Adding Compression to
Block Addressing Inverted Indices*

Gonzalo Navarro? Edleno Silva de Moura! Marden Neubert!

. +
Nivio Ziviani' Ricardo Baeza-Yates*

t Department of Computer Science ! Department of Computer Science
Univ. Federal de Minas Gerais, Brazil Univ. de Chile, Chile

{edleno,marden,nivio}@dcc.ufmg.br {gnavarro,rbaeza}@dcc.uchile.cl

Abstract

Inverted index compression, block addressing and sequential search on compressed text
are three techniques that have been separately developed for efficient, low-overhead text
retrieval. Modern text compression techniques can reduce the text to less than 30% of its
size and allow searching it directly and faster than the uncompressed text. Inverted index
compression obtains significant reduction of their original size at the same processing
speed. Block addressing makes the inverted lists point to text blocks instead of exact
positions and pay the reduction in space with some sequential text scanning.

In this work we combine the three ideas in a single scheme. We present a compressed
inverted file that indexes compressed text and uses block addressing. We consider different
techniques to compress the index and study their performance with respect to the block
size. We compare the index against three separate techniques for varying block sizes,
showing that our index is superior to each isolated approach. For instance, with just 4%
of overhead the index has to scan less than 15% of the text for exact searches and about
20% allowing one error in the matches.

1 Introduction

The large sizes of today’s text collections demand specialized indexing techniques to allow
fast access to documents searched by the users. An indez is a persistent data structure built
on the text in advance to speed up query processing. A simple indexing structure for large
text collections are the inverted indices [6, 22]. Inverted indices are the most popular indexing
technique for large text databases storing natural language documents.

An inverted index is typically composed of a vector containing all distinct words of the
text collection in lexicographical order (which is called the vocabulary) and, for each word
in the vocabulary, a list of all text positions in which that word occurs (which is called the
list of occurrences). The search for a word in an inverted index first locates the word in the

*This work has been partially supported by SIAM/DCC/UFMG Project, grant MCT/FINEP/PRONEX
76.97.1016.00, AMYRI/CYTED Project, CONICYT grant 1990627 (Gonzalo Navarro and Ricardo Baeza-
Yates), CAPES scholarship (Edleno Silva de Moura), Miner Technology Group scholarship (Marden Neubert),
and CNPq grant 520916/94-8 (Nivio Ziviani).

vocabulary and then retrieves its list of text positions. To search for a phrase or proximity
pattern (where the words must appear consecutively or close to each other, respectively), each
word is searched separately and the lists of occurrences are later intersected taking care of
the consecutiveness or closeness of the word positions in the text. Another choice is to index
pairs of consecutive words, but then the vocabulary is much larger.

The most important considerations to evaluate the efficiency of an indexing scheme are its
construction, updating and querying times, and its space requirements. Both the time and
space requirements are a function of the granularity of the index, which defines what is the
unit of information represented. Three different types of inverted indices can be identified by
their granularity, going from the faster to process queries, but slower to build the index and
more space demanding; to the slower to process queries, but faster to build the index and less
space demanding.

The first one is called “full inverted index”. It is the fastest index to solve queries and
it uses the simplest scheme, where the index points to all the positions of all the words in
the text. However, the construction times and the space requirements are higher in this case.
The occurrences take nearly 60% of the text size. This can be reduced to 35% by omitting the
stopwords from the vocabulary [1]. Stopwords are articles, prepositions, and other words that
carry no meaning and therefore do not appear in or that can be removed from user queries.
Stopwords represent 40% to 50% of all the text words. However, 356% of extra space can still
be a high space requirement for a large text collection, and therefore different techniques exist
to reduce the space taken by the lists of occurrences.

The second type is known as “inverted file”. In an inverted file the lists of occurrences
do not point to the exact occurrences of the words but just to the documents where each
word appears. This saves space because all the occurrences of the same word in the same
document are referenced only once, and the pointers may be smaller because there are less
documents than text positions. Normal space requirements of inverted files are around 25%
of the text size. Single word queries are solved directly in inverted files, without access to
the text. This is because if a word appears in a document the whole document is retrieved.
However, phrase or proximity queries cannot be solved with the information that the index
stores. Two words can be in the same document but they may or may not form a phrase or
be close. For these queries we must search directly the text of those documents where all the
relevant words appear.

The third type, called “block addressing index”, goes one step further [16, 4]. It divides
the text in blocks of fixed size (which may span many documents, be part of a document
or overlap with document boundaries). The index stores only the blocks where each word
appears. Since normally there are much less blocks than documents, the space occupied by
the index is very small and can be chosen according to the user needs. On the other hand,
almost any query must be solved using some sequential searching on the text because it is
not known in which documents of the block the word appears. The index is used just as a
device to filter out some blocks of the collection that cannot contain a match.

This last index scheme was first proposed in Glimpse[16], which is a widely known system
that uses block addressing indices. One interesting use for Glimpse is to transparently index
all the files of a user. The index takes little space and is kept updated by periodic rebuilds,
and it allows to find, at any time, the user files containing a given pattern. Glimpse is also
used to index Web sites, providing fast search on their Web pages with a low overhead index
technique.

An orthogonal technique to reduce the space requirements of inverted indices is compres-

sion. The text and/or the index can be compressed to reduce space requirements. The key
idea to reduce the size of inverted indices is that the list of occurrences of each word is in
increasing order, and therefore the gaps between consecutive positions can be stored instead
of the absolute values. Then, compression techniques for small integers can be used. As
the gaps are smaller for longer lists, longer lists can be compressed better. Recent work has
shown that inverted files can be reduced up to 10% of their original size without degrading
the performance, and even the performance may improve because of reduced I/0 [22].

Text compression seems difficult to combine with an inverted index because of the need
to access the text at random positions (for presentation purposes) and to sequentially search
parts of the text (which is required in inverted files and block addressing indices). These
needs traditionally demanded uncompressing the text from the beginning until reaching the
desired part. Recent text compression techniques, however, not only allow reducing the text
to 25% to 30% of its original size but also allows direct searching on the compressed text
without decompressing [21, 20], much faster than the same search done on the uncompressed
text. Moreover, those compression techniques are based on Huffman coding where the symbol
table is the vocabulary of the text. This makes them to couple well with an inverted index.

Inverted file compression, block addressing and sequential search on compressed text have
not been combined up to now in a single scheme, and this is precisely what we do in this
work. We present a compressed inverted index that indexes compressed text and uses block
addressing. We study specialized techniques to compress a block addressing index and study
their performance with respect to the block size. The index is built by using an in memory
compression scheme that improves the performance by reducing the I/O cost during the
inversion.

If we use our scheme to index all the user files (like Glimpse), the result would be an
improvement both in the indexing and searching times. Furthermore, the overall space used
by the compressed text plus the compressed index take nearly one third of the original uncom-
pressed files without index. To make this arrangement transparent to the user, the system
can be implemented as a compressed and indexed file system. A layer between the applica-
tions and the file system takes care of compressing and uncompressing the texts upon write
and read operations, respectively, so that editors, Web servers and other applications work
transparently with the files (as Doublespace in DOS or Windows). At the same time, the
system keeps a small index that allows finding at any time the files containing a given user
query.

We show that, for instance, the index can index 200 Mb with only 4% of overhead and
search one word patterns in 5 seconds (traversing less than 15% of the text) and phrase
patterns in less than 2 seconds (traversing less than 5% of the text).

