contain a match.This last index scheme was �rst proposed in Glimpse[16], which is a widely known systemthat uses block addressing indices. One interesting use for Glimpse is to transparently indexall the �les of a user. The index takes little space and is kept updated by periodic rebuilds,and it allows to �nd, at any time, the user �les containing a given pattern. Glimpse is alsoused to index Web sites, providing fast search on their Web pages with a low overhead indextechnique.An orthogonal technique to reduce the space requirements of inverted indices is compres-2

sion. The text and/or the index can be compressed to reduce space requirements. The keyidea to reduce the size of inverted indices is that the list of occurrences of each word is inincreasing order, and therefore the gaps between consecutive positions can be stored insteadof the absolute values. Then, compression techniques for small integers can be used. Asthe gaps are smaller for longer lists, longer lists can be compressed better. Recent work hasshown that inverted �les can be reduced up to 10% of their original size without degradingthe performance, and even the performance may improve because of reduced I/O [22].Text compression seems di�cult to combine with an inverted index because of the needto access the text at random positions (for presentation purposes) and to sequentially searchparts of the text (which is required in inverted �les and block addressing indices). Theseneeds traditionally demanded uncompressing the text from the beginning until reaching thedesired part. Recent text compression techniques, however, not only allow reducing the textto 25% to 30% of its original size but also allows direct searching on the compressed textwithout decompressing [21, 20], much faster than the same search done on the uncompressedtext. Moreover, those compression techniques are based on Hu�man coding where the symboltable is the vocabulary of the text. This makes them to couple well with an inverted index.Inverted �le compression, block addressing and sequential search on compressed text havenot been combined up to now in a single scheme, and this is precisely what we do in thiswork. We present a compressed inverted index that indexes compressed text and uses blockaddressing. We study specialized techniques to compress a block addressing index and studytheir performance with respect to the block size. The index is built by using an in memorycompression scheme that improves the performance by reducing the I/O cost during theinversion.If we use our scheme to index all the user �les (like Glimpse), the result would be animprovement both in the indexing and searching times. Furthermore, the overall space usedby the compressed text plus the compressed index take nearly one third of the original uncom-pressed �les without index. To make this arrangement transparent to the user, the systemcan be implemented as a compressed and indexed �le system. A layer between the applica-tions and the �le system takes care of compressing and uncompressing the texts upon writeand read operations, respectively, so that editors, Web servers and other applications worktransparently with the �les (as Doublespace in DOS or Windows). At the same time, thesystem keeps a small index that allows �nding at any time the �les containing a given userquery.We show that, for instance, the index can index 200 Mb with only 4% of overhead andsearch one word patterns in 5 seconds (traversing less than 15% of the text) and phrasepatterns in less than 2 seconds (traversing less than 5% of the text).This work is organized as follows. Section 2 presents the compression technique based onHu�man coding on words. Section 3 explains how to search e�ciently in compressed text.Section 4 presents the block addressing scheme. Section 5 presents techniques to compressthe occurrences of an inverted index, and our proposals specialized for compressing blockaddressing indices. Section 6 shows the complete scheme combining block addressing, indexcompression and text compression. Section 7 presents some experimental results between thecombined approach and each isolated technique. Finally, Section 8 gives our conclusions andfuture work directions. 3

2 Word-Based Byte-Oriented Hu�man CompressionFor natural language texts used in an Information Retrieval (IR) context, the most e�ectivecompression technique is word-based Hu�man coding [14]. The idea of Hu�man coding is toassign a unique variable-length bit encoding to each di�erent word of the text, and compressionis achieved by assigning shorter codes to words with higher frequencies. Compression proceedsin two passes over the text. The encoder makes a �rst pass over the text to obtain thefrequency of each di�erent text word and performs the actual compression in a second pass.The traditional implementations of the Hu�man method are character-based, i.e., adoptthe characters as the symbols in the alphabet. A successful idea towards merging the require-ments of compression algorithms and the needs of IR systems is to consider that the symbolsto be compressed are words and not characters. Words are the atoms on which most IR sys-tems are built. Taking words as symbols means that the table of symbols in the compressoris exactly the vocabulary of the text, allowing a natural integration between an inverted �leand a word-based Hu�man compression method.An important consideration is the size of the text vocabulary. An empirical law widelyaccepted in Information Retrieval is the Heaps' Law [13], which states that the vocabulary ofa text of n words is of size V = O(n�), where 0 < � < 1 depends on the text. As shown in [1],� is between 0.4 and 0.6 in practice, so the vocabulary needs in practice space proportional tothe square root of the text size. Hence, for large texts the overhead of storing the vocabularyis minimal. Another useful law related to the vocabulary is the Zipf's Law [24], which statesthat the frequency in the text of the i-th most frequent word is 1=i� times that of the mostfrequent word, where � � 1 is a constant that depends on the text. That is, in a text of nwords the i-th most frequent word appears n=(i�H) times, where H is a constant that makesthe frequencies to add up to n.A natural language text is composed of words and of separators. An e�cient way to dealwith words and separators is to use a method called spaceless words [21]. If a word is followedby a space, just the word is encoded. If not, the word and then the separator are encoded.At decoding time, it is assumed that a space follows each word, except if the next symbolcorresponds to a separator. Figure 1 presents an example of compression using Hu�mancoding for the spaceless words method. The set of symbols in this case is f"a", "each","is", "for", "rose", ",t"g, whose frequencies are 2, 1, 1, 1, 3, 1, respectively.e��� XXX0 1 rosee��� XXX0 1e hhhh((((0 1eHH��each ,t0 1 iseHH��for 10 aOriginal text:Compressed text: 0010 0000 1 0001 01 1 0011 01 1for each rose, a rose is a roseFigure 1: Compression using Hu�man coding for spaceless words.The example also shows how the codes for the symbols are organized in a so-calledHu�mantree. The Hu�man method gives the tree that minimizes the length of the compressed �le,but many trees would have achieved the same compression, e.g. left and right childs can beexchanged at any node. The preferred choice for most applications is the canonical tree, where4

