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ABSTRACT

This paper presents a study of different 1l-irregular cuboids (cuboids with at most one Steiner point on each edge)
that can appear when meshes are generated using extensions of the modified octree approach [5], and then gives a
recommendation on how to handle them. The study is divided into two parts depending on the type of refinement
used. First, for the bisection based approach (Steiner points are midpoints of the cuboid edges), the l-irregular
cuboids are classified into equivalence classes (each element of the class is partitioned in the same way) and the exact
value of the number of equivalence classes is computed. As this value is not too big, all 1-irregular cuboids can be
handled using a hash table, and then a tessellation can always be found in constant time. Second, for the intersection
based approach (Steiner points can be located at any position along a cuboid edge), the total number of 1-irregular
cuboids, and upper and lower bounds for the number of equivalence classes are computed. The lower bound is too
big to handle all the equivalence classes in a hash table. In this case, a mixed approach, i.e., the use of a pattern-wise
algorithm for 1-irregular elements with bisected edges and an algorithm that computes in real time the tessellation
for the other l-irregular cuboids, is recommended.
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1. MOTIVATION that contains fewer basic elements than former ap-
proaches [5]: (1) The domain can be enclosed with
a cuboid. A cuboid has rectangular faces. (2) The in-
ternal elements (macro-elements) can belong to a set
of well shaped elements, such as pyramids, prisms
and tetrahedra, and cuboids. The set of elements that
is called well-shaped depends on the application. This
set has to be closed under the refinement operator,
i.e, each element can be refined in such a way that
all newly generated elements belong to this set. The
trees that can handle different element types as in-

In the last twenty years, modified octrees have been
used very often in geometric modeling and mesh
generation[11, 10]. The modified octree approach
works as follows: The 3-D domain is enclosed in a
cube, whose octants are repeatedly refined at their
edge midpoints until the boundary and internal quan-
tities are sufficiently approximated. FElements with
and without edge midpoints are partitioned into tetra-

hedra. In case of using an octree based mesh genera-
tion for numerical methods, the final elements have to
fulfill additional requirements.

Several aspects in the generation of meshes based on
octrees and modified octrees have been already gener-
alized in order to get a final domain representation

ternal nodes are called mized element trees [7]. (3)
The refinement method can be either bisection or what
we have called the intersection based approach [6, 5].
Using the bisection based approach the refinement is
always made at the edge midpoints. Using the inter-
section based approach the refinement is made at the



most convenient edge point. The best point—the one
whose associated refinement generates children with
the smallest aspect ratio —is chosen from the avail-
able Steiner points (points generated by the refinement
of the neighboring elements) and intersection points
(points generated by the intersection between the ob-
ject geometry and the current element). (4) Internal
elements can be refined into a different number of ele-
ments and into elements of different type depending on
the type of the internal node and on the refinement di-
rection. For example, if a refinement is required along
one, two, or three coordinate axes, cuboids are subdi-
vided into two halves, four quadrants, and eight oc-
tants, respectively. (5) The set of final elements is
defined by the application. This set can be the set
of macro-elements or a set composed of other element
types. What we keep from the modified octree ap-
proach is the refinement parallel to the axes of the
coordinate system.

The mesh generators known as Qpebi [6] and Qmein [5]
have included several of the extensions mentioned
above. Both mesh generators follow the same step se-
quence: (1) fit first exactly the object geometry (if pos-
sible) with a set of macro elements (cuboids, prisms,
pyramids, and tetrahedra), (2) refine each element un-
til the required mesh density is obtained, (3) generate
a l-irregular mesh (all the leaves are 1-irregular) that
allows the generation of a Delaunay mesh by the union
of the Delaunay tessellation of each leaf. (Note that in
this case, the local computation of the 1l-irregular ele-
ments must be done after the computation of the 2-D
tessellations of the 1-irregular element faces, and after
all these new faces fulfilled the empty sphere criterion.)
and (4) generate the Delaunay mesh by computing the
local tessellation of each leaf. The differences between
both are that each macro-element is refined by bisect-
ing its edges, while Qpein generates a nonconforming
initial mesh where the macro-element edges can get
several Steiner points at any position. The required
density is obtained either by bisecting the target edges
or by cutting the element at the position of one of the
already inserted Steiner points.

The number of 1-irregular configurations depends on
the element type (cuboid, prism, pyramid, etc) and
on the refinement approach. The number of useful
l-irregular configurations, i.e, the ones that gener-
ate well-shaped final elements, depends also on the
numerical method. In this case we consider that
the final mesh is a Delaunay tessellation. Each co-
circular(spherical) set of points is not divided into sim-
pler elements, such that, tetrahedra, if it satisfies the
Delaunay condition. An algorithm that tessellates any
l-irregular configuration into elements whose vertices
are co-spherical was presented in [8]. That paper does
not include any computation of the number of differ-
ent l-irregular configurations and equivalence classes

that can be produced.