This work is organized as follows. Section 2 presents the compression technique based on
Huffman coding on words. Section 3 explains how to search efficiently in compressed text.
Section 4 presents the block addressing scheme. Section 5 presents techniques to compress
the occurrences of an inverted index, and our proposals specialized for compressing block
addressing indices. Section 6 shows the complete scheme combining block addressing, index
compression and text compression. Section 7 presents some experimental results between the
combined approach and each isolated technique. Finally, Section 8 gives our conclusions and
future work directions.

2 Word-Based Byte-Oriented Huffman Compression

For natural language texts used in an Information Retrieval (IR) context, the most effective
compression technique is word-based Huffman coding [14]. The idea of Huffman coding is to
assign a unique variable-length bit encoding to each different word of the text, and compression
is achieved by assigning shorter codes to words with higher frequencies. Compression proceeds
in two passes over the text. The encoder makes a first pass over the text to obtain the
frequency of each different text word and performs the actual compression in a second pass.

The traditional implementations of the Huffman method are character-based, i.e., adopt
the characters as the symbols in the alphabet. A successful idea towards merging the require-
ments of compression algorithms and the needs of IR systems is to consider that the symbols
to be compressed are words and not characters. Words are the atoms on which most IR sys-
tems are built. Taking words as symbols means that the table of symbols in the compressor
is exactly the vocabulary of the text, allowing a natural integration between an inverted file
and a word-based Huffman compression method.

An important consideration is the size of the text vocabulary. An empirical law widely
accepted in Information Retrieval is the Heaps’ Law [13], which states that the vocabulary of
a text of n words is of size V' = O(n?), where 0 < 3 < 1 depends on the text. As shown in [1],
3 is between 0.4 and 0.6 in practice, so the vocabulary needs in practice space proportional to
the square root of the text size. Hence, for large texts the overhead of storing the vocabulary
is minimal. Another useful law related to the vocabulary is the Zipf’s Law [24], which states
that the frequency in the text of the i-th most frequent word is 1/i% times that of the most
frequent word, where 8 > 1 is a constant that depends on the text. That is, in a text of n
words the i-th most frequent word appears n/(i® H) times, where H is a constant that makes
the frequencies to add up to n.

A natural language text is composed of words and of separators. An efficient way to deal
with words and separators is to use a method called spaceless words [21]. If a word is followed
by a space, just the word is encoded. If not, the word and then the separator are encoded.
At decoding time, it is assumed that a space follows each word, except if the next symbol
corresponds to a separator. Figure 1 presents an example of compression using Huffman
coding for the spaceless words method. The set of symbols in this case is {"a", "each",
"is", "for", "rose", ",U"}, whose frequencies are 2, 1, 1, 1, 3, 1, respectively.

[each [LU | [for] [is |

Original text: for each rose, a rose is a rose

Compressed text: 0010 0000 1 0001 01 1 0011 01 1
Figure 1: Compression using Huffman coding for spaceless words.

The example also shows how the codes for the symbols are organized in a so-called Huffman
tree. The Huffman method gives the tree that minimizes the length of the compressed file,
but many trees would have achieved the same compression, e.g. left and right childs can be
exchanged at any node. The preferred choice for most applications is the canonical tree, where

the right subtree is never taller than the left subtree, as it happens in Figure 1. Canonical
trees allow more efficiency at decoding time with less memory requirement. Algorithms for
building the Huffman tree from the symbol frequencies is described, for instance, in [7]. They
require O(V log V') worst case time, although due to the Zipf’s distribution, the average time
is linear in V.

Decompression is accomplished as follows. The stream of bits in the compressed file is
traversed sequentially. The sequence of bits read is used to traverse the Huffman tree, starting
at the root. Whenever a leaf node is reached, the corresponding word (which constitutes the
decompressed symbol) is printed out and the tree traversal is restarted. Thus, according
to the tree in Figure 1, the presence of the code 0010 in the compressed file leads to the
decompressed symbol "for".

The original method proposed by Huffman is mostly used as a binary code. In [21] the
Huffman code assigned to each text word is a sequence of whole bytes and the Huffman
tree nodes have degree 256 (called byte-oriented Huffman compression), instead of 2. For
example, a possible Huffman code for the word "rose" could be the 3-byte code “47 131 8”.
Experimental results presented in [21, 20] have shown that no significant degradation of the
compression ratio is experienced by using bytes instead of bits when coding the words of a
vocabulary. On the other hand, decompression and searching of byte Huffman code is faster
than for binary Huffman code, because bit shifts and masking operations are not necessary.

One important consequence of using byte Huffman coding is the possibility of performing
fast direct searching on compressed text. The search algorithm is explained in the next
section. As seen in this work, this technique is not only useful to speed up sequential search,
but it can also be used to improve indexed schemes that combine inverted files and sequential
search.

3 Sequential Search on Compressed Text

We explain now how the compressed text can be searched [21, 20]. We start with a general
technique that allows to search for very complex patterns and then consider possible speedups.
The general technique will be presented from the simplest to the most complex scenario. The
final setup allows a large number of variants, which forms a language originally defined for
Agrep [23].

e Searching allowing errors (also called “approximate pattern matching”): given a query
pattern and a number k, the system retrieves the occurrences of words which can be
transformed into the query with up to k& “errors”. An error is the insertion, deletion
or replacement of a character. For instance, searching "color" with k = 1 retrieves
"colour" as well.

e Searching for classes of characters: each pattern position may match with a set of
characters rather than with just one character. This allows some interesting queries:

— range of characters (e.g. t[a-z]xt, where [a-z] means any letter between a and
z);

— arbitrary sets of characters (e.g. t[aeilxt meaning the words taxt, text and
tixt);

— complements (e.g. t[~ablxt, where ~ab means any single character except a or
b; t[~a-d]xt, where ~a-d means any single character except a, b, c or d);

— arbitrary characters (e.g. t-xt means any character as the second character of the
word);
— case insensitive patterns (e.g. Text and text are considered as the same word).

e Searching for regular expressions (exactly or allowing errors). Some examples are:

— unions (e.g. t(elai)xt means the words text and taixt;

— arbitrary number of repetitions (e.g. t(elai)*xt means the words beginning with

t followed by e or ai zero or more times followed by xt);
— arbitrary number of characters in the middle of the pattern (e.g. t.*xt). It is

customary to denote .* as #.

e Combining exact matching of some of their parts and approximate matching of other
parts (e.g. <te>xt, with k£ = 1, meaning exact occurrence of te followed by an occur-
rence of xt with 1 error).

e Matching with nonuniform costs (e.g. the cost of insertions can be defined to be twice
the cost of deletions).

3.1 A General Search Technique

Consider the search of a single word. The preprocessing consists in searching it in the vocab-
ulary and marking the corresponding entry, that is, a leaf of the Huffman tree. This search
can be very efficient by using binary search or hashing.

Next, we scan the compressed text, byte by byte, and at the same time traverse the
Huffman tree downwards, as if we were decompressing the text. Each time we reach a leaf of
the Huffman tree, we know that a word has been read, so we check if the leaf is marked, in
which case we report an occurrence. Be the leaf marked or not, we return to the root of the
Huffman tree and resume the text scanning.

If the pattern is not a simple word, we cannot perform a direct search in the vocabulary.
In this case the preprocessing phase corresponds to a sequential vocabulary search to mark
all the words that match the pattern. Specialized sequential algorithms are used to search
allowing classes of characters, errors in the matches, regular expressions, multiple patterns
and combinations. Since the vocabulary is very small compared to the text size (O (nﬁ) size,
recall Section 2), a sequential search is feasible (some alternatives are considered in Section 4).
The text scanning phase is exactly as before, the only difference being that more than one
leaf of the Huffman tree may be marked.

