UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACION

BI]'SQUEDA APROXIMADA EN TEXTO

GONZALO NAVARRO BADINO

Profesor Guia : Dr. Ricardo Baeza Yates

Profesores de Comisiéon : Dr. Jorge Olivos
:  Dr. Patricio Poblete
Dr. Esko Ukkonen
(Prof. Invitado,
Univ. de Helsinki, Finlandia)

TESIS PARA OPTAR AL GRADO DE
DOCTOR EN CIENCIAS, MENCION COMPUTACION

Este trabajo ha sido parcialmente financiado

por los proyectos Fondecyt 1-950622 y 1-960881, Fondef 96-1064 y CYTED VII.13 AMYRI.

SANTIAGO - CHILE

Diciembre, 1998



A Betina,
sin quien nada tendria sentido.
A la memoria de la Fulogia,

que nos acompand todos estos anos.



Resumen

Esta tesis trata el problema de recuperacién de texto permitiendo errores, también llamada bisqueda
“aproximada” en texto. El problema es encontrar un patrén en un texto donde el patrén y el texto
pueden tener “errores”. Se ha trabajado mucho en este problema en los ltimos anos, dado que
tiene aplicaciones en muchas dreas, tales como recuperacién de informacién, biologia computacional
y procesamiento de sefnales.

El objetivo de este trabajo es el desarrollo y analisis de nuevos algoritmos para resolver el problema
de bisqueda aproximada en texto bajo distintas condiciones, asi como una mejor comprension
del problema mismo y su comportamiento estadistico. Si bien nuestros resultados son validos en
diversas areas, centramos nuestra atencién en la busqueda en texto tipica de las aplicaciones de
recuperacién de informacién. Esto hace que ciertos rangos de valores para los parametros sean mas
interesantes que otros.

Hemos dividido esta presentaciéon en dos partes. La primera trata con busqueda aproximada
secuencial, es decir cuando no existe tiempo o espacio suficiente para preprocesar el texto. Estos
algoritmos son también la base de la bisqueda indexada. La bisqueda secuencial es el area
del problema donde previamente existian mejores algoritmos. Obtuvimos nuevas cotas para la
probabilidad de una ocurrencia aproximada de un patrén en un texto aleatorio, y usamos esos
resultados para analizar algoritmos ya existentes y otros propuestos en este trabajo. Los nuevos
algoritmos que desarrollamos estidn actualmente entre los mas rapidos, siendo incluso los méas rapidos
para practicamente todo el rango de pardmetros de interés en bisqueda en texto tipica. Finalmente,
extendimos nuestros resultados a la bisqueda simultidnea de multiples patrones, obteniendo los
mejores algoritmos existentes cuando se busca una cantidad moderada de ellos (aproximadamente
hasta 100).

La segunda parte de esta tesis se centra en biisqueda aproximada indexada, es decir cuando podemos
construir un indice para el texto de antemano, para mas tarde agilizar la bisqueda. El indice ideal
para busqueda aproximada no existe atin y el desarrollo actual es bastante inmaduro, pero hicimos
progresos proponiendo nuevos algoritmos y entendiendo mejor el problema. Para el caso restringido
de indices capaces de recuperar sélamente palabras completas en lenguaje natural, obtuvimos nuevos
resultados analiticos sobre su complejidad asintética, lo cual nos permitié desarrollar un indice nuevo
que es sublineal en espacio y en tiempo de respuesta simultdneamente. Para este tipo de indices
también presentamos mejores algoritmos de bisqueda. Para el caso de indices generales (capaces de
recuperar no sélo palabras) desarrollamos nuevos esquemas de indexacién que son un compromiso
entre eficiencia y requerimientos de espacio. Ademads, inspirados en técnicas de bisqueda secuencial,
propusimos un hibrido entre los esquemas existentes de indexacién y obtuvimos resultados muy
promisorios.

En practicamente todos los casos hemos complementado el desarrollo de nuevos algoritmos con su
andlisis de desempeifio en el peor caso y en el caso promedio, asi como con su completa validacién
experimental y su comparacién con los mejores resultados previos de los que estibamos enterados.

Creemos que este trabajo, como un todo, constituye una contribucién valiosa al desarrollo y
comprensién del problema de bisqueda aproximada en texto.
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Resumen Extendido

Esta tesis trata sobre el problema de recuperacion de texto permaitiendo errores, también llamada
bisqueda aprozimada en texto. El problema es encontrar un patrén en un texto donde el patrén y
el texto pueden tener “errores”. Comentaremos primero sobre la historia y motivacién de este
problema, lo definiremos precisamente, repasaremos cudles han sido nuestras contribuciones y
comentaremos los problemas abiertos y el futuro del area.

Historia y Motivacion

Las primeras referencias a este problema que pudimos detectar datan de los afios sesenta y setenta,
cuando el problema aparecié en varias areas distintas. En aquella época la motivacién principal
para esta clase de biisqueda venia de la biologia computacional, del procesamiento de senales y del
procesamiento de texto. Primero consideraremos las dreas alternativas y luego nos concentraremos
en texto.

Las secuencias de ADN y proteinas se pueden ver como largos textos sobre alfabetos especificos
(ej. {A,C,G,T} en ADN). Estas secuencias representan el cédigo genético de los seres vivos. Buscar
secuencias especificas sobre esos textos se convirtié en una operaciéon fundamental para problemas
como buscar determinadas caracteristicas en las cadenas de ADN, o determinar cuan diferentes eran
dos secuencias genéticas. Esto se modelaba como la biisqueda de un “patrén” dado en un “texto”.
Sin embargo, la biisqueda exacta no era de utilidad para esta aplicacién, dado que los patrones rara
vez calzaban exactamente en el texto. Las secuencias genéticas de dos miembros de la misma especie
no son idénticas, sino muy similares. M&s atin, establecer cudn diferentes eran dos secuencias (ej.
para determinar cudn lejos en el pasado divirgieron el ratén y el hombre) necesitaba también ese
concepto de “similaridad”, asi como un algoritmo para calcularla.

Esto dio una motivacién para “buscar permitiendo errores”. Los errores eran esas operaciones que
los bidlogos sabian que ocurrian comunmente en las secuencias genéticas. La “distancia” entre
dos secuencias se definia como la minima (es decir, la més probable) secuencia de operaciones
para transformar una en la otra. Atendiendo a su probabilidad, se les asignaba un “costo” a las
operaciones, de modo que las operaciones mas probables eran méas baratas. El objetivo era entonces
minimizar el costo total.

Como se menciond, otra motivacion venia del drea de procesamiento de sefiales. Uno de los grandes
temas es el reconocimiento de voz, donde el problema general es ser capaz de discernir, dada una
sefial de audio, el mensaje textual que se estd transmitiendo. Incluso problemas simplificados como
determinar una palabra entre un pequeno conjunto de alternativas es complejo, dado que ciertas
porciones de la sefial pueden comprimirse en el tiempo, otras partes pueden no pronunciarse, etc.
Un calce perfecto es practicamente imposible.



Otro problema de este campo es la correccidn de errores. La transmisién fisica de sefiales es propensa
a errores. Para asegurar una transmisién correcta sobre un canal fisico, es necesario ser capaz de
recuperar el mensaje correcto luego de una posible modificacién (error) introducido durante la
transmisién. La probabilidad de este error se obtiene de la teoria de procesamiento de sefiales y se
usa para asignar un costo a estos errores. En este caso ni siquiera sabemos qué es lo que buscamos,
sélo queremos un texto que sea correcto (de acuerdo al cédigo corrector de errores usado) y més
cercano al mensaje recibido. Si bien esta area no se ha desarrollado mucho con respecto a la
busqueda aproximada, ha generado la medida mas importante de similaridad, conocida como la
distancia de Levenshtein (o de edicién) [Lev65, Lev66].

La biologia computacional se ha desarrollado y evolucionado mucho desde entonces, con un empuje
especial en los dltimos afios gracias a proyectos que apuntan a decodificar el ADN y a sus aplicaciones
potenciales. El procesamiento de sefiales es también un area muy activa. Las interfaces multimedia
ponen también presién hacia la comunicacién no escrita. También se buscan cédigos correctores
poderosos por el interés actual en comunicaciones sin cables (aéreas). Claro que los problemas que
aparecen en esas areas relacionados con busqueda aproximada no son sélo de la clase que hemos
presentado. Por ejemplo, puede quererse buscar un patrén desconocido, del que sélo se conocen
algunas propiedades. Se cree que incluso el problema simple es NP-completo si se usan ciertas
funciones de distancia [KS95, PW95].

El lector interesado en obtener méas informacién sobre el nacimiento de esta drea puede consultar
[SK83]. En particular, [Wat95, BSSU74, WL83, GK82, KG82] son buenas referencias para las
aplicaciones de bisqueda aproximada en biologia computacional, asi como [DM79, Lev65, Vin68,
LS97] para el procesamiento de sefiales.

Hoy en dia han aparecido una cantidad de nuevas aplicaciones para bisqueda aproximada. El campo
de bases de datos multimedia, de riapido desarrollo, necesita algoritmos para buscar un patrén en
una sefial fisica (no sélo audio), donde es practicamente imposible encontrarlo en forma exacta.
La cantidad de aplicaciones para este problema crece cada dia. Hemos encontrado soluciones
a los problemas mas diversos basadas en bisqueda aproximada, por ejemplo reconocimiento de
texto manuscrito, deteccién de viruses e intrusos, compresién de imdagenes, mineria de datos,
reconocimiento de patrones y edicién automadtica de video, para nombrar sélo algunos. En [SK83] se
mencionan muchas otras aplicaciones. Mds aun, no es necesario ir tan lejos, puesto que herramientas
simples de uso cotidiano como encontrar las diferencias entre dos archivos! estan fuertemente

basadas en estos conceptos.

Especialmente interesante para esta tesis es el caso de biisqueda en texto. El problema de corregir
palabras mal escritas en texto es bastante viejo, tal vez la aplicacién potencial mas antigua para
bisqueda aproximada. Pudimos encontrar referencias de los afios veinte [Mas27] y quizds las hay
mas viejas. Sin embargo, pasé tiempo hasta que se estableci6 [Nes86] que los modelos ad-hoc (ej. los
de Blair [Bla60], Damerau [Dam64] y el popular Soundex, descritos por ejemplo en [Knu73, HD80])
eran inferiores al enfoque basado en bisqueda aproximada.

Hoy en dia el espectro de aplicaciones en esta drea es mucho més amplio. La cantidad de informacién
textual accesible en el mundo impresiona por su tamafio. El World-Wide-Web (o simplemente
Web) contiene mas de un terabyte. Incluso colecciones de texto especificas se miden en gigabytes.
Encontrar la informacién relevante en esa masa de texto se estd convirtiendo en una tarea mas y
mas compleja. Buscar en lenguaje natural no es como buscar informacién exacta en, digamos, una
base de datos relacional. Uno normalmente estd interesado en buscar en un texto basandose en su
semdntica, la cual no es ficil extraer directamente del texto.

'F] comando "diff" de Unix, por ejemplo.
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Este problema abre la puerta al amplio campo de Recuperacién de Informacién (RI, otra antigua
drea en computacién), cuyo objetivo principal es buscar qué documentos de texto pueden ser
interesantes para un usuario dada su consulta. Esta es una disciplina basada en heuristicas puesto
que estd basada en maximizar conceptos vagos tales como la satisfaccién del usuario. El lector
interesado en RI puede consultar [FBY92, BYR98]. Por otro lado, nosotros estamos interesados en
los aspectos algoritmicos del problema. La mayoria de las técnicas usadas en RI para encontrar
documentos “relevantes” se basan en algoritmos de biisqueda en texto. Nuestro objetivo es obtener
esos algoritmos y que sean eficientes.

Para hacer el problema atin mas dificil, esas colecciones de texto se estan haciendo cada vez més
heterogéneas (diferentes lenguajes, por ejemplo) y mads propensas a errores. Por ejemplo, las
colecciones de textos digitalizadas mediante reconocimiento éptico de caracteres (OCR) contienen
un porcentaje nada despreciable de errores. Lo mismo ocurre con los errores de tipeo. Muchas
bases de datos textuales son tan grandes y crecen tan rapido que es imposible controlar su calidad
(en particular, no hay control de calidad en el Web). Una palabra que se ingresa incorrectamente
en la base de datos nunca serd recuperada a menos que se cometa el mismo error en la consulta.
Un experimento reciente mostré que cerca del 10% de los documentos relevantes a una consulta en
el Web no se recuperaban debido a errores de este tipo [Rib97].

Noétese que no sélo el texto, sino también el patrén, puede contener errores. Esto es tipico,
por ejemplo, en ambientes multilingiies donde se busca un nombre extranjero y se escribe
incorrectamente en el patrén, o en textos antiguos en que se usan versiones anticuadas del
lenguaje. Finalmente, otras aplicaciones de procesamiento de texto como correctores ortograficos
(que sugieren variantes “cercanas” a una palabra mal escrita) necesitan algoritmos para buscar
palabras incorrectamente escritas. Se podria argumentar que los correctores ortograficos impediran
en el futuro que haya errores en los textos, pero aparte de que de todos modos necesitan de la
busqueda aproximada, sabemos que no es facil hacer correccién automatica, como veremos mas
? ?
adelante en un ejemplo.

Existen varias técnicas en uso para aumentar la probabilidad de encontrar las porciones relevantes
de un texto. Aparte de las técnicas que son tipicas de RI, tales como el uso de tesauros, algoritmos
de extraccién de raices de palabras (stemming) y otros, es importante tener flexibilidad en los
algoritmos de bisqueda mismos. Varias de esas nuevas capacidades se agrupan bajo el nombre
genérico de patrones extendidos, que generalizan la bisqueda exacta basica. Estas generalizaciones
van desde no tener en cuenta la diferencia entre mayusculas y mintdsculas hasta permitir buscar
expresiones regulares. Hoy en dia no existe practicamente ningin producto de recuperacién de
texto que no permita alguna clase de biisqueda de patrones extendidos.

Entre todas las alternativas ofrecidas bajo el nombre de “patrones extendidos”, las que mejor
enfrentan el problema de textos o patrones propensos a errores se derivan precisamente de esos
problemas bien conocidos de bisqueda aproximada en texto. Existe una adaptacién sencilla que ha
recibido mucha atencién. Es un modelo de costo llamado distancia de Levenshtein o simplemente
distancia de edicion, denotada ed() [Lev65]. Esta se define como el menor nimero de inserciones,
borrados y reemplazos de caracteres necesarios para hacer iguales a las dos cadenas. Por ejemplo
ed("correr","creer") = 2. Véase por ejemplo [Nes86], que muestra que versiones simples de la
distancia de edicién superan en precisién a todos los otros métodos conocidos.

Ilustremos esto con un pequeiio ejemplo. Consideremos buscar la palabra "against" en 1.2 Gb de
la coleccién TREC-2 [Har95], que es un conjunto estandar de textos usados para comparar productos
de RI. Nuestra bisqueda permitiendo una insercién, borrado o reemplazo arroja
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aagainst[1] abainst[1] agaimst[1] againist[2] agains[7]
against againsts[2] againt[23] agaist[5] aganinst[1]
aganst [4] aginst[13] agsainst[1] gagainst[1] tgainst[1]

todas las cuales, salvo la misma "against", son variantes erréneas de "against". Pusimos entre
corchetes la cantidad de veces que aparece cada variante errénea. Como un ejemplo contra la
correccién automatica, la palabra "agains" era en algunos casos una variante errénea de "against"
y en otros de "again", y tuvimos que leer los parrafos cuidadosamente para elegir entre las dos. Si
buscamos permitiendo dos errores obtenemos ademas

advinst again againg againns[1] againto againts[2]
agaisnt[7] aganet aganist[3] agianst[1] agins aginse
ainst[1] anainsa gains gainse gaint ragains

varias de las cuales son alin variantes erréneas de "against". En particular, aparecen cuatro
alternativas distintas de transposicién de letras (es decir, convertir "ab" en "ba"). Este es un error
de tipeo tipico (y puede ser conveniente considerarlo como un error atémico). Otras variantes son
en realidad palabras correctas distintas, como "again" y "gains", y otras son variantes incorrectas

de estas nuevas palabras, por ejemplo "againg" y "gainse".?

Sumando la cantidad de veces que nuestra palabra fue mal escrita tenemos 78 ocurrencias (j3 de
las cuales estén en los titulos!), contra 77.556 correctamente escritas (cerca del 0.1%). Recalquemos
que esta coleccién se obtiene de articulos publicados, diarios, etc., es decir, no es un material escrito
descuidadamente.

Probamos hacer lo mismo en el Web usando Altavista (http://www.altavista.com). Como
Altavista no permite hacer una biisqueda aproximada, nos conformamos con preguntar por todas las
variantes incorrectas que encontramos anteriormente. El resultado es 22.610 paginas con versiones
incorrectas (jdesafortunadamente no las podemos verificar todas!), lo que representa el 0,5% del
numero total de paginas donde se encontré "against".

En el ejemplo previo elegimos una palabra muy comin para ilustrar la cantidad de variantes
incorrectas que pueden aparecer. Sin embargo, el resultado puede parecer un poco decepcionante,
dado que estamos perdiendo menos del 1% de los calces a cambio de olvidarnos del problema
de busqueda aproximada. Pero consideremos una palabra que es mads dificil de deletrear:
"Levenshtein". Altavista nos entregd 192 paginas. Ahora, probamos todas las alternativas de
eliminar una letra y de intercambiar una letra con la siguiente. jEl resultado es que aparecieron 87
paginas nuevas! (y verificamos que eran relevantes). Es decir, estdbamos perdiendo un tercio de
las péaginas relevantes. Tengamos en cuenta que no pudimos probar con inserciones o reemplazos
porque la cantidad de bisquedas exactas a realizar seria inmensa. Esto también sirve para ilustrar
cuan dificil es hacer busqueda aproximada cuando ésta no estd soportada por la herramienta
de recuperaciéon de texto. Madas aun, ilustra el hecho de que las palabras poco comunes tienen
mayor probabilidad de estar mal escritas, y son precisamente esas palabras poco comunes las mas
importantes para Rl y las que se preguntan con mayor frecuencia.

El Problema

Estamos interesados en bisqueda aproximada en general, aunque nuestro mayor énfasis esta en el
lenguaje natural. Nuestro problema se puede expresar como sigue:

2Verificamos cada una de estas candidatas en su contexto textual para determinar a qué palabra correspondian.
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Dado un patrén corto P de largo m, un texto largo T' de largo n y un niimero maximo
de errores k, encontrar todas las posiciones del texto j tales que un sufijo de T _; calza
con P con a lo sumo k errores (inserciones, borrados o reemplazos).

Noétese que retornamos las posiciones finales de los calces. Se toma esta decisién porque las porciones
del texto que calzan pueden tener distintas longitudes. Equivalentemente podriamos reportar los
comienzos de los calces. Se ha elegido tradicionalmente reportar las posiciones finales porque eso
simplifica los algoritmos de bisqueda.

El uso de la distancia de Levenshtein en vez de cualquier otra es una consecuencia de nuestro interés
en aplicaciones de recuperacién de texto. Muchos de los algoritmos que proponemos, sin embargo,
se pueden generalizar para permitir otros costos para las operaciones de edicién. Esto incluye, en
particular, otros modelos cominmente usados como la distancia de Hamming (es decir, permitir sélo
reemplazos), la distancia de Subsecuencia Comin més Larga (es decir, permitir sélo inserciones y
borrados), la distancia de Episodios (es decir, permitir sélo inserciones), o una distancia de edicién
extendida que permite transposiciones de letras.

Por otro lado, vamos a estar interesados en combinar este tipo de busqueda con los requerimientos
tipicos actuales de recuperacién de informacion, tales como patrones extendidos, calzar palabras
completas, etc. Dados los gigantescos tamaiios de textos involucrados, vamos a estar interesados en
técnicas de indexacién para facilitar esta biusqueda. Finalmente, vamos a estar también interesados
en las diferentes variantes y extensiones del problema.

Nuestro interés en bisqueda tipica en texto para aplicaciones de RI implica que nos interesaremos
mads en ciertos rangos para los pardmetros del problema (aunque algunos de nuestros algoritmos
trabajan mejor en otros rangos). No hay un algoritmo que sea éptimo para todos los casos. Los
parametros de interés son:

e El tamafio del texto, que se supone muy grande, en contraste con, por ejemplo, muchas
aplicaciones de biologia computacional donde puede ser unos pocos miles de caracteres. Esto,
por ejemplo, desalienta el uso de estructuras de datos residentes en memoria que ocupan varias
veces el tamano del texto.

e La longitud del patrén, que se supone razonablemente pequeiia, tipicamente inferior a 30
letras y casi siempre menor que 60 letras. Esto deja, en la practica, fuera de juego a muchos
algoritmos que son buenos sélo para patrones muy largos. Estos algoritmos pueden ser ttiles
en aplicaciones de biologia computacional donde es comin tener patrones de unos cientos de
letras de largo.

e El nivel de error, que es razonablemente bajo (digamos, k/m < 1/2, y normalmente k/m <
1/3). Esto es porque, en ambientes de recuperacién de texto, permitir més errores retornard
una gran parte de la base de datos, lo que hace que la consulta sea initil por su baja precision.

e El alfabeto, que no es demasiado pequefio y no es aleatorio. En contraste, el alfabeto puede
ser tan pequefio como cuatro simbolos en ADN y mucho mas aleatorio. Muchos algoritmos
necesitan tener un alfabeto suficientemente grande y algunos tratan de enfocar el problema
de la no uniformidad.



Resultados Obtenidos

Esta tesis se desarroll entre 1995 y 1998. Su objetivo fue el desarrollo y anélisis de nuevos algoritmos
para tratar el problema bajo diversas condiciones, asi como una mejor comprension del problema
mismo y su comportamiento estadistico. Aunque nuestros resultados son validos en muchas areas,
centramos nuestra atenciéon en la bisqueda en texto tipica de las aplicaciones de recuperacién
de informacién. Creemos que, en conjunto, este trabajo constituye una contribucién valiosa al
desarrollo y comprensién del problema de busqueda aproximada en texto.

Hemos dividido la presentacién en dos partes, ademas de una parte general.

Parte General

En esta parte se presentan los capitulos introductorios y algunos resultados aplicados en toda la
tesis.

e En el Capitulo 2 se explican todos los conceptos basicos necesarios para leer la tesis.
e En el Capitulo 3 se cubre el trabajo relacionado y se pone en contexto nuestra contribucién.

e En el Capitulo 4 se presentan nuestros primeros resultados. Se obtienen cotas muy precisas
para la probabilidad de que un patrén aleatorio calce en una posicién dada de un texto
aleatorio con una cantidad dada de errores. Este andlisis tedrico se confirma y se precisa
mediante una extensa validacion experimental. Este resultado no sélo es esencial para analizar
nuestros nuevos algoritmos, sino que también se usa para mejorar el anélisis de algoritmos ya
existentes.

Biusqueda Secuencial

La primera parte de la tesis trata con busqueda aproximada secuencial. Esta es el drea donde se ha
hecho mayor progreso desde los afios sesenta y existe una cantidad de algoritmos competitivos. La
bisqueda secuencial es interesante no sélo porque en muchos casos no hay tiempo o espacio para
preprocesar el texto, sino también porque es parte fundamental de las técnicas de indexacién.
Destacamos a continuacién nuestros mayores logros en este aspecto y los capitulos donde se
presentan. Este trabajo se ha publicado en [BYN96b, BYN96a, BYN97b, Nav97a, Nav97b, BYN98d,
BYNO98c, NBY98b, NBY98d, NR98b] y hay otros enviados para publicacién (esto incluye el material
del Capitulo 2).

e Desarrollamos en el Capitulo 5 un nuevo algoritmo para biisqueda aproximada. Este combina
el paralelismo de bits con técnicas de filtrado (conceptos que se explican en la tesis). Dado que
el uso de paralelismo de bits limita la longitud de los patrones a usar, desarrollamos varios
métodos de particién del problema que combinamos en la forma éptima (usando ademds
algunas técnicas desarrolladas en el Capitulo 4). El algoritmo final resulta ser el més rapido
que se conoce para varios rangos interesantes de los pardmetros, incluyendo patrones cortos y
niveles de error bajos. Mds ain, se puede generalizar para permitir varios tipos de patrones
extendidos. El disefio del algoritmo esta inextricablemente unido a su andlisis, siendo el
andlisis (y por ende los resultados del punto previo) una parte importante de su disefio.

vi



Como un subproducto del punto anterior, rescatamos en el Capitulo 6 un algoritmo que habia
recibido poca atencién antes de esta tesis. El algoritmo se llama “particién en bisqueda
exacta”, dado que se basa en una busqueda multipatrén exacta. Con una implementacién
inteligente y la inclusién de técnicas subyacentes mas sofisticadas, se convierte en el algoritmo
mas rapido que se conoce para niveles de error y longitudes de patrén bajos y moderados.
Maés ain, usando una técnica diferente de busqueda multipatrén se puede obtener la misma
eficiencia y ser capaz de buscar algunos patrones extendidos.

También en el Capitulo 6 desarrollamos una técnica generalizada de autémata de sufijos que
permite mejorar el tiempo de biusqueda para muchos algoritmos, y la usamos en nuestro
algoritmo de paralelismo de bits. El resultado mejora al algoritmo original en algunas areas
del problema (especialmente para ADN).

Mejoramos (Capitulo 6) la implementacién y analizamos otros dos algoritmos que estaban
parcialmente desarrollados antes de esta tesis. El primero es un filtro basado en contar
los caracteres que calzan, para el cual damos el primer analisis tedrico de caso promedio.
El segundo es un autémata deterministico construido parcialmente que busca el patrén
permitiendo errores, cuyo crecimiento analizamos empiricamente.

Abordamos en el Capitulo 7 el problema de biisqueda aproximada multipatrén, que consiste
en tener un numero de patrones para buscar al mismo tiempo. Esto tiene interés, por ejemplo,
en aplicaciones ortogréficas (ej. buscar todo el diccionario en el texto, encontrando las
palabras incorrectas y sus versiones correctas mas parecidas), en sistemas de recuperacién
de informacién (ej. expandir la bisqueda usando un tesauro o sinénimos para buscar todas
las alternativas permitiendo errores porque el texto contiene errores) y en aplicaciones de
bisqueda en batch (ej. buscar de una séla vez todas las consultas acumuladas).

El unico trabajo previo permitia buscar miles de patrones en paralelo con sélo un error.
Nosotros adaptamos nuestros algoritmos de paralelismo de bits, de particién en bisqueda
exacta y de conteo al caso de multiples patrones. Obtuvimos los algoritmos mas rapidos en
todos los casos cuando el nimero de patrones no es muy alto (digamos, menos de 100) o se
permite mas de un error. Ademads, analizamos y comparamos experimentalmente todos los
algoritmos.

Todos nuestros algoritmos, asi como los mejores algoritmos anteriores de los que estamos
enterados, fueron implementados (u obtuvimos las implementaciones de sus autores) y
experimentalmente probados para varios rangos interesantes de los parametros del problema.

También hemos obtenido nuevos resultados para diversas variantes del problema de bisqueda
aproximada [Nav98a, Nav98b, BYN98c, NBY98a, NR98b, NR98c, MNZBY98b, MNZBY98a|. Estas
variantes incluyen bisqueda aproximada en texto multidimensional, en texto no lineal (hipertexto),

en texto comprimido y usando la distancia de Hamming. Dado que estos resultados relacionados

no calzan bien con el contenido general de esta tesis, hemos decidido no incluirlos.

Biusqueda Indexada

La segunda parte de esta tesis aborda el problema de construir indices (es decir, estructuras de

datos sobre el texto) que mejoren las busquedas posteriores de patrones permitiendo errores. Esta

drea estaba (y estd) bastante poco explorada. Disefiar un buen indice para bisqueda aproximada

es tan dificil que se lo considera uno de los grandes problemas abiertos de esta area. Los indices
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existentes ocupan mucho espacio en comparacién con el texto (es comin que ocupen 10 6 20 veces
el tamaio del texto) y dan poca o ninguna garantia de su desempefio. A estos indices generales los
llamamos “de recuperacién de secuencias”.

Por otro lado, los indices especializados en lenguaje natural han tenido mas éxito. Son basicamente
indices invertidos que se basan fuertemente en el vocabulario del texto y son capaces de recuperar
unicamente palabras completas que calzan con el patrén (por ejemplo si el error es la insercién de
un espacio en el medio de la palabra, el indice no es capaz de recuperarlo). A estos indices los
llamamos “de recuperacion de palabras”. Los podemos subdividir en los que conocen la posicién
exacta en el texto de todas las palabras (“indices de inversién completa”) y los que reducen los
requerimientos de espacio dividiendo el texto en bloques y apuntando a los bloques en vez de a las
posiciones exactas (“indices de direccionamiento a bloques”).

Nosotros obtuvimos técnicas nuevas de indexacién y bisqueda, y nuevos resultados analiticos sobre
varias de ellas. Este trabajo se ha publicado en [BYNST97, BYN97a, ANZ97, BYN97c, BYNO98b,
NBY98c, BYNO98a] y hay otros enviados para su publicacién. Nuestros principales resultados a este
respecto son los siguientes.

e Consideramos primero los indices de inversiéon completa, en el Capitulo 8. En este caso
probamos que para la mayoria de las consultas razonables (es decir, las que tienen precisién
razonablemente alta), el tiempo de bisqueda en estos indices es sublineal en el tamaiio del
texto, siendo cercano a la raiz cuadrada del tamano del texto.

e En el mismo capitulo probamos analiticamente que los indices que recuperan palabras
y que direccionan bloques pueden ser asintéticamente sublineales en su tamaifio (con
respecto al texto) y en su tiempo para responder una consulta de bisqueda aproximada.
Encontramos la expresion para el tamaiio del bloque que consigue este resultado y verificamos
experimentalmente estos resultados teéricos. Esto constituye un excelente caso a favor de esta
clase de indices.

e También en el Capitulo 8 mejoramos la bisqueda en el vocabulario de todos los indices que
recuperan palabras. En el trabajo previo el vocabulario del texto se recorre con un algoritmo
secuencial. Nosotros le damos al vocabulario la estructura de un espacio métrico y comparamos
las diferentes estructuras para buscar en ese espacio. El resultado final es la reduccién del
tiempo de biisqueda en el vocabulario en hasta 60% para el caso de un error.

e Terminamos el Capitulo 8 mejorando los algoritmos existentes de bisqueda en los bloques
para indices de recuperacién de palabras que direccionan bloques, haciéndolos hasta cinco
veces mas rapidos. Estas mejoras tienen también aplicacién en esquemas de compresién de
texto para lenguaje natural. Estos esquemas de compresién permiten buscar un patrén en
un texto comprimido permitiendo errores y sin descomprimir, que es un problema abierto en

[ABF96).

e En el Capitulo 9 proponemos y evaluamos experimentalmente un nuevo esquema de indexacién
para recuperacién de secuencias, basado en tomar muestras del texto. Esta es una variante
de otro indice propuesto antes de esta tesis, y se puede ver como una versiéon indexada del
algoritmo secuencial llamado “particién en biusqueda exacta”’. En comparacién a indices
anteriores, el nuevo necesita mas espacio pero es més tolerante a los errores. En comparacién
a la mayoria de los otros indices, necesita mucho menos espacio. Esto lo convierte en una
alternativa practica para la bisqueda en texto tipica.
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e También en el Capitulo 9 adaptamos un indice de recuperacién de secuencias que existia
previamente. Este indice simula el recorrido secuencial sobre el texto en una estructura de
datos que elimina las repeticiones del texto. Usamos nuestro algoritmo de paralelismo de
bits como el buscador secuencial. También desarrollamos un nuevo algoritmo sobre la misma
estructura de datos, basado en las técnicas de particién del patrén, es decir buscamos partes
del patrén con menos errores y combinamos los resultados. Analizamos el desempefio del
indice resultante y encontramos experimentalmente que supera largamente a todos los otros.
Proponemos como trabajo futuro simularlo sobre un indice de muestras de texto para reducir
sus requerimientos de espacio.

e Terminamos ese capitulo comparando experimentalmente nuestros nuevos esquemas de
indexacion contra los que existen actualmente.

Desde una perspectiva global, creemos que esta tesis hace una contribucién valiosa al area.
Primero, el comportamiento probabilistico del problema se entiende mucho mejor hoy, junto con
el comportamiento esperado de los algoritmos secuenciales e indexados que dependen de esas
probabilidades. Segundo, hemos introducido varias ideas algoritmicas nuevas y fuertes que no sélo
han sido fructiferas para nosotros, sino que también pueden ser explotadas en el futuro tanto por
nosotros mismos como por otros investigadores. Tercero, usando esas ideas novedosas y aplicando
y combinando resultados existentes y técnicas practicas inteligentemente, hemos obtenido nuevos
algoritmos de busqueda e indexacién que son actualmente los mas rapidos en una amplia gama
de parametros del problema, especialmente en las areas de bisqueda en texto tipica. Una de las
lecciones mdas basicas aprendidas es que teoria y practica deben ir juntas si se quiere conseguir
los mejores resultados: necesitamos nuevas ideas pero también simplicidad, necesitamos buenos
algoritmos pero también implementaciones astutas, necesitamos resultados analiticos pero también
experimentos.

El Futuro y Problemas Abiertos

A lo largo de la tesis se mencionan varias direcciones de trabajo futuras, que recopilamos aqui (el
lector interesado encontrard mas detalles en la tesis).

A pesar de que nuestro andlisis para la probabilidad de una ocurrencia aproximada fue
suficientemente preciso para nuestros propédsitos, un andlisis més exacto (y que siga siendo
util) seria interesante.

e Estudiamos en profundidad el rango de pardmetros tipicos de la biisqueda en texto, pero
también son interesantes otros casos casos que tienen aplicaciones en otras areas, tales como
alfabetos pequefios o patrones muy largos.

e Creemos que aun hay espacio para mejoras en las técnicas que tratan de saltar caracteres en
la bisqueda aproximada. Hemos presentado algunos algoritmos nuevos y tal vez haya otros
alun esperando.

e Para recuperacién de informacién es interesante trabajar mas en patrones extendidos y
expresiones regulares combinadas con bisqueda aproximada. Creemos que todavia no se
ha explotado totalmente el poder del paralelismo de bits.
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e También es de interés trabajar con funciones de distancia mas complejas. Por ejemplo, pocos
trabajos permiten transposiciones, a pesar de que son extremadamente frecuentes como errores
de tipeo. Bajo la distancia de edicién se necesitan dos errores para simular una transposicién.

e Mejorar el algoritmo de particién en bisqueda exacta para lenguaje natural podria resultar
en mejoras practicas interesantes. Por ejemplo, aiin tenemos que estudiar mas en detalle la
funcién de costo a minimizar cuando optimizamos la particién.

e Seria de interés tedrico estudiar analitica o empiricamente el crecimiento del AFD de bisqueda
aproximada, y de cierto interés practico estudiar su comportamiento con memoria limitada.

e Aun es necesario descubrir mejores técnicas para manejar multiples patrones. Con respecto
a nuestras técnicas, ain necesitamos estudiar mejores heuristicas para agrupar y alinear
subpatrones.

e Podemos atn optimizar mas nuestros algoritmos mejorados para indices que recuperan
palabras, buscando mejores estructuras para espacios métricos para el vocabulario o haciendo
una busqueda multipatrén distinta para cada bloque, con sélo las palabras que existen en ese
bloque.

e Es interesante unir indices que direccionan palabras con técnicas de compresién, que reducen
drasticamente los requerimientos de espacio y ademds tienen mejores tiempos de bisqueda.

e El no permitir errores que involucren separadores es el punto débil de los indices que recuperan
palabras. Planeamos atacar ese punto implementando la particién en busqueda exacta sobre
un indice de recuperacién de palabras.

e Nuestro indice basado en substrings del texto se puede mejorar de varias formas, la mas
inmediata de las cuales es incluir verificacién jerarquica. Otras alternativas, tales como
particionar en méas de k+1 pedazos o intersectar varias particiones distintas, deberian también
estudiarse.

e La idea de usar particién del patrén sobre indices de arboles de sufijos parece muy promisoria
y merece ser estudiada mejor, para entender exactamente como funciona el proceso y cudl es el
mejor esquema de particiéon. También en este caso habria que agregar verificacién jerarquica.

Consideraremos ahora las grandes preguntas abiertas para esta drea después de nuestra tesis.

Hay varios aspectos interesantes en el futuro de este problema tal como lo prevemos. Una
pregunta importante es: ;continuara siendo la bisqueda aproximada un problema interesante?
Nosotros creemos positivamente que la respuesta es “si”, dado que la mayoria de sus fuentes no
son situaciones de corto plazo. Las senales transmitidas por medios fisicos continuardn teniendo
errores de transmisioén (especialmente si el aire se convierte en un medio comin de comunicacién, tal
como lo esperan los guris de las comunicaciones sin cables) y el trabajo futuro en reconocimiento
de voz va indudablemente a gatillar mas requerimientos para esta area. El anélisis de ADN y
proteinas va a ser un drea muy activa de investigacién futura hasta donde podemos prever (y tal vez
mas activa que hoy). Aunque los softwares de OCR pueden mejorar en el futuro (jcosa que todos
esperamos!), alguien va a tener que tipear los textos la primera vez (en papel o directamente en forma
electrénica), y la gente va a continuar cometiendo errores de tipeo y ortografia (o alternativamente
los softwares de edicién se ocuparan de los errores, convirtiéndose de todos modos en nuevas areas
de aplicacién para nuestro problema). Si consideramos que méas y mas gente estd obteniendo acceso



a la publicacién electrénica (ej. grupos de news, paginas Web, etc.), queda claro no sélo que las
bases de datos textuales van a continuar creciendo, sino también que al menos una gran proporcién
de ellas serd heterogénea, pobremente organizada y descuidadamente escrita. Buscar permitiendo
errores se convertira en la practica estandar, siendo cada vez mdas importante para hallar la aguja
en el pajar de texto disponible. El crecimiento que se espera en las herramientas de tratamiento
automatico del lenguaje para analizar la semantica de los textos serd probablemente otra area de
aplicacién para bisqueda aproximada.

La otra pregunta es: ;hay lugar para nuevos desarrollos o esta area estd sobreexplotada con respecto
a lo que se puede hacer? Con respecto a bisqueda secuencial, creemos que sera muy dificil obtener
nuevos resultados. El paralelismo de bits se ha explotado hasta el limite, las técnicas de filtrado
trabajan tan poco por caracter del texto que dificilmente se podria hacer menos sin perder calces.
Creemos que atn hay lugar para algunas mejoras en las técnicas que saltan caracteres, pero no
significaran un cambio cualitativo. Otra area aun abierta es la de nuevas funciones de distancia, tal
como permitir transposiciones o incluso distancias de edicién mas complejas, donde hay muchas
aplicaciones de biologia computacional esperando. Hay también poco desarrollo en bisqueda
multipatrén sobre cientos de patrones, que probablemente serd un area activa en el futuro, con
aplicaciones a correccién de sintaxis y lingiiistica computacional.

Existen también algunas preguntas tedricas atin abiertas, tales como cudl es la probabilidad exacta
de un calce, cdmo se comporta la probabilidad de calce en el lenguaje natural o cuél es la complejidad
de peor caso del problema si el espacio es polinomial en m.

Otras areas mas exdticas que no hemos incluido en esta tesis serdn probablemente muy importantes
en el futuro. Busqueda aproximada en texto multidimensional, por ejemplo, se podria convertir
en un competidor de las técnicas actuales de procesamiento de imagenes para reconocimiento
de patrones. Actualmente, esta drea necesita no sélo mejores algoritmos, sino también tener en
cuenta rotaciones y cambios de tamaiio (existen desarrollos separados para rotaciones, tamaifios y
errores, pero no se han unificado). Bisqueda aproximada en texto comprimido serd también un area
importante de desarrollo, si es que la tendencia de unir bases de datos textuales con compresién se
confirma. Aunque hay soluciones para un problema restringido (bisqueda aproximada de palabras
en lenguaje natural), el problema general sigue abierto.

Con respecto a bisqueda indexada, creemos que se convertira en el problema estrella de esta area
en el futuro, no sélo porque los indices son la tnica respuesta para manejar los gigantescos textos
que seran comunes en los sistemas de recuperaciéon de informacién del futuro, sino también por
su dificultad. Cuando las palabras calzan con palabras, el problema esta bastante bien resuelto y
sélo esperamos mejoras marginales a la técnica general en el futuro (aunque en particular se debe
resolver el problema de incorporar separadores). Por otro lado, si insistimos en el problema general,
los indices estan muy inmaduros y hallar una mejora radical seria un acontecimiento. Hallar un
buen indice para bisqueda aproximada irrestricta se considera “El Dorado” de esta area. Tal vez
exista, tal vez no. ;Quién puede saberlo? Los exploradores somos nosotros...
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Abstract

This thesis focuses on the problem of text retrieval allowing errors, also called “approximate” string
matching. The problem is to find a pattern in a text, where the pattern and the text may have
“errors”. This problem has received a lot of attention in recent years because of its applications in
many areas, such as information retrieval, computational biology and signal processing, to name a
few.

The aim of this work is the development and analysis of novel algorithms to deal with the problem
under various conditions, as well as a better understanding of the problem itself and its statistical
behavior. Although our results are valid in many different areas, we focus our attention on typical
text searching for information retrieval applications. This makes some ranges of values for the
parameters of the problem more interesting than others.

We have divided this presentation in two parts. The first one deals with on-line approximate string
matching, i.e. when there is no time or space to preprocess the text. These algorithms are the core
of off-line algorithms as well. On-line searching is the area of the problem where better algorithms
existed. We have obtained new bounds for the probability of an approximate match of a pattern in
a random text, and used these results to analyze many old and new algorithms. We have developed
new algorithms for this problem which are currently among the fastest known ones, being even the
fastest algorithms for almost all the interesting cases of typical text searching. Finally, we extended
our results to the simultaneous search of multiple patterns, obtaining the best existing algorithms
when a moderate number of them is sought (less than 100, approximately).

The second part of this thesis addresses indexed approximate string matching, i.e. when we are
able to build an index for the text beforehand, to speed up the search later. The ultimate index for
approximate string matching is yet to appear and the current development is rather immature, but
we have made progress regarding new algorithms as well as better understanding of the problem.
For the restricted case of indices able to retrieve only whole words on natural language text, we
have obtained new analytical results on their asymptotic complexity, which allowed us to develop
an index that is sublinear in space and query time simultaneously, something that did not exist
before. For this kind of index we also presented improved search algorithms. For general indices
able to find any occurrence (not only words), we have developed new indexing schemes which are
a tradeoff between efficiency and space requirements. Also, inspired in on-line techniques, we have
proposed a hybrid between existing indexing schemes and obtained very promising results.

It is worth to mention that in almost all cases we have complemented the development of the
new algorithms with their worst-case and average-case complexity analysis, as well as a thorough
experimental validation and comparison against the best previous work we were aware of.

As a whole, we believe that this work constitutes a valuable contribution to the development and
understanding of the problem of approximate text searching.
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Chapter 1

Introduction

This thesis focuses on the problem of text retrieval allowing errors, also called approzimate string
matching. The problem is to find a pattern in a text where the pattern and the text may have
“errors”. We first give some historical background and motivation for this problem, then define it
precisely, and finally survey what are our contributions.

1.1 History and Motivation

The first references to this problem we could trace are from the sixties and seventies, where the
problem appeared in a number of different areas. In those times, the main motivation for this kind
of search came from the fields of computational biology, signal processing and text processing. We
first consider the alternative fields and later concentrate on text.

DNA and protein sequences can be seen as long texts over specific alphabets (e.g. {A,C,G,T} in
DNA). Those sequences represent the genetic code of living beings. Searching specific sequences
over those texts appeared as a fundamental operation for problems such as looking for given fea-
tures in DNA chains, or determining how different two genetic sequences were. This was modeled
as searching for given “patterns” in a “text”. However, exact searching was of no use for this appli-
cation, since the patterns rarely matched the text exactly. The genetic sequences of two members of
the same species are not identical, they are just very similar. Moreover, establishing how different
two sequences were (e.g. to determine how far in the past did mice and men diverge) needed also
such concept of “similarity”, as well as an algorithm to compute it.

This gave a motivation to “search allowing errors”. The errors were those operations that biologists
knew were common to occur in genetic sequences. The “distance” between two sequences was defined
as the minimum (i.e. more likely) sequence of operations to transform one into the other. With
regard to likelihood, the operations were assigned a “cost”, such that the more likely operations
were cheaper. The goal was then to minimize the total cost.

As mentioned, another motivation came from the area of signal processing. One of the largest areas
deals with speech recognition, where the general problem is to be able to determine, given an audio
signal, a textual message which is being transmitted. Even simplified problems such as discerning
a word from a small set of alternatives is complex, since parts of the the signal may be compressed
in time, parts of the speech may not be pronounced, etc. A perfect match is practically impossible.

Another problem of this field is error correction. The physical transmission of signals is error-prone.



To ensure correct transmission over a physical channel, it is necessary to be able to recover the correct
message after a possible modification (error) introduced during the transmission. The probability
of such errors is obtained from the signal processing theory and used to assign a cost to those errors.
In this case we may even not know what we are searching for, we just want a text which is correct
(according to the error correcting code used) and closest to the received message. Although this
area has not developed too much with respect to approximate searching, it has generated the most
important measure of similarity, known as the Levenshtein (or edit) distance [Lev65, Lev66].

Computational biology has since then evolved and developed a lot, with a special push in the
last years due to the projects that aim to the complete decoding of the DNA and its potential
applications. Signal processing is also a very active area. Multimedia interfaces put a pressure on
non-written communication. Strong error correcting codes are also sought given the current interest
in wireless networks. Of course the problems that appear in these areas related to approximate
searching are not only of the kind we have presented. For instance, one may look for an unknown
pattern, of which only some properties are known. Even the simple problem of a known pattern is
believed to be NP-complete under some distance functions (e.g. sorting by reversals [KS95, PW95]).

We refer the reader interested in more information on the birth of this area to [SK83]. In particular,
good references for the applications of approximate pattern matching for computational biology are

[Wat95, BSSUT4, WL83, GK82, KG82], and for signal processing are [DM79, Lev65, Vin68, LS97].

Nowadays, a number of new applications for approximate string matching have appeared. The
rapidly evolving field of multimedia databases needs algorithms to search a pattern in a physical
signal (not only audio), where it is practically impossible to find it exactly. The number of appli-
cations for this problem grows every day. We have found solutions to the most diverse problems
based on approximate string matching, for instance handwriting recognition, virus and intrusion
detection, image compression, data mining, pattern recognition and automated video editing, to
name a few. Many more applications are mentioned in [SK83]. Moreover, it is not necessary to go
that far, since simple tools of everyday use such as the ability to find the difference between two
files! make heavy use of it.

Especially interesting for this thesis is the case of text searching. The problem of correcting mis-
spelled words in written text is rather old, perhaps the oldest potential application for approximate
string matching. We could find references from the twenties [Mas27], and perhaps there are older
ones. However, some time elapsed until it was realized [Nes86] that the ad-hoc models (e.g. those of
Blair [Bla60], Damerau [Dam64] and the popular Soundex, described for instance in [Knu73, HD80])
were inferior to the approximate string matching approach.

Nowadays, the spectrum of problems in this area is much wider. The amount of textual information
available worldwide is impressive for its size. The World-Wide-Web (or simply Web) contains
more than one terabyte. Even specific text collection sizes are measured in gigabytes. Finding the
relevant information on such mass of text becomes a more and more complex matter. Searching
natural language text is not like searching exact information in, say, a relational database. One is
normally interested in querying a text based on its semantics, which is not easy to extract from the
content.

This problem opens the door to the vast field of Information Retrieval (IR, another long standing
area in computer science), whose main goal is to find which text documents may be of interest to a
user given his/her query. This is a rather heuristic discipline since it is based on maximizing vague
concepts such as the user satisfaction. We refer the reader interested in IR to [FBY92, BYR98]. On

'The Unix "diff" command, for instance.



the other hand, we are interested in the algorithmic aspects of the problem. Most of the techniques
used in IR to find “relevant” documents are based on text searching algorithms. We aim at obtaining
such efficient search algorithms.

To make the problem even harder, those text collections are becoming more and more heterogeneous
(different languages, for instance) and more error prone. For instance, text collections digitalized
via optical character recognition (OCR) contain a non-negligible percentage of errors. The same
happens with typing errors. Many text databases are so large and grow so fast that it is impossible
to control their quality (in particular, there is no quality control in the Web). A word which is
entered incorrectly in the database will never be retrieved unless the query makes the same mistake.
A recent experiment has shown that close to 10% of the interesting documents relevant to a given
query on the Web are not retrieved because of such errors [Rib97].

Notice that not only the text but also the pattern may have errors. This is typical, for instance,
on cross-lingual scenarios where a foreign name is sought and is incorrectly spelled in the search
pattern, or ancient texts which use outdated versions of the language. Finally, other text processing
applications such as spelling checkers (which suggest “close” variants to the misspelled word) need
algorithms to search for misspelled words. One may argue that spelling checkers will avoid in
the future the presence of errors in the text, but apart from the fact that those spelling checkers
need anyway from approximate searching tools, we know that it is difficult to perform automatic
correction, as we see shortly in an example.

Many techniques are used to increase the probability of finding the relevant text portions. Apart
from techniques which are typical from IR, such as the use of thesauri, stemming algorithms and
others, it is important to have flexibility in the search algorithms themselves. A number of such
new capabilities are grouped under the generic name of extended patterns, which generalize the
basic exact search query. These generalizations range from disregarding the lower- or upper-case of
letters to searching for regular expressions. Nowadays, there is virtually no text retrieval product
that does not allow some kind of extended search facility.

Among all the alternatives offered under the name “extended patterns”, the one which best copes
with error-prone texts or patterns derives precisely from those well-known problems of approximate
string matching. A simple adaptation has received a lot of attention. It is a cost model called
Levenshtein distance or simply edit distance, denoted ed() [Lev65]. This is defined as the minimum
number of character insertions, deletions and replacements to make two strings equal. For instance,
ed("survey","surgery") = 2. See for instance [Nes86], which shows that simple versions of the
edit distance function outperform in precision all the other known methods.

Let’s illustrate our case with a simple example. Consider searching the word "against" in 1.2 Gb
of the TREC-2 [Har95] collection, which is a standard set of texts used for comparing IR products.
Our search allowing one insertion, deletion or substitution shows

aagainst[1] abainst[1] agaimst[1] againist[2] agains[7]
against againsts[2] againt[23] agaist[5] aganinst[1]
aganst [4] aginst[13] agsainst[1] gagainst[1] tgainst[1]

all of which, apart from "against" itself, are erroneous variants of "against". We put in square
brackets the number of times each of the erroneous variants appears. As an example against
automatic error correction, the word "agains" was in some cases an erroneous variant of "against"
and in others of "again", and we had to read the paragraph carefully to select among the two. If
we search allowing two errors, we obtain all the previous words and also



advinst again againg againns[1] againto againts[2]
agaisnt[7] aganet aganist[3] agianst[1] agins aginse
ainst[1] anainsa gains gainse gaint ragains

some of which are still erroneous variants of "against". In particular four different alternatives of a
letter transposition appears (that is, converting "ab" to "ba"). This is a typical typing error (in fact
it may be better to consider it as an atomic error). Other variants are in fact different correct words,
such as "again" and "gains", and some others are incorrect variants of these different words, e.g.

"againg" and "gainse".?

Summing up the number of times our word is misspelled yields 78 occurrences (3 of which are
in headlines and titles!), against 77,556 correctly written (close to 0.1%). We remark that this
collection comes from published articles and newspapers, i.e. it is not a carelessly-written material.

We tried to do the same in the Web using Altavista (http://www.altavista.com). Since Altavista
does not allow to perform an approximate search, we content ourselves with asking for all the in-
correct variants previously found. The result is 22,610 pages with incorrect spellings (unfortunately
we cannot check all them!), which represents 0.5% of the total number of pages where "against"
was found.

In the above example we selected a very common word to illustrate the many misspelled variants
that may appear. However, the result may be a little deceptive, since we are losing less than 1%
of the matches by forgetting about approximate searching. But let’s consider a word which is
more difficult to spell: "Levenshtein". Altavista found 192 pages for us. Now, we tried all the
alternatives of deleting one letter and of exchanging one letter with the next one. The result is that
87 new pages appeared! (and we checked that they were relevant). That is, we were missing one
third of the relevant pages. We remark that we could not try insertions or replacements because
the number of exact searches to perform would be huge. This serves also as an illustration of
how difficult is to perform approximate searching when there is no provision for it from the text
retrieval tool. Moreover, it illustrates the fact that uncommon words have higher probability of
being misspelled, and are precisely those uncommon words the most important for IR and most
commonly queried.

1.2 The Problem

We are interested in approximate string matching in general, although our strongest emphasis is on
text searching. Our problem can be stated as follows:

Given a short pattern P of length m, a long text T of length n, and a maximal number
of errors k, find all text positions j such that a suffix of T'...j matches P with at most
k errors (insertions, deletions or replacements).

Notice that we return the ending positions of matches. This decision is taken because the matched
text portions may have different lengths. Equivalently we could report the beginnings of matches.
It has been traditionally preferred to report ending positions because this simplifies the search
algorithms.

The use of the Levenshtein distance instead of any other is a consequence of our focus on text
searching applications. Many algorithms we propose, however, can be generalized to allow other

2We checked each of these candidates in its textual context to determine which word they corresponded to.



costs for the edit operations. This includes, in particular, other commonly used cost models such
as the Hamming distance (i.e. allow only replacements, also called substitutions or mismatches),
the Longest Common Subsequence distance (i.e. allow only insertions and deletions), the Episode
Distance (i.e. allowing only insertions), or an extended edit distance that allows letter transpositions.

On the other hand, we will be interested in combining this type of search with the typical require-
ments of modern information retrieval, such as allowing errors in extended patterns, matching whole
words, etc. Because of the huge text sizes involved, we will be interested in indexing techniques
to ease this search. Finally, we will also be interested in different variants and extensions of this
problem.

Being interested in typical text retrieval applications involves also being more interested in some
areas of the parameters than in others (although some of our algorithms work better in other areas).
There is no algorithm which is optimal in all cases. The parameters of interest are:

e The text size, which is assumed to be huge, in contrast to, e.g., many computational biology
applications where it may be a few thousands of letters. This, for instance, discourages the
use of memory-resident data structures which are many times the text size.

e The pattern length, which is assumed to be reasonably small, typically no longer than 30
letters and almost always shorter than 60 letters. This rules out in practice many algorithms
which are good only for very long patterns. Those algorithms can be of use in computational
biology applications, where it is common to have a pattern of a few hundreds of letters.

e The error level, which is reasonably low (say, k/m < 1/2, and normally k/m < 1/3). This is
because, in text retrieval environments, allowing more errors will return a large portion of the
text database, which makes the query useless for its low precision.

e The alphabet, which is not very small and not random. In contrast, the alphabet can be as
small as four symbols in DNA, and much more random. Many algorithms rely on having a
sufficiently large alphabet, and some try to address the problem of non-uniformity.

1.3 Overview of the Thesis

This thesis was developed between 1995 and 1998. Its aim is the development and analysis of novel
algorithms to deal with the problem under various conditions, as well as a better understanding of
the problem itself and its statistical behavior. Although our results apply to many different areas,
we focus our attention on typical text searching for information retrieval applications.

As a whole, we believe that this work constitutes a valuable contribution to the development and
understanding of the problem of approximate text searching.

We have divided the thesis in two parts: on-line and indexed searching. There is also some general
material in the initial and final chapters.

1.3.1 General Part

This is composed of introductory chapters, conclusions, and some results which are applied in many
places of the thesis.

e In Chapter 2 we explain all the basic concepts needed to read the thesis.



e In Chapter 3 we cover the related work and put our contributions in context.

e In Chapter 4 we present our first results. We obtain very tight bounds for the probability of
a random pattern matching at a given position in random text with a given number of errors.
This theoretical analysis is confirmed and tightened with extensive experimental validation.
This result is not only essential to analyze our new algorithms, but it is also used to improve
the analysis of previous algorithms.

e The final chapter of the thesis (Chapter 10) presents a perspective view and some insights on

the future of the field.