This paper presents a study of the number of
different 1-irregular cuboids that can appear in
mixed-element meshes generated by mesh genera-
tors Qmebi and Qmein, and recommends a way to
handle them. It counts and finds all the equivalence
classes for 1-irregular cuboids using a bisection based
approach, and shows that it is possible to find all the
tessellations using a hash table (pre-computed tessella-
tions). For the intersection based approach, it presents
upper and lower bounds, and recommends the use of
a mixed approach.

Whenever possible, the use of pre-computed tessella-
tions as a method to find the tessellation of any 1-
irregular element (independent of the algorithm used
to generate them) should be preferred over other meth-
ods, because it is a robust one. It always computes the
right tessellation and avoids precision problems.

2. BASIC CONCEPTS

Definition 1 A d-cuboid is the notation for a
cuboid of dimension d: a 0-cuboid is a point, a 1-
cuboid is a segment, a 2-cuboid is a rectangle and
a 3-cuboid is the cuboid (default).

Definition 2 A tessellation T of a set of points
S is a Delaunay tessellation if there exists a point-
free circumsphere for each final element.

We use the term Delaunay tessellation and not De-
launay triangulation [3, 1, 4, 9] because our meshes
include element types other than tetrahedra if their
vertices are co-spherical. The best known of these ele-
ments are cuboids and some kinds of prisms and pyra-
mids. Note that mesh generators based on octrees nor-
mally generate points that are not located in general
position, hence it is possible to find many co-spherical
configurations.

Delaunay tessellations are very useful in control vol-
ume methods that use the Voronoi region as integra-
tion volume. Co-spherical configurations (elements)
that satisfy the Delaunay condition are not required
to be tessellated into smaller elements because the nu-
merical method only needs the Delaunay edges with
associated Voronoi edges in 2D (faces in 3D) whose
length (area) is not equal to 0.

The following definition introduces the concept of
equivalence class and pattern type.

Definition 3 Let ¢ and cx be two I-irregular
configurations, c1 and co belong to the same equiv-
alence class if ¢y can be transformed to co through
rotations or reflections. The representative ele-
ment of an equivalence class is called a pattern

type.



l-irregular configurations that belong to the same
equivalence class are partitioned in the same way.
Each pattern type can have a bounded number of
possible Delaunay tessellations depending on its edge
length ratio. Figure 1(a) shows a 1l-irregular rectangle
where depending on ratio between w (its width) and h
(its height), the vertices 5, 7 are connected (Figure 1
(b)), or vertices 4 and 6 are connected (Figure 1 (c)),
or 4,5,6,7 are co-circular (Figure 1 (d)).
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Figure 1. The tessellation of a 1-irregular rectangle with 4
Steiner points depends on the edge length ratio

2.1 Bisection Based Approach

Cuboids can be split into two halves, four quarters or
eight octants as shown in Figure 2. The Steiner points
defining a 1-irregular element are always located at
the edge midpoints. In this case, the location of the
Steiner points can be used to represent uniquely each
l-irregular cuboid.

Figure 2. Bricks refined in one, two, or three directions gener-
ate two, four, and eight cuboids, respectively

Figure 3 shows several l-irregular cuboids. The 1-
irregular cuboid of Figure 3(b) can be transformed
to the l-irregular cuboid if Figure 3(a) by rotating
it properly. We say then that the l-irregular cuboids
of Figures 3(a) and (b) belong to the same equiva-
lence class. The two l-irregular cuboids of Figures 3(c)
and (d), respectively, have three bisected edges but
they do not belong to the same equivalence class.

Conti [2] has already used the idea of equivalence
classes in the implementation of a mesh generator
based on modified octrees [11]. The information about
the most common 1-irregular cuboids was stored in a
hash table, whose hash function is a value obtained
from a codification of the split edges. The edges are
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Figure 3. Different 1-irregular configurations

labeled in the order shown in Figure 4(a) and the ver-
tices in the order shown in Figure 4(b). For each 1-
irregular cuboid, the hash table stores the pattern type
and the corner permutation to transform the current
configuration to the configuration of the pattern type.
For example, if Figure 4(c) is the pattern type for
the l-irregular elements with one split edge, the in-
formation stored in the hash table for the l-irregular
cuboid shown in Figure 4(d) is the bitcode of the pat-
tern type (00000000001) and its corner permutation
(1,4,0,5,2,7,3,6). Only the tessellation for the pattern
type is computed and stored. The elements of the fi-
nal tessellation were tetrahedra, pyramids, prisms and
cuboids.
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Figure 4. (a) Cuboid edge numeration, (b) cuboid vertex nu-

meration, (c) one split edge pattern type, and (d) one split edge
1-irregular cuboid

The Conti’s mesh generator only stored the twenty
most used pattern types in a hash table. The time
to find the tessellation of a 1-irregular cuboid that
was stored was constant. But if the pattern type was
not stored, new points were inserted until all the 1-
irregular cuboids could be solved. This approach was
extended for other element types in the implementa-
tion of a mixed element mesh generator [7].