Consider now the search for a phrase query. The phrase is a sequence of elements, each
one a simple or complex pattern. Trying to extend the previous approach in a brute force
fashion is not simple, because possible phrase occurrences may overlap with others, some
words may match many phrase elements, etc.

If a phrase has ¢ elements, we set up a bit mask of £ bits for each word (i.e. leaf of the
Huffman tree). The i-th bit of word = is set if # matches the ¢-th element of the phrase query.
Then, each element ¢ of the phrase in turn is searched in the vocabulary and marks the i-th
bit of the words it matches with. Note that some elements may be simple words searched with
binary search or hashing and others may be complex patterns sequentially searched. Once
this preprocessing has concluded, we scan the text as before. Each time we arrive to a leaf
(i.e. word) we retrieve its bit mask, which indicates which phrase elements the word matches.

The search for phrases is organized using a nondeterministic automaton of £ + 1 states.
This automaton allows to move from state ¢ to state ¢ + 1 if the i-th element of the phrase

is recognized. State zero is always active and occurrences are reported whenever state £ is
activated. The automaton is nondeterministic because at a given moment many states may
be active (i.e. many prefixes of the phrase may have matched the text).

Each time we reach a leaf of the Huffman tree, we send its bit mask to the automaton. An
active state ¢ — 1 will activate the state 7 only if the ¢-th bit of the mask is active. Therefore,
the automaton makes one transition per word of the text. Figure 2 illustrates this phase for
the pattern "ro# rose is" with £ = 1 (i.e. allowing 1 error per word, where "ro#" means
any word starting with "ro"). For instance, the word "rose" in the vocabulary matches the
pattern in positions 1 and 2.

C__1 [
Cin_ 1 [oodl
C__1 [
[001] 227
C__1 [
ST] %
1?7 ?1? ??1
J== 000
C—1 [C
Crose] [11al
Crow] [100]
Huffman tree Vocabulary Marks Searching Automaton

Figure 2: General searching scheme for the phrase "ro# rose is" allowing 1 error.

This scheme allows to disregard separators between the words of the phrase. That is, a
phrase pattern can be found even if the separator between two words is a couple of spaces
instead of one space. To achieve this, we ignore the leaves of the Huffman tree we arrive to
if they are separators. In the same way, stopwords can be ignored in a phrase match. This is
very difficult to do with typical sequential search algorithms on uncompressed text. On the
other hand, we can avoid that a phrase spans more than one sentence, by taking into account
separators that contain a period (“.”). Those leaves of the Huffman tree will have a bit mask
composed of £ zeros and therefore no phrase occurrence will contain them.

The remaining problem is how to implement this automaton efficiently. The algorithm of
choice is Shift-Or [3], which is able to simulate an automaton of up to w states (where w is
the length in bits of the computer word) performing a constant number of operations per text
character. In our case, it means that we can solve phrases of up to 32 or 64 words, depending
on the machine, extremely fast. Longer phrases need the use of [£/w] machine words for the
simulation but the technique is the same.

The idea of the algorithm is to map each state of the automaton (except the first one) to
a bit of the computer word. For each new text character, each active state can activate the
next one, which is simulated using a shift in the bit mask. Only those that match the current
phrase element can actually pass, which is simulated by a bit-wise and operation with the bit
mask found in the leaf of the Huffman tree. Therefore, with one shift and one and operation
per text word the search state is updated (the original algorithm uses the reverse bits for
efficiency, hence the name Shift-Or).

The search time is therefore O(kn® + n) in the worst case, where the first term comes
from searching the vocabulary and the second from the text search (O(1) operations per byte
of the compressed text).

3.2 Faster Filters

The previous scheme is general and can cope with very complex searching. It is possible,
however, to search faster. In particular, we are interested in not examining all the characters
of the compressed text.

The simplest case to consider is the search for one single word. In this case, instead of the
previous approach, we can simply find the word in the vocabulary, get its compressed code, and
search for the code in the text directly with any standard pattern matching algorithm. The
resulting algorithm is as fast as the fastest search on uncompressed text, with the additional
benefit of reduced I/O. In terms of elapsed time, the search is much faster if the text has to
be read from disk.

One problem to be solved is the possibility of false matches: the compressed pattern can
be present in the text just because it matches inside the concatenation of other compressed
codes. This is solved by either using one bit of the bytes of the compressed codes to signal
the beginning of each code, or by setting up synchronization points in the compressed text
to which the codes are aligned. In the latter case each potential match must be followed by
a verification starting in the last synchronization point.

We consider now more complex cases. In case of a single complex query, we find all the
codes of the matching words and perform a multipattern search in the compressed text. In
the case of a phrase, we choose one element as a representative, search it directly in the text,
and verify the surrounding text of each match for complete phrase occurrences. The element
to search can be chosen trying to make the search faster (e.g. that with longest code or least
codes to search for).

The average time to search the text is improved with this scheme. If we search for a single
pattern, then it is possible to obtain O(nlog(c)/c) time, where ¢ is the length in bytes of the
compressed pattern. The complexity for a multipattern search has no closed expression [5].

4 Block Addressing

Block addressing is a technique to reduce the space requirements of an inverted index. It was
first proposed in a system called Glimpse [16]. The idea is that the text is logically divided in
blocks, and the occurrences do not point to exact word positions but only to the blocks where
the word appears. Space is saved because there are less blocks than text positions (and hence
the pointers are shorter), and also because all the occurrences of a given word in a single text
block are referenced only once. Figure 3 illustrates a block addressing index with r» blocks of
b words each (i.e. n = rb).

Searching in a block addressing index is similar to searching in a full inverted one. The
pattern is searched in the vocabulary and a list of blocks where the pattern appears is re-
trieved. However, to obtain the exact pattern positions in the text, a sequential search over
the qualifying blocks becomes necessary. The index is therefore used as a filter to avoid a
sequential search over some blocks, while the others need to be checked. Hence, the reduction
in space requirements is obtained at the expense of higher search costs.

At this point the reader may wonder what is the advantage of pointing to artificial blocks
instead of pointing to documents (or files), this way following the natural divisions of the text
collection. If we consider the case of simple queries (say, one word), where we are required to
return only the list of matching documents, then pointing to documents is a very adequate
choice. Moreover, as shown in [4], it may reduce space requirements with respect to using

block of
b words

occurrences

block of
b words

g
B

> 7 blocks

block of
b words

Index Text

Figure 3: A block addressing index.

blocks of fixed size. Also, if we use blocks of fixed size and pack many short documents in a
logical block, we will have to traverse the matching blocks (even for these simple queries) to
determine which documents inside the block actually matched.

However, consider the case where we are required to deliver the exact positions which
match a pattern. In this case we need to sequentially traverse the qualifying blocks or doc-
uments to find the exact positions. Moreover, in some important types of queries such as
phrases or proximity queries, the index can only tell that two words appear in the same
block, and we need to traverse it in order to determine if they form a phrase.

In this case, pointing to documents of different sizes is not a good idea because larger
documents are searched with higher probability and searching them costs more. In fact,
the expected cost of the search is directly related to the variance in the size of the pointed
documents. This suggests that if the documents have different sizes it may be a good idea to
(logically) partition large documents into blocks and to put small documents together, such
that blocks of the same size are used.

Block addressing was analyzed in [4], where an important result is analytically proved
and experimentally verified: a block addressing index may yield sublinear space overhead
and at the same time sublinear query time. Traditional inverted indices pointing to words or
documents achieve only the second goal. It is shown in [4] that in order to obtain a space
overhead of ©(n?), it is necessary to set b = ©(n(1=7)/(1=8)) in which case the query times
obtained are O(n? 4 n!~#+°p). In the formula, « is related to the query complexity: O(n®)
vocabulary words match the query, where a = 0 for exact queries and 0 < a < g for complex
queries. The time complexity is sublinear for ¥ > 1 — (1 — 8)(8 — «). In practice, O(n°%?)
space and query time can be obtained for exact queries.