1.3.2 On-line Searching

The first part of the thesis deals with on-line approximate string matching. This is the area where
more progress has been made since the sixties, and a wealth of competitive algorithms exist. On-
line searching is of interest not only because in many cases there is no time or space to preprocess
the text, but also because it lies at the heart of most indexing techniques. We point out our
major achievements in this part. This work has been published in [BYN96b, BYN96a, BYN97b,
Nav97a, Nav97b, BYN98d, BYN98¢c, NBY98b, NBY98d, NRI8b]|, and there are more submitted
(this includes the results of Chapter 4).

e We develop in Chapter 5 a new algorithm for approximate string matching. This combines bit-
parallelism with filtering techniques (to be explained later). As the use of bit-parallelism limits
the length of the patterns to use, we develop a number of problem partitioning techniques
that we combine in an optimal way (using also some techniques developed in Chapter 4). The
final algorithm turns out to be the fastest known algorithm for many interesting ranges of
parameters, including short patterns and low error levels. Moreover, it can be generalized to
support many extended patterns. The design of this algorithm is inextricably mixed with its
analysis, being the analysis (and hence the results of the previous point) an important part
of its design.

e As a subproduct of the previous point, we rescue in Chapter 6 a previous algorithm which
received little attention prior to this thesis. The algorithm is called “partitioning into exact
search”, since it is based on multipattern exact searching. With a clever implementation and
the inclusion of more sophisticated subsidiary techniques (developed in Chapter 4), it becomes
the fastest known algorithm for low and moderate error levels and pattern lengths. Moreover,
using a different multipattern search technique, almost the same efficiency is obtained while
being able to handle some extended patterns.

e Also in Chapter 6, we develop a generalized suffix automaton technique that allows improv-
ing the search time for many algorithms, and apply it to our bit-parallel algorithm. The
result improves over the original algorithm for some ranges of parameters (especially in DNA
searching).

e We improve (Chapter 6) the implementation and analyze two other algorithms which were
partially developed prior to this thesis. The first one is a filter based on counting matching
characters, for which we give the first theoretical average-case analysis. The second one is a
partially built deterministic automaton to search the pattern allowing errors, for whose growth
we give the first empirical analysis.



e We address in Chapter 7 the problem of multipattern approximate searching, which consists
of having a number of patterns to search at the same time. This is of interest, for instance,
in spelling applications (e.g. look for the whole dictionary in the text, finding the incorrect
words and their closest correct spellings), in information retrieval systems (e.g. expand the
search word using a thesaurus or synonyms and search all them allowing errors because the
text has errors), in batch searching applications (e.g. perform all the accumulated queries at
once), among others.

The only previous work allowed searching thousands of patterns in parallel with just one error.
We adapt our bit-parallel, partitioning into exact search, and counting algorithms, for the case
of multiple patterns. The result is the fastest algorithms in all cases when either the number
of patterns is not too large (say, less than 100) or more than one error is allowed. We analyze
and experimentally compare all the algorithms.

e All our algorithms, as well as the best previous algorithms we are aware of, were implemented
(or we obtained the implementations from their authors) and experimentally tested for many
interesting ranges of the parameters of the problem.

We have also obtained new results for different variants of the approximate searching problem
[Nav98a, Nav98b, BYN98c, NBY98a, NR98b, NR98c, MNZBY98b, MNZBY98a]. These variants
include approximate searching on multi-dimensional text, on non-linear text (hypertext), on com-
pressed text, and using the Hamming distance. Because these related results do not fit well with
the overall content of this thesis, we have decided not to include them.

1.3.3 Indexed Searching

The second part addresses the problem of building indices (i.e. data structures on the text) that
improve later searches of patterns allowing errors. This area was (and is) rather undeveloped. The
problem of designing a good index for approximate searching is so difficult that some computer
scientists have referred to the problem as the “Holy Grail” of this area. The existing indices are
very large in comparison to the text (10 or 20 times the text size is a common figure), and give
little or no guarantee on their performance. We call “sequence-retrieving” those general indices.

On the other hand, specialized indices for natural language have been more successful. They are
basically inverted indices, making heavy use of the text vocabulary and being able to retrieve just
whole words that match the pattern (e.g. if the error is the insertion of a space in the middle of
the word, the index is not able to recover from it). We call “word-retrieving” those indices. We can
subdivide them in those which know the exact text positions of all words (“full inverted indices”)
and those which reduce space requirements by dividing the text in blocks and point to the blocks
instead of the exact positions (“block-addressing indices”).

We have obtained new indexing and searching techniques and novel analytical results on some of
them. This work has been published in [BYNST97, BYN97a, ANZ97, BYN97c, BYN98b, NBY98c,
BYNO98al, and there are others submitted. Our main achievements in this regard follow.

e We consider first full-inverted indices in Chapter 8. In this case, we prove that for most
reasonable queries (i.e. those with reasonably high precision), the search time on those indices
is sublinear in the text size, being close to the square root of the text size.

e In the same chapter, we prove analytically that word-retrieving block-addressing indices can
be asymptotically sublinear in their size (with respect to the text) and in their time to answer



approximate search queries. We find the expression for the block size that achieves this result
and experimentally verify the theoretical results. This makes an excellent case for this kind
of indices.

Also in Chapter 8 we improve the vocabulary search of all word-retrieving indices. In previous
work the vocabulary of the text is sequentially searched with an on-line algorithm. We give
the vocabulary the structure of a metric space and compare different data structures to search
in that space. The final result is a reduction of the vocabulary search time in up to 60%.

We finish Chapter 8 by improving the existing block searching algorithms for word-retrieving
block-addressing indices, making them up to five times faster. Those improvements find
also application in text compression schemes for natural language texts. Those compression
schemes allow searching a pattern permitting errors in the compressed text without decom-
pressing it, which is an open problem in [ABF96].

In Chapter 9 we propose and experimentally evaluate a new sequence-retrieving indexing
scheme based on taking text samples. This is a variant of another index proposed prior to this
thesis, and can be seen as an indexed version of the on-line algorithm called “partitioning into
exact search”. In comparison to the related previous index, the new one takes more space but
it is more tolerant to errors. In comparison to most other indices, it takes much less space.
This makes it a practical alternative for text searching.

Also in Chapter 9 we adapt a previously existing sequence-retrieving indexing scheme. This
index simulates the on-line text traversal on a data structure that eliminates the repetitions
of the text. We use our bit-parallel algorithm as the on-line searcher. We also develop a
new algorithm on the same data structure based on an adaptation of the pattern partitioning
techniques, i.e. searching parts of the pattern with less errors and combining the results. We
analyze the performance of the resulting index and find experimentally that it outperforms
by far all the others. We propose for future work to simulate it on an index of text samples,
to reduce its space requirements.

We finish that chapter with a practical comparison among ours and all the other indexing
proposals for retrieving sequences.



Chapter 2

Notation and Basic Concepts

We collect in this chapter all the important concepts and notations needed to read this thesis.
There are no new results in this section. A basic understanding is assumed on design and analysis
of algorithms and data structures, basic text algorithms, and formal languages. If this is not the
case we refer the reader to good books in these subjects, such as [AHU74, CLR91, Knu73] (general),
[GBY91, CR94] (for text algorithms) and [HU79] (for formal languages).

Table 2.1 summarizes the variables used along this thesis. A quick reminder of their meaning and
values is included. A full explanation can be found throughout this chapter. We do not include the
basic notation about strings and bit masks, which can also be found in this chapter.

We specify also some notation regarding time and space complexity. When we say that an algorithm
is O(z) time we refer to its worst case (although sometimes we say that explicitly). If the cost is on
average, we say so explicitly. We also say sometimes that the algorithm is O(z) cost, meaning time.
When we refer to space complexity we say so explicitly. The average case analysis normally assumes
a random text, where each character is selected uniformly and independently from the alphabet.
The pattern is not normally assumed to be random (in some cases we explicitly state more specific
assumptions on the randomness).

It is also convenient to define at this point the machine used for most of the experimental results we
present along this work. This is the default machine, unless we explicitly say that another machine
has been used. We use a Sun UltraSparc-1 of 167 MHz with 64 Mb of RAM and a 2 Gb local disk.
The operating system is Solaris 2.5.1. This machine was not performing other heavy tasks when the
experiments were run. We measured user times (i.e. CPU times), and in some cases system time
(i.e. I/O time) or elapsed time. All the experiments were repeated enough times so as to ensure a
given relative error with a given confidence interval. The confidence interval is typically 95%, while
the relative error is 10% except when otherwise indicated.

We use two types of text. When we refer to “random text” we mean a text which is randomly
generated in the sense that each character is uniformly and independently chosen over an alphabet
of size 0. The search patterns are also generated using the same technique. When, on the other
hand, we mention “English text”, we refer to English literary text which is filtered so that all
the letters are converted to lower-case and all the separators (except end of lines) to space. The
patterns are chosen from the same text at random positions which start words no shorter than four
letters. This mimics common Information Retrieval scenarios. However, we have obtained the same
behavior on other languages such as Spanish or French. Moreover, the results (except for their
higher variance) are very similar to those on random text on an alphabet size of 1/p, where p is



Name | Meaning Domain Typical values
by Alphabet Finite set
o Alphabet size N, > 2 4 or 20 to 64
ed() | Edit distance function Y*x¥* =N Levenshtein distance
T Text 3 Natural language or arbitrary text
n Text length in letters or words N,>0 Megabytes or gigabytes
p Pattern to search * Same source as text
m Pattern length in letters N, >0 Up to 30 or 60
k Number of allowed errors N, e{l..(m-1)} Up to m/3 or m/2
o Error level a = k/m R, € (0..1) Upto1/3or1/2
w Bits in the computer word N, >0 32 or 64
M Available memory in bytes N, >0 Few megabytes
V Vocabulary size of the text N, >0 Thousands
b Block size of the indices N, >0 Few Kbytes
0 Zipf’s constant R,>1 1.5 to 2.0
Jé; Heaps’ constant R, € (0..1) 0.4 to 0.6
q Length of ¢-grams N, >0 3tob

Table 2.1: Main variables used in this thesis.

the probability that two random characters of the English text match. The specific English text
used is, except otherwise stated, a collection of writings of Benjamin Franklin. In other cases we
use texts from the TREC-2 collection [Har95], which we simply call “TREC” from now on.

2.1 Definition of the Problem

In the Introduction we have defined the problem of approximate string matching as that of finding
the text positions that match a pattern with up to k errors. We give now a more formal definition.

In the discussion that follows, we use s, z,y, z, v, w to represent arbitrary strings, and a, b, c... to
represent letters. Writing a sequence of strings and/or letters represents their concatenation. We
assume that concepts such as prefix, suffix and substring are known. For any string s € 3* we
denote its length as |s|. We also denote s; the i-th character of s, for integer 7 € {1..|s|}. We denote
Si.; = 8;Si+1...5; (which is the empty string if ¢ > j). The empty string is denoted as €.

Let ¥ be an alphabet of size |X| = o, which is finite!.

Let T € ¥* be a text of length n = |T|.

Let P € ¥* be a pattern of length m = |P|.

Let k € N be the maximum error allowed.

Let d : ¥* x ¥* — N be the distance function.

The problem is: given T, P, k and d(), return the set of all the text positions j such

that there exists ¢ such that d(T; ;, P) < k.

!However, many algorithms can be adapted to infinite alphabets with an extra O(log m) factor in their cost. This
is because the pattern can have at most m different letters and all the rest can be considered equal for our purposes.
A table of size o would now be replaced by a search structure over at most m + 1 different letters.
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In most cases, however, the distance functions have a more precise form:

The distance d(z,y) between two strings « and y is the cost of the minimum-cost se-
quence of operations that transform « into y. The cost of a sequence of operations is the
sum of the costs of the individual operations. The cost of an operation is considered a
positive real number. If it is not possible to transform z into y we say that d(z,y) = cc.

If such distance function turns out to be symmetric (i.e. d(z,y) = d(y, z)) and always d(z,y) < oo,
then d() is a metric, i.e. it satisfies the following axioms:

- Ve, d(z,z)=0

- V%?éy, d(ﬂ),y)>0

- Vm,y, d(may) = d(y,ﬂ))

- Vm,y,z, d(maz) S d(may)—l_d(yaz)

The last property is called “triangular inequality”. In particular, in text searching applications the
operations of most interest are:

— Insertion: insert a new letter a into . An insertion operation on the string z = vw
consists in adding a letter a, converting z into ¢’ = vaw.

— Deletion: delete a letter a from z. A deletion operation on the string # = vaw consists
in removing a letter, converting « into ¢’ = vw.

— Replacement or Substitution: replace a letter a in #. A replacement operation on the
string # = vaw consists in replacing a letter for another, converting # into ' = vbw.

— Transposition: swap two adjacent letters ¢ and b in #. A transposition operation
on the string # = wvabw consists in swapping two adjacent letters, converting z into
' = vbaw.

We are now in position to define the most commonly used distance functions (although there are
many others).

— Levenshtein or Edit distance [Lev65]: allows insertions, deletions and replacements,
all costing 1. This can be rephrased as “the minimum number of insertions, deletions
and replacements to make two strings equal”. In the literature this problem is in many
cases called “string matching with k differences”. The distance is symmetric, and it
holds 0 < d(z,y) < max(|z|, |y|).

— Hamming distance [SK83]: allows only replacements, which cost 1. In the literature
this problem is in many cases called “string matching with & mismatches”. The distance
is symmetric, and it is finite whenever |z| = |y|. In this case it holds 0 < d(z,y) < |z|.

— Episode distance [DFGT97): allows only insertions, which cost 1. In the literature this
problem is in many cases called “episode matching”, since it modelizes the case where
a sequence of events is sought, where all them must occur within a short period. This
distance is not symmetric, and it may not be possible to convert  into y in this case.
Hence, it holds that d(z, y) is either |y| — |2| or oco.
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— Longest Common Subsequence distance [NW70, AG87]: allows only insertions and
deletions, all costing 1. The name of this distance refers to the fact that it measures
the length of the longest pairing of characters that can be made between both strings,
so that the pairings respect the order of the letters. The longer the pairing, the smaller
the distance. The distance is symmetric, and it holds 0 < d(z,y) < |z| + |y|.

In all cases except the episode distance we have a symmetric distance, since there are complementary
operations. In those cases one can think that the changes can be made over z or y. Insertions on
z are the same as deletions in y and vice versa, and replacements can be made in any of the two
strings to match the other.

This thesis is most concerned with the Levenshtein distance [Lev65, Lev66] which we also call by
its alternative name “edit distance” and denote ed(). This is the most interesting distance for text
retrieval applications. Although transpositions are of interest (especially in case of typing errors),
there are few algorithms to deal with them (see, e.g. [LW75, WBT74, Ukk85a]). However, we will
consider them at some points of this thesis (notice that a transposition can be simulated with an
insertion plus a deletion, but the cost is different). We also will point out when our work can be
extended to have different costs of the operations (which is of special interest in computational
biology), including the extreme case of not allowing some operations. This includes the other
distances mentioned.

Other variants of the problem will also be of interest. For instance, in natural language text we
may be interested in finding text words which match the pattern with errors, instead of finding any
text segment. Most algorithms are easily adapted to this requirement.

Finally, we point out some notations and conditions that hold for text retrieval applications.

—  The problem is interesting only for k& > 0, otherwise we are in the problem of exact
string matching, which is very different from the subject of this thesis. Some of our
algorithms, however, behave competitively when faced to this case.

— If the Hamming or edit distance are used, then the problem makes sense for k < m,
since if we can perform m operations we can make the pattern match at any text position
by means of m replacements.

—  Under the Hamming or edit distance, we call & = k/m the error level, which given
the above conditions satisfies 0 < a < 1. This value gives an idea of the “error ratio”
allowed in the match (hence, 100« is the percentage of error allowed).

— In text retrieval we are normally interested in obtaining the maximum efficiency
for: very large n, reasonably small m (typically m < 30, and almost always m < 60),
reasonably low a (typically o < 1/3 and almost always o < 1/2), and reasonably large
alphabets (typically larger than 20, although not necessarily random). However, some
of our algorithms turn out to be efficient in other cases as well, which makes them of
interest for other applications.

2.2 Dynamic Programming Algorithm
We present now the first algorithm to solve the problem. It has been rediscovered many times in the

past, in different areas, e.g. [NW70, WF74, San72, Sel80] (there are more references in [Ukk85al,
and a very good compendium of the area in [SK83]). Although the algorithm is not very efficient,
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it is one of the most flexible ones to adapt to different distance functions. We present the version
that computes the edit distance. It should be easy for the reader to extrapolate to other cases.

We first show how to compute the edit distance between two strings # and y. Later, we extend that
algorithm to search a pattern in a text allowing errors.

The algorithm is based on dynamic programming. Imagine that we need to compute ed(z,y). A
matrix Cy || 0..|y| 18 filled, where C; ; represents the minimum number of operations needed to match
z1.; to yi. ;. This is computed as follows?

Cio = 1
Coj = 7
Ci’j = if (a:z = yj) then Ci—l,j—l
else 1 + min(Ci_l,j, Ci -1, Ci—l,j—l)

where at the end Cyy| = ed(z, y).

The rationale of the above formula is as follows. First, C;o and Cp ; represent the edit distance
between a string of length ¢ or j and the empty string. Clearly ¢ (respectively j) deletions are
needed on the long string. For two non-empty strings of length ¢ and j, we assume inductively that
all the edit distances between shorter strings have already been computed, and try to convert z;_;
into yq_;.

Consider the last characters z; and y;. If they are equal, then we do not need to consider them and
the conversion proceeds in the best way we can convert #; ;_; into y; ;_1. On the other hand, if
they are not equal, we must deal with them in some way. Following the three allowed operations,
we can delete z; and convert in the best way z; ;_; into y;_;, insert y; at the end of z and convert
in the best way z; ; into y;_;_1, or replace z; by y; and convert in the best way z; ;1 into y;_j_1.
In all cases, the cost is one plus the cost for the rest of the process (already computed). Notice that
the insertions in one string are equivalent to deletions in the other.

The dynamic programming algorithm must fill the matrix in such a way that the upper, left, and
upper-left neighbors of a cell are computed prior to computing that cell. This is easily achieved
by either a row-wise left-to-right traversal or a column-wise top-to-bottom traversal. Figure 2.1
illustrates this algorithm to compute ed("survey", "surgery").

Therefore, the algorithm is O(|z||y|) time in the worst and average case. However, the space required
is only O(min(|z[,|y|). This is because, in the case of a column-wise processing, only the previous
column must be stored in order to compute the new one, and therefore we just keep one column
and update it. We can process the matrix row-wise or column-wise so that the space requirement
is minimized.

On the other hand, the sequences of operations performed to transform z into y can be easily
recovered from the matrix, simply by proceeding from the cell C|; |, to the cell Cp g following the
path (i.e. sequence of operations) that matches the update formula (notice that multiple paths may
exist). In this case, however, we need to store the complete matrix.

This matrix has some properties which can be easily proved by induction (see, e.g. [Ukk85a]) and
which make it possible to design better algorithms. Notice, for instance, that the values of neighbor
cells differ in at most one.

2This formulation of the problem has been selected because it is simpler to explain for us. A more classical
formulation is C;,; = min(Ci_1,; +1,Cs-1 +1,Cs—1,j—1 +6(zi,y;)), where §(z, y) is zero if z = y and 1 otherwise. The
formulation we used can be deduced from the more classical one by noticing that C;_1,;_1 <1+ min(C’i_lyj , Ciyj_l).
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Figure 2.1: The dynamic programming algorithm to compute the edit distance between "survey"
and "surgery". The bold entry is the final result.

We show now how to adapt this algorithm to search a short pattern P in a long text T'. The
algorithm is basically the same, with # = P and y = T (proceeding column-wise so that O(m)
space is required). The only difference is that we must allow that any text position is the potential
start of a match. This is achieved by setting Cy ; = 0 for all j € 0..n. That is, the empty pattern
matches with zero errors at any text position (because it matches with a text suffix of length zero).

The algorithm then initializes its column Cy_,, with the values C; = 4, and processes the text
character by character. At each new text character T}, its column vector is updated to Cy ... The
update formula is

Czl = if (R = Tj) then C;_;
else 1 + min(C}_;,C;, Ci_1)

The search time of this algorithm is O(mn) and its space requirement is O(m). This is a sort of
worst case in the analysis of all the algorithms that we consider later. Figure 2.2 exemplifies this
algorithm applied to search the pattern "survey" in the text "surgery" (a very short text indeed)
with at most k = 2 errors. In this case there are 3 occurrences.

W= N=O(0R
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ookl w N —lo
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ARlwln o~ lole
W =Rlo|lrl~lolR
N~ o= oo
NN w o= ol R
N w| w|w| = o«

Figure 2.2: The dynamic programming algorithm search "survey" in the text "surgery" with two
errors. Bold entries indicate matching positions.

It is easy to adapt this algorithm for the other distance functions mentioned. It is just a matter

of not considering the three editing operations. In the case of the episode distance, we must set
Ci o0 = OQ.
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Finally, we point out that although we have presented a column-wise algorithm to fill the matrix,
many other works are based in alternative filling styles. For instance, we can fill it row-wise (we
need O(n) space, but it pays in some cases, as we see later), or even by diagonals or “secondary”
diagonals. Figure 2.3 illustrates.

{
By columns By rows
N 7
R
\ /
AN 4
By diagonals By secondary diagonals

Figure 2.3: Different possible alternatives to fill the dynamic programming matrix.

2.3 A Graph Reformulation

A very powerful reformulation of the problem of computing edit distance converts the problem into
a shortest-path problem in a graph [Ukk85a]. Given the two strings, the dynamic programming
matrix can be seen as a graph where the nodes are the cells and the edges represent the operations.
The weight of the edges correspond to the cost of the operations. There are also edges of zero cost
when the characters match. The problem is then converted into finding the cheapest path from the
node [0, 0] to the node [|z], |y|] (and that path spells out the operations to perform). Figure 2.4
shows the graph for the example of Figure 2.1.

As it can be seen, diagonal arrows represent matches or replacements (with costs 0 or 1, respectively),
horizontal arrows represent insertions in # and vertical arrows represent deletions from . Notice
also that the shortest path (i.e. optimal sequence of edit operations) needs not be unique.

Although this graph has (|| +1)(|y| + 1) nodes and therefore the minimum path algorithms are not
efficient (they would take O(|z||y|log(|#||y|)) using a classical algorithm), this reformulation has
been extremely useful, especially because it is very flexible to adapt to other types of approximate
searching problems. It is also the basis of useful algorithms and analytical results for the edit
distance problem.

2.4 A Reformulation Based on Automata

An alternative and very useful way to consider the problem is to model the search with a non-
deterministic automaton (NFA). This automaton (in its deterministic form) was first proposed in
[Ukk85b], and first used in non-deterministic form (although implicitly) in [WM92al. It is shown
explicitly in [BY91, BY96, BYN96b, BYN98d].

Consider the NFA for £ = 2 errors under edit distance shown in Figure 2.5. Each row denotes
the number of errors seen. The first one 0, the second one 1, and so on. Every column represents
matching the pattern up to a given position. At each iteration, a new text character is read and the
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Figure 2.4: Graph reformulation of the previous edit distance problem. The cheapest path between
the node “I” and the final node is shown in bold.

automaton changes its states. Horizontal arrows represent matching a character, vertical arrows
represent insertions into the pattern, solid diagonal arrows represent replacements, and dashed
diagonal arrows represent deletions in the pattern (they are e-transitions). The automaton accepts
a text position as the end of a match with k errors whenever the rightmost state of the (k + 1)-th
row is active.

It is not hard to see that once a state in the automaton is active, all the states of the same column
and higher rows are active too. Moreover, at a given text character, if we collect the smallest active
rows at each column, we obtain the vertical vector of the dynamic programming algorithm [BY96]
(compare to Figure 2.2).

The other types of distances are obtaining by deleting some arrows of the automaton. Different
integer costs for the operations are also modeled by changing the arrows. For instance, if insertions
cost 2 instead of 1, we make the vertical arrows to move from rows ¢ to rows ¢ + 2.

This automaton can be simply made deterministic to obtain O(n) worst case search time. How-
ever, as we see later, the main problem becomes the construction of the DFA (deterministic finite
automaton). An alternative solution is based on simulating the NFA instead of converting it into
deterministic.

2.5 Filtering Algorithms

Many algorithms that we will consider and design are based in the concept of filtering, and therefore
it is useful to define it here.

The concept of filtering is based on the fact that in many cases, the text positions matching a
pattern with errors contain some parts of the pattern unaltered. For instance, if "survey" is found
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no errors

1 error

2 errors

Figure 2.5: An NFA for approximate string matching of the pattern "survey" with two errors. The
shaded states are those active after reading the text "surgery".

in a text position with one error under the edit distance, then either "sur" or "vey" must appear
unaltered in the match. This is because a single edit operation cannot alter both halves of the
pattern.

Most filtering algorithms take advantage of this fact by searching pieces of the pattern without
errors. Since the exact searching algorithms can be much faster than approximate searching ones,
filtering algorithms can be very competitive (in fact, they dominate on a large range of parameters).

It is important to notice that a filtering algorithm is normally unable to discover the matching text
positions by itself. Rather, it is used to discard (hopefully large) areas of the text which cannot
contain a match. For instance, in our example, it is necessary that either "sur" or "vey" appears
in an approximate occurrence, but it is not sufficient. Any filtering algorithm must be coupled with
a process that verifies all those text positions that could not be discarded by the filter.

Virtually any non-filtering algorithm can be used for this verification, and in many cases the devel-
opers of a filtering algorithm do not care in looking for the best verification algorithm, they just use
the dynamic programming algorithm. It is important to understand that that selection is normally
independent. Nonetheless, the verification algorithm must behave well on short texts, because it
can be started in many different text positions to work on small text areas. By careful programming
it is almost always possible to keep the worst-case behavior of the verifying algorithm (i.e. avoid
verifying overlapping areas).

Finally, the performance of filtering algorithms is very sensitive to the error level a. Most filters
work very well on low error levels and very bad in other cases. This is related with the amount of
text that the filter is able to discard. When evaluating filtering algorithms, it is important not only
to consider their time efficiency but also their tolerance to errors.

A term normally used when referring to filters is “sublinearity”. It is said that a filter is sublinear
when it does not inspect all the characters of the text (like the Boyer-Moore [BM77] algorithms
for exact searching, which can be at best O(n/m)). However, no on-line algorithm can be truly
sublinear, i.e. o(n). This is only achievable with indexing algorithms.
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2.6 Bit-Parallelism

This is another technique of common use in string matching [BY92]. It was first proposed in
[BY89, BYG92]. The technique consists in taking advantage of the intrinsic parallelism of the bit
operations inside a computer word. By using cleverly this fact, the number of operations that an
algorithm performs can be cut down by a factor of at most w, where w is the number of bits in
the computer word. Since in current architectures w is 32 or 64, the speedup is very significant in
practice (and improves with technological progress). In order to relate the behavior of bit-parallel
algorithms to other works, it is normally assumed that w = ©(logn), as dictated by the RAM model
of computation. We prefer, however, to keep w as an independent value. We introduce now some
notation we use for bit-parallel algorithms.

— The length of the computer word (in bits) is w.

— We denote as by...b; the bits of a mask of length £. This mask is stored somewhere
inside the computer word. Since the length w of the computer word is fixed, we are
hiding the details on where we store the £ bits inside it. We give such details when they
are relevant.

— We use exponentiation to denote bit repetition (e.g. 01 = 0001).

— We use C-like syntax for operations on the bits of computer words: “|” is the bitwise-
or, “&” is the bitwise-and, “ ™ ” is the bitwise-xor and “~” complements all the bits.
The shift-left operation, “<<”, moves the bits to the left and enters zeros from the
right, i.e. bybym_1...b201 << r = by,_,...b2b10". The shift-right, “>>" moves the bits
in the other direction. Finally, we can perform arithmetic operations on the bits, such
as addition and subtraction, which operates the bits as if they formed a number. For
instance, by...b,10000 — 1 = b,...0,01111.

We explain now the first bit-parallel algorithm, since it is the basis of much of which follows in this
work. The algorithm searches a pattern in a text (without errors) by parallelizing the operation of a
non-deterministic finite automaton that looks for the pattern. Figure 2.6 illustrates this automaton
(from this point on, we use a pattern with more interesting combinatorial properties than "survey").

Figure 2.6: Nondeterministic automaton that searches "abracadabra" exactly.

This automaton has m + 1 states, and can be simulated in its non-deterministic form in O(mn)
time. The Shift-Or algorithm achieves O(mn/w) worst-case time (i.e. optimal speedup). Notice
that if we convert the non-deterministic automaton to a deterministic one to have O(n) search time,
we get an improved version of the KMP algorithm [KMP77, BY96, Sim94, Han93]. However, for
example, KMP is twice as slow for m < w.

The algorithm first builds a table B which for each character ¢ stores a bit mask B[c] = b,,...b;.
The mask in B[c] has the bit b; in zero if and only if P, = ¢. The state of the search is kept in a
machine word D = d,,...d;, where d; is zero whenever P; ; matches the end of the text read up to
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now (i.e. the state numbered 7 in Figure 2.6 is active). Therefore, a match is reported whenever d,,
is zero.

D is set to all ones originally, and for each new text character T}, D is updated using the formula

D' « (D<<1) | B[Ty]

The formula is correct because the i-th bit is zero if and only if the (¢ — 1)-th bit was zero for
the previous text character and the new text character matches the pattern at position ¢. In other
words, T;_;11.; = P1.; if and only if T;_;41. ;-1 = P1.;—1 and T; = P;. Again, it is possible to
relate this formula to the movement that occurs in the non-deterministic automaton for each new
text character: each state gets the value of the previous state, but this happens only if the text
character matches the corresponding arrow.

For patterns longer than the computer word (i.e. m > w), the algorithm uses [m/w] computer
words for the simulation (not all them are active all the time). The algorithm is O(n) on average
and the preprocessing is O(m + o) time and O(o) space.

It is easy to extend Shift-Or to handle classes of characters. In this extension, each position in the
pattern matches with a set of characters rather than with a single character. The classical string
matching algorithms are not so easily extended. In Shift-Or, it is enough to set the i-th bit of B|c]
for every ¢ € P, (P; is a set now). For instance, to search for "survey" in case-insensitive form,
we just set the first bit of B["s"] and of B["S"], and the same with the rest. It can also search
for multiple patterns (where the complexity is the same as before if we consider that m is the total
length of all the patterns). Shift-Or was later enhanced [WM92a] to support a larger set of extended
patterns and even regular expressions.

Many on-line text algorithms can be seen as implementations of clever automata (classically, in their
deterministic form). Bit-parallelism has since its invention became a general way to simulate simple
non-deterministic automata instead of converting them to deterministic. It has the advantage of
being much simpler, in many cases faster (since it makes better usage of the registers of the computer
word), and easier to extend to handle complex patterns than its classical counterparts. Its main
disadvantage is the limitations it imposes with regards to the size of the computer word. In many
cases its adaptations to cope with longer patterns are not so efficient.

2.7 Suffix Trees and DAWGs

Suffix trees [Wei73, Knu73, AG85] are widely used data structures for text processing [Apo85]. Any
position 7 in a string S defines automatically a suffiz of .S, namely S;. .

In essence, a suffix tree is a trie data structure built over all the suffixes of S. At the leaf nodes the
pointers to the suffixes are stored. Each leaf represents a suffix and each internal node represents a
unique substring of S. Every substring of .S can be found by traversing a path from the root. Each
node representing the substring az has a suffiz link that leads to the node representing substring z.

To improve space utilization, this trie is compacted into a Patricia tree [Mor68]. This involves
compressing unary paths. At the nodes which root a compressed path, an indication of how many
characters to skip is stored. Once unary paths are not present the tree has O(n) nodes instead of
the worst-case O(n?) of the trie (see Figure 2.7).

This structure can be built in time O(n), where n = |.S| [McC76, Ukk95]. It is a very useful structure
to solve many problems [AG85, Apo85].
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Suffix Tree

Figure 2.7: The suffix trie and suffix tree for a sample string. The “$” is a special marker to denote
the end of the text. Two suffix links are exemplified in the trie: from "abra" to "bra" and then to
"ra". The internal nodes of the suffix tree show the character position to inspect in the string.

To search a simple pattern in the suffix tree, we just enter into the trie driven by the letters of the
pattern. This algorithm has been adapted to approximate searching by entering into all subtrees
(since the matched text is not equal to the search pattern) until k such errors are performed [Ukk93].

A DAWG (deterministic acyclic word graph) [Cro86, BBH'85] built on a string S is a deterministic
automaton able to recognize all the substrings of S. As each node in the suffix tree corresponds to
a substring, the DAWG is no more than the suffix tree augmented with failure links for the letters
not present in the tree. Since final nodes are not distinguished, the DAWG is smaller. DAWGs
have similar applications to those of suffix trees, and also use O(n) space and construction time.
Figure 2.8 illustrates.

1 2 3

abr

DAWG

Figure 2.8: The DAWG or the suffix automaton for the sample string. If all the states are final, it
is a DAWG. If only the rightmost state is final then it is a suffix automaton.
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2.8 Suffix Automata

Although we make use of many different algorithms for exact string matching as building tools for
our approximate search algorithms, we have decided to cover Shift-Or and this one because they
are recent and not so widely known.

The Backward DAWG matching (BDM) algorithm [CCG 194, CR94] is based on a suffix automaton.
A suffiz automaton on a pattern P is an automaton that recognizes all the suffixes of P. The non-
deterministic version of this automaton has a very regular structure and is shown in Figure 2.9 (the
deterministic version can be seen in Figure 2.8).

@
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I | |
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Figure 2.9: A non-deterministic suffix automaton to search any suffix of "abracadabra". Dashed
lines represent e-transitions (i.e. they occur without consuming any input). I is the initial state of
the automaton.

The BDM algorithm converts this automaton to deterministic. The size and construction time of
this automaton is O(m). This is basically the preprocessing effort of the algorithm. Each path from
the initial node to any internal node represents a substring of the pattern. The final nodes represent
pattern suffixes.

To search a pattern P, the suffix automaton of P" (the reversed pattern) is built. The algorithm
slides a window over the text and allows shifting the window without inspecting all the text charac-
ters. It searches backwards inside the text window for a substring of the pattern P using the suffix
automaton. Each time a terminal state is reached before reaching the beginning of the window, the
position inside the window is remembered. This corresponds to finding a prefiz of the pattern equal
to a suffix of the window (since the reverse suffixes of P" are the prefixes of P). The last prefix
recognized backwards is the longest prefix of P in the window. A match is found if the complete
window is read, while the check is abandoned when there is no transition to follow in the automaton.
In either case, the window is shifted to align with the longest prefix recognized.

In [NR98a] we presented a bit-parallel version of BDM, called BNDM (the “N” stands for “non-
deterministic”), based on simulating the non-deterministic automaton instead of converting it to
deterministic. This version turned out to be the fastest algorithm to search exact patterns in all
cases, except for very short (2-4 letters) or very long (100-150 letters) patterns. Moreover, it can
handle some extended patterns easily and efficiently. Although this algorithm is not part of this
thesis, we extend it in this work to handle errors.

2.9 Natural Language and Its Statistics

An important part of this work is oriented toward natural language. We explain in this section
what is understood by this term and give some of the main accepted rules that drive its statistical
behavior.

We understand by natural language text the transcription of a language used by humans for verbal
communication, or which follows the same syntactic and semantic rules of such a language. This
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is in contrast to genetic sequences, compressed bit-streams, machine language, etc. Our definition
encompasses all texts such as literary, technical, formal, colloquial, journalistic, e-mail, news, and
many others, provided the language they are based on is used by humans to communicate (once the
exceptions stated above are made, since two computer scientists could communicate via a program

code).

Natural language and the mechanisms to extract information from it is the main subject of study of
Information Retrieval (IR). A number of laws which rule the statistical behavior of natural language
texts are widely accepted. Although we use them in many cases to analyze the average behavior of
our algorithms and data structures (especially when we consider indices), it is important to realize
that all those laws are heuristic and approzimate. As we have found, some fit much better the reality
than others. We present now the laws that we use in this work, some of which are fundamental for
our results. All these laws have been experimentally confirmed in this thesis.

First of all, we assume that the natural language texts are divided in words. A word is a sequence
of characters which forms a compact element. A more technical definition divides the alphabet X
in two sets, “letters” and “separators”. Words are contiguous sequences of letters surrounded by
separators (more complex definitions are possible). For instance, we could define that the letters
are {"a".."z", "A".."Z" "0".."9"} and the rest are separators.

We assume that the words are relatively short, and that their length is distributed basically in-
dependently of their positions in the text. This assumption is very reasonable. In most cases of
indexed search we assume that the text has n words instead of n characters. However, since the
length of words is bounded by a constant, we still have a text of size ©(n).

The vocabulary of the text is defined as the set of distinct words present in it, and its size is denoted
as V. This definition may involve a previous step of mapping of characters and words. For instance,
we may map all characters to lower-case, so that the words "survey" and "Survey" are considered
equivalent. Some more complex mappings are commonly carried on IR systems. For instance, a
word may be mapped to a synonym (i.e. a syntactically different word with the same meaning), so
that if a user searches for "only meaning" it can also find "sole meaning". Another technique,
called stemmang, eliminates a suffix of the words, so that if a user searches for "clone" it can also
find "cloning". All those transformations are assumed to be performed prior to the application of
our algorithms and we do not rely on them.

We also assume the Heaps’ Law [Hea78]. This is a very precise law ruling the growth of the
vocabulary in natural language texts. It states that the vocabulary of a text of n words is of size
V =KnP = O(nﬁ), where K and 3 depend on the particular text. K is normally between 10 and
100, and g is between 0 and 1 (not included). Some recent experiments [ANZ97, BYN97a] show
that the most common values for 3 are between 0.4 and 0.6. Hence, the vocabulary of a text grows
sublinearly with the text size, in a proportion close to its square root.

A first inaccuracy appears immediately. Supposedly, the set of different words of a language is fixed
by a constant (e.g. the number of different English words is finite). However, the limit is so high
that it is much more accurate to assume that the size of the vocabulary is O(n®) instead of O(1),
although the number should stabilize for huge enough texts. On the other hand, many authors
argue that the number keeps growing anyway because of the errors that appear in the text.

Another inconsistency is that, as the text grows, the number of different words will grow too, and
therefore the number of letters to represent all the different words will be O(log(n?)) = O(logn).
Therefore, longer and longer words should appear as the text grows. The average length could be
kept constant if shorter words are common enough (which is the case). In practice, this effect is not
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noticeable and we can assume an invariable length, independent of the text size.

A much more inexact law is Zipf’s Law [Zip49, GBY91], which rules the distribution of the frequen-
cies (i.e. number of occurrences) of the words. The rule states that the frequency of the i-th most
frequent word is 1/i% times that of the most frequent word. This implies that in a text of n words
with a vocabulary of V' words, the i-th most frequent word appears n/(i® Hy (8)) times, where

Y1
Hy(0) =) =
=1

so that the sum of all frequencies is n. The value of 6 depends on the text. In the most prim-
itive formulation (which is easier to handle mathematically) it is assumed § = 1, and therefore
Hy(0) = O(logV). However, this simplified version is very inexact, and the case § > 1 (more
precisely, between 1.5 and 2.0) fits better the real data [ANZ97]. This case is very different, since
the distribution is much more skewed, and Hy () = O(1).

There have been attempts to correct the inaccuracies of Zipf’s Law. One attempt is the Mandelbrot
distribution [Man52], which states that the frequency of the i-th word is nu/(c + )%, for some
constants ¢ and g. We do not use this distribution in this work because its asymptotical effect
is negligible and it is much harder to deal with mathematically. It is interesting to notice that
Zipf-like distributions can be derived from simpler models, as shown in [MNF57]: if we assume a
word generation process where the space appears with a fixed probability p and the other letters
appear uniformly, then a Mandelbrot distribution in the generated words is observed. Moreover,
shorter words are more frequent, as it happens in natural language.

The fact that the distribution of words is very skewed (i.e. there are a few hundreds of words which
take up 50% of the text) suggest a concept which is also of much use in IR: stopwords [MNF58]. A
stopword is a word which does not carry meaning in natural language and therefore can be ignored
(i.e. made not searchable), such as "a", "the", "by", etc. Fortunately, the most frequent words are
stopwords, and therefore half of the words appearing in a text need not be considered. This allows,
for instance, significantly reducing the space overhead of indices for natural language texts.

It is interesting to observe that if, instead of taking text words, we take m-grams, no Zipf-like
distribution is observed. Moreover, no good model is known for this case [BCW90, chapter 4].

We point out now other assumptions we make. We assume that user queries distribute uniformly in
the vocabulary, i.e. every word in the vocabulary can be searched with the same probability. This
is not true in practice, since unfrequent words are searched with higher probability. On the other
hand, approximate searching makes this distribution more uniform, since unfrequent words may
match match with k& errors with other words, with little relation to the frequencies of the matched
words. In general, however, the assumption of uniform distribution in the vocabulary is pessimistic.

Finally, the words are assumed to be uniformly distributed in the text. Although widely accepted,
this rule may not be true in practice, since words tend to appear repeated in small areas of the text.
Uniform distribution in the text is another pessimistic assumption we make, since more text blocks
match a query when the distribution is uniform.

We end this section with a note of interest. There are many human languages where this clear
separation of a text in words does not exist. This is the case of agglutinating languages, such as
Finnish or German. In those languages, a sequence of letters is in fact the concatenation of a
number of short components which carry the meaning. In many cases their words are equivalent
to our phrases. All the statistical behavior exposed above will probably be untrue when applied to
those languages. In that case, there are two main alternatives: (a) consider those texts as “non-
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natural languages” (in our sense, of course) and accept that the only schemes applicable to them
are those for general texts; or (b) split those words into “sub-words” which really carry the meaning
we assign to words in languages such as English, Spanish or French, for instance. This second
alternative is very attractive, although it relies on some semantic understanding of the language.
We are not aware of the existence or not of such semantic tools to split words in agglutinating
languages.

2.10 Inverted Files or Inverted Indices

The inverted file or inverted index [Knu73, FBY92, WMB94] is a very old data structure to index
natural language texts. Indezing means building a persistent data structure on texts to speed up
the search. Since building an index takes much more than an on-line search, it is worthwhile to
build such an index when the number of queries is much higher than the number of modifications
to the text collection.

The inverted file structure is composed of two elements: the vocabulary and the occurrences. The
vocabulary is the set of all different words in the text. For each such word a list of all the text
positions where the word appears is stored. The set of all those lists is called the “occurrences” or
“posting file” (Figure 2.10 shows an example).

1 6 9 11 17 19 24 28 33 40 46 50 55 60

This is a text. A text has many words. Wrds are made from letters.

Text
letters 60...
made 50...
Inverted Index
many 28...
text 11, 19...
words 33, 40...
Vocabulary Occurrences

Figure 2.10: A sample text and an inverted index built on it. The words are converted to lower-case
and stopwords are not indexed. The occurrences point to character positions in the text.

The space required for the vocabulary is rather small, thanks to the Heaps’ Law. For instance, 1 Gb
of the TREC collection [Har95] has a vocabulary whose size is only 5 Mb. The occurrences demand
much more space. Since each word appearing in the text is referenced once in that structure, the
extra space is ©(n). Even omitting stopwords (which is the general case) in practice the space
overhead of the occurrences is between 15% and 40% of the text size.

To reduce space requirements, a technique called block addressing is used. The first index of this
kind was Glimpse [MW94]. The text is divided in blocks, and the occurrences point to the blocks
where the word appears (instead of the exact positions). The classical indices which point to the
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exact occurrences are called “full inverted indices”. By using block addressing not only the pointers
can be smaller because there are less blocks than positions, but also all the occurrences of a word
inside a single block are collapsed to one reference (see Figure 2.11), profiting from context locality
inherent to natural language. Indices of only 5% overhead over the text size are obtained with this
technique. The price to pay is that, if the exact occurrence positions are required (for instance to
solve a phrase query) then an on-line search over the classifying blocks has to be performed. For
instance, block addressing indices with 256 blocks stop working well with texts of 200 Mb of size.

Block 1 Block 2 Block 3 Block 4

This is atext.| Atext has many |words. Wrds are|made from letters.

Text
letters 4...
made 4..
Inverted Index
many 2...
text 1, 2...
words 3.
Vocabulary Occurrences

Figure 2.11: The sample text split in four blocks, and an inverted index using block addressing built
on it. The occurrences denote block numbers. Both occurrences of "words" collapsed into one.

The blocks can be of fixed size (imposing a logical block structure over the text database) or they
can be defined using the natural division of the text collection into files, documents, Web pages or
others. The division into blocks of fixed size improves efficiency at retrieval time (i.e. the more
variance in the block sizes, the more amount of text sequentially traversed on average).

On the other hand, the division using natural cuts may eliminate the need of the on-line traversal.
For example, if one block per document is used and the exact match positions are not required,
there is no need to traverse the text for simple queries, since it is enough to know which documents
to report. On the other hand, if many documents are packed into a single block, the block has to
be traversed to determine which documents to retrieve.

It is important to notice that in order to use block addressing, the text must be readily available
at search time. This is not the case of remote text (as in Web search engines), or if the text isin a
CD-ROM that has to be mounted, for instance.

Glimpse pioneered a second technique which we use many times in this work. It is based on a
sequential vocabulary search. Traditionally, the queries are searched in the vocabulary by means
of a data structure built on it, such as a hash table, B-tree or other. However, a sequential search
is useful when we are interested in more complex types of searches such as extended patterns or
approximate string matching.

Imagine that a user is interested in a variant of the problem where we have to report whole words
which match a query word with k errors or less. For instance, if the user searches "shallow", we
do not want it to be reported with one error in the text "hash allows" or with zero errors in
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"shallowing". The indices that solve this variant of the problem are called in this work word-
retrieving indices, as opposed to the general sequence-retrieving indices which solve the original
problem.

Since the vocabulary contains all the different words that appear in the text, we can search just the
vocabulary to find the required matches (this is because the context of the words does not affect the
search). Since the vocabulary is much smaller than the text, a sequential search on the vocabulary
is a valuable technique to deal with a restricted case of a very complex problem. Once all the words
that match in the vocabulary are identified, we retrieve the documents where any of them appears.

In some cases, an inverted index is used not on the words of the text but on g-grams of the text.
A g-gram is an arbitrary substring of length ¢g. When the text does not have a structure of words,
or when we do not want to use such structure, the text can be arbitrarily split in g-grams, which
act as words in the sense that we store all the different g-grams as the vocabulary and all their text
positions as the occurrences. As we see later, many alternative exists, but basically the ¢-grams
are taken at fixed intervals of length h (i.e. Th pyq—1,T2h. 2h+g—1,-..). The selected g-grams may or
may not overlap in the text. The values of ¢ and h are decisive in the size of the resulting index,
since the number of occurrences are O(n/h) and the vocabulary grows exponentially with g.

2.11 Suffix Arrays

Inverted files assume that the text can be seen as a sequence of words. This restricts somewhat
the kinds of queries that can be answered. Other queries such as phrases are expensive to solve.
Moreover, the concept of word does not exist in some applications such as genetic databases.

In this section we briefly describe the suffix arrays (also called “PAT arrays”) [MM90, GBY91].
Suffix arrays are a space-efficient implementation of suffix trees (see Section 2.7). This type of index
allows efficiently answering more complex queries. Its main drawbacks are its costly construction
process and that the text must be readily available at query time. This structure can be used to
index only words (without stopwords) as the inverted index as well as to index any text character.
In general, index points are set to the beginnings of the retrievable text positions (e.g. beginnings
of words). This makes the suffix array suitable to a wider spectrum of applications, such as genetic
databases. However, for word based applications, inverted files perform better unless complex
queries are an important issue.

This index sees the text as one long string. Each position in the text is considered as a text suffiz
(i.e. a string that goes from that text position to the end of the text). It is not difficult to see that
two suffixes starting at different position are lexicographically different (assume that a character
smaller than all the rest is placed at the end of the text). Each suffix is thus uniquely identified by
its position. Figure 2.12 exemplifies.

Suffix arrays provide essentially the same functionality as suffix trees at much less space require-
ments. If the leaves of the suffix tree are traversed in left-to-right order, all the suffixes of the text
are retrieved in lexicographical order. A suffix array is simply an array containing all the pointers
to the text suffixes listed in lexicographical order, as shown in Figure 2.13. Since they store one
pointer per indexed word, the space requirements are almost the same as those for inverted indices
(disregarding compression techniques), i.e. close to 40% overhead over the text size. A suffix tree
built on a text is 3 to 6 times larger.

While suffix trees are searched as tries, suffix arrays are binary searched. However, almost every
algorithm on suffix trees can be adapted to work on suffix arrays at an O(logn) penalty factor in the
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This is a text. A text has nany words. W rds are made from letters.

I O R N A

text. A text has nmany words. Wrds are nmade fromletters.

text has many words. Words are made fromletters.

many words. Words are nade fromletters.

words. Wrds are made fromletters.

Words are nade fromletters. Suffixes
made fromletters.

fromletters.

| etters.

Figure 2.12: The sample text with the index points of interest marked. Below, the suffixes corre-
sponding to those index points.

1 6 9 11 17 19 24 28 33 40 46 50 55 60

This is a text. A text has many words. Wrds are nmade from letters.

Text

| 5560 | 50 [ 28 | 19 | 11 [ 40 [ 33 | suffix Array

Figure 2.13: The suffix array for the sample text.
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time cost. This is because each edge traversal in the suffix tree can be simulated with two binary
searches on the suffix array (each subtree of the suffix tree corresponds to an interval in the suffix
array). Each time an edge of the suffix trie is followed, we use binary search to find the new limits
in the suffix array.
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Chapter 3

Related Work and Our Contributions

In this chapter we cover all the previous work of interest we could trace on approximate string
matching, and place our contribution in its context. We have preferred to present this work as
a historical tour, so that we do not only explain the work done but also show how has it been
developed. We divide the presentation according to the parts of this thesis.

In the discussion that follows, keep in mind that there may be a long gap between the time where
a result is discovered and when it gets finally published in its definitive form. Some apparent
inconsistencies can be explained in this form (e.g. algorithms which are “finally” analyzed before
they appear). We did our best in the bibliography to trace the earliest version of the works, although
the full reference is generally for the final version.

At the beginning of each section we give a taxonomy to help guide the tour. The taxonomy is an
acyclic graph where the nodes are the algorithms and the edges mean that the lower work can be seen
as an evolution of the upper work (although sometimes the developments are in fact independent).

3.1 On-line Searching

As explained in the Introduction, on-line searching is the oldest area in the field of approximate
string matching. It means that, by some reason, we do not have any data structure built on the
text to speed up the search. Since building such data structures (called “indices”) is normally more
costly than searching the pattern, it is better to proceed with no index at all. Other (partial)
surveys on this matter can be found in [HD80, AG85, GG88, JTU96].

We have covered in Section 2.2 the first and classical solution, which was discovered many times and
is based on dynamic programming. The solution to compute the edit distance between two strings
is attributable to [NW70, San72, WFT74] and others. The first one in converting it into a search
algorithm to find a pattern in a text allowing errors was Sellers [Sel80]. As said, this solution is
unbeaten in flexibility, but its time requirements are indeed high. A number of improved solutions
have been proposed along the years. Some of them work only for the edit distance, while others can
still be adapted to other distance functions.

We can divide the work after 1980 in four quite independent areas:

e Algorithms that take advantage of the specific properties of the dynamic programming matrix.
This is the oldest area, which inherits directly from the earliest work. Most of the theoretical
breakthroughs in the worst case algorithms belong to this category, although only a few of
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them are really competitive in practice for text searching. The latest practical work in this
area dates back to 1992, although there are recent theoretical improvements. The major
achievements are O(kn) worst-case algorithms and O(kn/\/0) average-case algorithms, as
well as other (non-practical) improvements on the worst-case.

e Algorithms based on deterministic automata. This area is rather old but it has not been
active again until very recently. It is interesting because it gives the best worst-case algorithm
(O(n), which is the worst-case lower bound of the problem). However, there is a time and
space exponential dependence on m and k that limits its practicality.

e Algorithms that filter the text, quickly discarding text areas which cannot match. This is
a new branch of the problem which started after 1990 and continues to be very active. It
addresses only the average case. Its major interest is the potential for algorithms that do not
inspect all characters. The major theoretical achievement is an algorithm with average cost
O((k + log, m)/m n), which has been proven optimal. In practice, the filter algorithms are
the fastest ones too. All of them, however, are limited in their applicability by the error level
a. Moreover, they need a non-filter algorithm to check the potential matches.

e Algorithms based on exploiting the parallelism of the computer when it works on bits. This
is also a new (after 1990) and very active area. The basic idea is to “parallelize” another
algorithm using bits. The results are interesting from the practical point of view, and are
especially significative when short patterns are involved (typical in text retrieval). They may
work effectively for any error level.

In this thesis we have made improvements in all the four areas, especially in the last two (see
Figure 3.1). We cover now each area separately. Our comments about the practical performance of
the algorithms are based on [JTU96, CL92, Wri94] and in many cases on our own experiments.

Worst case

Based on DP matrix

Average case (analysis)

Automaton

For moderate patterns

Filters

For very long patterns

Based on automata

Bit-parallelism

Based on DP matrix

Figure 3.1: Taxonomy of the types of solutions for on-line searching. The areas where we made
contributions are in boldface.
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3.1.1 Taking Advantage of the Dynamic Programming Matrix

[See Figure 3.2]

3.1.1.1 Improving the Worst Case

It is interesting that one of the few worst-case theoretical results on this area is as old as the Sellers
[Sel80] algorithm itself. In 1980, Masek and Paterson [MP80] found an algorithm whose worst case

is
0 (mn lg)g cr)
log“n

which is the only improvement known over the O(mn) classical complexity if £ = ©(m) (although
the automaton approach is linear in the text size, it is exponential in m and k, while this result is
not). The algorithm is based on the Four-Russians technique [ADKF75]. Basically, it first builds
a table of solutions of all the possible problems (i.e. portions of the matrix) of size r (for small
), and then uses the table to solve the original problem in blocks of size r. To achieve the stated

result, ©(n) extra space is necessary. The algorithm is only of theoretical interest, since as the same
authors estimate, it will not beat the classical algorithm for texts below 40 Gb.

In 1983, an article of Ukkonen opened new fruitful areas of development [Ukk85a]. It presented an
algorithm able to compute the edit distance between two strings z and y in O(ed(z,y)?) time, or
to check in time O(k?) whether that distance was < k or not. This is the first member of what has
been called “diagonal transition algorithms”, since it is based in the fact that the diagonals (running
from the upper-left to the lower-right cells) of the dynamic programming matrix are monotonically
increasing (i.e. Ciy1,j+1 € {Ci;,C;; + 1}). The algorithm is based on computing in constant time
the positions where the values along the diagonals are incremented. Only O(k?) such positions are
computed to reach the lower-right decisive cell.

The history of the O(kn) worst-case algorithm is interesting because the results went backwards in
many cases. In 1985 and 1986, Landau and Vishkin found the first worst-case time improvements.
All of them and the thread that followed were diagonal transition algorithms. In [LV88] they show
an algorithm which is O(k?n) time and O(m) space, and in [LV89] they obtain O(kn) time and
O(n) space.

The main idea of Landau and Vishkin was to adapt to text searching the Ukkonen’s diagonal
transition algorithm for edit distance [Ukk85a]. Basically, if one thinks on the dynamic programming
matrix, it was to be computed diagonal-wise instead of column-wise. They wanted to compute in
constant time the next point where the values along a diagonal were to be incremented. This data,
called after “matching statistics”, are equivalent to knowing which is the longest substring of the
pattern that matches the text at some point.

Since a text position was to be reported when row m was reached before incrementing more than
k times the values along the diagonal, this gave immediately the O(kn) algorithm. This was done
using a suffix tree on the pattern and the text (since they wanted to know the next position where
pattern and text were going to differ). This suffix tree was the cause of the huge O(n) extra space,
and the O(1) algorithm to find the next diagonal position was slow in practice.

In 1986, Myers found also an algorithm with O(kn) worst-case behavior [Mye86al. It needed only
O(k?) extra space. However, the reference is a technical report and never went to press (it has been
recently included in a larger work [LMS98]).

In 1988, Galil and Giancarlo [GG88] obtained the same time complexity with O(m) space. Basically,
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Practical

Theoretical

[Sel80]

First O(mn) search algorithm

[Ukk85b, Mye86b)

O(kn) expected time

Analysisin [CL92]
improved in [ours 96]

Figure 3.2: Taxonomy of on-line algorithms that take advantage of the dynamic programming

matrix.

[MP80]

Theoretical
O(nmlogo/log? n)

[NW70, WF74, San72]

O(m?) edit distance

[Ukk85a]

O(k?) edit distance

[Mye86a] [LV89] [LV88g]
O(kn) time O(kn) time O(k?%n) time
O(k?) space O(n) space O(m) space
[GP90] [GP90] [UW93] [GGsg)
O(kn) O(kn) time O(kn) time O(kn) time
expected time | O(m?) space O(m?) space O(m) space
[CL92] [CL92] [SV97]
1
O(kn//7) Improves [LV89] nk¢(alog* n)log3
expected (empirical) at O(m) space time
[CH98]
Text Searching
O(n(1+k/m))
time
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the suffix tree of the text is built by pieces of size O(m). The algorithm scans the text four times,
being even slower than [LV89]. Therefore, the result was of theoretical interest.