2.2 Intersection Based Approach

In this case, cuboids are split into two halves, four
quarters or eight octants as before but edges are not
necessary bisected. Figure 5 shows the different ways
to split a cuboid using arbitrary refinement points.
The only restriction is that parallel edges have to be
split at the same relative position from their endpoints



in order to generate cuboids and not general polyhe-
dra.

Figure 5. Bricks refined in one, two, or three directions gener-
ate two, four, and eight cuboids, respectively

During the tessellation of 1-irregular elements using a
bisection-based approach, the type of the element, its
aspect ratio, and the edges carrying a Steiner point
are enough to identify uniquely a 1l-irregular element.
This condition does not hold for an intersection-based
approach.

Figure 6 shows a set of l-irregular cuboids with the
same four split edges. Using a bisection-based ap-
proach, only the 1l-irregular cuboid shown in Fig. 6(a)
can occur. The four edges are bisected and the 1-
irregular element is partitioned into two cuboids. Us-
ing an intersection based approach all the cases shown
in Figure 6 can occur.

Figure 6. 1-irregular cuboids with the same split edges but
different tessellations

In the event that Steiner points are located on orthog-
onal edges, (e.g., in a cuboid, at most three Steiner
points), the tessellation is the same for both ap-
proaches: only the size of the final elements changes.
Figure 7 shows two 1-irregular cuboids with the same
Steiner-point but in a different position along the same
edge. Both cases are tessellated in the same way.

3. 1-IRREGULAR CUBOIDS AND
EQUIVALENCE CLASSES USING A
BISECTION BASED APPROACH

It is already known that the total number of 1-irregular
cuboids is 2'2. However, the number of equivalence
classes or pattern types is not known. Its value is

Figure 7. Tessellation of slightly different 1-irregular cuboids
into four pyramids

much lower than the total number of 1l-irregular con-
figurations as we will show in this section.

3.1 Theoretical Lower Bound

Theorem 1 A d-cuboid has 2% wvertices and
d2%1 edges.

Proof. This is known and can be shown by
induction.O]

Theorem 2 Let be a d-cuboid. Then, the num-
ber of 1-irregular configurations is 242"

Proof.. As we have said before, each edge can be
bisected or not. Then, there are two possibilities for
each edge (to have one or zero Steiner points) and
hence 2mumber-ofedges 4 qgsible 1-irregular configura-
tions. Using Theorem 2, a d-cuboid has 2427 1
irregular configurations.O

Corollary 3 The total number of I1-irreqular
configurations is an upper bound of the number of
equivalence classes.

Theorem 4 A lower bound for the number of
d—1
equivalence classes in a d-cuboid is 242" —2d-lgd

Proof. The lower bound can be obtained by assum-
ing that all the rotations and reflections are useful,
i.e, each one obtains different 1-irregular configura-
tions from the pattern type.

(a) Each reflection divides the set of 1l-irregular con-
figurations into two parts. There are d reflections and
therefore 2¢ possible configurations generated using
reflections.

(b) Using rotations, it is possible to bring any edge
to a fixed edge. In addition, it is possible to choose
two orientations. Then, the number of 1-irregular con-
figurations that can be generated through rotations is
twice the number of edges: 2d2%~! = d2¢

In the best case, all the 2¢ l-irregular configurations
obtained after d reflections and the d2? configura-
tions obtained after rotations are different. The re-
duction factor is then 1/d4? and the lower bound

d—1
for the number of pattern types is 292"~ /d4¢ =
9d2? 7t —2d—lgd



In the case d = 3, the lower bound for the number of
equivalence classes is 22. This means that there are at
least 22 different pattern types.

3.2 Exhaustively Counting in Three Dimen-
sions

In order to count exactly the number of equivalence
classes, a program that generates the 2'2 = 4096 con-
figurations , and checks which of them are equivalent,
was developed.

