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Abstract

Given a set S of N distinct elements in random order and a pivot
z € 5, we study the problem of simultaneously finding the left and the
right neighbors of z, i.e. L = max{u|u < #} and R = min{v|v > z}.

We analyze an adaptive algorithm that solves this problem by scan-
ning the set .S while maintaining current values for the neighbors L and
R. Each new element inspected is compared first against the neighbor
in the most populous side, then (if necessary) against the neighbor in
the other side, and finally (if necessary), against the pivot.

This algorithm may require 3N comparisons in the worst case, but
it performs well on the average. If the pivot has rank alV, where a is
fixed and < 3, the algorithm does (1 + a)N + ©(log N) comparisons
on the average, with a variance of 3In N + ©(1). However, in the case
where the pivot is the median, the average becomes %N + @(\/N),
while the variance grows to (3 — Z)N + O(log N).

We also prove that, in the aN case, the limit distribution is Gaus-
sian.

*This work has been supported in part by grant FONDECYT(Chile) 1950622 and
1981029



1 Introduction

We consider the following problem:

Given a set S with N distinct elements, and a designated
pivot z, find the two closest neighbors of . More precisely, find
L and R such that L = max{u|u < z} and R = min{v|v > z}.

This is equivalent to performing a Quicksort-like partition of the set § as
follows:

[Sa|L|z|R|Sr]

This problem has been studied in [2], where the following adaptive algorithm
was proposed:

Read the elements of the set one at a time, keeping track of
the closest element found so far on each side of x.

For each new element read, compare it against the neighbor
in the most populous side first (in the case of a tie, choose ran-
domly), and add it to that side it if is falls away from the pivot.
Otherwise, compare it against the other neighbor, and add it to
that side if it falls away from the pivot. Finally, if necessary,
compare it against the pivot, and have the new element take the
place of the appropriate neighbor, pushing it to the side.

Essentially, this algorithm “bets” that an incoming element will fall among
the largest group of elements found so far, and compares there first.

In [2] it was shown that the average number of comparisons performed by
this algorithm exhibits an interesting transition when the rank of the pivot
is close to N/2 (the median). In effect, if the rank of z is alN, for some
constant a € [0, %), then the average number of comparisons is

(1+ a)N + O(log N).

But, when z is the median, a v/INV term suddenly appears, and the average
number of comparisons becomes

3 N
CN 4y T+ Ollog V).



The analytical approach in [2] is heavily oriented towards obtaining the av-
erage cost, and it does not appear to be easy to generalize to compute higher
moments.

In this paper, we consider an alternative, more general approach, and show
how it can be used to fully analyze the problem.

2 The Analysis

2.1 Getting Started

To simplify the problem, we assume that from the beginning we already
know an initial random left neighbor L and an initial random right neighbor
R for x. This does not change the cost significantly, and it is automatically
satisfied when the pivot has been chosen as the median of a random sample
of size three. We then read the remaining N elements, redefining the values
for L and R as needed, and after finishing this process, we call m and n the
number of elements respectively less than L and greater than R. Without
loss of generality, assume that m < n. Also, since every element read requires
at least one comparison, we only count comparisons in excess of that. At
the end, we will correct for this in the expected value (the variance is not
affected).

To analyze the algorithm, we use a transition diagram with states identi-
fied by pairs (¢,5). The algorithm will be in state (¢, ) after processing a
sequence of elements that produce a partition with ¢ elements less than L
and j elements greater than R. As an example, figure 1 shows the transition
diagram for m = 3,n = 5.

In this diagram, the edge labels count the number of ways in which each
incoming element may fall among the preceding ones, using the variable z
to keep track of the cost, as shown in figure 2. If ¢+ < j, the edge going
from (¢,7) to (¢,7 + 1) (i.e. moving away from the diagonal) carries a label
a; = a;(z) = (j + 1) + 2%, and the edge going from (z,7) to (¢ + 1,7) (i.e.
going towards the diagonal) has the label 3; = Bi(z) = (¢ + 1)z + 2. The
situation is symmetric for ¢ > j. The diagonal is a special case, because we
make a random decision, and therefore the label for each edge going out from
a state (¢,7) is (a; + 3;)/2. We find it convenient to rewrite (a; + 3;)/2 as



Figure 1: Transition diagram for m =3,n =5

State (¢,7) :
(5-4) (t+ 1)z + 22 (7+1)+22
S S
State (¢ + 1,7) State (7,7 + 1)

Figure 2: Transitions from state (¢,7), assuming ¢ < j



Figure 3: The transition diagram folded along the diagonal

a;(1 4+ 6;), where

1,8 1 P41

If we fold this diagram along its main diagonal, as shown in figure 3, we can
see that the labels for the edges crossing a given horizontal dotted line are
all the same, and of the form g;, for some ¢. Similarly, all the edges crossing
a given vertical dotted line are the same, and of the form «;, except for the
edges going out from a diagonal state (dashed lines, in the example), that
carry an additional (1 + §;) factor.