One year later, in 1989, Galil and Park [GP90] obtained O(kn) worst-case time and O(m?) space
(worse in theory than in 1988). This time the idea was to build the matching statistics of the pattern
against itself (longest match beginning at i versus beginning at j, hence the O(m?) complexity),
resembling in some sense the basic ideas of [KMP77]. This algorithm is also slow in practice.

A closely related idea with similar time and space complexity (and similarly slow in practice) was
independently discovered by Ukkonen and Wood in 1990 [UW93]. They use a suffix automaton
(described in Section 2.8) on the pattern to find the matching statistics, instead of the table.

Finally, in 1992, Chang and Lampe [CL92] improved the algorithm [LV89] to be O(kn) time and
O(m) space, this time with better practical performance. This was obtained by using new auxiliary
algorithms that appeared in the while. It is said in [CL92] that this modification is the fastest
algorithm in practice among those of O(kn) guaranteed performance. However, the algorithm is
still not competitive in practice.

In 1997, Sahinalp and Vishkin [SV97] found an O(nk¢(alog* n)'/!°83) worst-case time algorithm,
which is of theoretical interest if k = O(m¢) for small e. The constant c is 3 when the pattern has
not repeated letters and 8 otherwise. It is based on [LV89], where the set of diagonals to compute is
sparsified. This has been recently improved and simplified [CH98] to O(n(1 + k°/m)), where ¢ = 3
if the pattern is “mostly aperiodic” and ¢ = 4 otherwise (the definition of “mostly aperiodic” is
rather technical, and is related to the number of self-repetition that occurs in the pattern). The
interest in this development is theoretical.

3.1.1.2 Improving the Average Case

The first improvement to the average case is due to Ukkonen in 1985. The algorithm, a short note
at the end of [Ukk85b], improved the dynamic programming algorithm to O(kn) on average. This
algorithm has been called later the “cut-off heuristic”. The main idea is that, since a pattern does
not normally match in the text, the values at each column (looking them from top to bottom)
quickly reach k 4+ 1 (i.e. mismatch), and that once a cell has a value larger than k 4 1, the result
of the search does not depend on its exact value. A cell is called active if its value is at most k.
The algorithm simply keeps count of which is the last active cell and avoids working on the rest
of the cells. Ukkonen conjectured that this algorithm was O(kn) on average, but this was proven
only in 1992 by Chang and Lampe [CL92]. As part of this thesis [BYN96b, BYN98d] we find
an accurate bound for the probability of matching with errors and use this bound to improve the
constant found by Chang and Lampe. It is interesting to notice that, independently of Ukkonen,
Myers found almost the same result at about the same time [Mye86b].

An algorithm in [GP90] was based on diagonal transitions but it found the next increment in the
diagonal by brute force instead of a guaranteed constant time. This gave an algorithm which was
in practice faster than those of guaranteed performance. Myers showed in [Mye86a] that this was
O(kn) on average. This algorithm is in fact a variant of [Ukk85b].

The main result of Chang and Lampe [CL92] is a new algorithm based on exploiting a different
property of the dynamic programming matrix. They consider again the fact that, along each column,
the numbers are normally increasing. They work on “runs” of consecutive increasing cells (a run
ends when C;;1 # C; + 1). They manage to work O(1) per run in the column updating process.
Based on empirical observations, they conjecture that the average length of the runs is O(1/0). Since
they use the cut-off heuristic of Ukkonen, their average search time is argued to be O(kn//c). This
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is, in practice, the fastest algorithm of this class.

There are other algorithms that use properties of the dynamic programming matrix, but they are
described in other sections according to their core idea. Hence, the best exponents of this class are

e The O(mnloga/log? n) algorithm of [MP80], for its theoretically low complexity when k =

O(m).

e The O(n(1+ k°/m)) algorithm of [CH98], for its theoretical low complexity when k = O(m°).

e The O(kn) time and O(m) space variation of [LV89] as improved by [CL92], for its good
theoretical complexity. For small k, the algorithm of [Mye86a] could use less space, O(k?).

e The O(kn/+/o) expected time algorithm of [CL92], for its good practical behavior.

e The O(kn) average time cut-off heuristic of Ukkonen [Ukk85b], for its simplicity to use as a

building block of other algorithms.

In our experimental comparisons we include only the cut-off heuristic of [Ukk85b] and the new
algorithm of [CL92]. The others are not of practical interest for typical text searching applications.

3.1.2 Searching with a Deterministic Automaton

[Ukk85b]
Definition of DFA

min(3™,m(2ma)*) states

[MP80]

Four Russians technique

[Mel96]

Improved analysis

[Kur96] and [ours 97]

Lazy automaton

(k—I—Z)m_k (k+1)! states

replaces ¢ by min(o,m)

[WMMO96]

O(mn/logs) time
O(s) space

[See Figure 3.3]

Figure 3.3: Taxonomy of on-line algorithms based on deterministic automata.

Another thread which is also very old but has received less attention is based on reexpressing the
problem with the use of an automaton. In Section 2.4 we saw that there is a non-deterministic
automaton that solves this problem, so by converting this automaton to deterministic we have

immediately the O(n) worst-case time so hardly searched for.

In 1985, Ukkonen proposed the idea of such a deterministic automaton [Ukk85b]. However, an
automaton as we have shown in Figure 2.5 was not explicitly considered. Rather, each possible set
of values for the columns of the dynamic programming matrix was a state of the automaton. Once
the set of all possible columns and the transitions among them were built, the text was scanned
with the resulting automaton, performing exactly one transition per character read.
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The big problem with this scheme was that the automaton had a potentially huge number of states,
which had to be built and stored. To improve space usage, Ukkonen proved that all the elements
in the columns that were larger than k + 1 could be replaced by k 4 1 without affecting the output
of the search (the lemma was used in the same paper to design the cut-off heuristic described
in Section 3.1.1). This reduced the potential number of different columns. He also showed that
adjacent cells in a column differed in at most one. Hence, the column states could be defined as a
vector of m incremental values in the set {—1,0,1}.

All this made possible to obtain in [Ukk85b] a nontrivial bound to the number of states of the
automaton, namely
O(min(3™, m(2ma)*))

which, although much better than the obvious O((k + 1)™), was still very bad except for short
patterns or very low error levels. The resulting space complexity of the algorithm was m times the
above value. This exponential space complexity was to be added to the O(n) time complexity, as
the preprocessing time to build the automaton.

As a final comment, Ukkonen suggested that the columns could be only partially computed up
to, say, 3k/2 entries. Since he conjectured (and later was proved in [CL92]) that the columns of
interest were O(k) on average, this would normally not affect the algorithm, though it will reduce
the number of possible states. If at some point the states not computed were really needed, the
algorithm would compute them by dynamic programming.

It was not until 1992 that Wu, Manber and Myers looked again into this problem [WMM96]. The
idea was to trade some time for space using a Four Russians technique [ADKF75]. Since the columns
could be expressed using only values in {—1,0,1}, the columns were partitioned into blocks of »
cells (called “regions”) which took 2r bits each. Instead of precomputing the transitions from a
whole column to the next, the transitions from a region to the next region in the column were
precomputed. Since the regions were smaller than the columns, much less space was needed. The
total amount of work was O(m/r) per column in the worst case, and O(k/r) on average. The
space requirement was exponential in . By using O(n) extra space, the algorithm was O(kn/logn)
on average and O(mn/logn) in the worst case. Notice that this is in the same trend of [MP80],
although it is much more practical.

In 1996, Kurtz [Kur96] proposed another way to reduce the space requirements to at most O(mn).
It is an adaptation of [BYG94], who first proposed it for the Hamming distance (as we cover later).
The idea was to build the automaton in lazy form, i.e. build only the states and transitions actually
reached in the processing of the text. The automaton starts as just one initial state and the states
and transitions are built as needed. By doing this, all those transitions that Ukkonen considered
that were not necessary were not built in fact, without need to guess. The price was the extra
overhead of a lazy construction versus a direct construction, but the idea pays off. Kurtz also
proposed to have built only the initial part of the automaton (which should be the most commonly
traversed states) to save space.

In 1995, Melichar [Mel96] considered again the finite automaton, this time as the deterministic ver-
sion of our non-deterministic automaton of Figure 2.5 (he also described automata for the Hamming
distance, for transpositions, and others). By using properties of this automaton, he improved the
bound of [Ukk85b] to

O(min(3™, m(2mt)*, (k4 2)™ (& +1)!)

where t = min(m + 1,0). The space complexity and preprocessing time of the automaton is ¢
times the above formula. Melichar also conjectured that this automaton is bigger when there are
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periodicities in the pattern. It is rather common in text searching that periodic patterns are more
problematic, and fortunately periodic patterns are uncommon in typical text searching.

As part of this thesis [Nav97b], we improved the implementation of the lazy automaton and studied
its growth as a function of m, k and n (this last value makes sense for the lazy automaton only).
We studied replacement policies to be able to work with bounded memory. We also tested this
idea against the best known algorithms and found it competitive for short to medium patterns and
medium error levels (but it is not the fastest one nowadays, although in some parameter ranges it
was the fastest when we tried it).

Nowadays, the best exponents of this trend are [WMMO96] (which is a very practical and competitive
algorithm), and [Kur96, Nav97b] (since the optimized implementations are competitive when the
number of states is not too large). We test both algorithms in this thesis.

3.1.3 Filtering

[See Figure 3.4]

This is a much newer trend, currently very active. It is based on finding fast algorithms to discard
large areas of the text that cannot match, and apply another algorithm in the rest. As explained in
Section 2.5, a new factor plays its role here: the maximum error level up to where the filters leave
out enough text to be worthwhile.

Although some of the best existing algorithms belong to this class, it is important to recall that
these algorithms need another one to verify the matching positions. Therefore, it is still interesting
to pursue on other type of algorithms, since the best combination is possibly a marriage between a
filtering algorithm and an algorithm capable of verification.

We divide this area in two parts: moderate and very long patterns. Typical text searching deals
with the first part. The algorithms for the two areas are normally different, since more complex
filters are worthwhile only on longer patterns.

3.1.3.1 Moderate Patterns

This area started in 1990, where Tarhio and Ukkonen [TU93] published an algorithm that tried
to use Boyer-Moore-Horspool techniques [BM77, Hor80] to filter the text. The idea was that a
diagonal of the dynamic programming matrix must have k or less mismatches (increments) in order
to match. Notice that, inside a single diagonal, we can think only in terms of mismatches, since
insertions and deletions affect other diagonals. Thanks to insertions/deletions a diagonal may not
increase its value even in case of a mismatch, but it cannot reach k + 1 if there are not & or more
mismatches. Once it was determined that a given diagonal (i.e. text position) matched or not,
they moved to the next diagonal. However, some diagonals could be skipped if they did not match
in enough places with the current diagonal (recall that neighbor diagonals share characters). This
was solved in constant time by some preprocessing of the pattern. The algorithm is competitive in
practice for text searching.

In 1991, Jokinen, Tarhio and Ukkonen [JTU96] adapted a previous filter for the k-mismatches
problem [GL89]. The filter is based on the simple fact that inside any match with at most k errors
there must be at least m — k letters belonging to the pattern. The filter did not care about the order
of those letters. This is a simple version of [CL94] (see next section), with less filtering efficiency
but simpler implementation. They slid a window of variable size over the text. As part of this thesis
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Figure 3.4: Taxonomy of on-line filtering algorithms.




[Nav97a] we rediscovered the algorithm (observe that it did not appear in press until 1996), this
time with a simplified version of fixed-size window and with analytical bounds on the maximum
error level where it could be applicable (we also adapted the algorithm to multipattern search but
that is explained later). The resulting algorithm is competitive in practice for text searching.

In 1992, a very simple filter was proposed by Wu and Manber [WM92a] (among many other ideas
of that work). The basic idea is in fact very old [Riv76]: if a pattern is cut in k + 1 pieces, then
at least one of the pieces must appear unchanged in an approximate occurrence. This is evident,
since k errors cannot alter the k 4+ 1 pieces. The proposal was then to split the pattern, search
the pieces in parallel, and check the neighborhood of the exact matches of the pieces. Since they
were embedded in a framework of bit-parallel algorithms (see Section 2.6), they adapted one such
algorithm for this task, so that they searched the text at O(mn/w) time complexity and verified the
matches of the pieces. In the same year, Baeza-Yates and Perleberg [BYP96] suggested that better
algorithms could be used for the multipattern search: at least an Aho-Corasick machine [AC75] to
guarantee O(n) search time (excluding verifications), or even a Boyer-Moore algorithm adapted to
multipattern search, such as [CW79]. However, no more attention was paid to this idea until this
thesis.

In 1996, we resumed the work on this filter. First, we adapted to multipattern exact search a simple
variation of the Boyer-Moore-Sunday algorithm [Sun90] (an algorithm for exact string matching).
The adaptation uses a trie for the patterns and computes a pessimistic shift table among all the
patterns, and works well for a moderate number of them. Then, we implemented the filter using
the multipattern Sunday algorithm for the search task. We found that this algorithm was the
fastest known one when the error level was moderate (say, & < 1/4 on English text). These results
were published in [BYN96b, BYN96a] and the 1996 version of [BYP96] (which also contains and
independent analysis of the algorithm). We also analyzed this scheme and found that the filter
worked at least for o < 1/(3log, m) (which is similar to other limits in this area). Before that limit,
the algorithm can run in O(n) guaranteed search time, and our Sunday implementation can run at
O(an) time in the best case (which is optimal, see [CM94] in the next section). There is no closed
expression for the average case [BYR90].

In Section 3.1.4 we describe a new bit-parallel algorithm developed as part of this thesis, which is
based on the NFA described in Section 2.4. As the algorithm is limited to short patterns, many
techniques are developed to cope with longer patterns [BYN96b, BYN96a, BYN98d]. One of them
is a filter based in partitioning the pattern in subpatterns. It is shown that if a pattern is partitioned
in j pieces, the pieces can be searched with |k/j| errors. This is a generalization of the idea of
partitioning the pattern in k+ 1 pieces, and has been mentioned in an earlier work of Myers [Mye94]
in a totally different context (indexed searching, which is covered later). In this thesis we give the
definitive and most general form to this “partitioning lemma”. The idea is thus to partition the
pattern and the number of errors in as few pieces as possible so that the subpatterns can be searched
with the bit-parallel algorithm. We show that some of the pieces can be in fact “superimposed”
[BYN98d] to reduce the number of pieces to search (the superimposition is based on allowing many
letters to match the horizontal edges of the automaton). We also develop a hierarchical verification
technique that abandons false alarms as quickly as possible [NBY98b]. This allows using our filter
for & < 1 —e/+/o (in practice the e can be replaced by 1). It is important to notice that this filter
is not sublinear, but O(n) search time in the best case (it really cannot skip characters). However,
O(n) average search time is also very appealing, especially for not so low error levels.

Apart from the theoretical filter of [CM94] (see next section on filters for long patterns), this is
the first filter that reduces the problem to less errors instead of to zero errors. An interesting
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observation is that it seems that all filters that partition the problem into exact search can be
applied for a = O(1/log, m), and that in order to improve that bound we must partition the
problem into (smaller) approximate searching subproblems. On the other hand, we present strong
evidence in this thesis to show that the limit @« = 1 —1/4/0 is an absolute barrier for every filtration
algorithm, since there are simply too many real matches, and even the best filter must check real
matches.

We also apply the hierarchical verification technique to the simple scheme that partitions the pattern
in k+1 pieces [NBY98d]. With this technique, the applicability of the filter is increased, being even
a < 1/2 for ¢ = 32 (an asymptotical bound of a < 1/log, m is proved). This covers almost all
the cases of interest in text searching. It is important to observe that our filter degrades (slowly)
as the pattern length grows, unlike other filters. This makes it especially suitable for typical text
searching, where the more complex filters are not competitive.

In 1998 we adapted the work of [NR98a] (which is not part of this thesis and is briefly described
in Section 2.8). In this algorithm an automaton that recognizes a pattern (with no errors) is
transformed so that it recognizes any suffix of the pattern and is simulated with bit-parallelism. The
modification is to add a new state with e-transitions to all the other states. This automaton is used
as part of an algorithm for exact string matching. In [NR98b] we take our bit-parallel automaton of
[BYNO96b] and modify it to recognize any suffix of the pattern allowing errors. A slight modification
of the exact matching algorithm serves as a filter to search allowing errors without inspecting all
the text characters. The result is competitive for very low error levels, and it is the fastest in some
cases, such as for DNA on intermediate pattern lengths and a few errors.

3.1.3.2 Very Long Patterns

In 1990, Chang and Lawler [CL94] presented two algorithms. A first one is O(kn) in the worst case
(it uses [LV89] as its verifying algorithm), but O(n) on average provided a < 1/(log, m + O(1)).
The constants are involved, but practical figures are a < 0.35 for ¢ = 64 or a < 0.15 for ¢ = 4, The
idea is to build a suffix tree on the pattern and use it to derive the matching statistics in constant
time (i.e. longest pattern substring matching T; ). Given a text position, they repeat k times
the process of concatenating the longest possible pattern substrings matching the text. If after
performing those k errors they did not cover m — k text characters, a match is not possible. Notice
that they do not force that the substrings of the pattern matched were ordered in the pattern.

A sublinear! expected time algorithm was possible when k = o(m/logm), by splitting the text in
fixed blocks of size (m —k)/2 and starting the verifications only at block boundaries. This is because
any match had to contain some block completely. Despite their good complexity, the algorithms
are useful only for long patterns, which are rare in text searching.

In 1992, Ukkonen [Ukk92] independently rediscovered some of the ideas of Chang and Lampe. He
presented two filtering algorithms, one of which (based on what he called “maximal matches”) is
similar to the linear expected time algorithm of [CL94]. However, in the same paper he makes the
first reference to “g-grams” for on-line searching (we will see older references in indexed searching).
A g-gram is a substring of length ¢ (see also Section 2.10). A filter was proposed based on counting
the number of ¢-grams shared between the pattern and a text window (considering repetitions). A
pattern of length m has (m — ¢ 4+ 1) g-grams (they overlap). The number of repetitions of each
g-gram had to be close in the pattern and the text window for a match to be possible. Notice that
this is a generalization of the simple counting filter of [JTU96] (which corresponds to ¢ = 1).

'Refer to Section 2.5 for the concept of sublinearity.
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In 1994, Takaoka [Tak94] presented a simplification of [CL94]. He considered h-samples of the text
(which are non-overlapping g-grams of the text taken each h characters, for A > ¢. The idea was
that if one h-sample was found in the pattern, then a neighborhood of the area was verified. This is
true for h=|(m — k — ¢+ 1)/(k+1)|. The average complexity of the search is O(knlog,(m)/m),
which is sublinear for k& small enough.

Sutinen and Tarhio generalized the Takaoka filter in 1995 [ST95], improving its filtering efficiency.
This is the first filter that takes into account the relative positions of the pattern pieces that match
in the text (all the previous matched pieces of the pattern in any order). The generalization is to
force that s g-grams of the pattern match (not just one). The pieces must conserve their relative
ordering in the pattern and must not be more than k characters away from their correct position.
In this case, the sampling step is reduced to h = [(m — k — ¢+ 1)/(k+ s)|. The pattern is pruned
at (k+ 2)h characters and k+ 2 sets of h 4 2k ¢-grams are extracted (by symmetrically overlapping
with previous and next areas). Those sets are called @Q;. All the contiguous sequences of k + 2
text h-samples are considered. If at least s of the k + 2 text samples are found in their respective
Q; set of pattern ¢-grams, the area is verified. This reduces the problem to counting mismatches,
and Sutinen and Tarhio use the algorithm [BYG92] for this matter. The resulting algorithm is
O(k?nlog,(m)/(mw)) on average, for ¢ = O(log, n). The algorithm works well for long patterns,
although with s = 2 can be reasonably applied to typical text searching.

It looks like O (knlog, (m)/m) is the best complexity achievable by using filters, and that it will work
only for k = O(m/logm), but in 1994 Chang and Marr obtained at the same time an algorithm

which was
(k + log, m )
O|——n

m

for k < p,m, where p, depends only on ¢ and for very large o it tends to 1 — e/y/0. At the same
time, they proved that this was a lower bound for the average complexity of the problem (and
therefore their algorithm was optimal on average). This is a major theoretical breakthrough.

The lower bound is obtained by taking the maximum (or sum) of two simple facts: the first one is
the O(nlog,(m)/m) bound of [Yao79] for exact string matching, and the second one is the obvious
fact that in order to discard a block of m text characters, at least k should be examined to find the
k errors (and hence O(kn/m) is a lower bound). It is more impressive that an algorithm with such
complexity was found.

The algorithm is a variation of the sublinear one of [CL94]. It is of polynomial space in m, i.e. O(m?)
space for some constant ¢ which depends on o. It is based on splitting the text in many substrings
of size £ = tlog, m. Instead of searching the longest exact matches of the pattern in the beginning
of blocks of size (m — k)/2, it searches the text substrings of length £ in the pattern, allowing errors.
The longest matches allowing errors inside P are precomputed for every ¢-tuple (hence the O(m?)
space). Though very interesting theoretically, the algorithm is not practical except for very long
patterns.

It is interesting to notice that the limit £ < m(1 — e/+/0) appears in our work too, as a firm limit
of any filtering mechanism. Chang and Lawler proved an asymptotic result, while in this thesis we
prove a better bound. As they used this analysis to prove that the cut-off heuristic of [Ukk85b] was
O(kn) on average, this explains that we could find a better constant redoing the same analysis and
using our own bounds.

In 1996 Shi [Shi96] proposed to extend the idea of the k+1 pieces (explained in the previous section
on short patterns) to k+s pieces, so that at least s pieces must match. He compared his filter against
the simple one, finding that the filtering efficiency was improved. However, this improvement will
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be noticeable only for long patterns. Moreover, the on-line searching efficiency is degraded because
the pieces are shorter (which affects any Boyer-Moore-like search), and because the verification logic
is more complex. However, the scheme can be more interesting for indexed searching (which was
the context in which Shi presented the paper), and we review it in that context later.

Also in 1996, a general method to improve filters was developed [GKHO97]. The idea is to mix the
phases of filtering and checking, so that the verification of a text area is abandoned as soon as the
combined information from the filter (number of guaranteed differences left) and the verification
in progress (number of actual differences seen) shows that a match is not possible. As they show,
however, the improvement occurs in a very narrow area of a. This is a general phenomenon of the
statistics of this problem that we are going to analyze in detail in this thesis. They also tune the

analysis of [CL94].

The best filter for typical text searching is nowadays our optimized version of the k + 1 pieces filter
[NBY98d]. Other competitive filters are [TU93, ST95, JTU96]. All these filters are included in
our empirical comparisons. On the other hand, we are not covering in this thesis the area of long
patterns (typical in computational biology), where most of the mentioned filters do not work well,
and other are better [CM94, CL94, Ukk92, ST95]. A major theoretical achievement of this area is
the filter [CM94], which is proven to be optimal on the average.

3.1.4 Bit-Parallel Algorithms

[See Figure 3.5]

Parallelize automaton Parallelize matrix

[BYs9)]

Birth of bit-parallelism

[WM92a]

Bit-parallel NFA .
O(k[m/w]n) time [Wrio4]

Parallelized DP matrix
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[ours 96-98]

NFA parallelized by diagonals

O([km/w]n) worst-case [Mye98]
O(n)and O(,/ mk n) average . .
wo Optimal parall. DP matrix
O(mn/w) worst-case
O(kn/w) on average

Figure 3.5: Taxonomy of on-line bit-parallel algorithms.

Bit-parallelism [BY91] was born in the PhD. Thesis of Baeza-Yates [BY89]. As explained in Sec-
tion 2.6, the idea is to simulate parallelism using the bits of the computer word (whose number of
bits we denote by w). A simple algorithm is chosen, its work is parallelized, and its complexity is
reduced (ideally by a factor of w). Hence, in this section we find elements which strictly could belong
to other sections, since we parallelize other algorithms. There are two main trends: parallelize the
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work of the non-deterministic automaton that solves the problem (Figure 2.5), and parallelize the
work of the dynamic programming matrix.

3.1.4.1 Parallelizing Non-deterministic Automata

The first bit-parallel algorithm was the exact string matching algorithm Shift-Or, which parallelizes
a non-deterministic automaton. Despite that the algorithm is not competitive against the fastest
ones, it has been the basis for a lot of development that followed it, especially because of its ability
to handle some extended patterns. The Shift-Or algorithm was published in [BY89, BYG92], where
it was extended to handle classes of characters, multiple patterns, and mismatches.

In 1992, Wu and Manber [WM92a] published a number of ideas that had a great impact in the
future of text searching. They first extended the Shift-Or algorithm to handle wild cards (i.e.
allow an arbitrary number of characters between two given positions in the pattern), and regular
expressions (which in fact can be considered the most flexible extended pattern). What is of more
interest to us is that they presented a simple scheme to combine any of the preceding extensions to
approximate string matching. The idea is to simulate using bit-parallelism the NFA of Figure 2.5,
so that each row of the automaton fits in a computer word (each state is represented by a bit). The
row ¢ represents having matched the pattern with ¢ errors. For each new text character, all the
transitions of the automaton are simulated using bit operations among the k + 1 computer words.
Notice that all the k£ + 1 computer words have the same structure (i.e. the same bit is aligned
to the same text position). The cost of this simulation is O(k[m/w]n) in the worst and average
case, which is O(kn) for patterns typical in text searching (i.e. m < w). This is a perfect speedup
over the serial simulation of the automaton, which would cost O(mkn) time. Notice that for short
patterns, this is competitive to the best worst-case algorithms.

Thanks to the simplicity of the construction, the rows of the pattern can be changed by a different
automaton. As long as they are able to solve a problem for exact string matching, they make k& + 1
copies of the resulting computer word, perform the same operations in the k + 1 words (plus the
arrows that connect the words) and they have an algorithm to find the same pattern allowing errors.
Hence, they are able to perform approximate string matching with sets of characters, wild cards,
and regular expressions. They also allow some extensions typical of approximate searching: a part
of the pattern can be searched with errors and another may be forced to match exactly, and different
costs of the edit operations can be accommodated (including not allowing some of them). Finally,
they are able to search a set of patterns at the same time, but this capability is very limited (since
all the patterns must fit in a computer word).

The great flexibility obtained encouraged the authors to build a software called Agrep [WM92b],
where all these capabilities are implemented (although some particular cases are solved in a different
manner). This software has been taken as a reference in all the subsequent research.

In 1996, as part of this thesis, we presented a new bit-parallel algorithm able to parallelize the
computation of the automaton even more [BYN96b, BYN96a, BYN98d]. The classical dynamic
programming algorithm can be thought of a column-wise “parallelization” of the automaton [BY96],
and Wu and Manber [WM92a] proposed a row-wise parallelization. Neither algorithm was able to
increase the parallelism because of the e-transitions of the automaton, which caused what we call
zero-time dependencies. That is, the current values of two rows or two columns depend on each
other, and hence cannot be computed in parallel. We were able to find the bit-parallel formula for a
diagonal parallelization. That is, we packed the states of the automaton along diagonals instead of
rows or columns (notice that this is totally different from the diagonals of the dynamic programming
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matrix). This idea was mentioned in [BY91] but no bit-parallel formula was found. The resulting
algorithm is O([km/w]|n) worst case time, whose improvement over [WM92a) is especially noticeable
for short patterns (where our algorithm is O(n)). This algorithm is the fastest known algorithm
for short patterns, except for low error levels where our filtration algorithm [NBY98d] is faster.
Moreover, many of the extended patterns shown in [WM92a] can also be searched in this scheme.

We proposed many techniques to handle longer patterns. The simplest one is to partition the
automaton in many computer words. For moderate error levels, not all the words have to be updated
for each text character. This is thanks to the Ukkonen cut-off technique, which shows that the first
(left to right) O(k) diagonals of the automaton have active states, on average. Other partitioning
and automata superimposition techniques have been already explained as filtering approaches. In
1998 [NBY98b] we developed improved techniques of register usage and improved verifiers for the
filters, as well as an optimal algorithm to combine all the possible partitioning techniques. A
complete theoretical analysis and experiments were performed, showing that on average the resulting
algorithm was O(n) for low error levels, O(y/mk/(wo) n) for moderate error levels, and O(k(m —
k)n/w) otherwise. The result is that the algorithm is not only the fastest one for very short
patterns, but also for patterns of any length provided the error level keeps moderate. The only
faster algorithm is also part of this thesis (the (k 4 1)-pieces filter of [NBY98d]), and improves this
one for moderate error levels and not very long patterns. However, other filters could improve our
algorithm for very long patterns, although this is outside the scope of typical text searching.

3.1.4.2 Parallelizing the Dynamic Programming Matrix

In 1994, Wright [Wri94] presented a first work using bit-parallelism on the dynamic programming
matrix. The idea was to consider secondary diagonals (i.e. those that run from the upper-right to
the bottom-left) of the matrix. He used some properties of the matrix to find that the cells could
be represented with two bits (for the values {—1,0,1}), and managed to represent the process using
three contiguous diagonals and to partially parallelize the computation. The parallelization works
by performing in parallel a number of comparisons of the pattern versus the text, and then using
the vector of the results of the comparisons to update many cells of the diagonal in parallel. Since
he has to store characters of the alphabet in the bits, his algorithm is O(nmlog(c)/w) in the worst
and average case. This was competitive for very small alphabets (e.g. DNA).

In 1998 (after our algorithm [BYN96b] was published), Myers [Mye98] found a better way to par-
allelize the computation of the dynamic programming matrix. Myers was also able to represent the
differences along columns instead of the columns themselves, so that two bits per cell were enough
(in fact this algorithm can be seen as the bit-parallel implementation of the automaton which is
made deterministic in [WMMO6], see Section 3.1.2). The parallelization has optimal speedup, and
the time complexity is O(kn/w) on average and O(mn/w) in the worst case. A problem which
was very similar to that of breaking the e-dependences was solved (and the solution formula has an
interesting resemblance to ours, despite the models being very different). The result is an algorithm
that uses better the bits of the computer word. The formula is a little more complex than that
of [BYNO96b] and hence the algorithm is a little slower, but it is can accommodate longer patterns
using less computer words, improving all the other algorithms (including ours) for high error levels
and not very long patterns. As it is difficult to improve over O(kn) algorithms, this algorithm may
be the last word with respect to asymptotic efficiency of parallelization. As it is now common to
expect in bit-parallel algorithms, this scheme is able to search some extended patterns as well.

At the present time, most of the bit-parallel algorithms are worthwhile in practice. [WM92a] is
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unbeaten in flexibility (although it is the less efficient scheme nowadays). [Wri94] is efficient in
small alphabets (we know no other algorithm that improves as o decreases), but it is not the fastest
nowadays (it is slower than [Mye98] even on a binary alphabet). Our algorithms and [Mye98] are
the fastest in different areas. We consider all these algorithms in our experiments.

3.2 Variants on the On-line Problem

As explained in the Introduction, there are a lot of variants of the basic problem. We can classify
them in three groups: variants on the kind of pattern to search, variants on the text form, and
variants of the distance function. We explain briefly these alternatives (which can, in principle, be
combined).

Varying the type of pattern: instead of being just a sequence of characters, the pattern could
be a more general expression, for instance a regular expression. These are called “extended
patterns”. Another interesting variant is when the pattern is in fact a set of strings and we
want to find all their occurrences.

Varying the type of text: a second alternative is to consider that the text could be generalized.
A first generalization is to consider classes of characters in the text (this has applications, for
instance, to computational biology). Computational biology is also interested in approximate
structure matching (e.g. finding molecules whose spatial distribution is close to a query).
Other interesting extensions is to consider a multidimensional text (and pattern), which has
applications to image processing and computer vision; a non-linear text (hypertext); a com-
pressed text; and many others.

Varying the distance function: as we have selected the Levenshtein or edit distance as our
main focus (since we are mainly interested in text searching), all the other distances such as
Hamming, longest common subsequence, episodes, reversals and others used in computational
biology, etc. are considered “variants”. As explained in the Introduction, the problem becomes
very different when the distance function is modified, and therefore it is difficult to develop
general algorithms. We introduced some of the most interesting (to us) distance functions in
Section 2.1, but the spectrum is very broad and is out of the scope of this work.

We do not address in general any variant of the classical problem in this thesis. However, some
exceptions will be made. First, many of our algorithms are able to handle extended patterns
and some restricted alternatives of distance functions (related to assigning different costs to the edit
operations), and we mention throughout the thesis when this is the case. Second, we will devote one
chapter to on-line multipattern searching, since we believe that, together with extended patterns,
this is one of the most important and practical variants on the classical problem.

We present now a historical background on the variants which are considered in this thesis.

3.2.1 Extended Patterns and Different Costs

A possible extension of the search pattern is what is called “classes of characters” [BY89] (as well as
“limited expressions” in [WMMO96]), see Section 2.6. The idea is that the pattern does not belong
to X* but it belongs to P(X)*. That is, each pattern position is a set of characters. Such pattern
P = py. ., matches T;11 j4m if Tiy; € pj for all j € 1..m. In a more colloquial style, a number of
interesting cases follow:
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e range of characters (e.g. t[a-z]xt, where [a-z] means any letter between a and z);
e arbitrary sets of characters (e.g. t[aeilxt meaning the words taxt, text and tixt);

e complements (e.g. t[~ab]xt, where ~ab means any single character except a or b; t [~a-d]xt,
where ~a-d means any single character except a, b, ¢ or d);

e arbitrary characters (e.g. t-xt means any character as the second character of the word);

e case insensitive patterns (e.g. Text and text are considered as the same words).

There is some theoretical work on searching allowing errors and classes of characters and other
extensions, e.g. [FP74, Abr87]. However, those works are of theoretical interest mainly.

The real practical breakthrough occurred with the birth of bit-parallelism [BYG92]. A good point
of almost all bit-parallel algorithms is that they can handle classes of characters at virtually zero
extra cost. In Section 2.6 we explain how to do it for exact searching in the Shift-Or algorithm,
just by changing the preprocessing step and using the same algorithm. The adaptation is exactly
the same in all cases.

In their 1992 paper [WM92a], Wu and Manber showed that the bit-parallel approach could be
extended to allow errors and at the same time to support a number of extended patterns (as we
have seen in Section 3.1.4). Those extensions included not only classes of characters, but also
arbitrary number of wild cards (z#y matches zzy for any string z) and combining parts of the
pattern that are to be matched exactly and others that are allowed to have errors. As we will see
in this thesis, our faster versions of this algorithm support most of these options.

The most general pattern supported by the approach of [WM92a] is the regular expression, which
can be searched allowing errors. There are other previous works able to solve the same problem,
such as [WS78, MM89, WMMO95], but according to [WM92a] they are much slower on typical text
retrieval queries.

Finally, [WM92a] also shows how to assign different costs to the different edit operations (insertion,
deletion, substitution), as well as how to forbid some operation.

There is no specific chapter for these issues in the thesis. Rather, when we present our on-line
algorithms we point out how can they handle more general patterns or different costs in the distance
function.

Some of the theoretical works mentioned here can handle classes of characters in the text as well, and
in general all bit-parallel algorithms can manage to allow classes of characters in the text. If a text
special character C is defined as a subset of the alphabet, then the table of the special character is
the bitwise-or of the tables of all the characters in C' (the “or” here assumes that 1 means matching,
otherwise it is “and”). Hence this is a text variant generally supported with bit-parallelism.

3.2.2 Multiple Patterns

[See Figure 3.6]

Another different kind of “extension” to the pattern is to consider multipattern matching. A set
of patterns is given and we are required to find all their occurrences in the text. This problem has
many applications, for instance

e Spelling: instead of searching incorrect words in the dictionary to find the most likely variants,
we may search the dictionary in the text, hopefully at much less cost.
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[BY89, WM92a]

Bit-parallel packing
(very limited)

[ours 97]

[MM96] Bit-parallel superimposition
or splitting in k41 pieces

O(mn), only 1 error or bit-parallel counting

thousands of patterns Best for up to 100 patterns

Figure 3.6: Taxonomy of algorithms that search multiple patterns allowing errors.

e Information retrieval: when synonym or thesaurus expansion is done on a keyword and the
text is error-prone, we may want to search all the variants allowing errors.

e Batched queries: if a system receives a number of queries to process, it may improve efficiency
by searching all them in a single pass.

e Single-pattern queries: some algorithms for a single pattern allowing errors (e.g. pattern
partitioning, see Section 5.5) reduce the problem to the search of many subpatterns allowing
less errors, and they benefit from multipattern search algorithms.

The number r of patterns may range from a few ones (in applications of synonym or thesaurus
expansion) to thousands (in spelling applications). Of course the goal is to be more efficient than »
sequential searches.

The algorithm of Wu and Manber [WM92a] is able to search many patterns in parallel allowing
errors. However, this capability is extremely limited since all the patterns must fit in a computer
word, i.e. rm < w. If there are more patterns, many separate searches have to be performed. The
possible speedup is limited by |w/m], i.e. the search cannot be parallelized at all if m > w/2.

In 1996, Muth and Manber [MM96] presented an algorithm able to search thousands of patterns in
parallel with essentially no degradation in the search cost, which is O(mn). However, the technique
is limited to & = 1. The idea is based on the fact that we can allow just one deletion in the
pattern and/or in the text and the result is the same. A hash table stores all the alternatives of
eliminating one letter from all patterns, and the text is traversed doing the same and searching the
(m — 1)-length substrings in the hash table.

As part of this thesis, we presented two new algorithms for multipattern approximate searching in
1997 [BYNO7b]. The first algorithm is based on our bit-parallel algorithm (Section 3.1.4). Since we
can put more than one letter in the arrows of the automaton (thanks to the mechanism of classes of
characters), we “superimpose” many automata and perform a single search with the superimposed
automaton. The search works as a filter, since by superimposing "this" and "wait" we can match
"wais" with zero errors. We present a different hierarchical verification technique which works on
the number of patterns superimposed rather than on the pattern pieces. We analyze how many
patterns can be superimposed so that the filter works well. The result is the fastest algorithm for
medium error level and a small number of patterns (say, less than 15).

The other algorithm presented in [BYN97b] extends the filter of the (k+1) pieces (see Section 3.1.3),
so that we search now r(k 4 1) pieces. This algorithm is the fastest one for a moderate number of
patterns (say, 100 or less) and low error levels.
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Also in 1997, we presented another filter for multipattern approximate searching [Nav97a] (also part
of this thesis). The filter is a multipattern version of the counting filter [JTU96] of Section 3.1.3
(which is simplified and studied more in depth in our paper). The algorithm combines the filter with
bit-parallelism: the counters for many patterns are kept in a single computer word and updated in
parallel. The algorithm was the fastest for for moderate error levels when it was created, but it is
not anymore after hierarchical verification appeared.

We implement all the referenced algorithms in this thesis, since all them were the best at some
point.

3.3 Indexed Searching

If the text is large and has to be searched frequently, even the fastest on-line algorithms are not
practical, and preprocessing the text becomes necessary. Therefore, many indexing methods have
been developed for exact string matching [WMB94]. However, only a few years ago, indexing

text for approximate string matching was considered one of the main open problems in this area
[WM92a, BY92]. Hence, the area is rather new.

We divide this presentation in two classes of indices, one of them able to solve the general problem
(sequence-retrieving indices) and the other able to solve the restricted case of an index on natural
language that retrieves whole words that match the pattern (not any sequence), which we call word-
retrieving indices. This is briefly discussed in Sections 2.10 and 2.7. We made contributions in both
areas (see Figure 3.7).

Partial inversion

Word retrieving Full inversion (analysis)

Vocabulary search

Minimum redundancy

Simulating text traversal | Depth-first search

Sequence retrieving

Filtering Sampling the text

All text g-grams

Figure 3.7: Taxonomy of indexed searching. The areas where we made contributions are in boldface.

When discussing indices, not only their retrieval performance is of interest, but also their space
requirements and building cost. This last cost, however, is less interesting because it is assumed
to be amortized over a number of searches. In general it is very difficult to give useful analytical
results on the performance of sequence-retrieving indices. Only an experimental comparison can
show their real performance.

Sequence-retrieving indices are much more immature than word-oriented ones (since they address
a harder problem). Their speedups over the sequential algorithms are still unsatisfactory, and they
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take up too much space. Our goal in this thesis with respect to indexing has been to find alternatives
which are more reasonable for typical text retrieval. We first cover word-retrieving indices and then
the two different kinds of sequence-retrieving indices.

3.3.1 Word-Retrieving Indices

[See Figure 3.8]

[MW94] [SM96]

Glimpse: block addressing

Vocabulary as a trie
+ vocabulary search y

[ANZ97] [ours 97] [ours 98]
Igrep: full inversion Improvements to Glimpse .
Analysisin [ours 97] Analysis of block addressing Vocabulary as a metric space

Figure 3.8: Taxonomy of word retrieving indices.

Word retrieving indices are basically inverted indices (see Section 2.10), where approximate searching
is converted into a sequential search over the vocabulary. An inverted index can in principle be built
in O(n) time by keeping the vocabulary in a trie data structure and storing the list of occurrences
at the leaves. However, this is not realistic if the index does not fit in main memory. There exist
algorithms that work well on secondary memory whose cost is O(nlog(n/M)) where M is the amount
of available main memory. It is possible nowadays to build an inverted index for 1 Gb of text in 20
minutes or so. The space requirements of these indices is O(n) if all the occurrences of the words
are stored (typically 15%-40% of the text size if stopwords are not indexed). If block-addressing is
used these requirements are smaller, as we see next.

The first proposal for a word-retrieving index (called Glimpse) was due to Manber and Wu in 1993
[MW94]. In a very practical approach, they propose a scheme based on a modified inverted file
and sequential approximate search, as explained in Section 2.10. The text is logically divided into
“blocks”. The index stores all the different words of the text (the “vocabulary”). For each word,
the list of the blocks where the word appears is kept.

To search a word allowing errors, an on-line approximate search algorithm (in this case, Agrep
[WMO92b]) is run over the vocabulary. Then, for every block where a matching word is present,
a new sequential search is performed over that block (using Agrep again). The search in the
vocabulary is cheap because it is small compared to the text size (Section 2.9).

The idea of using blocks makes the index small, at the cost of having to traverse parts of the text
sequentially. The index is small not only because the pointers to the blocks are small, but also
because all the occurrences in a single block are referenced only once.

Glimpse uses 250—-256 blocks, which works well for moderate-size texts. For larger texts, it is possible
to point to files instead of blocks, or even to occurrences of words (full inversion). Typical figures
for the size of the index with respect to the text are: 2-4% for blocks, 10-15% for files, and 25-30%
for words. Glimpse works well for texts of up to 200 Mb and moderate error ratio. Queries are
answered in a few seconds, depending on the complexity of the query.
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In 1997, as part of this thesis, we implemented a similar index and improved its search algorithm
[BYNO97al. In the same lines of Glimpse, the text is divided into blocks and an on-line approximate
search algorithm is run over the vocabulary (in this case, our bit-parallel algorithm [BYN96b], which
is especially well suited for short patterns like words). However, once the list of matching words
of each block is obtained, the approximate algorithm is not used anymore. Instead, a multiple
ezact pattern matching algorithm is used to search the matching words in the blocks. It is shown
experimentally that this is up to five times faster than Glimpse.

In the same work, it is also shown analytically and experimentally that it is possible to have a
sublinear-size index with sublinear search times, even for approximate word queries. A practical
example shows that the index can be O(n®%!) in space and in retrieval time. We also applied the
analysis to Web document size statistics, obtaining new interesting results. This is a very important
analytical result which is experimentally validated and makes a very good case for the practical use
of this kind of index. Moreover, these indices are amenable to compression. Block-addressing indices
can be reduced to 10% of their original size [BMNM'93], and the first works on searching the text
blocks directly in their compressed form are just appearing [MNZBY98b, MNZBY98a] with very
good performance in time and space (not part of this thesis).

Also in 1997, Aratijo, Navarro and Ziviani take the approach of full inversion in an index called
Igrep [ANZ97]. For each word, the list of all its occurrences in the text are kept and the text is
never accessed. The search on the vocabulary is as before (using [BYN96b]), but the second phase
of the search changes completely: once the matching words in the vocabulary are identified, all their
lists are merged. Phrases can also be searched, by splitting them into words. The approach is much
more resistant than Glimpse to the size of the text collection, and is shown to work well with text
collections of more than 1 Gb. The price is the higher space requirements (30%-40% of the text
size). It is easy to compress these indices to at least 15-20% of the text size by storing differential
instead of absolute positions, although this makes impossible the use of some search optimization
techniques. A 1 Gb text collection can be searched for single word queries in nearly 2 seconds for
k < 2. Even using pointers to words, Glimpse does not work well with such large texts.

The analytical results of [ANZ97] are part of this thesis (not the rest). The analysis shows that,
under the assumption that the vocabulary size is O(n?) for 3 ~ 0.5 (which is validated in that work
and in previous ones [Hea78]), the retrieval costs are near O(n®*-%#) for useful searches (i.e. those
with reasonable precision).

Notice that the part of the search which is still not optimized is the sequential search in the
vocabulary. This is because the vocabulary is not very large (a few megabytes) and therefore
can be sequentially searched in a few seconds. Although this solution is reasonable for a single
end-user, other setups may require faster algorithms. In 1996, Shang and Merettal [SM96] used
a trie to arrange all the words of a dictionary and reported improvements for ¥ = 1. This is a
particular case of what is done in the next section for the general problem. Although the algorithm
is very fast, it poses high space requirements.

In 1997, as part of this thesis [BYNO8b] we presented a different search scheme based on regarding
the vocabulary as a metric space and using a data structure to index such metric space. A metric
space is a set of elements with a distance function (see Section 2.1), which in our case is the set of
words and the edit distance function. Using a suitable data structure to index the vocabulary as a
metric space, the search time is sublinear and practical reductions of up to 60% in the search time
are obtained. We need much less space than [SM96].
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3.3.2 Simulating Text Traversal

Minimum redundancy

Depth-first search

[JU91]

Searchingon DAWGs
Between O(m) and O(mn)

[Ukk93]

Search on suffix trees
O(mQ min(m,log Q)+R) time
O(mQ) extraspace

[BYG90, Gon92]

Simple search on suffix trees
Also works on suffix arrays

[Cob95]

Improved time to O (mQ+R)
and extra space to O(Q)

[ours 97]

Improved online algorithm
Analyzed the index

[See Figure 3.9]

Partitioninto less errors

Figure 3.9: Taxonomy of indices that simulate text traversal.

This type of sequence-retrieving index is based on simulating a sequential algorithm, but running
it on the suffix tree or DAWG of the text (see Section 2.7) instead of the text itself. Since every
different substring in the text is represented by a single node in the tree or automaton, it is possible
to avoid the repetitions that occur in the text. Those indices take O(n) space and construction time,
but their construction is very inefficient if the text does not fit in main memory (their construction
algorithm is not optimized for secondary memory). Moreover, they are very inefficient in space
requirements, since they take at least 12 times the text size (i.e. an overhead of 1200% at least).

This can be partially overcome by using compression. In [KU96], a compression technique is pro-
posed which obtains an index of size O(nH/logn), where H is the entropy of the text characters,
which in the worst case is O(1). They show experiments on natural language where the space re-
quirements are 2.5n bytes (i.e. 250% overhead). This is much better, although still insufficient for
very large texts.

3.3.2.1 Minimum Redundancy

The first work on this type of index is due to Jokinen and Ukkonen, in 1991 [JU91]. The proposal for
this type of index is based on the DAWG of the text (see Section 2.7), where the idea is to traverse
the DAWG instead of the text. Since each node of the DAWG represents a different substring of
the text, this traversal avoids to process many times the same substring, therefore avoiding the text
redundancies.

In 1993, Ukkonen presented an algorithm in the lines of [JU91], this time based on suffix trees instead
of DAWGs [Ukk93]. The DAWG functionality was replaced with suffix links (see Section 2.7). This
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algorithm is based on the fact that the state of the search at a given point in the text is only
influenced by the last characters read (m+k or less). Ukkonen calls “viable prefixes” the substrings
that can be prefixes of an approximate occurrence of the pattern. The algorithms traverse in
the suffix tree all the different viable prefixes, simulating the dynamic programming algorithm
behavior. The already visited states store their column values to avoid recomputation. Ukkonen
presents three different algorithms, with times O(mQ + n), O(mQlogQ + R) and O(m?Q + R),
where R is the number of matches found and @ is the number of viable prefixes, which is shown to
be O(min(n, m**t1g*)). The extra space needed is O(mQ).

In 1995, Cobbs [Cob95] used a very similar idea but with improved results: O(m@ + R) search time
and O(Q) extra space.

3.3.2.2 Depth-First Search

Around 1988, Gonnet proposed (independently of the above work) a simplified version of [Ukk93],
to be run on suffix trees (later applied to computational biology in Darwin [Gon92]). The idea is a
limited depth-first search on the suffix tree. Since every substring of the text (i.e. every potential
occurrence) starts at the root of the suffix tree, it is sufficient to explore every path starting at the
root, descending by every branch up to where it can be seen that that branch does not represent
the beginning of an occurrence of the pattern. This algorithm inspects more nodes than [Ukk93],
but it is simpler and does not need the suffix links. For instance, with an additional O(logn) time
factor penalty, the algorithm runs on suffix arrays, which take 4 times the text size instead of 12
times. This scheme is analyzed in [BYG90], where it is shown that at most O((c — 1)*(m—k=1))
nodes are inspected?.

As part of this thesis [BYNST97] we implemented the algorithm [BYG90, Gon92] over suffix trees in
1997, replacing dynamic programming with our bit-parallel algorithm (explained in Section 3.1.4).
This algorithm cannot work on the more complex setup of [Ukk92], since that one needs some
adaptations of the dynamic programming algorithm that were not easy to parallelize. We also
analyze this algorithm, finding that the number of inspected nodes is sublinear for a < (1 —
e/v/o)(log, n)/m if log, n < m, and for a < (log,n)/m — 1 or @ < 1 — e/+/o otherwise. This
algorithm can also be run on a suffix array, i.e. on an index which is 4 times the text size. The
experimental results shows that this idea is up to 150 times faster than Cobbs’ algorithm, and
therefore the simplification pays off.

In the same work, we adapt the on-line pattern partitioning techniques of [BYN96b] (see Sec-
tion 3.1.3), so that the pattern is split in j subpatterns which can be searched with the bit-parallel
algorithm with at most k/j errors. All the occurrences are collected and the matching positions
verified. This idea worked surprisingly well, being an order of magnitude faster than all existing
indexing schemes. We suggest how to reduce the space usage for this index and show that more
study is needed to fully understand how this idea works. The suggested index is in fact based on
text samples but uses approximate searching on them.

?In fact, it is easy to show that at most O(c™1*) nodes are inspected, but the result of [BYG90] holds for general
acyclic regular expressions.
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3.3.3 Filtration Indices

[JU91]

g-grams counting filter
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[See Figure 3.10]
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Search approximate samples

Grampse: block addressing

Figure 3.10: Taxonomy of filtration indices.

This second type of sequence-retrieving indices is based on adapting an on-line filtering algorithm
(see Section 3.1.3). The filters that are based in locating substrings of the patterns without errors
can build an index to quickly find those substrings. The advantage of those indices is that they are
smaller. They can also be built in linear time (with similar algorithms as for inverted indices). See
Section 2.10 for a quick initial discussion.

Their size and performance depend a lot on the length of the g-grams stored. If the ¢g-grams are
reasonable short and pose no space problems, the main problem of these indices is their linear space
consumption to store the ¢g-grams positions in the text (this can vary depending on how many text
g-grams are indexed). However, it is possible to reduce the space consumption, as shown in [KS96].
The method makes use of the Lempel-Ziv idea for text compression which replaces each repetition
of the text by a reference to its first occurrence. The paper shows how to efficiently search on such
compressed data structure, which takes O(n/logn) space if ¢ is small.

Two crucial factors that affect the size of the index are the length of the ¢g-grams (i.e. the value g),
and the sampling step h, which is the distance among two text samples. The size of the “vocabulary”
(i.e. number of different ¢g-grams) depends exponentially on ¢ (it is upper bounded by ¢9), and the
number of pointers to the text is n/h. The value ¢ is normally rather small (3 to 5 in practice), and
it cannot be shorter without affecting the filtration efficiency. With respect to the sampling step, we
can divide the g-gram indices in two types: those that take all the (m — ¢+ 1) overlapping g-grams of
the pattern and only some samples of the text (n/h samples), and those that take non-overlapping
g-grams in the pattern (we say that they “sample” the pattern) and all the (n—g¢+1) g-grams of the
text. The second type obviously takes more space, but is able to cope with higher error ratios. In
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fact, the text sampling indices seem to tolerate only low error levels for practical natural language
applications.

The idea of using g-grams for indexed approximate string matching is very old [Ull77, OM88]. How-
ever, the methods were not fully developed until the 1991 work of Jokinen and Ukkonen [JU91].
Their proposal for this case is an index of text ¢-grams, based on the observation that if an ap-
proximate match of P with at most k differences ends at T'...j, then at least (m+ 1 — (k + 1)q)
g-grams of P occur in T;_,,41. ;. This is because T;_,,11.; includes m — ¢ + 1 g-grams, of which
at most k¢ can be altered by k edit operations. The text is divided into two layers of consecutive,
non-overlapping blocks of length 2(m — 1). Then, the number of pattern ¢g-grams in each block is
counted. For each block with enough pattern g-grams, the respective text area is examined using
dynamic programming. Notice that this is in fact an off-line version of the filter [Ukk92]. Since it
is based on counting, we do not classify this index as sampling the text or not, although all the
indices that followed can be divided in this manner.

3.3.3.1 All g-grams on the Text

In 1994, Myers [Mye94] proposed an index where every sequence of the text up to a given length
q is stored, together with the list of its positions in the text. To search for a pattern of length at
most ¢ — k, all the maximal strings with edit distance at most k to the pattern are generated, and
each one is searched. Later, the lists are merged. Longer patterns are split in as many pieces as
necessary to make them of the required length. Instead of simply verifying each of the approximate
occurrences of the substrings, the algorithm goes up level by level in the partition process, obtaining
the approximate occurrences of that level by combining those of their two children in the next level.
Query complexity is shown to be O(knpow(o‘) logn) on average, where pow(a) is a concave function
of o satisfying pow(0) = 0. This is sublinear when pow(a) < 1, which restricts the error ratios
up to where the scheme is efficient. This maximum allowed error ratio increases with the alphabet
size. For example, the formula shows that a;,.x is 0.33 for ¢ = 4 and 0.56 for ¢ = 20. Experiments
confirm those computations.

In 1994, Holsti and Sutinen [HS94] improved the filtration condition of [JU91], using the fact that a
preserved pattern g-gram cannot move more than k positions away from its original position. This
method does not use the block-oriented scheme of Jokinen and Ukkonen, but a window-oriented
approach: each occurrence of a pattern g-gram in T marks a corresponding window where an
approximate match might be located. The search times slightly improve those of [JU91], but the
index keeps the same: all the text g-grams are stored.

In 1996, Shi [Shi96] proposed another alternative based on storing all the text g-grams (see also
Section 3.1.3). The pattern is split in k+ s parts, which cover the whole pattern and do not overlap.
The paper reports that much less verifications are triggered than for the particular case s = 1.
However, this is true for quite long patterns, which are very rare in typical text retrieval. Shi
proposes the use of a suffix tree to locate the occurrences of the pieces of the pattern, but a much
smaller g-gram index could be used.

In 1998 and as part of this thesis [BYN97c] we implemented a simple and practical index, based
on splitting the pattern in k + 1 pieces (see Section 3.1.3). The goal is to obtain an index which
is useful for natural language, as the on-line version of this filter is the most efficient for short
patterns like words. All the n text g-grams are indexed. To search a pattern, it is split in k£ 4+ 1
pieces, each piece is searched with no errors in an index, and all their occurrences are verified for
a complete match. Since in natural language a simple equal-length partition may give very bad
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results depending on the resulting substrings, an O(m?k) dynamic programming algorithm is used
to select the best pattern split, i.e. the one that minimizes the total number of text positions to
verify. It is shown that the search time is O(kn/a'/®). For instance, with an index which is 1.5 to
3 times the text size, reasonable approximate queries take 20% to 60% of the time of the on-line
algorithm. We found experimentally that in typical text searching it is impossible in practice to use
block addressing and still have a useful index. We believe that this is currently the most practical
index for typical text retrieval. In our experimental results we show that this index is many times
faster than Myers’ on English text, although it is slower on DNA. It is also slower than those based
on suffix trees, but these pose impractical space requirements.