5 Index Compression

We show in this section how to compress inverted indices in order to achieve significant space
reduction and also allow fast access to the inverted lists. We also describe in this section a
simple technique to improve the compression when using block addressing. The idea is to
avoid storing the lists of words that appear in almost all the text blocks, therefore reducing
the size of the index and the amount of processing in queries.

Comprehensive works showing how to compress inverted indices can be found on the
literature [15, 17, 22] and block addressing is just a type of inverted index. All these previous
works are therefore useful here. The techniques used to compress inverted indices can be
classified in parameterized and non-parameterized. Parameterized techniques, such as Golomb
codes [11], produce different outputs depending on their parameters, so that one can adjust
the coding scheme to the characteristics of the input to compress. Non-parameterized coding
schemes do not need any information about the elements to be coded, so their output is
fixed for each input. When using parameterized coding, the necessity of previous knowledge
about the input requires two passes on the list of symbols to be coded, which can be a
drawback if we are interested in good performance. Further, the best parameterized coding
methods produce just slight better compression ratios when compared against the best non-
parameterized methods. Our main focus when building block addressing indices is to improve
the performance. Therefore we use a non-parameterized scheme in this work.

Previous studies have already shown the best non-parameterized methods that can be
used in inverted index compression [17, 22]. For the sake of completeness we repeat here four
important concepts: the gaps, Unary coding, Elias-y coding, and Elias-§ coding.

Gaps: The block numbers are assigned incrementally during the parsing of the text, the
pointers in each inverted list are in ascending order. Each non-initial pointer can then be
substituted by the difference (or gap) from the previous number of the list. Since processing
is usually done sequentially starting from the beginning of the list, the original block numbers
can always be recomputed through sums of the gaps. The lists are now composed by smaller
integers and we can obtain better compression using an encoding that represents shorter
values in fewer bits.

Unary coding: A simple scheme codes an integer z in (¢ —1) one-bits followed by a zero-bit
and therefore is called Unary code. The unary codes for numbers 1 to 10 are shown in Table 1.

Elias-y coding: Elias [10] studied other variable-length encodings for integers. Elias-y
code represents an integer # by the concatenation of two parts, a unary code for 1 + |logz|
followed by a code of |log z| bits corresponding to « — 2llogz] in binary. The total code length
is thus 1 + 2|logz|. Some examples are presented in Table 1.

Elias-§ coding: The other coding scheme introduced by Elias is the é code, in which the
prefix indicating the number of bits in the second part is coded in Elias-y code rather than
unary. The Elias-6 code for an integer « requires 1 + 2|loglog2z| + |logz]| bits. As Table 1
shows, for small values of 2, Elias-v codes are shorter than Elias-§ codes, but this situation is
reversed as z grows. We will present experiments using both methods to compress the index
in this work.

5.1 Improving the Index Compression

The techniques presented in the previous section were developed to compress inverted files or
full inverted indices. Special features of the block addressing indices can be used to improve

10

H Integeraz‘ Unary ‘ Elias-y ‘ Elias-§ ‘

1 0 0 0

2 10 100 1000

3 110 101 1001

4 1110 11000 10100

5 11110 11001 10101

6 111110 11010 10110

7 1111110 11011 10111

8 11111110 1110000 | 11000000
9 111111110 | 1110001 | 11000001
10 1111111110 | 1110010 | 11000010

Table 1: Sample codes for integers.

the compression without significant changes in the performance of the system.

In blocking addressing, many words can appear in more than half of the blocks. This
phenomenon is not common in full inverted indices or inverted files, but can occur frequently
in block addressing indices when large block sizes are used. In these cases, a simple idea
to improve the index compression is to represent the list of non-occurrences of these more
frequent words. That is, if a word occurs in more than half of the blocks then we store the
block numbers where it does not occur. We will call these lists complemented lists.

An alternative form to compress those words would be to use run length compression on
the gaps (which would be 1 at least half of the times). The economy of space is very similar
because the length of each run of “ones” is precisely the value of the gap in the complemented
list minus 1. For instance, if there are 100 blocks and the word appears in all but the 32nd and
61st, then its list of gapsis [1,1,...,1,2,1,1,...,1,2,1...,1]. Run length compression on the list
of gaps yields (1, 31)(2,1)(1,28)(2, 1)(1, 39), in the format (number, repetitions). On the other
hand, the complemented list is [32,61], and the list of gaps is [32,29]. Note that run length
compression needs to store more information than that of the gaps in the complemented list.

A second advantage is that complemented lists can be operated upon efficiently without
converting them into normal lists. We describe later how to perform Boolean operations
among normal and complemented lists in time proportional to their normal or complemented
representations. Depending on the operation, the result is left in normal or complemented
form.

In inverted indices it is common to not index the stopwords to save space. Since stopwords
will most probably appear in all the blocks, we can index them at almost zero cost. Moreover,
we need to keep them in the vocabulary for decompression purposes.

5.2 In-Memory Bucket Compression

In other compressed inverted schemes [22] the generation of the inverted list proceeds in a
first stage and their compression in a second stage. This is not only because the compression
is parametric in some cases, but also because of the way in which the lists are generated. In
a first step, the text is traversed and the occurrences are generated in text order. Later, the
occurrences are sorted by the word they represent. Therefore, only after this final sorting the

11

lists are separated by words and the gaps can be generated in order to compress the lists.

As we are using a non-parameterized coding scheme, we do not need global information
about the list in order to compress it. An additional decision that allow generating the lists
in memory already in their compressed form is that we do not generate the occurrences in
text order and later sort them, but we generate them already separated by word. To do this,
we store a separate list of occurrences of each word (since we already know the vocabulary)
and each new text occurrence is added at the end of the occurrence list of the corresponding
word. Therefore, we can compute the gaps and store them in compressed form on the fly.

The technique of generating the occurrences in unsorted form first is sometimes preferred
because of space reasons: storing a list of occurrences for each word may be a waste of space
because either too many pointers have to be stored or too much empty space has to be
preallocated. This is especially important because, by Zipf’s Law, many words have very few
occurrences. Storing separate lists, on the other hand, have the advantage of avoiding the
final sort, which saves time. When combining this with compression, another advantage for
separate lists appears: the lists can be generated in compressed form and therefore they take
less space. This improved space usage translates also into better indexing times because more
text can be indexed in memory without resorting to disk.

We propose now an efficient approach to store the lists of occurrences of each word that
tries to adapt to the typical word frequencies. The idea is to represent the list of occurrences
of each word by using a linked list where each node is a bucket of occurrences. These buckets
are composed by a pointer to the next bucket of the term and by a stream of bits that
represents a portion of the compressed list of this term. The next bucket pointed has the
same structure and continues the stream of bits.

An important decision in this scheme is the size of the buckets. They should be large
enough to compensate the extra space used by the pointer to the next bucket, and should
be small enough to reduce the extra memory lost with the empty spaces on the last bucket
of each term. After some experiments, we have chosen to use 8 bytes for the first bucket of
each term and 16 byte buckets for the remaining buckets of each term. The reason to use a
smaller first bucket is that many terms can occur just once on the whole collection. So, using
a smaller first bucket saves memory in these terms.

