
Analysis of an Adaptive Algorithm to Find theTwo Nearest NeighborsPatricio V. Poblete�University of ChileAbstractGiven a set S of N distinct elements in random order and a pivotx 2 S, we study the problem of simultaneously �nding the left and theright neighbors of x, i.e. L = maxfuju < xg and R = minfvjv > xg.We analyze an adaptive algorithm that solves this problem by scan-ning the set S while maintaining current values for the neighbors L andR. Each new element inspected is compared �rst against the neighborin the most populous side, then (if necessary) against the neighbor inthe other side, and �nally (if necessary), against the pivot.This algorithmmay require 3N comparisons in the worst case, butit performs well on the average. If the pivot has rank �N , where � is�xed and < 12 , the algorithm does (1 + �)N + �(logN) comparisonson the average, with a variance of 3 lnN +�(1). However, in the casewhere the pivot is the median, the average becomes 32N + �(pN),while the variance grows to (12 � �8 )N +�(logN).We also prove that, in the �N case, the limit distribution is Gaus-sian.�This work has been supported in part by grant FONDECYT(Chile) 1950622 and1981029 1



1 IntroductionWe consider the following problem:Given a set S with N distinct elements, and a designatedpivot x, �nd the two closest neighbors of x. More precisely, �ndL and R such that L = maxfuju < xg and R = minfvjv > xg.This is equivalent to performing a Quicksort-like partition of the set S asfollows: S<L L x R S>RThis problem has been studied in [2], where the following adaptive algorithmwas proposed:Read the elements of the set one at a time, keeping track ofthe closest element found so far on each side of x.For each new element read, compare it against the neighborin the most populous side �rst (in the case of a tie, choose ran-domly), and add it to that side it if is falls away from the pivot.Otherwise, compare it against the other neighbor, and add it tothat side if it falls away from the pivot. Finally, if necessary,compare it against the pivot, and have the new element take theplace of the appropriate neighbor, pushing it to the side.Essentially, this algorithm \bets" that an incoming element will fall amongthe largest group of elements found so far, and compares there �rst.In [2] it was shown that the average number of comparisons performed bythis algorithm exhibits an interesting transition when the rank of the pivotis close to N=2 (the median). In e�ect, if the rank of x is �N , for someconstant � 2 [0; 12), then the average number of comparisons is(1 + �)N +�(logN):But, when x is the median, a pN term suddenly appears, and the averagenumber of comparisons becomes32N +s�N8 + �(logN):2



The analytical approach in [2] is heavily oriented towards obtaining the av-erage cost, and it does not appear to be easy to generalize to compute highermoments.In this paper, we consider an alternative, more general approach, and showhow it can be used to fully analyze the problem.2 The Analysis2.1 Getting StartedTo simplify the problem, we assume that from the beginning we alreadyknow an initial random left neighbor L and an initial random right neighborR for x. This does not change the cost signi�cantly, and it is automaticallysatis�ed when the pivot has been chosen as the median of a random sampleof size three. We then read the remaining N elements, rede�ning the valuesfor L and R as needed, and after �nishing this process, we call m and n thenumber of elements respectively less than L and greater than R. Withoutloss of generality, assume that m � n. Also, since every element read requiresat least one comparison, we only count comparisons in excess of that. Atthe end, we will correct for this in the expected value (the variance is nota�ected).To analyze the algorithm, we use a transition diagram with states identi-�ed by pairs (i; j). The algorithm will be in state (i; j) after processing asequence of elements that produce a partition with i elements less than Land j elements greater than R. As an example, �gure 1 shows the transitiondiagram for m = 3; n = 5.In this diagram, the edge labels count the number of ways in which eachincoming element may fall among the preceding ones, using the variable zto keep track of the cost, as shown in �gure 2. If i < j, the edge goingfrom (i; j) to (i; j + 1) (i.e. moving away from the diagonal) carries a label�j = �j(z) = (j + 1) + z2, and the edge going from (i; j) to (i + 1; j) (i.e.going towards the diagonal) has the label �i = �i(z) = (i + 1)z + z2. Thesituation is symmetric for i > j. The diagonal is a special case, because wemake a random decision, and therefore the label for each edge going out froma state (i; i) is (�i + �i)=2. We �nd it convenient to rewrite (�i + �i)=2 as3
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2Figure 1: Transition diagram for m = 3, n = 5