3.3.3.2 Sampling the Text

Sutinen and Tarhio gave in 1995 [ST95] a static version of their on-line algorithm (see Section 3.1.3).
The idea is based on observing a sequence of g-samples, i.e. non-overlapping g-grams of the text
at fixed periods of length A (h is determined by the error level to tolerate). The main contribution
of the static variation is saving space: only every h-th g-sample of text T is stored into the index.
At first sight, this seems to result in a different index for each m and k, but they can adjust s in
the formula of h so that the index, precomputed according to a fixed h, can be applied. They show
that their method needs less space for a < 0.3, and is effective for low error levels (e.g. m = o = 40
and k < 4). The search times are O(nm(k + logm)/c?). Compared to our index [BYN97b], this
index takes much less space, though it much less tolerant to errors as well (in fact, too restrictive for
natural language, although it improves for longer patterns). This can be noticed by comparing the
respective on-line algorithms. Direct experimental results, however, are still not possible because
the current implementation does not support approximate searching.

The block-addressing idea presented in Section 2.10 to reduce space requirements can be applied to
this type of index too, at the cost of (much) higher search time. This has been presented in 1996
in a variation of Glimpse, called Grampse [LST96]. In addition to conventional ¢g-grams, Grampse
uses also “gapped ¢-grams” (i.e. their letters are not consecutive in the pattern but picket at fixed
intervals). Compared to Glimpse, Grampse works faster in locating sequences of words, and is useful
for agglutinating languages such as Finnish.

In 1997, the possibility of an index based on approximate occurrences of parts of the pattern (instead
of exact occurrences) was proposed in [BYNST97] (not part of this thesis). Similarly to the approach
of [Mye94], all the elements at a given distance of the ¢g-grams of the pattern are searched in the
index. The filtration condition, however, is stricter since it requires that more than one element is
present in the potential match. This index has not been implemented up to date.
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Chapter 4

Basic Tools

In this chapter we present a number of basic tools which are used throughout the thesis, and
therefore we have decided to collect them in a single chapter previous to the rest of the work. These
results have been published in [BYN96b, BYN96a, BYN98d, NBY98b, BYN98e].

4.1 Statistics of the Problem

In this section we (partially) answer some natural questions about the distribution and statistical
behavior of approximate string matching, which turn out to be very hard. These questions are
not only interesting by themselves, but are also essential for the average-case analysis of all the
algorithms of this thesis and for the practical selection of the correct algorithms for each scenario.
Some of these questions are: what is the probability of an approximate occurrence? How many
occurrences are there on average? How many columns of the dynamic programming matrix are
active? We give here our new results.

In all the average-case analysis of this work we assume that the patterns are not extended. An easy
way to consider classes of characters is to replace o by ¢/s in all the formulas, where s is the size
of the P; sets corresponding to pattern positions. This is because the probability of matching such
pattern position is not 1/¢ anymore, but s/o. For other extended patterns our analysis simply do
not apply, and a case-by-case consideration is necessary.

An analysis of the probability of the occurrence of a pattern allowing errors can be found in [RS97].
However, the final expression is extremely complex, has P and k built-in, and does not allow
deriving any general result. It can be used for, given a fized P and k, compute the probability
(using a computer program) for that particular pattern and number of errors. It is of no use to
derive general results. The results that we present in this chapter are simpler and of general use!.

4.1.1 Probability of Matching

Let f(m, k) be the probability of a random pattern of length m matching a given text position with
k errors or less (i.e. that the text position is reported as the end of a match). We find analytical
upper and lower bounds for this probability and present later an experimental verification.

!We have also developed a simple C+Maple program which, given a specific pattern P and a number of errors k,
builts its NFA, converts it to a DFA and then uses the Markov model to compute the probability of the final states,
therefore finding its exact matching probability as a function of ¢. But this is not the real problem.

55



In particular, we are interested in which is the error level up to where the probability of verifying is
exponentially decreasing with m. The importance of being exponentially decreasing with m is that
the cost of verifying a text position is O(m?), and therefore if that event occurs with probability
O(y™) for some y < 1 then the total cost of verifications is O(m?y™) = o(1), which makes the
verifications cost negligible. On the other hand, we show that as soon as the cost ceases to be
exponentially decreasing it begins to be at least 1/m, which yields a total verification cost of
O(mn). This is the same cost of plain dynamic programming. Hence, the limit & < 1 —e/+/o which
we prove next corresponds, in theory, to the maximum error level up to where any algorithm based
on filtration can work well?.

4.1.1.1 An Upper Bound

We show that the matching probability is O(y™) for

() < (%) “

If our only aim is to make such probability exponentially small with m, we take the bound for v =1
and consider valid any error level strictly smaller than the bound. This is

a < af = 1- (4.2)

e
Vo
while given a v value the condition on « is given by Eq. (4.4), which is shown later.

To prove f(m, k) = O(y™), we consider an upper bound to f: suppose a text area T, ; matches the
pattern. Since we only report segments whose last character matches the pattern, we know that 75
is in P. We consider T, as the first character matching the pattern. Then, the length s=b—-a+1
is in the range m — k..m + k. Since there are up to k errors, at least m — k characters of the pattern
must be also in the text. Under a uniform model, the probability of that many matches is 1/6™ %,
Since these characters can be anywhere in the pattern and in the text, we have

COCED w1 (N[ RPN D == PR [ AR B

s=m—k s=m+1

where the two combinatorials count the ways to choose the m—k (or s—k) matching characters from
the pattern and from the text, respectively. The “—2” in the second combinatorials are because
the first and last characters of the text must match the pattern. We divided the sum in two parts
because if the area has length s > m, then more than m — k characters must match, namely s — k.
See Figure 4.1.

First assume constant o (we cover the other cases later). We begin with the first summation, which

is easy to solve exactly to get (1 — a) (7,:)2/0’”_’“. However, we prefer to analyze its largest term
(the last one), since it is useful for the second summation too. The last term is

(") (e 2s) = ) (e (7))

?Notice that this limit is useless for o < 8, but is the limit we can formally prove. We show shortly that replacing
e by 1.09 fits better the real data.
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First one Last one
matches matches

Pattern: m=9, k=5

m At least 9-5=4 matches

Figure 4.1: Upper bound for f(m, k).

and by using Stirling’s approximation z! = (z/e)*v/2rz(1 + O(1/z)) we have

o (et 00 (3)

1 T (1o« 1
(crl—aam(l — a)2(1_°‘)) " ( oror © (E))

where the last step is done using Stirling’s approximation to the factorial.

which is

Clearly, for the summation to be O(y™) (y < 1), this largest term must be of that order, and this
happens if and only if the base of the exponential is < «. On the other hand, the first summation
is bounded by k + 1 times the last term, so the first summation is O(y™) if and only if this last
term is (recall that our exponential is multiplied by m~! and therefore we can safely multiply it by
k+1). That is

. 1 = 1
o > (7a2a(1 — a)2(1—a)) - 7ﬁa12—_aa(1 — a)?

It is easy to show analytically that e=! < atoa <1if0 < a<1,sofory =1 it suffices that
o > e?/(1 — a)?, or equivalently a < 1 — e//c (hence Eq. (4.2)), while for arbitrary 7,

e
\/E'yﬁ

is a sufficient condition for the largest (last) term to be O(y™), as well as the whole first summation.

a < 1- (4.4)

We address now the second summation, which is more complicated. First, observe that

s=m+1 s=m

a bound that we later find tight. In this case, it is not clear which is the largest term. We can see

each term as
i m\ (k+r
o\ r k
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where m — k < » < m. By considering » = 2m (2 € [1 — a,1]) and applying again Stirling’s
approximation, the problem is to maximize the base of the resulting exponential, which is

(JZ _I_ a)m—l—a

0':'3232“3(1 _ w)l—maa

h(z) =

Elementary calculus leads to solve a second-degree equation that has roots in the interval [1 — «, 1]
only if o < a/(1 — a)? (indeed, this condition is necessary just for z > 1 — a). Since due to Eq. (4.4)
we are only interested in o > 1/(1 — )%, §h(z)/dz does not have roots, and the maximum of h(z)
is at # = 1 — . That means r = m — k, i.e. the first term of the second summation, which is the
same largest term of the first summation.

We conclude that ok 4 1 )
sk < 2L (140(L)) = 06m)

m

and therefore Egs. (4.2) and (4.4) hold for the whole summation. When v reaches 1, the probability
is very high, since only considering the term s = m we have Q(1/m).

Since we obtained an O() result, it suffices for the condition to hold after a given myg, so if k = o(m)
we always satisfy the condition.

4.1.1.2 A Lower Bound

On the other hand, the only optimistic bound we can prove is based on considering that only
replacements are allowed (i.e. Hamming distance). In this case, given a pattern of length m, the
number of strings that are at distance ¢ from it are obtained by considering that we can freely
determine the ¢ places of mismatch, and that at those places we can put any character except that

(P = (7)< arousm)

1

of the pattern, i.e.

Although we should sum the above probabilities for 7 from zero to k, we use the largest i = k as a
(tight) lower bound. Hence, the probability of matching is obtained by dividing the above formula
(with ¢ = k) by o™ (the total number of possible text windows of length m), to obtain

m

n (1-a)
$om) > (7)ot = it O = (a_(ll—_a)a) O(m 1)

which since e7! < al-= < 1, can be lower bounded by f(m,k) > é™ m~1/2 where

o~ (ae)

Therefore an upper bound for the maximum allowed value for a is @ < 1—1/0, since otherwise we
can prove that f(m, k) is not exponentially decreasing on m (i.e. it is Q(m~1/2)).

4.1.1.3 Experimental Verification

We verify our analysis experimentally in this section. The experiment consists of generating a large
random text (n = 10 Mb) and running the search of a random pattern on that text, allowing k = m
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errors. At each text character, we record the minimum allowed error k for which that text position
would match the pattern. We repeat the experiment with 1,000 random patterns.

Finally, we build the (cumulative) histogram, finding how many text positions have matched for
each k value. We consider that k is “safe” up to where the histogram values become significant,
that is, as long as few text positions have matched. The threshold is set to n/m?, since m? is the
cost of verifying a match. However, the selection of this threshold is not very important, since the
histogram is extremely concentrated. For example, for m in the hundreds, it moves from almost
zero to almost n in just five or six increments of k.

Figure 4.2 shows the results for m = 300, showing the maximum “safe” a value. The curve
a =1-1/4/c is included to show its closeness to the experimental data. Least squares give the
approximation o* = 1 — 1.09/,/0, with a relative error smaller than 1%.

1.0
0.8

0.6

0.4 —¢ Upper bound 1 — 1/o

--- The curve 1 — 1/4/c

—— Experimental data

—+ Exact lower bound with vy = 1 (Eq. (4.1))
—o— Conservative lower bound, Eq. (4.2)

0.2

o

2 10 20 30 40 50 60

Figure 4.2: Theoretical and practical bounds for «, for m = 300 and different o values. We plot
the maximum a value which does not trigger too many verifications.

Figure 4.3 validates other theoretical assumptions. On the left we show that the matching proba-
bility undergoes a sharp increase at a* (this is the histogram we have built). On the right we show
that a* is essentially independent on m. Notice, however, that our assumptions are a bit optimistic
since for short patterns the matching probability is somewhat higher.

This shows that our upper bound analysis matches reality better, provided we replace e by 1.09 in
the formulas. We do so at the places of this work that require practical tuning, while we keep using
e (i.e. the value we can actually prove) in the theoretical developments.

4.1.2 Active Columns

In Section 3.1.1 we explained the cut-off heuristic of Ukkonen [Ukk85b], which for each character
works a time proportional to the number of active columns in the dynamic programming matrix.
At the end of each iteration the last active column may increase in one (if a horizontal automaton
arrow is crossed from the last active column to the next one), or may decrease in one or more (if
the last active column runs out of active states, the next-to-last may be well before it). In this case
the algorithm goes backward in the matrix looking at the new last active column.

As we later use this same idea, it is interesting to know which is the average number of active
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Figure 4.3: On the left, probability of an approximate match as a function of the error level
(m = 300). On the right, maximum allowed error level as a function of the pattern length. Both
cases correspond to random text with ¢ = 32.

columns. Ukkonen conjectured that the last active column was O(k) on average and therefore his
algorithm was O(kn) on average. However, this was proved much later by Chang and Lampe [CL92].
We find here a tighter bound.

More formally, if we call ¢, the minimum row of an active state at column 7 in the NFA of Section 2.2)
3, then the question is: which is the largest r satisfying ¢, < k? The columns satisfying ¢, < k are
those active. We follow here the proof of [CL92] and find a tighter bound. If we call L the last
active column, we have
E(L) < K+ ) 7 Pr(c, < k)
r>K

for any K. Since we know from the previous section that if k/r < 1—e/+/c, then Pr(c, < k) = O(y")
with v < 1, we take K = k/(1 — e/+/o) to obtain

k ok
E(L) < 1= e/i/o + r>k/(1z_:e/ﬁ)7“ o(y") = T—c/fo + 0(1) (4.5)

which shows that, on average, the last active column is O(k). This refines the proof of [CL92],
which shows that the heuristic of [Ukk85b] is O(kn).

The e of the above formula has the same source as in the previous section and hence can be replaced
by 1.09 in practice. By using least squares on experimental data we find that a very accurate formula
is

k

E(L) = 0900775

(4.6)

with a relative error smaller than 3.5%.

Figure 4.4 (left side) shows the last active column for random patterns of length 30 on random text,
for different values of o. Given the strong linearity, we take a fixed £k = 5 and use least squares to
find the slope of the curves. From that we obtain the 0.9 above. The right side of the figure shows
the experimental data and the fitted curve (for m = 30). The results are the same for any k less

than m(1 —1.09/,/0).

® Alternatively, ¢, is the value at row r of the current column in the dynamic programming matrix (see Section
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Figure 4.4: On the left, last active column for ¢ = 2, 4, 8, 16, 32 and 64 (curves read from left to
right). On the right, last active column for k = 5, experimental (full line) and theoretical (dashed).

4.2 Partitioning Lemmas

As explained in Section 3.1.3, it is well known that the problem of approximate string matching can
be reduced to a number of subproblems by partitioning the pattern into subpatterns, which can be
searched with less errors.

The oldest partitioning idea of this kind traces back to [WM92a], where they show that if the pattern
is split in k + 1 pieces, then at least one piece must appear unaltered in an approximate occurrence
of the pattern. This is obvious, since k errors cannot alter the k + 1 pieces®. The idea is to search
for all the k + 1 pieces at the same time, and each time a piece is found, the neighborhood of the
match is checked for an approximate occurrence of the complete pattern. Figure 4.5 illustrates this

| |
X X

| |
RS

Figure 4.5: Illustration of the partitioning lemma for k + 1 pieces. In this case k = 2.

In [Mye94], a more general version of this lemma is presented. It is shown that the pattern can be
cut in 2°¢ pieces, and that each piece can be searched with |k/2¢| errors. It is also shown how to
handle uneven partitions in this binary decomposition process.

In this section we present the most general version we have used of the pattern partitioning idea.

2.2).
*Notice that this “obvious” fact depends on the types of operations allowed. For instance, a single transposition
can alter two pieces. However, the fact is true for our insertion, deletion and replacement operations.
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This idea is used in many occasions later in this work.

Partitioning Lemma: If Occ = T,  matches P with k errors, and P = 29 P, 21 ... 2;_1 P; z;
(i.e. a concatenation of subpatterns P; not necessarily contiguous but non-overlapping), then Occ
includes a substring that matches at least one of the P;’s, with |a;k/A| errors, where A =3"7_, a;.

Proof: Otherwise, each P; matches inside Occ with at least |a;k/A| +1 > a;k/A errors. Summing
up the errors of all the pieces we have more than Ak/A = k errors and therefore a complete match
is not possible.

The original partitioning lemma of [WM92a] corresponds to the case j = k+ 1, a; = 1, and P;’s
contiguous and of similar length. That is, some piece is found with 0 errors. [Mye94] is another
particular case.

In Chapter 5 we use a version of the Lemma with j contiguous subpatterns which are found with
|k/j| errors, i.e. a; = 1. In the next section we show a hierarchical verification technique that makes
full use of the power of the a;’s of the Lemma, but the patterns are still contiguous (i.e. z, = ¢),
and is used in Chapter 5 and Section 6.1. Finally, a splitting optimization technique presented in
Section 9.1 uses non-contiguous subpatterns (although the restricted case j = k 4 1).

Notice that, unless we are limited for some reason, the best we can do is to select contiguous
subpatterns, since this reduces the probability of finding them in the text.

Our general version does not include a generalization of [WM92a| presented in [Shi96]: if we partition
the pattern in k + s pieces, then s pieces appear unaltered. The idea is to force more than one piece
to match in order to trigger a verification.

Yet another possible generalization which is not covered here is to allow that the subpatterns overlap.
This is the basis of the ¢g-gram ideas presented in [ST95, ST96] and others (see Sections 3.1.3 and
3.3.3). Overlapping pieces is in principle a bad idea because a single error may destroy many pieces.
However, it leads to smaller indices and is useful for very low error levels or long patterns.

4.3 Hierarchical Verification

This is a technique we use in various forms throughout this work, aimed at minimizing the verifica-
tion cost for potential occurrences. We present and analyze them now, and give more details later
when they are used.

4.3.1 Pattern Splitting

In the previous section we have mentioned that the problem of approximate string matching can be
decomposed in j searches with |k/j| errors, and that the matches found by any of those j searches
are to be checked for an occurrence of the complete pattern. The Lemma is useful if we have an
efficient algorithm for the smaller subproblems, so that we use the less efficient algorithm (e.g.
dynamic programming) only in the neighborhood of the matches of a subpattern. In this section
we consider the best way to perform the verification of the candidate areas.

A first alternative is just to run the more expensive algorithm in the candidate areas. If one is able
to determine which piece of the pattern was found, then it suffices to check an area of length m + 2k.
This area is obtained by placing the pattern in the text so that the piece found is aligned to the
text position where it was found, and allowing k more characters at each end of that area. This is
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because it is useless consider more than k characters at each end, since if more than k insertions
are necessary a match is not possible. On the other hand, if the pattern position of the piece found
is not known, we must consider m + k characters in each direction from the matching text position,
for a total area of size 2(m + k). In any case, if an O(mn) verification algorithm is used, the cost
of verifying each candidate area is O(m?).

In this section we consider a more elaborate verification algorithm, which we call “hierarchical
verification”. It has been mentioned (in a different context) in [Mye94], although our version is
simpler and better suited to text retrieval.

First assume that j is a power of 2. Then, we form a tree by recursively splitting the pattern in two
halves of size [m/2| and [m/2] (halving also the number of errors, i.e. |k/2]) until the pieces are
small enough to be searched with the core algorithm. Those pieces (leaves of the tree) are searched
in the text. Each time a leaf reports an occurrence, its parent node checks the area looking for its
pattern (whose size is about twice the size of the leaf pattern). Only if the parent node finds the
longer pattern, it reports the occurrence to its parent, and so on. The occurrences reported by the
root of the tree are the final answers.

This construction is correct because the partitioning lemma applies to each level of the tree, i.e.
any occurrence reported by the root node must include an occurrence reported by one of the two
halves, so we search both halves. The argument applies then recursively to each half.

Figure 4.6 illustrates this concept. If we search the pattern "aaabbbcccddd" with four errors in the
text "xxxbbxxxxxxx", and split the pattern in four pieces to be searched with one error, the piece
"bbb" will be found in the text. In the original approach, we would verify the complete pattern
in the text area, while with the new approach we verify only its parent "aaabbb" and immediately
determine that there cannot be a complete match.

aaabbbcccddd

aaabbb ccddd

~
-

aaa b%b ccc ddd

Figure 4.6: The hierarchical verification method for a pattern split in 4 parts. The boxes (leaves)
are the elements which are really searched, and the root represents the whole pattern. At least one
pattern at each level must match in any occurrence of the complete pattern. If the bold box is
found, all the bold lines may be verified.

If j is not a power of two we try to build the tree as well balanced as possible. This is because an
unbalanced tree will force the verification of a long pattern because of the match of a short pattern
(where the long pattern is more than twice as long as the short one). The same argument shows
that it is not a good idea to use ternary or higher arity trees. Finally, we could increase j to have
a perfect binary partition, but shorter pieces trigger more verifications.

In order to handle partitions which are not a power of two, we need the strong version of the
Partitioning Lemma of the previous section. For instance, if we determine j = 5, we have to
partition the tree in, say, a left child with three pieces and a right child with two pieces. The
standard partitioning lemma tells us that each subtree could search its pattern with |k/2] errors,
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but this will increase the verifications of the subtree with the shorter pattern. In fact, we can search
the left subtree with |3%k/5| errors and the right one with |2k/5| errors. Continuing with this
technique we arrive to the leaves, which are searched with |k/5| errors as expected.

In subsequent chapters we apply this hierarchical verification method in different cases and show
its practical improvements over the simple verification algorithm. We now analyze the cost of this
verification algorithm.

We analyze the average amount of verification work to perform per character for each subpattern.
We assume that j = 2° for integer s, and that m = 2°{. Hence, we search j subpatterns of length £.
Recall that since we search patterns of length m/j with k/j errors, the error level « is essentially
the same for any subproblem. Hence, the probability for any subpattern of length m’ to match in
the text is O(y™) (where y < 1, Eq. (4.1)). To verify the occurrence of a pattern of length £ = m/j,
an area of length ¢/ = m/j + 2k/j = O(£) must be checked. The cost of that verification is O(¢?)
(at most, since we assume the use of plain dynamic programming®).

Consider a given subpattern of length £. It matches a given text position with probability O(v*).
This match causes its parent to perform a verification in an area of length 2¢' (since the parent is
of length 2¢). With some probability the parent pattern is not found and the verification ends here.
Otherwise the parent is found and we must proceed upward in the tree. The probability of having
to continue the verification is

Pr(parent A child) Pr(parent) y2¢ ‘

P t node / child node) = S Pr(child) . A
r(parent node / child node) Pr(child) = "Pr(child) 4 v

and therefore with probability at most v¢ we pay the next verification which spans an area of length
4¢', and so on. Notice that in the next verification we will find the longer pattern with probability

,),ZZ‘
This process continues until we either find the complete pattern or we fail to find a subpattern. The
total amount of work to perform is

7207 + 7 (407 + ¥ (807 +..)) =" (207 + 7v* (40 + +* (8)* + ...

which formally is

3 s—1 i
szzi—l (202 = 42 Y 4 (,yz)2

The summation can be bounded with an integral to find that it is between C(£) — C(m) and
vt + C () — C(m/2), where C(z) = v*(zIn(1/y) — 1)/(£21n*(1/v) In2). Therefore, as only the first

term of the summation is 462y%, the summation is ©(y%) and the total verification cost is
o(*yY) = 0((m/5)*") (4.7)
which is much better than O(m?y*), which is the cost when the verification is not hierarchical.

We now generalize the above analysis by assuming that the verification tree is pruned when the
patterns are of length £r, and the subtrees are replaced by arbitrary objects which match with
probability p (this is of interest later in this work).

8Since this area is already suspicious, we cannot ensure a random letter distribution that could encourage the use
of better algorithms on average.
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Once a leaf is found, we must verify an area of length £r to determine whether their concatenation
appears. That concatenation is found with probability O('yl’"). When it is found, its parent is
verified (an area of length 24r), which continues the verification with probability y2¢". Hence, the
verification cost per piece is

pAr)? 14" +C(r) - C(m/2)) = O(p (tr)’(1+74")) = O(p (tr)?) (4.8)

4.3.2 Superimposed Searching

Another kind of hierarchical verification is used in this thesis: given a number r of patterns, we
are able to superimpose them in such a way that we perform a single search. The probability of
such pattern matching the text is the same as for a single pattern, except because the alphabet size
is reduced from o to o/r. Moreover, when we find a match, we are not able to say which is the
pattern that actually matched (in fact it is possible that none matched). Hence, we must verify all
the patterns in the area to determine which matched, if any.

An alternative to check all the r patterns is to apply hierarchical verification. Assume that » is a
power of two. Then, when the “superimposed” search reports a match, run two new searches over
the suspicious area: one which superimposes the first half of the patterns and another with the
second half. Repeat the process recursively with each of the two searches that finds again a match.
At the end, the searches will represent single patterns and if they find a match we know that that
pattern has been really found (see Figure 4.7). Of course the preprocessing for the required subsets
of patterns are done beforehand (they are 2r — 1 = O(r), so the space and preprocessing cost does
not change). If r is not a power of two then one of the halves may have one more pattern than the
other.

NSNS

D L
/ 2 \ 3 / 4\
Figure 4.7: The hierarchical verification method for 4 patterns superimposed. Each node of the tree

represents a check (the root which represents in fact the global filter). If a node passes the check,
its two children are tested. If a leaf passes the check, its pattern has been found.

The advantage of this hierarchical verification is that it can remove a number of candidates from
consideration in a single test. Moreover, it can even find that no pattern has really matched before
actually checking any specific pattern (i.e. it may happen that none of the two halves match in
a spurious match of the whole group). The worst-case overhead over plain verification is just a
constant factor, that is, twice as many tests over the suspicious area (2r — 1 instead of r).

On average, as we show now analytically and later experimentally (in Section 7.1, hierarchical
verification is by far superior to plain verification.

Given an area of length £ to check for » patterns, the naive verification will take O(rT'(¢)) time,
where T'({) is the verification cost for a single pattern. We analyze now the effect of this hierarchical
verification. We call v¢ the matching probability when r patterns of length £ are superimposed.
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Following Eq. (4.1), we have

where we notice that the old v corresponds now to 7.

For each match we have to verify an area of length O(¢) (at cost T'(£)) for two sets of r/2 superim-
posed patterns each. Each set is found with probability 7f/2 and so on. As before, we obtain the
probability that a group of size /2 matches given that the larger set matched is

£
. P(parent A child) P(parent) Yr/2 1
P(parent node / child node) = P (child) < P (child) = 7—2 = e

where we have used Eq. (4.9) for the last step. In particular 7, /5 = vy /20019,

The total cost due to verifications is therefore

£ £
e e
+ (2 T(£) + 2 722 (2 T(f) + 2 7/4...) ) = 2T (Ot + 4T (0t )y + 8T (O, g+ .
r r/2
or more formally
log, r—1 log, r—1
() Y 2y = 2L Y, 20t
=0 =0

and since the summation is O(1) we have a total cost of (y/T(¢)). Hence, we work O(T(£)) per
verification instead of O(rT'(£)) that we would work using a naive verification. This shows that we do
not pay more per verification by superimposing more patterns (although the matching probability
is increased).

Notice that we assumed that the summation is O(1), which is not true for & > 1—1/£. This happens
only for very high error levels, which are of no interest in practice.
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Part I

On-line Searching
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This Part of the thesis is devoted to on-line approximate searching. This is the problem of finding a
pattern in a text when there is no time to preprocess the text. Only the pattern can be preprocessed.
This is the area which has received most attention from the community since the seventies and where
it is most difficult to improve current results.

We present three chapters in this part. Chapter 5 is devoted to one of the best results of this thesis: a
new bit-parallel algorithm which is currently the fastest for short patterns. Chapter 6 presents three
different filtration algorithms, some of which are improvements over previously known versions. Our
improvement over one of these is currently the fastest known algorithm for moderate error levels.
At the end of Chapter 6 we study more in depth the technique of using a deterministic automaton
which is partially built.

We present in Figure I.1 the “map” of the current best algorithms for each case of interest in text
searching. The exact values correspond to English text, although similar figures are observed on
random text for ¢ = 8 to 64. We have not studied in depth other cases, such as very long patterns
or very small alphabets. As it can be seen, our new filtering algorithm of Section 6.1 is the best for
moderate error ratios. For short patterns, our bit-parallel algorithm of Chapter 5 is the best. In the
remaining area the best is Myers’ new bit-parallel algorithm [Mye98], except for long patterns and
high error ratios where the Four Russians technique of Wu, Manber and Myers [WMM96] remains
the best. Hence, the algorithms of this thesis are the fastest ones for short patterns or for moderate
error levels. Less interestingly, they are also the fastest for very high error levels.

It is important to notice that these results are “a posteriori”. That is, the other algorithms we have
created in this thesis have been the best in some areas at their times of publication (see the original
papers). This is a very fast-moving and highly competitive area. For instance, a previous map
of this kind can be found in [BYN98d]. One of the latest inventions in this area has been Myers’
algorithm, which has swept under the carpet a number of previously outstanding algorithms.

1 10
Four Russians
Our NFA [WMM96]
(ch. 5) 1
0.7 Bit-parallel Matrix [Mye98]
(84
0.5

10

0.3
11
9

Our Exact Part. (sec. 6.1)
40 40 m

10 20 30 60

Figure 1.1: The areas where each algorithm is the best for English text and w = 32. The numbers
indicate megabytes per second in our machine.
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Chapter 7, the third of this Part, deals with multiple patterns, that is, we have to search many
patterns at the same time allowing errors. Despite having received less attention, this problem
is very important and has applications to spelling, information retrieval and even to the classical
problem of a single pattern, as we explain in the chapter. We present three new algorithms, which
are carefully analyzed and experimentally tested. These are the only algorithms that exist for now
for this problem when k > 1, and they also improve previous work (which exists only for k = 1) when
the number of patterns is not larger than 50-150 (depending on the parameters of the problem).
All the three algorithms are extensions of on-line single-pattern algorithms.

Figure 1.2 gives a gross map of the best current algorithms for multipattern matching, for some
choices of pattern length and number of patterns. The same observations made for Figure 1.1 apply.

NONE USEFUL
NONE USEFUL

0.4 0.25 |05

, 0.03 0.02
Superimposed Automata (sec. 7.1)
0.3]0.8 0.04 0.02
... 013 |1.3 0.14 0.08
Exact Partitioning (sec 7.2) L
Exact Partitioning (sec 7.2) .
0.26 0.24 0.24
0.1 2 Hashing [MM96] . 0.03 13 0.3 Hashing [MM96]
50 100 50 90 r
m=9 m =30
[0
NONE USEFUL
0.5
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Sup. Autom. L
(sec. 7.1) Exact Partitioning (sec 7.2)
0.3 0.3 0.08
0.75 1.25
m
9 30
r=2_8

Figure 1.2: The areas where each algorithm is the best for English text and w = 32. The numbers
indicate megabytes per second in our machine.

69



Chapter 5

A Bit-Parallel Algorithm

In this chapter we present a new algorithm for on-line approximate string matching. The algorithm
is based on the simulation using bit operations of a non-deterministic finite automaton built from
the pattern and using the text as input. The running time achieved is O(n) for small patterns (i.e.
whenever mk = O(w)). Longer patterns can be processed by partitioning the automaton into many
machine words, at O(mk/w n) search cost. We allow generalizations in the pattern, such as classes
of characters, gaps and others, at essentially the same search cost.

We then explore other novel techniques to cope with longer patterns. We show how to partition the
pattern into short subpatterns which can be searched with less errors using the simple automaton, to
obtain an average cost close to O(y/mk/w n). Moreover, we allow superimposing many subpatterns
in a single automaton, obtaining near O(y/mk/(cw) n) average complexity.

Finally, we combine analytical and experimental results to design an optimal heuristic to combine
all the techniques. The experiments show that our algorithm is among the fastest for typical text
searching, being the fastest in an important range of parameters of the problem.

This work has been published in [BYN96b, BYN96a, BYN98d, NBY98b].

5.1 A New Parallelization Technique

Consider again the NFA of Figure 2.5, which recognizes the approximate occurrences of the pattern
in the text. This NFA has (m + 1) x (k + 1) states. We assign number (¢, j) to the state at row ¢
and column j, where 7 € 0.k, j € 0..m. Initially, the active states at row ¢ are at the columns from
0 to %, to represent the deletion of the first ¢ characters of the pattern.

Consider the boolean matrix A corresponding to this automaton. A, ; is 1 if state (7, j) is active
and 0 otherwise. The matrix changes as each character of the text is read. The new values A{ ; can
be computed from the current ones by the following rule

A = (Aijo1 & (Tewrrent =P ) | Aicaj | Aicajon | Al (5.1)

yJ_]-

which is used for ¢ € 0..k,j € 1..m. If ¢ = 0 only the first term is used. Note that the empty
transitions are represented by immediately propagating a 1 at any position to all the elements
following it in its diagonal, all in a single iteration (thus computing the e-closure). The self-loop at
the initial state is represented by the fact that column j = 0 is never updated.

It is not hard to prove by induction that once an automaton state is active, then all the states below
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it in the same column are active too. The same happens to the states below it in the same diagonal,
and in fact with all the states in the triangle limited by the column and the diagonal.

It is then possible to describe the automaton by the minimum rows of the states active at each
column. This observation allows relating the automaton to the classical dynamic programming
matrix (see Section 2.2). Notice that what the current column of the dynamic programming matrix
stores at position j is the minimum row of this NFA which is active in column j of the automaton.

In this sense, the dynamic programming matrix corresponds to simulating this automaton by
columns (i.e. packing columns in machine words) [BY96]. On the other hand, the work of Wu
and Manber ([WM92a], see Section 3.1.4) consists fundamentally in simulating this automaton by
rows (packing each row in a machine word). In both cases, the dependencies introduced by the
diagonal empty transitions prevent the parallel computation of the new values. In [BY91] it was
shown that this dependence can be avoided by simulating the automaton by by diagonals, such
that each diagonal captures the e-closure. However, the associated bit-parallel update formulas are
more complex and no solution was devised in [BY91]. We present next a realization of this idea, by
finding a constant-time update formula. This achievement leads to a new and fast algorithm.

Suppose we use just the full diagonals of the automaton (i.e. those of length k +1). See Figure 5.1.
This presents no problem, since those (shorter) diagonals below the full ones always have value 1,
while those past the full ones do not influence state (m, k). The last statement may not be obvious,
since the vertical transitions allow carrying 1’s from the last diagonals to state (m, k). However, each
1 present at the last diagonals must have crossed the last full diagonal, where the empty transitions
(deletions) would have immediately copied it to the state (m, k). That is, any 1 that goes again to
state (m, k) corresponds to a segment containing one that has already been reported ®.

no errors

1 error

Figure 5.1: Our representation of the NFA. We enclose in dotted lines the states actually represented
in our algorithm.

'If reporting those spurious matches is required we just have to check the right neighborhood of the positions
reported with this algorithm using a wider automaton that includes the last diagonals. This also allows telling the
exact number of errors of each match. As we show later, this horizontal extension, even if it requires extra machine
words, is not significatively more expensive.
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As already mentioned, whenever state (2, j) is active, states (¢ +d, j + d) are also active for all d > 0
(due to the ¢ transitions). Thus, if we number diagonals regarding the column they begin at, the
state of each diagonal 7 can be represented by a number D;, the smallest row value active in that
diagonal (i.e. the smallest error). Then, the state of this simulation consists of m — k + 1 values in
the range 0..k + 1. Note that Dg is always 0, hence there is no need to store it.

The new values for D; (i € 1..m — k) after we read a new text character ¢ are derived from Eq. (5.1)
D; = min( D;+1, Diy1+1, g(Di—1,¢)) (5.2)
where g(D;, ¢) is defined as

9(Diyc) = min({k+1}y U {j/j>D; AN Pyj=c})

The first term of the D’ update formula represents a substitution, which follows the same diagonal.
The second term represents the insertion of a character (coming from the next diagonal above).
Finally, the last term represents matching a character: we select the minimum active state (hence
the min of the g formula) of the previous diagonal that matches the text and thus can move to the
current one. The deletion transitions are represented precisely by the fact that once a state in a
diagonal is active, we consider that all subsequent states on that diagonal are active (so we keep
just the minimum). The empty initial transition corresponds to Do = 0. Finally, we find a match
in the text whenever D,,_p < k.

This simulation has the advantage that it can be computed in parallel for all Z, since there is no
dependency between the current values of different diagonals. We use this property to design a fast
algorithm that exploits bit-parallelism for small patterns, and then extend it to handle the general
case.

5.2 A Linear Algorithm for Small Patterns

We show in this section how to simulate the automaton by diagonals using bit-parallelism, assuming
that our problem fits in a single machine word. We first select a suitable representation for our
problem and then describe the algorithm.

Since we have m — k non-trivial diagonals, and each one takes values in the range 0..k 4 1, we need
at least (m — k)[log,(k +2)] bits. However, we cannot efficiently compute the g function in parallel
for all ¢ with this optimal representation. We could precompute and store it, but it would take
O(a(k + 1)™ %) space if it had to be accessed in parallel for all i. At this exponential space cost,
the automaton approach of Section 3.1.2 is preferable.

Therefore, we use a unary encoding for the D; values, since in this case g can be computed in
parallel. Thus, we need (m — k)(k + 2) bits to encode the problem, where each of the m — k blocks
of k + 2 bits stores the value of a D;. Then we must have (m — k)(k+ 2) < w (where we recall that
w is the length in bits of the computer word). We address later the case where this does not hold.

Each value of D; is stored as 1’s aligned to the right of its (k4 2)-wide block (thus there is a separator
at the highest bit always having 0). The blocks are stored contiguously, the last one (¢ = m — k)
aligned to the right of the computer word. Thus, our bit representation of state Dy, ..., D,,_p is

D = 00k =D Pu g okti=Dz D2 g okt =Dk 1 Dmos

where we use exponentiation to denote digit repetition.
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Until now we have used a numerical view of the process, where the state of the search is represented
by a sequence of numbers D; and some arithmetical operations are performed on them. There is,
on the other hand, a more logical view, where we just consider the automaton as having active (1)
and inactive (0) states, so that the 1’s move across the arrows as they can.

In fact, what our word contains is a rearrangement of the 0’s and 1’s of (the relevant part of) the
automaton. It is important to notice that the rearrangement ezchanges 0’s and 1’s and reads the
diagonals left-to-right and upwards (see D in Figure 5.2).

separator separator final state

T T T T

D O Or 20 11 O O 01 1
1 1 1 1

Aonod AohoA

(2,3) (1,2) (0,1) (24) (1,3) (0,2)

t a p t t a

Bpt] | o or 11 1] of 01011

Figure 5.2: Encoding of the example NFA. In this example, b['t'] = 0011.

As both forms of reading the formulas are equivalent and direct, we encourage the reader to con-
sider the formulas that follow under these two alternative interpretations, as one may be easier
to grasp than the other depending on the reader. We make more explicit now how are these two
interpretations:

Numerical: consider our bit arrangement as a sequence of numbers D; represented in unary nota-
tion. Interpret the operations as arithmetical manipulations.

Logical: consider our bit mask as a mapping from the automaton states to bit positions (recall
that 0’s and 1’s are interchanged). Interpret the operations as bits that move from one place
to another.

With our bit representation, taking minimum is equivalent to anding, adding 1 is equivalent to
shifting one position to the left and oring with a 1 at the rightmost position, and accessing the next
or previous diagonal means shifting a block (k + 2 positions) to the left or right, respectively.

The computation of the g function is carried out by defining, for each character ¢, an m bits long
mask b[c|, representing match (0) or mismatch (1) against the pattern, and then computing a mask
Blc] having at each block the (k + 1) bits long segment of b[c] that is relevant to that block (see
Figure 5.2). That is,

blc] = (¢ # Pn) (¢ # Pn-1) ... (¢ # P1) (5.3)

where each condition stands for a bit and they are aligned to the right. So we precompute
Blc] = 0 sg41(b[c],0) 0 spy1(b[c],1) ... O spp1(bc],m—k —1)

for each ¢, where s;(z,7%) shifts # to the right in ¢ bits and takes the last j bits of the result (the
bits that “fall” are discarded). Note that Blc| fits in a computer word if the problem does.
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We have now all the elements to implement the algorithm. We represent the current state by
a computer word D. The value of all D;’s is initially k 4+ 1, so the initial value of D is D, =
(0 1¥+1)m—k_ The formula to update D upon reading a text character c is derived from Eq. (5.2)

D' = (D<<1)]|(0FtymFk
& (D << (k+3)) | (0k+11)ym—k-1g 1k+1
& (((z+ (0™ %) A 2) >> 1)
& Din (5.4)
where t = (D>>(k+2))]| Bl

We explain now how this formula is obtained:

e The update formula is a sequence of and’s, corresponding to the min of Eq. (5.2). For
instance, if we represent 3 and 5 in unary using 8 bits, we have 00000111 and 00011111,
respectively. If we perform an and on these representations, we get 00000111 & 00011111 =
00000111, which is the representation of 3, i.e. min(3,5).

e The first line corresponds to D; + 1. This is obtained by shifting the bits to the left one
position and putting a 1 in the “hole” left by the shift. For instance, if we do this to the
representation of 4 in eight bits (00001111) we get (00001111 << 1) | 00000001 = 00011111,
which is the representation of 5. This operation occurs inside each one of the m — k diagonals
represented.

e The second line corresponds to D;y; + 1. In this case the shift is by k£ + 3 positions, from
which k 4 2 account for bringing the data of the next diagonal to the position of the current
one, and the extra position shifted does the effect of the +1 as in the previous item. In this
case we also put the 1 to fill all the holes, except for the last diagonal which does not get
anything from the next one. The formula sets this last diagonal in 01**', which corresponds
to all inactive states.

e The third line is the g function applied to the previous diagonal. First, z is obtained by taking
the states of the previous diagonal (hence the shift to the right in k + 2 positions) and or-ing
them with the mask B[c], where c is the text character read and B aligns with the mapping
from automaton states to bit positions. The effect of the or is that only the bits which were
already active (i.e. zero) and can cross the horizontal arrow of the automaton (i.e. have B
in zero in the proper place) remain active (zero). The rest of the processing on « propagates
the active states down to the rest of the states of the diagonal (i.e. e-transitions). In our
representation this means that we want the zero of the lowest bit position to be propagated
to all the higher bit positions. This is obtained by adding 1, which will invert all the bits,
from lowest to highest, until a zero is found. That zero is also inverted but the inversion is
not propagated anymore. Finally, the “A” (exclusive or) operation compares two numbers
bitwise and sets to 0 the positions where the bits are equal and to 1 the others. If we compare
the original z and the new result of adding 1, we have that all the bits from the lowest one
to the first zero (inclusive) differ, and the rest are equal. Since we wanted zeros from the
first zero of z to the highest bit, it is just a matter of shifting one position to the right. For
instance, if z = 01001011, we add 1 to obtain 01001011 4+ 00000001 = 01001100, and then
the exclusive-or yields 01001100 A 01001011 = 00000111, which after shifting one position to
the right becomes 00000011. This last number represents the propagation of the lowest zero
of z to the left.
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e Finally, the fourth line ensures the invariant of having zeros in the separators (needed to limit
the propagation of “4”).

Note that we are assuming that the shifts get zeros from both borders of the word (i.e. unsigned
semantics). If this is not the case in a particular architecture, additional masking is necessary Z.

We detect that state (m, k) is active by checking whether D & (1 << k) is 0. When we find a
match, we clear the last diagonal. This ensures that our occurrences always end with a match.

5.2.1 A Simple Filter

We can improve the previous algorithm (and in fact most other algorithms as well) by noticing
that any approximate occurrence of the pattern with k errors must begin with one of its k& + 1 first
characters. This allows quickly discarding large parts of the text performing very few operations
per character.

We do not run the automaton through all text characters, but scan the text looking for any of the
k + 1 initial characters of the pattern. Only then do we start the automaton. When the automaton
returns to its initial configuration, we resume the scanning. The scanning is much cheaper than the
operation of our automaton, and in fact it is cheaper than the work done per text character in most
other algorithms (except possibly filtration algorithms).

We precompute a boolean table S[c], that stores for each character ¢ whether it is one of the first
k +1 letters of the pattern. Observe that this table alone solves the problem for the case k =m —1
(since each positive answer of S is an occurrence).

5.2.2 The Code

Figure 5.3 presents the complete algorithm (i.e. using the automaton plus the filter). For simplicity,
we do not refine the preprocessing, which can be done more efficiently than the code suggests.

5.3 Handling Extended Patterns

We show now that some of the extended patterns considered in [BYG92, WM92a, WMM96] and
explained Section 3.2.1 in can be introduced into our algorithm at no additional search cost.

As in the Shift-Or algorithm for exact matching [BYG92], we can specify classes of characters. This
is achieved by modifying the b[] table (5.3), making any element of the set to match that position,
with no running time overhead. That is, if P = P;...P,, where now P; C 3, then we replace the

condition (¢ # P;) of (5.3) by (c ¢ F;).

In addition to classes of characters, we can support the # operator as defined in [WM92a|. That is,
z#ty allows zero or more arbitrary characters among the strings # and y in the occurrences. Those
characters are not counted as errors. As shown in [WM92al, in order to handle this operator we
must enforce that whenever an automaton state in column |z| is active, it keeps active from then
on.

2 Although programming language standards such as ANSI C ensure this property, those specifications are not
always followed by all implementations, especially when the underlying architecture does not favor it.
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search (T,n,P,m,k)
{ /* preprocessing */
for each c€ X
(8 = (¢ # Pu) (¢ # Put) o (c £ PY)
Blc] = 0 sg+1(b[c],0) 0 sgy1(bc],1) ... 0 spy1(blc],m—k—1)
Sle] = (c€ Prg+1)

}

D;, = ( 1k—|—1 m—k

M1 = ( k+11)m—k

M2 = (0 +11)m k-1 0 1k+1
M3:0(m k—1)(k+2) 0 1k+1
G=1<<k

/* searching */
D = D;,
i=0
while (+4¢<=n)
it (S[Ti) /* is one of the first k+ 1 characters? x/

do { z=(D>> (k+2) | BT}
D=((D<<1) | M1) & ((D<< (k+3)) | M2)
& (z+M1) A z)>>1) & Dy,
£ (D & G ==0)
{ report a match ending at ¢
D=D | M3 /* clear last diagonal */

}
}
while (D ! = D;, && ++4i<=n)

Figure 5.3: Algorithm to search for a short pattern. Recall that strings start at position 1.

Hence, to search for z1#xo#...# 2 we create a Dy word having all 1’s except at all states of columns
|z1], 21| + |22], ..., |21] + 22| + ... + |2t—1|. We now modify the computation of z in Eq. (5.2), which
becomes

z = (D>>(k+2))|Blc]) & (D] Dy)
(clearly this technique is orthogonal to the use of classes of characters).

We can modify the automaton to compute the edit distance (more precisely, determine whether the
edit distance is < k or not). This is obtained by eliminating the initial self-loop and initializing the
automaton at D = D;,,. However, we need to represent the k+1 initial diagonals that we discarded.
If we need the exact edit distance, we must also represent the last k diagonals that we discarded.
If there is no a priori bound on the distance, we need to set k =m

We can search for whole words, running the edit-distance algorithm only from word beginnings
(where we re-initialize D = D;,,), and checking matches only at the end of words.

Searching with different integral costs for insertion and substitution (including not allowing such
operations) can be accommodated in our scheme, by changing the arrows. Deletion is built into
the model in such a way that in order to accommodate it we must change the meaning of our
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“diagonals”, so that they are straight e-transition chains.

Other generalizations are studied in [WM92a]. We can handle them too, although not as easily
and efficiently as the previous ones. One such generalization is the combination in the pattern of
parts that must match exactly with others that can match with errors. The adaptation to avoid
propagation of e-closures in our scheme is ad-hoc and not as elegant as in [WM92a]. However, we
believe that the most effective way to handle these patterns is to quickly search for the parts that
match exactly and then try to extend those matches to the complete pattern, using the automaton
to compute edit distance.

Another such generalization is the approximate search of regular expressions. In [WM92a], the
regularities among rows allow solving any regular expression of m letters using [m/8] or even
[m/16] operations per text character, using [m/8]2%[m/w] or [m/16]2'%[m/w] machine words of
memory, respectively. Our automaton is not so regular, and we would need roughly O(k?) times
the space requirements and operations per text character of [WM92a]. To be more precise, in our
scheme their formulas are still valid provided we replace m by (m — k)(k + 2). For instance, at the
cost they pay for m < 32, we can only solve for m < 9. However, our scheme is still reasonably
applicable for short expressions.

5.4 Partitioning Large Automata

If the automaton does not fit in a single word, we can partition it using a number of machine words
for the simulation.

First suppose that k is small and m is large. Then, the automaton can be “horizontally” split into
as many subautomata as necessary, each one holding a number of diagonals. We call “d-columns”
those sets of diagonals packed in a single machine word. Those subautomata behave differently than
the simple one, since they must communicate their first and last diagonals with their neighbors.
Thus, if (m — k)(k + 2) > w, we partition the automaton horizontally in J d-columns, where
J = [(m — k)(k + 2)/w]. Note that we need that at least one automaton diagonal fits in a single
machine word, i.e. k+ 2 < w.

Suppose now that k is large (close to m, so that the width m — k is small). In this case, the
automaton is not wide but tall, and a vertical partitioning becomes necessary. The subautomata
behave differently than the previous ones, since we must propagate the e-transitions down to all
subsequent subautomata. In this case, if (m — k)(k+2) > w, we partition the automaton vertically
in I d-rows (each d-row holding some automaton rows of all diagonals), where I has the same
formula as J. The difference is that, in this case, we need that at least one automaton row fits in
a machine word, i.e. 2(m — k) < w (the 2 is because we need an overflow bit for each diagonal of

each cell).

When none of the two previous conditions hold, we need a generalized partition in d-rows and
d-columns. We use I d-rows and J d-columns, so that each cell contains £, bits of each one of ¢,
diagonals. It must hold that (£, + 1){, < w (see Figure 5.4).

Simulating the automaton is now more complex, but it follows the same principle of the update
formula (5.4). We have a matrix of automata D; ; (¢ € 0..] — 1,5 € 0..J — 1), and a matrix of masks
B; ; coming from splitting the original B. The new update formula for a text character c is
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J d-columns

Figure 5.4: A 2 x 3 partitioned automaton where £, = 3, £, =2, I =2, J = 3. We selected a
cell (bold edges) and shaded all the nodes of other cells affected by it. The bold-edged cell must

communicate with those neighbors that own shaded nodes.

D!. = (Di; << 1) | (Diz1; >> (£ — 1)) & (0% 1)%)
& ((Dij << (6 +2)) |
((Di-1; << 2) & (071)%) |
(Di-1,j41 >> ((& + 1)(Le = 1) + £ — 1)) |
(Dij+1 >> (& + 1)(Le — 1) = 1)))
& (((z+ (071)%) A z) >>1)
& Dy,
(Dig >> (6 + 1)) | (Dijos << (6 + 1)(te— 1)) | Basle)
& (DLyy >> (6 1)) | (1%0)%)
and it is assumed D_;; = D; 5 = 1r+1)e and D;_y = 0+l We find a match whenever

Djy_1 j-1 has a 0 in its last position, i.e. at (k—£,.(I — 1))+ (¢, + 1)(£.J — (m — k)), counting from
the right. In that case, we must clear the last diagonal, i.e. that of D; y_; for all i.

where =z =

If we divide the automaton in IJ subautomata (I d-rows and J d-columns), we must update I cells
at each d-column. However, we use the cut-off heuristic of [Ukk85b] (see Section 3.1.1), i.e. we
do not process the m columns but only up to the last active one. That is, we work only on active
automaton diagonals. Figure 5.5 illustrates.

Figure 5.5: Illustration of active diagonals. The shaded areas are the active states of the automaton.
It is only necessary to work on the area surrounded by dashed lines.

There are many options to pick (I, J) for a given problem. The best choice is a matter of optimization
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which we address later. All the techniques to handle extended patterns are easily implemented in
a partitioned automaton.

5.5 Partitioning the Pattern

The Partitioning Lemma proved in Section 4.2 allows us to reduce the number of errors if we divide
the pattern, provided we search all the subpatterns. Each match of a subpattern must be checked
to determine if it is in fact a complete match (notice that the subpatterns can be extended patterns
themselves). Suppose we find at position T ; the end of a match for the subpattern ending at P ;.
Then, the potential match must be searched in the area T;_ ;11 _k. i—j4+14m+k, an (m+2k)-wide area.
This checking must be done with an algorithm resistant to high error levels, such as our automaton
partitioning technique. As we show later, for moderately long patterns this is faster than plain
dynamic programming and the cut-off heuristic of [Ukk85b]. Recall that we use the hierarchical
verification technique explained in Section 4.3.1.

To perform the partition, we pick an integer j, and split the pattern into j subpatterns of length
m/j (more precisely, if m = ¢j + r, with 0 < r < j, r subpatterns of length [m/j] and j — » of
length |m/j|). Because of the Lemma, it is enough to check if any of the subpatterns is present in
the text with at most |k/j| errors.

If we partition the pattern in j parts, we have to perform j searches. Moreover, those searches will
together trigger more verifications as j grows (i.e. a piece split in two will trigger all the verifications
triggered by the original piece plus spurious ones). This fact is reflected in the formula for the match
probability of Section 4.1 (Eq. (4.1)), since the match probability is now O('ym/j), which may be
much larger than O(y™) even for a single piece. Therefore, we prefer to keep j small.

A first alternative is to make j just large enough for the subproblems to fit in a computer word,

e (D e BB e

where the second condition avoids searching a subpattern of length m' with k' = m’ errors (those of
length [m/j| are guaranteed to be longer than |k/j| if m > k). Such a j* always exists if k < m.

A second alternative is to use a smaller j (and therefore the automata still do not fit in a computer
word) and combine this technique with automaton partitioning for the subpatterns.

Figure 5.6 shows the general algorithm, which is written in that way for clarity. In a practical
implementation, it is better to run all subsearches in synchronization, picking at any moment the
candidate whose initial checking position is the leftmost in the set, checking its area and advancing
that subsearch to its next candidate position. This allows us to avoid re-verifying the same text
because of different overlapping candidate areas, which is done by remembering the last checked
position and keeping the state of the checking algorithm.

The effectiveness of this method is limited by the error level. If the subpatterns appear very often,
we spend a lot of time verifying candidate text positions. In Section 5.7 we find out which is the
maximal error level for this scheme to be efficient.

A special case of this algorithm occurs if we use j = k41, since then the pieces are searched with zero
errors. This is a qualitatively different algorithm which was previously known (see Section 3.1.3).
We can perform a single multipattern search, using an Aho-Corasick machine [AC75] to guarantee
O(n) total search time, or an extension of the Boyer-Moore family which is faster for few patterns.

79



PatternPartition (T,n, P,m,k)
{3 = min {1/ (m/rl— Lk/r)(Uk/rl+2) <w A [mfr] > [k/r]}
if (j =1) search (T,n,P,m,k)
else { a=1
for r 0.5 -1
{len=(r<m % j) 7 [m/i] : |m/i]
b=a+len—-1
for each positioni reported by search(T,n, P, plen,|k/j])
check the area T; pi1—k. i—bti+mtk

a=b+1

Figure 5.6: Algorithm for pattern partitioning.

Wu and Manber [WM92a] propose to use the multipattern version of the Shift-Or, whose advantage
is flexibility in the queries. In particular, if the pattern is extended, the multipattern Shift-Or
algorithm is the correct choice. Baeza-Yates and Perleberg, on the other hand, propose to extend
a Boyer-Moore type algorithm [BYP96].

For non extended patterns, we preferred to use the Sunday algorithm [Sun90] extended to multipat-
tern search. However, in Section 6.1 we elaborate more on this algorithm and find new improvements
on it. Therefore, in this chapter we do not consider the partition into k + 1 pieces as part of the
bit-parallel algorithm.

5.6 Superimposing the Subpatterns

When the search is divided into a number of subsearches for smaller patterns P!, ..., P", it is possible
to avoid searching for each one separately. We describe a technique, called superimposition, to
collapse a number of searches into a single one.

In our scheme, all patterns have almost the same length. If they differ (at most by one), we truncate
them to the shortest length. Hence, all the automata have the same structure, differing only in the
labels of the horizontal arrows.

The superimposition is defined as follows: we build the 5[] table for each pattern (Eq. (5.3)), and
then take the bitwise-and of all the tables. The resulting b[] table matches in the position ¢ with
the i-th character of any pattern. We then build the automaton as before using this table. The
resulting automaton accepts a text position if it ends an occurrence of a much more relaxed pattern
(in fact it is an extended pattern), namely

{P},..,P]} ... {P., .., P}

for example, if the search is for "patt" and "wait", the string "watt" is accepted with zero errors
(see Figure 5.7). Each occurrence reported by the automaton has to be verified for all the patterns
involved.

For a moderate number of patterns, this still constitutes a good filtering mechanism, at the same
cost of a single search. Clearly, the relaxed pattern triggers many more verifications than the simple
ones. This severely limits the amount of possible superimposition. However, as we show later, in
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Figure 5.7: An NFA to filter the parallel search of "patt" and "wait".

practice this can cut the search times by a factor of two or three. This idea has been applied to
multiple approximate string matching, where similar speedup figures were obtained (see Chapter 7).

We analyze later how many subpatterns can be collapsed while keeping the number of verifications
low. We must then form sets of patterns that can be searched together, and search each set
separately. If we use pattern partitioning in j pieces and superimpose in groups of r pieces, we
must perform [j/r] superimposed searches. We keep the groups of almost the same size, namely
" = j/[7/r]] and »' = [j/[j/r]]. Notice that extended patterns containing #’s may not be
superimposed because their Dy words are different.

