
UNIVERSIDAD DE CHILEFACULTAD DE CIENCIAS F�ISICAS Y MATEM�ATICASDEPARTAMENTO DE CIENCIAS DE LA COMPUTACI�ONB�USQUEDA APROXIMADA EN TEXTOGONZALO NAVARRO BADINOProfesor Gu��a : Dr. Ricardo Baeza YatesProfesores de Comisi�on : Dr. Jorge Olivos: Dr. Patricio Poblete: Dr. Esko Ukkonen(Prof. Invitado,Univ. de Helsinki, Finlandia)TESIS PARA OPTAR AL GRADO DEDOCTOR EN CIENCIAS, MENCI�ON COMPUTACI�ONEste trabajo ha sido parcialmente �nanciadopor los proyectos Fondecyt 1-950622 y 1-960881, Fondef 96-1064 y CYTED VII.13 AMYRI.SANTIAGO - CHILEDiciembre, 1998

A Betina,sin quien nada tendr��a sentido.A la memoria de la Eulogia,que nos acompa~n�o todos estos a~nos.

ResumenEsta tesis trata el problema de recuperaci�on de texto permitiendo errores, tambi�en llamada b�usqueda\aproximada" en texto. El problema es encontrar un patr�on en un texto donde el patr�on y el textopueden tener \errores". Se ha trabajado mucho en este problema en los �ultimos a~nos, dado quetiene aplicaciones en muchas �areas, tales como recuperaci�on de informaci�on, biolog��a computacionaly procesamiento de se~nales.El objetivo de este trabajo es el desarrollo y an�alisis de nuevos algoritmos para resolver el problemade b�usqueda aproximada en texto bajo distintas condiciones, as�� como una mejor comprensi�ondel problema mismo y su comportamiento estad��stico. Si bien nuestros resultados son v�alidos endiversas �areas, centramos nuestra atenci�on en la b�usqueda en texto t��pica de las aplicaciones derecuperaci�on de informaci�on. Esto hace que ciertos rangos de valores para los par�ametros sean m�asinteresantes que otros.Hemos dividido esta presentaci�on en dos partes. La primera trata con b�usqueda aproximadasecuencial, es decir cuando no existe tiempo o espacio su�ciente para preprocesar el texto. Estosalgoritmos son tambi�en la base de la b�usqueda indexada. La b�usqueda secuencial es el �areadel problema donde previamente exist��an mejores algoritmos. Obtuvimos nuevas cotas para laprobabilidad de una ocurrencia aproximada de un patr�on en un texto aleatorio, y usamos esosresultados para analizar algoritmos ya existentes y otros propuestos en este trabajo. Los nuevosalgoritmos que desarrollamos est�an actualmente entre los m�as r�apidos, siendo incluso los m�as r�apidospara pr�acticamente todo el rango de par�ametros de inter�es en b�usqueda en texto t��pica. Finalmente,extendimos nuestros resultados a la b�usqueda simult�anea de m�ultiples patrones, obteniendo losmejores algoritmos existentes cuando se busca una cantidad moderada de ellos (aproximadamentehasta 100).La segunda parte de esta tesis se centra en b�usqueda aproximada indexada, es decir cuando podemosconstruir un ��ndice para el texto de antemano, para m�as tarde agilizar la b�usqueda. El ��ndice idealpara b�usqueda aproximada no existe a�un y el desarrollo actual es bastante inmaduro, pero hicimosprogresos proponiendo nuevos algoritmos y entendiendo mejor el problema. Para el caso restringidode��ndices capaces de recuperar s�olamente palabras completas en lenguaje natural, obtuvimos nuevosresultados anal��ticos sobre su complejidad asint�otica, lo cual nos permiti�o desarrollar un��ndice nuevoque es sublineal en espacio y en tiempo de respuesta simult�aneamente. Para este tipo de ��ndicestambi�en presentamos mejores algoritmos de b�usqueda. Para el caso de ��ndices generales (capaces derecuperar no s�olo palabras) desarrollamos nuevos esquemas de indexaci�on que son un compromisoentre e�ciencia y requerimientos de espacio. Adem�as, inspirados en t�ecnicas de b�usqueda secuencial,propusimos un h��brido entre los esquemas existentes de indexaci�on y obtuvimos resultados muypromisorios.En pr�acticamente todos los casos hemos complementado el desarrollo de nuevos algoritmos con suan�alisis de desempe~no en el peor caso y en el caso promedio, as�� como con su completa validaci�onexperimental y su comparaci�on con los mejores resultados previos de los que est�abamos enterados.Creemos que este trabajo, como un todo, constituye una contribuci�on valiosa al desarrollo ycomprensi�on del problema de b�usqueda aproximada en texto.

AgradecimientosLa ojera es un pecado com�un, y yo he sido culpable de ella cuando tom�e el archivo deagradecimientos de mi tesis de Mag��ster (1995), pensando en modi�carla para mi tesis de Doctorado.Mi sorpresa fue que la mayor��a de lo que pensaba decir estaba ya all��, v�alido en 1995 y v�alido hoy,terminando 1998. Aun estoy en deuda con la misma gente con la que lo estaba entonces, y la deudasigue creciendo. As�� que si el lector ha visto los agradecimientos de mi tesis de Mag��ster, esto no esuna simple copia de aquellos sino una expresi�on de gratitud renovada.Terminar esta tesis no signi�ca s�olo terminar el trabajo m�as importante y de mayor envergaduraque haya encarado nunca. Tambi�en representa el �n de esta etapa de 5 a~nos de mi vida, una�epoca incre��blemente placentera de curiosidad sin l��mites, trabajo excitante y grandes satisfaccionesy recompensas. Tambi�en ha sido una �epoca en la que trabaj�e en lo que m�as me gusta, con pocapresi�on o interferencia de otros problemas o requerimientos. Afortunadamente, nada me hace pensarque lo que viene vaya a ser muy distinto. Lo que he disfrutado (y espero seguir disfrutando) es lavida de investigaci�on, nada m�as, nada menos. Este es el �unico tipo de vida que creo que soy capazde vivir.Por ello, no puedo estar menos que agradecido con toda la gente que hizo posible este tipo de vida,y querr��a expresar mi gratitud a su sincera y desinteresada ayuda y amistad. Temo que de todosmodos terminar�e olvidando algunos nombres, y espero que ellos me perdonen este error.Primero que todo, mi esposa Betina, que dej�o todo para acompa~narme en esta aventura. Ella esla �unica responsable de que a�un tenga una vida fuera de mi o�cina. Sin ella, habr��a terminado mitesis en la mitad del tiempo, pero mi vida ser��a mucho menos interesante de vivir.Aparte de mi esposa, una de las primeras personas que deber��a mencionar es Jorge Olivos, queme conoci�o en la ESLAI, y me estuvo presionando desde entonces para dejar mi trabajo y venir aChile a disfrutar de la investigaci�on en serio. El tambi�en dio los primeros pasos para darme unaoportunidad de venir, y ha estado siempre dispuesto para brindarme su amistad y su ayuda.Tambi�en quiero agradecer a Patricio Poblete por su amistad y ayuda incondicional (�nanciera yacad�emica, entre otras), por las clases estimulantes y trabajo conjunto que he disfrutado con �el, y�ultimamente, por ser un jefe de Departamento con un estilo totalmente opuesto a lo que un cargoadministrativo as�� podr��a hacer pensar. Su accesibildad, exibilidad y buena disposici�on me hanahorrado m�as de un dolor de cabeza en los momentos cr��ticos.Ricardo Baeza-Yates, mi director de tesis, merece un agradecimiento especial. Este no s�olo es porhaber cre��do en mi desde el primer momento y darme acceso a todo lo que �el cre��a que yo merec��aa pesar de mi condici�on de estudiante, sino tambi�en por haber hecho un excelente trabajo como midirector de tesis (estando all�� cuando yo necesitaba ayuda, y no estando cuando consideraba quepod��a hacerlo por mi cuenta) y en general como mi gu��a desde ser un alumno desorientado que vinoa Chile con poca idea de qu�e hacer, hasta el �n de mi carrera de estudiante y mi comienzo como un

nuevo investigador con alguna idea de lo que quiere y de hasta d�onde puede llegar. No contento coneso, tambi�en se ha ocupado de apoyar �nancieramente mi investigaci�on, me ha ayudado en tantasformas que ya no recuerdo, y ha sido un amigo permanente, paciente y desinteresado.En estos a~nos he conocido otra gente de fuera que se ha convertido en amiga m��a tambi�en, y a los quetambi�en me gustar��a agradecer: Nivio Ziviani, Edleno de Moura, Mathieu Ra�not, Edgar Ch�avez,Jes�us Vegas, Marcio Drumond Ara�ujo, Jo~ao Paulo Kitajima, Berthier Ribeiro, Erkki Sutinen, GeneMyers, Amihood Amir, Pablo de la Fuente, Esteban Feuerstein, y otros que seguramente he olvidadomencionar.Tambi�en quisiera agradecer al resto de la gente del Departamento que ha hecho mi vida m�as f�acily m�as agradable, as�� como a mis viejos amigos que a�un est�an conmigo por e-mail y con quieneshe disfrutado much��simo: Sergio Servetto, Guillermo Alvarez, Pablo Mart��nez-L�opez, ... y porsupuesto mi familia, que siempre est�a orgullosa de m�� incluso cuando no hago nada notable. Unanota especial para Pablo Palma, una persona muy especial de la clase que se encuentra unas pocasveces en la vida, que ha sido un excelente amigo y a quien tambi�en debo mucho.Mi gratitud para mi comit�e de tesis, que se di�o el pesado trabajo de leer toda la tesis e hizo unacantidad de comentarios �utiles que mejoraron la calidad del trabajo en muchos aspectos: JorgeOlivos (nuevamente), Patricio Poblete (nuevamente) y Esko Ukkonen.Hay mucha otra gente con la cual estoy en deuda por esta tesis. Varios de ellos, por ejemplo, meenviaron versiones de sus algoritmos ya funcionando, cosa que hizo los experimentos mucho m�asf�aciles, y en cierto sentido, m�as justos: William Chang, Alden Wright, Gene Myers, Erkki Sutinen,Tadao Takaoka, Jorma Tarhio, Robert Muth, Udi Manber y Archie Cobbs. Otros han le��do y hechosugerencias para mejorar papers que luego pasaron a formar parte de la tesis, como Gene Myers, UdiManber, Erkki Sutinen, y por supuesto un mont�on de �arbitros an�onimos de conferencias y revistas.Finalmente, alguna gente trabaj�o con nosotros en trabajos relacionados con esta tesis, y aunques�olo he incluido aqu�� mi trabajo original, han trabajado muy cerca nuestro y son responsables demuchas mejoras: Erkki Sutinen, Jorma Tarhio, Nivio Ziviani, Marcio Drumond Ara�ujo, Edleno deMoura y Mathieu Ra�not. En el Cap��tulo 8 tom�e prestados algunos gr�a�cos experimentales detrabajos hechos en conjunto (gracias a Nivio y Marcio).Por �ultimo, pero no por ello menos importante, mi agradecimiento a los proyectos FONDECYT(Chile) 1-950622 y 1-960881, proyecto FONDEF (Chile) 96-1014, y proyecto CYTED VII.13AMYRI, que dieron apoyo �nanciero parcial a este trabajo.

Resumen ExtendidoEsta tesis trata sobre el problema de recuperaci�on de texto permitiendo errores, tambi�en llamadab�usqueda aproximada en texto. El problema es encontrar un patr�on en un texto donde el patr�on yel texto pueden tener \errores". Comentaremos primero sobre la historia y motivaci�on de esteproblema, lo de�niremos precisamente, repasaremos cu�ales han sido nuestras contribuciones ycomentaremos los problemas abiertos y el futuro del �area.Historia y Motivaci�onLas primeras referencias a este problema que pudimos detectar datan de los a~nos sesenta y setenta,cuando el problema apareci�o en varias �areas distintas. En aquella �epoca la motivaci�on principalpara esta clase de b�usqueda ven��a de la biolog��a computacional, del procesamiento de se~nales y delprocesamiento de texto. Primero consideraremos las �areas alternativas y luego nos concentraremosen texto.Las secuencias de ADN y prote��nas se pueden ver como largos textos sobre alfabetos espec���cos(ej. fA,C,G,Tg en ADN). Estas secuencias representan el c�odigo gen�etico de los seres vivos. Buscarsecuencias espec���cas sobre esos textos se convirti�o en una operaci�on fundamental para problemascomo buscar determinadas caracter��sticas en las cadenas de ADN, o determinar cu�an diferentes erandos secuencias gen�eticas. Esto se modelaba como la b�usqueda de un \patr�on" dado en un \texto".Sin embargo, la b�usqueda exacta no era de utilidad para esta aplicaci�on, dado que los patrones raravez calzaban exactamente en el texto. Las secuencias gen�eticas de dos miembros de la misma especieno son id�enticas, sino muy similares. M�as a�un, establecer cu�an diferentes eran dos secuencias (ej.para determinar cu�an lejos en el pasado divirgieron el rat�on y el hombre) necesitaba tambi�en eseconcepto de \similaridad", as�� como un algoritmo para calcularla.Esto dio una motivaci�on para \buscar permitiendo errores". Los errores eran esas operaciones quelos bi�ologos sab��an que ocurr��an com�unmente en las secuencias gen�eticas. La \distancia" entredos secuencias se de�n��a como la m��nima (es decir, la m�as probable) secuencia de operacionespara transformar una en la otra. Atendiendo a su probabilidad, se les asignaba un \costo" a lasoperaciones, de modo que las operaciones m�as probables eran m�as baratas. El objetivo era entoncesminimizar el costo total.Como se mencion�o, otra motivaci�on ven��a del �area de procesamiento de se~nales. Uno de los grandestemas es el reconocimiento de voz, donde el problema general es ser capaz de discernir, dada unase~nal de audio, el mensaje textual que se est�a transmitiendo. Incluso problemas simpli�cados comodeterminar una palabra entre un peque~no conjunto de alternativas es complejo, dado que ciertasporciones de la se~nal pueden comprimirse en el tiempo, otras partes pueden no pronunciarse, etc.Un calce perfecto es pr�acticamente imposible. i

Otro problema de este campo es la correcci�on de errores. La transmisi�on f��sica de se~nales es propensaa errores. Para asegurar una transmisi�on correcta sobre un canal f��sico, es necesario ser capaz derecuperar el mensaje correcto luego de una posible modi�caci�on (error) introducido durante latransmisi�on. La probabilidad de este error se obtiene de la teor��a de procesamiento de se~nales y seusa para asignar un costo a estos errores. En este caso ni siquiera sabemos qu�e es lo que buscamos,s�olo queremos un texto que sea correcto (de acuerdo al c�odigo corrector de errores usado) y m�ascercano al mensaje recibido. Si bien esta �area no se ha desarrollado mucho con respecto a lab�usqueda aproximada, ha generado la medida m�as importante de similaridad, conocida como ladistancia de Levenshtein (o de edici�on) [Lev65, Lev66].La biolog��a computacional se ha desarrollado y evolucionado mucho desde entonces, con un empujeespecial en los �ultimos a~nos gracias a proyectos que apuntan a decodi�car el ADN y a sus aplicacionespotenciales. El procesamiento de se~nales es tambi�en un �area muy activa. Las interfaces multimediaponen tambi�en presi�on hacia la comunicaci�on no escrita. Tambi�en se buscan c�odigos correctorespoderosos por el inter�es actual en comunicaciones sin cables (a�ereas). Claro que los problemas queaparecen en esas �areas relacionados con b�usqueda aproximada no son s�olo de la clase que hemospresentado. Por ejemplo, puede quererse buscar un patr�on desconocido, del que s�olo se conocenalgunas propiedades. Se cree que incluso el problema simple es NP-completo si se usan ciertasfunciones de distancia [KS95, PW95].El lector interesado en obtener m�as informaci�on sobre el nacimiento de esta �area puede consultar[SK83]. En particular, [Wat95, BSSU74, WL83, GK82, KG82] son buenas referencias para lasaplicaciones de b�usqueda aproximada en biolog��a computacional, as�� como [DM79, Lev65, Vin68,LS97] para el procesamiento de se~nales.Hoy en d��a han aparecido una cantidad de nuevas aplicaciones para b�usqueda aproximada. El campode bases de datos multimedia, de r�apido desarrollo, necesita algoritmos para buscar un patr�on enuna se~nal f��sica (no s�olo audio), donde es pr�acticamente imposible encontrarlo en forma exacta.La cantidad de aplicaciones para este problema crece cada d��a. Hemos encontrado solucionesa los problemas m�as diversos basadas en b�usqueda aproximada, por ejemplo reconocimiento detexto manuscrito, detecci�on de viruses e intrusos, compresi�on de im�agenes, miner��a de datos,reconocimiento de patrones y edici�on autom�atica de video, para nombrar s�olo algunos. En [SK83] semencionan muchas otras aplicaciones. M�as a�un, no es necesario ir tan lejos, puesto que herramientassimples de uso cotidiano como encontrar las diferencias entre dos archivos1 est�an fuertementebasadas en estos conceptos.Especialmente interesante para esta tesis es el caso de b�usqueda en texto. El problema de corregirpalabras mal escritas en texto es bastante viejo, tal vez la aplicaci�on potencial m�as antigua parab�usqueda aproximada. Pudimos encontrar referencias de los a~nos veinte [Mas27] y quiz�as las haym�as viejas. Sin embargo, pas�o tiempo hasta que se estableci�o [Nes86] que los modelos ad-hoc (ej. losde Blair [Bla60], Damerau [Dam64] y el popular Soundex, descritos por ejemplo en [Knu73, HD80])eran inferiores al enfoque basado en b�usqueda aproximada.Hoy en d��a el espectro de aplicaciones en esta �area es mucho m�as amplio. La cantidad de informaci�ontextual accesible en el mundo impresiona por su tama~no. El World-Wide-Web (o simplementeWeb) contiene m�as de un terabyte. Incluso colecciones de texto espec���cas se miden en gigabytes.Encontrar la informaci�on relevante en esa masa de texto se est�a convirtiendo en una tarea m�as ym�as compleja. Buscar en lenguaje natural no es como buscar informaci�on exacta en, digamos, unabase de datos relacional. Uno normalmente est�a interesado en buscar en un texto bas�andose en susem�antica, la cual no es f�acil extraer directamente del texto.1El comando "diff" de Unix, por ejemplo. ii

Este problema abre la puerta al amplio campo de Recuperaci�on de Informaci�on (RI, otra antigua�area en computaci�on), cuyo objetivo principal es buscar qu�e documentos de texto pueden serinteresantes para un usuario dada su consulta. Esta es una disciplina basada en heur��sticas puestoque est�a basada en maximizar conceptos vagos tales como la satisfacci�on del usuario. El lectorinteresado en RI puede consultar [FBY92, BYR98]. Por otro lado, nosotros estamos interesados enlos aspectos algor��tmicos del problema. La mayor��a de las t�ecnicas usadas en RI para encontrardocumentos \relevantes" se basan en algoritmos de b�usqueda en texto. Nuestro objetivo es obteneresos algoritmos y que sean e�cientes.Para hacer el problema a�un m�as dif��cil, esas colecciones de texto se est�an haciendo cada vez m�asheterog�eneas (diferentes lenguajes, por ejemplo) y m�as propensas a errores. Por ejemplo, lascolecciones de textos digitalizadas mediante reconocimiento �optico de caracteres (OCR) contienenun porcentaje nada despreciable de errores. Lo mismo ocurre con los errores de tipeo. Muchasbases de datos textuales son tan grandes y crecen tan r�apido que es imposible controlar su calidad(en particular, no hay control de calidad en el Web). Una palabra que se ingresa incorrectamenteen la base de datos nunca ser�a recuperada a menos que se cometa el mismo error en la consulta.Un experimento reciente mostr�o que cerca del 10% de los documentos relevantes a una consulta enel Web no se recuperaban debido a errores de este tipo [Rib97].N�otese que no s�olo el texto, sino tambi�en el patr�on, puede contener errores. Esto es t��pico,por ejemplo, en ambientes multiling�ues donde se busca un nombre extranjero y se escribeincorrectamente en el patr�on, o en textos antiguos en que se usan versiones anticuadas dellenguaje. Finalmente, otras aplicaciones de procesamiento de texto como correctores ortogr�a�cos(que sugieren variantes \cercanas" a una palabra mal escrita) necesitan algoritmos para buscarpalabras incorrectamente escritas. Se podr��a argumentar que los correctores ortogr�a�cos impedir�anen el futuro que haya errores en los textos, pero aparte de que de todos modos necesitan de lab�usqueda aproximada, sabemos que no es f�acil hacer correcci�on autom�atica, como veremos m�asadelante en un ejemplo.Existen varias t�ecnicas en uso para aumentar la probabilidad de encontrar las porciones relevantesde un texto. Aparte de las t�ecnicas que son t��picas de RI, tales como el uso de tesauros, algoritmosde extracci�on de ra��ces de palabras (stemming) y otros, es importante tener exibilidad en losalgoritmos de b�usqueda mismos. Varias de esas nuevas capacidades se agrupan bajo el nombregen�erico de patrones extendidos, que generalizan la b�usqueda exacta b�asica. Estas generalizacionesvan desde no tener en cuenta la diferencia entre may�usculas y min�usculas hasta permitir buscarexpresiones regulares. Hoy en d��a no existe pr�acticamente ning�un producto de recuperaci�on detexto que no permita alguna clase de b�usqueda de patrones extendidos.Entre todas las alternativas ofrecidas bajo el nombre de \patrones extendidos", las que mejorenfrentan el problema de textos o patrones propensos a errores se derivan precisamente de esosproblemas bien conocidos de b�usqueda aproximada en texto. Existe una adaptaci�on sencilla que harecibido mucha atenci�on. Es un modelo de costo llamado distancia de Levenshtein o simplementedistancia de edici�on, denotada ed() [Lev65]. Esta se de�ne como el menor n�umero de inserciones,borrados y reemplazos de caracteres necesarios para hacer iguales a las dos cadenas. Por ejemploed("correr","creer") = 2. V�ease por ejemplo [Nes86], que muestra que versiones simples de ladistancia de edici�on superan en precisi�on a todos los otros m�etodos conocidos.Ilustremos esto con un peque~no ejemplo. Consideremos buscar la palabra "against" en 1.2 Gb dela colecci�on trec-2 [Har95], que es un conjunto est�andar de textos usados para comparar productosde RI. Nuestra b�usqueda permitiendo una inserci�on, borrado o reemplazo arrojaiii