State (i; j) : z1# � z1# � z1# L z2#| {z } x z2# R z0# � z0# � z0# � z0#| {z }(i+ 1)z + z2 (j + 1) + z2# #State (i+ 1; j) State (i; j + 1)Figure 2: Transitions from state (i; j), assuming i < j4
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where Qm;n(z) = �0�1 � � ��n�1�0�1 � � � �m�1and where Rm;n obeys the equationRm;n(z) = (m;n) + X0�i�m0 Ri;i(z)�i(z)(m� i; n� i); (2)where we use Comtet's[1] symmetric binomial coe�cient notation: (m;n) =�m+nm � = �m+nn �. Equation (2) can be proved by grouping the terms of theform (1) according to their rightmost �i.If we now consider the normalized generating functionspm;n(z) = Pm;n(z)=Pm;n(1)qm;n(z) = Qm;n(z)=Qm;n(1)rm;n(z) = Rm;n(z)=Rm;n(1);and, using the operators Uz (\evaluate at z = 1") and @z (\di�erentiate withrespect to z"), we de�neave(p) = Uz@zpvar(p) = Uz@2zp + ave(p)� ave(p)2;we then have ave(pm;n(z)) = ave(qm;n(z)) + ave(rm;n(z))var(pm;n(z)) = var(qm;n(z)) + var(rm;n(z))even though rm;n(z) is not a proper probability generating function (it satis-�es rm;n(1) = 1, but it has negative coe�cients). This fact is pointed out in[6], and it can be generalized to all cumulants:De�nition 1 Let p(z) be a generating function such that p(1) = 1. Itscumulants are the coe�cients �j(p) in the expansionln p(et) =Xj�1 �j(p)tjj!Note that ave(p(z)) = �1(p) and var(p(z)) = �2(p).It is easy to see from the de�nition that if q(z) and r(z) are generatingfunctions such that q(1) = 1 and r(1) = 1, and p(z) = q(z)r(z), then�j(p) = �j(q) + �j(r) (3)for all j � 1. 6



2.2 Analysis for qm;n(z)Recall that �i(z) = (i+1) + z2 and �i(z) = (i+ 1)z+ z2. By a Taylor seriesexpansion, we haveln �i(et)�i(1) ! = 2i+ 2 t+ 12!  4i+ 2 � 4(i+ 2)2! t2 +��1i� t3 +��1i� t4 + � � �andln �i(et)�i(1) ! = �1 + 1i+ 2� t+ 12!  1i+ 2 � 1(i+ 2)2! t2+��1i� t3+��1i� t4+� � �and, therefore,ave(qm;n(z)) = m+ 2(Hn+1 � 1) +Hm+1 � 1var(qm;n(z)) = 4Hn+1 +Hm+1 � 4H(2)n+1 �H(2)m+1�j(qm;n) = �(ln n+ lnm) 8j � 3where Hn =P1�j�n 1j and H(2)n =P1�j�n 1j2 .It is interesting to study the asymptotic behavior of these quantities as thetotal number of elements grows, assuming the rank of the pivot is a �xedfraction of the set size.Recalling our assumption that m � n, suppose there exists a constant � 2[0; 12] such that m = �N and n = (1 � �)N as N !1. Thenave(q�N;(1��)N(z)) = �N + 3 lnN +�(1)var(q�N;(1��)N(z)) = 5 lnN +�(1)�j(q�N;(1��)N) = �(lnN) 8j � 3:2.3 Analysis for rm;n(z)When �nding moments by di�erentiating equation (2), the fact that �i(1) = 0will imply that in the right hand side there will be only derivatives of orderstrictly lower than that of the left hand side. Therefore, if we computemoments in increasing order, the right hand side will contain only knownfunctions.To be able to compute the summations that will appear, we will need toconsider separately the case m = n = N2 and the case m = �N , (1��)N for0 � � < 12.For the �rst one, we have the following lemma:7



Lemma 1 If an and bn satisfy an equationan = X0�k�n bk(n� k; n� k)and if A(x) and B(x) are their respective ordinary generating functions, then:A(x) = B(x)p1 � 4xProof : The right hand side is the convolution of bn and (n; n). The generatingfunction of the latter function isXn�0(n; n)xn = 1p1 � 4xThe result follows.Lemma 2 Let am;n and bn satisfy an equationam;n = X0�k�n bk(m� k; n� k)and let B(x) be the ordinary generating function of bn.If m = �N and n = (1� �)N , for some constant � 2 [0; 12), thenam;n(m;n) = B(�(1 � �)) + �� 1N �Proof : Formally, consider n a �xed parameter, and letAn(x) = Pm�0 am;nxm.Then, An(x) = Xm�0 xm X0�k�n bk(m� k; n� k)= Xk�0 bkxk Xm�k(m� k; n� k)xm�k= Xk�0 bkxk 1(1� x)n�k+1= 1(1 � x)n+1 Xk�0 bk(x(1� x))k= B(x(1� x))(1 � x)n+18