Figure 4 shows an example with the list of the occurrences of a term ¢ that has appeared
at the blocks [1,5,10,12, 14,20, 30]. Using the coding scheme shown in the last section, this
list is converted in the list of gaps [1,4, 5, 2,2, 6, 10]. If we are using the Elias-y coding scheme,
this list of gaps is converted into the stream of bits 01100011001100100110101110010. Using
a first bucket size of 32 bits and the remaining buckets with 64 bits, the buckets for this term
are as shown in Figure 4.

The empty space in the two buckets is the space to represent the pointer to the next bucket
in the linked list. This pointer can be represented in [logb]| bits, where b is the number of
buckets that can fit in the memory buffer. In the example of Figure 4, these pointers were
represented in 20 bits, allowing up to 22° buckets in the main memory.

This in-memory bucket compression technique allows us to index large texts by making
just one pass on the text to generate the index. It is general and can be applied in the
construction of any kind of inverted index, such as in full inversion and inverted files. If the
whole index cannot be placed in memory, we need to dump the partial list to disk and make
a second pass to merge the dumps as described in [17].

12

‘ '
| " Jo11000110011 |]00100110101110010 |

First Block Second Block

Figure 4: Linked list of buckets used with the in-memory compression scheme.

6 Putting All Together

We present in this section our combined design which includes text compression, block ad-
dressing and index compression into a single approach. The resulting structure is as follows
(see Figure 5):

Vocabulary: first, we have the vocabulary of the whole collection, which is useful both as
the symbol table of the Huffman coding in use and as the inverted index vocabulary.
The canonical Huffman tree comprises a small extra structure which, added to the
vocabulary, is all we need to search and decompress the text. Recall that there are also
a few separators which are present in the Huffman tree but are not searchable.

Occurrences: for each vocabulary word we have a list of the blocks where the word appears.
The list is in increasing block number and is compressed using the techniques of Sec-
tion b. Despite that separators are kept in the vocabulary for decompression purposes,
we do not build their lists of occurrences. Another common choice in inverted indices
is to filter the words (e.g. map letters to lowercase, apply stemming, etc. [6]) which we
cannot do here because we could not recover the original file. Instead, this filtration is
done on the fly at search time.

Block structure: the blocks form a logical layer over the natural file structure of the col-
lection, so that the files are not physically split or concatenated. This is implemented
as a list of the files of the collection, so that the position of a file in that list is a sort
of identifier. We also keep a list of the » blocks used. All the blocks have the same
number of words and span a continuous range in the list of file identifiers, not necessarily
matching the file boundaries. For each block we store the identifier of the last file that
it spans in the list, and the offset of the last byte in that file that belongs to the block.

Text files: each original file in the collection is compressed as a separate file (although a
single Huffman coding is used for the whole collection).

The space of this index is analyzed in [4], where it is shown that the vocabulary takes
O(nP) space and the occurrences take O(rb?) space (since, by Heaps’ Law, each new block has
O(bP) different words, and one reference for each of them exists in the lists of occurrences).
The lists of blocks and files are negligible in size. On the other hand, the occurrences are

compressed now, which reduces their space by a factor independent of n (and therefore the
space is still O(rbP)).

6.1 Construction

The index can be efficiently built if we notice that many processes can be merged in a single
pass over the text. The Huffman compression needs two passes over the text, and in the same

13

Canonical Vocabulary Compressed Block Compressed
Huffman tree occurrences structure text files

Figure 5: The structure of our index.

two passes we are able to build the index. The index construction process has three stages.

Stage 1 The first stage corresponds to finding all the global information of interest. This is:
determine the set of files to index and the number of blocks to use; compute the vocabulary
of the whole collection and the frequencies of each word; and determine which lists will be
represented by their complement. This requires a simple linear pass over the text, and the
memory required is that of storing the vocabulary (the list of files can be output to disk as
they are found). At the end of this pass, we have computed the list of files and the vocabulary
of the text with its frequencies. At the end we also know the total number of words in the
collection and therefore, we can define the number of blocks r.

Next, we need to collect two different frequency parameters. The first one is the number
of times that each word occurs and the second one is the number of blocks in which each word
occurs. The first one is needed by the Huffman algorithm, while the second one is used to
determine whether the list of the word will be stored in simple or complemented form. These
statistics are also useful for relevance ranking. While the number of times that a word occurs
is easy to compute, the number of blocks requires a little care: we store for each word the
last block where it appeared and the number of blocks where it already appeared. We know
which is the current block because we increment it each time b new words are read. Hence,
for each occurrence of a word we check whether it already appeared in the current block or
not. In the second case, we increment the number of blocks where it appeared and update
the last block where the word was seen.

Finally, before moving to the next stage we run the Huffman algorithm on the vocabulary
and build the canonical Huffman tree. We replace the frequency information of each vocab-
ulary word by the compressed code it has been assigned. The tree itself can immediately
be swapped out to disk (although it is very small anyway). On the other hand, any data
structure used to build the vocabulary, i.e. to efficiently find the words, should be kept in
memory as it will be of help in the second stage. The vocabulary can be stored in memory
by using a hash table or a trie in order to provide O(1) average or worst-case access time,
respectively.

14

Stage 2 The second stage does the heavier part. Each text file of the collection is com-
pressed, in the order dictated by the list of files. Each word (or separator) of the text is
searched in the vocabulary (this is why we need the data structures to search the words) and
its Huffman code is output to the compressed file. When we finish with a file, the compressed
version replaces the original one.

At the same time, we construct the lists of occurrences. Each time a word is found and we
output its compressed code, we add an entry to its list of occurrences, which is represented
as shown in Section 5.2. Of course the entry is not added if it has already appeared in that
block, so we store for each word the last block it appeared in. Recall also that the inverse
process is done for words whose occurrence list is to be stored in complemented form: if a
word appears in a block and the previous block it appeared is neither the current nor the
previous one, then we add to its list all the block interval between the current block and its
last occurrence (all the last non occurrences of its word).

The current block number is incremented each time b new words are processed. At this
time, we add a new entry to the list of blocks pointing to the current file being processed and
store the number of bytes already written in the compressed version of the file. This list can
be sent to disk as it is generated and will be used to map a block number to the physical
position of the block in the collection.

At the end, the list of occurrences is sent to disk in its compressed form. Separately, we
save the vocabulary on disk with pointers to the place where the list of occurrences of each
word starts in the file of the occurrences.

The problem with the above scheme is that, despite that the index needs few space, we
may not be able to store all the occurrence lists in memory at construction time. This is
the only problematic structure, as the rest either is small enough or it can be buffered. The
occurrences, on the other hand, cannot be sent to disk as they are generated because all the
final entries of the first list should come before those of the second list. The solution chosen
is that each time the memory is filled we store all the occurrences computed up to now on
disk and free their space in memory, starting again with an empty list.

Stage 3 At the end of Stage 2, we will have a set of partial occurrence lists which have
to be merged in the order given by the words they correspond to. All the lists of each word
are concatenated in the order they were generated. So some auxiliary information has to be
stored with the partial lists to help identify the word they belong to: a word identifier and
the length of the list is enough.

Analysis Collecting the vocabulary of the text can be done in linear time provided adequate
data structures are used (e.g. a trie of the words to guarantee worst case linear time or a hash
table for average linear time). Huffman construction can be done in linear expected time if
the words follow some statistical rules widely accepted in text retrieval, as shown in [19]. The
other processes of the first stage are also of linear time and negligible in practice.

The second stage is also linear if we use the discussed data structures to find the text words
in the vocabulary. The compressed codes output totalize less space than the text itself (so
they take also linear time) and adding the block numbers to the end of the lists of occurrences
is also constant time per text word.