aagainst[1] abainst[1] agaimst[1] againist[2] agains[7]against againsts[2] againt[23] agaist[5] aganinst[1]aganst[4] aginst[13] agsainst[1] gagainst[1] tgainst[1]todas las cuales, salvo la misma "against", son variantes err�oneas de "against". Pusimos entrecorchetes la cantidad de veces que aparece cada variante err�onea. Como un ejemplo contra lacorrecci�on autom�atica, la palabra "agains" era en algunos casos una variante err�onea de "against"y en otros de "again", y tuvimos que leer los p�arrafos cuidadosamente para elegir entre las dos. Sibuscamos permitiendo dos errores obtenemos adem�asadvinst again againg againns[1] againto againts[2]agaisnt[7] aganet aganist[3] agianst[1] agins aginseainst[1] anainsa gains gainse gaint ragainsvarias de las cuales son a�un variantes err�oneas de "against". En particular, aparecen cuatroalternativas distintas de transposici�on de letras (es decir, convertir "ab" en "ba"). Este es un errorde tipeo t��pico (y puede ser conveniente considerarlo como un error at�omico). Otras variantes sonen realidad palabras correctas distintas, como "again" y "gains", y otras son variantes incorrectasde estas nuevas palabras, por ejemplo "againg" y "gainse".2Sumando la cantidad de veces que nuestra palabra fue mal escrita tenemos 78 ocurrencias (<3 delas cuales est�an en los t��tulos!), contra 77.556 correctamente escritas (cerca del 0.1%). Recalquemosque esta colecci�on se obtiene de art��culos publicados, diarios, etc., es decir, no es un material escritodescuidadamente.Probamos hacer lo mismo en el Web usando Altavista (http://www.altavista.com). ComoAltavista no permite hacer una b�usqueda aproximada, nos conformamos con preguntar por todas lasvariantes incorrectas que encontramos anteriormente. El resultado es 22.610 p�aginas con versionesincorrectas (<desafortunadamente no las podemos veri�car todas!), lo que representa el 0,5% deln�umero total de p�aginas donde se encontr�o "against".En el ejemplo previo elegimos una palabra muy com�un para ilustrar la cantidad de variantesincorrectas que pueden aparecer. Sin embargo, el resultado puede parecer un poco decepcionante,dado que estamos perdiendo menos del 1% de los calces a cambio de olvidarnos del problemade b�usqueda aproximada. Pero consideremos una palabra que es m�as dif��cil de deletrear:"Levenshtein". Altavista nos entreg�o 192 p�aginas. Ahora, probamos todas las alternativas deeliminar una letra y de intercambiar una letra con la siguiente. <El resultado es que aparecieron 87p�aginas nuevas! (y veri�camos que eran relevantes). Es decir, est�abamos perdiendo un tercio delas p�aginas relevantes. Tengamos en cuenta que no pudimos probar con inserciones o reemplazosporque la cantidad de b�usquedas exactas a realizar ser��a inmensa. Esto tambi�en sirve para ilustrarcu�an dif��cil es hacer b�usqueda aproximada cuando �esta no est�a soportada por la herramientade recuperaci�on de texto. M�as a�un, ilustra el hecho de que las palabras poco comunes tienenmayor probabilidad de estar mal escritas, y son precisamente esas palabras poco comunes las m�asimportantes para RI y las que se preguntan con mayor frecuencia.El ProblemaEstamos interesados en b�usqueda aproximada en general, aunque nuestro mayor �enfasis est�a en ellenguaje natural. Nuestro problema se puede expresar como sigue:2Veri�camos cada una de estas candidatas en su contexto textual para determinar a qu�e palabra correspond��an.iv

Dado un patr�on corto P de largo m, un texto largo T de largo n y un n�umero m�aximode errores k, encontrar todas las posiciones del texto j tales que un su�jo de T:::j calzacon P con a lo sumo k errores (inserciones, borrados o reemplazos).N�otese que retornamos las posiciones �nales de los calces. Se toma esta decisi�on porque las porcionesdel texto que calzan pueden tener distintas longitudes. Equivalentemente podr��amos reportar loscomienzos de los calces. Se ha elegido tradicionalmente reportar las posiciones �nales porque esosimpli�ca los algoritmos de b�usqueda.El uso de la distancia de Levenshtein en vez de cualquier otra es una consecuencia de nuestro inter�esen aplicaciones de recuperaci�on de texto. Muchos de los algoritmos que proponemos, sin embargo,se pueden generalizar para permitir otros costos para las operaciones de edici�on. Esto incluye, enparticular, otros modelos com�unmente usados como la distancia de Hamming (es decir, permitir s�oloreemplazos), la distancia de Subsecuencia Com�un m�as Larga (es decir, permitir s�olo inserciones yborrados), la distancia de Episodios (es decir, permitir s�olo inserciones), o una distancia de edici�onextendida que permite transposiciones de letras.Por otro lado, vamos a estar interesados en combinar este tipo de b�usqueda con los requerimientost��picos actuales de recuperaci�on de informaci�on, tales como patrones extendidos, calzar palabrascompletas, etc. Dados los gigantescos tama~nos de textos involucrados, vamos a estar interesados ent�ecnicas de indexaci�on para facilitar esta b�usqueda. Finalmente, vamos a estar tambi�en interesadosen las diferentes variantes y extensiones del problema.Nuestro inter�es en b�usqueda t��pica en texto para aplicaciones de RI implica que nos interesaremosm�as en ciertos rangos para los par�ametros del problema (aunque algunos de nuestros algoritmostrabajan mejor en otros rangos). No hay un algoritmo que sea �optimo para todos los casos. Lospar�ametros de inter�es son:� El tama~no del texto, que se supone muy grande, en contraste con, por ejemplo, muchasaplicaciones de biolog��a computacional donde puede ser unos pocos miles de caracteres. Esto,por ejemplo, desalienta el uso de estructuras de datos residentes en memoria que ocupan variasveces el tama~no del texto.� La longitud del patr�on, que se supone razonablemente peque~na, t��picamente inferior a 30letras y casi siempre menor que 60 letras. Esto deja, en la pr�actica, fuera de juego a muchosalgoritmos que son buenos s�olo para patrones muy largos. Estos algoritmos pueden ser �utilesen aplicaciones de biolog��a computacional donde es com�un tener patrones de unos cientos deletras de largo.� El nivel de error, que es razonablemente bajo (digamos, k=m � 1=2, y normalmente k=m �1=3). Esto es porque, en ambientes de recuperaci�on de texto, permitir m�as errores retornar�auna gran parte de la base de datos, lo que hace que la consulta sea in�util por su baja precisi�on.� El alfabeto, que no es demasiado peque~no y no es aleatorio. En contraste, el alfabeto puedeser tan peque~no como cuatro s��mbolos en ADN y mucho m�as aleatorio. Muchos algoritmosnecesitan tener un alfabeto su�cientemente grande y algunos tratan de enfocar el problemade la no uniformidad. v

Resultados ObtenidosEsta tesis se desarroll�o entre 1995 y 1998. Su objetivo fue el desarrollo y an�alisis de nuevos algoritmospara tratar el problema bajo diversas condiciones, as�� como una mejor comprensi�on del problemamismo y su comportamiento estad��stico. Aunque nuestros resultados son v�alidos en muchas �areas,centramos nuestra atenci�on en la b�usqueda en texto t��pica de las aplicaciones de recuperaci�onde informaci�on. Creemos que, en conjunto, este trabajo constituye una contribuci�on valiosa aldesarrollo y comprensi�on del problema de b�usqueda aproximada en texto.Hemos dividido la presentaci�on en dos partes, adem�as de una parte general.Parte GeneralEn esta parte se presentan los cap��tulos introductorios y algunos resultados aplicados en toda latesis.� En el Cap��tulo 2 se explican todos los conceptos b�asicos necesarios para leer la tesis.� En el Cap��tulo 3 se cubre el trabajo relacionado y se pone en contexto nuestra contribuci�on.� En el Cap��tulo 4 se presentan nuestros primeros resultados. Se obtienen cotas muy precisaspara la probabilidad de que un patr�on aleatorio calce en una posici�on dada de un textoaleatorio con una cantidad dada de errores. Este an�alisis te�orico se con�rma y se precisamediante una extensa validaci�on experimental. Este resultado no s�olo es esencial para analizarnuestros nuevos algoritmos, sino que tambi�en se usa para mejorar el an�alisis de algoritmos yaexistentes.B�usqueda SecuencialLa primera parte de la tesis trata con b�usqueda aproximada secuencial. Esta es el �area donde se hahecho mayor progreso desde los a~nos sesenta y existe una cantidad de algoritmos competitivos. Lab�usqueda secuencial es interesante no s�olo porque en muchos casos no hay tiempo o espacio parapreprocesar el texto, sino tambi�en porque es parte fundamental de las t�ecnicas de indexaci�on.Destacamos a continuaci�on nuestros mayores logros en este aspecto y los cap��tulos donde sepresentan. Este trabajo se ha publicado en [BYN96b, BYN96a, BYN97b, Nav97a, Nav97b, BYN98d,BYN98c, NBY98b, NBY98d, NR98b] y hay otros enviados para publicaci�on (esto incluye el materialdel Cap��tulo 2).� Desarrollamos en el Cap��tulo 5 un nuevo algoritmo para b�usqueda aproximada. Este combinael paralelismo de bits con t�ecnicas de �ltrado (conceptos que se explican en la tesis). Dado queel uso de paralelismo de bits limita la longitud de los patrones a usar, desarrollamos variosm�etodos de partici�on del problema que combinamos en la forma �optima (usando adem�asalgunas t�ecnicas desarrolladas en el Cap��tulo 4). El algoritmo �nal resulta ser el m�as r�apidoque se conoce para varios rangos interesantes de los par�ametros, incluyendo patrones cortos yniveles de error bajos. M�as a�un, se puede generalizar para permitir varios tipos de patronesextendidos. El dise~no del algoritmo est�a inextricablemente unido a su an�alisis, siendo elan�alisis (y por ende los resultados del punto previo) una parte importante de su dise~no.vi

� Como un subproducto del punto anterior, rescatamos en el Cap��tulo 6 un algoritmo que hab��arecibido poca atenci�on antes de esta tesis. El algoritmo se llama \partici�on en b�usquedaexacta", dado que se basa en una b�usqueda multipatr�on exacta. Con una implementaci�oninteligente y la inclusi�on de t�ecnicas subyacentes m�as so�sticadas, se convierte en el algoritmom�as r�apido que se conoce para niveles de error y longitudes de patr�on bajos y moderados.M�as a�un, usando una t�ecnica diferente de b�usqueda multipatr�on se puede obtener la mismae�ciencia y ser capaz de buscar algunos patrones extendidos.� Tambi�en en el Cap��tulo 6 desarrollamos una t�ecnica generalizada de aut�omata de su�jos quepermite mejorar el tiempo de b�usqueda para muchos algoritmos, y la usamos en nuestroalgoritmo de paralelismo de bits. El resultado mejora al algoritmo original en algunas �areasdel problema (especialmente para ADN).� Mejoramos (Cap��tulo 6) la implementaci�on y analizamos otros dos algoritmos que estabanparcialmente desarrollados antes de esta tesis. El primero es un �ltro basado en contarlos caracteres que calzan, para el cual damos el primer an�alisis te�orico de caso promedio.El segundo es un aut�omata determin��stico constru��do parcialmente que busca el patr�onpermitiendo errores, cuyo crecimiento analizamos emp��ricamente.� Abordamos en el Cap��tulo 7 el problema de b�usqueda aproximada multipatr�on, que consisteen tener un n�umero de patrones para buscar al mismo tiempo. Esto tiene inter�es, por ejemplo,en aplicaciones ortogr�a�cas (ej. buscar todo el diccionario en el texto, encontrando laspalabras incorrectas y sus versiones correctas m�as parecidas), en sistemas de recuperaci�onde informaci�on (ej. expandir la b�usqueda usando un tesauro o sin�onimos para buscar todaslas alternativas permitiendo errores porque el texto contiene errores) y en aplicaciones deb�usqueda en batch (ej. buscar de una s�ola vez todas las consultas acumuladas).El �unico trabajo previo permit��a buscar miles de patrones en paralelo con s�olo un error.Nosotros adaptamos nuestros algoritmos de paralelismo de bits, de partici�on en b�usquedaexacta y de conteo al caso de m�ultiples patrones. Obtuvimos los algoritmos m�as r�apidos entodos los casos cuando el n�umero de patrones no es muy alto (digamos, menos de 100) o sepermite m�as de un error. Adem�as, analizamos y comparamos experimentalmente todos losalgoritmos.� Todos nuestros algoritmos, as�� como los mejores algoritmos anteriores de los que estamosenterados, fueron implementados (u obtuvimos las implementaciones de sus autores) yexperimentalmente probados para varios rangos interesantes de los par�ametros del problema.Tambi�en hemos obtenido nuevos resultados para diversas variantes del problema de b�usquedaaproximada [Nav98a, Nav98b, BYN98c, NBY98a, NR98b, NR98c, MNZBY98b, MNZBY98a]. Estasvariantes incluyen b�usqueda aproximada en texto multidimensional, en texto no lineal (hipertexto),en texto comprimido y usando la distancia de Hamming. Dado que estos resultados relacionadosno calzan bien con el contenido general de esta tesis, hemos decidido no incluirlos.B�usqueda IndexadaLa segunda parte de esta tesis aborda el problema de construir ��ndices (es decir, estructuras dedatos sobre el texto) que mejoren las b�usquedas posteriores de patrones permitiendo errores. Esta�area estaba (y est�a) bastante poco explorada. Dise~nar un buen ��ndice para b�usqueda aproximadaes tan dif��cil que se lo considera uno de los grandes problemas abiertos de esta �area. Los ��ndicesvii

existentes ocupan mucho espacio en comparaci�on con el texto (es com�un que ocupen 10 �o 20 vecesel tama~no del texto) y dan poca o ninguna garant��a de su desempe~no. A estos ��ndices generales losllamamos \de recuperaci�on de secuencias".Por otro lado, los ��ndices especializados en lenguaje natural han tenido m�as �exito. Son b�asicamente��ndices invertidos que se basan fuertemente en el vocabulario del texto y son capaces de recuperar�unicamente palabras completas que calzan con el patr�on (por ejemplo si el error es la inserci�on deun espacio en el medio de la palabra, el ��ndice no es capaz de recuperarlo). A estos ��ndices losllamamos \de recuperaci�on de palabras". Los podemos subdividir en los que conocen la posici�onexacta en el texto de todas las palabras (\��ndices de inversi�on completa") y los que reducen losrequerimientos de espacio dividiendo el texto en bloques y apuntando a los bloques en vez de a lasposiciones exactas (\��ndices de direccionamiento a bloques").Nosotros obtuvimos t�ecnicas nuevas de indexaci�on y b�usqueda, y nuevos resultados anal��ticos sobrevarias de ellas. Este trabajo se ha publicado en [BYNST97, BYN97a, ANZ97, BYN97c, BYN98b,NBY98c, BYN98a] y hay otros enviados para su publicaci�on. Nuestros principales resultados a esterespecto son los siguientes.� Consideramos primero los ��ndices de inversi�on completa, en el Cap��tulo 8. En este casoprobamos que para la mayor��a de las consultas razonables (es decir, las que tienen precisi�onrazonablemente alta), el tiempo de b�usqueda en estos ��ndices es sublineal en el tama~no deltexto, siendo cercano a la ra��z cuadrada del tama~no del texto.� En el mismo cap��tulo probamos anal��ticamente que los ��ndices que recuperan palabrasy que direccionan bloques pueden ser asint�oticamente sublineales en su tama~no (conrespecto al texto) y en su tiempo para responder una consulta de b�usqueda aproximada.Encontramos la expresi�on para el tama~no del bloque que consigue este resultado y veri�camosexperimentalmente estos resultados te�oricos. Esto constituye un excelente caso a favor de estaclase de ��ndices.� Tambi�en en el Cap��tulo 8 mejoramos la b�usqueda en el vocabulario de todos los ��ndices querecuperan palabras. En el trabajo previo el vocabulario del texto se recorre con un algoritmosecuencial. Nosotros le damos al vocabulario la estructura de un espacio m�etrico y comparamoslas diferentes estructuras para buscar en ese espacio. El resultado �nal es la reducci�on deltiempo de b�usqueda en el vocabulario en hasta 60% para el caso de un error.� Terminamos el Cap��tulo 8 mejorando los algoritmos existentes de b�usqueda en los bloquespara ��ndices de recuperaci�on de palabras que direccionan bloques, haci�endolos hasta cincoveces m�as r�apidos. Estas mejoras tienen tambi�en aplicaci�on en esquemas de compresi�on detexto para lenguaje natural. Estos esquemas de compresi�on permiten buscar un patr�on enun texto comprimido permitiendo errores y sin descomprimir, que es un problema abierto en[ABF96].� En el Cap��tulo 9 proponemos y evaluamos experimentalmente un nuevo esquema de indexaci�onpara recuperaci�on de secuencias, basado en tomar muestras del texto. Esta es una variantede otro ��ndice propuesto antes de esta tesis, y se puede ver como una versi�on indexada delalgoritmo secuencial llamado \partici�on en b�usqueda exacta". En comparaci�on a ��ndicesanteriores, el nuevo necesita m�as espacio pero es m�as tolerante a los errores. En comparaci�ona la mayor��a de los otros ��ndices, necesita mucho menos espacio. Esto lo convierte en unaalternativa pr�actica para la b�usqueda en texto t��pica.viii

� Tambi�en en el Cap��tulo 9 adaptamos un ��ndice de recuperaci�on de secuencias que exist��apreviamente. Este ��ndice simula el recorrido secuencial sobre el texto en una estructura dedatos que elimina las repeticiones del texto. Usamos nuestro algoritmo de paralelismo debits como el buscador secuencial. Tambi�en desarrollamos un nuevo algoritmo sobre la mismaestructura de datos, basado en las t�ecnicas de partici�on del patr�on, es decir buscamos partesdel patr�on con menos errores y combinamos los resultados. Analizamos el desempe~no del��ndice resultante y encontramos experimentalmente que supera largamente a todos los otros.Proponemos como trabajo futuro simularlo sobre un ��ndice de muestras de texto para reducirsus requerimientos de espacio.� Terminamos ese cap��tulo comparando experimentalmente nuestros nuevos esquemas deindexaci�on contra los que existen actualmente.Desde una perspectiva global, creemos que esta tesis hace una contribuci�on valiosa al �area.Primero, el comportamiento probabil��stico del problema se entiende mucho mejor hoy, junto conel comportamiento esperado de los algoritmos secuenciales e indexados que dependen de esasprobabilidades. Segundo, hemos introducido varias ideas algor��tmicas nuevas y fuertes que no s�olohan sido fruct��feras para nosotros, sino que tambi�en pueden ser explotadas en el futuro tanto pornosotros mismos como por otros investigadores. Tercero, usando esas ideas novedosas y aplicandoy combinando resultados existentes y t�ecnicas pr�acticas inteligentemente, hemos obtenido nuevosalgoritmos de b�usqueda e indexaci�on que son actualmente los m�as r�apidos en una amplia gamade par�ametros del problema, especialmente en las �areas de b�usqueda en texto t��pica. Una de laslecciones m�as b�asicas aprendidas es que teor��a y pr�actica deben ir juntas si se quiere conseguirlos mejores resultados: necesitamos nuevas ideas pero tambi�en simplicidad, necesitamos buenosalgoritmos pero tambi�en implementaciones astutas, necesitamos resultados anal��ticos pero tambi�enexperimentos.El Futuro y Problemas AbiertosA lo largo de la tesis se mencionan varias direcciones de trabajo futuras, que recopilamos aqu�� (ellector interesado encontrar�a m�as detalles en la tesis).� A pesar de que nuestro an�alisis para la probabilidad de una ocurrencia aproximada fuesu�cientemente preciso para nuestros prop�ositos, un an�alisis m�as exacto (y que siga siendo�util) ser��a interesante.� Estudiamos en profundidad el rango de par�ametros t��picos de la b�usqueda en texto, perotambi�en son interesantes otros casos casos que tienen aplicaciones en otras �areas, tales comoalfabetos peque~nos o patrones muy largos.� Creemos que a�un hay espacio para mejoras en las t�ecnicas que tratan de saltar caracteres enla b�usqueda aproximada. Hemos presentado algunos algoritmos nuevos y tal vez haya otrosa�un esperando.� Para recuperaci�on de informaci�on es interesante trabajar m�as en patrones extendidos yexpresiones regulares combinadas con b�usqueda aproximada. Creemos que todav��a no seha explotado totalmente el poder del paralelismo de bits.ix