the right subtree is never taller than the left subtree, as it happens in Figure 1. Canonicaltrees allow more e�ciency at decoding time with less memory requirement. Algorithms forbuilding the Hu�man tree from the symbol frequencies is described, for instance, in [7]. Theyrequire O(V logV) worst case time, although due to the Zipf's distribution, the average timeis linear in V .Decompression is accomplished as follows. The stream of bits in the compressed �le istraversed sequentially. The sequence of bits read is used to traverse the Hu�man tree, startingat the root. Whenever a leaf node is reached, the corresponding word (which constitutes thedecompressed symbol) is printed out and the tree traversal is restarted. Thus, accordingto the tree in Figure 1, the presence of the code 0010 in the compressed �le leads to thedecompressed symbol "for".The original method proposed by Hu�man is mostly used as a binary code. In [21] theHu�man code assigned to each text word is a sequence of whole bytes and the Hu�mantree nodes have degree 256 (called byte-oriented Hu�man compression), instead of 2. Forexample, a possible Hu�man code for the word "rose" could be the 3-byte code \47 131 8".Experimental results presented in [21, 20] have shown that no signi�cant degradation of thecompression ratio is experienced by using bytes instead of bits when coding the words of avocabulary. On the other hand, decompression and searching of byte Hu�man code is fasterthan for binary Hu�man code, because bit shifts and masking operations are not necessary.One important consequence of using byte Hu�man coding is the possibility of performingfast direct searching on compressed text. The search algorithm is explained in the nextsection. As seen in this work, this technique is not only useful to speed up sequential search,but it can also be used to improve indexed schemes that combine inverted �les and sequentialsearch.3 Sequential Search on Compressed TextWe explain now how the compressed text can be searched [21, 20]. We start with a generaltechnique that allows to search for very complex patterns and then consider possible speedups.The general technique will be presented from the simplest to the most complex scenario. The�nal setup allows a large number of variants, which forms a language originally de�ned forAgrep [23].� Searching allowing errors (also called \approximate pattern matching"): given a querypattern and a number k, the system retrieves the occurrences of words which can betransformed into the query with up to k \errors". An error is the insertion, deletionor replacement of a character. For instance, searching "color" with k = 1 retrieves"colour" as well.� Searching for classes of characters: each pattern position may match with a set ofcharacters rather than with just one character. This allows some interesting queries:{ range of characters (e.g. t[a-z]xt, where [a-z] means any letter between a andz);{ arbitrary sets of characters (e.g. t[aei]xt meaning the words taxt, text andtixt);{ complements (e.g. t[�ab]xt, where �ab means any single character except a orb; t[�a-d]xt, where �a-d means any single character except a, b, c or d);5

{ arbitrary characters (e.g. t�xt means any character as the second character of theword);{ case insensitive patterns (e.g. Text and text are considered as the same word).� Searching for regular expressions (exactly or allowing errors). Some examples are:{ unions (e.g. t(e|ai)xt means the words text and taixt;{ arbitrary number of repetitions (e.g. t(e|ai)*xt means the words beginning witht followed by e or ai zero or more times followed by xt);{ arbitrary number of characters in the middle of the pattern (e.g. t.*xt). It iscustomary to denote .* as #.� Combining exact matching of some of their parts and approximate matching of otherparts (e.g. <te>xt, with k = 1, meaning exact occurrence of te followed by an occur-rence of xt with 1 error).� Matching with nonuniform costs (e.g. the cost of insertions can be de�ned to be twicethe cost of deletions).3.1 A General Search TechniqueConsider the search of a single word. The preprocessing consists in searching it in the vocab-ulary and marking the corresponding entry, that is, a leaf of the Hu�man tree. This searchcan be very e�cient by using binary search or hashing.Next, we scan the compressed text, byte by byte, and at the same time traverse theHu�man tree downwards, as if we were decompressing the text. Each time we reach a leaf ofthe Hu�man tree, we know that a word has been read, so we check if the leaf is marked, inwhich case we report an occurrence. Be the leaf marked or not, we return to the root of theHu�man tree and resume the text scanning.If the pattern is not a simple word, we cannot perform a direct search in the vocabulary.In this case the preprocessing phase corresponds to a sequential vocabulary search to markall the words that match the pattern. Specialized sequential algorithms are used to searchallowing classes of characters, errors in the matches, regular expressions, multiple patternsand combinations. Since the vocabulary is very small compared to the text size (O(n�) size,recall Section 2), a sequential search is feasible (some alternatives are considered in Section 4).The text scanning phase is exactly as before, the only di�erence being that more than oneleaf of the Hu�man tree may be marked.Consider now the search for a phrase query. The phrase is a sequence of elements, eachone a simple or complex pattern. Trying to extend the previous approach in a brute forcefashion is not simple, because possible phrase occurrences may overlap with others, somewords may match many phrase elements, etc.If a phrase has ` elements, we set up a bit mask of ` bits for each word (i.e. leaf of theHu�man tree). The i-th bit of word x is set if x matches the i-th element of the phrase query.Then, each element i of the phrase in turn is searched in the vocabulary and marks the i-thbit of the words it matches with. Note that some elements may be simple words searched withbinary search or hashing and others may be complex patterns sequentially searched. Oncethis preprocessing has concluded, we scan the text as before. Each time we arrive to a leaf(i.e. word) we retrieve its bit mask, which indicates which phrase elements the word matches.The search for phrases is organized using a nondeterministic automaton of ` + 1 states.This automaton allows to move from state i to state i + 1 if the i-th element of the phrase6

is recognized. State zero is always active and occurrences are reported whenever state ` isactivated. The automaton is nondeterministic because at a given moment many states maybe active (i.e. many pre�xes of the phrase may have matched the text).Each time we reach a leaf of the Hu�man tree, we send its bit mask to the automaton. Anactive state i� 1 will activate the state i only if the i-th bit of the mask is active. Therefore,the automaton makes one transition per word of the text. Figure 2 illustrates this phase forthe pattern "ro# rose is" with k = 1 (i.e. allowing 1 error per word, where "ro#" meansany word starting with "ro"). For instance, the word "rose" in the vocabulary matches thepattern in positions 1 and 2.
???

1?? ?1? ??1
8

47 131

Huffman tree Searching AutomatonMarksVocabulary

rose

001

110
100

100

001

row

road

is

in

Figure 2: General searching scheme for the phrase "ro# rose is" allowing 1 error.This scheme allows to disregard separators between the words of the phrase. That is, aphrase pattern can be found even if the separator between two words is a couple of spacesinstead of one space. To achieve this, we ignore the leaves of the Hu�man tree we arrive toif they are separators. In the same way, stopwords can be ignored in a phrase match. This isvery di�cult to do with typical sequential search algorithms on uncompressed text. On theother hand, we can avoid that a phrase spans more than one sentence, by taking into accountseparators that contain a period (\."). Those leaves of the Hu�man tree will have a bit maskcomposed of ` zeros and therefore no phrase occurrence will contain them.The remaining problem is how to implement this automaton e�ciently. The algorithm ofchoice is Shift-Or [3], which is able to simulate an automaton of up to w states (where w isthe length in bits of the computer word) performing a constant number of operations per textcharacter. In our case, it means that we can solve phrases of up to 32 or 64 words, dependingon the machine, extremely fast. Longer phrases need the use of d`=we machine words for thesimulation but the technique is the same.The idea of the algorithm is to map each state of the automaton (except the �rst one) toa bit of the computer word. For each new text character, each active state can activate thenext one, which is simulated using a shift in the bit mask. Only those that match the currentphrase element can actually pass, which is simulated by a bit-wise and operation with the bitmask found in the leaf of the Hu�man tree. Therefore, with one shift and one and operationper text word the search state is updated (the original algorithm uses the reverse bits fore�ciency, hence the name Shift-Or).The search time is therefore O(kn� + n) in the worst case, where the �rst term comesfrom searching the vocabulary and the second from the text search (O(1) operations per byteof the compressed text). 7