The algorithm is quite simple. For each of the 4096
configurations, it generates all the possible combina-
tions of rotations and reflections. The pattern type is
the cube that has the lowest numerical representation.
After applying this algorithm, 144 pattern types were
obtained!.

This algorithm can be used to generate automatically
the corner permutations between any configuration
and its pattern type, and hence to identify the right
tessellation in O(1) time. The previous algorithm can
be improved to reduce the number of superfluous rota-
tions and reflections. But since this algorithm is used
only once, when the hash table is initialized, its effi-
ciency is not very important. The tessellation of the
pattern types can be computed with an ad hoc algo-
rithm as the one presented in [8].

3.3 Number of Delaunay Tessellation for Pat-
tern Types

Theorem 5 The number of possible Delaunay
tessellation for each d-cuboid pattern type is up-
per bounded by F(d) = (2d)!/(24d!).

Proof. As we have shown in Figure 1 using a 1-
irregular rectangle, the Delaunay tessellation of a pat-
tern type depends on its edge length ratio. The worst
case is when there exists a different tessellation for
each edge length ratio. In the case of a rectangle, edge
lengths can vary in two directions: one edge length can
be smaller than, equal to or greater than the other edge
length. That is why it is possible to have at most three
possible Delaunay tessellations for 1-irregular rectan-
gle pattern types. In cuboids, the edge lengths can
vary in three directions. The first edge length can be
chosen in one way, the second edge length can be cho-
sen smaller than, equal to or greater than the first edge
length, and third, smaller than, in between, equal to
or greater than the previous ones.

This number is the square of 12, the number of edges in 3-D.
Then it could be expected that there is a relation between
the number of pattern types and the number of edges. But
in 2-D it can be easily shown that this is not true because
there are 4 edges and only 6 pattern types (not 16).

In general, the previous analysis can be described us-
ing the following expression. Let F'(d) be the maxi-
mum number of possible Delaunay tessellations for a
d-cuboid pattern type. (The maximum value is ob-
tained by considering that each edge length variation
produces a new Delaunay tessellation). Then,

F(d+1) = (2d + 1)F(d)

d
F(d+1)=[[@i+1), F1) =1
=1

This formula can be proven by induction. It is easy to
see that, if F'(d) is already computed, the new edge
length can be the length of one of the previous edges
(there are d possible lengths) or it can be between the
previous ones (there are d + 1 possible places). Then,
the possible lengths in the new direction are (2d + 1).
Therefore, the total number of edge length ratio in
dimension d + 1 is (2d + 1) F(d).

Finally, it is not hard to show using standard tech-
niques that

(2d)!

Fd) = Saar

In particular, the number of possible tessellations of a
l-irregular cuboid is bounded by F(3) = 15. O

4. 1-IRREGULAR CUBOIDS AND
EQUIVALENCE CLASSES USING AN
INTERSECTION BASED APPROACH

The number of l-irregular cuboids and the number
of equivalence classes using an intersection based ap-
proach are still unknown. In this section, we will first
define a new notion of equal 1-irregular configurations,
and then compute the number of 1-irregular cuboids,
and a theoretical upper and lower bound for the num-
ber of equivalence classes in 2D and 3D.

In order to generate the Delaunay tessellation of a 1-
irregular configuration with Steiner points at any po-
sition, together with the element aspect ratio, the rel-
ative position of the Steiner points is relevant (see Fig-
ure 6 of section 2.2).

Definition 4 A 1-irregular configuration iy is
considered equal to a 1-irreqular configuration is



if the relative position between the Steiner points
located in the parallel edges of i1 and is is the same
with respect to a normalized 1-irregular configura-
tion.

According to Definition 4, the l-irregular cuboids of
Figure 8(a) and Figure 8(b) are equal and the 1-
irregular cuboid shown in Figure 8(c) is not equal to
the ones shown in Figure 8(a) and (b). The l-irregular
cuboid in Figure 8(d) is also not equal to the ones in
Figure 8(a) and (b) but it belongs to their same equiv-
alence class, because it can be considered equal to the
ones in Figure 8(a) and (b) after two rotations about
the y axis.

@ (b) (© (d)
Figure 8. 1-irregular cuboids: (a) and (b) are considered equal,

(c) is different from (a) and (b), and (a),(b) and (d) belong to
the same equivalence class.

4.1 Number of 1-Irregular Configurations

This section introduces first several properties that
simplify the computation of the number of 1-irregular
cuboids, and then presents the results.