� Tambi�en es de inter�es trabajar con funciones de distancia m�as complejas. Por ejemplo, pocostrabajos permiten transposiciones, a pesar de que son extremadamente frecuentes como erroresde tipeo. Bajo la distancia de edici�on se necesitan dos errores para simular una transposici�on.� Mejorar el algoritmo de partici�on en b�usqueda exacta para lenguaje natural podr��a resultaren mejoras pr�acticas interesantes. Por ejemplo, a�un tenemos que estudiar m�as en detalle lafunci�on de costo a minimizar cuando optimizamos la partici�on.� Ser��a de inter�es te�orico estudiar anal��tica o emp��ricamente el crecimiento del AFD de b�usquedaaproximada, y de cierto inter�es pr�actico estudiar su comportamiento con memoria limitada.� Aun es necesario descubrir mejores t�ecnicas para manejar m�ultiples patrones. Con respectoa nuestras t�ecnicas, a�un necesitamos estudiar mejores heur��sticas para agrupar y alinearsubpatrones.� Podemos a�un optimizar m�as nuestros algoritmos mejorados para ��ndices que recuperanpalabras, buscando mejores estructuras para espacios m�etricos para el vocabulario o haciendouna b�usqueda multipatr�on distinta para cada bloque, con s�olo las palabras que existen en esebloque.� Es interesante unir ��ndices que direccionan palabras con t�ecnicas de compresi�on, que reducendr�asticamente los requerimientos de espacio y adem�as tienen mejores tiempos de b�usqueda.� El no permitir errores que involucren separadores es el punto d�ebil de los ��ndices que recuperanpalabras. Planeamos atacar ese punto implementando la partici�on en b�usqueda exacta sobreun ��ndice de recuperaci�on de palabras.� Nuestro ��ndice basado en substrings del texto se puede mejorar de varias formas, la m�asinmediata de las cuales es incluir veri�caci�on jer�arquica. Otras alternativas, tales comoparticionar en m�as de k+1 pedazos o intersectar varias particiones distintas, deber��an tambi�enestudiarse.� La idea de usar partici�on del patr�on sobre ��ndices de �arboles de su�jos parece muy promisoriay merece ser estudiada mejor, para entender exactamente c�omo funciona el proceso y cu�al es elmejor esquema de partici�on. Tambi�en en este caso habr��a que agregar veri�caci�on jer�arquica.Consideraremos ahora las grandes preguntas abiertas para esta �area despu�es de nuestra tesis.Hay varios aspectos interesantes en el futuro de este problema tal como lo prevemos. Unapregunta importante es: >continuar�a siendo la b�usqueda aproximada un problema interesante?Nosotros creemos positivamente que la respuesta es \s��", dado que la mayor��a de sus fuentes noson situaciones de corto plazo. Las se~nales transmitidas por medios f��sicos continuar�an teniendoerrores de transmisi�on (especialmente si el aire se convierte en un medio com�un de comunicaci�on, talcomo lo esperan los gur�us de las comunicaciones sin cables) y el trabajo futuro en reconocimientode voz va indudablemente a gatillar m�as requerimientos para esta �area. El an�alisis de ADN yprote��nas va a ser un �area muy activa de investigaci�on futura hasta donde podemos prever (y tal vezm�as activa que hoy). Aunque los softwares de OCR pueden mejorar en el futuro (<cosa que todosesperamos!), alguien va a tener que tipear los textos la primera vez (en papel o directamente en formaelectr�onica), y la gente va a continuar cometiendo errores de tipeo y ortograf��a (o alternativamentelos softwares de edici�on se ocupar�an de los errores, convirti�endose de todos modos en nuevas �areasde aplicaci�on para nuestro problema). Si consideramos que m�as y m�as gente est�a obteniendo accesox

a la publicaci�on electr�onica (ej. grupos de news, p�aginas Web, etc.), queda claro no s�olo que lasbases de datos textuales van a continuar creciendo, sino tambi�en que al menos una gran proporci�onde ellas ser�a heterog�enea, pobremente organizada y descuidadamente escrita. Buscar permitiendoerrores se convertir�a en la pr�actica est�andar, siendo cada vez m�as importante para hallar la agujaen el pajar de texto disponible. El crecimiento que se espera en las herramientas de tratamientoautom�atico del lenguaje para analizar la sem�antica de los textos ser�a probablemente otra �area deaplicaci�on para b�usqueda aproximada.La otra pregunta es: >hay lugar para nuevos desarrollos o esta �area est�a sobreexplotada con respectoa lo que se puede hacer? Con respecto a b�usqueda secuencial, creemos que ser�a muy dif��cil obtenernuevos resultados. El paralelismo de bits se ha explotado hasta el l��mite, las t�ecnicas de �ltradotrabajan tan poco por car�acter del texto que dif��cilmente se podr��a hacer menos sin perder calces.Creemos que a�un hay lugar para algunas mejoras en las t�ecnicas que saltan caracteres, pero nosigni�car�an un cambio cualitativo. Otra �area a�un abierta es la de nuevas funciones de distancia, talcomo permitir transposiciones o incluso distancias de edici�on m�as complejas, donde hay muchasaplicaciones de biolog��a computacional esperando. Hay tambi�en poco desarrollo en b�usquedamultipatr�on sobre cientos de patrones, que probablemente ser�a un �area activa en el futuro, conaplicaciones a correcci�on de sintaxis y ling�u��stica computacional.Existen tambi�en algunas preguntas te�oricas a�un abiertas, tales como cu�al es la probabilidad exactade un calce, c�omo se comporta la probabilidad de calce en el lenguaje natural o cu�al es la complejidadde peor caso del problema si el espacio es polinomial en m.Otras �areas m�as ex�oticas que no hemos inclu��do en esta tesis ser�an probablemente muy importantesen el futuro. B�usqueda aproximada en texto multidimensional, por ejemplo, se podr��a convertiren un competidor de las t�ecnicas actuales de procesamiento de im�agenes para reconocimientode patrones. Actualmente, esta �area necesita no s�olo mejores algoritmos, sino tambi�en tener encuenta rotaciones y cambios de tama~no (existen desarrollos separados para rotaciones, tama~nos yerrores, pero no se han uni�cado). B�usqueda aproximada en texto comprimido ser�a tambi�en un �areaimportante de desarrollo, si es que la tendencia de unir bases de datos textuales con compresi�on secon�rma. Aunque hay soluciones para un problema restringido (b�usqueda aproximada de palabrasen lenguaje natural), el problema general sigue abierto.Con respecto a b�usqueda indexada, creemos que se convertir�a en el problema estrella de esta �areaen el futuro, no s�olo porque los ��ndices son la �unica respuesta para manejar los gigantescos textosque ser�an comunes en los sistemas de recuperaci�on de informaci�on del futuro, sino tambi�en porsu di�cultad. Cuando las palabras calzan con palabras, el problema est�a bastante bien resuelto ys�olo esperamos mejoras marginales a la t�ecnica general en el futuro (aunque en particular se deberesolver el problema de incorporar separadores). Por otro lado, si insistimos en el problema general,los ��ndices est�an muy inmaduros y hallar una mejora radical ser��a un acontecimiento. Hallar unbuen ��ndice para b�usqueda aproximada irrestricta se considera \El Dorado" de esta �area. Tal vezexista, tal vez no. >Qui�en puede saberlo? Los exploradores somos nosotros...

Approximate Text SearchingbyGonzalo NavarroA Thesis presented to the University of Chilein ful�llment of the thesis requirementto obtain the degree ofPhD. in Computer ScienceAdvisor : Ricardo Baeza-YatesCommittee : Jorge Olivos: Patricio Poblete: Esko Ukkonen(External Professor,Univ. of Helsinki, Finland)This work has been supported in part by Fondecyt (Chile) grants 1-950622 and 1-960881,Fondef (Chile) grant 96-1064 and CYTED VII.13 AMYRI Project.Dept. of Computer Science - University of ChileSantiago - ChileDecember 1998

AbstractThis thesis focuses on the problem of text retrieval allowing errors, also called \approximate" stringmatching. The problem is to �nd a pattern in a text, where the pattern and the text may have\errors". This problem has received a lot of attention in recent years because of its applications inmany areas, such as information retrieval, computational biology and signal processing, to name afew.The aim of this work is the development and analysis of novel algorithms to deal with the problemunder various conditions, as well as a better understanding of the problem itself and its statisticalbehavior. Although our results are valid in many di�erent areas, we focus our attention on typicaltext searching for information retrieval applications. This makes some ranges of values for theparameters of the problem more interesting than others.We have divided this presentation in two parts. The �rst one deals with on-line approximate stringmatching, i.e. when there is no time or space to preprocess the text. These algorithms are the coreof o�-line algorithms as well. On-line searching is the area of the problem where better algorithmsexisted. We have obtained new bounds for the probability of an approximate match of a pattern ina random text, and used these results to analyze many old and new algorithms. We have developednew algorithms for this problem which are currently among the fastest known ones, being even thefastest algorithms for almost all the interesting cases of typical text searching. Finally, we extendedour results to the simultaneous search of multiple patterns, obtaining the best existing algorithmswhen a moderate number of them is sought (less than 100, approximately).The second part of this thesis addresses indexed approximate string matching, i.e. when we areable to build an index for the text beforehand, to speed up the search later. The ultimate index forapproximate string matching is yet to appear and the current development is rather immature, butwe have made progress regarding new algorithms as well as better understanding of the problem.For the restricted case of indices able to retrieve only whole words on natural language text, wehave obtained new analytical results on their asymptotic complexity, which allowed us to developan index that is sublinear in space and query time simultaneously, something that did not existbefore. For this kind of index we also presented improved search algorithms. For general indicesable to �nd any occurrence (not only words), we have developed new indexing schemes which area tradeo� between e�ciency and space requirements. Also, inspired in on-line techniques, we haveproposed a hybrid between existing indexing schemes and obtained very promising results.It is worth to mention that in almost all cases we have complemented the development of thenew algorithms with their worst-case and average-case complexity analysis, as well as a thoroughexperimental validation and comparison against the best previous work we were aware of.As a whole, we believe that this work constitutes a valuable contribution to the development andunderstanding of the problem of approximate text searching.

AcknowledgmentsLazyness is a widespread sin, and I have been guilty of it when I took the �le of the acknowledgmentsof my MSc. thesis (1995), thinking on modifying it for my PhD. thesis. My surprise was that mostof what I was thinking to say was already there, valid in 1995 and valid now, �nishing 1998. I amstill indebted to the same people I was indebted to by that time, and the debt keeps growing. So ifyou, reader, have seen the acknowledgments of my MSc. thesis, this is not a careless copy of it, itis a renowed expression of gratitude.The completion of this thesis does not only mean �nishing the most important and ample work Ihave ever attempted. It also signs the end of a 5 years long stage of my life, an incredibly enjoyabletime of endless curiosity, exciting work, and great satisfactions and rewards. It has been also astage of working in what I like most, with little pressure or interference from other problems orrequirements. Fortunately, nothing makes me think that which follows should be very di�erent.What I have been (and hope to keep) enjoying is a researcher life, no more, no less. This is the onlylife I believe I am able to live.Therefore, I cannot be less than indebted to all the people which made this kind of life a possibilityfor me, and I would like to express my gratitude to their sincere and disinterested help and friendship.I am afraid I will forget some names anyway, and I hope they will forgive such a mistake.First of all, my wife Betina, that left everything to follow me in this adventure. Only she isresponsible of keeping me still living a life outside my o�ce. Without she, I would have �nishedthis thesis in half the time, but my life would be by far less interesting to live.My wife apart, one of the �rst persons I should mention is Jorge Olivos, who knew me at ESLAI,and has been pushing me since then to leave my job and come to Chile, to enjoy serious research.He also made the �rst steps in giving me an opportunity to come, and has been always ready tobring me his friendship and help.I want also to acknowledge Patricio Poblete for his friendship and unconditional support (�nancialand academic, among others), for the stimulating lectures and joint work I enjoyed with him, andlastly, for being the Department's head with a style totally opposite to what such an administrativeposition could make one to expect. His accessibility, exibility and willingness prevented more thanone headache at the critical moments.Ricardo Baeza-Yates, my thesis advisor, deserves a special acknowledgment. This is not only fortrusting me from the �rst time and giving me access to all what he thought I deserved despite mystudent status, but also for having done an excellent job as my thesis advisor (being there whenI needed advise, not intervening when he thought I could manage it) and in general as my guidefrom being a disoriented student that came to Chile with little idea of what to do, to the end of mystudentship and my birth as a new researcher with some idea of what he wants and how far can hego. Not happy with that, he also took care of �nancially supporting my research, helped me in so

many ways that I have forgotten, and has been a permanent, patient and disinterested friend.Along these years I have met new people from outside which became my friends too, and I wantalso to thank them: Nivio Ziviani, Edleno de Moura, Mathieu Ra�not, Edgar Ch�avez, Jes�usVegas, Marcio Drumond Ara�ujo, Jo~ao Paulo Kitajima, Berthier Ribeiro, Erkki Sutinen, Gene Myers,Amihood Amir, Pablo de la Fuente, Esteban Feuerstein, and others that I surely forgot to mention.I would also like to thank all the rest of the people of the Department who made my life easierand more enjoyable, as well as my old friends that are still with me by e-mail and with who Ihave enjoyed a lot: Sergio Servetto, Guillermo Alvarez, Pablo Mart��nez-L�opez, ... and of course myfamily, who is always proud of me, even when I do nothing remarkable. A special note to PabloPalma, a very special person of the kind one encounters a few times in life, which has been anexcellent friend and to whom I also owe a lot.My gratitude to my thesis committee, who took the heavy job of reading the whole thesis, andmade a number of useful comments that improved the work in many ways: Jorge Olivos (again),Patricio Poblete (again) and Esko Ukkonen.There are many other people which I am indebted to for this thesis. Many of them, for instance, sentme working versions of their algorithms, what made the tests a lot easier and, in some sense, morefair: William Chang, Alden Wright, Gene Myers, Erkki Sutinen, Tadao Takaoka, Jorma Tarhio,Robert Muth, Udi Manber and Archie Cobbs. Others have read and made suggestions to improvepapers which later became part of this thesis, such as Gene Myers, Udi Manber, Erkki Sutinen,and of course a lot of anonymous conference and journal referees. Finally, some people have workedwith us in papers related to this thesis, and although I have only included here my original work,they have worked very close to us and are responsible of many improvements: Erkki Sutinen, JormaTarhio, Nivio Ziviani, Marcio Drumond Ara�ujo, Edleno de Moura and Mathieu Ra�not. In Chapter8 I have borrowed some experimental �gures from joint papers (thanks to Nivio and Marcio).Last but not least, FONDECYT (Chile) grants 1-950622 and 1-960881, FONDEF (Chile) grant96-1014, and CYTED VII.13 AMYRI Project, which partially supported this work, are gratefullyacknowledged.

Contents1 Introduction 11.1 History and Motivation . 11.2 The Problem . 41.3 Overview of the Thesis . 51.3.1 General Part . 51.3.2 On-line Searching . 61.3.3 Indexed Searching . 72 Notation and Basic Concepts 92.1 De�nition of the Problem . 102.2 Dynamic Programming Algorithm . 122.3 A Graph Reformulation . 152.4 A Reformulation Based on Automata . 152.5 Filtering Algorithms . 162.6 Bit-Parallelism . 182.7 Su�x Trees and DAWGs . 192.8 Su�x Automata . 212.9 Natural Language and Its Statistics . 212.10 Inverted Files or Inverted Indices . 242.11 Su�x Arrays . 263 Related Work and Our Contributions 293.1 On-line Searching . 293.1.1 Taking Advantage of the Dynamic Programming Matrix 313.1.1.1 Improving the Worst Case . 313.1.1.2 Improving the Average Case . 333.1.2 Searching with a Deterministic Automaton 343.1.3 Filtering . 363.1.3.1 Moderate Patterns . 36

3.1.3.2 Very Long Patterns . 393.1.4 Bit-Parallel Algorithms . 413.1.4.1 Parallelizing Non-deterministic Automata 423.1.4.2 Parallelizing the Dynamic Programming Matrix 433.2 Variants on the On-line Problem . 443.2.1 Extended Patterns and Di�erent Costs . 443.2.2 Multiple Patterns . 453.3 Indexed Searching . 473.3.1 Word-Retrieving Indices . 483.3.2 Simulating Text Traversal . 503.3.2.1 Minimum Redundancy . 503.3.2.2 Depth-First Search . 513.3.3 Filtration Indices . 523.3.3.1 All q-grams on the Text . 533.3.3.2 Sampling the Text . 544 Basic Tools 554.1 Statistics of the Problem . 554.1.1 Probability of Matching . 554.1.1.1 An Upper Bound . 564.1.1.2 A Lower Bound . 584.1.1.3 Experimental Veri�cation . 584.1.2 Active Columns . 594.2 Partitioning Lemmas . 614.3 Hierarchical Veri�cation . 624.3.1 Pattern Splitting . 624.3.2 Superimposed Searching . 65I On-line Searching 675 A Bit-Parallel Algorithm 705.1 A New Parallelization Technique . 705.2 A Linear Algorithm for Small Patterns . 725.2.1 A Simple Filter . 755.2.2 The Code . 755.3 Handling Extended Patterns . 755.4 Partitioning Large Automata . 77

5.5 Partitioning the Pattern . 795.6 Superimposing the Subpatterns . 805.7 Analysis and Optimization . 815.7.1 The Simple Algorithm . 825.7.2 Automaton Partitioning . 825.7.2.1 Search Cost . 825.7.2.2 Practical Tuning . 835.7.2.3 Improving Register Usage . 855.7.3 Pattern Partitioning . 875.7.3.1 Search Cost . 875.7.3.2 Optimal Selection for j . 885.7.4 Superimposition . 895.7.4.1 Optimizing the Amount of Superimposition 895.7.4.2 Optimal Grouping and Aligning . 915.8 Combining All the Techniques . 915.8.1 A Theoretical Approach . 925.8.2 A Practical Heuristic and a Searching Software 925.9 Experimental Comparison . 936 Filtering and Automata Algorithms 986.1 Reduction to Exact Search . 986.1.1 The Original Algorithm . 986.1.2 Applying Hierarchical Veri�cation . 996.1.3 Optimizing the Partition . 1006.1.4 Experimental Comparison . 1016.1.5 Extensions . 1026.2 A Counting Filter . 1046.2.1 A Simple Counting Filter . 1066.2.2 Analysis . 1076.2.2.1 Exact Analysis . 1086.2.2.2 A Simpler Formula . 1096.2.3 A Sampling Technique . 1116.2.4 Experiments . 1116.2.4.1 Maximum Error Ratio . 1116.2.4.2 Comparison among Algorithms . 1126.3 A Su�x Automaton Approach . 1136.3.1 Adapting the NFA . 113

6.3.2 The Search Algorithm . 1146.3.3 Analysis . 1156.3.4 Experimental Results . 1166.4 A Partial Deterministic Automaton . 1166.4.1 Lazy Automata . 1186.4.2 The Algorithm . 1186.4.3 Analysis . 1206.4.4 Experiments . 1216.4.4.1 Automaton Growth . 1216.4.4.2 Comparison Against Other Algorithms 1236.4.5 Working with Limited Memory . 1236.4.5.1 Victim Selection . 1246.4.5.2 Victim Replacement . 1247 Multiple Patterns 1257.1 Superimposed Automata . 1257.1.1 Handling Longer Patterns . 1267.2 Partitioning into Exact Searching . 1277.3 A Counting Filter . 1277.4 Analysis . 1307.4.1 Superimposed Automata . 1317.4.2 Partitioning into Exact Searching . 1337.4.3 Counting . 1347.5 Experimental Results . 134II Indexed Searching 1448 Word-Retrieving Indices 1468.1 Vocabulary Statistics . 1468.1.1 Combining Heaps' and Zipf's Laws . 1468.1.2 Vocabulary Matching . 1478.1.3 Experiments . 1488.2 Full Inverted Indices . 1498.2.1 Retrieval Times . 1498.2.2 Experimental Results . 1518.2.3 Di�erential Pointers . 1568.3 Block Addressing Inverted Indices . 156

8.3.1 Average Space-Time Trade-o�s . 1578.3.1.1 Query Time Complexity . 1588.3.1.2 Space Complexity . 1588.3.1.3 Combined Sublinearity . 1608.3.2 Analyzing the Web . 1618.3.3 Experimental Validation . 1648.3.3.1 Fixed Block Size . 1648.3.3.2 Fixed Number of Blocks . 1658.3.3.3 Sublinear Space and Time . 1668.4 Improving the Search Algorithms . 1668.4.1 Vocabulary Search . 1678.4.1.1 Searching in General Metric Spaces 1678.4.1.2 The Vocabulary as a Metric Space 1698.4.1.3 Experimental Results . 1708.4.2 Block Search . 1739 Sequence-Retrieving Indices 1769.1 An Index Based on Sampling . 1769.1.1 Indexing Text Substrings . 1769.1.2 Analysis . 1789.1.2.1 Building the Index . 1789.1.2.2 Index Space . 1799.1.2.3 Retrieval Time . 1799.1.3 Experiments . 1809.2 An Index Based on Su�x Trees . 1859.2.1 Using the Bit-parallel Automaton . 1859.2.2 Analysis . 1869.2.3 A New Algorithm Based on Pattern Partitioning 1899.3 Experimental Results . 19110 Conclusions 19710.1 Results Obtained . 19710.2 Future Work . 19810.3 Open Questions . 199Bibliography 201

List of Figures2.1 Dynamic programming to compute an edit distance 142.2 Dynamic programming to search a pattern allowing errors 142.3 Filling styles for the dynamic programming matrix 152.4 Graph-based algorithm to compute an edit distance. 162.5 An NFA to search allowing errors . 172.6 An NFA for exact searching . 182.7 A su�x tree . 202.8 A DAWG and a su�x automaton . 202.9 A non-deterministic su�x automaton . 212.10 An inverted �le . 242.11 A block-addressing index . 252.12 The su�xes of a text . 272.13 The su�x array for the sample text. 273.1 Taxonomy of on-line algorithms . 303.2 On-line algorithms based on dynamic programming 323.3 On-line algorithms based on automata . 343.4 On-line �ltering algorithms . 373.5 On-line bit-parallel algorithms . 413.6 Algorithms for multipattern search . 463.7 Taxonomy of indexed algorithms . 473.8 Word retrieving indices . 483.9 Indices that simulate text traversal . 503.10 Filtration indices . 524.1 Upper bound for the probability of matching . 574.2 Theoretical and practical bounds for � . 594.3 Experiments on matching probability . 604.4 Experiments on the last active column . 61

4.5 The partitioning lemma for k + 1 pieces . 614.6 The hierarchical veri�cation method for split patterns 634.7 The hierarchical veri�cation method for superimposed patterns 65I.1 Map of the best on-line algorithms . 68I.2 Map of the best on-line multipattern algorithms . 695.1 Our representation of the NFA . 715.2 Bit encoding of the NFA . 735.3 Algorithm to search for a short pattern . 765.4 A 2�3 partitioned automaton where `c = 3; `r = 2; I = 2; J = 3. We selected a cell(bold edges) and shaded all the nodes of other cells a�ected by it. The bold-edgedcell must communicate with those neighbors that own shaded nodes. 785.5 Active diagonals . 785.6 Algorithm for pattern partitioning . 805.7 An NFA to search superimposed automata . 815.8 Comparison of bit-parallel NFA algorithms. 825.9 Converting active columns to active diagonals . 835.10 Vertical versus minimal rows partitioning . 855.11 Partitioned automaton versus dynamic programming 865.12 E�ect of better register usage on partitioned automata 875.13 E�ect of hierarchical veri�cation . 895.14 The e�ect of superimposition . 915.15 The simpli�ed complexity of our algorithm. 925.16 Experimental results for random text . 955.17 Experimental results for English text . 965.18 Experiments for long patterns . 976.1 E�ect of hierarchical veri�cation . 1006.2 Optimizing the pattern partition . 1016.3 E�ect of splitting optimization . 1026.4 Comparison against other algorithms . 1036.5 Experiments for long patterns . 1046.6 Alternatives to the Sunday algorithm for multipattern search 1056.7 An example of the counting �lter . 1076.8 The code of the �ltering algorithm . 1076.9 Maximum level of usefulness of our algorithm . 1126.10 Di�erent steps for the algorithm . 113