3.2 Faster FiltersThe previous scheme is general and can cope with very complex searching. It is possible,however, to search faster. In particular, we are interested in not examining all the charactersof the compressed text.The simplest case to consider is the search for one single word. In this case, instead of theprevious approach, we can simply �nd the word in the vocabulary, get its compressed code, andsearch for the code in the text directly with any standard pattern matching algorithm. Theresulting algorithm is as fast as the fastest search on uncompressed text, with the additionalbene�t of reduced I/O. In terms of elapsed time, the search is much faster if the text has tobe read from disk.One problem to be solved is the possibility of false matches: the compressed pattern canbe present in the text just because it matches inside the concatenation of other compressedcodes. This is solved by either using one bit of the bytes of the compressed codes to signalthe beginning of each code, or by setting up synchronization points in the compressed textto which the codes are aligned. In the latter case each potential match must be followed bya veri�cation starting in the last synchronization point.We consider now more complex cases. In case of a single complex query, we �nd all thecodes of the matching words and perform a multipattern search in the compressed text. Inthe case of a phrase, we choose one element as a representative, search it directly in the text,and verify the surrounding text of each match for complete phrase occurrences. The elementto search can be chosen trying to make the search faster (e.g. that with longest code or leastcodes to search for).The average time to search the text is improved with this scheme. If we search for a singlepattern, then it is possible to obtain O(n log(c)=c) time, where c is the length in bytes of thecompressed pattern. The complexity for a multipattern search has no closed expression [5].4 Block AddressingBlock addressing is a technique to reduce the space requirements of an inverted index. It was�rst proposed in a system called Glimpse [16]. The idea is that the text is logically divided inblocks, and the occurrences do not point to exact word positions but only to the blocks wherethe word appears. Space is saved because there are less blocks than text positions (and hencethe pointers are shorter), and also because all the occurrences of a given word in a single textblock are referenced only once. Figure 3 illustrates a block addressing index with r blocks ofb words each (i.e. n = rb).Searching in a block addressing index is similar to searching in a full inverted one. Thepattern is searched in the vocabulary and a list of blocks where the pattern appears is re-trieved. However, to obtain the exact pattern positions in the text, a sequential search overthe qualifying blocks becomes necessary. The index is therefore used as a �lter to avoid asequential search over some blocks, while the others need to be checked. Hence, the reductionin space requirements is obtained at the expense of higher search costs.At this point the reader may wonder what is the advantage of pointing to arti�cial blocksinstead of pointing to documents (or �les), this way following the natural divisions of the textcollection. If we consider the case of simple queries (say, one word), where we are required toreturn only the list of matching documents, then pointing to documents is a very adequatechoice. Moreover, as shown in [4], it may reduce space requirements with respect to using8

b wordsblock ofb wordsblock ofb wordsblock of r blocksText
words occurrences

IndexFigure 3: A block addressing index.blocks of �xed size. Also, if we use blocks of �xed size and pack many short documents in alogical block, we will have to traverse the matching blocks (even for these simple queries) todetermine which documents inside the block actually matched.However, consider the case where we are required to deliver the exact positions whichmatch a pattern. In this case we need to sequentially traverse the qualifying blocks or doc-uments to �nd the exact positions. Moreover, in some important types of queries such asphrases or proximity queries, the index can only tell that two words appear in the sameblock, and we need to traverse it in order to determine if they form a phrase.In this case, pointing to documents of di�erent sizes is not a good idea because largerdocuments are searched with higher probability and searching them costs more. In fact,the expected cost of the search is directly related to the variance in the size of the pointeddocuments. This suggests that if the documents have di�erent sizes it may be a good idea to(logically) partition large documents into blocks and to put small documents together, suchthat blocks of the same size are used.Block addressing was analyzed in [4], where an important result is analytically provedand experimentally veri�ed: a block addressing index may yield sublinear space overheadand at the same time sublinear query time. Traditional inverted indices pointing to words ordocuments achieve only the second goal. It is shown in [4] that in order to obtain a spaceoverhead of �(n), it is necessary to set b = �(n(1�)=(1��)), in which case the query timesobtained are O(n� + n1��+�b). In the formula, � is related to the query complexity: O(n�)vocabulary words match the query, where � = 0 for exact queries and 0 < � < � for complexqueries. The time complexity is sublinear for > 1 � (1 � �)(� � �). In practice, O(n0:85)space and query time can be obtained for exact queries.9

5 Index CompressionWe show in this section how to compress inverted indices in order to achieve signi�cant spacereduction and also allow fast access to the inverted lists. We also describe in this section asimple technique to improve the compression when using block addressing. The idea is toavoid storing the lists of words that appear in almost all the text blocks, therefore reducingthe size of the index and the amount of processing in queries.Comprehensive works showing how to compress inverted indices can be found on theliterature [15, 17, 22] and block addressing is just a type of inverted index. All these previousworks are therefore useful here. The techniques used to compress inverted indices can beclassi�ed in parameterized and non-parameterized. Parameterized techniques, such as Golombcodes [11], produce di�erent outputs depending on their parameters, so that one can adjustthe coding scheme to the characteristics of the input to compress. Non-parameterized codingschemes do not need any information about the elements to be coded, so their output is�xed for each input. When using parameterized coding, the necessity of previous knowledgeabout the input requires two passes on the list of symbols to be coded, which can be adrawback if we are interested in good performance. Further, the best parameterized codingmethods produce just slight better compression ratios when compared against the best non-parameterized methods. Our main focus when building block addressing indices is to improvethe performance. Therefore we use a non-parameterized scheme in this work.Previous studies have already shown the best non-parameterized methods that can beused in inverted index compression [17, 22]. For the sake of completeness we repeat here fourimportant concepts: the gaps, Unary coding, Elias- coding, and Elias-� coding.Gaps: The block numbers are assigned incrementally during the parsing of the text, thepointers in each inverted list are in ascending order. Each non-initial pointer can then besubstituted by the di�erence (or gap) from the previous number of the list. Since processingis usually done sequentially starting from the beginning of the list, the original block numberscan always be recomputed through sums of the gaps. The lists are now composed by smallerintegers and we can obtain better compression using an encoding that represents shortervalues in fewer bits.Unary coding: A simple scheme codes an integer x in (x�1) one-bits followed by a zero-bitand therefore is called Unary code. The unary codes for numbers 1 to 10 are shown in Table 1.Elias- coding: Elias [10] studied other variable-length encodings for integers. Elias-code represents an integer x by the concatenation of two parts, a unary code for 1 + blog xcfollowed by a code of blogxc bits corresponding to x�2blogxc in binary. The total code lengthis thus 1 + 2blog xc. Some examples are presented in Table 1.Elias-� coding: The other coding scheme introduced by Elias is the � code, in which thepre�x indicating the number of bits in the second part is coded in Elias- code rather thanunary. The Elias-� code for an integer x requires 1 + 2blog log 2xc+ blogxc bits. As Table 1shows, for small values of x, Elias- codes are shorter than Elias-� codes, but this situation isreversed as x grows. We will present experiments using both methods to compress the indexin this work.5.1 Improving the Index CompressionThe techniques presented in the previous section were developed to compress inverted �les orfull inverted indices. Special features of the block addressing indices can be used to improve10