Proposition 1 Let ¢ be a d-cuboid and n the
number of the 1-irregular cuboids with Steiner
points in only one of their orthogonal axes. The
total number of 1-irreqular cuboids of ¢ is N = n¢

Proof. The computation of the total number of 1-
irregular cuboids can be done by first counting the
number of 1-irregular cuboids in each orthogonal direc-
tion independently. These numbers can then be mul-
tiplied together because the insertion of a new Steiner
point has only influence in the computation if it can
be located to the left, right or on the same line of
already inserted Steiner points. This occurs only in
nonorthogonal edges. Since the cuboid has d orthogo-
nal directions and has the same shape in each one, the
total number of 1-irregular cuboids is n?. O

Proposition 2 Let n; be the number of 1-
irreqular d-cuboids with ¢ Steiner points on par-
allel edges (only one of the orthogonal directions
is used), then n is :

Proof. The parameter i is between 0 and the number
of parallel edges in any of the orthogonal axes of the
d-cuboid. The number of parallel edges of a d-cuboid
can be computed by dividing the number of edges by
the dimension. Using the Theorem 1, the number of
parallel edges is 2¢~1.00

Proposition 3 Let ¢ be a d-cuboid with i Steiner
points on parallel edges. Then the number of loca-
tions to insert a new Steiner point along a target
empty edge considering the already inserted points
18 21+ 1.

Proof. Each Steiner point can be inserted along a
target empty edge to the left, to the right or aligned
to one of the already inserted points. If there are %
inserted points, then the number of possible locations
among the inserted points is ¢ + 1. In addition, the
number of possible locations aligned to one of the in-
serted points is 2. Then, the number of possible loca-
tions for the new point is 2¢ + 1.00

Corollary 6 There are (2i + 1)!/(2%!) different
ways to place i + 1 Steiner points on a given set
of parallel edges. This is trivial because we have
again the formula f(i+1) = (26+1)f(¢), f(0) =1
handled in Theorem 5.

Theorem 7 The number of I1-irregular rectan-
gles in d dimensions is N = n?, where

2d-1 .
2d-1\ (2 — 1)!
N =1 e A —
+ ; ( i )21—1(2'_1)!

Proof. We follow the formula given in Proposition 2.
To compute each n; we consider that there are 2d-1
parallel edges from which we choose ¢. Once the edges
to place the Steiner points are chosen, we put them in
all the possible ways, which are (27 — 1)!/(2¢71(s —
1)!). The formula does not work for ¢ = 0, but for
this case we have ng = 1. The formula of the theorem
follows immediately.

Corollary 8 The number of I-irreqular rectan-
gles in 2D is 62.

Corollary 9 The number of I-irregular cuboids
is in 3D is N = 1873



4.2 Number of Equivalence Classes

An upper bound for the number of equivalence classes
is the number of 1-irregular cuboids.

In the same way as in the bisection based approach,
a lower bound for the equivalence classes can be ob-
tained if the total number of 1-irregular cuboids is di-
vided by the number of possible rotation and reflection
transformations.

Corollary 10 Let N be the number of 1-irreqular
d-cuboids. A lower bound for the number of equiv-
alence classes of 1-irreqular d-cuboids is w%' In
the particular case of the cuboid, the wvalue is

1872 > 34,058

5. CONCLUSIONS

This paper presents the computation of the exact num-
ber of l-irregular rectangles and cuboids for both a bi-
section and an intersection based approaches. In the
case of the bisection based approach, it presents the
theoretical computation of upper and lower bounds,
and the empirical computation of the exact number of
equivalence classes. In case of an intersection based
approach, it presents the theoretical computation of
the upper and lower bounds for the number of equiv-
alence classes.

The number of equivalence classes of a cuboid in a
bisection based approach is 144. This allows us to
store the necessary information of all the 1-irregular
cuboids (2!2) and the tessellation of all the pattern
types in a hash table. Then, the time to get the right
tessellation of any 1-irregular cuboid is O(1).

The number of equivalence classes of a cuboid using an
intersection based approach is too high for storing all
of them in a hash table. It is also not clear whether
there exists a good hash function, because the rela-
tive position between Steiner points on parallel edges
should also be considered. Since the mesh generator
that uses an intersection based approach to fit the de-
vice geometry refines the coarse elements by bisecting
their edges wherever required, most of the 1l-irregular
elements have bisected edges. Then, it is convenient to
use a mixed approach, i.e, a hash table for 1-irregular
elements with bisected edges and an algorithm for the
rest of 1-irregular elements.

The use of pre-computed tessellations as a method
to find the tessellation of any 1l-irregular element (in-
dependent of the algorithm used to generate them)
should be preferred over other methods, because it is
a robust method (for example, it avoids the precision
problems that can occur when 1-irregular elements be-
long to very thin layers). In addition it computes

always the right tessellation and takes less computa-
tional time than a real time algorithm.
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