6.11 The NFA converted into a su�x automaton . 1146.12 Experimental comparison . 1176.13 The partial DFA algorithm . 1196.14 Number of full and partial DFA states . 1226.15 Coe�cients of curve �tting . 1237.1 The bit-parallel counters . 1287.2 The multipattern counting �lter . 1297.3 The areas where each algorithm is better . 1317.4 Behavior of superimposed automata . 1327.5 Comparison of sequential and superimposed automata for m = 9 1357.6 Ratio between parallel and sequential automata algorithms for m = 9 1367.7 Comparison of sequential and superimposed automata algorithms for m = 30 1377.8 Ratio between parallel and sequential algorithms for m = 30 1397.9 Comparison among algorithms for m = 9 and increasing r 1407.10 Comparison among algorithms for m = 9 and increasing k 1417.11 Comparison among algorithms for m = 30 and increasing r 1427.12 Comparison among algorithms for m = 30 and increasing k 1438.1 Vocabulary tests for the wsj collection . 1488.2 Length of the shortest list . 1528.3 Retrieval times as a function of the number of words 1538.4 Retrieval times as a function of the number of errors allowed 1548.5 Retrieval times as a function of the text size . 1558.6 The block-addressing indexing scheme . 1578.7 Value of � as the text grows . 1598.8 Sublinear time and space combinations . 1618.9 Ratio between document and block addressing indices 1638.10 Experiments for �xed block size . 1658.11 Experiments for �xed number of blocks . 1658.12 Experiments for �xed on the wsj collection . 1668.13 Experiments for �xed on the ziff collection . 1678.14 Metric space for the vocabulary . 1698.15 Experimental results for metric data structures . 1718.16 Vocabulary search with one error . 1729.1 The indexing scheme . 1779.2 The search process . 177

9.3 Experimental results to build the index . 1819.4 Percentage of traversed text using the index . 1829.5 Query time using the index versus not using it . 1839.6 E�ect of the splitting optimization technique . 1849.7 Analysis of su�x tree search . 1889.8 Space-time trade-o�s on sequence-retrieving indices 196

List of Tables2.1 Variables used . 107.1 Complexity, optimality and limit of applicability for the di�erent algorithms. 1308.1 Least squares �tting for the retrieval times . 1528.2 Least squares �tting of the complexities . 1738.3 Comparison against Glimpse . 1759.1 Times to build the indices and their space overhead 1929.2 Query times for short patterns . 1939.3 Query times for moderate-length patterns . 194

Chapter 1IntroductionThis thesis focuses on the problem of text retrieval allowing errors, also called approximate stringmatching. The problem is to �nd a pattern in a text where the pattern and the text may have\errors". We �rst give some historical background and motivation for this problem, then de�ne itprecisely, and �nally survey what are our contributions.1.1 History and MotivationThe �rst references to this problem we could trace are from the sixties and seventies, where theproblem appeared in a number of di�erent areas. In those times, the main motivation for this kindof search came from the �elds of computational biology, signal processing and text processing. We�rst consider the alternative �elds and later concentrate on text.DNA and protein sequences can be seen as long texts over speci�c alphabets (e.g. fA,C,G,Tg inDNA). Those sequences represent the genetic code of living beings. Searching speci�c sequencesover those texts appeared as a fundamental operation for problems such as looking for given fea-tures in DNA chains, or determining how di�erent two genetic sequences were. This was modeledas searching for given \patterns" in a \text". However, exact searching was of no use for this appli-cation, since the patterns rarely matched the text exactly. The genetic sequences of two members ofthe same species are not identical, they are just very similar. Moreover, establishing how di�erenttwo sequences were (e.g. to determine how far in the past did mice and men diverge) needed alsosuch concept of \similarity", as well as an algorithm to compute it.This gave a motivation to \search allowing errors". The errors were those operations that biologistsknew were common to occur in genetic sequences. The \distance" between two sequences was de�nedas the minimum (i.e. more likely) sequence of operations to transform one into the other. Withregard to likelihood, the operations were assigned a \cost", such that the more likely operationswere cheaper. The goal was then to minimize the total cost.As mentioned, another motivation came from the area of signal processing. One of the largest areasdeals with speech recognition, where the general problem is to be able to determine, given an audiosignal, a textual message which is being transmitted. Even simpli�ed problems such as discerninga word from a small set of alternatives is complex, since parts of the the signal may be compressedin time, parts of the speech may not be pronounced, etc. A perfect match is practically impossible.Another problem of this �eld is error correction. The physical transmission of signals is error-prone.1

To ensure correct transmission over a physical channel, it is necessary to be able to recover the correctmessage after a possible modi�cation (error) introduced during the transmission. The probabilityof such errors is obtained from the signal processing theory and used to assign a cost to those errors.In this case we may even not know what we are searching for, we just want a text which is correct(according to the error correcting code used) and closest to the received message. Although thisarea has not developed too much with respect to approximate searching, it has generated the mostimportant measure of similarity, known as the Levenshtein (or edit) distance [Lev65, Lev66].Computational biology has since then evolved and developed a lot, with a special push in thelast years due to the projects that aim to the complete decoding of the DNA and its potentialapplications. Signal processing is also a very active area. Multimedia interfaces put a pressure onnon-written communication. Strong error correcting codes are also sought given the current interestin wireless networks. Of course the problems that appear in these areas related to approximatesearching are not only of the kind we have presented. For instance, one may look for an unknownpattern, of which only some properties are known. Even the simple problem of a known pattern isbelieved to be NP-complete under some distance functions (e.g. sorting by reversals [KS95, PW95]).We refer the reader interested in more information on the birth of this area to [SK83]. In particular,good references for the applications of approximate pattern matching for computational biology are[Wat95, BSSU74, WL83, GK82, KG82], and for signal processing are [DM79, Lev65, Vin68, LS97].Nowadays, a number of new applications for approximate string matching have appeared. Therapidly evolving �eld of multimedia databases needs algorithms to search a pattern in a physicalsignal (not only audio), where it is practically impossible to �nd it exactly. The number of appli-cations for this problem grows every day. We have found solutions to the most diverse problemsbased on approximate string matching, for instance handwriting recognition, virus and intrusiondetection, image compression, data mining, pattern recognition and automated video editing, toname a few. Many more applications are mentioned in [SK83]. Moreover, it is not necessary to gothat far, since simple tools of everyday use such as the ability to �nd the di�erence between two�les1 make heavy use of it.Especially interesting for this thesis is the case of text searching. The problem of correcting mis-spelled words in written text is rather old, perhaps the oldest potential application for approximatestring matching. We could �nd references from the twenties [Mas27], and perhaps there are olderones. However, some time elapsed until it was realized [Nes86] that the ad-hoc models (e.g. those ofBlair [Bla60], Damerau [Dam64] and the popular Soundex, described for instance in [Knu73, HD80])were inferior to the approximate string matching approach.Nowadays, the spectrum of problems in this area is much wider. The amount of textual informationavailable worldwide is impressive for its size. The World-Wide-Web (or simply Web) containsmore than one terabyte. Even speci�c text collection sizes are measured in gigabytes. Finding therelevant information on such mass of text becomes a more and more complex matter. Searchingnatural language text is not like searching exact information in, say, a relational database. One isnormally interested in querying a text based on its semantics, which is not easy to extract from thecontent.This problem opens the door to the vast �eld of Information Retrieval (IR, another long standingarea in computer science), whose main goal is to �nd which text documents may be of interest to auser given his/her query. This is a rather heuristic discipline since it is based on maximizing vagueconcepts such as the user satisfaction. We refer the reader interested in IR to [FBY92, BYR98]. On1The Unix "diff" command, for instance. 2

the other hand, we are interested in the algorithmic aspects of the problem. Most of the techniquesused in IR to �nd \relevant" documents are based on text searching algorithms. We aim at obtainingsuch e�cient search algorithms.To make the problem even harder, those text collections are becoming more and more heterogeneous(di�erent languages, for instance) and more error prone. For instance, text collections digitalizedvia optical character recognition (OCR) contain a non-negligible percentage of errors. The samehappens with typing errors. Many text databases are so large and grow so fast that it is impossibleto control their quality (in particular, there is no quality control in the Web). A word which isentered incorrectly in the database will never be retrieved unless the query makes the same mistake.A recent experiment has shown that close to 10% of the interesting documents relevant to a givenquery on the Web are not retrieved because of such errors [Rib97].Notice that not only the text but also the pattern may have errors. This is typical, for instance,on cross-lingual scenarios where a foreign name is sought and is incorrectly spelled in the searchpattern, or ancient texts which use outdated versions of the language. Finally, other text processingapplications such as spelling checkers (which suggest \close" variants to the misspelled word) needalgorithms to search for misspelled words. One may argue that spelling checkers will avoid inthe future the presence of errors in the text, but apart from the fact that those spelling checkersneed anyway from approximate searching tools, we know that it is di�cult to perform automaticcorrection, as we see shortly in an example.Many techniques are used to increase the probability of �nding the relevant text portions. Apartfrom techniques which are typical from IR, such as the use of thesauri, stemming algorithms andothers, it is important to have exibility in the search algorithms themselves. A number of suchnew capabilities are grouped under the generic name of extended patterns, which generalize thebasic exact search query. These generalizations range from disregarding the lower- or upper-case ofletters to searching for regular expressions. Nowadays, there is virtually no text retrieval productthat does not allow some kind of extended search facility.Among all the alternatives o�ered under the name \extended patterns", the one which best copeswith error-prone texts or patterns derives precisely from those well-known problems of approximatestring matching. A simple adaptation has received a lot of attention. It is a cost model calledLevenshtein distance or simply edit distance, denoted ed() [Lev65]. This is de�ned as the minimumnumber of character insertions, deletions and replacements to make two strings equal. For instance,ed("survey","surgery") = 2. See for instance [Nes86], which shows that simple versions of theedit distance function outperform in precision all the other known methods.Let's illustrate our case with a simple example. Consider searching the word "against" in 1.2 Gbof the trec-2 [Har95] collection, which is a standard set of texts used for comparing IR products.Our search allowing one insertion, deletion or substitution showsaagainst[1] abainst[1] agaimst[1] againist[2] agains[7]against againsts[2] againt[23] agaist[5] aganinst[1]aganst[4] aginst[13] agsainst[1] gagainst[1] tgainst[1]all of which, apart from "against" itself, are erroneous variants of "against". We put in squarebrackets the number of times each of the erroneous variants appears. As an example againstautomatic error correction, the word "agains" was in some cases an erroneous variant of "against"and in others of "again", and we had to read the paragraph carefully to select among the two. Ifwe search allowing two errors, we obtain all the previous words and also3

advinst again againg againns[1] againto againts[2]agaisnt[7] aganet aganist[3] agianst[1] agins aginseainst[1] anainsa gains gainse gaint ragainssome of which are still erroneous variants of "against". In particular four di�erent alternatives of aletter transposition appears (that is, converting "ab" to "ba"). This is a typical typing error (in factit may be better to consider it as an atomic error). Other variants are in fact di�erent correct words,such as "again" and "gains", and some others are incorrect variants of these di�erent words, e.g."againg" and "gainse".2Summing up the number of times our word is misspelled yields 78 occurrences (3 of which arein headlines and titles!), against 77,556 correctly written (close to 0.1%). We remark that thiscollection comes from published articles and newspapers, i.e. it is not a carelessly-written material.We tried to do the same in the Web using Altavista (http://www.altavista.com). Since Altavistadoes not allow to perform an approximate search, we content ourselves with asking for all the in-correct variants previously found. The result is 22,610 pages with incorrect spellings (unfortunatelywe cannot check all them!), which represents 0.5% of the total number of pages where "against"was found.In the above example we selected a very common word to illustrate the many misspelled variantsthat may appear. However, the result may be a little deceptive, since we are losing less than 1%of the matches by forgetting about approximate searching. But let's consider a word which ismore di�cult to spell: "Levenshtein". Altavista found 192 pages for us. Now, we tried all thealternatives of deleting one letter and of exchanging one letter with the next one. The result is that87 new pages appeared! (and we checked that they were relevant). That is, we were missing onethird of the relevant pages. We remark that we could not try insertions or replacements becausethe number of exact searches to perform would be huge. This serves also as an illustration ofhow di�cult is to perform approximate searching when there is no provision for it from the textretrieval tool. Moreover, it illustrates the fact that uncommon words have higher probability ofbeing misspelled, and are precisely those uncommon words the most important for IR and mostcommonly queried.1.2 The ProblemWe are interested in approximate string matching in general, although our strongest emphasis is ontext searching. Our problem can be stated as follows:Given a short pattern P of length m, a long text T of length n, and a maximal numberof errors k, �nd all text positions j such that a su�x of T:::j matches P with at mostk errors (insertions, deletions or replacements).Notice that we return the ending positions of matches. This decision is taken because the matchedtext portions may have di�erent lengths. Equivalently we could report the beginnings of matches.It has been traditionally preferred to report ending positions because this simpli�es the searchalgorithms.The use of the Levenshtein distance instead of any other is a consequence of our focus on textsearching applications. Many algorithms we propose, however, can be generalized to allow other2We checked each of these candidates in its textual context to determine which word they corresponded to.4

costs for the edit operations. This includes, in particular, other commonly used cost models suchas the Hamming distance (i.e. allow only replacements, also called substitutions or mismatches),the Longest Common Subsequence distance (i.e. allow only insertions and deletions), the EpisodeDistance (i.e. allowing only insertions), or an extended edit distance that allows letter transpositions.On the other hand, we will be interested in combining this type of search with the typical require-ments of modern information retrieval, such as allowing errors in extended patterns, matching wholewords, etc. Because of the huge text sizes involved, we will be interested in indexing techniquesto ease this search. Finally, we will also be interested in di�erent variants and extensions of thisproblem.Being interested in typical text retrieval applications involves also being more interested in someareas of the parameters than in others (although some of our algorithms work better in other areas).There is no algorithm which is optimal in all cases. The parameters of interest are:� The text size, which is assumed to be huge, in contrast to, e.g., many computational biologyapplications where it may be a few thousands of letters. This, for instance, discourages theuse of memory-resident data structures which are many times the text size.� The pattern length, which is assumed to be reasonably small, typically no longer than 30letters and almost always shorter than 60 letters. This rules out in practice many algorithmswhich are good only for very long patterns. Those algorithms can be of use in computationalbiology applications, where it is common to have a pattern of a few hundreds of letters.� The error level, which is reasonably low (say, k=m � 1=2, and normally k=m � 1=3). This isbecause, in text retrieval environments, allowing more errors will return a large portion of thetext database, which makes the query useless for its low precision.� The alphabet, which is not very small and not random. In contrast, the alphabet can be assmall as four symbols in DNA, and much more random. Many algorithms rely on having asu�ciently large alphabet, and some try to address the problem of non-uniformity.1.3 Overview of the ThesisThis thesis was developed between 1995 and 1998. Its aim is the development and analysis of novelalgorithms to deal with the problem under various conditions, as well as a better understanding ofthe problem itself and its statistical behavior. Although our results apply to many di�erent areas,we focus our attention on typical text searching for information retrieval applications.As a whole, we believe that this work constitutes a valuable contribution to the development andunderstanding of the problem of approximate text searching.We have divided the thesis in two parts: on-line and indexed searching. There is also some generalmaterial in the initial and �nal chapters.1.3.1 General PartThis is composed of introductory chapters, conclusions, and some results which are applied in manyplaces of the thesis.� In Chapter 2 we explain all the basic concepts needed to read the thesis.5

� In Chapter 3 we cover the related work and put our contributions in context.� In Chapter 4 we present our �rst results. We obtain very tight bounds for the probability ofa random pattern matching at a given position in random text with a given number of errors.This theoretical analysis is con�rmed and tightened with extensive experimental validation.This result is not only essential to analyze our new algorithms, but it is also used to improvethe analysis of previous algorithms.� The �nal chapter of the thesis (Chapter 10) presents a perspective view and some insights onthe future of the �eld.1.3.2 On-line SearchingThe �rst part of the thesis deals with on-line approximate string matching. This is the area wheremore progress has been made since the sixties, and a wealth of competitive algorithms exist. On-line searching is of interest not only because in many cases there is no time or space to preprocessthe text, but also because it lies at the heart of most indexing techniques. We point out ourmajor achievements in this part. This work has been published in [BYN96b, BYN96a, BYN97b,Nav97a, Nav97b, BYN98d, BYN98c, NBY98b, NBY98d, NR98b], and there are more submitted(this includes the results of Chapter 4).� We develop in Chapter 5 a new algorithm for approximate string matching. This combines bit-parallelismwith �ltering techniques (to be explained later). As the use of bit-parallelism limitsthe length of the patterns to use, we develop a number of problem partitioning techniquesthat we combine in an optimal way (using also some techniques developed in Chapter 4). The�nal algorithm turns out to be the fastest known algorithm for many interesting ranges ofparameters, including short patterns and low error levels. Moreover, it can be generalized tosupport many extended patterns. The design of this algorithm is inextricably mixed with itsanalysis, being the analysis (and hence the results of the previous point) an important partof its design.� As a subproduct of the previous point, we rescue in Chapter 6 a previous algorithm whichreceived little attention prior to this thesis. The algorithm is called \partitioning into exactsearch", since it is based on multipattern exact searching. With a clever implementation andthe inclusion of more sophisticated subsidiary techniques (developed in Chapter 4), it becomesthe fastest known algorithm for low and moderate error levels and pattern lengths. Moreover,using a di�erent multipattern search technique, almost the same e�ciency is obtained whilebeing able to handle some extended patterns.� Also in Chapter 6, we develop a generalized su�x automaton technique that allows improv-ing the search time for many algorithms, and apply it to our bit-parallel algorithm. Theresult improves over the original algorithm for some ranges of parameters (especially in DNAsearching).� We improve (Chapter 6) the implementation and analyze two other algorithms which werepartially developed prior to this thesis. The �rst one is a �lter based on counting matchingcharacters, for which we give the �rst theoretical average-case analysis. The second one is apartially built deterministic automaton to search the pattern allowing errors, for whose growthwe give the �rst empirical analysis. 6

� We address in Chapter 7 the problem of multipattern approximate searching, which consistsof having a number of patterns to search at the same time. This is of interest, for instance,in spelling applications (e.g. look for the whole dictionary in the text, �nding the incorrectwords and their closest correct spellings), in information retrieval systems (e.g. expand thesearch word using a thesaurus or synonyms and search all them allowing errors because thetext has errors), in batch searching applications (e.g. perform all the accumulated queries atonce), among others.The only previous work allowed searching thousands of patterns in parallel with just one error.We adapt our bit-parallel, partitioning into exact search, and counting algorithms, for the caseof multiple patterns. The result is the fastest algorithms in all cases when either the numberof patterns is not too large (say, less than 100) or more than one error is allowed. We analyzeand experimentally compare all the algorithms.� All our algorithms, as well as the best previous algorithms we are aware of, were implemented(or we obtained the implementations from their authors) and experimentally tested for manyinteresting ranges of the parameters of the problem.We have also obtained new results for di�erent variants of the approximate searching problem[Nav98a, Nav98b, BYN98c, NBY98a, NR98b, NR98c, MNZBY98b, MNZBY98a]. These variantsinclude approximate searching on multi-dimensional text, on non-linear text (hypertext), on com-pressed text, and using the Hamming distance. Because these related results do not �t well withthe overall content of this thesis, we have decided not to include them.1.3.3 Indexed SearchingThe second part addresses the problem of building indices (i.e. data structures on the text) thatimprove later searches of patterns allowing errors. This area was (and is) rather undeveloped. Theproblem of designing a good index for approximate searching is so di�cult that some computerscientists have referred to the problem as the \Holy Grail" of this area. The existing indices arevery large in comparison to the text (10 or 20 times the text size is a common �gure), and givelittle or no guarantee on their performance. We call \sequence-retrieving" those general indices.On the other hand, specialized indices for natural language have been more successful. They arebasically inverted indices, making heavy use of the text vocabulary and being able to retrieve justwhole words that match the pattern (e.g. if the error is the insertion of a space in the middle ofthe word, the index is not able to recover from it). We call \word-retrieving" those indices. We cansubdivide them in those which know the exact text positions of all words (\full inverted indices")and those which reduce space requirements by dividing the text in blocks and point to the blocksinstead of the exact positions (\block-addressing indices").We have obtained new indexing and searching techniques and novel analytical results on some ofthem. This work has been published in [BYNST97, BYN97a, ANZ97, BYN97c, BYN98b, NBY98c,BYN98a], and there are others submitted. Our main achievements in this regard follow.� We consider �rst full-inverted indices in Chapter 8. In this case, we prove that for mostreasonable queries (i.e. those with reasonably high precision), the search time on those indicesis sublinear in the text size, being close to the square root of the text size.� In the same chapter, we prove analytically that word-retrieving block-addressing indices canbe asymptotically sublinear in their size (with respect to the text) and in their time to answer7

approximate search queries. We �nd the expression for the block size that achieves this resultand experimentally verify the theoretical results. This makes an excellent case for this kindof indices.� Also in Chapter 8 we improve the vocabulary search of all word-retrieving indices. In previouswork the vocabulary of the text is sequentially searched with an on-line algorithm. We givethe vocabulary the structure of a metric space and compare di�erent data structures to searchin that space. The �nal result is a reduction of the vocabulary search time in up to 60%.� We �nish Chapter 8 by improving the existing block searching algorithms for word-retrievingblock-addressing indices, making them up to �ve times faster. Those improvements �ndalso application in text compression schemes for natural language texts. Those compressionschemes allow searching a pattern permitting errors in the compressed text without decom-pressing it, which is an open problem in [ABF96].� In Chapter 9 we propose and experimentally evaluate a new sequence-retrieving indexingscheme based on taking text samples. This is a variant of another index proposed prior to thisthesis, and can be seen as an indexed version of the on-line algorithm called \partitioning intoexact search". In comparison to the related previous index, the new one takes more space butit is more tolerant to errors. In comparison to most other indices, it takes much less space.This makes it a practical alternative for text searching.� Also in Chapter 9 we adapt a previously existing sequence-retrieving indexing scheme. Thisindex simulates the on-line text traversal on a data structure that eliminates the repetitionsof the text. We use our bit-parallel algorithm as the on-line searcher. We also develop anew algorithm on the same data structure based on an adaptation of the pattern partitioningtechniques, i.e. searching parts of the pattern with less errors and combining the results. Weanalyze the performance of the resulting index and �nd experimentally that it outperformsby far all the others. We propose for future work to simulate it on an index of text samples,to reduce its space requirements.� We �nish that chapter with a practical comparison among ours and all the other indexingproposals for retrieving sequences.
8