Integer x Unary Elias- Elias-�1 0 0 02 10 100 10003 110 101 10014 1110 11000 101005 11110 11001 101016 111110 11010 101107 1111110 11011 101118 11111110 1110000 110000009 111111110 1110001 1100000110 1111111110 1110010 11000010Table 1: Sample codes for integers.the compression without signi�cant changes in the performance of the system.In blocking addressing, many words can appear in more than half of the blocks. Thisphenomenon is not common in full inverted indices or inverted �les, but can occur frequentlyin block addressing indices when large block sizes are used. In these cases, a simple ideato improve the index compression is to represent the list of non-occurrences of these morefrequent words. That is, if a word occurs in more than half of the blocks then we store theblock numbers where it does not occur. We will call these lists complemented lists.An alternative form to compress those words would be to use run length compression onthe gaps (which would be 1 at least half of the times). The economy of space is very similarbecause the length of each run of \ones" is precisely the value of the gap in the complementedlist minus 1. For instance, if there are 100 blocks and the word appears in all but the 32nd and61st, then its list of gaps is [1; 1; :::; 1; 2; 1; 1; :::; 1; 2; 1:::; 1]. Run length compression on the listof gaps yields h1; 31ih2; 1ih1; 28ih2; 1ih1; 39i, in the format hnumber ; repetitionsi. On the otherhand, the complemented list is [32; 61], and the list of gaps is [32; 29]. Note that run lengthcompression needs to store more information than that of the gaps in the complemented list.A second advantage is that complemented lists can be operated upon e�ciently withoutconverting them into normal lists. We describe later how to perform Boolean operationsamong normal and complemented lists in time proportional to their normal or complementedrepresentations. Depending on the operation, the result is left in normal or complementedform.In inverted indices it is common to not index the stopwords to save space. Since stopwordswill most probably appear in all the blocks, we can index them at almost zero cost. Moreover,we need to keep them in the vocabulary for decompression purposes.5.2 In-Memory Bucket CompressionIn other compressed inverted schemes [22] the generation of the inverted list proceeds in a�rst stage and their compression in a second stage. This is not only because the compressionis parametric in some cases, but also because of the way in which the lists are generated. Ina �rst step, the text is traversed and the occurrences are generated in text order. Later, theoccurrences are sorted by the word they represent. Therefore, only after this �nal sorting the11

lists are separated by words and the gaps can be generated in order to compress the lists.As we are using a non-parameterized coding scheme, we do not need global informationabout the list in order to compress it. An additional decision that allow generating the listsin memory already in their compressed form is that we do not generate the occurrences intext order and later sort them, but we generate them already separated by word. To do this,we store a separate list of occurrences of each word (since we already know the vocabulary)and each new text occurrence is added at the end of the occurrence list of the correspondingword. Therefore, we can compute the gaps and store them in compressed form on the y.The technique of generating the occurrences in unsorted form �rst is sometimes preferredbecause of space reasons: storing a list of occurrences for each word may be a waste of spacebecause either too many pointers have to be stored or too much empty space has to bepreallocated. This is especially important because, by Zipf's Law, many words have very fewoccurrences. Storing separate lists, on the other hand, have the advantage of avoiding the�nal sort, which saves time. When combining this with compression, another advantage forseparate lists appears: the lists can be generated in compressed form and therefore they takeless space. This improved space usage translates also into better indexing times because moretext can be indexed in memory without resorting to disk.We propose now an e�cient approach to store the lists of occurrences of each word thattries to adapt to the typical word frequencies. The idea is to represent the list of occurrencesof each word by using a linked list where each node is a bucket of occurrences. These bucketsare composed by a pointer to the next bucket of the term and by a stream of bits thatrepresents a portion of the compressed list of this term. The next bucket pointed has thesame structure and continues the stream of bits.An important decision in this scheme is the size of the buckets. They should be largeenough to compensate the extra space used by the pointer to the next bucket, and shouldbe small enough to reduce the extra memory lost with the empty spaces on the last bucketof each term. After some experiments, we have chosen to use 8 bytes for the �rst bucket ofeach term and 16 byte buckets for the remaining buckets of each term. The reason to use asmaller �rst bucket is that many terms can occur just once on the whole collection. So, usinga smaller �rst bucket saves memory in these terms.Figure 4 shows an example with the list of the occurrences of a term t that has appearedat the blocks [1; 5; 10; 12; 14; 20; 30]. Using the coding scheme shown in the last section, thislist is converted in the list of gaps [1; 4; 5; 2; 2; 6; 10]. If we are using the Elias- coding scheme,this list of gaps is converted into the stream of bits 01100011001100100110101110010. Usinga �rst bucket size of 32 bits and the remaining buckets with 64 bits, the buckets for this termare as shown in Figure 4.The empty space in the two buckets is the space to represent the pointer to the next bucketin the linked list. This pointer can be represented in dlog be bits, where b is the number ofbuckets that can �t in the memory bu�er. In the example of Figure 4, these pointers wererepresented in 20 bits, allowing up to 220 buckets in the main memory.This in-memory bucket compression technique allows us to index large texts by makingjust one pass on the text to generate the index. It is general and can be applied in theconstruction of any kind of inverted index, such as in full inversion and inverted �les. If thewhole index cannot be placed in memory, we need to dump the partial list to disk and makea second pass to merge the dumps as described in [17].12

011000110011 00100110101110010

First Block Second BlockFigure 4: Linked list of buckets used with the in-memory compression scheme.6 Putting All TogetherWe present in this section our combined design which includes text compression, block ad-dressing and index compression into a single approach. The resulting structure is as follows(see Figure 5):Vocabulary: �rst, we have the vocabulary of the whole collection, which is useful both asthe symbol table of the Hu�man coding in use and as the inverted index vocabulary.The canonical Hu�man tree comprises a small extra structure which, added to thevocabulary, is all we need to search and decompress the text. Recall that there are alsoa few separators which are present in the Hu�man tree but are not searchable.Occurrences: for each vocabulary word we have a list of the blocks where the word appears.The list is in increasing block number and is compressed using the techniques of Sec-tion 5. Despite that separators are kept in the vocabulary for decompression purposes,we do not build their lists of occurrences. Another common choice in inverted indicesis to �lter the words (e.g. map letters to lowercase, apply stemming, etc. [6]) which wecannot do here because we could not recover the original �le. Instead, this �ltration isdone on the y at search time.Block structure: the blocks form a logical layer over the natural �le structure of the col-lection, so that the �les are not physically split or concatenated. This is implementedas a list of the �les of the collection, so that the position of a �le in that list is a sortof identi�er. We also keep a list of the r blocks used. All the blocks have the samenumber of words and span a continuous range in the list of �le identi�ers, not necessarilymatching the �le boundaries. For each block we store the identi�er of the last �le thatit spans in the list, and the o�set of the last byte in that �le that belongs to the block.Text �les: each original �le in the collection is compressed as a separate �le (although asingle Hu�man coding is used for the whole collection).The space of this index is analyzed in [4], where it is shown that the vocabulary takesO(n�) space and the occurrences take O(rb�) space (since, by Heaps' Law, each new block hasO(b�) di�erent words, and one reference for each of them exists in the lists of occurrences).The lists of blocks and �les are negligible in size. On the other hand, the occurrences arecompressed now, which reduces their space by a factor independent of n (and therefore thespace is still O(rb�)).6.1 ConstructionThe index can be e�ciently built if we notice that many processes can be merged in a singlepass over the text. The Hu�man compression needs two passes over the text, and in the same13