Let P, .(z) be the generating function equal to the sum of the labels of all
the paths from (0,0) to (m,n), where the label of a path is the product of
the labels of its edges. From the properties of the transition diagram, it is
clear that all terms in this sum will be of the form

Kol + - - an—l/BO/Bl . '/Bm—ldildiz tee 5ik (1)

where k > 0and 0 <3 <ip <--- < ¢ < m' =min(m,n — 1).
Therefore, since the “aB” part is common to all terms, we can factor P, ,
as

Pm,n(z) = Qm,n(z)Rmyn(z)a
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where
Qm,n(z) = Qo&q **- an—l/BO/Bl . '/Bm—l
and where R,,, obeys the equation
Rnn(2) = (myn) + > Rii(2)di(2)(m —i,n — i), (2)
0<i<m!

where we use Comtet’s[1] symmetric binomial coeflicient notation: (m,n) =
(m—l—n

m

) = <m+n> Equation (2) can be proved by grouping the terms of the

form (1) according to their rightmost §;.
If we now consider the normalized generating functions

Pmn(z) = Pna(z)/Pnn(1)
qm,n(z) = Qm,n(z)/Qm,n(l)
Tmn(2) = Bmn(2)/Bmn(1),

and, using the operators U, (“evaluate at z = 1”) and 0, (“differentiate with
respect to 2”), we define

ave(p) = U,0.p
var(p) = Uzafp—l—ave(p)—ave(p)Z,

we then have

ave(pmn(2)) = ave(gmn(2)) + ave(rmn(2))
Var(pmn() = Var(gmn(2)) + Var(rmn(2))

even though 7, ,(z) is not a proper probability generating function (it satis-
fies 7, n(1) = 1, but it has negative coeflicients). This fact is pointed out in
[6], and it can be generalized to all cumulants:

Definition 1 Let p(z) be a generating function such that p(1) = 1. Its
cumulants are the coefficients x;(p) in the expansion

Inp(e') = X ws(p)

Note that ave(p(z)) = k1(p) and var(p(z)) = k2(p).
It is easy to see from the definition that if g(z) and r(z) are generating
functions such that ¢(1) = 1 and r(1) = 1, and p(z) = ¢(z)r(z), then

K;(p) = K;(q) + r;i(r) (3)
for all 7 > 1.



2.2 Analysis for ¢, ,(2)
Recall that a;(z) = (: + 1) + 2% and B;(2) = (¢ + 1)z + z%. By a Taylor series

expansion, we have

hl(z((elt))) :ij2t+%(ii2_(i—f2)2)t2+®< >t3—|-®<z> b

and

ln(%i((elt))) N <1+ii2>t+% (i—|1-2_(i_|_12)2)t+®< )0 ()t

and, therefore,

a've(Qm,n(z)) = m —I_ 2(I_In-l—l - ]-) ‘I’ Hm-l—l - ]-
Var(gmn(2)) = 4Hpy1 + Hpyr — 4HO — HY)
ki(gmn) = O(lnn+Inm) Vi>3
where H, = 31 < % and H?) = Y1<j<n J%
It is interesting to study the asymptotic behavior of these quantities as the
total number of elements grows, assuming the rank of the pivot is a fixed
fraction of the set size.

Recalling our assumption that m < n, suppose there exists a constant o €

[0, 1] such that m = aN and n = (1 — a)N as N — co. Then

)
ave(gan,(1-a)n(2)) = aN +3InN +0(1)
var(gan,(1-a)n(2)) = 5In N 4+ O(1)

K;j(gan,(1-a)y) = O(InN) Vi > 3.

2.3 Analysis for 7, ,(2)

When finding moments by differentiating equation (2), the fact that 4;(1) =0
will imply that in the right hand side there will be only derivatives of order
strictly lower than that of the left hand side. Therefore, if we compute
moments in increasing order, the right hand side will contain only known
functions.