Chapter 2Notation and Basic ConceptsWe collect in this chapter all the important concepts and notations needed to read this thesis.There are no new results in this section. A basic understanding is assumed on design and analysisof algorithms and data structures, basic text algorithms, and formal languages. If this is not thecase we refer the reader to good books in these subjects, such as [AHU74, CLR91, Knu73] (general),[GBY91, CR94] (for text algorithms) and [HU79] (for formal languages).Table 2.1 summarizes the variables used along this thesis. A quick reminder of their meaning andvalues is included. A full explanation can be found throughout this chapter. We do not include thebasic notation about strings and bit masks, which can also be found in this chapter.We specify also some notation regarding time and space complexity. When we say that an algorithmis O(x) time we refer to its worst case (although sometimes we say that explicitly). If the cost is onaverage, we say so explicitly. We also say sometimes that the algorithm is O(x) cost, meaning time.When we refer to space complexity we say so explicitly. The average case analysis normally assumesa random text, where each character is selected uniformly and independently from the alphabet.The pattern is not normally assumed to be random (in some cases we explicitly state more speci�cassumptions on the randomness).It is also convenient to de�ne at this point the machine used for most of the experimental results wepresent along this work. This is the default machine, unless we explicitly say that another machinehas been used. We use a Sun UltraSparc-1 of 167 MHz with 64 Mb of RAM and a 2 Gb local disk.The operating system is Solaris 2.5.1. This machine was not performing other heavy tasks when theexperiments were run. We measured user times (i.e. CPU times), and in some cases system time(i.e. I/O time) or elapsed time. All the experiments were repeated enough times so as to ensure agiven relative error with a given con�dence interval. The con�dence interval is typically 95%, whilethe relative error is 10% except when otherwise indicated.We use two types of text. When we refer to \random text" we mean a text which is randomlygenerated in the sense that each character is uniformly and independently chosen over an alphabetof size �. The search patterns are also generated using the same technique. When, on the otherhand, we mention \English text", we refer to English literary text which is �ltered so that allthe letters are converted to lower-case and all the separators (except end of lines) to space. Thepatterns are chosen from the same text at random positions which start words no shorter than fourletters. This mimics common Information Retrieval scenarios. However, we have obtained the samebehavior on other languages such as Spanish or French. Moreover, the results (except for theirhigher variance) are very similar to those on random text on an alphabet size of 1=p, where p is9

Name Meaning Domain Typical values� Alphabet Finite set� Alphabet size N, � 2 4 or 20 to 64ed() Edit distance function �� � �� ! N Levenshtein distanceT Text �� Natural language or arbitrary textn Text length in letters or words N, > 0 Megabytes or gigabytesP Pattern to search �� Same source as textm Pattern length in letters N, > 0 Up to 30 or 60k Number of allowed errors N, 2 f1::(m� 1)g Up to m=3 or m=2� Error level � = k=m R, 2 (0::1) Up to 1=3 or 1=2w Bits in the computer word N, > 0 32 or 64M Available memory in bytes N, > 0 Few megabytesV Vocabulary size of the text N, > 0 Thousandsb Block size of the indices N, > 0 Few Kbytes� Zipf's constant R, � 1 1.5 to 2.0� Heaps' constant R, 2 (0::1) 0.4 to 0.6q Length of q-grams N, > 0 3 to 5Table 2.1: Main variables used in this thesis.the probability that two random characters of the English text match. The speci�c English textused is, except otherwise stated, a collection of writings of Benjamin Franklin. In other cases weuse texts from the trec-2 collection [Har95], which we simply call \trec" from now on.2.1 De�nition of the ProblemIn the Introduction we have de�ned the problem of approximate string matching as that of �ndingthe text positions that match a pattern with up to k errors. We give now a more formal de�nition.In the discussion that follows, we use s; x; y; z; v;w to represent arbitrary strings, and a; b; c::: torepresent letters. Writing a sequence of strings and/or letters represents their concatenation. Weassume that concepts such as pre�x, su�x and substring are known. For any string s 2 �� wedenote its length as jsj. We also denote si the i-th character of s, for integer i 2 f1::jsjg. We denotesi::j = sisi+1:::sj (which is the empty string if i > j). The empty string is denoted as ".Let � be an alphabet of size j�j = �, which is �nite1.Let T 2 �� be a text of length n = jT j.Let P 2 �� be a pattern of length m = jP j.Let k 2 N be the maximum error allowed.Let d : �� � �� ! N be the distance function.The problem is: given T , P , k and d(), return the set of all the text positions j suchthat there exists i such that d(Ti::j; P) � k.1However, many algorithms can be adapted to in�nite alphabets with an extra O(logm) factor in their cost. Thisis because the pattern can have at most m di�erent letters and all the rest can be considered equal for our purposes.A table of size � would now be replaced by a search structure over at most m+ 1 di�erent letters.10

In most cases, however, the distance functions have a more precise form:The distance d(x; y) between two strings x and y is the cost of the minimum-cost se-quence of operations that transform x into y. The cost of a sequence of operations is thesum of the costs of the individual operations. The cost of an operation is considered apositive real number. If it is not possible to transform x into y we say that d(x; y) =1.If such distance function turns out to be symmetric (i.e. d(x; y) = d(y; x)) and always d(x; y) <1,then d() is a metric, i.e. it satis�es the following axioms:� 8x; d(x; x) = 0� 8x 6= y; d(x; y) > 0� 8x; y; d(x; y) = d(y; x)� 8x; y; z; d(x; z) � d(x; y) + d(y; z)The last property is called \triangular inequality". In particular, in text searching applications theoperations of most interest are:� Insertion: insert a new letter a into x. An insertion operation on the string x = vwconsists in adding a letter a, converting x into x0 = vaw.� Deletion: delete a letter a from x. A deletion operation on the string x = vaw consistsin removing a letter, converting x into x0 = vw.� Replacement or Substitution: replace a letter a in x. A replacement operation on thestring x = vaw consists in replacing a letter for another, converting x into x0 = vbw.� Transposition: swap two adjacent letters a and b in x. A transposition operationon the string x = vabw consists in swapping two adjacent letters, converting x intox0 = vbaw.We are now in position to de�ne the most commonly used distance functions (although there aremany others).� Levenshtein or Edit distance [Lev65]: allows insertions, deletions and replacements,all costing 1. This can be rephrased as \the minimum number of insertions, deletionsand replacements to make two strings equal". In the literature this problem is in manycases called \string matching with k di�erences". The distance is symmetric, and itholds 0 � d(x; y) � max(jxj; jyj).� Hamming distance [SK83]: allows only replacements, which cost 1. In the literaturethis problem is in many cases called \string matching with k mismatches". The distanceis symmetric, and it is �nite whenever jxj = jyj. In this case it holds 0 � d(x; y) � jxj.� Episode distance [DFG+97]: allows only insertions, which cost 1. In the literature thisproblem is in many cases called \episode matching", since it modelizes the case wherea sequence of events is sought, where all them must occur within a short period. Thisdistance is not symmetric, and it may not be possible to convert x into y in this case.Hence, it holds that d(x; y) is either jyj � jxj or 1.11

� Longest Common Subsequence distance [NW70, AG87]: allows only insertions anddeletions, all costing 1. The name of this distance refers to the fact that it measuresthe length of the longest pairing of characters that can be made between both strings,so that the pairings respect the order of the letters. The longer the pairing, the smallerthe distance. The distance is symmetric, and it holds 0 � d(x; y) � jxj+ jyj.In all cases except the episode distance we have a symmetric distance, since there are complementaryoperations. In those cases one can think that the changes can be made over x or y. Insertions onx are the same as deletions in y and vice versa, and replacements can be made in any of the twostrings to match the other.This thesis is most concerned with the Levenshtein distance [Lev65, Lev66] which we also call byits alternative name \edit distance" and denote ed(). This is the most interesting distance for textretrieval applications. Although transpositions are of interest (especially in case of typing errors),there are few algorithms to deal with them (see, e.g. [LW75, WB74, Ukk85a]). However, we willconsider them at some points of this thesis (notice that a transposition can be simulated with aninsertion plus a deletion, but the cost is di�erent). We also will point out when our work can beextended to have di�erent costs of the operations (which is of special interest in computationalbiology), including the extreme case of not allowing some operations. This includes the otherdistances mentioned.Other variants of the problem will also be of interest. For instance, in natural language text wemay be interested in �nding text words which match the pattern with errors, instead of �nding anytext segment. Most algorithms are easily adapted to this requirement.Finally, we point out some notations and conditions that hold for text retrieval applications.� The problem is interesting only for k > 0, otherwise we are in the problem of exactstring matching, which is very di�erent from the subject of this thesis. Some of ouralgorithms, however, behave competitively when faced to this case.� If the Hamming or edit distance are used, then the problem makes sense for k < m,since if we can performm operations we can make the pattern match at any text positionby means of m replacements.� Under the Hamming or edit distance, we call � = k=m the error level, which giventhe above conditions satis�es 0 < � < 1. This value gives an idea of the \error ratio"allowed in the match (hence, 100� is the percentage of error allowed).� In text retrieval we are normally interested in obtaining the maximum e�ciencyfor: very large n, reasonably small m (typically m � 30, and almost always m � 60),reasonably low � (typically � � 1=3 and almost always � < 1=2), and reasonably largealphabets (typically larger than 20, although not necessarily random). However, someof our algorithms turn out to be e�cient in other cases as well, which makes them ofinterest for other applications.2.2 Dynamic Programming AlgorithmWe present now the �rst algorithm to solve the problem. It has been rediscovered many times in thepast, in di�erent areas, e.g. [NW70, WF74, San72, Sel80] (there are more references in [Ukk85a],and a very good compendium of the area in [SK83]). Although the algorithm is not very e�cient,12

it is one of the most exible ones to adapt to di�erent distance functions. We present the versionthat computes the edit distance. It should be easy for the reader to extrapolate to other cases.We �rst show how to compute the edit distance between two strings x and y. Later, we extend thatalgorithm to search a pattern in a text allowing errors.The algorithm is based on dynamic programming. Imagine that we need to compute ed(x; y). AmatrixC0::jxj;0::jyj is �lled, where Ci;j represents the minimumnumber of operations needed to matchx1::i to y1::j . This is computed as follows2Ci;0 = iC0;j = jCi;j = if (xi = yj) then Ci�1;j�1else 1 +min(Ci�1;j; Ci;j�1; Ci�1;j�1)where at the end Cjxj;jyj = ed(x; y).The rationale of the above formula is as follows. First, Ci;0 and C0;j represent the edit distancebetween a string of length i or j and the empty string. Clearly i (respectively j) deletions areneeded on the long string. For two non-empty strings of length i and j, we assume inductively thatall the edit distances between shorter strings have already been computed, and try to convert x1::iinto y1::j .Consider the last characters xi and yj . If they are equal, then we do not need to consider them andthe conversion proceeds in the best way we can convert x1::i�1 into y1::j�1. On the other hand, ifthey are not equal, we must deal with them in some way. Following the three allowed operations,we can delete xi and convert in the best way x1::i�1 into y1::j , insert yj at the end of x and convertin the best way x1::i into y1::j�1, or replace xi by yj and convert in the best way x1::i�1 into y1::j�1.In all cases, the cost is one plus the cost for the rest of the process (already computed). Notice thatthe insertions in one string are equivalent to deletions in the other.The dynamic programming algorithm must �ll the matrix in such a way that the upper, left, andupper-left neighbors of a cell are computed prior to computing that cell. This is easily achievedby either a row-wise left-to-right traversal or a column-wise top-to-bottom traversal. Figure 2.1illustrates this algorithm to compute ed("survey", "surgery").Therefore, the algorithm isO(jxjjyj) time in the worst and average case. However, the space requiredis only O(min(jxj; jyj). This is because, in the case of a column-wise processing, only the previouscolumn must be stored in order to compute the new one, and therefore we just keep one columnand update it. We can process the matrix row-wise or column-wise so that the space requirementis minimized.On the other hand, the sequences of operations performed to transform x into y can be easilyrecovered from the matrix, simply by proceeding from the cell Cjxj;jyj to the cell C0;0 following thepath (i.e. sequence of operations) that matches the update formula (notice that multiple paths mayexist). In this case, however, we need to store the complete matrix.This matrix has some properties which can be easily proved by induction (see, e.g. [Ukk85a]) andwhich make it possible to design better algorithms. Notice, for instance, that the values of neighborcells di�er in at most one.2This formulation of the problem has been selected because it is simpler to explain for us. A more classicalformulation is Ci;j = min(Ci�1;j+1;Ci;j�1+1; Ci�1;j�1+�(xi; yj)), where �(x; y) is zero if x = y and 1 otherwise. Theformulation we used can be deduced from the more classical one by noticing that Ci�1;j�1 � 1 +min(Ci�1;j ; Ci;j�1).13

s u r g e r y0 1 2 3 4 5 6 7s 1 0 1 2 3 4 5 6u 2 1 0 1 2 3 4 5r 3 2 1 0 1 2 3 4v 4 3 2 1 1 2 3 4e 5 4 3 2 2 1 2 3y 6 5 4 3 3 2 2 2Figure 2.1: The dynamic programming algorithm to compute the edit distance between "survey"and "surgery". The bold entry is the �nal result.We show now how to adapt this algorithm to search a short pattern P in a long text T . Thealgorithm is basically the same, with x = P and y = T (proceeding column-wise so that O(m)space is required). The only di�erence is that we must allow that any text position is the potentialstart of a match. This is achieved by setting C0;j = 0 for all j 2 0::n. That is, the empty patternmatches with zero errors at any text position (because it matches with a text su�x of length zero).The algorithm then initializes its column C0::m with the values Ci = i, and processes the textcharacter by character. At each new text character Tj , its column vector is updated to C 00::m. Theupdate formula is C 0i = if (Pi = Tj) then Ci�1else 1 + min(C 0i�1; Ci; Ci�1)The search time of this algorithm is O(mn) and its space requirement is O(m). This is a sort ofworst case in the analysis of all the algorithms that we consider later. Figure 2.2 exempli�es thisalgorithm applied to search the pattern "survey" in the text "surgery" (a very short text indeed)with at most k = 2 errors. In this case there are 3 occurrences.s u r g e r y0 0 0 0 0 0 0 0s 1 0 1 1 1 1 1 1u 2 1 0 1 2 2 2 2r 3 2 1 0 1 2 2 3v 4 3 2 1 1 2 3 3e 5 4 3 2 2 1 2 3y 6 5 4 3 3 2 2 2Figure 2.2: The dynamic programming algorithm search "survey" in the text "surgery" with twoerrors. Bold entries indicate matching positions.It is easy to adapt this algorithm for the other distance functions mentioned. It is just a matterof not considering the three editing operations. In the case of the episode distance, we must setCi;0 =1. 14

Finally, we point out that although we have presented a column-wise algorithm to �ll the matrix,many other works are based in alternative �lling styles. For instance, we can �ll it row-wise (weneed O(n) space, but it pays in some cases, as we see later), or even by diagonals or \secondary"diagonals. Figure 2.3 illustrates.
������
������
������
������
������
������
������

������
������
������
������
������
������
������

��������

��������
��������

��
��
��
��
��
��
��

��
��
��
��
��
��
��

����������������
����������������
����������������

����������������
����������������
����������������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

By secondary diagonalsBy diagonals

By columns By rowsFigure 2.3: Di�erent possible alternatives to �ll the dynamic programming matrix.2.3 A Graph ReformulationA very powerful reformulation of the problem of computing edit distance converts the problem intoa shortest-path problem in a graph [Ukk85a]. Given the two strings, the dynamic programmingmatrix can be seen as a graph where the nodes are the cells and the edges represent the operations.The weight of the edges correspond to the cost of the operations. There are also edges of zero costwhen the characters match. The problem is then converted into �nding the cheapest path from thenode [0; 0] to the node [jxj; jyj] (and that path spells out the operations to perform). Figure 2.4shows the graph for the example of Figure 2.1.As it can be seen, diagonal arrows represent matches or replacements (with costs 0 or 1, respectively),horizontal arrows represent insertions in x and vertical arrows represent deletions from x. Noticealso that the shortest path (i.e. optimal sequence of edit operations) needs not be unique.Although this graph has (jxj+1)(jyj+1) nodes and therefore the minimum path algorithms are note�cient (they would take O(jxjjyj log(jxjjyj)) using a classical algorithm), this reformulation hasbeen extremely useful, especially because it is very exible to adapt to other types of approximatesearching problems. It is also the basis of useful algorithms and analytical results for the editdistance problem.2.4 A Reformulation Based on AutomataAn alternative and very useful way to consider the problem is to model the search with a non-deterministic automaton (NFA). This automaton (in its deterministic form) was �rst proposed in[Ukk85b], and �rst used in non-deterministic form (although implicitly) in [WM92a]. It is shownexplicitly in [BY91, BY96, BYN96b, BYN98d].Consider the NFA for k = 2 errors under edit distance shown in Figure 2.5. Each row denotesthe number of errors seen. The �rst one 0, the second one 1, and so on. Every column representsmatching the pattern up to a given position. At each iteration, a new text character is read and the15

s r g e r yu

1

1

1

1

1

1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

y

1 1 1 1 1 1 1 1

1 1 1 1 1 1

e

1 1 1 1 1 1 1 1

1 1 1 1 1 1

v

1 1 1 1 1 1 1 1

1 1 1 1 1 1

r

1 1 1 1 1 1 1 1

1 1 1 1 1 1

u

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

s

1 1 1 1 1 1

1

1

1

1

0

1

1

1

1

0

1

1

1

1

0

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

0

I

Figure 2.4: Graph reformulation of the previous edit distance problem. The cheapest path betweenthe node \I" and the �nal node is shown in bold.automaton changes its states. Horizontal arrows represent matching a character, vertical arrowsrepresent insertions into the pattern, solid diagonal arrows represent replacements, and dasheddiagonal arrows represent deletions in the pattern (they are "-transitions). The automaton acceptsa text position as the end of a match with k errors whenever the rightmost state of the (k + 1)-throw is active.It is not hard to see that once a state in the automaton is active, all the states of the same columnand higher rows are active too. Moreover, at a given text character, if we collect the smallest activerows at each column, we obtain the vertical vector of the dynamic programming algorithm [BY96](compare to Figure 2.2).The other types of distances are obtaining by deleting some arrows of the automaton. Di�erentinteger costs for the operations are also modeled by changing the arrows. For instance, if insertionscost 2 instead of 1, we make the vertical arrows to move from rows i to rows i+ 2.This automaton can be simply made deterministic to obtain O(n) worst case search time. How-ever, as we see later, the main problem becomes the construction of the DFA (deterministic �niteautomaton). An alternative solution is based on simulating the NFA instead of converting it intodeterministic.2.5 Filtering AlgorithmsMany algorithms that we will consider and design are based in the concept of �ltering, and thereforeit is useful to de�ne it here.The concept of �ltering is based on the fact that in many cases, the text positions matching apattern with errors contain some parts of the pattern unaltered. For instance, if "survey" is found16

Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

εεεεεε

εεεεεε

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

s u

s

s u

u

v

v

v

r

r

r

e

e

no errors

2 errors

1 error

y

y

y

Σ

e

Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

Figure 2.5: An NFA for approximate string matching of the pattern "survey" with two errors. Theshaded states are those active after reading the text "surgery".in a text position with one error under the edit distance, then either "sur" or "vey" must appearunaltered in the match. This is because a single edit operation cannot alter both halves of thepattern.Most �ltering algorithms take advantage of this fact by searching pieces of the pattern withouterrors. Since the exact searching algorithms can be much faster than approximate searching ones,�ltering algorithms can be very competitive (in fact, they dominate on a large range of parameters).It is important to notice that a �ltering algorithm is normally unable to discover the matching textpositions by itself. Rather, it is used to discard (hopefully large) areas of the text which cannotcontain a match. For instance, in our example, it is necessary that either "sur" or "vey" appearsin an approximate occurrence, but it is not su�cient. Any �ltering algorithmmust be coupled witha process that veri�es all those text positions that could not be discarded by the �lter.Virtually any non-�ltering algorithm can be used for this veri�cation, and in many cases the devel-opers of a �ltering algorithm do not care in looking for the best veri�cation algorithm, they just usethe dynamic programming algorithm. It is important to understand that that selection is normallyindependent. Nonetheless, the veri�cation algorithm must behave well on short texts, because itcan be started in many di�erent text positions to work on small text areas. By careful programmingit is almost always possible to keep the worst-case behavior of the verifying algorithm (i.e. avoidverifying overlapping areas).Finally, the performance of �ltering algorithms is very sensitive to the error level �. Most �lterswork very well on low error levels and very bad in other cases. This is related with the amount oftext that the �lter is able to discard. When evaluating �ltering algorithms, it is important not onlyto consider their time e�ciency but also their tolerance to errors.A term normally used when referring to �lters is \sublinearity". It is said that a �lter is sublinearwhen it does not inspect all the characters of the text (like the Boyer-Moore [BM77] algorithmsfor exact searching, which can be at best O(n=m)). However, no on-line algorithm can be trulysublinear, i.e. o(n). This is only achievable with indexing algorithms.17