What is not linear is the third stage that merges the lists. If we have O(M) memory
available for index construction, then O(n/M) partial occurrence lists will be generated and

15

will have to be merged. By using heapsort, the total merge takes O(nlog(n/M)) time. This
third stage can be avoided by resorting to virtual memory, but writing partial lists to disk
and merging them is much faster in practice. It is interesting to see that the merge phase will
commonly not be needed because we use in-memory compression and block indices tend to
be small. For example, using a machine with 100 Mb of RAM and a 500 words block length
(a small block size), we are able to index a collection size close to 1 Gb without needing Stage

3.

6.2 Searching

We describe now the search process using our index, which can be divided in three steps. We
first explain the search of a single element and then show how to search phrases.

Step 1 The first step of the search is to find the query pattern in the vocabulary (be it a
single word, a regular expression, allowing or not errors, etc.). The data structures used at
indexing time can be kept to speed up this search, or we can resort to sequential or binary
search to save space!. This is done exactly as explained in Section 3. At the end, we have a
list of words that match the query, and we have built the binary masks for each of them (in
case of phrase searching).

Step 2 This is where we take advantage of the block information, which cannot be done
in simple sequential searching. The query pattern has been matched to a set of vocabulary
words (just one if we search for a single word). We take the list of blocks where each of
the words occur and merge all them into a single list, which is ordered by increasing block
number. None of the blocks excluded from this final list can contain an occurrence of the
query element.

Since the lists to merge are in compressed form we decompress them on the fly at the same
time we merge them. For each new list element to read, we decode the bits of the compressed
representation of the gap and add that gap to the last element of the list that has already
been processed.

The other technique we used to reduce the size of the lists is the complementation of long
lists. The operation on complemented lists can be done very fast, in time proportional to the
complemented list. If two complemented lists ¢; and £5 have to be merged, the complemented
result is (€; U £2)¢ = £ N {5, i.e. we intersect their complements and have the complement
of the result. Similarly, if they have to be intersected we apply (1 N£3)¢ = €5 U £5. If ¢4
is complemented and {; is not, then we proceed by set difference: (£; U £3)¢ = £ — {2 and
£iNly =4y — 5.

Step 3 The final step is the sequential search on the blocks, to find the exact documents and
positions where the query occurs. Only the blocks that are mentioned in the list of occurrences
of the matched words need to be searched. The block structure is used to determine which
portions of which files are to be sequentially traversed.

The search algorithm is exactly the same as for sequential searching without index. How-
ever, we have a new choice with respect to the multipattern Boyer-Moore search. In the se-
quential setup, all the compressed codes of the matching words are simultaneously searched,

!Note, however, that the words cannot be simultaneously sorted alphabetically and in the order required
by the canonical Huffman tree, so at least an extra indirection array is required.

16

since there is no information of where each different word appears. It is clear that the search
performance degrades as the number of patterns to search grows.

With the index we have more information. We know in which block each vocabulary word
matched. Imagine that the query matched words w; and w,. While w; appears in blocks b,
and by, ws appears in blocks by and b3. There is no need to search ws in b; or wy in b3. On
the other hand, b, has to be searched for both words. We can therefore make a different (and
hopefully faster) search in each text block. The price is that we need a different preprocessing
for each block, which could be counterproductive if the blocks are very small. This idea is
mentioned in [4], but not tested.

Phrase search A query may not be just a pattern but a sequence of patterns, each one
being a word, a regular expression, etc. The main idea to search phrases is to take the
intersection of the occurrence lists of the involved blocks. This is because all the elements
of the phrase must appear in the same block (we consider block boundaries shortly). We
proceed as before with each pattern of the phrase: the list of occurrences of each pattern is
obtained by making the union of all the list of the vocabulary words that match the pattern.
Once we have the list for each pattern of the phrase, we intersect all the lists, and perform the
sequential search only on the blocks where all the patterns appear at the same time. Unlike
the case of simple elements, we may search blocks that have no occurrences of the complete
query.

A natural question at this point is how can we avoid loosing phrases that lie at block
boundaries, since the intersection method will fail. This can be solved by letting consecutive
blocks overlap in a few words. At indexing time we determine that we will allow searching
phrases of at most £ words. Therefore, if a block ends at the i-th word of a document, the
next one does not start at word ¢4 1 but at ¢+ 2 — £. This causes a very small overhead and
solves elegantly the problem, since every phrase of £ words or less appears completely inside
a block. The main problem is that we limit at indexing time the longest phrase that can be
searched. For words longer than ¢ we can modify the list intersection process, so that two
contiguous blocks are verified if the first words of a phrase appears in the first block and the
last words in the second block. This, however, is much more expensive.

Another solution is to slightly relax the rule that the blocks are exactly b words long
and move block boundaries a little to make them match with the end of a sentence (i.e. a
separator containing a period). In this case no phrase can cross the block boundaries and
there is no need to make blocks overlap or to limit beforehand the length £ of the phrases to
search. On the other hand, parsing the text is a bit more complicated.

Analysis We now analyze the performance of the search process. The first step (vocabulary
search) has already been analyzed in Section 3: a phrase of j elements takes O(jn?) or
O(jknP) time depending on the complexity of the search.

The second step is the merging and/or intersection of lists. First consider one-word
queries, which is analyzed in [4] (recall Section 4). Since each word has an occurrence list of
O(n'~P) average length, the cost to merge the lists is O(n!~#+*logn). The cost to intersect
the lists of a phrase of j such patterns is O(jnl_ﬁ""" log n), because since the lists are stored
in compressed form we need to traverse all of them. Recall, however, that very long lists
are compressed by representing their complement and these representations can be efficiently

handled.

17

However, the cost of the first and second steps is negligible compared to that of the third
step. Since we know already the search cost on a text of a given size, what remains to be
determined is the percentage of text that has to be traversed when a block index is used.
First we consider one-word patterns. Since a block of b words has O(b°) different words,
and O(n®) random words out of O(n?) vocabulary words are selected by the search, the
probability that the block gets a selected word and hence is searched is O(b°n*~#). Since
there are 7 blocks and the cost to traverse them is O(b), we have that the total search cost
is O(brbPn>=P) = O(n!=P+2b5). When b tends to 1 the cost approaches that of full inverted
files [1].

Phrase searching is much better, however. As shown in [1] using Zipf’s Law, the shortest
list among 2 or more random words has constant length. This means that on average we will
search O(1) blocks for phrase searching, which is O(b) time. The cost to intersect the lists is
similar to that of the union, because they are sequentially processed.

To summarize, the total search cost is O(n® + n!=#+*pP) for single patterns and O(nf +
pl=Bte 4 b) for phrases. We have considered k and j as constants to simplify the final
complexity.

6.3 TUpdating

The final issue is how to update this index when documents are added, removed, or modi-
fied. Procedures to update a normal inverted index are well known [9], but there are extra
complications with a block index.

Removing a document cannot be simply handled by removing all references to it in the
occurrence lists, since we only point to blocks that contain the document or overlap with it
(we could remove complete blocks if they are totally contained in the removed document).
An alternative is to reindex the block, but it is expensive and the block is of different size
now, which is not incorrect but may degrade the performance. Inserting new documents
can be handled by adding new blocks as they are needed, although the document has to be
compressed and indexed and its occurrence lists merged with those of the whole index. On
the other hand, as shown in [4], the block size b should grow (sublinearly) as the text size
grows.

The best choice to handle updates in this type of index is periodic reindexing [16]. That
is, the index is completely rebuilt at periodic intervals (say, daily or weekly). This choice
imply some limitations on the update frequency and the maximal size of the databse. In
between, we handle the updates in a manner that makes them very light. This is paid with
a slight degradation of the index performance between periodic rebuilds.