Now, let C(x) = B(x(1� x)) and let C(x) = Pk�0 ckxk. Then,An(x) = 0@Xk�0 ckxk1A0@Xj�0(n; j)xj1Aand therefore am;n(m;n) = X0�k�m ck (n;m� k)(m;n)= X0�k�m ck mk(m+ n)kwhere mk = m(m� 1) � � � (m� k + 1).If we now let N = m+ n and m = �N , we can use formula (II.46) from [4],to obtain the asymptotic approximationam;n(m;n) = C(�) + �� 1N �= B(�(1� �)) + �� 1N �2.3.1 The Median CaseWhen m = n, equation (2) can be rewritten asRn;n(z) = (n; n) + X0�i�nRi;i(z)�i(z)(n� i; n� i)�Rn;n(z)�n(z): (4)If we write Gxan = Pn�0 anxn, then by applying the Gx operator to bothsides of equation (4), we obtainGxRn;n(z) = 1p1 � 4x +  1p1� 4x � 1! GxRn;n(z)�n(z) (5)= 1p1 � 4x + 12  1p1� 4x � 1! (z � 1)Gx n+1n+1+z2Rn;n(z): (6)Evaluating at z = 1, we haveGxUzRn;n(z) = GxRn;n(1) = 1p1 � 4x (7)9



as expected, since Rn;n(1) = (n; n).Di�erentiating equation (6) once with respect to z and then setting z = 1,we obtainGxUz@zRn;n(z) = 12  1p1 � 4x � 1!Gx n+1n+2Rn;n(1) (8)= 1=21 � 4x � 7=6p1 � 4x � p1� 4x� 14x � p1� 4x� 1 + 2x12x2To obtain coe�cients from this generating function, and from others we willencounter soon, we state the following identities:[xn] 11� 4x = 4n (9)[xn] ln (1� 4x) = �4nn [[n � 1]] (10)[xn] 1(1� 4x)s+ 12 = (n; n)(2n; 2s)(n; s) (11)[xn] 1(1� 4x)s+ 12 ln (1� 4x) = �(n; n)(2n; 2s)(n; s) (2(H2n+2s �H2s)� (Hn+s �Hs))(12)[xn]p1� 4x = � (n; n)2n� 1 (13)[xn] 1p1� 4x 21 +p1 � 4x!t = (n; n+ t) (14)[xn] 1p1� 4x 21 +p1� 4x!t ln 21 +p1� 4x! = (n; n+ t)(H2n+t �Hn+t)(15)Identities (12) and (15) can be obtained from (11) and (14) respectively byformal di�erentiation with respect to the parameter.Using identities (9), (11) and (13), and the properties of ordinary generatingfunctions, we haveUz@zRn;n(z) = 124n � 76(n; n) + 14 (n + 1; n+ 1)2n+ 1 + 112 (n+ 2; n + 2)2n+ 3 ;10



and, dividing by (n; n) to normalize,ave(rn;n(z)) = 4n2(n; n) � 76 + 1=6n+ 1 + 1n+ 2 :Now, di�erentiating equation (6) twice with respect to z and then settingz = 1, we obtain (after considerable simpli�cation using Maple):GxUz@2zRn;n(z) =  1p1� 4x � 1!Gx n�2(n+1)(n+2)2Rn;n(1) + n+1n+2R0n;n(1)o= 1=2(1 � 4x)3=2 � 5=31 � 4x + 13=3p1 � 4x+ 2324x (p1 � 4x � 1) + 13x2 (p1 � 4x � 1 + 2x)+ 132x2  ln (1� 4x)p1� 4x + 4x!� 132x2 (ln (1� 4x) + 4x)� 13x 1p1� 4x 21 +p1� 4x ln 21 +p1 � 4x!:Applying the appropriate identities term by term, we getUz@2zRn;n(z) = 2n+ 12 (n; n)� 534n + 133 (n; n)� 2324 (n+ 1; n + 1)2n+ 1� 13 (n+ 2; n + 2)2n + 3 � 132(n + 2; n+ 2)(2H2n+4 �Hn+2)+ 13 4n+2n+ 2 � 13(n+ 1; n+ 2)(H2n+3 �Hn+2):Dividing by (n; n) to obtain Uz@2zrn;n(z), we can now computevar(rn;n(z)) = Uz@2zrn;n(z) + ave(rn;n(z))� ave(rn;n(z))2= 36n5 + 299n4 + 989n3 + 1505n2 + 1032n + 25236(n + 1)2(n+ 2)2 � 14 4n(n; n)!2� (2n+ 3)(2n + 1)24(n+ 1)(n + 2)(22H2n+4 � 19Hn+2)� 4n+ 56(n + 1)(n+ 2) 4n(n; n) :Using the expansion 4n(n; n) = p�n+ 18r�n +�(n�3=2)11