We group subpatterns which are contiguous in the pattern. When an occurrence is reported we
cannot know which of the superimposed subpatterns caused the match (since the mechanism does
not allow knowing), so we check whether the concatenation of the subpatterns appears in the area.
From that point on, we use the normal hierarchical verification mechanism.

Observe that having the same character at the same position for two patterns improves the filter
efficiency. This fact can be used to select the best partition of the pattern.

5.7 Analysis and Optimization

In this section we analyze the different aspects of our algorithms, and use this analysis to find the
optimal choice for the many alternatives that have been left open. The theoretical analysis is inter-
mingled with practical tuning sections and experiments showing their performance and confirming
the analysis.

It is important to notice that our average-case analysis assumes that the pattern is not extended
and that text and patterns are random strings over an independently generated and uniformly
distributed alphabet of size o. If the alphabet is not uniformly distributed we must replace the o
in the formulas by 1/p, where p is the probability that two random letters match. For generalized
patterns, the average values are different, but we are not able to compute them.
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Figure 5.8: Times in seconds for m = 9, n = 1 Mb. The plot on the left is for random text (o = 32),
and that on the right is for English text.

5.7.1 The Simple Algorithm

The preprocessing phase of this algorithm can be optimized to take O(o + m min(m, o)) time, and
it requires O(o) space. The search phase needs O(n) time.

However, this algorithm is limited to the case in which (m — k)(k + 2) < w. In the RAM model it
is assumed log, n < w, so a machine-independent bound is (m — k)(k + 2) < log, n.

Since (m — k)(k + 2) takes its maximum value when k = m/2 — 1, we can assure that this algorithm
can be applied whenever m < 2(y/w — 1), independently of k. That is, we have a linear algorithm
for m = O(y/logn), for example, m < 9 for w = 32 bits, or m < 14 for w = 64 bits.

Our algorithm shares with Wu and Manber work [WM92a| the NFA model and the idea of using
bit-parallelism. However, the parallelization techniques are different. We compare both algorithms
in their most simple setups.

A general implementation of the Wu and Manber code needs to use an array of size k+ 1. However,
we implemented optimized versions for k = 1, 2 and 3. That is, a different code was developed for
each k value, in order to avoid the use of arrays and enable the use of machine registers. We show
both algorithms (optimized and general). We also show the effect of our simple speed-up heuristic
(the S table), running our algorithm with and without that filtration heuristic.

Figure 5.8 shows the results. We show the case m = 9 (where we can use the simple algorithm).
This test was run on a Sun SparcStation 4 running Solaris 2.3, with 32 Mb of RAM and w = 32.

5.7.2 Automaton Partitioning

5.7.2.1 Search Cost

The preprocessing time and space complexity of this algorithm is O(mko/w). Since automaton
partitioning gives us some freedom to arrange the cells, we find out now the best arrangement.

First recall that we work only on the active diagonals of the automaton. In Section 4.1 we obtained
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the expected value for the last active column in the automaton (Eq. (4.5)). This measures active
columns and we work on active diagonals. To obtain the last active diagonal we subtract k, to
obtain that on average we work on ke/(/o — e) diagonals.

This is because the last active column depends on the error level k. Hence, at automaton row i
(where only ¢ errors are allowed) the last active column is lcol(?) = /(1 — e/+/c). Hence, the last
active column defines a diagonal line across the automaton whose slope is 1/(1 — e/4/0). Figure 5.9
illustrates the situation. All the active states of the automaton are to the left of the dashed diagonal.

The number of diagonals affected from the first one (thick line) to the dashed one is k/(1—e/+/0)—k.

0 N
N N Automaton
= AN —— Initial diagonal
AN N\
. AN —— Last active column:
Z N
N\ N N .
< . leol(?) =i/(1—e/+\/0))
AN AN . .
- . - - - Last active diagonal
\\ N
AN N
k N

k k/(1-¢/+/o)

Figure 5.9: Converting active columns to active diagonals. The shaded area represents the active
states of the automaton.

Since we pack (m — k)/J diagonals in a single cell, we work on average on ke/(y/o —e) X J/(m — k)
d-columns. Each d-column must work on all its I cells. On the other hand, there are only J
d-columns. Hence our total complexity is

which shows that any choice for I and J is the same for a fixed IJ. Since IJ ~ (m — k)(k+ 2)/w
(total number of bits to place divided by the size of the computer word), the final cost expression
is independent (up to round-offs) of I and J:

. ( ke ) k42
min | m — k ,

JVo—e

This formula has two parts. First, for @ < 1—e/,/7, it is O(k*n/(\/ow)) time. Second, if the error
ratio is high (o > 1 — e/4/0), it is O((m — k)kn/w). This last complexity is also the worst case
of this algorithm. Recall that in practice the value e should be replaced by 1.09 and the average
number of active columns is that of Eq. (4.6).

n (5.6)

w

5.7.2.2 Practical Tuning

Since the crude analysis does not give us any clue about which is the optimal selection for I and J,
we perform a more detailed analysis. The automaton is partitioned into a matrix of I rows and J
columns, each cell being a small sub-automaton that stores £, rows of ¢, diagonals of the complete
automaton. Because of the nature of the update formula, we need to store (¢, + 1){. bits for each
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sub-automaton. Thus, the conditions to meet are

k+1 —k

Notice that in some configurations the cells are better occupied than in others, due to round-
offs. That is, once we select £, and £, the best possible packing leaves some bits unused, namely
w — (£, + 1)L..

One could, in fact, try every I and J and pick the configuration with fewer cells. Since we work
proportionally to the number of cells, this seems to be a good criterion. Some configurations need
more cells than others because, due to round-offs, they use less bits in each computer word (i.e.
cell). In the worst possible configuration, w/2 + 1 bits can be used out of w, and in the best one
all the w bits can be used. It is clearly not possible to use as few as w/2 bits or less, since in that
case there is enough room to pack the bits of two cells in one, and the above equations would not
hold. Hence, the best we can obtain by picking a different I and J is to reduce the number of cells
by a factor of 2.

However, by selecting minimal I, the possible automata are®: (a) horizontal (I = 1), (b) horizontal
and with only one diagonal per cell (I = 1,4, = 1), or (c) not horizontal nor vertical, and with
only one diagonal per cell (I > 1,J > 1,£. =1). Those cases can be solved with a simpler update
formula (2 to 6 times faster than the general one), since some cases of communication with the
neighbors are not present. Moreover, a more horizontal automaton makes the strategy of active
columns work better.

This much faster update formula is more important than the possible 2-fold gains due to round-offs.
Hence, we prefer to take minimal I, i.e.

I= [(k—l_l)/(w_ 1)—| ) l = [(k+1)/1—| ) le = Lw/([r‘l'l)J ) J= [(m_k)/[c—|

However, the three cases mentioned do not cover (d) a purely vertical partitioning, (i.e. J = 1),
which is applicable whenever 2(m — k) < w and has also a simple update formula. The selection for
vertical partitioning is J, = 1, £ye = m — k, £y, = |w/(m— k)| — 1, I, = [(k+ 1) /4y, |. Figure 5.10
shows an experimental comparison between (¢) and (d).

The mechanism we use to determine the optimal setup and predict its search cost integrates exper-
imental and analytical results, as follows.

o We experimentally obtain the time that each type of automaton spends per text character
(using least squares over real measures). We express those costs normalized so that the cost
of the core algorithm is 1.00. These costs have two parts:

— A base cost that does not depend on the number of cells: (a) 1.02, (b) 1.13, (¢) 0.12, (d)
1.66.

— A cost per processed cell of the automaton: (a) 1.25, (b) 0.83, (c) 2.27, (d) 1.36.

— A cost spent in keeping account of which is the last active diagonal: (a) 0.68, (b) 0.20,
(c) 1.66. Notice that although at a given text position this work can be proportional to
the number of active columns, the amortized cost is O(1) per text position. To see this,
consider that at each text character we can at most increment by one the last active

®This is true provided we solve the case k = m — 1 with a simpler algorithm, i.e. the S filter alone.
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Figure 5.10: Times in seconds for vertical partitioning (dashed line) versus minimal rows partitioning
(solid line). We use m = 50, w = 32, 0 = 32, n = 1 Mb, random text and patterns.

column, and therefore no more than n increments and n decrements are possible in a
text of size n. Hence the correct choice is to consider this cost as independent on the
number of cells of the automaton.

e We analytically determine using Eq. (4.6) the expected number of active d-columns.

e Using the above information, we determine whether it is convenient to keep track of the last
active column or just modify all columns (normally the last option is better for high error
ratios). We also determine which is the most promising partition.

Since this strategy is based on very well-behaved experimental data, it is not surprising that it
predicts very well the cost of automaton partitioning and that it selected the best strategy in
almost all cases we tried (in some cases it selected a strategy 5% slower than the optimal, but not
more).

Finally, notice that the worst case complexity of O(k(m—k)/w) per inspected character is worse than
the O(m) of dynamic programming when the pattern length gets large, i.e. m > w/(a(1—«a)). This
ensures that automaton partitioning is better for m < 4w, which is quite large. In fact, we should
also account for the constants involved. The constant for partitioned automata is nearly twice as
large as that of dynamic programming, which makes sure that this method is better for m < 2w. We
use therefore a partitioned automaton instead of dynamic programming as our verification engine
for potential matches in the sections that follow.

Figure 5.11 shows an experimental comparison between plain dynamic programming, the Ukkonen
cutoff variant [Ukk85b] and our partitioned automaton for large patterns. In the worst moment
of the partitioned automaton, it is still faster than dynamic programming up to m = 60, which
confirms our assumptions. As explained at the end of Section 5.9, the peaks in our algorithm are
genuine.

5.7.2.3 Improving Register Usage

We finish this section explaining an improvement in the engineering of the algorithm that leads
to triplicating the performance in some cases. The improvement is based on better usage of the
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Figure 5.11: Times in seconds for partitioned automaton (thick line) versus dynamic programming
(dashed line) and the Ukkonen’s improvement (solid thin line). The left plot is for m = 50 and the
right one for m = 100. We use w = 32, ¢ = 32, n = 1 Mb, random text and patterns.

computer registers.

The main difference in the cost between the core algorithm and an horizontally partitioned au-
tomaton is that in the first case we can put in a register the machine word which simulates the
automaton. This cannot be done in a partitioned automaton, since we use an array of words. The
locality of accesses of those words is very low, i.e. if there are a active d-columns, we update for
each text character all the words from D; to D,. Hence, we cannot keep them in registers.

An exception to the above statement is the case a = 1. This represents having active only the first
cell of the horizontal automaton. We can, therefore, put that cell in a register and traverse the text
updating it, until the last diagonal inside the cell becomes active. At that point, it is possible that
the second cell will be activated at the next character and we must resume the normal searching
with the array of cells. We can return to the one-cell mode when the second cell becomes inactive
again.

With this technique, the search cost for a pattern is equal to that of the core algorithm until the
second automaton is activated, which in some cases is a rare event. In fact, we must adjust the
above prediction formulas, so that the horizontal automata cost the same as the core algorithm
(1.00), and we add the above computed cost only whenever their last diagonal is activated. The

probability of this event is f({. + k, k).

This technique elegantly generalizes a (non-elegant) truncation heuristic proposed in earlier versions
of this work [BYN98d]. It stated that, for instance, if we had m = 12, k = 1, better than partitioning
the automaton in two we could just truncate the pattern by one letter, use the core algorithm and
verify each occurrence. With the present technique we would automatically achieve this, since the
last letter will be isolated in the second cell of the horizontal automaton.

Notice that this idea cannot be applied to the case I > 1, since in that case we have always more
than one active cell. In order to use the technique also for this case, and in order to extend the idea
to not only the first cell, we could develop specialized code for two cells, for three cells, and so on,
but the effort involved and the complexity of the code are not worth it.

Figure 5.12 shows the improvements obtained over the old version. The better register usage is
more noticeable for low error levels (horizontal partitioning).
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Figure 5.12: Times in seconds for partitioned automata before (thin line) and after (thick line)
improving the register usage. We use m = 60, w = 32, ¢ = 32, n = 1 Mb, random text and
patterns.

5.7.3 Pattern Partitioning
5.7.3.1 Search Cost

The cost of pattern partitioning depends on the number j of pieces used. In the worst case each
text position must be verified, and since we avoid re-checking the same text, we have the same cost
as automaton partitioning. We consider the average case in which follows. This analysis holds only
for non-extended patterns.

The minimum number of pieces j* is given by Eq. (5.5), from which we derive the next equation

(5 3) ()
- — T —+2)=w
”oor J*

whose solution (disregarding roundoffs) is

P A G T () (5.7)

w

where
o

d(w,a):l; (1—|—\/1—|—wa/(1—a))

As a function of a, d(w, &) is convex and is maximized for « = 1/2 (1 —1/(y/w — 1)), where it takes
the value 1/(2(v/w — 1)). To give an idea of the reduction obtained over the classical O(mn) cost,
this maximum value is 0.11 for w = 32 and 0.07 for w = 64.

Observe that we discarded the second condition of Eq. (5.5), namely |[m/j| > |k/j|. This is because
if [m/j| = |k/j|, then j > m — k, which implies @ > 1 —1/(w — 1). As we show next, this value of
a is outside our area of interest (i.e. it is larger than 1 — 1/,/7), except for ¢ > (w — 1)2, that is,
extremely large alphabets (e.g. o close to 1000 for w = 32).

Excluding verifications, the search cost is O(j*n). For very low error ratios (a < 1/w), j* = O(m/w)

and the cost is O(mn/w). For higher error ratios, j* = O(y/mk/w) and then the search cost is
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O(y/mk/w n). Both cases can be obviously bounded by O(mn/,/w). The preprocessing time and

storage requirements for the general algorithm are j times those of the simple one.

We consider now the other component of the search cost, that is, the cost to verify the neighborhoods
of the text places which match some subpattern. If we simply verify the complete area for the
complete pattern, then we have that for each matching piece we have to pay O(m?) time to verify
the neighborhood of the area where it occurred. In Section 4.1 we have proven that the probability
that a piece of length m/j* matches is O(y™/7"), where 7 is defined in Eq. (4.1) and it holds that
v < 1 whenever o < 1—e/+/o (notice that o is the same for all the subpatterns). Then, the average
cost paid to check all the matches of each piece is O(m?y™/7"). For this cost (which has to be added
up for all the j* pieces) not to affect the total O(j*n) search cost, we need v < 1/m?™/™ i.e.
a < 1—%7715% = 1—%77”;1?;xx

which decreases as m grows. Therefore, this method degrades for longer patterns. This is caused
mainly because a large pattern is verified whenever any pieces matches. Hence, the verification cost
keeps constant while the probability to make the verification increases with j* (i.e. with m). This
makes this method to stop working long before the limit o < 1 — 1.09/4/0 shown in Section 4.1.

However, the hierarchical verification technique presented in Section 4.3.1 does not degrade as the
pattern grows. In that section (Eq. (4.7)) we show that the total amount of verification work for
each piece is O((m/j%)?>y™/7*). This is much better than O(m2y™/7*), and in particular it is O(1)
whenever y < 1, so it does not affect the total search cost of the pieces, even if m grows.

Although when there are few matches (i.e. low error level) the simple and hierarchical verification
methods behave similarly, there is an important difference for medium error levels: the hierarchical
algorithm is more tolerant to errors. We illustrate this fact in Figure 5.13. As it can be seen, both
methods eventually are overwhelmed by the verifications before reaching the limit &« = 1—-1.09//0.
This is because, as j grows, the cost of verifications O((m/j*)2'ym/j*) increases. In the case ¢ = 32,
the theoretical limit is o* = 0.83 (i.e. k& = 50), while the simple method ceases to be useful for
k = 35 (i.e. a = 0.58) and the hierarchical one works well up to k = 42 (i.e. a = 0.7). For
English text the limit is o* = 0.69, while the simple method works up to £ = 30 (o = 0.50) and the
hierarchical one up to k = 35 (a = 0.58).

It is also noticeable that the hierarchical method works a little harder in the verifications once
they become significative (very high error levels). This is because the hierarchy of verifications
makes it to check many times the same text area. On the other hand, we notice that the use of
partitioned automata instead of dynamic programming for the verification of possible matches is
especially advantageous in combination with hierarchical verification, since in most cases we verify
only a short pattern, where the automaton is much faster than dynamic programming.

5.7.3.2 Optimal Selection for j

It is possible to use just automaton partitioning to solve a problem of any size. It is also possible
to use just pattern partitioning, with j large enough for the pieces to be tractable with the kernel
algorithm directly (i.e. 7 = j*).

It is also possible to merge both techniques: partition the pattern into pieces. Those pieces may or
may not be small enough to use the kernel algorithm directly. If they are not, search them using
automaton partitioning. This has the previous techniques as particular cases.
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Figure 5.13: Times in seconds for simple (thin line) versus hierarchical (thick line) algorithms for
pattern partitioning. We use m = 60, w = 32, and n = 1 Mb. On the left, random text (o = 32).
On the right, English text.

To obtain the optimal strategy, consider that if we partition in j subpatterns, we must perform j
searches with |k/j] errors. For a < 1 — e/ /o, the cost of solving j subproblems by partitioning
the automaton is (using Eq. (5.6))

Sl (k)5 +2) o ke(kj212)
w mo= (Vo —e)w

which shows that the lowest cost is obtained with the largest j value, and therefore j = j* is the
best choice.

However, this is just an asymptotic result. In practice the best option is more complicated due to
simplifications in the analysis, constant factors, and integer roundoffs. For instance, a pattern with
4 pieces can be better searched with two horizontal automata of size (I = 1,J = 2) than with four
simple automata (especially given the improvements of Section 5.7.2.3). The cost of each automaton
depends heavily on its detailed structure. Therefore, to determine the best option in practice we
must check all the possible j values, from 1 to j* and predict the cost of each strategy. This cost
accounts for running j automata of the required type (which depends on j), as well as for the cost
to verify the potential matches multiplied by their probability of occurrence (using Eq. (4.1)).

5.7.4 Superimposition
5.7.4.1 Optimizing the Amount of Superimposition

Suppose we decide to superimpose r patterns in a single search. We are limited in the amount
of this superimposition because of the increase in the error level to tolerate, with the consequent
increase in the cost of verifications. We analyze now how many patterns we can superimpose.

As shown in Section 4.1 (Eq. (4.1)), the probability of a given text position matching a random
pattern is O(y™), where vy depends on a and o. This cost is exponentially decreasing with m for
a < 1—e/y/o, while if this condition does not hold the probability is very high.

In this formula, 1/0 stands for the probability of a character crossing a horizontal edge of the
automaton (i.e. the probability of two random characters being equal). To extend this result,
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we notice that we have r characters on each edge now, so the above mentioned probability is
1-(1-1/0)" ~ r/o. The (pessimistic) approximation is tight for » << o. We use the approximation
because in practice r will be quite modest compared to o.

Hence, the value of ¥ when superimposing » patterns (which we call 4’ to keep unchanged the old

v value) is
l-a
7
Y = | —————— = plmay (5.8)
oal-=(1 - a)?

and therefore the new limit for « is
7
a<l-— e\/j
o

or alternatively the limit for » (i.e. the maximum amount of superimposition r* that can be used
given the error level) is

o (1-a)?

2

r* =

e

which for constant error level is O(o) independent on m. This is not the only restriction on 7,
because we must check all the r superimposed patterns in the area and therefore the verifications
cost more. However, as shown in Section 4.3.2, our average verification cost is independent on
r provided we search them hierarchically. Thanks to this and the other hierarchical verification
mechanism (of Section 4.3.1) we can superimpose more patterns than if using simple verification.
This translates into better performance everywhere, not only when the error level is becoming high.

Considering the above limit, the total search cost becomes 1/r* = O(1/(o (1 — a)?)) times that of
pattern partitioning. For instance, if we partition in j* pieces (so that they can be searched with
the core algorithm), the search cost becomes

o(Ga-ar ")

which for o < 1/w is O(mn/(wo)), and for higher error level becomes O(y/mk/(wo) n) (this is
because 1 — « is lower bounded by e//c). Again, a general bound is O(mn//wo).

A natural question is for which error level can we superimpose all the j* patterns to perform just
one search, i.e. when r* = j* holds. That is

o(l - a)?

m d(w, a) = 5
e

whose approximate solution is

€2m

-

where as always we must replace e by 1.09 in practice. As we see in the experiments, this bound is
pessimistic because of the roundoff factors which affect j* for medium-size patterns.

a < o =1 (5.9)

Notice that superimposition stops working when r* = 1, i.e. when a =1 — ¢//o. This is the same
point when pattern partitioning stops working. We show in Figure 5.14 the effect of superimposition
on the performance of the algorithm and its tolerance to the error level. As we see in Section 5.9,
we achieve almost constant search time until the error level becomes medium. This is because we
automatically superimpose as much as possible given the error level.
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Figure 5.14: Times in seconds for superimposed automata. Superimposition is forced to r = 2 (solid
line), 4 (dashed line) and 6 (dotted line). The larger r, the faster the search but it stops working
for lower error levels. We use m = 100, w = 32, and » = 1 Mb and random text and patterns with
o= 32.

5.7.4.2 Optimal Grouping and Aligning

Two final aspects allow further optimization. A first one is that it is possible to try to form the
groups so that the patterns in each group are similar (e.g. they are at small edit distance among
them, or they share letters at the same position). This would decrease the probability of finding
spurious matches in the text. A possible disadvantage of this heuristic is that since the subpatterns
are not contiguous we cannot simply verify whether their concatenation appears, but we have to
check if any of the corresponding leaves of the tree appears. The probability that the concatenation
appears is much lower.

A second one is that, since we may have to prune the longer subpatterns of each group, we can
determine whether to eliminate the first or the last character (the pattern lengths differ at most by
one), using the same idea of trying to make the patterns as similar as possible.

None of these heuristics have been tested yet.

5.8 Combining All the Techniques

At this point, a number of techniques have been described, analyzed and optimized. They can be
used in many combinations for a single problem. A large pattern can be split into one or more
subpatterns (the case of “one” meaning no splitting at all). Those subpatterns can be small enough
to be searched with the kernel algorithm or they can be still large and need to be searched with a
partitioned automaton. Moreover, we can group those automata (simple or partitioned) to speed
up the search by using superimposition.

The analysis helped us to find more efficient techniques and to determine the area where each
technique can be used. However, a number of questions still arise. Which is the correct choice to
split the pattern versus the size of the pieces? Is it better to have fewer pieces or smaller pieces? How
does the superimposition affect this picture? Is it better to have more small pieces and superimpose
more pieces per group or is it better to have larger pieces and smaller groups?
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We study the optimal combination in this section. We begin showing the result of a theoretical
analysis and then explain the heuristic we use.

5.8.1 A Theoretical Approach

The analysis recommends using the maximal possible superimposition, » = r*, to reduce the number
of searches. As proved in Section 5.7.3.2, it also recommends to use the maximal j = j*. This gives
the following combined (simplified) average complexity for our algorithm, illustrated in Figure 5.15:

—— pattern partitioning + superimposition
t / n L
automaton partitioning

0 o a*

Figure 5.15: The simplified complexity of our algorithm.
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e If the problem fits in a machine word (i.e. (m — k)(k + 2) < w), the core algorithm is used at
O(n) average and worst-case search cost.

o If the error level is so low that we can cut the pattern in j* pieces and superimpose all them
(i.e. @ < aq, Eq. (5.9)) then superimposed automata gives O(n) average search cost.

e If the error level is not so low but it is not too high (i.e. a < a*, Eq. (4.2)), then use pattern
partitioning in j* parts, to obtain near O(y/mk/(wo) n) average search cost.

o If the error level is too high (i.e. o > o*) we must use automaton partitioning at O(k(m —
k)n/w) average and worst-case search cost.

On the other hand, the worst-case search cost is O(k(m — k)/w n) in all cases. This is the same
worst-case cost of the search using the automaton. This is because we use such an automaton to
verify the matches, and we never verify a text position twice with the same automaton. We keep
the state of the search and its last text position visited to avoid backtracking in the text due to
overlapping verification requirements. This argument is valid even with hierarchical verification.

5.8.2 A Practical Heuristic and a Searching Software
Clearly the theoretical analysis alone is insufficient at this point. The results are asymptotic and

do not account for many details which are important in practice, such as roundoffs and constant
factors.
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The real costs are so complex that the best way to find the optimal combination relies on trying
all the possible values of j, from 1 to j* and for », from 1 to j. For each possible value of »
and j, we compute the predicted cost of performing the [j/r]| searches with simple or partitioned
automata as explained in Section 5.7.2.2. We also account for the probability of matching the
(possibly superimposed) automata in the text, which is obtained from Eq. (5.8), as well as the
cost of such verification. This is an inextricable mix of theoretical and empirical results. This
prediction algorithm costs O(k?), which is quite modest. Its outcome is not only the recommended
combination of techniques to use, but also the expected cost of the search.

This heuristic algorithm has been implemented as a software system, which is publicly available
from http://www.dcc.uchile.cl/~gnavarro/pubcode. This software uses the techniques in an
optimal way, but it also allows forcing the use of any combination for test purposes. It also allows
forcing or avoid using the twist mentioned in Section 5.2.1. It reports the combination of parameters
used, the time spent in the search and the number of matches found. It can optionally print those
matches. Currently the software needs to be provided with the value of o. We plan in the future a
self-adjusting feature that makes it able not only of determine the type of text it is in, but also to
change the strategy if the selected combination proves bad.

5.9 Experimental Comparison

In this section we experimentally compare our combined heuristic against the fastest previous al-
gorithms we are aware of. Since we compare only the fastest algorithms, we leave aside [Sel80,
Ukk85a, GP90, LV89, Tak94, Wri94, WM92a, Ukk85b, ST95], which are not competitive in the
range of parameters that we study here. Our algorithm is shown using and not using speed-up
of Section 5.2.1, since it could be applied to many other algorithms as well (but generally not to
filtration algorithms).

We tested random patterns against 10 Mb of random text. We test ¢ = 32 and English text. Each
data point was obtained by averaging the Unix’s user time over 10 trials. We present all the times
in tenths of seconds per megabyte of text.

The algorithms included in this comparison follow (in alphabetical code order). More complete
explanations on these algorithms can be found in Chapter 3, while we emphasize here their operative
details. Notice that we are not including other algorithms developed in this thesis?, these are
considered later in their respective chapters.

Agrep [WM92b] is a widely distributed exact and approximate search software oriented to natural
language text. It is limited (although not intrinsically) to m < 32 and k < 8.

BM is a filter based on applying a Boyer-Moore-type machinery [TU93]. The code is from J.
Tarhio.

BPM (bit-parallel matrix) is a recent work [Mye98] based on the bit-parallel simulation of the
dynamic programming matrix. The code is from G. Myers and has different versions for one
and for multiple machine words.

Count is a counting filter proposed in [JTU96], which slides a window over the text counting the
number of letters in the text window that are present in the pattern. We use our own variant

*Notice that we include some algorithms such as Counting and DFA which, although not created in this thesis, we
have studied more in depth and implemented more efficiently.
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(window of fixed size, see Section 6.2). In that section we also present an improvement over
this technique.

CP is the column partitioning algorithm (kn.clp) of [CL92], which computes only the places where
the value of the dynamic programming matrix does not change along each column. The code

is from W. Chang.

DFA converts the NFA into a deterministic automaton which is computed in lazy form. The
algorithm is proposed in [Kur96] and studied more in detail in Section 6.4. The code is ours.

EP (exact partitioning) is the filtering algorithm proposed in [WM92a] which splits the pattern
in k + 1 pieces and searches them using a Boyer-Moore multipattern algorithm, as suggested
in [BYP96]. The code is ours and uses an extension of the Sunday [Sun90] algorithm (an
improvement over this code is given in Section 6.1).

Four-Russians applies a Four Russians technique to pack many automaton transitions in computer
words. The code is from the authors [WMM96], and is used with » = 5 as suggested in their
paper (7 is related with the size of the Four Russians tables).

NFA - NFA /NS is our combined heuristic, with and without the speed-up technique.

Figure 5.16 shows the results for random text with ¢ = 32. As it can be seen, our algorithm is more
efficient than any other when the problem fits in a single word (m = 9), except for low error level,
where EP is unbeaten. For very low error level our algorithm is also beaten by BM. For longer
patterns, our algorithm is the fastest one up to shortly after & = 1/2. Again, EP is the exception,
since it is faster up to a@ = 1/3 approximately. For @ > 1/2, BPM is the fastest one, except when
the pattern is longer than w letters and the error level is high. In this final case, 4-Russians is wins.

Figure 5.17 shows the results for English text. The results are similar but the allowed error ratios
are reduced: our algorithm is the fastest up to @ = 1/3 approximately, except for EP which is faster
for a < 1/5. Agrep is also very efficient for low error levels, quite close to EP. The strange behavior
for Agrep in the case m = 9 occurs because as soon as it finds a match in the line it reports the line
and abandons the search of that line, hence improving for very high error ratios.

Finally, Figure 5.18 shows the results for long patterns and fixed error level. The results show that
for long patterns our algorithm and BPM are the fastest if the error level is not too high. For low
error levels the algorithm EP is better, but it degrades as m grows.

The reader may be curious about the strange behavior of some of the curves in our algorithms.
Those are not caused by statistical deviations in the tests but are due to integer round-offs, which
are intrinsic to our algorithms. For instance, if we had to use pattern partitioning to split a search
with m = 30 and k& = 17, we would need to search four subpatterns, while for ¥ = 18 we need just
three. As another example, consider automaton partitioning for m = 20 and k¢ = 13, 14 and 15.
The number of cells to work on (IJ) change from four to three and then to five. The use of the
smart heuristic eliminates most of those peaks, but some remain.

Another possible concern for the reader is how the results of the experiments differ from one platform
to another. Is it possible that algorithms faster than others become slower on another machine?
Our experience is that in general the results can be projected to other machines with no changes.
We have made the same experiments on a Sun SparcClassic with 16 Mb of RAM running SunOS
4.1.3 and on an Intel 486 DX of 100 MHz with 16 Mb of RAM running Linux. The only difference
occurs with respect to algorithms that require large amounts of memory (e.g. [WMMO96, Nav97b)),
which obviously benefit benefit from larger RAMs.
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Figure 5.16: Experimental results for random text (¢ = 32). From top to bottom and left to right,
m =9, 15, 20, 25, 30 and 60.
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Figure 5.17: Experimental results for English text. From top to bottom and left to right, m =9,
15, 20, 25, 30 and 60.

96



10 20 30 40 50 60 70 80 90100

0 IIIIIIm 0 |III||m

4 20 36 52 68 84 100 4 20 36 bH2 68 84 100

m m
0 T T T T T 1 0 T T T T T 1
4 20 36 52 68 84 100 4 20 36 52 68 84 100
— NFA --EP - Count — BPM - DFA
- - NFA/NS - Agrep  —+t BM —~- 4-Russ. > CP

Figure 5.18: Experiments for long patterns. On the left, random text (¢ = 32), on the right, English
text. From top to bottom, the plots are for « = 0.1, @ = 0.25 and a = 0.5.
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Chapter 6

Filtering and Automata Algorithms

We present a number of different filtration and automata-based approaches in this chapter. The
general idea of filters is to quickly obtain sufficient conditions to discard large text areas so that
more expensive algorithms need to be run only on the areas that cannot be discarded. The idea
of the automaton approach is to convert it to deterministic and reduce the memory requirements.
The ideas presented in this chapter have been published in [NBY98d, Nav97a, NR98b, Nav97b],
and some preliminary results can be also found in [BYN96b, BYN96a, BYN98d].

6.1 Reduction to Exact Search

In this section we implement a filter proposed in [BYP96] to which little attention was paid before.
The result is the fastest known algorithm for approximate string matching. This algorithm, however,
can only be used for low error levels. By using a new algorithm to verify potential matches and a
new optimization technique for biased texts (such as English), the algorithm becomes the fastest one
for medium error levels too. This includes most of the interesting cases in this area, and therefore
the result is the fastest algorithm for most cases of interest.

6.1.1 The Original Algorithm

The idea of this algorithm is explained in Section 3.1.3. As explained there, the original presentation
is from [WM92a], who state the following lemma:

Lemma: If a pattern is partitioned in k 4+ 1 pieces, then at least one of the pieces can be found
with no errors in any approximate occurrence of the pattern.

This property is easily verified by considering that k errors cannot alter all the k 4 1 pieces of the
pattern, and therefore at least one of the pieces must appear unaltered. In fact it is a particular
case of our Partitioning Lemma proved in Section 4.2. Since in this case j = k + 1, the pieces are

searched with |k/(k + 1)| = 0 errors.

This reduces the problem of approximate string searching to a problem of multipattern exact search
plus verification of potential matches. That is, we split the pattern in k + 1 pieces and search all
them in parallel with a multipattern exact search algorithm. Each time we find a piece in the text,
we verify a neighborhood to determine if the complete pattern appears.

In the original proposal [WM92a|, a variant of the Shift-Or algorithm was used for multipattern
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search. To search r patterns of length m’, this algorithm is O(rm'n/w). Since in this case r = k41
and m’ = [m/(k+1)], the search cost is O(mn/w), which is the same cost for exact searching using
Shift-Or. Later, in [BYP96], the use of a multipattern extension of an algorithm of the Boyer-Moore
(BM) family was proposed. However, no more attention was paid to this idea until this thesis.

In this work we have implemented the above idea. To select the BM algorithm to extend to
multipattern search, we have considered that in practice there would be a few, short pieces to
search. We have selected to extend the Sunday [Sun90] algorithm. The extension is as follows.

We split the pattern in pieces of length |m/(k+1)| and [m/(k+1)] and form a trie with the pieces.
We also build a pessimistic d table with all the pieces (the longer pieces are pruned to build this
table). This table stores, for each character, the smallest shift allowed among all the pieces. Now,
at each text position we enter in the trie using the text characters from that position on. If we end
up in a leaf, we found a piece, otherwise we did not. In any case, we use the d table to shift to the
next text position. This simple idea works very well.

We consider verifications now. Suppose we find at T ; the end of a match for the subpattern ending
at P ;. Then, the potential match must be searched in the area T;_j11_k. i—jt1+m+k, an (m+ 2k)-
wide area. This checking must be done with an algorithm resistant to high error levels, such as
dynamic programming.

This algorithm is the fastest one in practice when the total number of verifications triggered is low
enough, in which case the search cost is O(kn/m) = O(an) in the best case (this is because the
pieces are of length m/(k + 1) =~ 1/a). We find out now when the total amount of work due to
verifications is not higher.

An exact pattern of length £ appears in random text with probability 1/¢¢. In our case, this is
1/cer/(k"'1)J I~ 1/01/0‘. Since the cost to verify a potential match using dynamic programming is
O(m?), and since there are k41 ~ am pieces to search, the total cost for verifications is m3a/crl/°‘.
This cost must be O(a) so that it does not affect the total cost of the algorithm. This happens
for @ < 1/(31og, m). On English text we found empirically the limit o < 1/5 for moderate size
patterns.

Compared to the original proposal of [WM92a], the use of the Sunday algorithm is less flexible
because it cannot search for extended patterns. However, in [NR98a] the Sunday algorithm was
replaced with another one based on bit-parallel suffix automata. The resulting algorithm has almost
the same performance and is able to search some extended patterns. However, we focus in simple
patterns in this section and keep using the Sunday algorithm.

6.1.2 Applying Hierarchical Verification

The hierarchical verification technique presented in Section 4.3.1 is useful here. The idea is to try
to quickly determine that the match of a small piece is not in fact part of a complete match. Hence,
instead of verifying the complete area of interest we perform a hierarchical verification with longer
and longer pieces of the pattern that contain the matching piece.

If we use the hierarchical verification algorithm, the analysis of Section 4.3.1 (Eq. (4.8)) shows that

the verification cost per piece is fZ/UL%J, where £ = m/(k+1) ~ 1/a. Since there are k+1 ~ am
pieces to search, the total cost for verifications is m/(aa'/®). This cost must be O(a) so that it
does not affect the total cost of the algorithm. This happens for

1 1

@< log, m + 2log, (1/a)  log, m+ ©(log, log, m)
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Figure 6.1 illustrates the improvement obtained. As it can be seen, on random text the hierarchical
verification works well up to @ = 1/2, while simple verification works well up to @ = 1/3. On the
other hand, after that point the verifications cost much more than in the simple method. This is
because of the hierarchy of verifications which is carried out for most text positions when the error
level is high. On the other hand, it is hard to improve the barrier of a@ < 1/2 with this method,
since at this point we are searching for single characters and performing a verification each time
some of the characters is found in the text (which is very frequent).

30 ) 30 P
" 25 " 25
20 20
15 15
10 10 A
5 5
k
0 T I I I I 1 0 T T I I I 1 k
5 10 15 20 25 30 5 10 15 20 25 30

Figure 6.1: The hierarchical (solid line) versus the simple (dashed line) verification technique. We
use m = 60 and show random (left, & = 32) and English text (right). We show the time in seconds
for n = 10 Mb of text.

6.1.3 Optimizing the Partition

When splitting the pattern, we are free to determine the k+1 pieces as we like. This is a consequence
of our general version of the Partitioning Lemma (Section 4.2), and can be used to minimize the
expected number of verifications when the letters of the alphabet do not have the same probability
of occurrence (as in English text).

For example, imagine that Pr(’e’) = 0.3 and Pr('z’) = 0.003. Then, if we search for "eeez" it is
better to partition it as "eee" and "z" (with probabilities 0.0027 and 0.003 respectively) rather
than "ee" and "ez" (with probabilities 0.09 and 0.0009 respectively). More generally, assuming
that the probability of a sequence is the product of the individual letter probabilities®, we want a
partition that minimizes the sum of the probabilities of the pieces (which is directly related to the
number of verifications to perform).
We present now a dynamic programming algorithm to optimize the partition of P . Let R[4, j] =
J_iy1 Pr(P,) for every 0 <4 < j < m. It is easy to see that R can be computed in O(m?) time
since R[¢,j] = R[4,j — 1] x Pr(P;). Using R we build two matrices, namely

- SP[i, k] = sum of the probabilities of the pieces in the best partition for P;y; ,, with k errors.
- C[i, k] = where the next piece must start in order to obtain SP[3, k|.

! Although we are using a model of individual letters (i.e. 0-order Markov chain), we can easily extend it to a
higher order model (e.g. considering probabilities of pairs of letters).
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This takes O(m?) space. The algorithm of Figure 6.2 computes the optimal partition in O(m?k)
time.

/* building R */
for (:=0;¢i<m;i++) R[] =1.0;
for (d=1;d <m;d++)
for i=0;:<m—d;i++)
R[i,i+d] = Pr(Pis1) X R[i + 1,5+ d];
/* computing SP and C */
for (1 =0;i < m;i++)
SP[i,0] = R[i{,m];
C[¢,0] = m;
for (r=1;r<k;r4++)
for 1=0;2<m—r;i++)
SP[i,r] = min; ¢ ;41.m—r (R[Z, j]+ SPlj,r — 1]);

C[i¢,r] = j that minimizes the expression above;

Figure 6.2: Dynamic programming algorithm to optimize the partition of the pattern.

The final probability of verification is SP[0, k] (note that we can use it to estimate the real cost of
the algorithm in runtime, before running it on the text). The pieces start at £p = 0, £1 = C[ly, k],
Ly =Clly, k—1], ..., £ = C[l_1,1].

As we presented the optimization, the obtained speedup is very modest and even counterproductive
in some cases. This is because we consider only the probability of verifying. The search times of the
extended Sunday algorithm degrades as the length of the shortest piece is reduced, as it happens in
an uneven partition. We consider in fact a cost model which is closer to the real search cost. We
optimize

1

p ifvi 2
minimum length + Pr{verifying) x m

Figure 6.3 shows experimental results comparing the normal versus the optimized partitioning algo-
rithms. We repeated this experiment 100 times because of its very high variance. This experiment
is only run on English text since it has no effect on random text. Both cases use the original
verification method, not the hierarchical one. As it can be seen, the achieved improvements are
especially noticeable in the intermediate range of errors.

6.1.4 Experimental Comparison

In this section we experimentally compare the old and new algorithms against the fastest algorithms
we are aware of. These are explained in detail in Section 5.9.

We tested random text with ¢ = 32, and English text. Each data point was obtained by averaging
the Unix’s user time over 50 trials on 10 megabytes of text. We present all the times in tenths of
seconds per megabyte. From the algorithms described in Section 5.9 we only include those that
proved to be the best ones: EP (i.e. the original version of this algorithm), NFA (i.e. the algorithm
of Chapter 5) and BPM. The improved algorithm of this section is labeled HEP (for “hierarchical
exact partitioning”).
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Figure 6.3: The optimized (solid line) and the normal splitting (dashed line), for m = 10 and 30 on
10 Mb of English text.

On English text we add two extra algorithms: Agrep and a version of our algorithm that includes
the splitting optimization. On English text the code “HEP” corresponds to our algorithm with
hierarchical verification and splitting optimization, while “HEP /NO” shows hierarchical verification
and no splitting optimization.

As seen in Figure 6.4, for o = 32 the new algorithm is more efficient than any other for a < 1/2,
while for English text it is the fastest for @ < 1/3. Notice that although Agrep is normally faster
than EP (i.e. the original version of this technique), we are faster than Agrep with the hierarchical
verification, and the splitting optimization improves a little over this.

Figure 6.5 shows the results for long patterns and fixed error level. For very low error level (o = 0.1)
our new algorithm improves a little over EP, although for natural language Agrep is the fastest for
m > 50. For low error level (o = 0.25) the new algorithm HEP is works much better than the old
EP, and becomes the fastest even where EP is not even competitive. Hence, although this algorithm
also degrades as m grows, it is much more resistant to the pattern length.

6.1.5 Extensions

As explained, this algorithm can reasonably handle extended patterns if the BNDM search algorithm
of [NR98a] is used instead of the Sunday extension. Figure 6.6 shows the relative performance of
BNDM with respect to Sunday. The three curves correspond to the same algorithm (without
hierarchical verification or splitting optimization) where the multipattern search is implemented
with BNDM, Sunday or WM (i.e. the first proposal of [WM92a)).

As it can be seen, Sunday is (almost always) better but BNDM is reasonably competitive and more
flexible (moreover, its performance does not degrade significantly if classes of characters are allowed,

see [NR98a, NRI8D]).

We can adapt the filter to other distance functions quite easily. Different costs of the operations
can be accommodated by simply determining the minimum number of operations k necessary to
reach the allowed error level. We can allow other operations as well, although some of them require
more care. For instance, if we allow transpositions we have that a single operation can alter two
pattern pieces, and therefore we must split the pattern in 2k + 1 pieces instead of k + 1.
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Figure 6.4: Experimental results for random (¢ = 32, left) and English text (right). From top to
bottom m =10, 20 and 30.
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Figure 6.5: Times for long patterns. On the left, random text (o = 32), on the right, English text.
From top to bottom, the plots are for &« = 0.1 and a = 0.25.

We are working on better cost functions for the splitting optimization technique. We also plan to
study the on-line effect of splitting the pattern in more than k + 1 pieces (so that more than one
piece has to match), as suggested in [Shi96] for off-line searching.

6.2 A Counting Filter

We present in this section a very simple and efficient algorithm for on-line approximate string
matching. It is based on a previously known counting-based filter [JTU96] that searches for a single
pattern by quickly discarding uninteresting parts of the text. We give a simplified implementation
of the algorithm as well as a novel analysis. We also extend the filter to improve its efficiency for low
error levels, reaching O(ae™/? n) search cost. This filter is used later in Section 7.3 for multipattern
approximate searching.

The algorithm that we extend is a filter based on counting matching positions [JTU96] 2. The filter
is linear on average, and as any filtration algorithm, is useful up to a certain « value. Its strongest

ZThe real story is that we reinvented (a simpler version of) this algorithm by the time in which it was accepted in
Software Practice and Experience but not yet published.
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point is its extreme simplicity. Despite that simplicity, it is among the fastest ones in its area of
usefulness.

6.2.1 A Simple Counting Filter

In this section we describe a minor variation of [JTU96] (also very close to [GL89]). Our approach is
simpler because we use a fixed-size instead of variable-size text window (a possibility already noted

in [Ukk92]).
We begin by proving a very simple lemma, which is a special case (¢ = 1) of Lemma 7 of [JU91].

Lemma: If there are ¢ < j such that ed(T; ;, P) < k, then T;_ .11 ; includes at least m — k
characters of P.

Proof: Suppose the opposite. If j —¢ < m, then we observe that there are less than m— k characters
of Pin T; ;. Hence, more than k characters must be deleted from P to match the text. If j —¢ > m,
we observe that there are more than k characters in T; ; that are not in P, and hence we must
insert more than k characters in P to match the text. A contradiction in both cases.

Note that in case of repeated characters in the pattern, they must be counted as different occur-
rences. For example, if we search aaaa with one error in the text, the last four letters of each
occurrence must include at least three a’s.

The filter is based on the lemma. It passes over the text examining an m-letters long window. It
keeps track of how many characters of P are present in the current text window (accounting for
multiplicities too). If, at a given text position j, m — k or more characters of P are in the window
T;—m+1.;, the window area is verified with a classical algorithm (e.g. [Ukk85b]). Verification is of
course necessary, since the characters of the text could be at different positions in the pattern.

To avoid re-verification due to overlapping areas, we keep track of the last position verified and the
state of the verification algorithm. If a new verification requirement starts before the last verified
position, we start the verification from the last verified position, avoiding to re-verify the preceding
area.

Observe that it is not necessary to verify the longer area Tj_,,—r+1.; (what would be the obvious
area, since the occurrence can be of length up to m+k). This is because the lemma holds also for the
window at any position inside an occurrence, so that the counter will reach m — k also m characters
past the beginning of the occurrence. A longer occurrence will keep triggering verifications while the
window is inside the occurrence. This fact, together with our mechanism to avoid re-verifications
by keeping the current state of verification, ensures that the occurrence will be caught.

We implement the filtering algorithm as follows: we build a table A where, for each character ¢ € 3,
the number of times that ¢ appears in P is initially stored. Throughout the algorithm, each entry
of A indicates how many occurrences of that character can still be taken as belonging to P. We
also keep a counter count of matching characters. To advance the window, we must include the new
character T;;; and exclude the last character, T;_,, 1. To include the new character, we subtract
one at the proper entry of A. If the entry was greater than zero before the operation, it is because
the character is in P, so we increment the counter count. To exclude the old character, we add
one at the proper entry of A. If the entry is greater than zero after the operation, it is because
the character was in P, so we decrement count. When the counter reaches m — k we verify the
preceding area.

When Alc] is negative, it means that the character ¢ must leave the window —A[c] times before we
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accept it again as belonging to the pattern. For example, if we run the pattern "aloha" over the

text "aaaaaaaa", it will hold A['a’] = —3, and the value of count will be 2. Figure 6.7 illustrates.
| hello |

XX | al 2

= QO] 1| 1
Searching ’aloha’ L ® o
® | b

L O e| -1

c | Alc]

Figure 6.7: An example of the counting filter. The crosses represent elements which A accepts, and
the circles are the elements that appeared in the window. A[c] stores circles minus crosses, and
count counts circled crosses.

Figure 6.8 shows the pseudocode of the algorithm. As it can be seen, the algorithm is not only
linear (excluding verifications), but the number of operations per character is very small.

CountFilter (T',n,P,m,k)
{ /* preprocessing */

for (c€X) Al =0;

for (i=1;1 <myit+) A[B]++;

count = —(m — k);

/* searching */

for (j=1;7 <m;j++) /* £ill the initial window */
it (A[T;]—— > 0) count++;

for (;j <m;j++) /* move the window */

{ it (count > 0) { verify T;_,, j—1 with dynamic programming }
if (++A[Tj—m] > 0) count——;
it (A[T;]—— > 0) count++;

}

Figure 6.8: The code of the filtering algorithm.

Finally, we notice that classes of characters can be used with this algorithm. If the pattern matches
a set of characters C; at position 4, then we simply increment A[c| for all ¢ € C;. This, however,
may degrade the filtering capability of the algorithm.

6.2.2 Analysis

The space requirement of the algorithm is O(o). The preprocessing cost is O(o +m). If the number
of verifications is negligible, the algorithm is O(n) search time.

In the worst case all the text positions are verified, and the algorithm takes the same as dynamic
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programming, i.e. O(mn). This is because we avoid re-verifying a text position, even in the case of
overlapping verification requirements.

The difficult part of the analysis is the maximum error ratio a that the filtration scheme can
tolerate while keeping the number of verifications low. If the probability of verifying is O(1/m?)
the algorithm keeps linear on average. If it exceeds 1/m, it becomes completely ineffective. This
is because the verifications cost O(m?), and hence this is the point where the algorithm becomes
O(mn), the same as plain dynamic programming. We call that point the “limit of usability”, and
say that the algorithm is “useful” before that limit. We present two different analysis: first an exact
analysis and second a more usable one.

6.2.2.1 Exact Analysis

We obtain the probability Pr(m, k, o) of triggering a verification at a given text position, when the
pattern and the text are random and uniformly distributed over an alphabet of size o.

We analyze the case in which the pattern has all its letters different. We model the counting
process as follows: consider a set of o urns of unlimited capacity, one per character of the alphabet.
From those o urns, m represent the characters that belong to the pattern. We say that those urns
“belong” to the pattern. We scan the m characters of the text window, and put each one into its
corresponding urn. What the counter of our algorithm keeps is thus the number of nonempty urns
belonging to the pattern. When that number of urns reaches m — k a verification is triggered.

Hence, we want to compute first the probability of, given m already selected urns out of o, randomly
throwing m balls and at the end having ezactly j empty urns from the selected ones.

We use exponential generating functions (egf) and the symbolic method [SF96]. Since the text
characters put in the urns are distinguishable (because different orderings produce different texts)
we use labeled objects. The ordering inside a urn does not count, hence there is one urn of each
size and its egfis €. A nonempty urn cannot have size zero, hence its egf is e — 1. Finally, we
can select the j empty urns out of the m distinguished ones. The egf of the total number of text
windows leaving exactly 7 empty distinguished urns, m — j nonempty distinguished urns and with
no restriction on the remaining o — m urns is

m

") (e -y e

J

pmie ) = (

where the variable z counts the number of balls used, i.e. the size of the text window. Therefore,
we want the coefficient of 2™ /ml!.

The part (e* — 1)m_j can be written as [AS72, page 824]
Y n z
m=3 ¥ {15
n>m—j

where {} is the Stirling number of the second kind (the number of ways to partition a set of n
elements into m nonempty subsets).

We expand the expression of p,, ;,(z) to obtain

(7) (em=am = {0 o) | X

mi>m—j
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from where the coefficient of z™/m! can be extracted. This is
!
w o {a e ()
J: mi+mz=m m=J ™
by renaming r» = m; and my = m — r we get
m! m 7 m—r
- E . ¢ (0 —m)
j! \r m—j
r=m—j

which by expanding the Stirling number and dividing by the total number of possible text windows
configurations becomes

m—

pmgie) = (7)Y (") e —m i

1=0

LY

(which is easier to compute).

The same result can of course be obtained without generating functions, where (7;) corresponds to
selecting the j empty urns, r representing the number of characters of the text window that fall
into the distinguished urns, (m — j)!{,,” ;} the ways to fill the nonempty urns and (¢ — m)™~" the
ways to distribute the rest of the characters in the unrestricted urns.

Since the probability of triggering a verification is equivalent to having exactly j empty urns, for

disjoint cases j = 0..k, we get
k

Pr(m,k,o) = Zp(m,ja o)

§=0

If the pattern has repeated characters, the probability of triggering a verification is smaller. This
is easily seen by imagining that we make a given character of the pattern equal to another one.
This makes a number of verification-triggering text windows that were different because of ordering
these two characters differently to be equal now. However, the exact analysis is very difficult.

Our formula is very accurate but gives little intuition about its meaning. We derive now a pessimistic
bound for the limit of linearity and usability.

6.2.2.2 A Simpler Formula

We find an upper bound for the probability of triggering a verification, and use it to derive a safe
limit for o to make verification costs negligible. We consider constant o and varying m (the results
are therefore a limit on a). We then extend the results to the other cases.

The upper bound is obtained by using a pessimistic model which is simpler than reality. We assume
that every time a letter in the text window matches the pattern, it is counted regardless of how
many times it appeared in the window. Therefore, if we search aloha with 1 error in the text
window aaaaa the verification will be triggered because there are 5 letters in the pattern (where in
fact our counter will not trigger a verification because it counts only 2 a’s).

Consider a given letter in the text window. The probability of that letter being counted is that
of appearing in the pattern. This is the same as being equal to some letter of the pattern. The
probability of not being equal to a given letter is (1 — 1/0). The probability of not being in the
pattern is therefore p = (1 — 1/0)™.
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In our simplified model, each pattern letter is counted independently of the rest. Therefore the
number X of letters in the text window that did not match the pattern is the sum of m (window
length) random variables that take the value 1 with probability p, and zero otherwise. This has a
Binomial distribution B(m, p).

Therefore, our question is when the probability Pr(X < k) is O(1/m?) (so that the algorithm is
linear) or when it is O(1/m) (so that it is useful). In the proof we use O(1/m?), since as we will
see shortly the result is the same for any polynomial in 1/m.

We first analyze the case where the mean of the distribution is beyond k, i.e. mp > k. This is the
same as the condition @ < p. As Pr(X = j) increases with j for j < mp, we have Pr(X < k) <
k Pr(X = k).

Therefore, it suffices to prove that Pr(X = k) = O(1/m?®) for linearity or that Pr(X = k) =
O(1/m?) for usefulness. By using the Stirling approximation to the factorial we have

mmpk (1 _ p)m—k

Pr(X =k) = (Z?)Pk(l - P)m_k = Kk (m — k)m—F O(vm)

which can be rewritten as

(p"‘(l -p)'° )m O(v/m)

a®(l — a)l-«

It is clear that the above formula is O(1/m) or O(1/m?) or O(1/m?®) whenever the base of the
exponential is < 1. This is
P(1 - p)I < a?(1 - a)i-e (6.1)

To determine the cases where the above condition is valid, we define the function
flz)=2%(1—2)'™"

which reaches its maximum at « = a. This shows that Eq. (6.1) holds everywhere, and therefore
the probability of matching is O(1/m?) in the area under consideration, i.e. whenever a < p.

On the other hand, if the mean of the distribution is less than k, then just the term of the summation
corresponding to the mean r = mp is (using Stirling again)

(;Z;)pmp(]. —P)m(l—p) — (%) Q(m—l/Z) _ Q(m—1/2) (62)
which is not O(1/m).

Therefore, we arrive at the conclusion that the filter is linear and useful whenever

a<p= (1 - l)m =e ™7 (14+0(1/0)) (6.3)

g

and is not useful otherwise.

We have considered the case of constant a = k/m. Obviously, the filter is linear for £ = o(m) and
is not useful for k = m — o(m). The unexplored area is k = mp — o(m). It is easy to see that the
filter is not useful in this case, by considering Pr(X = mp — ¢€) with € = o(m), and using Stirling as
in Eq. (6.2). The resulting condition is 1 — €2/(m?p(1 — p)) = O(m~/2), which does not hold for
any € = o(m).
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6.2.3 A Sampling Technique

One of the drawbacks of the filter is its inability to skip characters, that is, it has to inspect every
text character. This puts it in disadvantage against other sublinear filters like that of Section 6.1.
In this section we show how we can skip characters.

To imagine this, it is better to think that the filter counts the number of mismatches, and it triggers
a verification when it cannot find more than k& mismatches. Imagine now that we examine one out
of s text characters. To avoid loosing a match, we must pessimistically consider that the character
which has not been examined is present in the pattern. That is, we examine only some of the
window positions and we must obtain more than k& mismatches from the examined positions only.
It is clear that, the larger s, the faster the algorithm but the less tolerant to the error level it is, i.e.
it will be harder to find the k£ mismatches and to avoid the verification of the window.

To analyze this algorithm, consider that we have now m’ = m/s window positions to reject the
pattern (i.e. to collect more than k characters not present in the pattern) but the number k does
not change. However, the pattern has still m letters. The analysis of Section 6.2.2.2 can be reused
by noticing that the pattern length is used to compute p, while the rest of the analysis uses m as
the number of window positions inspected. Hence, if we inspect one position out of s, the maximum
tolerable error level is

k/m' < e ™7 (14+0(1/0))

or equivalently
s<e ™o

Finally, our search cost is O(n/s), i.e.

O (aem/” n)

6.2.4 Experiments

We first show experiments about the maximum allowable error ratio for the filter (i.e. up to where
it is better than plain dynamic programming). Later, we compare our algorithms against others.

6.2.4.1 Maximum Error Ratio

We experimentally find out which is the limit of usability of the algorithm for different types of
texts, and use least squares to find a formula which is very accurate for the range of values we are
interested in practice, i.e. m < 100 and 20 < ¢ < 60. That type of formula was selected among a
number of classes we tried, since it gave us the best results. It is close in spirit to Eq. (6.3) (recall
that that equation is pessimistic).