Deletions: the document is marked as deleted in the list of documents and physically deleted.
Nothing else is altered in the index. When the block has to be sequentially traversed,
that document is of course skipped. This makes it possible that the block is traversed
for some words that are not anymore in it. On the other hand, removing files from the
collection is very fast.

Insertions: there are two good choices. A first one is to compress the file, add it to a last
incomplete block of the index or create a new block for it, and add the entry of this block
to all the lists of the words that appear in the new document. This fully integrates the
document in the collection but takes some time. Another choice is to add the identifier
of the document to a special block which is not indexed and therefore is included in

18

every sequential search. This is equivalent to having the new files not indexed and
search them sequentially all the times until the next rebuild. This degrades slightly the
performance but makes insertions very fast. The index can be forced to rebuild when
the user determines it or when the extra block becomes too large.

Replacements: the best way to handle a replacement is as a deletion followed by an inser-
tion.

Another complication comes from the fact that we are compressing the text. Even in the
case of periodic rebuilds, we would like to avoid recompressing the whole text too frequently.
Therefore, we try to handle incremental modifications to the Huffman codes. Not only do the
changes alter the frequencies of the words (and hence alter the optimality of the code we are
using) but also new words could appear that have no representation in the Huffman tree.

A first choice is to leave a placeholder in the tree. A fake word of frequency zero is created,
and its node is used when new words appear. Each time the placeholder is used, a new one
must be created. On the other hand, words that totally disappear can be discovered when
their occurrence list becomes null, and their place in the tree can be left as a placeholder for
new words to be added.

At the beginning one can expect that the words that appear/disappear have very low
frequency, and therefore a technique of placeholders yields negligible degradations in com-
pression. However, as the changes accumulate over the time, a mechanism must be devised
to recover the optimality of Huffman codes. A first choice is periodic recompression of the
database (the period can be quite large in practice, as shown in [18]). A more challenging
alternative is to perform small modifications in the tree to keep it optimal and to minimize
the number of files that need to be recompressed. This is an open research issue that we are
pursuing.

An alternative method studied in [18] is the use of escape codes. New words without
representation in the Huffman tree are represented explicitly in the text (preceding them
with a special byte). This scheme also needs a method to avoid compression degradation as
changes accumulate along time. They show in [18] that this is also a good idea for all the words
with very low frequency, since putting them in the tree does not improve the compression,
and taking them out of the tree reduces a lot the vocabulary.

This, however, does not merge well with an inverted file scenario, since we should keep
anyway the words in the vocabulary to avoid traversing the whole text for each word not found
in the (incomplete) vocabulary. Even worse, those unfrequent words are the most interesting
ones for IR and the most frequently searched. Finally, the vocabulary sizes should not be a
problem at all in current computer servers.

7 Experimental Results

We present in this section some experimental results to evaluate the effectiveness of the
combined approach. For the tests we have used literary texts from the TREC collection [12].
We have chosen a set of texts from ap - Newswire (1989), which together compose a collection
of 200 Mb. We considered a word as a contiguous string of characters in the set {A...Z,
a...z, 0...9} separated by other characters not in the set {A...Z, a.. .z, 0...9}. All the tests
were run on a PC Pentium 200 MHz with 128 megabytes of RAM running Linux and not
performing other tasks. We show elapsed times.

19

We start by evaluating the time and space to build the index as a function of the block
size, to determine the effectiveness of the in-memory compression technique. Figure 6 shows
the time and main memory requirements to construct the index and compress the texts of
the collection when varying the block size from 200 to 10000 words. The RAM requirements
include all the structures used by our implementation: the space to storage the vocabulary,
the data used by the compression algorithm and the space used to keep the list of buckets for
each term of the collection.

As can be seen, the index for 200 Mb can be built in around 6 minutes and using 15 to
40 Mb of RAM (to build it with less RAM we would need to build partial indices and merge
them). The differences when the block size grows are due to the reduction in the number of
entries of the index. Approximately 4.3 minutes from those 6 are devoted to compressing the
text.

400 T T T T ; ; ; ; ; 40

395 |

390 35

385

380 30

375

370 25

365

360 20

355

350 T L R SR —

0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100

Size of the block (hundreds of words) Size of the block (hundreds of words)

Figure 6: Time to build the index in seconds (left) and main memory usage in Mb (right) for
varying block size.

We consider now the space overhead of the final index. Figure 7 shows the size of the
index as a function of the block size. The index size reduces quickly as the block size grows
due to two main reasons. First, the number of index entries reduces as the block size grows.
Second, the gap values tend to be smaller for large blocks, which reduces the number of bits
to represent the index entries by using Elias coding. The reduction in the size to represent
the pointers can be seen in the right plot of the figure

Finally, we consider the search times. We measured them by randomly choosing patterns
from the text. We have experimented patterns with 1, 2 and 3 words, averaging over 40
patterns of each pattern size. Figure 8 shows the time for exact and approximate searching
with block sizes varying from 200 to 10000 words.

Search times do not include loading the vocabulary, so they correspond to a running server
which has the vocabulary already loaded in memory and answers requests from users.

Figure 9 shows the amount of text traversed for the same experiments. As can be seen, a
small percentage of the text is traversed even for a very small index. In particular, the search
times and percentage of traversed text drops quickly when we search for phrases, since the
number of blocks where all the involved words appear is much smaller.

To compare these figures against related work, we consider the “tiny” Glimpse index
(which uses 256 blocks) built over the 200 Mb text. In this case Glimpse produces an index

20

=
N

e
o

N W b O O N 0O ©

! ! ! ! ! ! L L L L L L

1 1 1 4.5 1 1 1
0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
Size of the block (hundreds of words) Size of the block (hundreds)

Figure 7: Size of the compressed index as a percentage of the collection (left) and in bits per
entry (right) when varying the block size.

8 14 ; ; ;
1word —— 1word ——
T 2words ——— 1 15 | 2 words -~ |
3words = 3 words &
6 L PN 2 —
10
5 L 4
8 L
4 L 4
6 L
3r]
2r +*++**”*‘* R R ,+,+*++ .DDDDA
1k L o + . 2 F E’_’ﬂ,ﬁa‘ g BB e 8- 4
ﬁffﬁfzg-éi.a g--g-g-a-g e E e
0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 5 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
Size of the block (hundreds of words) Size of the block (hundreds of words)

Figure 8: Time in seconds for exact searching (left) and allowing one error (right) for patterns
with 1,2 and 3 words and varying the block sizes.

which is 2% of the text size. We build our index to have the same space overhead, which
gave us 1683 blocks. That is, since our index takes less space, we can have smaller blocks
for the same space overhead as Glimpse. This translates into better search times. For the
construction of this index Glimpse took 6.9 minutes and our index 5.7 minutes (this includes
the text compression).

We also include in the comparison two sequential search algorithms, to show the gains
due to the index: Agrep [23], a well known sequential searching software which is the base
of Glimpse, and Cgrep [21], a software for sequential searching on Byte-Huffman compressed
text (which is the sequential search algorithm our index uses). The results are shown in
Table 2. Those times do include the time to load the vocabulary into memory. Notice that
the search times of the indices improve a lot on phrases, since only the blocks where all the
words occur are searched.