2.6 Bit-ParallelismThis is another technique of common use in string matching [BY92]. It was �rst proposed in[BY89, BYG92]. The technique consists in taking advantage of the intrinsic parallelism of the bitoperations inside a computer word. By using cleverly this fact, the number of operations that analgorithm performs can be cut down by a factor of at most w, where w is the number of bits inthe computer word. Since in current architectures w is 32 or 64, the speedup is very signi�cant inpractice (and improves with technological progress). In order to relate the behavior of bit-parallelalgorithms to other works, it is normally assumed that w = �(logn), as dictated by the RAM modelof computation. We prefer, however, to keep w as an independent value. We introduce now somenotation we use for bit-parallel algorithms.� The length of the computer word (in bits) is w.� We denote as b`:::b1 the bits of a mask of length `. This mask is stored somewhereinside the computer word. Since the length w of the computer word is �xed, we arehiding the details on where we store the ` bits inside it. We give such details when theyare relevant.� We use exponentiation to denote bit repetition (e.g. 031 = 0001).�We use C-like syntax for operations on the bits of computer words: \j" is the bitwise-or, \&" is the bitwise-and, \ b " is the bitwise-xor and \�" complements all the bits.The shift-left operation, \<<", moves the bits to the left and enters zeros from theright, i.e. bmbm�1:::b2b1 << r = bm�r:::b2b10r. The shift-right, \>>" moves the bitsin the other direction. Finally, we can perform arithmetic operations on the bits, suchas addition and subtraction, which operates the bits as if they formed a number. Forinstance, b`:::bx10000� 1 = b`:::bx01111.We explain now the �rst bit-parallel algorithm, since it is the basis of much of which follows in thiswork. The algorithm searches a pattern in a text (without errors) by parallelizing the operation of anon-deterministic �nite automaton that looks for the pattern. Figure 2.6 illustrates this automaton(from this point on, we use a pattern with more interesting combinatorial properties than "survey").
b ra a aa b ad rcFigure 2.6: Nondeterministic automaton that searches "abracadabra" exactly.This automaton has m + 1 states, and can be simulated in its non-deterministic form in O(mn)time. The Shift-Or algorithm achieves O(mn=w) worst-case time (i.e. optimal speedup). Noticethat if we convert the non-deterministic automaton to a deterministic one to have O(n) search time,we get an improved version of the KMP algorithm [KMP77, BY96, Sim94, Han93]. However, forexample, KMP is twice as slow for m � w.The algorithm �rst builds a table B which for each character c stores a bit mask B[c] = bm:::b1.The mask in B[c] has the bit bi in zero if and only if Pi = c. The state of the search is kept in amachine word D = dm:::d1, where di is zero whenever P1::i matches the end of the text read up to18

now (i.e. the state numbered i in Figure 2.6 is active). Therefore, a match is reported whenever dmis zero.D is set to all ones originally, and for each new text character Tj , D is updated using the formulaD0 (D << 1) j B[Tj]The formula is correct because the i-th bit is zero if and only if the (i � 1)-th bit was zero forthe previous text character and the new text character matches the pattern at position i. In otherwords, Tj�i+1::j = P1::i if and only if Tj�i+1::j�1 = P1::i�1 and Tj = Pi. Again, it is possible torelate this formula to the movement that occurs in the non-deterministic automaton for each newtext character: each state gets the value of the previous state, but this happens only if the textcharacter matches the corresponding arrow.For patterns longer than the computer word (i.e. m > w), the algorithm uses dm=we computerwords for the simulation (not all them are active all the time). The algorithm is O(n) on averageand the preprocessing is O(m+ �) time and O(�) space.It is easy to extend Shift-Or to handle classes of characters. In this extension, each position in thepattern matches with a set of characters rather than with a single character. The classical stringmatching algorithms are not so easily extended. In Shift-Or, it is enough to set the i-th bit of B[c]for every c 2 Pi (Pi is a set now). For instance, to search for "survey" in case-insensitive form,we just set the �rst bit of B["s"] and of B["S"], and the same with the rest. It can also searchfor multiple patterns (where the complexity is the same as before if we consider that m is the totallength of all the patterns). Shift-Or was later enhanced [WM92a] to support a larger set of extendedpatterns and even regular expressions.Many on-line text algorithms can be seen as implementations of clever automata (classically, in theirdeterministic form). Bit-parallelism has since its invention became a general way to simulate simplenon-deterministic automata instead of converting them to deterministic. It has the advantage ofbeing much simpler, in many cases faster (since it makes better usage of the registers of the computerword), and easier to extend to handle complex patterns than its classical counterparts. Its maindisadvantage is the limitations it imposes with regards to the size of the computer word. In manycases its adaptations to cope with longer patterns are not so e�cient.2.7 Su�x Trees and DAWGsSu�x trees [Wei73, Knu73, AG85] are widely used data structures for text processing [Apo85]. Anyposition i in a string S de�nes automatically a su�x of S, namely Si:::.In essence, a su�x tree is a trie data structure built over all the su�xes of S. At the leaf nodes thepointers to the su�xes are stored. Each leaf represents a su�x and each internal node represents aunique substring of S. Every substring of S can be found by traversing a path from the root. Eachnode representing the substring ax has a su�x link that leads to the node representing substring x.To improve space utilization, this trie is compacted into a Patricia tree [Mor68]. This involvescompressing unary paths. At the nodes which root a compressed path, an indication of how manycharacters to skip is stored. Once unary paths are not present the tree has O(n) nodes instead ofthe worst-case O(n2) of the trie (see Figure 2.7).This structure can be built in timeO(n), where n = jSj [McC76, Ukk95]. It is a very useful structureto solve many problems [AG85, Apo85]. 19

rba a c a d a b r a

1 2 3 4 65 7 8 9 10 11

6
4

"b"
"r" "a"

"r"

"a"
"c"

"d" 7

"c"
5

2

9
"$"

"c"

"a"

"a""r"
8

1
"c"

"$"

11

"b"

"d"

10

3
"$"

"$"

"c" 6
4

3

10

8

1

"b"

"r"

"d" 7

"c"
5

"a"

11

"b"

"d"

"$"

"c"

1

3

"c"

"$"

4 2

9
"$"

"c"

2 5
"c"

"$"

String

Suffix Trie

Suffix Tree

Figure 2.7: The su�x trie and su�x tree for a sample string. The \$" is a special marker to denotethe end of the text. Two su�x links are exempli�ed in the trie: from "abra" to "bra" and then to"ra". The internal nodes of the su�x tree show the character position to inspect in the string.To search a simple pattern in the su�x tree, we just enter into the trie driven by the letters of thepattern. This algorithm has been adapted to approximate searching by entering into all subtrees(since the matched text is not equal to the search pattern) until k such errors are performed [Ukk93].A DAWG (deterministic acyclic word graph) [Cro86, BBH+85] built on a string S is a deterministicautomaton able to recognize all the substrings of S. As each node in the su�x tree corresponds toa substring, the DAWG is no more than the su�x tree augmented with failure links for the lettersnot present in the tree. Since �nal nodes are not distinguished, the DAWG is smaller. DAWGshave similar applications to those of su�x trees, and also use O(n) space and construction time.Figure 2.8 illustrates.
rba a c a d a b r a

1 2 3 4 65 7 8 9 10 11
String

"r" "a""d" "a" "b""a" "c" "a""a" "b" "r"
I

"b"

"r"

"c"

"c"

"d"

"d"

DAWGFigure 2.8: The DAWG or the su�x automaton for the sample string. If all the states are �nal, itis a DAWG. If only the rightmost state is �nal then it is a su�x automaton.20

2.8 Su�x AutomataAlthough we make use of many di�erent algorithms for exact string matching as building tools forour approximate search algorithms, we have decided to cover Shift-Or and this one because theyare recent and not so widely known.The Backward DAWGmatching (BDM) algorithm [CCG+94, CR94] is based on a su�x automaton.A su�x automaton on a pattern P is an automaton that recognizes all the su�xes of P . The non-deterministic version of this automaton has a very regular structure and is shown in Figure 2.9 (thedeterministic version can be seen in Figure 2.8).
b ra a aa b ad rc

IFigure 2.9: A non-deterministic su�x automaton to search any su�x of "abracadabra". Dashedlines represent "-transitions (i.e. they occur without consuming any input). I is the initial state ofthe automaton.The BDM algorithm converts this automaton to deterministic. The size and construction time ofthis automaton is O(m). This is basically the preprocessing e�ort of the algorithm. Each path fromthe initial node to any internal node represents a substring of the pattern. The �nal nodes representpattern su�xes.To search a pattern P , the su�x automaton of P r (the reversed pattern) is built. The algorithmslides a window over the text and allows shifting the window without inspecting all the text charac-ters. It searches backwards inside the text window for a substring of the pattern P using the su�xautomaton. Each time a terminal state is reached before reaching the beginning of the window, theposition inside the window is remembered. This corresponds to �nding a pre�x of the pattern equalto a su�x of the window (since the reverse su�xes of P r are the pre�xes of P). The last pre�xrecognized backwards is the longest pre�x of P in the window. A match is found if the completewindow is read, while the check is abandoned when there is no transition to follow in the automaton.In either case, the window is shifted to align with the longest pre�x recognized.In [NR98a] we presented a bit-parallel version of BDM, called BNDM (the \N" stands for \non-deterministic"), based on simulating the non-deterministic automaton instead of converting it todeterministic. This version turned out to be the fastest algorithm to search exact patterns in allcases, except for very short (2-4 letters) or very long (100-150 letters) patterns. Moreover, it canhandle some extended patterns easily and e�ciently. Although this algorithm is not part of thisthesis, we extend it in this work to handle errors.2.9 Natural Language and Its StatisticsAn important part of this work is oriented toward natural language. We explain in this sectionwhat is understood by this term and give some of the main accepted rules that drive its statisticalbehavior.We understand by natural language text the transcription of a language used by humans for verbalcommunication, or which follows the same syntactic and semantic rules of such a language. This21

is in contrast to genetic sequences, compressed bit-streams, machine language, etc. Our de�nitionencompasses all texts such as literary, technical, formal, colloquial, journalistic, e-mail, news, andmany others, provided the language they are based on is used by humans to communicate (once theexceptions stated above are made, since two computer scientists could communicate via a programcode).Natural language and the mechanisms to extract information from it is the main subject of study ofInformation Retrieval (IR). A number of laws which rule the statistical behavior of natural languagetexts are widely accepted. Although we use them in many cases to analyze the average behavior ofour algorithms and data structures (especially when we consider indices), it is important to realizethat all those laws are heuristic and approximate. As we have found, some �t much better the realitythan others. We present now the laws that we use in this work, some of which are fundamental forour results. All these laws have been experimentally con�rmed in this thesis.First of all, we assume that the natural language texts are divided in words. A word is a sequenceof characters which forms a compact element. A more technical de�nition divides the alphabet �in two sets, \letters" and \separators". Words are contiguous sequences of letters surrounded byseparators (more complex de�nitions are possible). For instance, we could de�ne that the lettersare f"a".."z", "A".."Z", "0".."9"g and the rest are separators.We assume that the words are relatively short, and that their length is distributed basically in-dependently of their positions in the text. This assumption is very reasonable. In most cases ofindexed search we assume that the text has n words instead of n characters. However, since thelength of words is bounded by a constant, we still have a text of size �(n).The vocabulary of the text is de�ned as the set of distinct words present in it, and its size is denotedas V . This de�nition may involve a previous step of mapping of characters and words. For instance,we may map all characters to lower-case, so that the words "survey" and "Survey" are consideredequivalent. Some more complex mappings are commonly carried on IR systems. For instance, aword may be mapped to a synonym (i.e. a syntactically di�erent word with the same meaning), sothat if a user searches for "only meaning" it can also �nd "sole meaning". Another technique,called stemming, eliminates a su�x of the words, so that if a user searches for "clone" it can also�nd "cloning". All those transformations are assumed to be performed prior to the application ofour algorithms and we do not rely on them.We also assume the Heaps' Law [Hea78]. This is a very precise law ruling the growth of thevocabulary in natural language texts. It states that the vocabulary of a text of n words is of sizeV = Kn� = O(n�), where K and � depend on the particular text. K is normally between 10 and100, and � is between 0 and 1 (not included). Some recent experiments [ANZ97, BYN97a] showthat the most common values for � are between 0.4 and 0.6. Hence, the vocabulary of a text growssublinearly with the text size, in a proportion close to its square root.A �rst inaccuracy appears immediately. Supposedly, the set of di�erent words of a language is �xedby a constant (e.g. the number of di�erent English words is �nite). However, the limit is so highthat it is much more accurate to assume that the size of the vocabulary is O(n�) instead of O(1),although the number should stabilize for huge enough texts. On the other hand, many authorsargue that the number keeps growing anyway because of the errors that appear in the text.Another inconsistency is that, as the text grows, the number of di�erent words will grow too, andtherefore the number of letters to represent all the di�erent words will be O(log(n�)) = O(logn).Therefore, longer and longer words should appear as the text grows. The average length could bekept constant if shorter words are common enough (which is the case). In practice, this e�ect is not22

noticeable and we can assume an invariable length, independent of the text size.A much more inexact law is Zipf 's Law [Zip49, GBY91], which rules the distribution of the frequen-cies (i.e. number of occurrences) of the words. The rule states that the frequency of the i-th mostfrequent word is 1=i� times that of the most frequent word. This implies that in a text of n wordswith a vocabulary of V words, the i-th most frequent word appears n=(i�HV (�)) times, whereHV (�) = VXi=1 1i�so that the sum of all frequencies is n. The value of � depends on the text. In the most prim-itive formulation (which is easier to handle mathematically) it is assumed � = 1, and thereforeHV (�) = O(logV). However, this simpli�ed version is very inexact, and the case � > 1 (moreprecisely, between 1.5 and 2.0) �ts better the real data [ANZ97]. This case is very di�erent, sincethe distribution is much more skewed, and HV (�) = O(1).There have been attempts to correct the inaccuracies of Zipf's Law. One attempt is the Mandelbrotdistribution [Man52], which states that the frequency of the i-th word is n�=(c + i)�, for someconstants c and �. We do not use this distribution in this work because its asymptotical e�ectis negligible and it is much harder to deal with mathematically. It is interesting to notice thatZipf-like distributions can be derived from simpler models, as shown in [MNF57]: if we assume aword generation process where the space appears with a �xed probability p and the other lettersappear uniformly, then a Mandelbrot distribution in the generated words is observed. Moreover,shorter words are more frequent, as it happens in natural language.The fact that the distribution of words is very skewed (i.e. there are a few hundreds of words whichtake up 50% of the text) suggest a concept which is also of much use in IR: stopwords [MNF58]. Astopword is a word which does not carry meaning in natural language and therefore can be ignored(i.e. made not searchable), such as "a", "the", "by", etc. Fortunately, the most frequent words arestopwords, and therefore half of the words appearing in a text need not be considered. This allows,for instance, signi�cantly reducing the space overhead of indices for natural language texts.It is interesting to observe that if, instead of taking text words, we take n-grams, no Zipf-likedistribution is observed. Moreover, no good model is known for this case [BCW90, chapter 4].We point out now other assumptions we make. We assume that user queries distribute uniformly inthe vocabulary, i.e. every word in the vocabulary can be searched with the same probability. Thisis not true in practice, since unfrequent words are searched with higher probability. On the otherhand, approximate searching makes this distribution more uniform, since unfrequent words maymatch match with k errors with other words, with little relation to the frequencies of the matchedwords. In general, however, the assumption of uniform distribution in the vocabulary is pessimistic.Finally, the words are assumed to be uniformly distributed in the text. Although widely accepted,this rule may not be true in practice, since words tend to appear repeated in small areas of the text.Uniform distribution in the text is another pessimistic assumption we make, since more text blocksmatch a query when the distribution is uniform.We end this section with a note of interest. There are many human languages where this clearseparation of a text in words does not exist. This is the case of agglutinating languages, such asFinnish or German. In those languages, a sequence of letters is in fact the concatenation of anumber of short components which carry the meaning. In many cases their words are equivalentto our phrases. All the statistical behavior exposed above will probably be untrue when applied tothose languages. In that case, there are two main alternatives: (a) consider those texts as \non-23

natural languages" (in our sense, of course) and accept that the only schemes applicable to themare those for general texts; or (b) split those words into \sub-words" which really carry the meaningwe assign to words in languages such as English, Spanish or French, for instance. This secondalternative is very attractive, although it relies on some semantic understanding of the language.We are not aware of the existence or not of such semantic tools to split words in agglutinatinglanguages.2.10 Inverted Files or Inverted IndicesThe inverted �le or inverted index [Knu73, FBY92, WMB94] is a very old data structure to indexnatural language texts. Indexing means building a persistent data structure on texts to speed upthe search. Since building an index takes much more than an on-line search, it is worthwhile tobuild such an index when the number of queries is much higher than the number of modi�cationsto the text collection.The inverted �le structure is composed of two elements: the vocabulary and the occurrences. Thevocabulary is the set of all di�erent words in the text. For each such word a list of all the textpositions where the word appears is stored. The set of all those lists is called the \occurrences" or\posting �le" (Figure 2.10 shows an example).
This is a text. A text has many words. Words are made from letters.

1 6 9 11 17 19 24 28 33 40 46 50 55 60

Text

Inverted Index

words

text

many

made

letters

33, 40...

11, 19...

60...

50...

28...

Vocabulary OccurrencesFigure 2.10: A sample text and an inverted index built on it. The words are converted to lower-caseand stopwords are not indexed. The occurrences point to character positions in the text.The space required for the vocabulary is rather small, thanks to the Heaps' Law. For instance, 1 Gbof the trec collection [Har95] has a vocabulary whose size is only 5 Mb. The occurrences demandmuch more space. Since each word appearing in the text is referenced once in that structure, theextra space is �(n). Even omitting stopwords (which is the general case) in practice the spaceoverhead of the occurrences is between 15% and 40% of the text size.To reduce space requirements, a technique called block addressing is used. The �rst index of thiskind was Glimpse [MW94]. The text is divided in blocks, and the occurrences point to the blockswhere the word appears (instead of the exact positions). The classical indices which point to the24

exact occurrences are called \full inverted indices". By using block addressing not only the pointerscan be smaller because there are less blocks than positions, but also all the occurrences of a wordinside a single block are collapsed to one reference (see Figure 2.11), pro�ting from context localityinherent to natural language. Indices of only 5% overhead over the text size are obtained with thistechnique. The price to pay is that, if the exact occurrence positions are required (for instance tosolve a phrase query) then an on-line search over the classifying blocks has to be performed. Forinstance, block addressing indices with 256 blocks stop working well with texts of 200 Mb of size.
This is a text. A text has many words. Words are made from letters.

words

text

many

1, 2...

4...

4...

3...

2...

made

letters

Vocabulary Occurrences

Inverted Index

Text

Block 2 Block 3 Block 4Block 1

Figure 2.11: The sample text split in four blocks, and an inverted index using block addressing builton it. The occurrences denote block numbers. Both occurrences of "words" collapsed into one.The blocks can be of �xed size (imposing a logical block structure over the text database) or theycan be de�ned using the natural division of the text collection into �les, documents, Web pages orothers. The division into blocks of �xed size improves e�ciency at retrieval time (i.e. the morevariance in the block sizes, the more amount of text sequentially traversed on average).On the other hand, the division using natural cuts may eliminate the need of the on-line traversal.For example, if one block per document is used and the exact match positions are not required,there is no need to traverse the text for simple queries, since it is enough to know which documentsto report. On the other hand, if many documents are packed into a single block, the block has tobe traversed to determine which documents to retrieve.It is important to notice that in order to use block addressing, the text must be readily availableat search time. This is not the case of remote text (as in Web search engines), or if the text is in aCD-ROM that has to be mounted, for instance.Glimpse pioneered a second technique which we use many times in this work. It is based on asequential vocabulary search. Traditionally, the queries are searched in the vocabulary by meansof a data structure built on it, such as a hash table, B-tree or other. However, a sequential searchis useful when we are interested in more complex types of searches such as extended patterns orapproximate string matching.Imagine that a user is interested in a variant of the problem where we have to report whole wordswhich match a query word with k errors or less. For instance, if the user searches "shallow", wedo not want it to be reported with one error in the text "hash allows" or with zero errors in25

"shallowing". The indices that solve this variant of the problem are called in this work word-retrieving indices, as opposed to the general sequence-retrieving indices which solve the originalproblem.Since the vocabulary contains all the di�erent words that appear in the text, we can search just thevocabulary to �nd the required matches (this is because the context of the words does not a�ect thesearch). Since the vocabulary is much smaller than the text, a sequential search on the vocabularyis a valuable technique to deal with a restricted case of a very complex problem. Once all the wordsthat match in the vocabulary are identi�ed, we retrieve the documents where any of them appears.In some cases, an inverted index is used not on the words of the text but on q-grams of the text.A q-gram is an arbitrary substring of length q. When the text does not have a structure of words,or when we do not want to use such structure, the text can be arbitrarily split in q-grams, whichact as words in the sense that we store all the di�erent q-grams as the vocabulary and all their textpositions as the occurrences. As we see later, many alternative exists, but basically the q-gramsare taken at �xed intervals of length h (i.e. Th::h+q�1; T2h::2h+q�1; :::). The selected q-grams may ormay not overlap in the text. The values of q and h are decisive in the size of the resulting index,since the number of occurrences are O(n=h) and the vocabulary grows exponentially with q.2.11 Su�x ArraysInverted �les assume that the text can be seen as a sequence of words. This restricts somewhatthe kinds of queries that can be answered. Other queries such as phrases are expensive to solve.Moreover, the concept of word does not exist in some applications such as genetic databases.In this section we briey describe the su�x arrays (also called \PAT arrays") [MM90, GBY91].Su�x arrays are a space-e�cient implementation of su�x trees (see Section 2.7). This type of indexallows e�ciently answering more complex queries. Its main drawbacks are its costly constructionprocess and that the text must be readily available at query time. This structure can be used toindex only words (without stopwords) as the inverted index as well as to index any text character.In general, index points are set to the beginnings of the retrievable text positions (e.g. beginningsof words). This makes the su�x array suitable to a wider spectrum of applications, such as geneticdatabases. However, for word based applications, inverted �les perform better unless complexqueries are an important issue.This index sees the text as one long string. Each position in the text is considered as a text su�x(i.e. a string that goes from that text position to the end of the text). It is not di�cult to see thattwo su�xes starting at di�erent position are lexicographically di�erent (assume that a charactersmaller than all the rest is placed at the end of the text). Each su�x is thus uniquely identi�ed byits position. Figure 2.12 exempli�es.Su�x arrays provide essentially the same functionality as su�x trees at much less space require-ments. If the leaves of the su�x tree are traversed in left-to-right order, all the su�xes of the textare retrieved in lexicographical order. A su�x array is simply an array containing all the pointersto the text su�xes listed in lexicographical order, as shown in Figure 2.13. Since they store onepointer per indexed word, the space requirements are almost the same as those for inverted indices(disregarding compression techniques), i.e. close to 40% overhead over the text size. A su�x treebuilt on a text is 3 to 6 times larger.While su�x trees are searched as tries, su�x arrays are binary searched. However, almost everyalgorithm on su�x trees can be adapted to work on su�x arrays at an O(logn) penalty factor in the26

text. A text has many words. Words are made from letters.

text has many words. Words are made from letters.

many words. Words are made from letters.

words. Words are made from letters.

Words are made from letters.

made from letters.

from letters.

letters.

This is a text. A text has many words. Words are made from letters.