CompressedVocabulary BlockCanonical
structureoccurrencesHuffman tree text files

CompressedFigure 5: The structure of our index.two passes we are able to build the index. The index construction process has three stages.Stage 1 The �rst stage corresponds to �nding all the global information of interest. This is:determine the set of �les to index and the number of blocks to use; compute the vocabularyof the whole collection and the frequencies of each word; and determine which lists will berepresented by their complement. This requires a simple linear pass over the text, and thememory required is that of storing the vocabulary (the list of �les can be output to disk asthey are found). At the end of this pass, we have computed the list of �les and the vocabularyof the text with its frequencies. At the end we also know the total number of words in thecollection and therefore, we can de�ne the number of blocks r.Next, we need to collect two di�erent frequency parameters. The �rst one is the numberof times that each word occurs and the second one is the number of blocks in which each wordoccurs. The �rst one is needed by the Hu�man algorithm, while the second one is used todetermine whether the list of the word will be stored in simple or complemented form. Thesestatistics are also useful for relevance ranking. While the number of times that a word occursis easy to compute, the number of blocks requires a little care: we store for each word thelast block where it appeared and the number of blocks where it already appeared. We knowwhich is the current block because we increment it each time b new words are read. Hence,for each occurrence of a word we check whether it already appeared in the current block ornot. In the second case, we increment the number of blocks where it appeared and updatethe last block where the word was seen.Finally, before moving to the next stage we run the Hu�man algorithm on the vocabularyand build the canonical Hu�man tree. We replace the frequency information of each vocab-ulary word by the compressed code it has been assigned. The tree itself can immediatelybe swapped out to disk (although it is very small anyway). On the other hand, any datastructure used to build the vocabulary, i.e. to e�ciently �nd the words, should be kept inmemory as it will be of help in the second stage. The vocabulary can be stored in memoryby using a hash table or a trie in order to provide O(1) average or worst-case access time,respectively. 14

Stage 2 The second stage does the heavier part. Each text �le of the collection is com-pressed, in the order dictated by the list of �les. Each word (or separator) of the text issearched in the vocabulary (this is why we need the data structures to search the words) andits Hu�man code is output to the compressed �le. When we �nish with a �le, the compressedversion replaces the original one.At the same time, we construct the lists of occurrences. Each time a word is found and weoutput its compressed code, we add an entry to its list of occurrences, which is representedas shown in Section 5.2. Of course the entry is not added if it has already appeared in thatblock, so we store for each word the last block it appeared in. Recall also that the inverseprocess is done for words whose occurrence list is to be stored in complemented form: if aword appears in a block and the previous block it appeared is neither the current nor theprevious one, then we add to its list all the block interval between the current block and itslast occurrence (all the last non occurrences of its word).The current block number is incremented each time b new words are processed. At thistime, we add a new entry to the list of blocks pointing to the current �le being processed andstore the number of bytes already written in the compressed version of the �le. This list canbe sent to disk as it is generated and will be used to map a block number to the physicalposition of the block in the collection.At the end, the list of occurrences is sent to disk in its compressed form. Separately, wesave the vocabulary on disk with pointers to the place where the list of occurrences of eachword starts in the �le of the occurrences.The problem with the above scheme is that, despite that the index needs few space, wemay not be able to store all the occurrence lists in memory at construction time. This isthe only problematic structure, as the rest either is small enough or it can be bu�ered. Theoccurrences, on the other hand, cannot be sent to disk as they are generated because all the�nal entries of the �rst list should come before those of the second list. The solution chosenis that each time the memory is �lled we store all the occurrences computed up to now ondisk and free their space in memory, starting again with an empty list.Stage 3 At the end of Stage 2, we will have a set of partial occurrence lists which haveto be merged in the order given by the words they correspond to. All the lists of each wordare concatenated in the order they were generated. So some auxiliary information has to bestored with the partial lists to help identify the word they belong to: a word identi�er andthe length of the list is enough.Analysis Collecting the vocabulary of the text can be done in linear time provided adequatedata structures are used (e.g. a trie of the words to guarantee worst case linear time or a hashtable for average linear time). Hu�man construction can be done in linear expected time ifthe words follow some statistical rules widely accepted in text retrieval, as shown in [19]. Theother processes of the �rst stage are also of linear time and negligible in practice.The second stage is also linear if we use the discussed data structures to �nd the text wordsin the vocabulary. The compressed codes output totalize less space than the text itself (sothey take also linear time) and adding the block numbers to the end of the lists of occurrencesis also constant time per text word.What is not linear is the third stage that merges the lists. If we have O(M) memoryavailable for index construction, then O(n=M) partial occurrence lists will be generated and15