and replacing n by N2 , we have the following asymptotic approximations:ave(rN=2;N=2(z)) = s�N2 + �(1)var(rN=2;N=2(z)) = �12 � �8�N � 12 lnN +�(1):2.3.2 The Case m = �N , n = (1 � �)NFrom equation (2) and Lemma 2 we have thatUz@kz r�N;(1��)N(z) = G�(1��)Uz@kzRn;n(z)�n(z) + �� 1N �i.e., the leading term is obtained by simply substituting �(1��) in place ofx in the generating function of Uz@kzRn;n(z)�n(z).To obtain the latter generating function, we use equation (5), from where weget GxUz@kzRn;n(z)�n(z) = 11p1�4x � 1GxUz@kzRn;n(z)and substituting x = �(1� �) we �nally haveUz@kz r�N;(1��)N(z) = 1� 2�2� G�(1��)Uz@kzRn;n(z) + �� 1N � :Using this and equations (7) and (8), we haveave(r�N;(1��)N(z)) = 1=21� 2� � 1=12(1 � �)2 � 1=61 � � +�� 1N �var(r�N;(1��)N(z)) = 1144 42� 267� + 726�2 � 1066�3 + 904�4 � 436�5 + 96�6�(1 � 2�)2(1 � �)4+ 116 ln (1 � 2�) + 16 ln (1� �)�2(1 � �)2 +�� 1N �Using a similar reasoning, it is easy to see that higher moments, thoughcomplicated, will also be asymptotically constant, and therefore�j(r�N;(1��)N) = �(1):12



2.4 The Total CostWe �nish the analysis by using the additive property (3) and adding to theaverages the N comparisons we had so far avoided counting, to obtain thedesired result, which we state in the following theorem:Theorem 1 Let Cm;n be the random variable that counts the comparisonsmade by the algorithm when the partition has m and n elements in its leftand right sides, respectively.Then, if m = n = N2 and E and V denote the expected value and the variance,respectively, we haveECN=2;N=2 = 32N +s�N8 + �(lnN)VCN=2;N=2 = �12 � �8�N + 92 lnN +�(1):In the case of an unbalanced partition, if min(m;n) = �N for some constant� < 12, then EC�N;(1��)N = (1 + �)N + 3 lnN +�(1)VC�N;(1��)N = 5 lnN +�(1):Furthermore, all higher cumulants of C�N;(1��)N are �(lnN).Corollary 1 Let �N = EC�N;(1��)N and �2N = VC�N;(1��)N. Then thenormalized random variable XN = C�N;(1��)N � �N�N converges weakly to anormal (0; 1) distribution, i.e., PrfXN � xg ! �(x) as n!1.Proof : Let FN(t) be the characteristic function of XN , and let us write pN (z)for p�N;(1��)N(z). Then,FN (t) = e�it�N=�NpN (eit=�N )lnFN (t) = �it�N�N +Xj�1 �j(pN )j! � it�N �j= �t22 +Xj�3 �j(pN )�jN (it)jj!= �t22 + � (it)3plnN ! :13



Therefore, FN(t) ! e�t2=2 as N ! 1, and the corresponding distributionconverges to �(x) by the Continuity Theorem.3 ConclusionsWe have performed a detailed analysis of an adaptive algorithm to �nd thetwo nearest neighbors of a given element, thus solving a problem that seemsto defy the usual techniques (e.g. the symbolic method).Our analysis bears a remarkable similarity to that of linear probing hashingalgorithms[3, 8], particularly in the way the behavior for a pivot of rank �Ncan be derived from that of the median case, much like the analysis for sparsehash tables is a byproduct of the analysis for almost full tables. Also, lemma2 bears great similarity to the Poisson Approximation Theorem[5, 7].We leave as an open problem the determination of higher cumulants for themedian case, to prove or disprove that the limit distribution is also Gaussianin the median case. Another interesting line of investigation is the study ofthe transition that leads to the appearance of the �(pn) term as the rankof the pivot approaches N=2.4 AcknowledgementsThe author gratefully acknowledges many interesting discussions about thisproblem with Philippe Flajolet and Alfredo Viola. The presentation wasimproved by the comments made by Ricardo Baeza-Yates and by the anony-mous referees.References[1] L. Comtet. Advanced Combinatorics. Reidel, Dordrecht, 1974.[2] W. Cunto, J.I. Munro, and P.V. Poblete. A case study in comparisonbased complexity �nding the nearest value(s). In 2nd Workshop on Al-gorithms and Data Structures - WADS 91, pages 1{12. Springer-Verlag,August 1991. Ottawa.[3] Ph. Flajolet, P.V. Poblete, and A. Viola. On the analysis of linear probinghashing. Algorithmica, 22(4):490{515, December 1998.14
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