Text

SuffixesFigure 2.12: The sample text with the index points of interest marked. Below, the su�xes corre-sponding to those index points.
Suffix Array

This is a text. A text has many words. Words are made from letters.

1 6 9 11 17 19 24 28 33 40 46 50 55 60

Text

60 28 11 3350 19 4055Figure 2.13: The su�x array for the sample text.27

time cost. This is because each edge traversal in the su�x tree can be simulated with two binarysearches on the su�x array (each subtree of the su�x tree corresponds to an interval in the su�xarray). Each time an edge of the su�x trie is followed, we use binary search to �nd the new limitsin the su�x array.

28

Chapter 3Related Work and Our ContributionsIn this chapter we cover all the previous work of interest we could trace on approximate stringmatching, and place our contribution in its context. We have preferred to present this work asa historical tour, so that we do not only explain the work done but also show how has it beendeveloped. We divide the presentation according to the parts of this thesis.In the discussion that follows, keep in mind that there may be a long gap between the time wherea result is discovered and when it gets �nally published in its de�nitive form. Some apparentinconsistencies can be explained in this form (e.g. algorithms which are \�nally" analyzed beforethey appear). We did our best in the bibliography to trace the earliest version of the works, althoughthe full reference is generally for the �nal version.At the beginning of each section we give a taxonomy to help guide the tour. The taxonomy is anacyclic graph where the nodes are the algorithms and the edges mean that the lower work can be seenas an evolution of the upper work (although sometimes the developments are in fact independent).3.1 On-line SearchingAs explained in the Introduction, on-line searching is the oldest area in the �eld of approximatestring matching. It means that, by some reason, we do not have any data structure built on thetext to speed up the search. Since building such data structures (called \indices") is normally morecostly than searching the pattern, it is better to proceed with no index at all. Other (partial)surveys on this matter can be found in [HD80, AG85, GG88, JTU96].We have covered in Section 2.2 the �rst and classical solution, which was discovered many times andis based on dynamic programming. The solution to compute the edit distance between two stringsis attributable to [NW70, San72, WF74] and others. The �rst one in converting it into a searchalgorithm to �nd a pattern in a text allowing errors was Sellers [Sel80]. As said, this solution isunbeaten in exibility, but its time requirements are indeed high. A number of improved solutionshave been proposed along the years. Some of them work only for the edit distance, while others canstill be adapted to other distance functions.We can divide the work after 1980 in four quite independent areas:� Algorithms that take advantage of the speci�c properties of the dynamic programmingmatrix.This is the oldest area, which inherits directly from the earliest work. Most of the theoreticalbreakthroughs in the worst case algorithms belong to this category, although only a few of29

them are really competitive in practice for text searching. The latest practical work in thisarea dates back to 1992, although there are recent theoretical improvements. The majorachievements are O(kn) worst-case algorithms and O(kn=p�) average-case algorithms, aswell as other (non-practical) improvements on the worst-case.� Algorithms based on deterministic automata. This area is rather old but it has not beenactive again until very recently. It is interesting because it gives the best worst-case algorithm(O(n), which is the worst-case lower bound of the problem). However, there is a time andspace exponential dependence on m and k that limits its practicality.� Algorithms that �lter the text, quickly discarding text areas which cannot match. This isa new branch of the problem which started after 1990 and continues to be very active. Itaddresses only the average case. Its major interest is the potential for algorithms that do notinspect all characters. The major theoretical achievement is an algorithm with average costO((k + log�m)=m n), which has been proven optimal. In practice, the �lter algorithms arethe fastest ones too. All of them, however, are limited in their applicability by the error level�. Moreover, they need a non-�lter algorithm to check the potential matches.� Algorithms based on exploiting the parallelism of the computer when it works on bits. Thisis also a new (after 1990) and very active area. The basic idea is to \parallelize" anotheralgorithm using bits. The results are interesting from the practical point of view, and areespecially signi�cative when short patterns are involved (typical in text retrieval). They maywork e�ectively for any error level.In this thesis we have made improvements in all the four areas, especially in the last two (seeFigure 3.1). We cover now each area separately. Our comments about the practical performance ofthe algorithms are based on [JTU96, CL92, Wri94] and in many cases on our own experiments.Based on DPmatrix Worst caseAverage case (analysis)AutomatonBit-parallelismFilters For very long patternsFor moderate patternsBased on automataBased on DPmatrixFigure 3.1: Taxonomy of the types of solutions for on-line searching. The areas where we madecontributions are in boldface. 30

3.1.1 Taking Advantage of the Dynamic Programming Matrix [See Figure 3.2]3.1.1.1 Improving the Worst CaseIt is interesting that one of the few worst-case theoretical results on this area is as old as the Sellers[Sel80] algorithm itself. In 1980, Masek and Paterson [MP80] found an algorithm whose worst caseis O�mn log�log2 n �which is the only improvement known over the O(mn) classical complexity if k = �(m) (althoughthe automaton approach is linear in the text size, it is exponential in m and k, while this result isnot). The algorithm is based on the Four-Russians technique [ADKF75]. Basically, it �rst buildsa table of solutions of all the possible problems (i.e. portions of the matrix) of size r (for smallr), and then uses the table to solve the original problem in blocks of size r. To achieve the statedresult, �(n) extra space is necessary. The algorithm is only of theoretical interest, since as the sameauthors estimate, it will not beat the classical algorithm for texts below 40 Gb.In 1983, an article of Ukkonen opened new fruitful areas of development [Ukk85a]. It presented analgorithm able to compute the edit distance between two strings x and y in O(ed(x; y)2) time, orto check in time O(k2) whether that distance was � k or not. This is the �rst member of what hasbeen called \diagonal transition algorithms", since it is based in the fact that the diagonals (runningfrom the upper-left to the lower-right cells) of the dynamic programming matrix are monotonicallyincreasing (i.e. Ci+1;j+1 2 fCi;j ; Ci;j + 1g). The algorithm is based on computing in constant timethe positions where the values along the diagonals are incremented. Only O(k2) such positions arecomputed to reach the lower-right decisive cell.The history of the O(kn) worst-case algorithm is interesting because the results went backwards inmany cases. In 1985 and 1986, Landau and Vishkin found the �rst worst-case time improvements.All of them and the thread that followed were diagonal transition algorithms. In [LV88] they showan algorithm which is O(k2n) time and O(m) space, and in [LV89] they obtain O(kn) time andO(n) space.The main idea of Landau and Vishkin was to adapt to text searching the Ukkonen's diagonaltransition algorithm for edit distance [Ukk85a]. Basically, if one thinks on the dynamic programmingmatrix, it was to be computed diagonal-wise instead of column-wise. They wanted to compute inconstant time the next point where the values along a diagonal were to be incremented. This data,called after \matching statistics", are equivalent to knowing which is the longest substring of thepattern that matches the text at some point.Since a text position was to be reported when row m was reached before incrementing more thank times the values along the diagonal, this gave immediately the O(kn) algorithm. This was doneusing a su�x tree on the pattern and the text (since they wanted to know the next position wherepattern and text were going to di�er). This su�x tree was the cause of the huge O(n) extra space,and the O(1) algorithm to �nd the next diagonal position was slow in practice.In 1986, Myers found also an algorithm with O(kn) worst-case behavior [Mye86a]. It needed onlyO(k2) extra space. However, the reference is a technical report and never went to press (it has beenrecently included in a larger work [LMS98]).In 1988, Galil and Giancarlo [GG88] obtained the same time complexity with O(m) space. Basically,31

O(kn) timeO(m2) space[UW93] O(m) spaceO(kn) time[GG88]
O(kn) expected time[Ukk85b, Mye86b] O(k2n) timeO(m) space[LV88]O(n) spaceO(kn) time[LV89]O(kn) timeO(m2) space
Analysis in [CL92]improved in [ours 96][GP90][CL92]O(kn=p�)expected (empirical)

[MP80]TheoreticalO(nm log�= log2 n)O(k2) spaceO(kn) time[Mye86a]
Practical Theoretical

[CH98]O(n(1+kc=m))time[SV97]nkc(� log� n) 1log 3time

[Sel80]FirstO(mn) search algorithm
[GP90]O(kn)expected timeText Searching Edit Distance[CL92]Improves [LV89]atO(m) space

[NW70, WF74, San72]O(m2) edit distance
O(k2) edit distance[Ukk85a]

Figure 3.2: Taxonomy of on-line algorithms that take advantage of the dynamic programmingmatrix. 32

the su�x tree of the text is built by pieces of size O(m). The algorithm scans the text four times,being even slower than [LV89]. Therefore, the result was of theoretical interest.One year later, in 1989, Galil and Park [GP90] obtained O(kn) worst-case time and O(m2) space(worse in theory than in 1988). This time the idea was to build the matching statistics of the patternagainst itself (longest match beginning at i versus beginning at j, hence the O(m2) complexity),resembling in some sense the basic ideas of [KMP77]. This algorithm is also slow in practice.A closely related idea with similar time and space complexity (and similarly slow in practice) wasindependently discovered by Ukkonen and Wood in 1990 [UW93]. They use a su�x automaton(described in Section 2.8) on the pattern to �nd the matching statistics, instead of the table.Finally, in 1992, Chang and Lampe [CL92] improved the algorithm [LV89] to be O(kn) time andO(m) space, this time with better practical performance. This was obtained by using new auxiliaryalgorithms that appeared in the while. It is said in [CL92] that this modi�cation is the fastestalgorithm in practice among those of O(kn) guaranteed performance. However, the algorithm isstill not competitive in practice.In 1997, Sahinalp and Vishkin [SV97] found an O(nkc(� log� n)1= log3) worst-case time algorithm,which is of theoretical interest if k = O(m�) for small �. The constant c is 3 when the pattern hasnot repeated letters and 8 otherwise. It is based on [LV89], where the set of diagonals to compute issparsi�ed. This has been recently improved and simpli�ed [CH98] to O(n(1 + kc=m)), where c = 3if the pattern is \mostly aperiodic" and c = 4 otherwise (the de�nition of \mostly aperiodic" israther technical, and is related to the number of self-repetition that occurs in the pattern). Theinterest in this development is theoretical.3.1.1.2 Improving the Average CaseThe �rst improvement to the average case is due to Ukkonen in 1985. The algorithm, a short noteat the end of [Ukk85b], improved the dynamic programming algorithm to O(kn) on average. Thisalgorithm has been called later the \cut-o� heuristic". The main idea is that, since a pattern doesnot normally match in the text, the values at each column (looking them from top to bottom)quickly reach k + 1 (i.e. mismatch), and that once a cell has a value larger than k + 1, the resultof the search does not depend on its exact value. A cell is called active if its value is at most k.The algorithm simply keeps count of which is the last active cell and avoids working on the restof the cells. Ukkonen conjectured that this algorithm was O(kn) on average, but this was provenonly in 1992 by Chang and Lampe [CL92]. As part of this thesis [BYN96b, BYN98d] we �ndan accurate bound for the probability of matching with errors and use this bound to improve theconstant found by Chang and Lampe. It is interesting to notice that, independently of Ukkonen,Myers found almost the same result at about the same time [Mye86b].An algorithm in [GP90] was based on diagonal transitions but it found the next increment in thediagonal by brute force instead of a guaranteed constant time. This gave an algorithm which wasin practice faster than those of guaranteed performance. Myers showed in [Mye86a] that this wasO(kn) on average. This algorithm is in fact a variant of [Ukk85b].The main result of Chang and Lampe [CL92] is a new algorithm based on exploiting a di�erentproperty of the dynamic programmingmatrix. They consider again the fact that, along each column,the numbers are normally increasing. They work on \runs" of consecutive increasing cells (a runends when Ci+1 6= Ci + 1). They manage to work O(1) per run in the column updating process.Based on empirical observations, they conjecture that the average length of the runs is O(p�). Sincethey use the cut-o� heuristic of Ukkonen, their average search time is argued to be O(kn=p�). This33

is, in practice, the fastest algorithm of this class.There are other algorithms that use properties of the dynamic programming matrix, but they aredescribed in other sections according to their core idea. Hence, the best exponents of this class are� The O(mn log�= log2 n) algorithm of [MP80], for its theoretically low complexity when k =�(m).� The O(n(1+ kc=m)) algorithm of [CH98], for its theoretical low complexity when k = O(m�).� The O(kn) time and O(m) space variation of [LV89] as improved by [CL92], for its goodtheoretical complexity. For small k, the algorithm of [Mye86a] could use less space, O(k2).� The O(kn=p�) expected time algorithm of [CL92], for its good practical behavior.� The O(kn) average time cut-o� heuristic of Ukkonen [Ukk85b], for its simplicity to use as abuilding block of other algorithms.In our experimental comparisons we include only the cut-o� heuristic of [Ukk85b] and the newalgorithm of [CL92]. The others are not of practical interest for typical text searching applications.3.1.2 Searching with a Deterministic Automaton [See Figure 3.3]
O(s) spaceO(mn= log s) time[WMM96][MP80]Four Russians technique[Ukk85b]De�nitionof DFAmin(3m;m(2m�)k) statesLazy automaton[Kur96] and [ours 97][Mel96]Improvedanalysis(k+2)m�k(k+1)! statesreplaces� bymin(�;m)Figure 3.3: Taxonomy of on-line algorithms based on deterministic automata.Another thread which is also very old but has received less attention is based on reexpressing theproblem with the use of an automaton. In Section 2.4 we saw that there is a non-deterministicautomaton that solves this problem, so by converting this automaton to deterministic we haveimmediately the O(n) worst-case time so hardly searched for.In 1985, Ukkonen proposed the idea of such a deterministic automaton [Ukk85b]. However, anautomaton as we have shown in Figure 2.5 was not explicitly considered. Rather, each possible setof values for the columns of the dynamic programming matrix was a state of the automaton. Oncethe set of all possible columns and the transitions among them were built, the text was scannedwith the resulting automaton, performing exactly one transition per character read.34

The big problem with this scheme was that the automaton had a potentially huge number of states,which had to be built and stored. To improve space usage, Ukkonen proved that all the elementsin the columns that were larger than k+ 1 could be replaced by k+ 1 without a�ecting the outputof the search (the lemma was used in the same paper to design the cut-o� heuristic describedin Section 3.1.1). This reduced the potential number of di�erent columns. He also showed thatadjacent cells in a column di�ered in at most one. Hence, the column states could be de�ned as avector of m incremental values in the set f�1; 0; 1g.All this made possible to obtain in [Ukk85b] a nontrivial bound to the number of states of theautomaton, namely O(min(3m; m(2m�)k))which, although much better than the obvious O((k + 1)m), was still very bad except for shortpatterns or very low error levels. The resulting space complexity of the algorithm was m times theabove value. This exponential space complexity was to be added to the O(n) time complexity, asthe preprocessing time to build the automaton.As a �nal comment, Ukkonen suggested that the columns could be only partially computed upto, say, 3k=2 entries. Since he conjectured (and later was proved in [CL92]) that the columns ofinterest were O(k) on average, this would normally not a�ect the algorithm, though it will reducethe number of possible states. If at some point the states not computed were really needed, thealgorithm would compute them by dynamic programming.It was not until 1992 that Wu, Manber and Myers looked again into this problem [WMM96]. Theidea was to trade some time for space using a Four Russians technique [ADKF75]. Since the columnscould be expressed using only values in f�1; 0; 1g, the columns were partitioned into blocks of rcells (called \regions") which took 2r bits each. Instead of precomputing the transitions from awhole column to the next, the transitions from a region to the next region in the column wereprecomputed. Since the regions were smaller than the columns, much less space was needed. Thetotal amount of work was O(m=r) per column in the worst case, and O(k=r) on average. Thespace requirement was exponential in r. By using O(n) extra space, the algorithm was O(kn= logn)on average and O(mn= logn) in the worst case. Notice that this is in the same trend of [MP80],although it is much more practical.In 1996, Kurtz [Kur96] proposed another way to reduce the space requirements to at most O(mn).It is an adaptation of [BYG94], who �rst proposed it for the Hamming distance (as we cover later).The idea was to build the automaton in lazy form, i.e. build only the states and transitions actuallyreached in the processing of the text. The automaton starts as just one initial state and the statesand transitions are built as needed. By doing this, all those transitions that Ukkonen consideredthat were not necessary were not built in fact, without need to guess. The price was the extraoverhead of a lazy construction versus a direct construction, but the idea pays o�. Kurtz alsoproposed to have built only the initial part of the automaton (which should be the most commonlytraversed states) to save space.In 1995, Melichar [Mel96] considered again the �nite automaton, this time as the deterministic ver-sion of our non-deterministic automaton of Figure 2.5 (he also described automata for the Hammingdistance, for transpositions, and others). By using properties of this automaton, he improved thebound of [Ukk85b] to O(min(3m; m(2mt)k; (k+ 2)m�k(k + 1)!)where t = min(m + 1; �). The space complexity and preprocessing time of the automaton is ttimes the above formula. Melichar also conjectured that this automaton is bigger when there are35

periodicities in the pattern. It is rather common in text searching that periodic patterns are moreproblematic, and fortunately periodic patterns are uncommon in typical text searching.As part of this thesis [Nav97b], we improved the implementation of the lazy automaton and studiedits growth as a function of m, k and n (this last value makes sense for the lazy automaton only).We studied replacement policies to be able to work with bounded memory. We also tested thisidea against the best known algorithms and found it competitive for short to medium patterns andmedium error levels (but it is not the fastest one nowadays, although in some parameter ranges itwas the fastest when we tried it).Nowadays, the best exponents of this trend are [WMM96] (which is a very practical and competitivealgorithm), and [Kur96, Nav97b] (since the optimized implementations are competitive when thenumber of states is not too large). We test both algorithms in this thesis.3.1.3 Filtering [See Figure 3.4]This is a much newer trend, currently very active. It is based on �nding fast algorithms to discardlarge areas of the text that cannot match, and apply another algorithm in the rest. As explained inSection 2.5, a new factor plays its role here: the maximum error level up to where the �lters leaveout enough text to be worthwhile.Although some of the best existing algorithms belong to this class, it is important to recall thatthese algorithms need another one to verify the matching positions. Therefore, it is still interestingto pursue on other type of algorithms, since the best combination is possibly a marriage between a�ltering algorithm and an algorithm capable of veri�cation.We divide this area in two parts: moderate and very long patterns. Typical text searching dealswith the �rst part. The algorithms for the two areas are normally di�erent, since more complex�lters are worthwhile only on longer patterns.3.1.3.1 Moderate PatternsThis area started in 1990, where Tarhio and Ukkonen [TU93] published an algorithm that triedto use Boyer-Moore-Horspool techniques [BM77, Hor80] to �lter the text. The idea was that adiagonal of the dynamic programming matrix must have k or less mismatches (increments) in orderto match. Notice that, inside a single diagonal, we can think only in terms of mismatches, sinceinsertions and deletions a�ect other diagonals. Thanks to insertions/deletions a diagonal may notincrease its value even in case of a mismatch, but it cannot reach k + 1 if there are not k or moremismatches. Once it was determined that a given diagonal (i.e. text position) matched or not,they moved to the next diagonal. However, some diagonals could be skipped if they did not matchin enough places with the current diagonal (recall that neighbor diagonals share characters). Thiswas solved in constant time by some preprocessing of the pattern. The algorithm is competitive inpractice for text searching.In 1991, Jokinen, Tarhio and Ukkonen [JTU96] adapted a previous �lter for the k-mismatchesproblem [GL89]. The �lter is based on the simple fact that inside any match with at most k errorsthere must be at leastm�k letters belonging to the pattern. The �lter did not care about the orderof those letters. This is a simple version of [CL94] (see next section), with less �ltering e�ciencybut simpler implementation. They slid a window of variable size over the text. As part of this thesis36

[WM92a]Partition in k+1[BYP96]Use Boyer-Moore [Shi96]k+s pieces[GKHO97]Dynamic �ltering
[Tak94]Simplif. [CL94]Text h-samplesSuperimpositionO(n) time[ours 98][ours 98]�<1= log� m

[TU93]Boyer-Moore �lter[JTU96] and [ours 97]Counting �lter
Hierarchical veri�cationImproved�lter[ours 98] [ST95]Many h-samplesConsider ordering [CM94]Opt. algor. & lower boundO(n=m(k+log�m))for �<��[ours 96]Analysis (�< 13 log� m)Practical implem. [ours 96]Part. into less errors�<1�e=p�

[ours 98]Su�x automata

Moderate patterns Long patterns[Ukk92]Generaliz. to q-grams [CL94, Ukk92]MaximalmatchesO(�n log� m)