will have to be merged. By using heapsort, the total merge takes O(n log(n=M)) time. Thisthird stage can be avoided by resorting to virtual memory, but writing partial lists to diskand merging them is much faster in practice. It is interesting to see that the merge phase willcommonly not be needed because we use in-memory compression and block indices tend tobe small. For example, using a machine with 100 Mb of RAM and a 500 words block length(a small block size), we are able to index a collection size close to 1 Gb without needing Stage3.6.2 SearchingWe describe now the search process using our index, which can be divided in three steps. We�rst explain the search of a single element and then show how to search phrases.Step 1 The �rst step of the search is to �nd the query pattern in the vocabulary (be it asingle word, a regular expression, allowing or not errors, etc.). The data structures used atindexing time can be kept to speed up this search, or we can resort to sequential or binarysearch to save space1. This is done exactly as explained in Section 3. At the end, we have alist of words that match the query, and we have built the binary masks for each of them (incase of phrase searching).Step 2 This is where we take advantage of the block information, which cannot be donein simple sequential searching. The query pattern has been matched to a set of vocabularywords (just one if we search for a single word). We take the list of blocks where each ofthe words occur and merge all them into a single list, which is ordered by increasing blocknumber. None of the blocks excluded from this �nal list can contain an occurrence of thequery element.Since the lists to merge are in compressed form we decompress them on the y at the sametime we merge them. For each new list element to read, we decode the bits of the compressedrepresentation of the gap and add that gap to the last element of the list that has alreadybeen processed.The other technique we used to reduce the size of the lists is the complementation of longlists. The operation on complemented lists can be done very fast, in time proportional to thecomplemented list. If two complemented lists `c1 and `c2 have to be merged, the complementedresult is (`1 [`2)c = `c1 \ `c2, i.e. we intersect their complements and have the complementof the result. Similarly, if they have to be intersected we apply (`1 \ `2)c = `c1 [`c2. If `1is complemented and `2 is not, then we proceed by set di�erence: (`1 [`2)c = `c1 � `2 and`1 \ `2 = `2 � `c1.Step 3 The �nal step is the sequential search on the blocks, to �nd the exact documents andpositions where the query occurs. Only the blocks that are mentioned in the list of occurrencesof the matched words need to be searched. The block structure is used to determine whichportions of which �les are to be sequentially traversed.The search algorithm is exactly the same as for sequential searching without index. How-ever, we have a new choice with respect to the multipattern Boyer-Moore search. In the se-quential setup, all the compressed codes of the matching words are simultaneously searched,1Note, however, that the words cannot be simultaneously sorted alphabetically and in the order requiredby the canonical Hu�man tree, so at least an extra indirection array is required.16

since there is no information of where each di�erent word appears. It is clear that the searchperformance degrades as the number of patterns to search grows.With the index we have more information. We know in which block each vocabulary wordmatched. Imagine that the query matched words w1 and w2. While w1 appears in blocks b1and b2, w2 appears in blocks b2 and b3. There is no need to search w2 in b1 or w1 in b3. Onthe other hand, b2 has to be searched for both words. We can therefore make a di�erent (andhopefully faster) search in each text block. The price is that we need a di�erent preprocessingfor each block, which could be counterproductive if the blocks are very small. This idea ismentioned in [4], but not tested.Phrase search A query may not be just a pattern but a sequence of patterns, each onebeing a word, a regular expression, etc. The main idea to search phrases is to take theintersection of the occurrence lists of the involved blocks. This is because all the elementsof the phrase must appear in the same block (we consider block boundaries shortly). Weproceed as before with each pattern of the phrase: the list of occurrences of each pattern isobtained by making the union of all the list of the vocabulary words that match the pattern.Once we have the list for each pattern of the phrase, we intersect all the lists, and perform thesequential search only on the blocks where all the patterns appear at the same time. Unlikethe case of simple elements, we may search blocks that have no occurrences of the completequery.A natural question at this point is how can we avoid loosing phrases that lie at blockboundaries, since the intersection method will fail. This can be solved by letting consecutiveblocks overlap in a few words. At indexing time we determine that we will allow searchingphrases of at most ` words. Therefore, if a block ends at the i-th word of a document, thenext one does not start at word i+ 1 but at i+ 2� `. This causes a very small overhead andsolves elegantly the problem, since every phrase of ` words or less appears completely insidea block. The main problem is that we limit at indexing time the longest phrase that can besearched. For words longer than ` we can modify the list intersection process, so that twocontiguous blocks are veri�ed if the �rst words of a phrase appears in the �rst block and thelast words in the second block. This, however, is much more expensive.Another solution is to slightly relax the rule that the blocks are exactly b words longand move block boundaries a little to make them match with the end of a sentence (i.e. aseparator containing a period). In this case no phrase can cross the block boundaries andthere is no need to make blocks overlap or to limit beforehand the length ` of the phrases tosearch. On the other hand, parsing the text is a bit more complicated.Analysis We now analyze the performance of the search process. The �rst step (vocabularysearch) has already been analyzed in Section 3: a phrase of j elements takes O(jn�) orO(jkn�) time depending on the complexity of the search.The second step is the merging and/or intersection of lists. First consider one-wordqueries, which is analyzed in [4] (recall Section 4). Since each word has an occurrence list ofO(n1��) average length, the cost to merge the lists is O(n1��+� logn). The cost to intersectthe lists of a phrase of j such patterns is O(jn1��+� logn), because since the lists are storedin compressed form we need to traverse all of them. Recall, however, that very long listsare compressed by representing their complement and these representations can be e�cientlyhandled. 17

However, the cost of the �rst and second steps is negligible compared to that of the thirdstep. Since we know already the search cost on a text of a given size, what remains to bedetermined is the percentage of text that has to be traversed when a block index is used.First we consider one-word patterns. Since a block of b words has O(b�) di�erent words,and O(n�) random words out of O(n�) vocabulary words are selected by the search, theprobability that the block gets a selected word and hence is searched is O(b�n���). Sincethere are r blocks and the cost to traverse them is O(b), we have that the total search costis O(brb�n���) = O(n1��+�b�). When b tends to 1 the cost approaches that of full inverted�les [1].Phrase searching is much better, however. As shown in [1] using Zipf's Law, the shortestlist among 2 or more random words has constant length. This means that on average we willsearch O(1) blocks for phrase searching, which is O(b) time. The cost to intersect the lists issimilar to that of the union, because they are sequentially processed.To summarize, the total search cost is O(n� + n1��+�b�) for single patterns and O(n� +n1��+� + b) for phrases. We have considered k and j as constants to simplify the �nalcomplexity.6.3 UpdatingThe �nal issue is how to update this index when documents are added, removed, or modi-�ed. Procedures to update a normal inverted index are well known [9], but there are extracomplications with a block index.Removing a document cannot be simply handled by removing all references to it in theoccurrence lists, since we only point to blocks that contain the document or overlap with it(we could remove complete blocks if they are totally contained in the removed document).An alternative is to reindex the block, but it is expensive and the block is of di�erent sizenow, which is not incorrect but may degrade the performance. Inserting new documentscan be handled by adding new blocks as they are needed, although the document has to becompressed and indexed and its occurrence lists merged with those of the whole index. Onthe other hand, as shown in [4], the block size b should grow (sublinearly) as the text sizegrows.The best choice to handle updates in this type of index is periodic reindexing [16]. Thatis, the index is completely rebuilt at periodic intervals (say, daily or weekly). This choiceimply some limitations on the update frequency and the maximal size of the databse. Inbetween, we handle the updates in a manner that makes them very light. This is paid witha slight degradation of the index performance between periodic rebuilds.Deletions: the document is marked as deleted in the list of documents and physically deleted.Nothing else is altered in the index. When the block has to be sequentially traversed,that document is of course skipped. This makes it possible that the block is traversedfor some words that are not anymore in it. On the other hand, removing �les from thecollection is very fast.Insertions: there are two good choices. A �rst one is to compress the �le, add it to a lastincomplete block of the index or create a new block for it, and add the entry of this blockto all the lists of the words that appear in the new document. This fully integrates thedocument in the collection but takes some time. Another choice is to add the identi�erof the document to a special block which is not indexed and therefore is included in18