The experiments were carried out as follows. For every o in the set {20, 30...60} and every m in
{4..100}, we generated a random text of 1 Mb, and repeated 100 times the experiment of generating
a random pattern and verifying which was the maximum error (k) up to where the number of
verifications triggered was less than 1/m times the size of the text.

Separately for each value of o, we used least squares for the model ay,.x = ab™, which gave us the
best results. Later, once a different value of a and b was obtained for each o, we used the models
a=co®and b=1— fo9. The result is the formula

Omax = 0.11 ¢%*3(1 — 0.032/5°*7)™
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for which we obtained an average squared error near 0.0004 (its square root being 0.02).

We also performed the test on English text. The experimental results are shown in Figure 6.9.
The jumps in the experimental curves are not due to variance in the experiments, but to the
complexity of the combinatorial nature of the process (the same jumps appear in the resulting
formula of Section 6.2.2.1). The smooth curves are those obtained with least squares. Our theoretical
pessimistic approximations are totally below the experimental curves, but have the same shape of
those of least squares. Therefore, they are less exact for very small or very large m. In the first case
this is because the analysis works with probabilities of the form O(1/m), which allows larger errors
for small m. In the second case it is because the pessimistic part of the model refers to letters that
appear many times in the text window of length m, which is more noticeable for large m (when it
is more probable to repeat letters).

a 0.6
0.5 0
0.4 -
0.3 +

0.2

0.1

m

00 T T T T T T T T T 1
10 20 30 40 50 60 70 80 90 100

Figure 6.9: Experimental maximum level of usefulness of our algorithm. The lowest line is for
English text. The rest of non-smooth lines are for ¢ = 20,30...60 (from lower to upper). The
smooth lines are our approximation.

6.2.4.2 Comparison among Algorithms

In this section we experimentally compare the different versions of our algorithms among them and
against EP (see Section 5.9). Figure 6.10 compares our basic algorithm and the sampling technique,
as well as EP. It can be seen that sparser sampling yields a faster algorithm if the error level is low
enough, otherwise it is counterproductive (in particular, the sampling idea is of useless on English
text). As it can be seen, however, EP is faster when it works well.

To compare our algorithm against the others, we refer the reader to Figures 5.16 and 5.17 (our
implementation is called “Count”). As it can be seen, this algorithm is not the fastest, but it is
very simple and competitive. The algorithms which improve over it come all from this same thesis,
except for Myers’ BPM algorithm [Mye98] which appeared later. At the moment it was published,
the algorithm was the fastest in a small o band, since although not as fast as sublinear filters like
EP, it was more resistant to the error level (our improvement of Section 6.1 did not exist by then).

Apart from the simplicity of the algorithm, the value of this section is in the novel analysis of the
area of applicability and in that the algorithm is the basis for the development of a multipattern
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Figure 6.10: Our algorithm using different steps versus EP (thick dashed line). The thick solid
line is the original algorithm and the thin lines show the use of the sampling technique taking one
sample each 2,3 and 4 characters (solid, dashed and dotted lines, respectively). We show megabytes
per second for m = 30, for random (left, & = 64) and English text (right).

search algorithm which is the fastest one for intermediate error levels (Section 7.3).

Extending this filter to different distance functions is not difficult, it is just a matter of determining
how many letters must be present in an approximate occurrence. Instead of m — k, we must use
this number. Allowing transposition is especially easy since we do not account for the positions of
the letters in the filter. If only transpositions were allowed, we would use this filter allowing zero
errors.

6.3 A Suffix Automaton Approach

We present a new filtering algorithm based on the combination of our NFA and a suffix automaton.
The NFA is modified so that it recognizes every suffix of the pattern allowing k errors. The result is
an algorithm which is able to skip characters and to handle at the same time pattern extensions such
as classes of characters. A lower bound on its average complexity is O(an/(1 — a)), and therefore
it is not useful for a > 1/2. Experimental results show that it is competitive against the fastest
filtration algorithms, and that in some restricted cases it is the fastest known filter. This idea is

included in [NR98b].

6.3.1 Adapting the NFA

Section 2.4 presented a nondeterministic finite automaton (NFA) which is built from the pattern
and the number of errors and recognizes all the approximate occurrences of the pattern in a text.
This automaton is simulated using the bits of the computer word: row-wise (i.e. packing the rows
in computer words) in [WM92a] and diagonal-wise in Chapter 5. As we have shown, bit-parallelism
has the advantage that it allows performing more flexible searching.

On the other hand, we have shown in Section 2.8 how bit-parallelism can be used to simulate a
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Figure 6.11: Our NFA to recognize suffixes of the pattern "survey" reversed.

suffix automaton, which is used for exact string matching (algorithm BNDM, which is an extension

of BDM [CCG*94, CR94]).

We now merge both approaches. We modify the NFA so that it recognizes not only the whole
pattern but also any suffix of the pattern, allowing up to k errors. We also modify it so that it
computes edit distance from the point it is started. As for BNDM, we build the automaton on the
reversed pattern. Figure 6.11 illustrates the modified NFA.

Consider the initial state “I” we added. The e-transitions leaving from the initial state allow the
automaton to recognize with k errors not only the whole pattern but also any suffix of it. Our
second modification on the original automaton of Section 2.4 is the removal of the self-loop at the
top-left state, which allowed it to start a match at any text position. Qur automaton, therefore,
recognizes suffixes of the pattern which start at the beginning of the text window.

6.3.2 The Search Algorithm

We move a window over the text, and we are interested only in occurrences that start at the current
window position. Any occurrence has a length between m — k and m + k. If there is an occurrence
of the pattern P starting at the window position with k errors, then a prefix of P must match
the first m — k characters with &k errors. Hence, we cannot miss an occurrence if we keep count of
the matches of all the pattern prefixes in a window of length m — k. If there are no more pattern
substrings matching with k errors, then we cannot miss an occurrence and we can shift the window
to the last prefix that matched (with errors).

To keep count of the pattern prefixes that match with errors, we use the adapted automaton. The
search process inherits from BNDM, as follows. We move a window of length m — k on the text,
and search backwards a suffix of the window which matches the pattern with at most k errors. This
search is done using the modified NFA explained above, which is built on the reversed pattern. We
remember in the variable last the longest suffix of the window that matches a prefix of the pattern
(in fact, a prefix of the reversed pattern read backwards) with a distance less or equal to k. This
is done in constant time by checking whether the rightmost bottom state of the NFA is active. On
the other hand, if the NFA runs out of active states we know that a match is not possible in the
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window (since no pattern substring matches a suffix of the window with k errors or less) and we
can shift to the last position where we found a pattern prefix, as in the exact matching algorithm.
Notice that the automaton has no active states if and only if its last row has no active states.

Each time we move the window to a new position we restart the automaton with all its states active,
which represents setting the initial state to active and letting the e-transitions flush this activation
to all the automaton (the states in the lower left triangle are also activated to allow the deletion of
the first letters of the pattern). If after reading the whole window the automaton still has active
states, then it is possible that the current window starts an occurrence, so we use the traditional
automaton to compute the edit distance from the initial window position in the text. After reading
at most m + k characters we have either found a match starting at the window position or left the
automaton without active states.

Notice that if the automaton has active states after reading the complete window, then a match
starting at the window is possible and we have to check it explicitly since we can only ensure that
a substring of the pattern matches in the window.

The automaton can be simulated in a number of ways. Wu and Manber do it row-wise (each row
of the automaton is packed in a computer word), while in Chapter 5 we do it diagonal-wise. In this
case we prefer the technique of Wu and Manber, since in our approach the initial diagonals of length
< k are discarded, and they are needed here. Although we can adapt our automaton to compute
edit distance, this will require more computer words, which will be all active because we start with
all 1’s. On the other hand, this approach is good only for very small k£ values and intermediate m,
where Wu and Manber use k4 1 computer words and our approach needs the same number or even
more words. As shown in Chapter 5, the speed of the row-wise implementation is similar to that of
the diagonal-wise for very small k if we put the computer words in registers.

6.3.3 Analysis

As the automaton cannot run out of active states before examining more than k letters, and we
skip at most m — k positions, a lower bound on the complexity of this algorithm is Q(kn/(m — k)).
We show now that the average case is not very different.

We know from Section 4.1 that the probability of matching has a very abrupt nature, jumping
from almost zero to almost one in a short period. Specifically, if @ < 1 — e/+/o the probability is
exponentially decreasing on m, and it becomes at least Q(1/m) after that point.

When we are traversing the window backwards, the automaton is alive after reading ¢ letters when-
ever some substring of length ¢ of the pattern matches the text with k errors or less. As there are
m—1¢ < m such substrings, we have that the probability of some substring matching is exponentially
decreasing with ¢ whenever k/i < 1 —e//0, and becomes almost 1 for smaller . Hence, on average
we inspect k/(1 — e/+/0) letters with very high probability, and at the next letter the automaton
normally has no more active states.

On the other hand, when we shift the window we align it to the last time where the automaton
had a final state active. Since this phenomenon is so abrupt, the probability of a suffix matching is
similar (except for polynomial factors in ) to that of a substring matching, so on average we shift
exactly to the position following the place where the automaton was without active states.

Hence, we work on k/(1 —e/+/o) letters and then shift (m — k) — k/(1 — e/ /o) positions. Therefore,
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our average complexity is

° ((1—a><1 ~ eV )

where we have excluded the cost of verifications, which is assumed to be negligible since we suppose
a < 1—e/+/o. The above formula is sublinear for

1—¢/\/T
3—c/veo

which for large alphabets tends to 1/3.

If we have a long pattern we have to multiply the above formula by O(m/w), which is the per-
character cost of a multi-word simulation.

6.3.4 Experimental Results

We compare now the performance of our algorithm against others. The codes are the same as
those of Section 5.9, and we have selected only the fastest ones for this case. Figure 6.12 shows the
results. As the algorithm works well for very low error levels, we show only the cases k = 1 to 3,
for random (o = 4) and English text. In the first case our algorithm outperforms all the others
(including that of Section 6.1, which is in general the fastest one). For English text it does not,
although it is competitive for £ = 1 and intermediate pattern lengths. This is also the case of other
alphabet sizes. Notice that we have implemented specialized code for each fixed k value, and that a
general implementation would probably be much slower. Hence, this algorithm should be regarded
as a good choice for very low error levels.

More refinements are possible for this algorithm. For instance, we can avoid verifying a text window
if it does not start with a match. This is achieved with the same mechanism used in Chapter 5
to eliminate the states of the upper-right triangle of shorter diagonals and clear the last complete
diagonal at each match. Although, we have obtained appreciable speedups applying these tech-
niques, these occur for high error levels where the algorithm is not competitive anyway, while the
performance for low error levels (where the algorithm is competitive) degraded.

Notice that the only algorithm that beats significantly this one is that of Section 6.1, i.e. also part
of this thesis.

6.4 A Partial Deterministic Automaton

One of the simplest approaches to approximate string matching is to consider the associated non-
deterministic finite automaton and make it deterministic. Besides automaton generation, the search
time is O(n) in the worst case. This solution is mentioned in the classical literature but has not
been pursued further, due to the large number of automaton states that may be generated.

We study the idea of generating the deterministic automaton on the fly. That is, we only generate
the states that are actually reached when the text is traversed. We show that this limits drastically
the number of states actually generated. Moreover, the algorithm is quite competitive. We present
some empirical results on the growth of the automaton.
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Figure 6.12: Times in 1/10-th of seconds per megabyte, for random text (o = 4, on the left) and
English text (on the right), £ =1 to 3 (first, second and third row, respectively). The  axis is the
pattern length.
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6.4.1 Lazy Automata

As explained in Chapter 2, the problem of approximate string matching can be solved using a matrix
or using a nondeterministic finite automaton (NFA). In any case we have a concept of state of the
search, which is given in the first case by the set of values of the current matrix column and by
the set of active states in the second case. In [Ukk85b] the use of a deterministic finite automaton
(DFA) is proposed, where each “state of the search” is converted into a state of the automaton. Each
state could be identified, for instance, with the set of values of the current column of the dynamic
programming matrix. Building this automaton is equivalent to precompute all possible transitions
between different columns instead of doing it on the fly as the text is processed. Once the automaton
is built we need only O(n) time to process the text instead of O(mn), because the transition between
columns is done at O(1) cost instead of O(m) as in classical dynamic programming.

To reduce the number of states, the property of “active columns” is used in [Ukk85b] (see Sec-
tion 3.1.1), so that every column value larger than k 4 1 is converted to k + 1, this way reducing
the number of states without affecting the output of the algorithm. Unfortunately, as shown in Sec-
tion 3.1.2, the number of states of this automaton is very large, which means that the preprocessing
time and space requirement is not acceptable in practice.

We return to the idea of building the DFA. However, we observe that most of the states of the DFA
are never reached throughout the search. Therefore, instead of building the automaton beforehand
and then using it to search the text, we have a partially built automaton. This partial automaton
has only the states and transitions that have been reached. As we search, if we find a transition
which has not been computed yet, we compute it before proceeding. This is as efficient as building
the automaton completely, but the number of states can be much smaller.

The idea of on-the-fly construction of DFAs is not new. For instance, it has been mentioned
before, although not exploited, for the more restricted case of string matching allowing character
replacements (no deletions nor insertions) [BYG94]. It has also been used for the general problem
in [Kur96], where it was implemented on a lazy functional language. Kurtz arrives at similar
conclusions about performance, although we study the idea more in depth, include more algorithms
in the comparison and our test suite is much larger and has no hidden performance factors that could
be included in a functional language implementation. We also study the growth of the automaton,
as well as techniques to work with a limited amount of memory.

6.4.2 The Algorithm

We begin with some terminology. A deterministic finite automaton or DFA is a set of states con-
nected by transitions. Transitions are arrows among states labeled with symbols drawn from an
alphabet X. There is exactly one transition leaving every state for each alphabet symbol. One of
the states is #nitial and some states are final. The automaton is run over a text beginning in its
initial state. Given each text character, it follows the appropriate transition and reaches a new
state. We say that the automaton accepts a text position whenever it is at a final state just after
that position is read.

A partial DFA is a DFA where some transitions are missing. A missing transition means that we
still have not computed to which state it should go.

A configuration represents the state of the search at a given moment. It can be represented as the
set of active or inactive states of the NFA, or as the current (active) values of the the dynamic
programming algorithm. Each possible configuration corresponds to a state of the DFA.
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Our DFA will have one state per “known” configuration. Only the configurations (states) which are
actually reached in the processing of the text will be present.

We begin with a partial DFA with just one state and all missing transitions. The state corresponds
to the initial configuration (C; = 7). We traverse the text exactly as if we had a complete DFA.
The difference is that, whenever we must follow a missing transition, we compute it. That is, we
take the current state (we store the configuration that corresponds to each state) and perform an
O(m) step of the classical algorithm. This gives us the configuration of a new state. We search the
configuration among the known states. If it already exists, we put the previously missing transition
pointing to that state. Otherwise, we must first create a new state (with all transitions missing).

The advantage of such construction is that, although the DFA of a pattern can be very large, only
a small portion of the states may be actually reached along the text. Of course, the larger the text,
the more states will be generated, but this larger text will compensate for the effort of generating
the automaton. Note that in natural language some substrings never appear, no matter how long
the text is.

The only disadvantage is that once the complete DFA is generated, the configuration to which each
state corresponds needs not be stored, while in the partial DFA we need to keep those configurations
all the time to be able to generate new transitions and states. This extra space turns out to be
about a 25% extra per generated state, which is not too much, especially because many fewer states
are generated in the partial DFA (as we show in the experimental section). On the other hand, the
complete DFA algorithm needs to keep all configurations to generate the DFA, and only then can
free their space. Therefore, at some point it demands strictly more memory than what the partial
DFA algorithm demands along the whole search. Figure 6.13 sketches the algorithm.

Search (T,n,P,m,k)
Aut < initial state (configuration C; =1)
state < initial state
Ve € 3, transition(Aut, state, c) < unknown
for (1=1;i<n;i++)
{ nstate « transition(Aut, state, T})
if (nstate = unknown)
{ nconf < perform_step(con f(Aut, state), T;)
nstate < state in Aut corresponding to nconf
if (nstate not found)
{ nstate «+ new state
Aut + Aut U {nstate}
Ve € ¥, transition(Aut, nstate, c) < unknown

}

transition(Aut, state, T;) < nstate

}

state < nstate
if (state is final) report match

}

Figure 6.13: The partial DFA algorithm.

The 3 in the algorithm does not stand for the complete alphabet, but only for those symbols
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appearing in the pattern, plus one that represents “any symbol not in the pattern”. The alphabet
is then mapped to the interval [0..p] where p < m, and therefore creating a new state costs O(m).
The text characters are mapped in O(1) time by using a global O(o) size table.

Now we point out some details of the algorithm.

We represent configurations as the current C; values of the classical dynamic programming algo-
rithm. Therefore the configurations are O(m) size. The action perform_step of the algorithm simply
makes a step of the classical algorithm on the given configuration, and therefore it is O(m) time.
Since we work only on active values, our representation for a column is [a, ¢y, ..., ¢;], where a is the
position of the last active value. As shown in Section 4.1, the average number of active values is
O(k). However, this is not true if we compute each configuration only once.

Once nconf has been computed, it is necessary to know whether it corresponds to a state which is
already present in the automaton. Therefore, we must search in a set of “known” configurations.
This search can be done in time proportional to the length of the searched configuration (i.e. O(m))
in the worst case. The data structure to achieve this is a trie on the a+1 “digits” of the configuration.

The structure of this trie is quite particular. The root has m — k sub-tries (one per possible a value).
The sub-trie number ¢ has height ¢. Every non-root node which is not a leaf has at most 3 children.
This is because the difference between two consecutive values in the column is —1, 0 or 1. This fact,
already noticed in [Ukk85b], allows saving a lot of space in the trie implementation. This structure
is used in [Kur96].

However, we found that a simple hashing turns out to be the most efficient data structure in practice.
We take the hash function over the a + 1 “digits” of the configuration. Collisions are resolved with
a linked list. If the table size and the hash function are well chosen, the average cost is O(m) (to
evaluate the hash function), at much less space consumption.

6.4.3 Analysis

We call s and t the total number of states and transitions, respectively, in the complete automaton.
This is an upper bound to those actually generated (s’ and t', respectively). As explained in
Section 3.1.2, the number of states can be upper bounded by s = O(min(3™, (2 min(e, m)m)*m, (k+
2)™*(k + 1)!)), where we replaced o by min(a, m) because of our character mapping (this is also
noted in [Mel96]).

The number of transitions is therefore ¢ = O(smin(m,os)). We have s’ = O(min(s,n)) and
t' = O(min(t,n)), since each text character can create at most one state and transition. The
space needed by our algorithm is O(s'min(m, o) 4+ ¢') = O(s'min(m, ¢)) in the worst case, i.e.
O(min(s,n) min(m, ¢)). The algorithm uses linear time except for the generation of the states
and new transitions, each one costing O(m). This makes the total cost of the algorithm O(n +
s'min(m, o)+ t'm) = O(n + t'm) = O(n + mmin(t, n)).

It is extremely difficult to set up a correct probabilistic model to compute the number of states that
are generated on average after reading n random symbols. We make the simplifying assumption
that each new character produces a random transition. This assumption is pessimistic since some
transitions are much more probable than others. The uniform model maximizes the total number
of states visited.

The probability of a given transition not being generated at a particular text position is (1 — 1/¢).
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Therefore, the average number of generated states after reading n text characters is

=t (1 - (1 - %)n) =t (1 - e_"/t) +0(1/t)

and therefore the average time complexity is O(n + mt(1 — e~"*/t)). Notice that (1 — e~™/?) is the
factor by which building our partial DFA is more efficient than building the full DFA. We have
three cases now

[n = o(t)] In this case e™/* =1 —n/t + O((n/t)?), which makes the total time cost O(n + mn(1 +
o(1))) = O(mn). That is as bad as plain dynamic programming. However, in this case the
partial DFA is asymptotically better than the full DFA (i.e. partial/full =1 — e "t = o(1)).

[n = w(t)] In this case we have that the time is O(n + mt) = o(mn), and therefore we improve
dynamic programming. If n = Q(mt), then the algorithm is O(n).

[n = ©(t)] We have that (1 — e~"/*) = @(1) (i.e. constant) and therefore the total time is ©(mn),
although the constant is smaller. For instance, if n = ¢ it is ~ 0.63mn.

This shows that the algorithm is competitive when the text is large compared to the size of the
automaton, which is intuitively clear. However, this analysis is pessimistic and the results are much
better in practice, as well as the efficiency ratio among partial and full DFA. We show this in the
next section.

6.4.4 Experiments

We present some experimental results collected on English text. We first show the growth of the
automata and then we compare our algorithm against the others. We used 10 Mb of filtered text.
Each data point was obtained by averaging over 10 trials.

6.4.4.1 Automaton Growth

We experimentally show in Figure 6.14 the growth of the partial and complete DFAs as the error
level increases and as the traversed text increases.

As it can be seen, the size of the automaton grows slowly with the text size after a sharp start. Even
after processing 10 Mb of natural language, the sizes are less than 20% of the complete automata
(except for very small k where the complete automata are very small anyway). Memory limitations
prevented us to compute automata with more than 500,000 states (although we used a 128 Mb
machine for this task). For m = 20 we could not generate the complete automaton past £ = 6 and
for m = 30 past £ = 5. For those larger patterns our improvement is more dramatic, since the
partial DFAs are completely manageable up to £ = 10 or 11, being hundreds of times smaller. For
m = 30 we could not even compute the partial automata past k& = 18.

We apply now least squares over the curves to understand how the automata grow. As a function
of n, the growth of the partial automata shows a clear O(n”) slope. Curve fitting using the model
s = an® gives a relative error close to 0.25%. We show in Figure 6.15 the a and b values for m = 10,
20 and 30, as a function of the error level . As it can be seen, up to some point the a value grows
slowly and the exponent b shows a somewhat linear increase. After that point, a grows abruptly

and the exponent stops growing (in fact, the phenomenon is so abrupt that we could not obtain the
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Figure 6.14: Number of states of the partial and complete DFAs. The rows are for m = 10, 20 and
30, respectively. The left column shows the growth in terms of k (for n=1 to 10 Mb, from lower to
upper, and the thick line for the full automaton). The right column shows the growth in terms of
n (for k =1 to m — 1, in general from lower to upper).
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Figure 6.15: The a (left) and b (right) values from the fitting s = an® of the partial DFA size as a
function of the text size. Dashed lines correspond to m = 20, solid thin lines to m = 20 and thick
lines to m = 30.

values for m = 30 after that point). Interestingly enough, this point where the behavior changes
corresponds to our limit & < 1 — 1.09/4/o of Eq. (4.2). Both a and b, on the other hand, seem
to increase as m grows. This is not exactly true for m = 10, but in this case the distortion may
correspond to the fact that the total number of states is not so high. If, on the other hand, we
consider the growth of the automata as a function of «, we observe the same abrupt phenomenon.
Finally, we have not considered the effect of the alphabet size. A more complete study of the growth
of the DFA is left for future work.

6.4.4.2 Comparison Against Other Algorithimns

We refer the reader to Section 5.9 for an experimental comparison between the DFA and others. For
short patterns it is quite close to the fastest bit-parallel algorithms. By the time it was published,
it was the fastest for intermediate error levels, i.e. between the point where filtration algorithms
stopped working and where it had so many states that was slow. Later improvements (all part of
this same thesis, except Myers’ BPM algorithm [Mye98]) covered the areas where this algorithm
was the best.

6.4.5 Working with Limited Memory

A problem of the automaton approach is that for long patterns and medium or high error levels
it requires a huge amount of memory. When this happens, a lot of states are generated and never
reused. On our current scheme, those states are never deallocated. In [Kur96] it is proposed that
only a fixed set of nodes (the first departing from the initial state) are computed and the rest relies
on dynamic programming. This may behave badly if the selection of the set of states is not adequate
for the current text. We propose a more dynamic version now, which adapts to the real text. None
of these ideas have been implemented yet.

When we need to create a new state and the memory limit has been reached, we select a victim
state and, instead of allocating new space for the new state, we reuse the space of the victim state.
Two issues to solve are how to select the victim and how to perform the replacement inside a graph.
If we have enough memory to store the most used states, the effect of eliminating those states rarely
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used will be negligible.

6.4.5.1 Victim Selection

This is an issue that appears on algorithms for virtual memory management, and we can borrow
their policies too. In particular we believe that selecting the least recently used (LRU) state could
give good results. In our case, “using” a state means being at it at some moment. This policy can
be implemented by keeping an implicit doubly-linked list comprising all the states of the automaton.
Each time a state is traversed, we put it at the end of the list. This involves updating 5 pointers,
which unfortunately is quite expensive since it is done for each text character. An alternative is to
keep, for each node, the last text position where the node was traversed (i.e. each time we traverse
a node we reset the value). This works much less per character, although to select the victim we
need to perform a linear pass over all the states, which is expensive. This cost could be alleviated if
we eliminate a large number of rarely used nodes, so that this operation is infrequent. For instance,
if we eliminate a constant fraction of the states, the extra cost of the linear search is O(1) per
character (amortized).

Other policies such as least frequently used (LFU) are possible. In this case we keep a counter of
the number of times we traversed a state. However, an aging policy should ideally be used so that
states heavily used in the past can be deallocated in the future. The process of victim selection
needs also a linear search over the nodes.

6.4.5.2 Victim Replacement

Besides reusing the memory space allocated for the victim, we must make sure that the graph re-
mains consistent. We remove all the transitions leaving the victim state. This can make unreachable
the target nodes of those transitions. This is not a problem since we have a separate search structure
to find nodes (hash table or trie, as explained before), and we could find them later to connect them
to the graph. If, on the other hand, we prefer to eliminate them, then standard garbage collection
techniques can be applied to determine their reachability, namely keeping a counter of incoming
transitions which if reaches zero means that the state is no longer reachable.

Notice that the cascade elimination of unreachable states may end up removing recently used states.
On the other hand, LFU is more resistant to this problem, because in general a state made unreach-
able because of the elimination of the only state leading to it has been used less frequently than its
predecessor.

We must also eliminate those transitions that lead to the victim state. In our current scheme
those transitions are hard to find. A first alternative is that each state keeps a list of incoming
transitions. A second one is that all states and transitions store their creation time (where “time”
means the position in the text). Under normal operation, the creation time of a transition is larger
than that of its target state. When a victim is replaced by a new state, however, this ceases to be
true for the transitions that lead to the removed state. Hence, we do not immediately remove the
incoming transitions. Rather, we defer removal to the time of normal operation: before following
any transition, we check that the creation times are appropriate. Otherwise we know that the
target state has been replaced and therefore remove the transition. In general, keeping the list of
incoming states does not require much more space and does not degrade the normal operation of
the automaton.
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Chapter 7

Multiple Patterns

The problem of approximately searching a set of patterns (i.e. finding the occurrences of all them)
has been considered only recently. A trivial solution to the multipattern search problem is to
perform r searches, and our aim is to search more efficiently. We present three new algorithms for
on-line multipattern matching allowing errors. These are extensions of previous algorithms that
search for a single pattern. The average running time achieved is in all cases linear in the text size
for moderate error level, pattern length and number of patterns. They adapt (with higher costs) to
the other cases. However, the algorithms differ in speed and thresholds of usefulness. We analyze
theoretically when each algorithm should be used, and show experimentally their performance. The
only previous solution for this problem allows only one error [MM96]. Our algorithms are the first
ones to allow more than one error, and are faster than [MMO96] for fewer than 50-150 patterns,
depending on the parameters of the problem.

The results of this work have appeared in [BYN97b, Nav97a, BYNOS8e].

Many of the ideas we propose here can be used to adapt other single-pattern approximate searching
algorithms to the case of multipattern matching. For instance, the idea of superimposing automata
(Section 7.1) can be adapted to most bit-parallel algorithms, such as [Mye98|. Another fruitful idea
is that of exact partitioning (Section 7.2), where a multipattern exact search is easily adapted to
search the pieces of many patterns. There are many other filtering algorithms of the same type,
e.g. [ST96].

Since the algorithms presented are extensions of on-line algorithms explained in previous chapters,
the reader will frequently find backward pointers. We did our best to find a good compromise
between self-containment and non-repetitiveness.

7.1 Superimposed Automata

In this section we describe an approach based on the bit-parallel simulation of an NFA which is able
to search the pattern allowing errors. This algorithm searches for a single pattern and is developed
in Chapter 5. The only connection between the search algorithm and the pattern is given by a table
b[c], whose i-th bit is zero if and only if P; = ¢. As explained in Chapter 5, the b[ ] table mechanism
allows to have a set of characters at each pattern position, instead of just a single character. It
suffices to set blc| to “match” at position ¢ for every ¢ € P;. We use this property to search for
multiple patterns.
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Section 5.6 describes in detail how we “superimpose” the NFA’s of the r patterns we want to search,
so we do not repeat the argument here!. We just recall that we build an automaton which searches
a much more relaxed pattern, that is, at position 7 it matches with the i-th letter of any of the
patterns. Hence, it finds any of our patterns and many others which are not of interest. When the
automaton finds a match, we have to verify which of the patterns have matched, if any, since the
superimposed automaton does not allow us to know it.

A simple verification alternative (which we call “plain”) is that once a superimposed automaton
reports a match, we try the individual patterns one by one in the suspicious area. However, a smarter
verification technique (which we call “hierarchical”) is described in Section 4.3.2 (do not confuse
with the hierarchical verification presented in Section 4.3.1). Although in Chapter 5 we used this
verification to simplify the analysis, we did not implement it because in practice we superimposed
few patterns and the impact would be minimal. In this chapter we have implemented it and present
later experimental results.

If the number of patterns is too large, the filter will be very relaxed and will trigger too many
verifications. In that case, we partition the set of patterns into groups of r’ patterns each, build
the automaton of each group and perform [r/r'| independent searches. The cost of this search is
O(r/r" n), where 7' is small enough to make the cost of verifications negligible on average. This r’
always exists, since for ' = 1 we have a single pattern per automaton and no verification is needed
(indeed, the process has degenerated into sequential searching).

As in the original algorithm, we can handle classes of characters in the patterns.

7.1.1 Handling Longer Patterns

If the length of the patterns does not allow to put their automata in single computer words (i.e.
(m—k)(k+2) > w), we partition the problem. We adapt the two partitioning techniques explained
in Chapter 5.

Automaton Partitioning: if the automaton does not fit in a single word, we can partition it using
a number of machine words for the simulation: once the (large) automata have been superimposed,
we partition the automaton into a matrix of subautomata, each one fitting in a computer word.

Once the automaton is partitioned, we run it over the text updating its subautomata. Each step
takes time proportional to the number of cells to update, i.e. O(k(m —k)/w). Recall, however, that
it is not necessary to update all the subautomata, since those on the right may not have any active
state. We keep track of up to where need we to update the matrix of subautomata, working only
on “active” cells.

The technique of grouping in case of a very relaxed filter is used here too. We use the heuristic
of sorting the patterns and packing neighbors in the same group, trying to have the same first
characters.

Pattern Partitioning: is based on the Partitioning Lemma proved in Section 4.2. We can reduce
the size of the NFA’s if we divide the pattern in j parts, provided we search all the sub-patterns with
|k/j]| errors. Each match of a sub-pattern must be verified to determine if it is in fact a complete
match.

! This mechanism is used in Chapter 5 to speed up pattern partitioning, while here we use it as a truly multipattern
search algorithm.
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Once we partition all the patterns, we are left with j xr subpatterns to be searched with | k/j| errors.
We simply group them as if they were independent patterns to search with the general method.
The only difference is that we have to verify the complete patterns when we find a sub-pattern.

As said in Section 5.5, we apply hierarchical verification (which is explained in Section 4.3.1) on the
pattern pieces to grow up the complete pattern. This is similar to the hierarchical verification on a
set of patterns we are proposing here, but it works bottom-up instead of top-down and it operates
on pieces of the pattern rather than on sets of patterns. That is, instead of checking the complete
pattern we check the concatenation of two pieces containing the one that matched, and if it matches
then we check the concatenation of four pieces, and so on.

As we are using our hierarchical verification on the sets of pattern pieces to determine which piece
matched given that a superimposition of them matched, we are coupling two different hierarchical
verification techniques in this case: we first use our new mechanism to determine which piece
matched from the superimposed group and then use the technique of Section 4.3.1 to determine the
occurrence or not of the complete pattern the piece belongs to.

7.2 Partitioning into Exact Searching

This technique (called “exact partitioning” for short) is based on a single-pattern filter which reduces
the problem of approximate searching to a problem of multipattern exact searching. The single-
pattern algorithm is explained in Section 6.1.

The idea is based on a particular case of the Partitioning Lemma which states that if we partition
the pattern in k+ 1 pieces, then at least one piece must appear unchanged in any occurrence with k
errors or less. Since there are efficient algorithms to search for a set of patterns exactly, we partition
the pattern in k + 1 pieces (of similar length), and apply a multipattern exact search for the pieces.
Each occurrence of a piece is verified to check if it involves a complete match. If there are not too
many verifications, this algorithm is extremely fast. We use the same technique for hierarchical
verification of a single pattern presented in Section 4.3.1.

We can easily add more patterns to this scheme. Suppose we have to search for r patterns P!, ..., P".
We cut each one into k+1 pieces and search in parallel for all the » x (k+1) pieces. When a piece is
found in the text, we use a classical algorithm to verify its pattern in the candidate area (this time we
normally know which pattern to verify, since we know which piece matched). As for superimposed
automata, this constitutes a good filter if the number of patterns and errors is not too high. Unlike
superimposed automata, grouping and hierarchical verification are of no use here, since there are
no more matches in the union of patterns than the sum of the individual matches. The only reason
to superimpose fewer patterns is that the shifts of a multipattern Boyer-Moore-like algorithm are
reduced as the number of patterns grow, but as we show later this is not important in practice
(recall that we use an extension of the Sunday [Sun90] algorithm).

7.3 A Counting Filter

We present now a filter based on counting letters in common between the pattern and a text window.
The single-pattern version of this filter is presented in Section 6.2. The idea is to slide a window
of length m over the text and keep track of how many letters of the window are present in the
pattern, triggering a verification when there are m — k matches or more. The code is very simple
and is shown in Figure 6.8. It is based on keeping a counter count of how many characters in the
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current text window match the pattern, and a table A[c] which for each character tells how many
characters of the text window can currently be taken as part of the pattern. Actually, we keep
counter — (m — k), so when it reaches zero we trigger a verification.

To search r patterns in the same text, we use bit-parallelism to keep all the counters in a single
machine word. We must do that for the A[] table and for count.

The values of the entries of A[] lie in the range [—m..m], so we need exactly 1+ [log,(m + 1)] bits
to store them. This is also enough for count, since it is in the range [—(m — k)..k]. Hence, we can
pack

w
{1-+ ﬂogz("1+-1)1J
patterns of length m in a single search (recall that w is the number of bits in the computer word).
If the patterns have different lengths, this limit holds for the longest one. If we have more patterns,
we must divide the set in subsets of at most this size and search each subset separately. We focus
our attention on a single subset now.

The algorithm simulates the simple one as follows. We have a table MA[] that packs all the A[]
tables. Each entry of MA[] is divided in bit areas of the appropriate length. In the area of the
machine word corresponding to each pattern, we store its normal A[] value, set to 1 the most
significant bit of the area, and subtract 1. When, in the algorithm, we have to add or subtract 1,
we can easily do it in parallel without causing overflow from an area to the next. Moreover, the
corresponding A[] value is not positive if and only if the most significant bit of the area is zero.
Figure 7.1 illustrates.

| [ +27-1 | | MA[]
/—‘count
| | —|—Zj | | M count
m=5k=1r=4,5=3
1o 0 1 MA[a]
ol1 10 MAI
0/11 1 MAJo]
ol1 11 MA[h]
0l1 10 MA[e]
A[E>0
| | 0/1 11 | | Mcount
co;thO

Figure 7.1: Scheme and an example of the bit-parallel counters. The example follows that of
Figure 6.7.

We have a parallel counter Mcount, where the areas are aligned with MA[]. It is initialized by
setting to 1 the most significant bit of each area and then subtracting m — k at each one. Later, we
can add or subtract 1 in parallel without causing overflow. Moreover, the window must be verified
for a pattern whenever the most significant bit of its area reaches 1. The condition can be checked
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in parallel, although if some counter reaches zero we sequentially verify which one did it. Note that
this allows to have different k values for each pattern. It is also possible to have different m values,
but the performance of the algorithm may be degraded if they are very different, because we have
to use the longest text window for all the patterns, and the width of the bit areas corresponds to
the longest pattern.

Finally, observe that the counters that we want to selectively increment or decrement correspond
exactly to the MA[] areas that have a 1 in their most significant bit (i.e. those whose A[] value
is positive). This allows an obvious bit mask-shift-add mechanism to perform this operation in
parallel on all the counters.

Figure 7.2 shows the pseudocode of the parallel algorithm. As it can be seen, the algorithm is more
complex than the simple version but the number of operations per character is still very low.

CountFilter (T ,n,PY " ,m,k)

{ /* preprocessing */
£ = [logy m];
for (c€X) MA[c]= (019)";
for (s=0;s < r;s++)
for (i=1;i < m;it+) MA[PIT] += 1050+
high = (104)";
ones = (0°1)";
Mecount = (10° — (m — k)) x ones;

/* searching */

for (j=1;5<m;j++) /* £ill the initial window */
{ Mcount += (MA[T;] >> {) & ones;
MA[T;] —= ones;
}
for (7 <m;j++) /* move the window */
{ it (Mcount & high # 0) then /* verify the area */

verify T;_,, ;1 with dynamic programming
(for each pattern whose high Mcount bit is 1)
MA[T;_,] += ones;

Mcount —= (MA[T;_m] >> £) & ones;
Mcount += (MA[T;] >> ) & ones;
MA[T;] —= ones;

Figure 7.2: The code of our multiple-pattern algorithm, in C-like notation.

As in the original algorithm, we can handle classes of characters in this scheme.
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7.4 Analysis

We are interested in the complexity of the presented algorithms, as well as in the restrictions that
a and r must satisfy for each mechanism to be efficient in filtering most of the unrelevant part of
the text.

To this effect, we define two concepts. First, we say that a multipattern search algorithm is optimal
if it searches r patterns in the same time it takes to search one pattern. If we call C),, the cost
to search r patterns in a text of size n, then an algorithm is optimal if C),, = C, ;. Second, we
say that a multipattern search algorithm is useful if it searches r patterns in less than the time it
takes to search them one by one with the corresponding sequential algorithm, i.e. C,,, < 7Cp 1. As
we work with filters, we are interested in the average case analysis, since in the worst case none is
useful.

We compare in Table 7.1 the complexities and limits of applicability of all the algorithms. The
analysis leading to these results is presented later in this section.

‘ Algorithm ‘ Complexity ‘ Optimality ‘ Usefulness ‘
Simple Superimp. m n a<l-— e\/é a<l—e/\o
Automaton Part. azgi’"a) n a<l—e /T a<l—e/\o

Pattern Part. s7mia] ™ a<l—e/T a<l-—e/\/o
rm 1 1
Part. Exact Search (1 + m) n|a< log, (rm)+0@(log, log,(rm)) a < log, m40(log, log, m)
Counting rlc’% o< e ™ a<e ™
Muth & Manber mn k=1 k=1

Table 7.1: Complexity, optimality and limit of applicability for the different algorithms.

We present in Figure 7.3 a schematical representation of the areas where each algorithm is the best
in terms of complexity. We show later that the experiments confirm these figures. Notice that our
limits come in fact from big-O expressions, so they only give an idea of the real scenario.

e Exact partitioning is the fastest choice in most reasonable scenarios, for the error levels where
it can be applied. First, it is faster than counting for m/logm < acrl/o‘/w, which does not
hold asymptotically but holds in practice for reasonable values of m. Second, it is faster
than superimposing automata for min(yv/w,w/m) < ¢/%=1/(1/a — 1), which is true in most
practical cases.

e The only algorithm which can be faster than exact partitioning is that of Muth & Manber
[MMO6], namely for 7 > ac'/®. However, it is limited to k = 1.

e For increasing m, counting is asymptotically the fastest algorithm since its cost grows as
O(log m) instead of O(m) thanks to its optimal use of the bits of the computer word. However,
its applicability is reduced as m grows, being in practice useless at the point where it wins
over exact partitioning.

e When the error level is too high for exact partitioning, superimposing automata is the only
remaining alternative. Automaton partitioning is better for m < ,/w, while pattern parti-
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tioning is asymptotically better. Both algorithms have the same limit of usefulness, and for
higher error levels no filter can improve over a sequential search.

NONE USEFUL NONE USEFUL

1-e/y& 1—e/y7

Pattern @ Superimposed Automata
Partitioning

Automaton
Partitioning

1/log, m
1/log, m
Partitioning into Exact Search

Partitioning into Exact Search

Muth-Manber ”
Vw acll®

Figure 7.3: The areas where each algorithm is better, in terms of a, m and r. In the left plot
(varying m), we have assumed a moderate r (say, less than 50).

We detail now the analysis of each algorithm.

7.4.1 Superimposed Automata

Suppose that we search r patterns. As explained before, we can partition the set in groups of r’
patterns each, and search each group separately (with its 7’ automata superimposed). The size of
the groups should be as large as possible, but small enough for the verifications to be not significant.
As shown in Section 5.7.4, the matching probability is the same as for a single pattern, provided we
replace o by o/r.

As the single-pattern algorithm is O(n) time, the multipattern algorithm is optimal on average
whenever the total cost of verifications is O(1) per character. Since each verification costs O(m)
(because we use a linear-time algorithm on an area of length m 4+ k = O(m)), we need that the
total number of verifications performed is O(1/m) per character, on average. If we used the plain
verification scheme, this would mean that the probability that a superimposed automaton matches
a text position should be O(1/(mr)), as we have to perform r verifications.

In a previous version of this work [BYN97b], where hierarchical verification was not used, we
analyzed the cost of verifications. In that case, we had that as r was increased, matching was more
probable (because it was easier to cross a horizontal edge of the automaton) and it costed more
(because we had to check the r patterns one by one). The results was that there were two different
limits on the maximum allowable r, one for each of the two facts just stated. The limit due to the
increased cost of each verification was more stringent than that of increased matching probability.
Moreover, the resulting analysis was very complex.

This improves considerably with hierarchical verification. As we show in Section 4.3.2, the average
cost to verify a match of the superimposed automaton is O(m) when hierarchical verification is
used, instead of the O(rm) cost of plain verification. That is, the cost does not grow as the number
of patterns increases.

Hence, the only limit that prevents us from superimposing all the r patterns is that the matching
probability becomes higher. That is, if @« > 1 — e\/r/0o, then the matching probability is too high
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and we will spend too much time verifying almost all text positions. On the other hand, we can
superimpose as much as we like before that limit is reached. This tells that the best » (which we
call 7*) is the maximum one not reaching the limit, i.e.

o(l - a)?

o= T (7.1)

which matches the result obtained in Section 5.7.4.

Since we partition in sets small enough to make the verifications not significant, the cost is simply

O(r/r* n) = O(rn/(c(1 — a)?)).

This means that the algorithm is optimal for » = O(o) (taking the error level as a constant), or
alternatively @ < 1 — ey/r/o. On the other hand, for a > 1 — e/+/0, the cost is O(rn), not better
than the trivial solution (i.e. * =1 and hence no superimposition occurs and the algorithm is not
useful). Figure 7.4 illustrates.

tp

3=

AV
1 /o 1

B

Figure 7.4: Behavior of superimposed automata. On the left, the cost increases linearly with r, with
slope depending on . On the right, the cost of a parallel search (¢,) approaches 7 single searches
(rts) when a grows.

Automaton Partitioning: the analysis for this case is similar to the simple one, except because
each step of the large automaton takes time proportional to the total number of subautomata, i.e.
O(k(m — k)/w). In fact, this is a worst case since on average not all cells are active, but we use
the worst case because we superimpose all the patterns we can until the worst case of the search is
almost reached. Therefore, the cost formula is

@ —eiv)?a s = O(% )

This is optimal for » = O(ow) (for constant ), or alternatively for o <1 —e/r/o. It is useful for

a<1l-—e/\/o.

Pattern Partitioning: we have now jr patterns to search with |k/j| errors. The error level is
the same for subproblems (recall that the subpatterns are of length m/j).

To determine which piece matched from the superimposed group, we pay O(m) independently of
the number of pieces superimposed (thanks to the hierarchical verification). Hence the limit for our
grouping is given by Eq. (7.1). In both the superimposed and in the single-pattern algorithm, we
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also pay to verify if the match of the piece is part of a complete match. As we show in Section 4.3.1,
this cost is negligible for a < 1 — e¢/+/o, which is less strict than the limit given by Eq. (7.1).

As we have jr pieces to search, the complexity is

jre? _ 0 m
sl—a)y " oul—a)
(recall that j = O((m — k)/+/w), from Eq. (5.7) and the development that follows).

On the other hand, the search cost of the single-pattern algorithm is O(jrn). With respect to the
simple algorithm for short patterns, both costs have been multiplied by 7, and therefore the limits
for optimality and usefulness are the same.

If we compare the complexities of pattern versus automaton partitioning, we have that pattern
partitioning is better for ¥ > /w. This means that for constant o and increasing m, pattern
partitioning is asymptotically better.

7.4.2 Partitioning into Exact Searching

In Section 6.1 we analyze this algorithm as follows. Except for verifications, the search time can
be made O(n) in the worst case by using an Aho-Corasick machine [AC75], and O(an) in the best
case if we use a multipattern Boyer-Moore algorithm. This is because we search pieces of length
m/(k+1)~1/a.

We are interested in analyzing the cost of verifications. Since we cut the pattern in k 4 1 pieces,
they are of length |m/(k+1)| or [m/(k + 1)]. The probability of each piece matching is at most
1/cl™/(+1)], Hence, the probability of any piece matching is at most (k + 1)/ol™/(k+1)],

We can easily extend that analysis to the case of multiple search, since we have now r(k + 1) pieces
of the same length. Hence, the probability of verifying is r(k + 1)/0Lm/(k+1)J. We check the matches
using a classical algorithm such as dynamic programming. Note that in this case we know which
pattern to verify. As we show in Section 4.3.1, the total verification cost if the pieces are of length
¢ is O(£?) (in our case, £ = m/(k +1)). Hence, the search cost is
rm

0] (1 + —acrl/o‘) n
where the “1” must be changed to “a” if we consider the best case of the search.
We consider optimality and usefulness now. An optimal algorithm should pay O(n) total search
time, which holds for

1 1

% log,(rm) +log,(1/a)  log, (rm) + 6(log, log, (rm))
where the last equality is obtained by noticing that o < 1/(3log, m+log, r) is a pessimistic bound
valid when plain verification is used. This last result applies also if we consider the best case of the

search.

The algorithm is always useful, since it searches at the same cost independently on the number
of patterns, and the number of verifications triggered is exactly the same as if we searched each
pattern separately. However, if a > 1/(log, m + ©(log, log, m)), then both algorithms (single and
multipattern) work as much as dynamic programming and hence the multipattern search is not
useful (see Section 6.1). The other case when the algorithm could not be useful is when the shifts
of a Boyer-Moore search are shortened by having many patterns up to the point where it is better
to perform separate searches. This never happens in practice.
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7.4.3 Counting

If the number of verifications is negligible, each pass of the algorithms is O(n). In the case of
multiple patterns, only O(w/logm) patterns can be packed in a single search, so the cost to search
r patterns is O(rnlog(m)/w).

In Section 6.2.2.2 we obtain a pessimistic bound on the maximum error level a that the filtration
scheme can tolerate while keeping the number of verifications low, namely o < e~™/? (Eq. (6.3)).
This is in fact the limit value for a so that the matching probability is O(1/m¢) for any constant
c> 0.

We assume that we use dynamic programming to verify potential matches. If the probability of
verifying is at most log(m)/(wm?) then the algorithm keeps linear (i.e. optimal) on average. The
algorithm is always useful since the number of verifications triggered with the multipattern search
is the same as for the single-pattern version. However, if the matching probability exceeds 1/m
then both algorithms work O(rmn) as for dynamic programming and hence the filter is not useful.
Therefore, o < e™™/ is both the limit of optimality and usefulness of our algorithm.

7.5 Experimental Results

We experimentally study our algorithms and compare them against previous work. We tested with
10 Mb of random text (¢ = 32) and lower-case English text. Each data point was obtained by
averaging the Unix’s user time over 10 trials. We present all the times in tenths of seconds per Mb.

Figure 7.5 compares the plain and hierarchical verification methods against a sequential application
of the r searches, for the case of superimposed automata when the automaton fits in a computer
word. Hierarchical verification clearly outperforms plain verification in all cases. Moreover, the
analysis for hierarchical verification is confirmed since the maximum 7 up to where the cost of the
parallel algorithm does not grow linearly is very close to 7* = (1 — @)2¢/1.09%. On the other hand,
the algorithm with simple verification degrades sooner, since the verification cost grows with r.

The mentioned maximum r* value is the point where the parallelism ratio is maximized. That is, if
we have to search for more than 7* patterns, it is better to split them in groups of size r* and search
each group sequentially. To stress this point, Figure 7.6 shows the quotient between the parallel and
the sequential algorithms, where the optimum is clear for superimposed automata. On the other
hand, the exact partitioning algorithm does not degrade its parallelism ratio, as predicted by the
analysis. When we compare our algorithms against the others, we use this r* value to obtain the
optimal grouping for the superimposed automata algorithms. The exact partitioning, on the other
hand, performs all the searches in a single pass. We have not included counting in this test because
its degree of parallelism is fixed and cannot be controlled.

Notice that the plots which depend on r show the point where * should be selected. Those which
depend in k (for fixed r), on the other hand, just show how the parallelization works as the error
level increases, which cannot be controlled by the algorithm.

Now that we have established that hierarchical verification is superior we do not consider plain
verification anymore. We turn now to the problem of selecting among pattern partitioning or
automaton partitioning. Figure 7.7 shows the case of patterns of length 30. As it can be seen there
is no clear winner. It depends on the error level and the number of patterns.

Figure 7.8 shows the speedups, including that of exact partitioning. The picture is much more
complex now. The speedup of pattern partitioning is easily predicted by noticing that it just splits
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Figure 7.5: Comparison of sequential and superimposed automata for m = 9. The left plots are on
random text and the right plots on English text. The rows correspond to k =1, k£ = 3 and r = 5,
respectively.
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Figure 7.6: Ratio between parallel and sequential automata algorithms for m = 9. The left plots
are on random text and the right plots on English text. The rows correspond to k =1, k = 3 and
r = b, respectively.
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plots are on random text and the right plots on English text. The rows correspond to k =4, k = 8
and r = 5, respectively.
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the pattern in small ones and resorts to the simple algorithm. That is, for m = 30 and k& = 4 it
splits the pattern in 4 pieces for which m = 7 or 8 and k£ = 1. Since the optimum 7* for those single
pieces is close to 16, the method gets it optimum speedup near 7* = 4. The case of automaton
partitioning is more complex, since now the search cost is not uniform but it depends on the number
of active cells of the automaton. There are local optima separated by bad combinations. Finally,
there is an optimum for exact partitioning (given by the Boyer-Moore shifts). However, we checked
that the difference is not so important to justify splitting a single search in two.

We compare now our algorithms among them and against others. We begin with short patterns
whose NFA fit in a computer word. Figure 7.9 shows the results for increasing r and Figure 7.10
for increasing a. For low and moderate error levels, exact partitioning is the fastest algorithm. In
particular, it is faster than previous work [MM96] when the number of patterns is below 50 (for
English text) or 150 (for o = 32). When the error level increases, superimposed automata is the
best choice. This agrees with the analysis.

We consider longer patterns now (m = 30). Figure 7.11 shows the results for increasing r and
Figure 7.12 for increasing «. We have a similar scenario: exact partitioning is the best where it can
be applied, and improves over previous work [MM96] for r up to 90-100. For these longer patterns
the superimposed automata technique also degrades, and only rarely is it able to improve over exact
partitioning. In most cases it only begins to be the best when it (and all the others) are no longer
useful.

As it can be seen, counting is competitive but it is never the fastest algorithm. It is however
simple and elegant, and its theoretical complexity is good as m grows. When it was first published
[Nav97a] (before hierarchical verification improved the other two algorithms) it was the fastest for
intermediate error levels.

There is number of heuristic optimizations which can be done on our algorithms and which we have
not pursued yet, for instance

o Ifthe patterns have different lengths, we truncate them to the shortest one when superimposing
automata. We can select cleverly the substrings to use, since having the same character at
the same position in two patterns improves the filtering mechanism.

e We used simple heuristics to group subpatterns in superimposed automata. These can be
improved to maximize common letters too. A more general technique could group patterns
which are at small edit distance (i.e. a clustering technique).

e We are free to partition each pattern in k + 1 pieces as we like in exact partitioning. This is
used in Section 6.1 to minimize the expected number of verifications when the letters of the
alphabet do not have the same probability of occurrence (e.g. in English text). We presented
an O(m3) dynamic programming algorithm to select the best partition, and this could be
applied to multipattern search.
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Figure 7.9: Comparison among algorithms for m = 9 and increasing r. The rows show k£ = 1 and
k = 3, respectively. The left plot shows random text, the right one shows English text.
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Figure 7.11: Comparison among algorithms for m = 30 and increasing r. The rows show k = 1,
k = 4 and k = 8, respectively. The left plot shows random text, the right one shows English text.
Pattern partitioning is not run for £ = 1 because it should resort to exact partitioning.
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Part 11

Indexed Searching
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This Part of this thesis deals with indexing techniques for approximate string matching. The
problem of indexing a text to answer approximate queries is quite difficult and was considered until
1992 the big open problem in this area. Since 1992, two kinds of indices have appeared. A first one
(“word-retrieving”) aims to index natural language text and to retrieve whole words which match
the query with up to k errors. The second one (“sequence-retrieving”) keeps the original problem
and does not assume special text characteristics.

Word-retrieving indices have been very successful in practice, with a performance approaching
that of exact searching for reasonable queries. Their restriction of matching words against words
is reasonable in many information retrieval scenarios, although it is not acceptable in others. For
instance, the text may not be natural language, may be an agglutinating language, or we may simply
not want to lose a match when the error involves a separator character. Sequence-retrieving indices
are the only answer for these scenarios. However, they are still rather immature and extremely
primitive as software systems, with huge space overheads and in many cases poor speedups over
sequential searching.

This Part has two chapters. Chapter 8 is devoted to word-retrieving indices. The first part of the
chapter analyzes the performance of those indices using some heuristic rules widely accepted in
Information Retrieval. We prove that their retrieval times are sublinear in the text size (normally
near O(n%*:9®)). We then consider block addressing, showing that it is possible to adjust the block
size so that the index remains sublinear in query times and it is at the same time sublinear in space
requirements. The band is quite narrow, e.g. we show an example where both quantities grow as
O(n%®%) for k = 2 errors. This analysis holds for exact searching as well, and makes an excellent
case of this kind of indices. We confirm our analysis with experimental results.

Chapter 8 also improves the search algorithms currently used in word-retrieving indices. We present
a b-fold improvement to the search in blocks (which applies to extended patterns and regular
expressions as well) and an independent 2-fold improvement to search the vocabulary.

Chapter 9 deals with sequence-retrieving indices. We first present a new index based on indexing
substrings of the text to implement an off-line version of the fast on-line filter of Section 6.1. The
resulting index takes 2 to 4 times the text size and allows reducing the search times, which range from
10% to 60% of the time of the on-line algorithm. This is an index whose space overhead, tolerance
to errors and performance shows a good tradeoff, making it a viable alternative in practice. We
show that this technique can be implemented over a word-retrieving index, which could allow to
solve the problem of allowing errors that involve separators for natural language texts.

The second part of Chapter 9 reconsiders an existing index which uses a suffix tree to simulate
on-line traversal avoiding the text redundancies. Our on-line algorithm of Chapter 5 is used instead
of dynamic programming. The cost is that we cannot use the smartest techniques to traverse the
suffix tree, because they are based on dynamic programming and are not easily bit-parallelizable.
We show experimentally, however, that it is much better in practice to use a faster algorithm and
a less sophisticated traversal algorithm. On the other hand, pattern partitioning outperforms all
the others by far, and we believe that this technique deserves much more study. We propose to
simulate it with a ¢-gram index to reduce the space requirements.

Finally, it would be interesting to settle down the question of the possibility of sublinear-time
sequence-retrieving indices for natural language text.
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Chapter 8

Word-Retrieving Indices

In this chapter we address the case of inverted indices used for approximate string matching. As
explained in Section 2.10, these indices are able to return only whole words or phrases which match a
given search pattern allowing errors. This simplification of the problem is in many cases acceptable,
and allows the development of practical indexing schemes. Our contributions are of two kinds: we
have analyzed the behavior of these types of indices (finding many unexpected results) and we have
proposed and tested some improvements to speed up their existing exponents. This work has been

published in [ANZ97, BYN97a, BYN98b, BYN98a]|.