To be able to compute the summations that will appear, we will need to
consider separately the case m = n = % and the case m = aN, (1 —a)N for
0<ax< %

For the first one, we have the following lemma:
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Lemma 1 If a,, and b, satisfy an equation

a, = Z be(n — k,n — k)

0<k<n
and if A(z) and B(z) are their respective ordinary generating functions, then:
B(z)
V1 -4z

Proof: The right hand side is the convolution of b, and (n,n). The generating
function of the latter function is

Az) =

n 1
nzzo(”’”)‘” TV 4
The result follows. B

Lemma 2 Let a,,,, and b, satisfy an equation

A = Z br(m — k,n — k)

0<k<n

and let B(z) be the ordinary generating function of b,.
Ifm =aN and n = (1 — )N, for some constant a € [0, 3), then

1

(::’Z) _ Bla(l—a))+ 0 <N>

Proof: Formally, consider n a fixed parameter, and let A,(z) = 3,50 @mnz™.

Then,
An(z) = Zwm Z be(m — k,n — k)

m>0 0<k<n

= Y brz" Y (m—k,n— k)zmF

>0 kak 1
= I;bkw m
1 k
_ B(z(1-2))
(1 —z)~t!

8



Now, let C(z) = B(z(1 — z)) and let C(z) = YXr>o cxz®. Then,

(o) — (z ) (zm,j)wj)

k>0

and therefore

(m,n)

where m&:m(m—l)---(m—k—l—l).
If we now let N =m + n and m = alN, we can use formula (I1.46) from [4],
to obtain the asymptotic approximation

(Z:’:L) _ C(a)—l—@(%)

_ B(a(l-a)) 40 %)

2.3.1 The Median Case

When m = n, equation (2) can be rewritten as

Ron(z) = (n,n) + > Rii(2)di(2)(n — i, — i) = Ron(2)da(2).  (4)

0<2<n

If we write Goa, = 3,50anz", then by applying the G, operator to both
sides of equation (4), we obtain

1 1
GoRnn(z) = NieT + (\/1 — 1) GoRpn(2)6n(2) (5)

1 1 1 n
Vi 2 (m ) 1) (&~ e Fun2)- (0
Evaluating at z = 1, we have

1

gmUan,n(z) = ngn,n(l) = \/ﬁ (7)



as expected, since R, ,(1) = (n,n).
Differentiating equation (6) once with respect to z and then setting z = 1,
we obtain

1 1
gmUzaan,n(z) — 5 (ﬁ ) ngi;Rnn( ) (8)
12 776 VI—de—1 I _dz—1+2
 1-4z 14z 4z 1222

To obtain coeflicients from this generating function, and from others we will
encounter soon, we state the following identities:

" = 4" (9
[z"]In (1 — 4z) = —4%[[71 > 1] (10)
n 1 B (2n,2s)
[CB ](1 —4:3)3+ - (’I’L,TL) (’I’I,,S) (]‘1)
o) g ) = () ) OB Ha) — (s~ 1)
(12)
[2"V/1 — 4z = — (n—)l (13)
1—4w(1+m) = (mn+t) (14)

sl fﬁ) () e 0 o

Identities (12) and (15) can be obtained from (11) and (14) respectively by
formal differentiation with respect to the parameter.
Using identities (9), (11) and (13), and the properties of ordinary generating
functions, we have

1 7 l(n+1,n+1) 1 (n+2,n+2)

Uzaann = _4n - 4 9 n Ta 9
n(2) =3 (nym) + ¢ omt1 12 o9ni3
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and, dividing by (n,n) to normalize,

4n
2(n,n)

1/6 1
n+l n+2

ave(r,,(2)) =

T
6

Now, differentiating equation (6) twice with respect to z and then setting
z =1, we obtain (after considerable simplification using Maple):

1
2 _ 2(n-|—1) n
0.5 nnle) = (e 1) 0 (- Ee ) + 251, 1)
B Y2 53 133
(1 —42)3¥2 1 -4z 14z
2 1
L L
1 In (1 — 4z) 1
4z | — In (1 — 4z) + 4
327 ( i "”') 39g2 (0 (1 = 42) + dz)

1 1 2 2
- — 1 .
3z/1—4z1++/1— 4z n(1+M)
Applying the appropriate identities term by term, we get

2n +1 5 13 23(n+1,n+1)
U,0%Ron(z) = 2 (n,n)— od" + —(n,n) — T 0T
1(n+2,n+2) 1
_ BTSN TE) (1 2,n 4 2)(2Hsnea — H,,

14n+2
+§n—|—2_§

(n+1,n + 2)(Hznys — Hpya).