every sequential search. This is equivalent to having the new �les not indexed andsearch them sequentially all the times until the next rebuild. This degrades slightly theperformance but makes insertions very fast. The index can be forced to rebuild whenthe user determines it or when the extra block becomes too large.Replacements: the best way to handle a replacement is as a deletion followed by an inser-tion.Another complication comes from the fact that we are compressing the text. Even in thecase of periodic rebuilds, we would like to avoid recompressing the whole text too frequently.Therefore, we try to handle incremental modi�cations to the Hu�man codes. Not only do thechanges alter the frequencies of the words (and hence alter the optimality of the code we areusing) but also new words could appear that have no representation in the Hu�man tree.A �rst choice is to leave a placeholder in the tree. A fake word of frequency zero is created,and its node is used when new words appear. Each time the placeholder is used, a new onemust be created. On the other hand, words that totally disappear can be discovered whentheir occurrence list becomes null, and their place in the tree can be left as a placeholder fornew words to be added.At the beginning one can expect that the words that appear/disappear have very lowfrequency, and therefore a technique of placeholders yields negligible degradations in com-pression. However, as the changes accumulate over the time, a mechanism must be devisedto recover the optimality of Hu�man codes. A �rst choice is periodic recompression of thedatabase (the period can be quite large in practice, as shown in [18]). A more challengingalternative is to perform small modi�cations in the tree to keep it optimal and to minimizethe number of �les that need to be recompressed. This is an open research issue that we arepursuing.An alternative method studied in [18] is the use of escape codes. New words withoutrepresentation in the Hu�man tree are represented explicitly in the text (preceding themwith a special byte). This scheme also needs a method to avoid compression degradation aschanges accumulate along time. They show in [18] that this is also a good idea for all the wordswith very low frequency, since putting them in the tree does not improve the compression,and taking them out of the tree reduces a lot the vocabulary.This, however, does not merge well with an inverted �le scenario, since we should keepanyway the words in the vocabulary to avoid traversing the whole text for each word not foundin the (incomplete) vocabulary. Even worse, those unfrequent words are the most interestingones for IR and the most frequently searched. Finally, the vocabulary sizes should not be aproblem at all in current computer servers.7 Experimental ResultsWe present in this section some experimental results to evaluate the e�ectiveness of thecombined approach. For the tests we have used literary texts from the TREC collection [12].We have chosen a set of texts from ap - Newswire (1989), which together compose a collectionof 200 Mb. We considered a word as a contiguous string of characters in the set fA: : :Z,a: : :z, 0: : :9g separated by other characters not in the set fA: : :Z, a: : :z, 0: : :9g. All the testswere run on a PC Pentium 200 MHz with 128 megabytes of RAM running Linux and notperforming other tasks. We show elapsed times.19

We start by evaluating the time and space to build the index as a function of the blocksize, to determine the e�ectiveness of the in-memory compression technique. Figure 6 showsthe time and main memory requirements to construct the index and compress the texts ofthe collection when varying the block size from 200 to 10000 words. The RAM requirementsinclude all the structures used by our implementation: the space to storage the vocabulary,the data used by the compression algorithm and the space used to keep the list of buckets foreach term of the collection.As can be seen, the index for 200 Mb can be built in around 6 minutes and using 15 to40 Mb of RAM (to build it with less RAM we would need to build partial indices and mergethem). The di�erences when the block size grows are due to the reduction in the number ofentries of the index. Approximately 4.3 minutes from those 6 are devoted to compressing thetext.
350

355

360

365

370

375

380

385

390

395

400

0 10 20 30 40 50 60 70 80 90 100

Size of the block (hundreds of words)

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

Size of the block (hundreds of words)Figure 6: Time to build the index in seconds (left) and main memory usage in Mb (right) forvarying block size.We consider now the space overhead of the �nal index. Figure 7 shows the size of theindex as a function of the block size. The index size reduces quickly as the block size growsdue to two main reasons. First, the number of index entries reduces as the block size grows.Second, the gap values tend to be smaller for large blocks, which reduces the number of bitsto represent the index entries by using Elias coding. The reduction in the size to representthe pointers can be seen in the right plot of the �gureFinally, we consider the search times. We measured them by randomly choosing patternsfrom the text. We have experimented patterns with 1, 2 and 3 words, averaging over 40patterns of each pattern size. Figure 8 shows the time for exact and approximate searchingwith block sizes varying from 200 to 10000 words.Search times do not include loading the vocabulary, so they correspond to a running serverwhich has the vocabulary already loaded in memory and answers requests from users.Figure 9 shows the amount of text traversed for the same experiments. As can be seen, asmall percentage of the text is traversed even for a very small index. In particular, the searchtimes and percentage of traversed text drops quickly when we search for phrases, since thenumber of blocks where all the involved words appear is much smaller.To compare these �gures against related work, we consider the \tiny" Glimpse index(which uses 256 blocks) built over the 200 Mb text. In this case Glimpse produces an index20

2

3

4

5

6

7

8

9

10

11

12

0 10 20 30 40 50 60 70 80 90 100

Size of the block (hundreds of words)

4.5

5

5.5

6

6.5

7

7.5

8

8.5

0 10 20 30 40 50 60 70 80 90 100

Size of the block (hundreds)Figure 7: Size of the compressed index as a percentage of the collection (left) and in bits perentry (right) when varying the block size.

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

Size of the block (hundreds of words)

1 word
2 words
3 words

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100

Size of the block (hundreds of words)

1 word
2 words
3 words

Figure 8: Time in seconds for exact searching (left) and allowing one error (right) for patternswith 1,2 and 3 words and varying the block sizes.which is 2% of the text size. We build our index to have the same space overhead, whichgave us 1683 blocks. That is, since our index takes less space, we can have smaller blocksfor the same space overhead as Glimpse. This translates into better search times. For theconstruction of this index Glimpse took 6.9 minutes and our index 5.7 minutes (this includesthe text compression).We also include in the comparison two sequential search algorithms, to show the gainsdue to the index: Agrep [23], a well known sequential searching software which is the baseof Glimpse, and Cgrep [21], a software for sequential searching on Byte-Hu�man compressedtext (which is the sequential search algorithm our index uses). The results are shown inTable 2. Those times do include the time to load the vocabulary into memory. Notice thatthe search times of the indices improve a lot on phrases, since only the blocks where all thewords occur are searched. 21

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100

Size of the block (hundreds of words)

1 word
2 words
3 words

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

Size of the block (hundreds of words)