21

1word —— 1word ——
2 words -+ 35 2 words - 1
20 ¢ 3words e] 3words =
30 +
15 1 25
20 +
10 1
.l 15t
et T
T
5| ot | 10 r
-
,/*’/*/
;«/*”*/Jﬁ B--0--1 St
//+“*/ g--@--a e oS - R
0 Letiionneooge® @0 R S negega @ . R

0O 10 20 30 40 50 60 70 80 90 100

0 1 1
0O 10 20 30 40 50 60 70 80 90 100

Size of the block (hundreds of words) Size of the block (hundreds of words)

Figure 9: Amount of text traversed (in megabytes) for exact searching (left) and allowing one
error (right) for patterns with 1,2 and 3 words and varying the block sizes.

Exact searching
Words | Agrep | Cgrep | Glimpse (2%) | Our index (2%)
1 15.41 9.01 14.11 8.50
2 15.00 8.50 12.26 5.92
3 13.21 7.04 14.79 4.50
With 1 error
Words | Agrep | Cgrep | Glimpse (2%) | Our index (2%)
1 54.04 | 11.31 13.86 8.47
2 53.91 | 10.73 12.76 6.01
3 53.95 | 10.50 14.52 5.19

Table 2: Comparison of search times (in seconds for 200 Mb).

8 Conclusions

In this paper we have shown how to combine three different ideas that allow reducing the size
of inverted indices and the texts associated to them. These are block addressing, inverted
index compression, and compressed text which permits direct search. In particular we have
proposed new index compression techniques that are specific of block addressing indices. The
integration of these ideas still needs fine tuning as there are many parameters involved, but
our experimental results suggest that block size should be around 5,000 words for 200Mb. At
this point we have a reasonable trade-off between index space and search time. For larger
texts, according to [4], the block size should grow sublinearly with respect to the word size.
Hence, we can estimate that for 500Mb the block size should double.

Using this block size, the index just needs 8Mb (4% of the text size) and could even be
cached in memory. In addition, during construction time, only 20Mb are needed (10% of the
text size). On the other hand, the search time is less than 5 seconds for one word, and less
than 2 seconds for more words, which is quite reasonable. The percentage of text traversed

22

with this space overhead is around 15%-20%. The overall result is that the index and the
text can be compressed into less than 40% of the original text size (with no index), achieving
searching times of a few seconds for 200Mb. We have also shown that our index is up to 3.5
times faster than Glimpse.

Future work should include a detailed experimental analysis of the parameters involved
and of which algorithms can be improved further. This implies more exhaustive experimental
results, for example testing different compression schemes for the lists of occurrences, studying
if it is better to use the same multipattern search for each block or to use exactly the patterns
that appear in each block, studying the evolution of the index as the text grows, comparing
more in detail our index and Glimpse for different block sizes and including MG [22] (a
compressed inverted file) in the comparison.

A related problem is how to efficiently do Boolean operations in our inverted indices.
Operating lists of blocks in some cases can be used as a pre-filter to reduce the size of the
lists that need to be manipulated. Another important problem that deserves more study
is how to reflect in the index the updates that the text collection undergoes. Although
periodic rebuilding works, this cannot be done for very large collections (for example, several
gigabytes).

A different integration of these ideas appears when considering the problem of searching
the Web. In this case, block addressing can be used to distribute the search space in size and
computation load. Hence, a central search engine handles a smaller index than current indices
(e.g. AltaVista), allowing more scalability than pure centralized architectures. This server
distributes the query to a small number of local servers that have a local index. Therefore, in
this case the block size is large, is not fixed, and it is not unique. Local indices may or may
not use again block addressing, and may use or not text compression. If they do, we have one
vocabulary per block. This integration has the advantage of being more flexible, that some
decisions are local (for example, the use of compression may depend on other factors), and
that the architecture of the system is scalable. The main disadvantages are that this needs
the cooperation between different sites (this is not a problem if it is done by a single company)
and that network traffic increases. This idea is pursued in [2] and is related to Harvest [8].

References

[1] M. Aradjo, G. Navarro, and N. Ziviani. Large text searching allowing errors. In Proc.
WSP’97, pages 2-20. Carleton University Press, 1997.

[2] R. Baeza-Yates. Another distributed searching architecture for the web. In preparation,
1999.

[3] R. Baeza-Yates and G. Gonnet. A new approach to text searching. Comm. of the ACM,
35(10):74-82, October 1992.

[4] R. Baeza-Yates and G. Navarro. Block-addressing indices for approximate text retrieval.
In Proc. ACM CIKM’97, pages 1-8, 1997. Extended version to appear in JASIS.

[5] R. Baeza-Yates and M. Régnier. Fast algorithms for two dimensional and multiple pattern
matching. In Proc. SWAT’90, number 447 in LNCS, pages 332-347. Springer-Verlag,
1990.

23

[6]

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley,
1999.

T. C. Bell, J. G. Cleary, and 1. H. Witten. Tezt compression. Prentice Hall, 1990.

C. Bowman, P. Danzig, D. Hardy, U. Manber, and M. Schwartz. The Harvest information
discovery and access system. In Proc. 2nd Intl. World Wide Web Conf., pages 763-771,
October 1994.

Eric W. Brown, James P. Callan, and W. Bruce Croft. Fast incremental indexing for full-
text information retrieval. In Proceedings of the 20th VLDB Conference, pages 192-202,
Santiago, Chile, 1994.

P. Elias. Universal codeword sets and representations of the integers. IEEE Transactions
on Information Theory, I'T-21:194-203, 1975.

S. W. Golomb. Run-length encodings. IFEE Transactions on Information Theory, 1T-
12(3):399-401, 1966.

D. K. Harman. Overview of the third text retrieval conference. In Proc. Third Text
REtrieval Conference (TREC-3), pages 1-19, Gaithersburg, Maryland, 1995. National
Institute of Standards and Technology Special Publication.

H. Heaps. Information Retrieval - Computational and Theoretical Aspects. Academic
Press, NY, 1978.

D. A. Huffman. A method for the construction of minimum-redundancy codes. In Proc.
of the Institute of FElectrical and Radio Engineers, volume 40, pages 1090-1101, 1952.

G. Linoff and C. Stanfill. Compression of indexes with full positional information in very
large text databases. In Proc. ACM SIGIR’93, pages 88-95, 1993.

U. Manber and S. Wu. GLIMPSE: A tool to search through entire file systems. In Proc.
USENIX Technical Conference, pages 23—-32. USENIX Association, Berkeley, CA, USA,
Winter 1994.

A. Moffat and T.A.H. Bell. In-situ generation of compressed inverted files. Journal of
the American Society for Information Science, 46(7):537-550, August 1995.

A. Moftat, J. Zobel, and Neil Sharman. Text compression for dynamic document data-
bases. IEEE Transactions on knowledge and data engineering, 1(2), March-April 1997.

E. Moura, G. Navarro, and N. Ziviani. Linear time sorting of skewed distributions.
In Proc. of the 6th South American Symposium on String Process ing and Information
Retrieval (SPIRE’99), Cancun, Mexico, September 1999. To appear.

E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Direct pattern matching on
compressed text. In Proc. of the 5th South American Symposium on String Process ing
and Information Retrieval (SPIRE’98), pages 90-95. IEEE CS Press, 1998. ftp://-
ftp.dcc.uchile.cl/pub/users/gnavarro/spire98.3.ps.gz.

24

[21] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast searching on compressed
text allowing errors. In B. Croft, A. Moffat, C. Rijsbergen, R. Wilkinson, and J. Zobel,
editors, Proc. ACM SIGIR’98, pages 298-306, 1998.

[22] 1. Witten, A. Moffat, and T. Bell. Managing Gigabytes. Morgan Kaufmann Publishers,
New York, second edition, 1999.

[23] S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM,
35(10):83-91, October 1992.

[24] G. Zipf. Human Behaviour and the Principle of Least Effort. Addison-Wesley, 1949.

25