Dividing by (n,n) to obtain U,d2r, ,(z), we can now compute

var(rpn(z)) = Uzafrn,n(z) + ave(rpn(z)) — ave(rn,n(z))2
36n° + 2991t + 98903 + 150502 + 1032n + 252 1[ 4~ \?
36(n + 1)2(n + 2)2 a Z((n,n))
(2n + 3)(2n + 1) 4n + 5 4m
~ 24(n+1)(n+2) 6(n +1)(n +2) (n,n)’

Using the expansion

(22Hyn 14 — 19H,15) —

417,

(n,n)

= \/mn + %\/EJF O(n=%?)
n
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and replacing n by %, we have the following asymptotic approximations:

N
ave(ranpl(z)) = |5 +0(1

1 T

var(ryya,nya(z)) = 5 — 8> N — —lnN—I— O(1).

2.3.2 The Case m=aN,n=(1—a)N

From equation (2) and Lemma 2 we have that

1
UzaﬁraN,(l—a)N(z) = ga(l—a)UzaﬁRn,n(z)é‘n(z) +0 <N>

i.e., the leading term is obtained by simply substituting a(1 — «) in place of
z in the generating function of U,0%R,, .(2)d.(z).

To obtain the latter generating function, we use equation (5), from where we

get
1

gmUzaﬁRn,n(z)é‘n(z) = 7gmU ak nn( )
V1-4z
and substituting z = a(1l — a) we finally have
1 —2a 1
UzaﬁraN,(l—a)N(z) — Tga(l—a)UzaﬁRn,n(z) + C) <N> .

Using this and equations (7) and (8), we have

1/2 1/12 1/6 1
1-2a (1—a)? 1—a+®<_>

ave(Tan,(1-a)N(2))

N
1 42 —267a + 726a? — 1066a> + 904a* — 436a° + 96a°

var(raN,(l_a)N(z)) =

144 a(l —2a)?(1 —a)*
11—61n(1—2a)—|—%1n(1—a) 1
a?(l — a)? O <N>

Using a similar reasoning, it is easy to see that higher moments, though
complicated, will also be asymptotically constant, and therefore

Klj(raN,(l—a)N) = @(1)
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2.4 The Total Cost

We finish the analysis by using the additive property (3) and adding to the
averages the N comparisons we had so far avoided counting, to obtain the
desired result, which we state in the following theorem:

Theorem 1 Let C,,, be the random variable that counts the comparisons
made by the algorithm when the partition has m and n elements in its left
and right sides, respectively.

Then, ifm=n =% and E and V denote the expected value and the variance,

2
respectively, we have

3 [ 7N
ECN/Z,N/Z = §N‘|‘ ? + @(ln N)

1 = 9
VCu/an2 = <§ — §> N + §lnN + O(1).
In the case of an unbalanced partition, if min(m,n) = aN for some constant
o< %, then

ECun(1i—a)y = (1 +a)N +3InN +0(1)
VCaN,(l—a)N == 5111N—|—®(]_)

Furthermore, all higher cumulants of Con (1—a)n are O(In N).

Corollary 1 Let uy = ECuy1-a)v and o} = VCan(i—a)n. Then the
CaN,(l—a)N — MUN

normalized random variable Xy = converges weakly to a
on

normal (0,1) distribution, i.e., Pr{Xy < z} — ®&(z) as n — oc.

Proof: Let Fn(t) be the characteristic function of Xy, and let us write py(z)

for pan,(1-a)n(2). Then,

FN(t) _ e—itMN/f’NpN(eit/f’N)
.t . .t j
InFy(t) = — M4y KJ(fN) <L>
oN i1 7 oN

2

_ B 3 ri(py) (it)’

J |
>3 On J-




Therefore, Fy(t) — e */2 as N — oo, and the corresponding distribution
converges to ®(z) by the Continuity Theorem. H

3 Conclusions

We have performed a detailed analysis of an adaptive algorithm to find the
two nearest neighbors of a given element, thus solving a problem that seems
to defy the usual techniques (e.g. the symbolic method).

Our analysis bears a remarkable similarity to that of linear probing hashing
algorithms[3, 8], particularly in the way the behavior for a pivot of rank alV
can be derived from that of the median case, much like the analysis for sparse
hash tables is a byproduct of the analysis for almost full tables. Also, lemma
2 bears great similarity to the Poisson Approximation Theorem/[5, 7].

We leave as an open problem the determination of higher cumulants for the
median case, to prove or disprove that the limit distribution is also Gaussian
in the median case. Another interesting line of investigation is the study of
the transition that leads to the appearance of the ®(4/n) term as the rank
of the pivot approaches N/2.
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