1 word
2 words
3 words

Figure 9: Amount of text traversed (in megabytes) for exact searching (left) and allowing oneerror (right) for patterns with 1,2 and 3 words and varying the block sizes.Exact searchingWords Agrep Cgrep Glimpse (2%) Our index (2%)1 15.41 9.01 14.11 8.502 15.00 8.50 12.26 5.923 13.21 7.04 14.79 4.50With 1 errorWords Agrep Cgrep Glimpse (2%) Our index (2%)1 54.04 11.31 13.86 8.472 53.91 10.73 12.76 6.013 53.95 10.50 14.52 5.19Table 2: Comparison of search times (in seconds for 200 Mb).8 ConclusionsIn this paper we have shown how to combine three di�erent ideas that allow reducing the sizeof inverted indices and the texts associated to them. These are block addressing, invertedindex compression, and compressed text which permits direct search. In particular we haveproposed new index compression techniques that are speci�c of block addressing indices. Theintegration of these ideas still needs �ne tuning as there are many parameters involved, butour experimental results suggest that block size should be around 5,000 words for 200Mb. Atthis point we have a reasonable trade-o� between index space and search time. For largertexts, according to [4], the block size should grow sublinearly with respect to the word size.Hence, we can estimate that for 500Mb the block size should double.Using this block size, the index just needs 8Mb (4% of the text size) and could even becached in memory. In addition, during construction time, only 20Mb are needed (10% of thetext size). On the other hand, the search time is less than 5 seconds for one word, and lessthan 2 seconds for more words, which is quite reasonable. The percentage of text traversed22

with this space overhead is around 15%-20%. The overall result is that the index and thetext can be compressed into less than 40% of the original text size (with no index), achievingsearching times of a few seconds for 200Mb. We have also shown that our index is up to 3.5times faster than Glimpse.Future work should include a detailed experimental analysis of the parameters involvedand of which algorithms can be improved further. This implies more exhaustive experimentalresults, for example testing di�erent compression schemes for the lists of occurrences, studyingif it is better to use the same multipattern search for each block or to use exactly the patternsthat appear in each block, studying the evolution of the index as the text grows, comparingmore in detail our index and Glimpse for di�erent block sizes and including MG [22] (acompressed inverted �le) in the comparison.A related problem is how to e�ciently do Boolean operations in our inverted indices.Operating lists of blocks in some cases can be used as a pre-�lter to reduce the size of thelists that need to be manipulated. Another important problem that deserves more studyis how to reect in the index the updates that the text collection undergoes. Althoughperiodic rebuilding works, this cannot be done for very large collections (for example, severalgigabytes).A di�erent integration of these ideas appears when considering the problem of searchingthe Web. In this case, block addressing can be used to distribute the search space in size andcomputation load. Hence, a central search engine handles a smaller index than current indices(e.g. AltaVista), allowing more scalability than pure centralized architectures. This serverdistributes the query to a small number of local servers that have a local index. Therefore, inthis case the block size is large, is not �xed, and it is not unique. Local indices may or maynot use again block addressing, and may use or not text compression. If they do, we have onevocabulary per block. This integration has the advantage of being more exible, that somedecisions are local (for example, the use of compression may depend on other factors), andthat the architecture of the system is scalable. The main disadvantages are that this needsthe cooperation between di�erent sites (this is not a problem if it is done by a single company)and that network tra�c increases. This idea is pursued in [2] and is related to Harvest [8].References[1] M. Ara�ujo, G. Navarro, and N. Ziviani. Large text searching allowing errors. In Proc.WSP'97, pages 2{20. Carleton University Press, 1997.[2] R. Baeza-Yates. Another distributed searching architecture for the web. In preparation,1999.[3] R. Baeza-Yates and G. Gonnet. A new approach to text searching. Comm. of the ACM,35(10):74{82, October 1992.[4] R. Baeza-Yates and G. Navarro. Block-addressing indices for approximate text retrieval.In Proc. ACM CIKM'97, pages 1{8, 1997. Extended version to appear in JASIS.[5] R. Baeza-Yates and M. R�egnier. Fast algorithms for two dimensional and multiple patternmatching. In Proc. SWAT'90, number 447 in LNCS, pages 332{347. Springer-Verlag,1990. 23

[6] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley,1999.[7] T. C. Bell, J. G. Cleary, and I. H. Witten. Text compression. Prentice Hall, 1990.[8] C. Bowman, P. Danzig, D. Hardy, U. Manber, and M. Schwartz. The Harvest informationdiscovery and access system. In Proc. 2nd Intl. World Wide Web Conf., pages 763{771,October 1994.[9] Eric W. Brown, James P. Callan, and W. Bruce Croft. Fast incremental indexing for full-text information retrieval. In Proceedings of the 20th VLDB Conference, pages 192{202,Santiago, Chile, 1994.[10] P. Elias. Universal codeword sets and representations of the integers. IEEE Transactionson Information Theory, IT-21:194{203, 1975.[11] S. W. Golomb. Run-length encodings. IEEE Transactions on Information Theory, IT-12(3):399{401, 1966.[12] D. K. Harman. Overview of the third text retrieval conference. In Proc. Third TextREtrieval Conference (TREC-3), pages 1{19, Gaithersburg, Maryland, 1995. NationalInstitute of Standards and Technology Special Publication.[13] H. Heaps. Information Retrieval - Computational and Theoretical Aspects. AcademicPress, NY, 1978.[14] D. A. Hu�man. A method for the construction of minimum-redundancy codes. In Proc.of the Institute of Electrical and Radio Engineers, volume 40, pages 1090{1101, 1952.[15] G. Lino� and C. Stan�ll. Compression of indexes with full positional information in verylarge text databases. In Proc. ACM SIGIR'93, pages 88{95, 1993.[16] U. Manber and S. Wu. Glimpse: A tool to search through entire �le systems. In Proc.USENIX Technical Conference, pages 23{32. USENIX Association, Berkeley, CA, USA,Winter 1994.[17] A. Mo�at and T.A.H. Bell. In-situ generation of compressed inverted �les. Journal ofthe American Society for Information Science, 46(7):537{550, August 1995.[18] A. Mo�at, J. Zobel, and Neil Sharman. Text compression for dynamic document data-bases. IEEE Transactions on knowledge and data engineering, 1(2), March-April 1997.[19] E. Moura, G. Navarro, and N. Ziviani. Linear time sorting of skewed distributions.In Proc. of the 6th South American Symposium on String Process ing and InformationRetrieval (SPIRE'99), Cancun, Mexico, September 1999. To appear.[20] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Direct pattern matching oncompressed text. In Proc. of the 5th South American Symposium on String Process ingand Information Retrieval (SPIRE'98), pages 90{95. IEEE CS Press, 1998. ftp://-ftp.dcc.uchile.cl/pub/users/gnavarro/spire98.3.ps.gz.24

[21] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast searching on compressedtext allowing errors. In B. Croft, A. Mo�at, C. Rijsbergen, R. Wilkinson, and J. Zobel,editors, Proc. ACM SIGIR'98, pages 298{306, 1998.[22] I. Witten, A. Mo�at, and T. Bell. Managing Gigabytes. Morgan Kaufmann Publishers,New York, second edition, 1999.[23] S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM,35(10):83{91, October 1992.[24] G. Zipf. Human Behaviour and the Principle of Least E�ort. Addison-Wesley, 1949.

25