We remark that our analysis is approximate, since it relies on empirical rules such as Heaps’ Law or
Zipf’s Law (see a complete list of assumptions in Section 2.9), which are only rough approximations
to the statistical structure of texts. Moreover, the results are valid only for queries useful to the
user (i.e. with reasonable degree of precision). Finally, our analysis considers the average case and
gives “big-O” (i.e. growth rate) results.

For the experiments of this chapter, we use one of the collections contained in TREC [Har95], namely
the Wall Street Journal (wsJ) collection, which contains 278 files of almost 1 Mb each, for a total
of 250 Mb of text. To mimic common IR scenarios, all the texts were transformed to lower-case, all
separators to single spaces (except line breaks); and stopwords were eliminated. We are left with
almost 200 Mb of filtered text. Throughout this chapter we talk in terms of the size of the filtered
text, which takes 80% of the original text. To measure the behavior of the index as n grows, we
index the first 20 Mb of the collection, then the first 40 Mb, and so on, up to 200 Mb.

8.1 Vocabulary Statistics

We present in this section our new results about the statistics of the vocabulary of a text collection.
We first show an analytical observation which is independent on the type of queries performed, and
later present an empirical result on the amount of expected matching of an approximate query in a
vocabulary.

8.1.1 Combining Heaps’ and Zipf’s Laws

Section 2.9 explains the rules which we assume govern the behavior of natural language texts. The
most interesting rules are Heaps’ Law (which drives the vocabulary growth as the text grows) and
Zipf’s Law (which rules the frequencies of the vocabulary words in the text). As a reminder, Heaps’
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Law states that a text of n words has a vocabulary of size V = ©(n®) for 0 < 8 < 1, and Zipf’s Law
states that the frequency of the 7-th most frequent word is n/(iGH‘(f)), where H‘(f) = Z;le 1/4%, for

some # > 1. For § =1 it holds H‘(,l) =InV + O(1), while for § > 1 we have H‘(f) =0(1).

Something which is not said in the literature is that these two rules can be related. Assume that
the least frequent word appears O(1) times in the text (this is more than reasonable in practice,
since a large number of words appear only once). Since there are @(nﬁ ) different words, then the
least frequent word has rank i = ©(n?). The number of occurrences of this word is, by Zipf’s Law,

n n
@ - ( 56 (e))
1 Hy, nPYHy,
and this must be O(1). This implies that, as n grows, 8 = 1/6. This equality may not hold exactly
for real collections. This is because the relation is asymptotical and hence is valid for sufficiently
large n, and because Heaps’ and Zipf’s rules are approximations. For instance, in the texts of the

TREC collection [Har95], 8 is between 0.4 and 0.6, while 6 is between 1.7 and 2.0. Considering each
collection separately, 460 is between 0.80 and 1.04.

8.1.2 Vocabulary Matching

An issue which is central to any analysis of the performance of approximate searching on inverted
indices is how many words of the vocabulary match a given pattern with k errors. In principle, there
is a constant bound to the number of distinct words which match a given pattern with k errors, and
therefore we can say that O(1) words in the vocabulary match the pattern. However, not all those
words will appear in the vocabulary. Instead, while the vocabulary size increases, the number of
matching words that appear increases too, at a lower rate!. We show experimentally that a good
model for the number of matching words in the vocabulary is O(n”) (with v < 8).

For classical word queries we have v = 0 (i.e. only one word matches). For prefix searching, regular
expressions and other multiple-matching queries, we conjecture that the set of matching words grows
also as O(n) if the query is going to be useful in terms of precision. However, this issue deserves a
separate study and is out of the scope of this thesis.

Since the average number of occurrences of each word in the text is n/V = ©(n!~#), the average
number of occurrences of the pattern in the text is O(nl_ﬁ"'”). This fact is surprising, since one can
think in the process of traversing the text word by word, where each word of the vocabulary has
a fixed probability of being the next text word, and hence there is a fixed probability of matching
each new text word. Under this model the number of matching words is a fixed proportion of the
text size. The fact that this is not the case (demonstrated experimentally in this chapter) shows
that this model does not really hold on natural language text.

The root of this fact is not in that a given word does not appear with a fixed probability. Indeed,
the Heaps’ Law is compatible with a model where each word appears at fixed text intervals. For
instance, imagine that Zipf’s Law stated that the i-th word appeared n/2' times. Then, the first
word could appear in all the odd positions, the second word in all the positions multiple of 4 plus
2, the third word in all the multiples of 8 plus 4, and so on. The real reason for the sublinearity is
that, as the text grows, there are more words, and one selects randomly among them. Notice that,

!This is the same phenomenon observed in the size of the vocabulary. In theory, the total number of words is finite
and therefore V = O(1). But in practice that limit is never reached, and the model V = O(n?) describes reality much
better.
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asymptotically, this means that the length of the words must be m = Q(logn), and therefore, as
the text grows, we search on average longer and longer words. This allows that even in the model
where there are n/¢™ matches, this number is indeed o(n).

8.1.3 Experiments

We present in this section empirical evidence supporting our previous statements. We first measure
V', the number of words in the vocabulary in terms of n (the text size). Figure 8.1 (left side) shows
the growth of the vocabulary. Using least squares we fit the curve V = 78.81n%40. The relative
error is very small (0.84%). Therefore, 8 = 0.4 for the wsJ collection.

160 ~ 35 q

140 - 50 d///////// k=3
3

x10 120 4
25 */‘

100 - =
50 k=2

807 //\/

60 - 15 -

40 - 109 k=1
20 - 54—
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40 80 120 160 200 40 80 120 160 200

Figure 8.1: Vocabulary tests for the wss collection. On the left, the number of words in the
vocabulary. On the right, number of matching words in the vocabulary.

We measure now the number of words that match a given pattern in the vocabulary. For each text
size, we select words at random from the vocabulary allowing repetitions. This is to mimic common
IR scenarios. In fact, not all user queries are found in the vocabulary in practice, which reduces the
number of matches. Hence, this test is pessimistic in that sense.

We test £ = 1, 2 and 3 errors. To avoid taking into account queries with very low precision (e.g.
searching a 3-letter word with 2 errors may match too many words), we impose limits on the length
of words selected: only words of length 4 or more are searched with one error, length 6 or more
with two errors, and 8 or more with three errors.

We perform a number of queries which is large enough to ensure a relative error smaller than 5%
with a 95% confidence interval. Figure 8.1 (right side) shows the results. We use least squares to fit
the curves 0.31n%!* for £ = 1, 0.61n%!® for £ = 2 and 0.88n%!° for k£ = 3. In all cases the relative
error of the approximation is under 4%. The exponents are the v values mentioned later in this
chapter.

We could reduce the variance in the experiments by selecting once the set of queries from the index
of the first 20 Mb. However, our experiments have shown that this is not a good policy. The reason
is that the first 20 Mb will contain almost all common words, whose occurrence lists grow faster
than the average. Most uncommon words will not be included. Therefore, the result is unfair,
making the times to look linear when they are in fact sublinear.
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8.2 Full Inverted Indices

In this section we present the analysis of a full inverted index used for approximate string match-
ing, finding that the retrieval times, even for complex patterns, are sublinear in the text size for
reasonable queries.

The Igrep software [ANZ97] is a full inverted index described in Section 3.3.1. Although the im-
plementation of this index is not part of this thesis, its analysis is. The aim of this section is to
analytically prove that the search times are sublinear in the text size. As an empirical confirmation,
we show some experimental results.

Igrep is able to search a single word or an extended pattern that matches a single word, such as a
regular expression. It can also search “phrases”. A phrase is a sequence of single words or extended
patterns. Phrases of j elements match with sequences of 7 words in the text. Finally, it can search a
single element or a phrase allowing up to k errors in the whole match. We analyze now its retrieval
times, explaining in the process the algorithms used.

8.2.1 Retrieval Times

There are a number of different types of query. Each type involves carrying out different tasks.
We first analyze the cost of each task, and then use the results to deduce the cost of each type of
query. The description of the tasks follow, together with their analysis. Recall that the size of the
vocabulary is V = O(n?), which is normally in the range 0.4 to 0.6 [Hea78, ANZ97].

bin-search: binary searching a word in the vocabulary and retrieving the list. Since the search is
binary, we have O(logn”) = O(logn) cost for this type of task.

seq-search: sequentially searching a word in the vocabulary is O(nf). This is the case of regular
expressions, extended patterns and approximate string matching, since all them can be re-
duced to deterministic automata. Alternative schemes achieve O(knf) time for approximate
searching or O(mnﬁ Jw) for regular expressions and extended patterns. These quantities can
all be considered O(n”) for our purposes.

Ist-merge: list merging of j lists of occurrences happens in approximate searching, extended pat-
terns, etc. Since the average size of each list of occurrences is n/V = O(n!~?) and we merge
ordered lists to produce an ordered list, we work O(n'~#jlog) (using a heap of size 7).

We point out now the times for each type of query, as follows:

Simple words: the word is searched in the vocabulary and the list of occurrences is retrieved. If
the search is binary, we have O(logn?) = O(logn) search cost for this type of query. With
other data structures the search time can be even less, e.g. O(m) by using hashing or a trie.

Phrases of j simple words: each one of the j words is searched in the vocabulary at a total cost
of O(jlogn). Then, the j lists of occurrences are “intersected”, in the sense that we check
the text positions where the j words are contiguous and in the proper order (the algorithm is
very similar to a list intersection). To perform this pseudo-intersection, the shortest among
the j lists is selected, and its positions are binary searched inside the other lists to verify its
surrounding area. We prove now that the shortest list among j is O(1) length and therefore
the total cost of the list intersection is O(j logn).
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To show that, we use the Zipf’s Law and our result of Section 8.1.1, namely #0 = 1. If we
consider X;..X; the rank of the words present in a phrase (which are uniformly distributed
over [1..V]), and call f(¢) the number of occurrences of the ¢-th most frequent word, we have

P(min f(X;) > a) = (P(f(X1) > a))’

and since f(i) = n/(iGH‘(f)), we invert f to get

1/6
n
plx< (7)
a H‘(,)

which given that X; distributes uniformly over [1..V] is

J

J

1/6 )
n _ (8)\—3/6
= (a H

where the last equality is obtained by cancelling n'/% with 1/V = 1/n% = 1/n1/¢,
Hence, the expectation of the length of the shortest list is

Vv ‘ 1
> Plminf(X) >a) < ()

which is O(1) for j > 6. This is typically out of question for phrases of three words or more.
However, for j = 2 that may not be the case, although it is generally true (e.g. in the TREC
collection, where 6 < 2 always holds). If § > 2, we can bound the summation with an integral
to get that the expectation is smaller than 1 + V1=9/9/(j — 1) + O(1/5) = O(nP(1=59)). In
that case the total cost of the intersection is O(n?(1=8) log n).

1
j/e Z aill
a>1

Extended patterns, regular expressions and approximate word matching: the pattern is
sequentially searched in the vocabulary and all the lists of occurrences of the resulting matches
are merged. The time of the sequential search is O(nﬁ). If p vocabulary words match, we
merge them using a heap. The lists are of average length n/V = n'~#, and therefore the total
merge time is O(pn' ~# logp). Hence, the total cost of this type of query is O(n® +pn'~? log p).

Phrases formed with complex patterns: we perform the j searches as those for the above ex-
pressions (which add up O(j(n? + pn'~Plogp))), plus an intersection of the lists. Those lists
do not obey the Zipf’s Law because they come from the union of random words, and are of
average length O(pn'~?). Hence, the trick of using the shortest list does not work and the
total intersection cost for the j lists (using a heap again) is O(pn'~Pjlogj). The total time
is thus O(j(n? 4 pn' =P log(p7)))-

Approximate phrase matching of j words and % errors: is solved by searching each phrase
element with up to k errors. For each of the j elements, k+1 lists are initialized where the words
that matched each element with each number of errors are stored. This costs j seq-searches
considering a number of different Ist-inters, which has a cost of O(j(n® + pn!=Flogp) +
(kj.'j)pnl_ﬁj log j), under the same conditions as above. This is because we try all alternatives
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of selecting a list of each word, such that the total number of errors does not exceed k. That

()= ()

Again, the lists of occurrences are O(pnl_ﬁ) size, where p corresponds to searching a single
word with k errors.

18

In all these results, we can consider j and k as small constants. On the other hand, as we show in
Sections 8.1.2 and 8.1.3, p = O(n¥) for v in the range 0.1 .. 0.2 if the precision is reasonably good
(i.e. k < 3 for words). The same should happen for complex patterns, since otherwise a large p
value means a query which has too low precision and is of no use to the final user. This condition
can be detected beforehand.

Therefore, exact search queries can be solved at O(logn) expected time, while complex patterns or
searching allowing errors costs O (n™2*(8:1=8+%)) 'which is in the range O(n%*°8) depending on the
vocabulary size and the complexity of the search. In reasonable cases it is O(n%®), which is near
O(+/n). We also point out that the disk accesses to the index are sequential (except for buffering
limitations). This matches with the results of Section 8.3.

8.2.2 Experimental Results

In this section we present some experimental results which are useful to confirm the analysis?. These
results were obtained using an isolated Sun SparcStation 4 with 128 megabytes of RAM running
Solaris 2.5.1. The text used was part of a newer TREC collection (TREC-3), where the ZIFF collection
has near 700 Mb. The experiments use this collection. More details and experiments are found in
the original paper [ANZ97, ANZ98], where the Heaps’ and Zipf’s Laws are experimentally validated,
and other parameters such as index construction time and space are studied. In this section we
only present the results which are relevant to our analysis.

First, we experimentally validate the fact that the length of the shortest list is constant if selected
among 3 or more random lists. Figure 8.2 shows the results. As it can be seen, the shortest among
two lists remains somewhat increasing, while among more than two lists stabilize in the long term.
This is especially clear for 5 = b, while the same should happen to the others for longer texts.

We now consider time complexity. The experiments to measure query times considered exact and
approximate queries (k = 0, 1, 2, 3), phrase patterns containing 1, 2, 3, 4, and 5 words. The patterns
were randomly chosen from the texts, avoiding patterns containing stopwords.

Figure 8.3 shows the retrieval times as a function of the number of words j in the query. As
analytically predicted, the costs for zero errors are basically independent on the number of words,
with a very slow increment for the merging process (where the qualifying words are binary searched
in the other lists). For one error or more, the costs increase linearly with the number of words, as
the analysis predicts. This is because each of the j lists comes from merging many short lists, and
then we have to intersect those j lists.

What the analysis did not predict is the sharp increase for j = 2. This does not come from
generating the lists for each pattern, but from the intersections. For instance, for ¥ = 2 we have a
higher cost for j = 2, which comes from intersecting the first pattern with one error and the second

2The results come from a joint work with Nivio Ziviani and Marcio Drumond Aratjo, which is not yet published
[ANZ98]. The implementation of the index is part of Drumond’s Master’s Thesis and not of ours.
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Figure 8.2: Length of the shortest among j lists, for j = 2 to 5.

pattern with one error (which we call the combination [1,1]). The other alternatives (where one
word matches exactly and the others with two errors, i.e. [0,2] and [2,0]) are cheaper since one of
the lists is typically very short. When we move to j = 3 then any possible combination with k = 2
errors contains one word that matches exactly, and hence all the merges are cheaper. The same
happens to k = 3, where with j = 2 we have expensive combinations such as [1,2] and [2,1], and
with j = 3 we have [1,1,1], but the costs are cheaper for j > 4. This shows empirically that the
costs are high for 1 < 7 < k.

We show in Figure 8.4 the retrieval times as a function of the number k of errors allowed. As it
can be seen, the retrieval times increase sharply as the number of errors goes from 0 to 3. For more
than 3 errors the amount of text retrieved makes the query useless for any practical purpose.

Finally, we show that the retrieval times are, as predicted, sublinear in the text size if the number
of allowed errors is not too high. Figure 8.5 shows the performance as a function of the text size, for
queries of one to three words. Table 8.1 shows the results of the least squares fitting of the curves
(up to five words, although we do not plot the case of four and five words here). We have used the
model O(n®) for all the entries, even for k = 0, since this includes the time to read the results from
disk. The relative error of the approximation goes from 1% to 9%. As it can be seen, the results
are as predicted in the sense that sublinear times are obtained when the number of allowed errors is
reasonable. Phrase patterns are also affected by the phenomenon described before, which worsens
the complexities for 1 < 7 < k.

1 word 2 words 3 words 4 words | 5 words
E=01.064n531 | .057n°"2 | .054n582 | .050n°% | .049n 501
E=1].087n"%% | .043n "2 | .059n%%8 | .066n 700 | .078n 691
E=21.076n5% | .028n%%° | .053n8%6 | 0750786 | .010n 754
E=3|.058n%% | 02101239 | .033n10%° | 0.60n968 | .082n 922

Table 8.1: Least squares fitting for the retrieval times.
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Time versus Humber of Errors for one-
word Patterns
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Figure 8.5: Retrieval times for patterns of one to three words, as a function of the text size.
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8.2.3 Differential Pointers

In the previous analysis we assume that the pointers are not compressed. This allows performing
a binary search on the list of pointers, therefore avoiding the cost of a sequential search. A very
simple technique to reduce the space requirements of inverted files is to store differential pointers,
i.e. each pointer gives the difference between its real value and the previous one. This works well
because the list of pointers of each vocabulary word has increasing values. In practice this allows
reducing the space in 50% or more. However, we cannot perform a binary search anymore (except
by storing absolute pointers at regular intervals). If we have to sequentially process the lists, the
analysis of the retrieval times is identical except for the phrases of simple words, which now must
be processed by merging rather than by binary searching. That is, we pay O(nl_ﬁj log j) time for
this case. In particular, if we have to deliver the resulting text positions, then even searching one
simple word costs O(nl_ﬁ), which is its expected number of occurrences in the text.

8.3 Block Addressing Inverted Indices

Glimpse and Igrep are two extremes of a more general idea (see Section 3.3.1). The first one (in
its “tiny” index) cuts the text in a fixed number of blocks (“block addressing”) to reduce space
requirements, and sequentially verifies the occurrences inside the matching blocks. However, when
the text is large enough all the blocks have to be checked and the index is not useful anymore. Igrep
stores all the positions of all the words, which makes it resistant to huge text sizes but imposes a
linear space overhead. Glimpse has sublinear space overhead, while Igrep, as shown in the previous
section, has sublinear query time.

In this section we study the use of block addressing to obtain indices which are sublinear in space and
in query time, and show analytically a range of valid combinations to achieve this. The combined
sublinearity means that, as the text grows, the space overhead of the index and the time to answer
a query become less and less significant as a proportion of the text size. We validate this analysis
with extensive experiments, obtaining typical performance figures.

Once we establish our results for block addressing indices where the block size is fixed, we consider
an interesting particular case of document addressing (where the documents are of variable size):
we use recently obtained statistics from the distribution of the page sizes in the Web [CB96] and
apply our machinery to determine the space overhead and retrieval time of an index for a collection
of Web pages. We show that having documents of different sizes reduces space requirements in the
index but increases search times if the documents have to be traversed.

We recall from Section 2.10 the index structure: the text is logically divided into “blocks”. The
index stores all the different words of the text (the vocabulary). For each word, the list of the blocks
where the word appears is kept. We call b the size of the blocks and r the number of blocks, so that
n =~ rb (see Figure 8.6).

At this point the reader may wonder which is the advantage of pointing to artificial blocks instead
of pointing to documents (or files), this way following the natural divisions of the text collection.
This issue is raised in Section 2.9, but we explain it more in detail here. If we consider the case of
simple queries (say, one word), where we are required to return only the list of matching documents,
then pointing to documents is a very adequate choice. Moreover, as we see later, it may reduce
space requirements with respect to using blocks of the same size. Moreover, if we pack many short
documents in a logical block, we will have to traverse the matching blocks (even for these simple
queries) to determine which documents inside the block actually matched.
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However, consider the case where we are required to deliver the exact positions which match a
pattern. In this case we need to sequentially traverse the matching blocks or documents to find the
exact positions. Moreover, in some types of queries such as phrases or proximity queries, the index
can only tell that two words are in the same block, and we need to traverse it in order to determine
if they form a phrase.

In this case, pointing to documents of different sizes is not a good idea because larger documents are
searched with higher probability and searching them costs more. In fact, the expected cost of the
search is directly related to the variance in the size of the pointed documents. This suggests that
if the documents have different sizes it may be a good idea to (logically) partition large documents
into blocks and to put together small documents, such that blocks of the same size are used.

8.3.1 Average Space-Time Trade-offs

Glimpse and Igrep are two extremes of a single idea. Glimpse achieves small space overhead at the
cost of sequentially traversing parts of the text. Igrep achieves better performance by maintaining
a large index. We study in this section the possibility of having an intermediate index, which is
sublinear in size and query performance at the same time. We show that this is possible in general,
under reasonable assumptions.

In Section 8.2 we considered in detail the case of complex queries formed by phrases and extended
patterns. Those queries in most cases introduced additional factors to the complexity of the basic
search, which for the sake of sublinearity with respect to n can be disregarded. Therefore, we
simply consider the case of approximate word searching from now on, knowing that the result is
generalizable to a more complex query.
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8.3.1.1 Query Time Complexity

To search an approximate pattern, a first pass runs an on-line algorithm over the vocabulary. The
sets of blocks where each matching word appears are collected. For each such block, a sequential
search is performed on that block.

The sequential pass over the vocabulary is linear in V, hence it is ©(n?), which is sublinear in the
size of the text. On the other hand, the blocks to work on in the text are those including some (exact
or approximate) occurrence of the pattern. We model the process as follows: an approximate search
first selects O(n”) random words from the vocabulary, which is of size ©@(n?). Hence, the probability
of a given vocabulary word to be selected by the search is O(n*~#). To determine whether a block
needs to be searched or not, we take each one of its b words and look if they are selected in the
vocabulary. We work on the block if any of its words has been selected in the vocabulary.

The probability of a word from the block to be selected is O(n*~#). The probability that none
of the words in the block is selected is therefore (1 — O(n*~#))®. The total amount of work is
obtained by multiplying the number of blocks (7) times the work to do per selected block (b) times
the probability that some word in the block is selected. This is

© (rb (1 - (1- n”_ﬁ)b)) = o(n(1-e?)) (8.1)

where for the last step we used that (1—z)¥ = e¥I2(1-2) = ¢(-2+0(=*)) — @(e~¥*) provided z = o(1).

We are interested in determining in which cases the above formula is sublinear in n or not. Ex-
pressions of the form “1 — e~*” appear frequently in this analysis. We observe that they are O(z)
whenever ¢ = o(1) (since e™® = 1 — 2 + O(2?)). On the other hand, if z = Q(1), then e~ is far
away from 1, and therefore “1 — e=*” is Q(1).

For the search cost to be sublinear, it is thus necessary that b = o(n®~*), which we call the “condition
for time sublinearity”. When this condition holds, we derive from Eq. (8.1) that

Time = @(nﬁ + bnl_ﬁ‘i'”) (8.2)

which matches the results of Section 8.2, where b = 1.

8.3.1.2 Space Complexity

We consider space now. The average size of the vocabulary itself is already sublinear. However, the
total number of references to blocks where each word appears may be linear (it is truly linear in the
case of full inversion, which corresponds to single-word blocks, i.e. b =1 as studied in Section 8.2).

The analysis is very simple if we notice that each block of size b has O(bﬁ ) different words, by Heaps’
Law. Each different word that appears in each different block will correspond to a different entry in
the inverted index. Hence, the size of this index is just the number of different words of each block
times the number of different blocks, that is,

Space = @(rbﬁ) = @(rbl/o) (8.3)

Hence, for the space to be sublinear we just need r = o(n), or equivalently, b = w(1).

However, we have assumed the validity of an asymptotic rule such as Heaps’ Law for blocks, which
are much smaller than the whole text. Figure 8.7 shows the evolution of the 3 value as the text
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collection grows. We show its value for up to 1 Mb. As it can be seen, 3 starts at a higher value
and converges to the definitive 0.40 as the text grows. For 1 Mb it has almost reached its definitive
value. Hence, the Heaps’ Law holds for smaller blocks but the 3 value is higher than its asymptotic
limit.
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Figure 8.7: Value of 3 as the text grows. We added at the end the value for the 200 Mb collection.

We analyze now the space usage using Zipf’s Law instead of Heaps’ Law. The analysis is more
complex in this case, but the result is the same if we replace 8 by 1/6. This confirms that for
both rules to be valid it must hold 8 = 1/60. In the analysis that follows, 8 and 1/6 can be used
interchangeably whenever the space complexity is involved. In particular, we use 1/6 to draw later
the actual numbers, since it is more precise.

Suppose that a word appears £ times in the text. The same argument used for Eq. (8.1) shows that
it appears in ©(r(1 — e~¥/")) blocks on average. Recall that the index stores an entry in the list
of occurrences for each different block where a word appears. Under the Zipf’s Law, the number

of occurrences of the i-th most frequent word is ¢; = n/(iGH‘(f)). Therefore, the number of blocks

o(r(1-er))=0(r(1- e—b/(ieH(V*’))))

and the total number of references to blocks is

where it appears is

14
P31 ) (8.4)
=1

a summation which is hard to solve exactly. However, we can still obtain the required big-O
information. We show now that there is a threshold a such that

e 1/6
a = —H‘(/o)

1. The O(a) most frequent words appear in ©(r) blocks, and therefore contribute ®(ar) to the
size of the lists of occurrences. This is because each term of the summation (8.4) is Q(1)

provided b = Q (iGH‘(f)) which is equivalent to 7 = O(a).
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2. The O(V — a) least frequent words appear nearly each one in a different block, that is, if the
word appears £ times in the text, it appears in Q(£) blocks. This is because 7(1—e~4/") = ©(¢)

whenever £ = o(r). For ¢; = n/(iGH‘(f)), this is equivalent to i = w(a).

Summing the contributions of those lists and bounding with an integral we have

14
n B n 1/a%71 —1/v%1!
;1 #ry  HY 61 (o)

14
= @(aon—_l) = O(ar)

where we realistically assume 6 > 1 (we consider the case § = 1 shortly).

Therefore, the total space for the lists of occurrences is always ©(ar) = ©(rb'/%) for § > 1.

We have left aside the case # = 1, because it is usually not true un practice. However, we show now
what happens in this case. We have that a = ©(b/logV) = ©(b/logn). Summing the two parts of
the vocabulary we have that the space for the lists of occurrences is

o " ton 1_logb_l_loglogn
logn logn logn
which is sublinear provided b = Q(n?), for every § < 1 (e.g. b = n/logn). This condition opposes
to the one for time sublinearity, even for classical searches with v = 0. Therefore, it is not possible

to achieve combined sublinearity in this (unrealistic) case.

8.3.1.3 Combined Sublinearity

Simultaneous time and space complexity can be achieved whenever b = o(n®~") and r = o(n). To
be more precise, assume we want to spend

Space = ©(n")

space for the index. Given that the vocabulary alone is O(nﬁ), v > B must hold. Solving rb® = nY
with Eq. (8.3) we have
— 1—
r = @(n%) , b = @(nﬁ)

Since the condition for time sublinearity imposes b = o(n?~*), we conclude

v > op = 1-01=-8)B-v)
(which implies ¥ > ). In that case, the time complexity (computed using Eq. (8.2)) becomes

Time = @(nﬁ + nl_ﬁ+u+%%)

(and ©(n) if v < p). Note that the above expression turns out to be just the number of matching
words in the text times the block size.

The combined Time X Space complexity is

_ 1—8
Time x Space = © (nﬁ+v © ploBrt 1_*5)
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which, if 28 < 1 + v, is minimized for vy = 1 (full inversion), where Space = O(n) and Time =
@(nmax(ﬁ’l_ﬁ"'”)), as obtained in Section 8.2. On the other extreme, the “tiny” index of Glimpse
corresponds to v = 3, in which case Time = ©(n) and Space = ©(nP), i.e. just the necessary
to store the vocabulary. On the other hand, when 28 > 1 + v, the minimum is obtained for
v=1-028-v)(1-8)/(2-8).

The practical values of the TREC collection show that v must be larger than 0.77 .. 0.89 in practice,
in order to answer queries with at least one error in sublinear time and space. Figure 8.8 shows
possible time and space combinations for § = 0.4 and # = 1.87, values that hold for the wsJ
collection we use in the experiments. The values correspond to searching with k = 2 errors, which,
as found in Section 8.1.3, has v = 0.18. If less space is used, the time remains linear (as in Glimpse).

The figure also shows schematically the valid time and space combinations. We plot the exponents
of n for varying . As the plot shows, the only possible combined sublinear complexity is achieved
in the range g < 7 < 1, which is quite narrow.

1 Space
‘ Space ‘ Time ‘ L gy Time

7090 | ,,099
7092 | 095 8
n09% | 091
7096 | 087
7098 | 082
100 | 078

0 y

0 B u 1
Figure 8.8: On the left, valid combinations for time and space complexity assuming § = 1.87,

B = 0.4 and v = 0.18. On the right, time and space complexity exponents. The area of combined
sublinearity is shaded.

We end this section with a couple of practical considerations regarding this kind of index. First,
using blocks of fixed size imposes no penalty on the overall system, since the block mechanism is a
logical layer and the files do not need to be physically split or concatenated.

Another consideration that arises is how to build the index incrementally if the block size b has
to vary when n grows. Reindexing each time with a new block size is impractical. A possible
solution is to keep the current block size until it should be doubled, and then process the lists of
occurrences making equal all blocks numbered 2 with those numbered 27 + 1 (and deleting the
resulting duplicates). This is equivalent to deleting the least significant bit of the block numbers.
The process is linear in the size of the index (i.e. sublinear in the text size) and fast in practice.
Splitting blocks due to deletions in the text collection is however more complicated, but many
collections never decrease significantly in size.

8.3.2 Analyzing the Web

In [CB96], an empirical model for the distribution of the sizes of the Web pages is presented, backed
by thorough experiments. This distribution is as follows: the probability that a Web page is of size
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Py
p(z) = PRESY

for « > k, and zero otherwise. The cumulative distribution is

Fo = 1 (%)

where k and A are constants dependent on the particular collection. % is the minimum document
size, and A = 1.36 when considering textual data.

As explained before, pointing to documents instead of blocks may or may not be convenient in
terms of query times. We analyze now the space and later the time requirements when we point to

Web pages.

As the Heaps’ Law states that a document with z words has z? different words, we have that
each new document of size # added to the collection will insert 2 new references to the lists of
occurrences (since each different word of each different document has an entry in the index). Hence
the average number of new entries in the occurrence list per document is

e 3 B AP
/k p(z)z’de = 35 (8.5)

To determine the total size of the collection, we consider that » documents exist, whose average
length is

e Ak
b = dr = —— .
| p@ade = 75 (8.6)
and therefore the total size of the collection is
rAk
no= 37 (8.7)

The size of the vocabulary in the final collection is

B
B (r)\k)
A—-1

and the final size of the occurrence list is (using Eqgs. (8.5) and then (8.7))

rAkP A-1 1

A first result is that the space of the index is ©(n) (this should be clear since b* = O(1)). We
consider now what happens if we take the average document length and use blocks of that fixed
size (splitting long documents and putting short documents together as explained). In this case,
the size of the vocabulary is O(n?®) as before, and we assume that each block is of a fixed size
b= zb* = zAk/(A — 1) (Eq. (8.6)). We have introduced a constant z to control the size of our
blocks. In particular, if we use the same number of blocks as Web pages, then z = 1. Then the size
of the lists of occurrences is

B81.B.6 _ 1-8
(rfo)f = PR (A 1) .

" —1)P By
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(using Eq. (8.7) for the last step). Now, if we divide the space taken by the index of documents by
the space taken by the index of blocks (using the previous equation and Eq. (8.8)), the ratio is

document index zl—ﬁ}\l—ﬁ()\ _ 1)6 5.9
block index - A-pB :

which is independent on k and rounds 80% for z = 1 and 8 = 0.4..0.6. This shows that indexing
documents yields an index which takes 80% of the space of a block addressing index, if we have
as many blocks as documents. Figure 8.9 shows the ratio as a function of A and . As it can be
seen, the result varies slowly with 3, while it depends more on A (tending to 1 as the document size
distribution is more uniform).

The fact that the ratio varies so slowly with 3 is good because we already know that the 3 value
is quite different for small documents. As a curiosity, notice that there is a 3 value which gives the
minimum ratio for document versus block index (i.e. the worst behavior for the block index). This
is

which is §* ~ 0.61 for z = 1.

If we want to have the same space overhead for the document and the block indices, we simply
make the expression of Eq. (8.9) equal to 1 and obtain z ~ 1.4..1.7 for § = 0.4..0.6, i.e. we need to
make the blocks larger than the average of the Web pages. This translates into worse search times.
By paying more at search time we can obtain smaller indices (letting z grow over 1.7).

1.0
0.9
0.8
0.7 1
0.6 1
0.5
0.4 +
0.3
0.2 +
0.1
0.0

0.90 -

0.85

0.80 -

0.75
1.0 11 12 13 14 15 0.2 03 04 05 0.6 0.7 0.8

Figure 8.9: On the left, ratio between both indices as a function of A for fixed 8 = 0.5 (the dashed
line shows the actual A value for the Web). On the right, the same as a function of 8 for A = 1.36
(the dashed lines enclose the typical 8 values). In both cases we use the standard z = 1.

To show how retrieval times are affected by a non-uniform distribution when we have to traverse
the matching blocks, we do the analysis for the document size distribution of the Web. As we have
shown, if a block has size « then the probability that it has to be traversed is (1 — e‘m/"ﬁ_u). We
multiply this by the cost z to traverse it and integrate over all the possible sizes, so as to obtain its
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expected traversal cost (recall Eq. (8.1))

/00 z(l — e/ )p(z)de
k

which we cannot solve®. However, we can separate the integral in two parts. (a) z = o(n®~¥) and
(b) = = Q(nP~¥). In the first case the traversal probability is O(z/n®*) and in the second case it
is ©(1). Splitting the integral in two parts we obtain

k> k> k>
(B-v)(1-2) (B-v)(1-2) — A o B-v)(1-))
9(2—A” At ) ®(<2—A><A—1>” )

Now that we have the cost per block, we multiply by » = (A — 1)/(Ak) n (Eq. (8.7)) to obtain the

total amount of work. This is N
A

2-A
On the other hand, if we used blocks of fixed size, the time complexity (using Eq. (8.2)) would be
O(bn*~P*¥), where b = zb*. The ratio between both search times is

doc. index traversal (A — 1)n(2~(B—)
block index traversal ~  A(2 — \)zk2-X
which shows that the document index would be asymptotically slower than a block index as the

text collection grows. In practice, the ratio is between O(n%?) and O(n%*). The value of z is not
important here since it is a constant.

pl=O=1)(6-v)

8.3.3 Experimental Validation

In this section we validate experimentally the previous analysis. The collection is considered as a
single large file, which is logically split into blocks of fixed size. The larger the blocks, the faster to
build and the smaller the index, but also the larger the proportion of text to search sequentially at
query time. We measure n and b in bytes, not in words.

8.3.3.1 Fixed Block Size

We show the space overhead of the index and the time to answer queries for three different fixed
block sizes: 2 Kb, 32 Kb and 512 Kb. See Figure 8.10. Observe that the time is measured in
a machine-independent way, since we show the percentage of the whole text that is sequentially
searched. Since the processing time in the vocabulary is negligible, the time complexity is basically
proportional to this percentage. The decreasing percentages indicate that the time is sublinear.

The queries are the same used to measure the amount of matching in the vocabulary, again ensuring
at most 5% of error with a confidence level of 95%. Using least squares we obtain that the amount
of traversed text is 0.10n% 7" for b = 2 Kb, 0.45n%%5 for b = 32 Kb, and 0.85n%%° for b = 512 Kb.
In all cases, the relative error of the approximation is under 5%. As expected from the analysis,
the space overhead becomes linear (since ¥ = 1) and the time is sublinear (the analysis predicts
O(n®"®), which is close to these results).

We observe that the analysis is closer to the curve for smaller b. This is because the fact that
b = O(1) shows up earlier (i.e. for smaller n) when b is smaller. The curves with larger b should
converge to the same exponents for larger n.

®Which is more convincing, Maple cannot solve.
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Figure 8.10: Experiments for fixed block size b. On the left, space taken by the indices. On the
right, percentages of the text sizes sequentially searched.

8.3.3.2 Fixed Number of Blocks

To show the other extreme, we take the case of fixed r. The analysis predicts that the time should
be linear and the space should be sublinear (more specifically, O(n'/%) = O(n®®?)). This is the
model used in Glimpse for the tiny index (where r ~ 256).

See Figure 8.11, where we measure again space overhead and query times, for » = 28, 2!2 and 216.
Using least squares we find that the space overhead is sublinear in the text size n. For r = 2% we
have that the space is 0.87n%%3, for » = 22 it is 0.78n% 7%, and for r = 2% it is 0.74n%87. The
relative error of the approximation is under 3%. As before, the analysis is closer to the curve for
smaller », by similar reasons (the effect is noticed sooner for smaller r).

On the other hand, the percentage of the traversed text increases. This is because the proportion
of text traversed (Eq. (8.1)) is (1 — e "), which tends to 1 as n grows.

80 N
70 P = 216 50 /\r’: 28
Mb 60 % 40 -
50 7 r = 212 30 "
40 r=2
30 20
] — 28
ig //r/ 10 r= 216
| I
0 T T T T ] n (Mb) 0 T T T T ] n (Mb)
40 80 120 160 200 40 80 120 160 200

Figure 8.11: Experiments for fixed number of blocks . On the left, space taken by the indices. On
the right, percentages of the text sizes sequentially searched.
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8.3.3.3 Sublinear Space and Time

Finally, we show experimentally in Figure 8.12 that time and space can be simultaneously sublinear.
We test v = 0.92, 0.94 and 0.96. The analysis predicts the values shown in the table of Figure 8.8.
Using least squares we find that the space overhead is sublinear and very close to the predictions:
0.40n°-%2, 0.41n%°2 and 0.42n%%. The error of the approximations is under 1%.

The percentage of the traversed text decreases, showing that the time is also sublinear. The least
squares approximation shows that the query times for the above v values are 0.24n%9, 0.17n%94
and 0.11n%9! respectively. The relative error is smaller than 2%.

Hence, we can have for this text an O(n%%*) space and time index (our analysis predicts O(n?9%)).

70 25
v = 0.96
Mb 60 - v =0.92
y=094 % 20—
50 -
v = 0.92
40 15 + N =0.94
- 0=
30
104 v = 0.96
20 - e
10 5
Mb
0 I | | | | " ( ) 0 I I I I 1 " (Mb)
40 80 120 160 200 40 80 120 160 200

Figure 8.12: Experiments for fixed v (simultaneous sublinearity). On the left, space taken by the
indices. On the right, percentages of the text sizes sequentially searched.

As another example, we give in Figure 8.13 the results on simultaneous sublinearity for the ZIFF
collection, which has near 220 Mb after filtering. The values for this collection are 8 = 0.51 and
6 = 1.79. Least squares show a very good agreement with the analysis: we have 0.71n%9°? for
v = 0.92, 0.60n°%°* for v = 0.94 and 0.55n%% for v = 0.96. The relative error is below 0.5%. The
times give 0.22n%% for v = 0.92, 0.17n°%98 for v = 0.94 and 0.14n%% for v = 0.96. Hence, we can
have an O(n%?%) space and time index for ZIFF. It is interesting to notice that, although zIFF has
a larger vocabulary than wsJ, the results are not better. This is because the number of matching
words in the vocabulary is also higher.

8.4 Improving the Search Algorithms

In this last section we study different improvements to the search algorithm typically used for ap-
proximate searching on inverted indices. First we show how the vocabulary search can be improved
(only for approximate searching) and later how the search on the blocks, if necessary, can also be
improved (this works for regular expressions and extended patterns as well).

Unfortunately the two optimizations hardly can be applied in conjunction. When the indexing
scheme makes it necessary to traverse the blocks, the gains due to faster vocabulary search are
totally marginal (less than 1%). Faster vocabulary search is of interest when either full inversion is
used or block traversal is not necessary, and therefore the vocabulary search dominates the overall
search time.
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Figure 8.13: Experiments for fixed v (simultaneous sublinearity) for the zIFF collection. On the
left, space taken by the indices. On the right, percentages of the text sizes sequentially searched.

8.4.1 Vocabulary Search

Until now, we have relied on an on-line search in the vocabulary of the text. To reduce the time of
that on-line search, we show now how to index the vocabulary as a metric space. We show that with
reasonable space overhead we can improve by a factor of two over the fastest on-line algorithms,
when the tolerated error level is low (which is reasonable in text searching).

Since the vocabulary of the text is quite small compared to the text itself, an on-line search on it
takes a few seconds at most. While this may be adequate for the case of a single end-user, it is
interesting to improve the search time for other scenarios. For example, the algorithm could be
a module of another more complex package (say, a linguistic analyzer) and receive thousands of
search requests. As another example, consider a a Web search engine which receives many requests
per second and cannot spend even a few seconds to traverse the vocabulary. In this section we
organize the vocabulary as a metric space using the edit distance function ed(), and use a known
data structure to index such spaces. This idea may also have other applications where a dictionary
of words is searched allowing errors, such as in spelling problems.

The technique that we present needs to compute the exact edit distance among strings, and therefore
it relies on the classical algorithm. The result is that, although it may perform a few evaluations of
the edit distance (say, 5% of the whole vocabulary), it may be slower than an on-line traversal with
a fast algorithm. On the other hand, many of the fastest algorithm could not be usable if some
extension over the edit distance was desired, while the classical algorithm (and hence our technique)
can accommodate many extensions at no extra cost.

8.4.1.1 Searching in General Metric Spaces

The concept of “approximate” searching has applications in a vast number of fields. Some examples
are images, fingerprints or audio databases; machine learning; image quantization and compression;
text retrieval (for approximate string matching or for document similarity); genetic databases; etc.

All those applications have some common characteristics. There is a universe U of objects, and a
nonnegative distance function d : U x U — R* defined among them. This distance satisfies the
three axioms that makes the set a metric space (see Section 2.1). The smaller the distance between
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two objects, the more “similar” they are. This distance is considered expensive to compute (e.g.
comparing two fingerprints). We have a finite database S C U, which is a subset of the universe of
objects and can be preprocessed (to build an index, for instance). Later, given a new object from
the universe (a query ¢), we must retrieve all similar elements found in the database. There are
different queries depending on the application, but the simplest one is: given a new element ¢ and
a maximum distance k, retrieve all the elements in the set which are at distance at most k& from g¢.

This is applicable to our problem because we have a set of elements (the vocabulary) and the
distance ed() satisfies the stated axioms. A number of data structures exist to index the vocabulary
so that the queries can be answered without inspecting all the elements. Our distance is discrete
(i.e. gives integer answers), which determines the data structures which can be used. We briefly
survey the main applicable structures now.

The first proposed structure is the Burkhard-Keller Tree (or BK-tree) [BK73], which is defined as
follows: an arbitrary element a € S is selected as the root, whose subtrees are identified by integer
values. In the i-th children we recursively build the tree for all elements in S which are at distance
i from a. This process can be repeated until there is only one element to process, or there are no
more than b elements (and we store a bucket of size b).

To answer queries of the form (g, k), we begin at the root and enter into all children ¢ such that
d(a,q) — k < i < d(a,q)+ k, and proceed recursively (the other branches are discarded using the
triangular inequality). If we arrive to a leaf (bucket of size one or more) we compare sequentially
all the elements. We report all the elements « found that satisfy d(g, z) < k.

Another structure is called “Fixed-Queries Tree” or FQ-tree [BYCMWO94]. This tree is basically a
BK-tree where all the elements stored in the nodes of the same level are the same (and of course do
not necessarily belong to the set stored in the subtree), and the real elements are all in the leaves.
The advantage of such construction is that some comparisons are saved between the query and the
nodes along the backtracking that occurs in the tree. If we visit many nodes of the same level, we
do not need to perform more than one comparison per level. This is at the expense of somewhat
taller trees. Another variant is proposed in [BYCMW94], called “Fixed-Height FQ-trees”, where
all the leaves are at the same depth h, regardless of the bucket size. This makes some leaves deeper
than necessary, which makes sense because we may have already performed the comparison between
the query and one intermediate node, therefore eliminating for free the need to compare the leaf.
In [Sha77], an intermediate structure between BK-trees and FQ-trees is proposed.

An analysis of the performance of FQ-trees is presented in [BYCMW94], which disregarding some
complications can be applied to BK-trees as well. They basically show that the number of traversed
nodes is O(n*), where n is the size of the set and 0 < # < 1 depends on the metric space. It can
also be shown that the fixed-height variant traverses a sublinear number of nodes [BYN98b].

Some approaches designed for continuous distance functions , e.g. [Uhl91, Yia93, Bri95, FL95], are
not covered in this brief review. The reason is that these structures do not use all the information
obtained from the comparisons, since this cannot be done in continuous spaces. This is, however,
done in discrete spaces and this fact makes the reviewed structures superior to those for continuous
spaces, although they would not be directly applicable to the continuous case. We also do not cover
algorithms which need O(n?) space such as [Vid86] because they are impractical for our application.

It is not the aim of this thesis to improve on this techniques for general metric spaces. We just
make use of the available ones for our goals.
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8.4.1.2 The Vocabulary as a Metric Space

Traversing the whole vocabulary on-line is like comparing the query against the whole database in
a metric space. Our proposal is to organize the vocabulary such as to avoid the complete on-line
traversal. This organization is based on the fact that we want, from a set of words, those which
are at edit distance at most k from a given query. The edit distance ed() used satisfies the axioms
which make it a metric, in particular a discrete metric.

The proposal is therefore, instead of storing the vocabulary as a sequence of words, organize it as
a metric space using one of the available techniques. The distance function to use is ed(), which
is computed by dynamic programming in time O(m;ms), where m; and my are the lengths of the
two words to compare. Although this comparison takes more than many efficient algorithms, it will
be carried out only a few times to get the answer. On the other hand, the dynamic programming
algorithm is very flexible to add new editing operations or changing their cost, while the most
efficient on-line algorithms are not that flexible.

Figure 8.14 shows our proposed organization. The vocabulary is stored as a contiguous text (with
separators among words) where the words are sorted. This allows exact or prefix retrieval by binary
search, or another structure can be built onto it. The search structure to allow errors goes on top
of that array and allows approximate or exact retrieval.

A imat .
pproximate Metric Space

Search
\ Data Structure

)

... doctor | doctoral | document| documental | extra | ...

Vocabulary

Exact or specialized search

Figure 8.14: Proposed data structure.

An important difference between the general assumptions and our case is that the distance function
is not so costly to compute as to make negligible all other costs. For instance, the space overhead
and non-locality of accesses incurred by the new search structures could eliminate the advantage of
comparing the query against less words in the vocabulary. Hence, we do not consider simply the
number of comparisons but the complete CPU times of the algorithms, and compare them against
the CPU times of the best sequential search algorithms run over the complete vocabulary. Moreover,
the efficiency in all cases depends on the number of errors allowed (all the algorithms worsen if more
errors are allowed). We have also to consider the extra space incurred because the vocabulary is
already large to fit in main memory. Finally, although the asymptotic analysis of the Appendix
shows that the number of traversed nodes is sublinear, we must verify how does this behave for the
vocabulary sizes which are used in practice.

It is interesting to notice that any structure to search in a metric space can be used for exact
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searching, since we just search allowing zero errors (i.e. distance zero). Although not as efficient
as data structures designed specifically for exact retrieval (such as hashing or binary search), the
search times may be so low that the reduced efficiency is not as important as the fact that we do
not need an additional structure for exact search (such as a hash table).

8.4.1.3 Experimental Results

We tested two different structures: BK-trees (BKT) and FQ-trees (FQT). We tested buckets of size
1, 10 and 20. As explained before, other structures for metric spaces are not well suited to this case
(we verified experimentally this fact). We used the 500,000 words (5 Mb) vocabulary of the English
TREC collection (1 Gb). The vocabulary was randomly permuted and separated in 10 incremental
subsets of size 50,000 to 500,000.

Our first experiment deals with space and time overhead of the data structures that implement the
search in a metric space, and its suitability for exact searching. Figure 8.15 shows the results. As
it can be seen, build times are slightly superlinear (O(nlogn) in fact, since the height is O(logn)).
The overhead to build them is normally below 2 minutes, which is a small percentage (10% at most)
of the time normally taken to build an index for a 1 Gb text database.

If we consider extra space, we see that the BKT poses a fixed space overhead, which reaches a
maximum of 115% for b = 1. This corresponds to the fact that the BKT stores at most one node
per element. The space of the FQT is slightly superlinear (the internal nodes are empty) and for
this experiment is well above 200% for b = 1.

Finally, we show that the work to do for exact searching involves a few distance evaluations (20 or
less) with very low growth rate (logarithmic). This shows that the structure can be also used for
exact searching.

We show in Figure 8.16 the query performance of the indices to search with one error. As it can be
seen, no more than 5-8% of the dictionary is traversed (the percentage is decreasing since the number
of comparisons are sublinear). The user times correspond quite well to the number of comparisons.
We show the percentage of user times using the structures versus the best on-line algorithm for this
case (the one presented in Section 6.1). As it can be seen, for the maximum dictionary size we reach
40% of the on-line time for the best metric structures. From those structures, we believe that BKT
with b = 1 is the best choice, since it is faster than all the FQT’s (and takes less space). Another
alternative which takes less space (close to 70%) is BKT with b = 10, while it achieves 60% of the
times of on-line searching.

The result for two errors (not shown) is not so good. This time the metric space algorithms do
not improve the on-line search, despite that the best ones traverse only 17%-25% of the vocabulary.
The reason is that the off-line algorithms are much more sensitive to the error level than the on-line
ones. This shows that our scheme is only useful to search with one error.

Table 8.2 shows the results of the least squares fitting over the number of comparisons performed
by the different data structures. For ¥ = 0 we obtain a good logarithmic approximation, while the
bucket size seems to affect the constant rather than the multiplying factor.

For k = 1, the results confirm the fact that the structures inspect a sublinear number of nodes.
Notice that the exponent is smaller for BKT than for FQT, although the last ones have a better
constant. The constant, on the other hand, seems to keep unchanged when the bucket size varies
(only the exponent is affected). This allows extrapolating that BKT will continue to improve over
FQT for larger data sets (it is well known that all the conclusions about metric space data structures
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Structure k=0 k=1 k=2
BKT (6=1) | 0.87In(n) — 1.52 | 2.25 n%39 | 1.91 n0822
BKT (b=10) | 0.961n(n) +0.39 | 2.21 n%¢7 | 1.52 n0-859
BKT (b=20) | 0.691n(n)+8.36 | 2.16 n%€91 | 1.42 n087
FQT (b=1) | 1.911n(n) — 10.84 | 0.36 n%77" | 0.54 n0-926
FQT (6=10) | 1.17In(n) +0.26 | 0.50 7% | 0.63 n%9%!
FQT (b=20) | 1.73In(n) — 1.58 | 0.49 n%31% | 0.69 n0919

Table 8.2: Least squares fitting for the number of comparisons made by the different data structures.

depend strongly on the particular space and distance function, so this does not allow a generalization
to other cases). The results for ¥ = 2 increase the exponent (which will be close to 1 for k = 3).
The relative error is between 15% and 20% in all cases.

The least squares fitting over the real CPU times give similar growth rates, for instance it is O(n°?)

for BKT (b=1).

Our implementation of the BK-trees is not optimized for space. We estimate that with a careful
implementation the overhead can be reduced from 100% to 65%. This overhead is quite reasonable
in most cases.

The only alternative structure we are aware of is [SM96], where the vocabulary is organized into
a trie data structure. In the trie, each node represents a unique substring of the vocabulary. The
dynamic programming algorithm is run on the trie instead of on the plain vocabulary, therefore
eliminating the possible substring repetitions that appear (a very similar technique is proposed in
[Ukk93, Cob95] for sequence-oriented indices, see Section 3.3.2). The search on the trie is abandoned
as soon as it can be seen that a match with k errors is not possible.

We have implemented this scheme, obtaining very fast construction times (7 seconds for the 5 Mb
vocabulary) and very fast search times (for the maximum size, 0.0054 seconds for £ = 1 and 0.0669
for k = 2), which outperforms our scheme by an order of magnitude. However, the main problem
of tries is their high space overhead. Naive implementations may pose 400% or more overhead over
the text size.

We have carefully implemented a version that optimizes space, and obtained 100% extra overhead
over the text. This is similar to the overhead we have presented for the BK-trees. However, our
implementation of the BK-trees is not optimized for space. With a careful implementation can
obtain only 65% overhead.

We are currently working on new data structures to index metric spaces which could dramatically
improve the effectiveness of the current scheme. However, these are not yet finished and are not
part of this thesis.

8.4.2 Block Search

We propose a new strategy for approximate searching on block addressing indices, which we ex-
perimentally find 4-5 times faster than Glimpse, and that unlike Glimpse, takes advantage of the
vocabulary information even when the whole text has to be verified.

We also start the search by sequentially scanning the vocabulary with an on-line approximate search
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algorithm. Once the blocks to search have been obtained, Glimpse uses Agrep (i.e. approximate
searching) again over the blocks. However, this can be done better.

Since we have run an on-line search over the vocabulary first, we know not only which blocks contain
an approximate match of the search pattern, but also which words of the vocabulary matched the
pattern and are present in each block. Hence, instead of using again approximate search over each
block as Glimpse, we can run an ezact (multipattern) search for those matching words found in
the vocabulary. Currently we perform a single search with all the patterns involved over all the
matching blocks. As future work we plan to perform a different search on each block, so that
only the patterns present in that block are searched. In most cases, this can be done much more
efficiently than approximate searching. Moreover, since as we show later, most of the search time
is spent in the search of the text blocks (if this is needed), this improvement has a strong impact
on the overall search time.

We use an extension of the Boyer-Moore-Horspool-Sunday algorithm [Sun90] to multipattern search.
This gave us better results than an Aho-Corasick machine, since as shown in Figure 8.1, few words
are searched on each block (this decision is also supported by [Wat96]).

We compared this strategy against Glimpse version 4.0. We used the “small” index provided by
Glimpse, i.e. the one addressing files (i.e. the sequential search must be done on the matching files).
Our index used also files as the addressing unit for this comparison. The tests were run on a Sun
SparcServer 1000 with 128 Mb of RAM, running Solaris 2.5, which was not performing other tasks.
However, only 4 Mb of RAM were used by the indexers. We used the wsJ collection.

The stopword mechanism and treatment of upper and lower-case letters is somewhat particular in
Glimpse. We circumvent this problem by performing all filtering and stopword elimination directly
in the source files, and then using both indices without filtering or stopwords considerations.

Our indexer took near 16 minutes to index the collection (i.e. more than 10 Mb per minute), while
Glimpse took 28 minutes. This is due to different internal details which are not of interest to this
work, e.g. the indexers have different capabilities apart from approximate searching. Both indices
took approximately 7 Mb. This is less than 3% of the size of the collection (this low percentage is
because the files are quite large).

We are not comparing the complete indexing mechanisms, but only their strategy to cope with
approximate search of words when they have to be sequentially searched on the text. Issues such
as a different addressing granularity will not change the proportion between the search times.

In both indices we retrieve whole words that match the pattern. This is the default in this chapter
and we believe that this option is more natural to the final user than allowing subword matching
(i.e. "sense" matching with one error in "consensus").

Table 8.3 (upper part) shows the times obtained (user times). As it can be seen, the mechanism we
propose is 4-5 times faster in practice (i.e. taking into account all the processing needed). We also
show the percentage of the text sequentially inspected and the average number of matches found,
as well as the number of words matching in the vocabulary. We can see that an important part of
the text is inspected, even for queries with acceptable precision (this is because the files are large).
Moreover, the times are almost proportional to the amount of sequential search done (we process
near 5 Mb/sec, while Glimpse is close to 1 Mb/sec). Therefore, the advantage of searching with a
multipattern exact search instead of an approximate search algorithm is evident. Even if the whole
text is searched (in which case Glimpse is not better than Agrep, i.e. a complete sequential search),
our indexing scheme takes advantage of the vocabulary, because it never searches the text for an
approximate pattern.
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Errors ‘ Ours ‘ Glimpse ‘ Ours/ Glimpse ‘ % inspected ‘ # matches ‘ # vocab. matches

Matching Complete Words
1 8.20 34.99 23.42% 24.94% 871.86 4.97
2 18.05 | 82.50 21.91% 43.83% 2591.02 25.54
3 29.37 | 143.69 20.43% 77.81% 7341.84 31.15
Subword Matching Allowed
1 39.37 | 16.05 245.30% 41.45% 44541.50 159.07
2 73.04 | 64.12 113.91% 64.28% 44991.80 230.48
3 75.84 | 132.56 57.21% 77.39% 31150.50 182.92

Table 8.3: Times (in seconds) and other statistics to retrieve all occurrences of a random word with
different number of errors.

Table 8.3 (lower part) presents the case in which subword matching is also allowed. The precision is
much lower (i.e. there are more matches), which shows that this query is unlikely to be interesting
for the users. It can also be seen that much more text is traversed. The performance of our
algorithm degrades due to a larger amount of words matching in the vocabulary, which reduces
the effectiveness of our multipattern exact searching against plain approximate search (this should
improve when we implement a separate search per block with only the patterns that matched that
block). On the other hand, Glimpse improves for one and two errors because of specialized internal
algorithms to deal with this case. The net result is that our algorithm is slower for one and two
errors, although it is still faster for three errors. This test shows that our approach is better when
not too many words match in the vocabulary, which is normally the case of useful queries.

The idea of multipattern search on the blocks is in fact the essence of the success of Cgrep
[MNZBY98b, MNZBY98a]. Cgrep is not an inverted file but a compressor able to efficiently search
from simple patterns to regular expressions, allowing or not errors. It is based on Huffman coding
on words. Since the words are the symbols of the coder, a table with all the words (that is, a vocab-
ulary!) is stored together with the compressed file. The search starts in the vocabulary, much as in
our inverted indices. Once the matching words are obtained, their compressed codes are searched
in the compressed text. Although there is no indexing and all the text has to be traversed, the
search is a multipattern exact search for the compressed codes of the matching words, which can be
much faster than the original search (e.g. an approximate search). This allows Cgrep to be faster
than Agrep. As future work we plan to integrate our block addressing index with the compression
scheme of Cgrep, so that the index and the text are compressed and the search on the compressed
blocks is done using Cgrep.
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Chapter 9

Sequence-Retrieving Indices

In this chapter we consider indices able to solve the general approximate string matching problem,
i.e. to retrieve any text sequence which is at distance k or less from the pattern. As shown
in Chapter 2, there are two main types of sequence-retrieving indices. We present new ideas in
both areas, as well as novel analytical results. The results of this chapter have been published in

[BYN97¢c, NBY98c, BYNST97].

9.1 An Index Based on Sampling

We propose a sequence-retrieving indexing technique which is practical and powerful, and especially
optimized for natural language text. It is an inverted index built on the vocabulary of all the text
substrings of length ¢, and the search is an off-line version of Section 6.1 (i.e. the pattern is split
in k + 1 pieces which are searched with no errors). We design an algorithm to optimize the pattern
partition so that the total number of verifications to perform is minimized (this idea does not work so
well in on-line searching, as explained in Section 6.1). This is especially useful for natural language
texts and allows knowing in advance the expected cost of the search and the expected relevance of
the query to the user. We show experimentally the performance of the index, finding that it is a
practical alternative for text retrieval: the space overhead is between two and four times the text
size, and for useful queries the retrieval times are reduced from 10% to 60% of the best on-line
algorithm.

9.1.1 Indexing Text Substrings

At indexing time, we select a fixed length ¢. Every text g-gram (substring of length ¢) is stored
in the index (in lexical order). To resemble traditional inverted lists, we call vocabulary the set
of all different g-grams. The number of different g-grams is denoted V', which is < n (in a text
of n characters there are n — q + 1 g-grams, but only V different g-grams) !. Together with each
g-gram, we store the list of the text positions where it appears, in ascending positional order as in
a traditional inverted index (see Section 2.10). Figure 9.1 shows a small example.

If block addressing (Section 2.10) is used, the text is divided in blocks of a fixed length b, and all
the g-grams that start in the block are considered to lie inside the block. Only the ascending list

'For the correctness of the algorithms, it is necessary that the last ¢ — 1 suffixes of the text are entered as g-grams
too, even when they are of length < q.
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Figure 9.1: The indexing scheme for ¢ = 4.

of the blocks where each ¢g-gram appears is stored in this case. This makes the index smaller (since
there is only one reference for all the occurrences of a g-gram in a single block, and also the pointers
to blocks can be smaller).

To search a pattern of length m with k errors, we split the pattern in k+ 1 pieces, search each piece
in the index of g-grams of the text, and merge all the occurrences of all the pieces, since each one
is a candidate position for a match. The neighborhood of each candidate position is then verified
with a sequential algorithm as in Section 6.1. If blocks are used, each candidate block must be
completely traversed with an on-line algorithm. Figure 9.2 illustrates the search process.

Online
— Approzx.
Search
Verification
x|
— \§+
X p—
PATTERN \ N PATTERN
vocabulary vocabulary
occurrences occurrences D
~—— 7/
~___ @/
INDEX TEXT INDEX TEXT

Figure 9.2: The search process, with exact addressing and block addressing.

Of course the pattern pieces may not have the same length ¢. If a piece is shorter than ¢, all the
g-grams with the piece as prefix are to be considered as occurrences of the piece (they are contiguous
in the index of ¢g-grams). If the piece is longer, it is simply truncated to its first ¢ characters (it
is possible to verify later, in the text, whether the g-gram starts in fact an occurrence of the piece
before verifying the whole area).

When the pattern is split in k£ + 1 pieces, we are free to select those pieces as we like. We explain
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this idea in the on-line algorithm (Section 6.1, see also Section 4.2): knowing or assuming a given
character distribution for the text to search, the pieces are selected so that the probabilities of all
pieces are similar. This minimizes the total number of verifications to perform, on average.

Although in Section 6.1 we use this technique, there are two drawbacks in that case: first, we
have to estimate the probabilities of the pieces (in that case we multiply the individual character
probability); and second, the Boyer-Moore-like search algorithm that we use degrades as the shortest
piece gets shorter. Hence, in that case we include the search cost in the cost model and the results
are positive but modest.

We can do much better here. The key point is that it is very cheap to compute in advance the ezact
number of verifications to perform for a given piece. We just locate the piece in the g-gram index
with binary search. In the general case we obtain a contiguous region, for pieces shorter than g¢.
By storing, for each ¢g-gram, the accumulated length of the lists of occurrences, we can subtract the
lengths at the endpoints of the region to obtain immediately the number of verifications to perform.
The complete process takes O(log V') = O(logn).

We adapt the dynamic programming algorithm of Section 6.1 that computes the optimal partition.
As a side result, we know in advance the total cost to pay to retrieve the results, which as explained
is useful as early feedback to the user. The only difference is in the computation of RJ[i, 5], which is
carried out as explained in the previous paragraph. This takes O(m?logn) if the pieces are binary
searched. As explained in the original formulation of the algorithm, we need O(m?) space and
O(m?k) time to build the other tables. If we replace the binary search by a trie of g-grams, the
time to build the initial R table can be lowered to O(m?): for each i we start at the root of the
trie and find the ¢-grams corresponding to R[i,4], R[i, ¢4 1], R[Z,7+ 2], and so on. Each new cell is
found in O(1) time, and there are O(m?) cells. Hence the total cost of this optimization can be as
low as O(m?k).

Notice that, since it is possible that ¢ is small, we may select pieces of the pattern whose beginnings
are farther apart than g characters, and therefore the k 4+ 1 pieces are non-contiguous. This makes
use of the z, of the Partitioning Lemma of Section 4.2.

9.1.2 Analysis

We analyze the time and space requirements of our index, as well as its retrieval performance.

9.1.2.1 Building the Index

To build the index we scan the text in a single pass, using hashing to store all the g-grams that
appear in the text. This ¢ must be selected as large as possible, but small enough for the total
number of such g-grams to be small (practical values for natural language text are ¢ = 3..5).

Although we scan every ¢g-gram and any good hash function of a ¢g-gram takes O(q) time, the total
expected time is kept O(n) instead of O(ng) by using a technique similar to Karp-Rabin [KR87] (i.e.
the hash value of the next g-gram can be obtained in O(1) from the current one). The occurrences
are found in ascending order, hence each insertion takes O(1) time.

Therefore, this index is built in O(n) expected time and a single pass over the text. The worst case
can be made O(n) by modifying Ukkonen’s technique to build a suffix tree in linear time [Ukk95]
(we only want the tree up to height ¢).
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9.1.2.2 Index Space

We analyze space now. To determine the number of different g-grams in random text, consider that
there are o? different “urns” (¢g-grams) and n “balls” (¢-grams in the text) to be assigned to the
urns. The probability of a g-gram to be selected by a ball is 1/69. Therefore, the probability of
a g-gram not being selected in n trials is (1 — 1/0%)"™. Hence, the average number of ¢-grams that
appear in the n trials is V = ¢%(1 — (1 - 1/09)") = ©(c%(1 — e~*/?*)) = O(min(n, 6?)). This shows
that ¢ must be kept o(log, n) for the vocabulary space to be sublinear. We show practical sizes in
the experiments.

We consider the lists of occurrences now. Since we index all positions of all g-grams, the space
requirements are O(n), being effectively 4n on a 32-bit architecture?. If block addressing is used
(with blocks of size b), we consider that there is an entry in the list of occurrences per different
g-gram mentioned in each different block. Reusing the analysis of the vocabulary, each block has
©(min(b, 0?)) different g-grams. Multiplying this by the number of blocks (n/b), we have that the
total size of the occurrence lists is O(n min(1, ¢9/b)), which is o(n) if and only if b = w(o?)o(b), or

q = o(log, b).

9.1.2.3 Retrieval Time

We now turn our attention to the time to answer a query. The first splitting optimization phase
is O(m?(k + logn)) or just O(m?k) as explained. Once we have all the positions to verify, we can
check each zone using a classical algorithm at a cost of O(m?) each. However, we have shown in
Section 4.3.1 that the cost of a verification can be made O(¢2) on average by using the hierarchical
verification technique (where £ is the length of the searched piece). This cost is exactly the same as
in the on-line version of Section 6.1 since it is related to the number of occurrences of the pieces in
the text.

We analyze only the case of random text (natural language is shown in the experiments). Under
this assumption, we discard the effect of the optimization and assume that the pattern is split in
pieces of lengths as similar as possible. In fact, the optimization technique makes more difference in
natural language texts, making the approach in that case more similar in performance to the case
of random text.

It should be clear that if £ and m are fixed, this index can never be sublinear in time, simply because
on random text the number of occurrences of the pattern grows linearly as the text grows and we
have to verify all those positions. In the analysis which follows we speak in terms of sublinearity
and derive order conditions on & and ¢. This is reasonable since we can control them and make
them grow as n grows. However, when the conditions imply that m or k must grow as a function of
n to obtain the sublinearity, we are in fact meaning that it is not reasonable to consider that such
sublinearity is achievable.

We split the pattern in pieces of length |m/(k + 1)] and [m/(k + 1)]. In terms of probability
of occurrence, the shorter pieces are o times more probable than the others. The total cost of

2We store just one pointer for each g-gram position. This allows indexing up to 4 Gb of text. Therefore we would
use more than four bytes to index longer texts. On the other hand, we are not considering here the possibility of
using a compressed list of positions, which can considerably reduce the space requirements, typically to 2 bytes per
pointer. Our implementation uses such compressed pointers
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verifications is no more than

m2

(k + 1)ol71]

which is sublinear for o = 0(1/(log, (m/a))), i.e. @ = o(1/(log, m + log, log, m)). As this does not
involve ¢ or b, sublinear verification cost is not achievable.

n

However, we are not considering that, if ¢ is very small, it is possible that the pieces are longer
than ¢. In this case we must truncate the pieces to length ¢ and use the list of occurrences of the
resulting g-grams. Before triggering a verification on each occurrence of such ¢-grams, we can verify
in the text if the occurrence of the g-gram is in fact an occurrence of the longer piece. As this takes
O(1) time on average for each occurrence of each of the (k + 1) lists, we have an additional time
of O(kn/o?), which is sublinear provided ¢ = w(log, k). This time is obtained by considering that
each text character belongs to the k + 1 selected g-grams with probability O(k/c9).

On the other hand, if we use block addressing, we must find the exact candidate positions before
verifying them with the above technique. To do this, we use the on-line algorithm (i.e. that
of Section 6.1) which in turn finds the candidate areas and verifies them. Excluding the above
considered verifications, the on-line algorithm runs in linear time . Therefore, we show under which
restrictions a sublinear part of the text is sequentially traversed. This new condition is stricter than
the previous a = o(1/ log,(m/a)).

The probability of a text position matching one piece is, as explained, (k—l—l)/cer/(k"'l)J. Therefore,
the probability of a block (of size b) being sequentially traversed is

k+1)b
1-(1- =%~
( ULWJ

and since there are n/b blocks and traversing each one costs O(b), we have that the expected amount
of work to traverse blocks is n times the above expression, which is

n (1 — e‘ﬁ%) (1—|—O (k/UL%J))

and this is sublinear approximately for & = o(crl/o‘/m)

Hence, combined time and space sublinearity is obtained when the block size b satisfies b = w(o9)
and b = o(c'/*/m) (we also need ¢ = w(log, k)). Unfortunately, even for b = 1 we need m = o(a'/*),
which is an order condition imposed over variables which are, at least in principle, not dependent
on n.

9.1.3 Experiments

We show experimentally the index construction times and sizes for different values of ¢, with char-
acter and block addressing. We also show the querying effectiveness of the indices, by comparing
the percentage of the query time using the index against that of using the on-line algorithm. The
experimental values agree well with our analysis in terms of the error ratios and block sizes up to
where the indices are useful.

For the tests we use a collection of 8.84 Mb of English literary text® filtered to lower-case and with
all separators converted to a single space. We test the cases ¢ = 3..5, as well as character addressing

®This includes the writings of Franklin we use in most cases in this thesis, as well as Poe, Emerson, Wilde, Yeats
and Andersen.
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and block addressing with blocks of size 2 Kb to 64 Kb. Blocks smaller than 2 Kb were of no
interest because the index size was the same as with character addressing, and larger than 64 Kb
were of no interest because query times were too close to the on-line algorithm.

Figure 9.3 shows index build time and space overhead for different ¢ values and block sizes. The
size of the vocabulary file was 61 Kb for ¢ = 3, 384 Kb for ¢ = 4 and 1.55 Mb for ¢ = 5, which
shows a sharp increase.
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Figure 9.3: On the left, index construction times (minutes of user time). On the right, their space
overhead (i.e. index space divided by text space). The dotted line shows a 100% overhead.

We show now query times. We tested queries of length m = 8, 16 and 24 (i.e. from a word to a
short phrase). The queries were randomly chosen from the text at the beginning of non-stopwords.
This setup mimics common text retrieval scenarios. For m = 8 we show tests with £ = 1 and 2; for
m = 16 with £k = 1..4 and for m = 24 with k = 1..6. Every data point was obtained by averaging
Unix’s user time over 100 random trials.

Figure 9.4 shows the percentage of text traversed by using the index (the on-line algorithm should
traverse the whole text). As it can be seen, the percentage of text traversed is very low for the
index that stores the exact occurrences of the ¢g-grams. The block addressing indices, on the other
hand, traverse much more text and they are useful only for small block sizes.

Figure 9.5 shows actual query execution times as a percentage of the on-line algorithm. It can be seen
that the situation worsens. This happens because there is an important overhead in manipulating
the index. This not only plays against the indexed algorithms, but even makes it better to use
the on-line algorithm when the filtration efficiency of the index is not good (moreover, the indices
with larger b become better because the overhead is less and the verifications are the same). In the
character addressing index, this happens for a > 1/4. Up to that point, the search times are under
10 seconds. The block addressing indices, on the other hand, cease to be useful too soon, namely
for a > 1/8.

Finally, we show the effect of our splitting optimization technique, by comparing, for character
addressing indices, the retrieval times using and not using the optimization. As Figure 9.6 shows,
the improvement due to the optimization is very significant. Even when the length of the ¢-grams
do not allow selecting longer pieces, the optimization technique selects the least frequent ¢-grams.

There is some work about this index that we leave for the future. We should incorporate the
hierarchical verification techniques to improve its behavior for intermediate error levels. There are
also more possible improvements which are specific for the indexed version. Pattern pieces longer
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Figure 9.4: Percentage of text traversed using the index. The rows correspond to ¢ = 3, 4 and 5,
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60

40

100 —f 100 —
80 —/ 80

60
40

20 ~

\

\

w
S
—t

100 -
80
60
40

20 ~

100 -
80
60

3

182




Figure 9.5: Query time using the index divided by query time using the on-line algorithm (percent-
age). The rows correspond to ¢ = 3, 4 and 5, and the columns to m = 8, 16 and 24. The dashed
line corresponds to character addressing, solid lines to block addressing. From lower to upper (at
k = 1) they correspond to b = 2, 4, 8, 16, 32 and 64 Kb.
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Figure 9.6: Comparison of retrieval times using the splitting optimization technique (dashed line)
versus not using it (solid line), for the character addressing index. The rows correspond to ¢ = 3, 4
and 5, and the columns to m = 8, 16 and 24.
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than ¢ are truncated. This loses part of the information on the pattern. This case could justify the
approach of [Shi96] of splitting the pattern in more than k 4 1 pieces and forcing more than one
piece to match before verifying. Extending the scheme to matching more than one piece reduces
the number of verifications but leads to a more complex algorithm, whose costs may outweight the
gains of less verifications. Another interesting idea which has not been pursued is to try many splits
and to intersect the results (somehow resembling [GPY94]). We are currently studying these issues.

A difficult problem for word-retrieving indices is to account for errors involving separators (since
they split the words). On an index like this one this is not a problem, but this index takes more
space. However, if the search pattern does not include separators we should not index any g-gram
including a separator, which drastically reduces their number. Moreover, we could use the text
words (like word-retrieving indices) instead of the ¢g-grams, and search the pattern pieces inside the
words, with a fast on-line exact searching algorithm. This would be in fact our partitioning into
exact search implemented over a traditional inverted index. We leave this for future work as well.

The question of sublinearity for sequence-retrieving indices is interesting. In the natural language
model we can prove query time sublinearity by assuming that we only search for complete words,
and using heuristic rules which show that the vocabulary of a text grows as it grows. On the
other hand, sublinearity can never occur if we consider random text, since each new character has
a fixed probability of matching and therefore the output is of size Q(n). The indices based on suffix
trees achieve sublinear time (in fact, independent on n) but they do not report all the matches,
just subtrees whose leaves contain all the matches. Whether the number of matches on natural
language is or not sublinear if we allow any sequence (not only words) to match our query is an
interesting subject of future study, as it can settle the question of the possibility of sublinear-time
sequence-retrieving indices for natural language text. On the other hand, one can consider that the
number of matches is very low and count them in a separate variable R. Although formally we have
R = Q(n), for practical queries the constant is very small.

9.2 An Index Based on Suffix Trees

Suffix trees are used as indices for approximate string matching because they factor out the repeti-
tions that occur in the text. As explained in Section 3.3.2, the idea is to simulate the text traversal
of an on-line algorithm, running it on the suffix tree instead of on the text. The algorithm which
minimizes the number of nodes traversed is [Cob95], while [BYG90, Gon92] is simpler but inspects
more nodes. In this section we show that the latter index can be adapted to use a node processing
algorithm which is faster than dynamic programming, namely our algorithm of Chapter 5. We give
analytical results for this technique, and test it experimentally in the next section. We finish this
section by presenting a new technique based on pattern partitioning, so that the pattern is split in
many patterns which are searched in the suffix tree and their occurrences verified for a complete
match. We show in the experiments of the next section that this technique outperforms all the
others.

9.2.1 Using the Bit-parallel Automaton

The idea of [BYG90, Gon92] is a limited depth-first search on the suffix tree. Since every substring
of the text (i.e. every potential occurrence) starts at the root of the suffix tree, it is sufficient to
explore every path starting at the root, descending by every branch up to where it can be seen that
that branch does not represent the beginning of an occurrence of the pattern.
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More specifically, we compute the edit distance between the tree path and the pattern, and if at
some node we obtain a distance of k or less then we know that the text substring represented by the
node matches the pattern. We report all those nodes (to obtain the actual matches it is necessary to
traverse all the leaves of the suffix tree which descend from those nodes, since they are extensions of
the matching substring). On the other hand, when we can determine that the edit distance cannot
be as low as k, we abandon the path. This happens at depth m + k 4+ 1 but can happen before.

We propose now a variation on the previous algorithm, based on our algorithms of Chapter 5.
The idea is to replace the use of dynamic programming by our bit-parallel on-line algorithm over
the suffix tree. This algorithm uses bit parallelism to simulate an automaton that recognizes the
approximate pattern. It improves the performance, achieving linear time for small patterns. If the
pattern is long, the automaton is partitioned in many computer words.

We need to modify the automaton to compute edit distance (Section 5.3). Hence, we remove the
initial self-loop. We do not need to add the initial lower-left triangle, since if a substring matches
with initial deletions we will find (in other branch) another version of it which does not need the
deletions (to see this, notice that if a 1 finally exits from the lower-left triangle and reaches the final
state, then the same path can be followed by a suffix of the text area that matched). When the
automaton runs out of active states we can abandon the search.

This bit-parallel variation is only possible because of the simplicity of the traversal. For instance, the
idea does not work on the more complex setup of [Ukk92, Cob95], since these need some adaptations
of the dynamic programming algorithm that are not easy to parallelize. Hence, the tradeoff is: we
use a faster algorithm to process the nodes, but we cannot use a smart algorithm to traverse less
nodes. We show experimentally that this idea pays off.

As we have shown that approximate string matching is simulated using an automaton, this algorithm
can be seen as a particular case of general automaton searching over a trie [BYG96]. However, in
this case the automaton is nondeterministic and converting it to deterministic is not practical, since
it tends to generate large automata (see Section 6.4).

9.2.2 Analysis

An asymptotic analysis on the performance of a depth-first search over suffix trees is immediate
if we consider that we cannot go deeper than level m + k since past that point the edit distance
between the path and our pattern is larger than k£ and we abandon the search. Therefore, the most
we can work is O(c™**), which is independent on n and hence O(1). Another clear way to see this
is to use the analysis of [BYG96], where the problem of searching an arbitrary regular expression
over a suffix trie is considered. This includes this case, because we run an automaton. Their result
for this case indicates constant time (i.e. depending on the size of the automaton only) because the
automaton has no cycles.

However, we are interested in a more detailed analysis, namely when n is not so large in comparison
to m 4+ k. We first analyze which is the average number of nodes at level £ in the suffix tree of
the text, for small £. Since almost all suffixes of the text are longer than ¢ (i.e. all except the last
{), we have nearly n suffixes that reach that level. However, not all these suffixes are different in
their first £ characters. The total number of nodes at level £ is the number of different suffixes
once they are pruned at £ characters. This is the same as the number of different f-grams in the
text. We can reuse the analysis of Section 9.1.2.2 to find out that the number of such nodes is
O(ct(1 — e=/**)) = ©(min(n, o%)) if the text is random. That shows that the average case is close
to the worst case: up to level log, n all the possible o nodes exist, while for deeper levels all the
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different n nodes exist. We thus work on this worst case.

We now get into the second part of the analysis. We need to determine which is the probability of
the automaton being active at a given node of depth £ in the suffix tree. Notice that the automaton
is active if and only if some automaton state of the last row is active. This is equivalent to some
prefiz of the pattern matching with k errors or less the text substring represented by the suffix tree
node under consideration. So we can partially reuse our analysis of Section 4.1.

Since we are computing edit distance now, the probability of a pattern prefix of length m’ matching
a text substring of length ¢ must consider all the characters of the text substring. As done in
Section 4.1, we have that at least £ — k of the text must match the pattern when ¢ > m/, and that at
least m' — k characters of the pattern must match the text whenever m’ > £. Hence, the probability
of matching is upper bounded by

1 l m’ 1 l m’
o E\p k) \e—k or o™k \m! — k) \m! — &

depending on whether £ > m' or m’ > £, respectively. Notice that this imposes that m' — k < £ <
m' 4+ k. We also assume m' > k, since otherwise the matching probability is 1. As k < m/ < m, we
have that £ < m + k, otherwise the matching probability is zero. Hence the matching probability is
1 for £ < k and 0 for £ > m + k, and we are interested in what happens in between.

Since we are interested in any pattern prefix matching the current text substring, we add up all the
possible lengths from k to m:

£ m
1 L m' 1 L m'
Z_:k al=k (f - k) (f - k) + Z am'—k (m’ - k) (m’ - k)

mi={+1

which is very similar to Eq. (4.3) if we replace the s and m there by m’' and ¢ here, respectively.
The only differences are the absence of “—2” (which does not affect the outcome) and the upper
limit of the second summation, which is m + k there and is not £+ k here. In this formula the limit
is m, which is not upper bounded in terms of £ and k.

There is in fact a semantic difference which (fortunately) is not reflected in the formula: here we
are summing over different pattern lengths and a fixed text length, while in Section 4.1 we summed
over different text lengths for a fixed pattern length. This is a consequence of the symmetry of the
problem.

All the reasoning of Section 4.1 can be followed in order to obtain an equivalent to Eq. (4.2), where
a = k/L. The only point where the difference in the upper limit plays a role is when we show that
dh(z)/éx does not have roots in the interval of the second summation, but in fact there are no roots
after m’ > £, and therefore the upper limit is not important.

Hence, the result is that the matching probability is very high for « = k/¢ > 1—e/+/0, and otherwise

it is O('yl) for v < 1. Therefore, we can pessimistically consider that in levels

¢ < Lk) = % = O(k)

all the nodes in the suffix tree are visited, while deeper nodes at level £ > L(k) are visited with
probability O(y*) for ¥ < 1 (notice that this result is very similar to that of Eq. (4.5)).

We are left with three disjoint cases to analyze, illustrated in Figure 9.7. We say that the index is
“useful” if the number of nodes it traverses does not grow proportionally to the text size n.
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L(K)

some nodes
m+k

no node

Figure 9.7: The upper left figure shows the visited parts of the tree. The rest shows the three
disjoint cases in which the analysis is split.

m-+k

a) m+k <log,n,ie n>o or “very large n”

It is clear in this case that, even if we worked on all the possible nodes (i.e. up to depth
m + k), the total amount of work would still be less than n and would not grow as n grows.

Therefore, the index is always useful in this case, whose condition is equivalent to a <
(log, n)/m — 1.
b) L(k) > log, n,ie n< ol®) or “very small n”

In this case, since on average we work on all the nodes up to level log, n, the total work is
n, i.e. the amount of work is proportional to the text size. This shows that the index simply
does not work for very small texts, being an on-line search preferable.

Therefore, the index is never useful in this case, whose condition is equivalent to o >
(log, ) /m (1 — ¢//a).
¢) L(k) <log,n <m+k, ie. “intermediate n”

In this case, we work on all nodes up to L(k) and on some nodes up to m + k. The total
amount of nodes visited is

L(k) log,(n)—1 m+k
o_l + ,)/lo_l + Z ,)/ln
£=0 L=L(k)+1 £=log, n

The first term of the expression is proportional to oZ(*)

assuming L(k) < log, n. It does not grow as n grows.

, and smaller than n because we are
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Since due to Eq. (4.1) we have that yo > 1, the the second summation is at most*
(,),0-)1080-"7' — nl—l—logo.'y

which is sublinear in n if and only if vy < 1.

The third summation, provided v < 1, is at most

n,),logo.n nl—l—logo.'y

-y  1-9v

which again is sublinear in n only if y < 1.

Therefore, the index is useful in this case when y¥ < 1. An equivalent condition is a <

(log, n)/m (1 —e/y/o) N a<l—e/\/o.

Since the total time is proportional to the number of nodes visited, we conclude that

o If (log, n)/m < 1, the retrieval time grows sublinearly if and only if a < (log, n)/m (1—e/\/0).

e If (log, n)/m > 1, the retrieval time grows sublinearly if and only if o < (log, n)/m — 1 or

a<l-—e/\/o.

The cost to inspect a node is O(1) for small patterns (i.e. (m — k)(k + 2) < w), while otherwise it
is O(k(m — k)/w) (in the original scheme [BYG90, Gon92] the cost to inspect a node is O(m)).

Notice that we have not considered the time to report the matches, we just return subtrees of the
suffix tree whose leaves are answers. If we had to enumerate all the matches, we could never achieve
sublinear time, since if f(m, k) is the matching probability per character, there exist on average
f(m, k)n = Q(n) text positions to report.

9.2.3 A New Algorithm Based on Pattern Partitioning

From the analysis it is clear that we prefer that m and k& be small numbers. We present here
a new algorithm that partitions the original pattern into smaller sub-patterns, which have to be
located and produce a set of potential candidates. Those candidates are later verified using an
on-line algorithm on the text occurrences. This idea is based on the pattern partitioning technique
of Chapter 5.

The new algorithm follows. We divide the pattern in j pieces, such that each piece can be searched
with the simple (non-partitioned) automaton. Then we search in the suffix tree the j pieces using
the algorithm we proposed in Section 9.2.1. We then collect all the matches found and verify all
them in the text for a complete occurrence.

Since we perform j searches of the same kind of Section 9.2.1, the same analysis holds provided
we multiply the cost by j and replace m by m/j and k by k/j. Recall that the j given by pat-
tern partitioning is j = O((m — k)//w). However, to achieve search sublinearity, apart from the
considerations of Section 9.2.1, we need also that the total number of verifications be sublinear (no
verifications are required in Section 9.2.1). This, unfortunately, is not possible since as explained
each text position has a fixed probability of matching the pattern, and therefore the total number

*In the case of yo < 1 it would be even less, i.e. at most log, n.
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of matches is Q(n). As we need to verify at least all those matches, we pay 2(n). Notice that the
approach of Section 9.2.1 does not consider the task of reporting the matches, since it reports suffix
tree nodes which root all the leaves that are answers.

As we show experimentally in the next section, this idea works by far better than all the other
existing indexing schemes. This is because the search on a suffix tree degrades quickly as m or k
grow, up to the point where it is better to perform j searches with patterns of length m/j and
k/j errors. If we partition the pattern, however, we immediately loose the sublinearity because the
number of verifications to perform grows at the same rate of the text size n. On the other hand,
this is an asymptotic result and in practice the idea works well.

We may consider the problem of which is the best partition to perform. We initially used the j
given by pattern partitioning (i.e. the one making the subautomata fit in a computer word), but
the experimental results show that we probably would have obtained better results by partitioning
even more. This is a subject independent of which type of automaton we use to search in the nodes.
The larger j is, the more searches we will have to perform and the more verification work we will
do, but those searches themselves will be much cheaper.

In the extreme case, we can partition the pattern in k + 1 pieces and search them in the suffix
tree with zero errors. Searching all the pieces in the suffix tree costs O(m), and later we have to
verify all their occurrences. It is not hard to see that this is basically what our index of samples of
Section 9.1 does. The difference is that it prunes the suffix tree at depth ¢, and therefore we must
in some cases content ourselves with a pruned pattern piece. But, as the experiments show, even
in the cases where g is large enough, the performance of the index is not as good as that of pattern
partitioning. This shows that we are paying too much to verify the pieces, and that the optimum
is not in this extreme (the other extreme is not partitioning at all, which as clearly shown by the
experiments is not the optimum either).

Hence, the best choice is in between. We have to balance between traversing too many nodes of the
suffix tree and verifying too many text positions. In fact, the other index which does precisely this
is Myers’ index [Mye94], which is explained in Section 3.3.3. Myers’ index collects all text g-grams,
and given the pattern it generates all the strings at distance at most k& from the pattern, searches
them in the index and merges the results. This is the same work of a suffix tree provided that we do
not enter too deep (i.e. ¢ > m+ k). If ¢ < m + k, Myers’ approach splits the pattern and searches
the subpatterns in the index, checking all the potential occurrences.

There are two fundamental differences between Myers’ index and our approach. First, Myers’ index
is not a suffix tree and therefore it limits the maximum value for m 4+ k beforehand. This is a
reasonable way to reduce space requirements, and gives the method to select j. Second, it generates
all the strings at a given distance and searches them, instead of traversing the structure to see which
of them exist. This makes Myers’ approach degrade as the alphabet size grows (in the experiments
we show that it works well on DNA but very badly on English). It would be much better to
simulate the traversal on a suffix tree using the index of substrings. Each movement in the suffix
tree is replaced by a binary search on the set of (sorted) substrings, which adds a modest additional
O(log n) factor to the search time.

We believe that indexing substrings and simulating a suffix tree traversal on them is a very in-
teresting choice, which extends naturally our index based on samples, corrects the bad choice of
generating all the strings in Myers’ index, and allows to have search times similar to our pattern
partitioning index without its huge space requirements. We leave the research on this index for
future work.
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9.3 Experimental Results

We compare our indices with the other existing proposals. However, as the task to program an
index is rather heavy, we have only considered other indices when they are already implemented.
Hence, the indices included in this comparison are

Myers’: The index proposed by Myers [Mye94], described in Section 3.3.3. The implementation
we use is from the author, and it is able to search some lengths only, not an arbitrary m. The
allowed lengths depend on the alphabet size.

Cobbs’: The index proposed by Cobbs [Cob95], described in Section 3.3.2. We use the imple-
mentation of the author, which is not optimized for space (although the suffix tree index is
naturally space-demanding). Actually the search does not use a suffix tree but a DAWG (see
Section 2.7), which is similar. The code is restricted to work on an alphabet of size 4 or less.

Samples(g): Our index based on samples presented in Section 9.1. We show the results for ¢ = 3
to 6.

Dfs(a/p): Our index based on suffix trees presented in Section 9.2. We show the results for the base
technique (@) and pattern partitioning (p), explained in Sections 9.2.1 and 9.2.3, respectively.

In particular, approximate searching on other g-gram indices (see Section 3.3.3) is not yet imple-
mented and therefore is excluded from our tests. We know, however, that their space requirements
are very low (close to a word-retrieving index), but also that since the index simulates the on-line
algorithm, its tolerance to errors is very low to be practical (see Section 5.9).

All the indices were set to show the matches they found, in order to put them in a reasonably real
scenario. We used two different texts for our experiments:

e DNA text (“h.influenzae”), which is a 1.34 Mb file composed solely of the letters {4,C,G,T}.
This file is called DNA in our tests, and H-DNA is the first half megabyte of it.

e English literary text (from B. Franklin), which is filtered as explained in Chapter 2 except for
line breaks which are also converted to spaces (actually, we use underscores instead of spaces
to avoid problems with some of the indices). This text has 1.26 Mb, and is called FRA in the
experiments. The text called H-FRA is the first half megabyte of FRA. Observe that Cobbs’
index cannot be built on this text because of its restrictions to the alphabet size.

The texts are rather small, in some cases too small to appreciate the speedup obtained with some
indices. This is because of the limitations imposed by suffix trees (we had problems to build the
suffix trees for the texts larger than half a megabyte). However, the experiments still serve to obtain
basic performance numbers on the different indices.

We present the user and system times to build the indices and the space they take in Table 9.1. The
first clear result of the experiment is that the space usage of the indices is very high. In particular,
the indices based on suffix trees or DAWGs (Dfs and Cobbs’) take 35 to 65 times the text size. This
outrules them except for very small texts (for instance, building Cobbs’ index on 1.34 Mb took 12
hours of real time in our machine of 64 Mb of RAM). From the other indices, Myers’ took 7-9 times
the text size, which is much better but still too much in practice. The best option in terms of space
is our Samples index, which takes from 1 to 7 times the text size, depending on ¢ and . The larger
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| Indexer | DNA | H-DNA | FRA | H-FRA

Myers’ 5.84u+0.35s 2.08u+0.12s 5.22u+0.34s 2.01u+0.12s
10.68 Mb (7.97X) | 4.50 Mb (9.00X) | 9.39 Mb (7.46X) | 4.18 Mb (8.35X)

Samples(3) | 3.84u+0.15s 1.39u+0.07s 9.29u+0.28s 3.51u+0.12s
1.53 Mb (1.14X) | 0.57 Mb (1.15X) | 2.52 Mb (2.00X) | 1.02 Mb (2.05X)

Samples(4) | 5.53u+0.19s 1.95u4-0.10s 15.05u+0.41s 5.90u+0.24s
2.04 Mb (1.52X) | 0.77 Mb (1.53X) | 3.48 Mb (2.77X) | 1.48 Mb (2.98X)

Samples(5) | 7.37u+0.24s 2.62u+-0.08s 20.82u+-0.70s 8.70s+0.35s
2.48 Mb (1.85X) | 0.94 Mb (1.87X) | 5.18 Mb (4.11X) | 2.32 Mb (4.65X)

Samples(6) | 10.53u+0.32s 3.88u+-0.13s 32.86u+1.34s 13.19u+-0.97s
2.90 Mb (2.16X) | 1.11 Mb (2.23X) | 7.65 Mb (6.07X) | 3.54 Mb (7.07X)

Cobbs’ 108.70u+532.81s 30.50u+76.06s n/a n/a
87.99 Mb (65.67X) | 32.93 Mb (65.85X)

Dfs 30.89u+104.17s 6.48u+-0.42s 28.46u+-76.86s 6.43u+-0.61s
52.25 Mb (38.99X) | 19.55 Mb (39.10X) | 44.66 Mb (35.45X) | 17.66 Mb (35.32X)

Table 9.1: Times (in seconds) to build the indices and their space overhead. The time is separated
in the cpU part (“u”) and the 1/0 part (“s”). The space is expressed in megabytes, and also the
ratio index/text is shown in the format rX, meaning that the index takes r times the text size.

g or o, the larger the index. Samples(5), which takes 2-4 times the text size, performs well at query
time.

Compared to its size, Myers’ index was built very quickly, thanks to the technique of packing many
characters in an integer. The Dfs index, on the other hand, was built faster than Cobbs’. Notice
that the suffix trees are built very quickly when they fit in RAM (which happens with the versions
of half a megabyte of the texts), but for larger texts the construction time is dominated by the I/0,
and it takes too much.

We consider now query times. We have tested short and medium-size patterns, searching with 1, 2
and 3 errors the short ones and with 2, 4 and 6 the medium ones. The short patterns were of length
10 for DNA and 8 for English, and the medium ones were of length 20 and 16, respectively (this is
because of the restrictions of Myers’ index). We selected 1000 random patterns from each file and
use the same set for all the k values of that length, and for all the indices. We present in Tables 9.2
and 9.3 the average time per query measured in milliseconds. We include also the time of on-line
searching for comparison purposes. We use our on-line software of Chapter 5, which selects the best
strategy given the search parameters (the partitioning into exact searching of Section 6.1 is one of
its possible strategies).

The results clearly show a number of facts.

e Our strategy Dfs(a) of using a simpler traversal algorithm on the suffix tree and in return
using a faster search algorithm definitely pays off, since our algorithm is 20 to 150 times faster
than Cobbs’, at the same or less space requirements. Independently of this fact, the suffix tree
indices seem to be basically independent on the type of text, but very sensitive to the growth
of m or k. In fact, the differences between FRAN and DNA are due to the different values of
m used. Cobbs’ index is never better than on-line searching, but our faster implementation
improves over the on-line search for small m and k values. The big problem with this type of
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Indexer DNA H-DNA FRA H-FRA
(m = 10) (m = 10) (m=28) (m=28)
1: 131.0u+21.35s | 1: 55.01u+15.24s | 1: 59.74u+17.31s | 1: 29.99u+9.00s
On-line 2: 152.6u+20.56s 2: 62.41u+15.48s | 2: 114.8u+20.86s | 2: 52.77u+11.56s
3: 188.7u+20.36s | 3: 84.20u+15.33s | 3: 142.2u+420.56s | 3: 60.30u+13.76s
1: 38.46u+4227.6s | 1: 35.00u+116.3s | 1: 420.5u+198.5s | 1: 185.0u+99.1s
Myers’ 2: 149.3u+227.8s 2: 96.10u+117.4s | 2: 2698u+206.2s | 2: 1066u+103.1s
3: 1187u+232.1s 3: 688.0u+117.8s | 3: 3179u+205.58 | 3: 1261u+109.2s
1: 655.3u+2207s 1: 243.0u+813.6s | 1: 60.71u+182.4s | 1: 29.47u+68.92s
Samples(3) | 2: 1836u+4471s 2: 718.5u+1702s | 2: 377.4u+901.6s | 2: 129.9u+4315.0s
3: 5468u+413668s | 3: 2079u+5168s | 3: 1410u+2925s | 3: 552.5u+1202s
1: 235.2u+4-779.8s | 1: 94.52u+4290.6s | 1: 44.80u+109.7s | 1: 22.38u+46.10s
Samples(4) 2: 1425u+3186s 2: 568.0u+1251s | 2: 379.2u+915.1s | 2: 142.2u+30.23s
3: 5788u+13750s | 3: 2151u+5179s | 3: 1966u+2973s | 3: 819.1u+1156s
1: 119.7u+4308.5s | 1: 50.91u+4116.6s | 1: 44.74u+102.1s | 1: 23.20u+44.47s
Samples(5) | 2: 1507u+3287s 2: 583.6u+1244s | 2: 564.8u+845.6s | 2: 183.0u+312.8s
3: 6870u+13448s | 3: 2600u+5097s | 3: 3392u+29.34s | 3: 1297u+11.82s
1: 118.5u+4295.0s | 1: 51.59u+4113.6s | 1: 53.12u+105.7s | 1: 25.78u+45.42s
Samples(6) | 2: 1727u+3369s 2: 677.3u+1237s | 2: 782.0u+907.4s | 2: 254.0u{-324.4s
3: 10816u+14147s | 3: 4126u+5081s | 3: 5593u+3002s | 3: 2347Tu+1185s
1: 110.0u+192.5s | 1: 101.8u+156.0s
Cobbs’ 2: 588.1u+1989s | 2: 377.0u+1113s | n/a n/a
3: 3370u+14291s | 3: 1835u+6060s
1: 3.13u+7.81s 1: 1.45u+0.00s 1: 4.80u+11.41s 1: 1.88u+0.03s
Dfs(a) 2: 54.31u+146.8s | 2: 22.29u+40.00s | 2: 35.31u+499.50s | 2: 9.77u+0.05s
3: 397.3u+1218s 3: 152.8u+0.28s | 3: 157.2u+455.0s | 3: 35.65u+0.10s
1: 3.19u+8.47s 1: 1.51u+0.00s 1: 4.44u+9.12s 1: 1.96u+0.00s
Dfs(p) 2: 1.40u+0.00s 2: 1.34u+0.00s 2: 32.51u+66.87s | 2: 9.92u+0.00s
3: 2.12u+0.01s 3: 1.66u+0.00s 3: 146.5u+439.9s | 3: 34.95u+40.02s

Table 9.2: Query times (in milliseconds) for short patterns
separated in the cPU part (“u”) and the 1/0 part (“s”).
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and for 1, 2 and 3 errors. The time is




Indexer DNA H-DNA FRA H-FRA
(m = 20) (m = 20) (m = 16) (m = 16)
2: 184.6u+22.18s | 2: 75.16u+16.61s | 2: 60.59u+17.56s | 2: 29.91u+9.48s
On-line 4: 311.4u+21.70s | 4: 116.0u+15.79s | 4: 116.3u+20.83s | 4: 50.71u+14.98s
6: 779.2u+21.42s | 6: 297.4u+15.77s | 6: 205.6u+20.58s | 6: 92.36u+13.37s
2: 123.6u+225.1s | 2: 68.21u+112.8s | 2: 426.1u+203.4s | 2: 325.0u+106.2s
Myers 4: 1596u+237.7s 4: 651.0u+105.9s | 4: 3802u+205.1s | 4: 1619u+111.4s
6: 13149u+266.4s | 6: 5269u+142.2s | 6: 5444u+4217.0s | 6: 2329u+117.1s
2: 876.7Tu+2494s 2: 335.4u+937.3s | 2: 41.26u+120.6s | 2: 22.53u+b1.65s
Samples(3) | 4: 3406u+6342s 4: 1296u+23556s | 4: 255.5u+488.7s | 4: 105.5u+194.2s
6: 6667u+13264s | 6: 2711u+5363s | 6: 1682u+4224bs | 6: 648.3u+872.5s
2: 286.3u+768.8s | 2: 120.6u+296.6s | 2: 26.38u+47.77s | 2: 18.93u+21.69s
Samples(4) 4: 1912u+2568s 4: 714.4u+913.6s | 4: 242.0u+391.0s | 4: 102.9u+160.2s
6: 7093u+13239s | 6: 2820u+5913s | 6: 1972u+42226s | 6: 817.0u+890.0s
2: 111.4u+287.3s | 2: 48.35u+110.1s | 2: 22.89u+35.40s | 2: 18.60u+17.05s
Samples(5) 4: 1637u+2141s 4: 669.3u+899.1s | 4: 257.1u+410.9s | 4: 109.1u+166.2s
6: 7861u+12590s | 6: 3169u+5102s | 6: 3049u+42292s | 6: 1176u+892.1s
2: 57.30u+114.8s | 2: 30.53u+46.22s | 2: 23.60u+31.03s | 2: 18.03u+17.71s
Samples(6) 4: 1746u+2141s 4: 716.6u+882.2s | 4: 314.6u+388.2s | 4: 127.2u+162.9s
6: 11878u+13320s | 6: 4550u+5098s | 6: 4698u+2328s | 6: 1781u+894.3s
2: 726.1u+1700s 2: 496.3u+974.0s
Cobbs’ 4; HFH* 4: 8060u+14447s | n/a n/a
G: *H* G: *H*
2: 52.07u+177.4s | 2: 18.97u+0.13s | 2: 28.98u+69.756s | 2: 13.08u+0.03s
Dfs(a) 4: 2106u+7889s 4: 437.1u+0.10s 4: 431.4u+1282s | 4: 124.3u+0.10s
6: 11341u+40604s | 6: 2516u+0.00s 6: 2136+46433s 6: 512.6u+0.00s
2: 7.93u+17.15s 2: 3.52u+0.00s 2: 9.01u+15.05s 2: 3.87u+0.01s
Dfs(p) 4: 6.06u+1.66s 4: 5.42u+0.00s 4: 46.50u+109.8s | 4: 20.72u+0.00s
6: 94.10u+80.52s | 6: 67.01u+0.01s | 6: 269.8u+722.3s | 6: 77.40u+0.00s

*** One single query took more than 10 minutes.

Table 9.3: Query times (in milliseconds) for moderate-length patterns, and for 2, 4 and 6 errors.

The time is separated in the cPU part (“u”) and the 1/0 part (“s”).
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index is of course the huge space requirements it poses.

e Myers’ index behaves well for DNA text but it worsens quickly as the alphabet size grows
(i.e. English text). This is because the number of strings at distance k or less from the query
grows exponentially with o, and the algorithm generates all those strings. For DNA the index
is a good alternative, since although it is 3 to 25 times slower than Dfs(a), it takes 4 times
less space. The index also degrades for medium-size patterns, i.e. when it has to perform
pattern partitioning. It is better than on-line searching in the case of 10% of error (this could
improve on a larger text). Finally (always on DNA) it is better than our Samples index when
the pattern is short, but not when pattern partitioning is necessary.

e The Samples index reaches its optimum performance for ¢ between 5 and 6, depending on the
case. Unlike Myers’, this index improves as o grows, so it works better on English text than
on DNA. In DNA it produces a small index (4 times smaller than Myers’) but in general has
worse search times (except for m = 20 and 10% of error, which is also the only case where
the index improves over on-line searching and even gets close to Dfs(a)). The index for ¢ =5
on English text is half the size of Myers’ index, and it also obtains good results for medium
patterns and low error levels. As we have shown in Section 9.1, these figures improve for larger
texts.

e However, the definitive winner is Dfs(p), which works on the same data structure of Dfs(a)
but partitions long patterns into many subsearches of short patterns. The query times are
by far the lowest among all the indices. The experiments show a non-monotonic behavior
as k grows, which is due to different partitioning techniques. For instance, for m = 10 and
k = 1 the search fits in a computer word and hence there is no partitioning, for a total cost
of 3.19 on DNA. When we move to k = 2 the automaton does not fit in a computer word and
two searches with m = 5 and k = 1 are performed, the time being 1.40 in this case. This
shows that the best partitioning has little to do with the shape of the automaton, and that
the technique deserves more study, in order to determine the best partitioning and to find a
good alternative to replace the suffix tree data structure.

We finish this chapter with Figure 9.8, which illustrates the empirical results on space and query
time complexity for the different indices. There is a different plot for each value of n, m, k and o,
so we have decided to illustrate the case of short patterns and £ = 1, on both DNA and English
text. The Figure gives a quick grasp of the current time and space tradeoffs.
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Figure 9.8: Space-time trade-offs on sequence-retrieving indices, in the case of short patterns and
one error, and the texts DNA and FRA.
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Chapter 10

Conclusions

The aim of this thesis was to address the problem of string matching allowing errors, a rather old
problem in string matching which is gaining importance in the last years thanks to its applications
in computational biology and information retrieval. In this section we present the “big picture” of
what has been obtained and what is left.

10.1 Results Obtained

We divided the thesis in two main areas: on-line and indexed searching.

On-line searching is the oldest flavor of the problem, and at the same time still the most fast-moving
and competitive area. It consists on searching the pattern in the text when there is no possibility
to preprocess the text. Qur most important achievements in this area are

e We have obtained new results on the probabilistic behavior of approximate searching, proving
that the probability of an approximate occurrence is a function of the error level a which goes
abruptly from almost zero to almost one, and obtaining theoretical and empirical values for
that threshold « value. This allows to understand much better the expected behavior of many
search algorithms and to determine which one to use in each case. Despite that some more
refined work can still be done, our result is generally enough for most practical purposes.

e We have designed a number of new algorithms, some of which are currently the fastest known
on-line search algorithms. In particular, our new algorithms are now the best ones for short
patterns and for moderate error levels, which covers almost all the cases of interest in typical
text searching.

e We have presented many new algorithms for multipattern approximate searching, which is a
rather new area where we expect more movement in the near future. We basically extended
many of our algorithms for one pattern to the multipattern case. Currently our algorithms
are the best everywhere, except for the case of one error and hundreds of patterns.

e These results are due to strong and novel algorithmic ideas (such as the bit-parallel simulation
across diagonals of the NFA, pattern partitioning, hierarchical verification, and superimposi-
tion), as well as careful algorithm engineering and successful application and combination of
practical techniques (some of them previously known).
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Indexed searching, on the other hand, is a newer area (practically born in 1992) where much more
development is necessary. In this case the text can be preprocessed and a persistent data structure
on it (index) can be built to speed up later querying. Our main achievements for this area are

e We have analytically studied the behavior of word-retrieving indices (those able to retrieve
whole words that match the query). One of the most outstanding results is that it is possible
to use block addressing to have indices which are sublinear in space overhead and retrieval
time simultaneously. This makes an excellent case for the use of this type of index. The result
holds also for exact searching. We also analyzed full inverted indices and Web indices.

e We have presented new indexing schemes for sequence-retrieving (i.e. general) indices, which
are currently among the best ones. An index based on samples proves to be very adequate
for large natural language databases. A second index that combines suffix trees with pattern
partitioning seems to be a very promising alternative that could sweep out all the other choices
if implemented on a more space-economical data structure. This last index requires further
study in order to understand and optimize its behavior.

e We also presented a number of minor tricks which however give impressive improvements on
the practical behavior of indices for approximate searching.

As a whole, we believe that this thesis makes a valuable contribution to the field. First, the
probabilistic behavior of the problem is much better understood now, together with the expected
behavior of on-line and indexed algorithms which depend on these probabilities. Second, we have
introduced a number of strong and original algorithmic ideas which have not only been fruitful
for us, but could be exploited in the future as well, by ourselves and by other researchers. Third,
using these novel ideas and cleverly applying and combining old results and practical techniques,
we have obtained new indexing and searching algorithms which are currently the fastest ones in a
wide spectrum of parameters of the problem, especially in the areas of typical text searching. One
of the most basic lessons learned is that theory and practice must go together in order to achieve
the best results, we need good ideas but also simplicity, we need good algorithms but also clever
implementations, we need analytical results but also experiments.

10.2 Future Work

A number of directions for future work have been mentioned along this thesis at the appropriate
points. We collect them here, although we give more details when they are mentioned in their
original context.

e Despite that our analysis of approximate matching probability was precise enough for our
purposes, a more exact (and still useful) analysis would be interesting.

e We have studied in depth the range of parameters typical of text searching, but other cases
with applications to other areas such as small alphabets or very long patterns are interesting
as well.

o We believe that there could be still place for improvement on the techniques that try to skip
characters in an approximate search. We have presented some new algorithms, and perhaps
there are others still waiting.
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For information retrieval, it is interesting to work more on extended patterns and regular
expressions combined with approximate searching. We believe that the full power of bit-
parallelism has not yet been exploited.

Working on more complex distance functions is of interest. For instance, few works allow
transpositions, despite that they are extremely frequent as typing errors. Under the edit
distance, two errors are necessary to simulate a transposition.

Improving the partitioning into exact search algorithm for natural language could yield inter-
esting practical improvements. For instance, we still need to study more in depth the cost
function we minimize for splitting optimization.

It would be of theoretical interest to analytically or empirically study the growth of the DFA
for approximate searching, and of some practical interest to study its behavior with limited
memory.

Improved techniques to handle multiple patterns are yet to be devised. With respect to our
techniques, we still need to study better heuristics to group and align the subpatterns.

We can still optimize more our improved algorithms for word-retrieving indices, looking for
better metric space data structures for the vocabulary search or performing a different multi-
pattern search per block with only the words that exist in that block.

It is interesting to join block addressing indices with compression techniques, which drastically
reduce the space requirements and give improved search times.

Not allowing errors involving a separator is the weak point of word retrieving indices. We plan
to address this issue by implementing a partition into exact searching over a word retrieving
index.

Our index based on text substrings can be improved in many ways, the most immediate of
them being to include hierarchical verification. Other alternatives, such as partitioning in
more than k + 1 pieces or intersecting many different splits, should be studied as well.

The idea of pattern partitioning on suffix tree indices seems very promising and deserves
more study to understand exactly how the process works and which is the best partitioning
scheme. We plan to simulate this algorithm on a g-gram index to reduce space requirements.
Hierarchical verification should also be added here.

10.3 Open Questions

There are some interesting aspects in the future of this problem as we foresee it. An important ques-
tion is: will approximate string matching remain as an interesting problem? We positively believe
that the answer is “yes”, since most of its sources are not short-term situations. Signals transmitted
by physical means will remain having transmission errors (especially if the air becomes a common
medium, as the wireless communications gurus hope), and future work on speech recognition will
doubtlessly trigger more requirements on this area. DNA and protein analysis will keep being a
very active area of research in the foreseeable future (and perhaps even more active than today).
Although OCR softwares may improve in the future (we all hope so!), somebody will have to type
the texts for the first time (in paper or directly in electronic form), and that people will keep making
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typing and spelling errors (or alternatively text editing softwares will prevent the errors, in which
case those softwares will become new applications for our problem). If we consider that more and
more people are getting access to electronic publishing (e.g. news, Web pages, etc.), then it is clear
not only that the text databases will keep growing and growing, but also that at least a large pro-
portion of them will be heterogeneous, poorly organized and carelessly written. Searching allowing
errors will become the standard practice, and it will be more and more important to find the needle
in the haystack of available text. The expected growth of automated linguistic tools to analyze text
semantics will probably be another area of application for approximate string matching.

The other question is: is there room for new developments, or is this area closed with respect to
what can be done? With respect to on-line searching, it is our belief that it will be very difficult
to obtain better results. Bit-parallelism has been exploited to its limit, filtering approaches work
so little per text character that hardly could one do less without losing matches. We believe that
there is still some room for improvements on techniques that skip characters, but that will not be
a breakthrough. Another area which is still open is that of new distance functions, such as to allow
transpositions or even more complex distance functions, where many applications in computational
biology are waiting. There is also little development for multipattern matching of hundreds of
patterns, which will probably become an active area in the future, with applications to spelling and
computational linguistics.

There are some theoretical questions still open, such as which is the probability of an approximate
match, how does the matching probability behave on natural language or which is the worst-case
complexity of this problem if the space is polynomial in m.

Other more exotic areas we have not included in this thesis will probably be important in the future.
Approximate searching on multidimensional text, for instance, could become a competitor of the
current image processing techniques for pattern recognition. Currently, this area needs not only
better algorithms, but also to account for rotations and scalings before we can say that it is of
real use for subimage searching (there are separate developments for rotations, scaling and errors,
but they have not been merged). Approximate string matching on compressed text will be another
important area of development, if the tendency of joining textual databases and compression is
confirmed. Although there are good solutions for a restricted problem (approximate word matching
on natural language text), the general problem is still open.

With regard to indexed approximate string matching, we believe that it is going to be the star
problem of this area in the future, not only because indices are the only answer to handle the huge
texts that will become commonplace in future information retrieval applications, but also because
of its difficulty. When words are matched to words, the problem is rather well solved already and
we only expect marginal improvements to the general technique in the future (although the problem
of including separators must be solved). On the other hand, if we insist in the general problem,
indices are very immature and finding a major improvement would be a real breakthrough. Finding
a good index for unrestricted approximate string matching is considered “El Dorado” of this area.
Perhaps it exists, perhaps not. Who can tell? We are the explorers...
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