Figure 3.4: Taxonomy of on-line �ltering algorithms.
37

[Nav97a] we rediscovered the algorithm (observe that it did not appear in press until 1996), thistime with a simpli�ed version of �xed-size window and with analytical bounds on the maximumerror level where it could be applicable (we also adapted the algorithm to multipattern search butthat is explained later). The resulting algorithm is competitive in practice for text searching.In 1992, a very simple �lter was proposed by Wu and Manber [WM92a] (among many other ideasof that work). The basic idea is in fact very old [Riv76]: if a pattern is cut in k + 1 pieces, thenat least one of the pieces must appear unchanged in an approximate occurrence. This is evident,since k errors cannot alter the k + 1 pieces. The proposal was then to split the pattern, searchthe pieces in parallel, and check the neighborhood of the exact matches of the pieces. Since theywere embedded in a framework of bit-parallel algorithms (see Section 2.6), they adapted one suchalgorithm for this task, so that they searched the text at O(mn=w) time complexity and veri�ed thematches of the pieces. In the same year, Baeza-Yates and Perleberg [BYP96] suggested that betteralgorithms could be used for the multipattern search: at least an Aho-Corasick machine [AC75] toguarantee O(n) search time (excluding veri�cations), or even a Boyer-Moore algorithm adapted tomultipattern search, such as [CW79]. However, no more attention was paid to this idea until thisthesis.In 1996, we resumed the work on this �lter. First, we adapted to multipattern exact search a simplevariation of the Boyer-Moore-Sunday algorithm [Sun90] (an algorithm for exact string matching).The adaptation uses a trie for the patterns and computes a pessimistic shift table among all thepatterns, and works well for a moderate number of them. Then, we implemented the �lter usingthe multipattern Sunday algorithm for the search task. We found that this algorithm was thefastest known one when the error level was moderate (say, � < 1=4 on English text). These resultswere published in [BYN96b, BYN96a] and the 1996 version of [BYP96] (which also contains andindependent analysis of the algorithm). We also analyzed this scheme and found that the �lterworked at least for � < 1=(3 log�m) (which is similar to other limits in this area). Before that limit,the algorithm can run in O(n) guaranteed search time, and our Sunday implementation can run atO(�n) time in the best case (which is optimal, see [CM94] in the next section). There is no closedexpression for the average case [BYR90].In Section 3.1.4 we describe a new bit-parallel algorithm developed as part of this thesis, which isbased on the NFA described in Section 2.4. As the algorithm is limited to short patterns, manytechniques are developed to cope with longer patterns [BYN96b, BYN96a, BYN98d]. One of themis a �lter based in partitioning the pattern in subpatterns. It is shown that if a pattern is partitionedin j pieces, the pieces can be searched with bk=jc errors. This is a generalization of the idea ofpartitioning the pattern in k+1 pieces, and has been mentioned in an earlier work of Myers [Mye94]in a totally di�erent context (indexed searching, which is covered later). In this thesis we give thede�nitive and most general form to this \partitioning lemma". The idea is thus to partition thepattern and the number of errors in as few pieces as possible so that the subpatterns can be searchedwith the bit-parallel algorithm. We show that some of the pieces can be in fact \superimposed"[BYN98d] to reduce the number of pieces to search (the superimposition is based on allowing manyletters to match the horizontal edges of the automaton). We also develop a hierarchical veri�cationtechnique that abandons false alarms as quickly as possible [NBY98b]. This allows using our �lterfor � < 1� e=p� (in practice the e can be replaced by 1). It is important to notice that this �lteris not sublinear, but O(n) search time in the best case (it really cannot skip characters). However,O(n) average search time is also very appealing, especially for not so low error levels.Apart from the theoretical �lter of [CM94] (see next section on �lters for long patterns), this isthe �rst �lter that reduces the problem to less errors instead of to zero errors. An interesting38

observation is that it seems that all �lters that partition the problem into exact search can beapplied for � = O(1= log�m), and that in order to improve that bound we must partition theproblem into (smaller) approximate searching subproblems. On the other hand, we present strongevidence in this thesis to show that the limit � = 1�1=p� is an absolute barrier for every �ltrationalgorithm, since there are simply too many real matches, and even the best �lter must check realmatches.We also apply the hierarchical veri�cation technique to the simple scheme that partitions the patternin k+1 pieces [NBY98d]. With this technique, the applicability of the �lter is increased, being even� < 1=2 for � = 32 (an asymptotical bound of � < 1= log�m is proved). This covers almost allthe cases of interest in text searching. It is important to observe that our �lter degrades (slowly)as the pattern length grows, unlike other �lters. This makes it especially suitable for typical textsearching, where the more complex �lters are not competitive.In 1998 we adapted the work of [NR98a] (which is not part of this thesis and is briey describedin Section 2.8). In this algorithm an automaton that recognizes a pattern (with no errors) istransformed so that it recognizes any su�x of the pattern and is simulated with bit-parallelism. Themodi�cation is to add a new state with "-transitions to all the other states. This automaton is usedas part of an algorithm for exact string matching. In [NR98b] we take our bit-parallel automaton of[BYN96b] and modify it to recognize any su�x of the pattern allowing errors. A slight modi�cationof the exact matching algorithm serves as a �lter to search allowing errors without inspecting allthe text characters. The result is competitive for very low error levels, and it is the fastest in somecases, such as for DNA on intermediate pattern lengths and a few errors.3.1.3.2 Very Long PatternsIn 1990, Chang and Lawler [CL94] presented two algorithms. A �rst one is O(kn) in the worst case(it uses [LV89] as its verifying algorithm), but O(n) on average provided � < 1=(log�m + O(1)).The constants are involved, but practical �gures are � � 0:35 for � = 64 or � � 0:15 for � = 4, Theidea is to build a su�x tree on the pattern and use it to derive the matching statistics in constanttime (i.e. longest pattern substring matching Ti:::). Given a text position, they repeat k timesthe process of concatenating the longest possible pattern substrings matching the text. If afterperforming those k errors they did not cover m� k text characters, a match is not possible. Noticethat they do not force that the substrings of the pattern matched were ordered in the pattern.A sublinear1 expected time algorithm was possible when k = o(m= logm), by splitting the text in�xed blocks of size (m�k)=2 and starting the veri�cations only at block boundaries. This is becauseany match had to contain some block completely. Despite their good complexity, the algorithmsare useful only for long patterns, which are rare in text searching.In 1992, Ukkonen [Ukk92] independently rediscovered some of the ideas of Chang and Lampe. Hepresented two �ltering algorithms, one of which (based on what he called \maximal matches") issimilar to the linear expected time algorithm of [CL94]. However, in the same paper he makes the�rst reference to \q-grams" for on-line searching (we will see older references in indexed searching).A q-gram is a substring of length q (see also Section 2.10). A �lter was proposed based on countingthe number of q-grams shared between the pattern and a text window (considering repetitions). Apattern of length m has (m � q + 1) q-grams (they overlap). The number of repetitions of eachq-gram had to be close in the pattern and the text window for a match to be possible. Notice thatthis is a generalization of the simple counting �lter of [JTU96] (which corresponds to q = 1).1Refer to Section 2.5 for the concept of sublinearity. 39

In 1994, Takaoka [Tak94] presented a simpli�cation of [CL94]. He considered h-samples of the text(which are non-overlapping q-grams of the text taken each h characters, for h � q. The idea wasthat if one h-sample was found in the pattern, then a neighborhood of the area was veri�ed. This istrue for h = b(m� k � q + 1)=(k+ 1)c. The average complexity of the search is O(kn log�(m)=m),which is sublinear for k small enough.Sutinen and Tarhio generalized the Takaoka �lter in 1995 [ST95], improving its �ltering e�ciency.This is the �rst �lter that takes into account the relative positions of the pattern pieces that matchin the text (all the previous matched pieces of the pattern in any order). The generalization is toforce that s q-grams of the pattern match (not just one). The pieces must conserve their relativeordering in the pattern and must not be more than k characters away from their correct position.In this case, the sampling step is reduced to h = b(m� k � q + 1)=(k+ s)c. The pattern is prunedat (k+2)h characters and k+2 sets of h+2k q-grams are extracted (by symmetrically overlappingwith previous and next areas). Those sets are called Qi. All the contiguous sequences of k + 2text h-samples are considered. If at least s of the k + 2 text samples are found in their respectiveQi set of pattern q-grams, the area is veri�ed. This reduces the problem to counting mismatches,and Sutinen and Tarhio use the algorithm [BYG92] for this matter. The resulting algorithm isO(k2n log�(m)=(mw)) on average, for q = O(log� n). The algorithm works well for long patterns,although with s = 2 can be reasonably applied to typical text searching.It looks like O(kn log�(m)=m) is the best complexity achievable by using �lters, and that it will workonly for k = O(m= logm), but in 1994 Chang and Marr obtained at the same time an algorithmwhich was O�k + log�mm n�for k < ��m, where �� depends only on � and for very large � it tends to 1 � e=p�. At the sametime, they proved that this was a lower bound for the average complexity of the problem (andtherefore their algorithm was optimal on average). This is a major theoretical breakthrough.The lower bound is obtained by taking the maximum (or sum) of two simple facts: the �rst one isthe O(n log�(m)=m) bound of [Yao79] for exact string matching, and the second one is the obviousfact that in order to discard a block of m text characters, at least k should be examined to �nd thek errors (and hence O(kn=m) is a lower bound). It is more impressive that an algorithm with suchcomplexity was found.The algorithm is a variation of the sublinear one of [CL94]. It is of polynomial space inm, i.e. O(mt)space for some constant t which depends on �. It is based on splitting the text in many substringsof size ` = t log�m. Instead of searching the longest exact matches of the pattern in the beginningof blocks of size (m�k)=2, it searches the text substrings of length ` in the pattern, allowing errors.The longest matches allowing errors inside P are precomputed for every `-tuple (hence the O(mt)space). Though very interesting theoretically, the algorithm is not practical except for very longpatterns.It is interesting to notice that the limit k � m(1� e=p�) appears in our work too, as a �rm limitof any �ltering mechanism. Chang and Lawler proved an asymptotic result, while in this thesis weprove a better bound. As they used this analysis to prove that the cut-o� heuristic of [Ukk85b] wasO(kn) on average, this explains that we could �nd a better constant redoing the same analysis andusing our own bounds.In 1996 Shi [Shi96] proposed to extend the idea of the k+1 pieces (explained in the previous sectionon short patterns) to k+s pieces, so that at least s pieces must match. He compared his �lter againstthe simple one, �nding that the �ltering e�ciency was improved. However, this improvement will40

be noticeable only for long patterns. Moreover, the on-line searching e�ciency is degraded becausethe pieces are shorter (which a�ects any Boyer-Moore-like search), and because the veri�cation logicis more complex. However, the scheme can be more interesting for indexed searching (which wasthe context in which Shi presented the paper), and we review it in that context later.Also in 1996, a general method to improve �lters was developed [GKHO97]. The idea is to mix thephases of �ltering and checking, so that the veri�cation of a text area is abandoned as soon as thecombined information from the �lter (number of guaranteed di�erences left) and the veri�cationin progress (number of actual di�erences seen) shows that a match is not possible. As they show,however, the improvement occurs in a very narrow area of �. This is a general phenomenon of thestatistics of this problem that we are going to analyze in detail in this thesis. They also tune theanalysis of [CL94].The best �lter for typical text searching is nowadays our optimized version of the k+ 1 pieces �lter[NBY98d]. Other competitive �lters are [TU93, ST95, JTU96]. All these �lters are included inour empirical comparisons. On the other hand, we are not covering in this thesis the area of longpatterns (typical in computational biology), where most of the mentioned �lters do not work well,and other are better [CM94, CL94, Ukk92, ST95]. A major theoretical achievement of this area isthe �lter [CM94], which is proven to be optimal on the average.3.1.4 Bit-Parallel Algorithms [See Figure 3.5][BY89]Birth of bit-parallelism ParallelizedDP matrix[Wri94]O(mn log(�)=w) time
Parallelize matrix[WM92a]Bit-parallelNFAO(kdm=wen) time [Mye98]Optimal parall. DP matrixO(mn=w) worst-caseO(kn=w) on average[ours 96-98]NFA parallelizedby diagonalsO(dkm=wen) worst-caseO(n) andO(qmkw� n) average

Parallelize automaton
Figure 3.5: Taxonomy of on-line bit-parallel algorithms.Bit-parallelism [BY91] was born in the PhD. Thesis of Baeza-Yates [BY89]. As explained in Sec-tion 2.6, the idea is to simulate parallelism using the bits of the computer word (whose number ofbits we denote by w). A simple algorithm is chosen, its work is parallelized, and its complexity isreduced (ideally by a factor of w). Hence, in this section we �nd elements which strictly could belongto other sections, since we parallelize other algorithms. There are two main trends: parallelize the41

work of the non-deterministic automaton that solves the problem (Figure 2.5), and parallelize thework of the dynamic programming matrix.3.1.4.1 Parallelizing Non-deterministic AutomataThe �rst bit-parallel algorithm was the exact string matching algorithm Shift-Or, which parallelizesa non-deterministic automaton. Despite that the algorithm is not competitive against the fastestones, it has been the basis for a lot of development that followed it, especially because of its abilityto handle some extended patterns. The Shift-Or algorithm was published in [BY89, BYG92], whereit was extended to handle classes of characters, multiple patterns, and mismatches.In 1992, Wu and Manber [WM92a] published a number of ideas that had a great impact in thefuture of text searching. They �rst extended the Shift-Or algorithm to handle wild cards (i.e.allow an arbitrary number of characters between two given positions in the pattern), and regularexpressions (which in fact can be considered the most exible extended pattern). What is of moreinterest to us is that they presented a simple scheme to combine any of the preceding extensions toapproximate string matching. The idea is to simulate using bit-parallelism the NFA of Figure 2.5,so that each row of the automaton �ts in a computer word (each state is represented by a bit). Therow i represents having matched the pattern with i errors. For each new text character, all thetransitions of the automaton are simulated using bit operations among the k + 1 computer words.Notice that all the k + 1 computer words have the same structure (i.e. the same bit is alignedto the same text position). The cost of this simulation is O(kdm=wen) in the worst and averagecase, which is O(kn) for patterns typical in text searching (i.e. m � w). This is a perfect speedupover the serial simulation of the automaton, which would cost O(mkn) time. Notice that for shortpatterns, this is competitive to the best worst-case algorithms.Thanks to the simplicity of the construction, the rows of the pattern can be changed by a di�erentautomaton. As long as they are able to solve a problem for exact string matching, they make k+ 1copies of the resulting computer word, perform the same operations in the k + 1 words (plus thearrows that connect the words) and they have an algorithm to �nd the same pattern allowing errors.Hence, they are able to perform approximate string matching with sets of characters, wild cards,and regular expressions. They also allow some extensions typical of approximate searching: a partof the pattern can be searched with errors and another may be forced to match exactly, and di�erentcosts of the edit operations can be accommodated (including not allowing some of them). Finally,they are able to search a set of patterns at the same time, but this capability is very limited (sinceall the patterns must �t in a computer word).The great exibility obtained encouraged the authors to build a software called Agrep [WM92b],where all these capabilities are implemented (although some particular cases are solved in a di�erentmanner). This software has been taken as a reference in all the subsequent research.In 1996, as part of this thesis, we presented a new bit-parallel algorithm able to parallelize thecomputation of the automaton even more [BYN96b, BYN96a, BYN98d]. The classical dynamicprogramming algorithm can be thought of a column-wise \parallelization" of the automaton [BY96],and Wu and Manber [WM92a] proposed a row-wise parallelization. Neither algorithm was able toincrease the parallelism because of the "-transitions of the automaton, which caused what we callzero-time dependencies. That is, the current values of two rows or two columns depend on eachother, and hence cannot be computed in parallel. We were able to �nd the bit-parallel formula for adiagonal parallelization. That is, we packed the states of the automaton along diagonals instead ofrows or columns (notice that this is totally di�erent from the diagonals of the dynamic programming42

matrix). This idea was mentioned in [BY91] but no bit-parallel formula was found. The resultingalgorithm isO(dkm=wen) worst case time, whose improvement over [WM92a] is especially noticeablefor short patterns (where our algorithm is O(n)). This algorithm is the fastest known algorithmfor short patterns, except for low error levels where our �ltration algorithm [NBY98d] is faster.Moreover, many of the extended patterns shown in [WM92a] can also be searched in this scheme.We proposed many techniques to handle longer patterns. The simplest one is to partition theautomaton in many computer words. For moderate error levels, not all the words have to be updatedfor each text character. This is thanks to the Ukkonen cut-o� technique, which shows that the �rst(left to right) O(k) diagonals of the automaton have active states, on average. Other partitioningand automata superimposition techniques have been already explained as �ltering approaches. In1998 [NBY98b] we developed improved techniques of register usage and improved veri�ers for the�lters, as well as an optimal algorithm to combine all the possible partitioning techniques. Acomplete theoretical analysis and experiments were performed, showing that on average the resultingalgorithm was O(n) for low error levels, O(pmk=(w�) n) for moderate error levels, and O(k(m�k)n=w) otherwise. The result is that the algorithm is not only the fastest one for very shortpatterns, but also for patterns of any length provided the error level keeps moderate. The onlyfaster algorithm is also part of this thesis (the (k+ 1)-pieces �lter of [NBY98d]), and improves thisone for moderate error levels and not very long patterns. However, other �lters could improve ouralgorithm for very long patterns, although this is outside the scope of typical text searching.3.1.4.2 Parallelizing the Dynamic Programming MatrixIn 1994, Wright [Wri94] presented a �rst work using bit-parallelism on the dynamic programmingmatrix. The idea was to consider secondary diagonals (i.e. those that run from the upper-right tothe bottom-left) of the matrix. He used some properties of the matrix to �nd that the cells couldbe represented with two bits (for the values f�1; 0; 1g), and managed to represent the process usingthree contiguous diagonals and to partially parallelize the computation. The parallelization worksby performing in parallel a number of comparisons of the pattern versus the text, and then usingthe vector of the results of the comparisons to update many cells of the diagonal in parallel. Sincehe has to store characters of the alphabet in the bits, his algorithm is O(nm log(�)=w) in the worstand average case. This was competitive for very small alphabets (e.g. DNA).In 1998 (after our algorithm [BYN96b] was published), Myers [Mye98] found a better way to par-allelize the computation of the dynamic programming matrix. Myers was also able to represent thedi�erences along columns instead of the columns themselves, so that two bits per cell were enough(in fact this algorithm can be seen as the bit-parallel implementation of the automaton which ismade deterministic in [WMM96], see Section 3.1.2). The parallelization has optimal speedup, andthe time complexity is O(kn=w) on average and O(mn=w) in the worst case. A problem whichwas very similar to that of breaking the "-dependences was solved (and the solution formula has aninteresting resemblance to ours, despite the models being very di�erent). The result is an algorithmthat uses better the bits of the computer word. The formula is a little more complex than thatof [BYN96b] and hence the algorithm is a little slower, but it is can accommodate longer patternsusing less computer words, improving all the other algorithms (including ours) for high error levelsand not very long patterns. As it is di�cult to improve over O(kn) algorithms, this algorithm maybe the last word with respect to asymptotic e�ciency of parallelization. As it is now common toexpect in bit-parallel algorithms, this scheme is able to search some extended patterns as well.At the present time, most of the bit-parallel algorithms are worthwhile in practice. [WM92a] is43

unbeaten in exibility (although it is the less e�cient scheme nowadays). [Wri94] is e�cient insmall alphabets (we know no other algorithm that improves as � decreases), but it is not the fastestnowadays (it is slower than [Mye98] even on a binary alphabet). Our algorithms and [Mye98] arethe fastest in di�erent areas. We consider all these algorithms in our experiments.3.2 Variants on the On-line ProblemAs explained in the Introduction, there are a lot of variants of the basic problem. We can classifythem in three groups: variants on the kind of pattern to search, variants on the text form, andvariants of the distance function. We explain briey these alternatives (which can, in principle, becombined).Varying the type of pattern: instead of being just a sequence of characters, the pattern couldbe a more general expression, for instance a regular expression. These are called \extendedpatterns". Another interesting variant is when the pattern is in fact a set of strings and wewant to �nd all their occurrences.Varying the type of text: a second alternative is to consider that the text could be generalized.A �rst generalization is to consider classes of characters in the text (this has applications, forinstance, to computational biology). Computational biology is also interested in approximatestructure matching (e.g. �nding molecules whose spatial distribution is close to a query).Other interesting extensions is to consider a multidimensional text (and pattern), which hasapplications to image processing and computer vision; a non-linear text (hypertext); a com-pressed text; and many others.Varying the distance function: as we have selected the Levenshtein or edit distance as ourmain focus (since we are mainly interested in text searching), all the other distances such asHamming, longest common subsequence, episodes, reversals and others used in computationalbiology, etc. are considered \variants". As explained in the Introduction, the problem becomesvery di�erent when the distance function is modi�ed, and therefore it is di�cult to developgeneral algorithms. We introduced some of the most interesting (to us) distance functions inSection 2.1, but the spectrum is very broad and is out of the scope of this work.We do not address in general any variant of the classical problem in this thesis. However, someexceptions will be made. First, many of our algorithms are able to handle extended patternsand some restricted alternatives of distance functions (related to assigning di�erent costs to the editoperations), and we mention throughout the thesis when this is the case. Second, we will devote onechapter to on-line multipattern searching, since we believe that, together with extended patterns,this is one of the most important and practical variants on the classical problem.We present now a historical background on the variants which are considered in this thesis.3.2.1 Extended Patterns and Di�erent CostsA possible extension of the search pattern is what is called \classes of characters" [BY89] (as well as\limited expressions" in [WMM96]), see Section 2.6. The idea is that the pattern does not belongto �� but it belongs to P(�)�. That is, each pattern position is a set of characters. Such patternP = p1::m matches Ti+1::i+m if Ti+j 2 pj for all j 2 1::m. In a more colloquial style, a number ofinteresting cases follow: 44

� range of characters (e.g. t[a-z]xt, where [a-z] means any letter between a and z);� arbitrary sets of characters (e.g. t[aei]xt meaning the words taxt, text and tixt);� complements (e.g. t[�ab]xt, where�abmeans any single character except a or b; t[�a-d]xt,where �a-d means any single character except a, b, c or d);� arbitrary characters (e.g. t�xt means any character as the second character of the word);� case insensitive patterns (e.g. Text and text are considered as the same words).There is some theoretical work on searching allowing errors and classes of characters and otherextensions, e.g. [FP74, Abr87]. However, those works are of theoretical interest mainly.The real practical breakthrough occurred with the birth of bit-parallelism [BYG92]. A good pointof almost all bit-parallel algorithms is that they can handle classes of characters at virtually zeroextra cost. In Section 2.6 we explain how to do it for exact searching in the Shift-Or algorithm,just by changing the preprocessing step and using the same algorithm. The adaptation is exactlythe same in all cases.In their 1992 paper [WM92a], Wu and Manber showed that the bit-parallel approach could beextended to allow errors and at the same time to support a number of extended patterns (as wehave seen in Section 3.1.4). Those extensions included not only classes of characters, but alsoarbitrary number of wild cards (x#y matches xzy for any string z) and combining parts of thepattern that are to be matched exactly and others that are allowed to have errors. As we will seein this thesis, our faster versions of this algorithm support most of these options.The most general pattern supported by the approach of [WM92a] is the regular expression, whichcan be searched allowing errors. There are other previous works able to solve the same problem,such as [WS78, MM89, WMM95], but according to [WM92a] they are much slower on typical textretrieval queries.Finally, [WM92a] also shows how to assign di�erent costs to the di�erent edit operations (insertion,deletion, substitution), as well as how to forbid some operation.There is no speci�c chapter for these issues in the thesis. Rather, when we present our on-linealgorithms we point out how can they handle more general patterns or di�erent costs in the distancefunction.Some of the theoretical works mentioned here can handle classes of characters in the text as well, andin general all bit-parallel algorithms can manage to allow classes of characters in the text. If a textspecial character C is de�ned as a subset of the alphabet, then the table of the special character isthe bitwise-or of the tables of all the characters in C (the \or" here assumes that 1 means matching,otherwise it is \and"). Hence this is a text variant generally supported with bit-parallelism.3.2.2 Multiple Patterns [See Figure 3.6]Another di�erent kind of \extension" to the pattern is to consider multipattern matching. A setof patterns is given and we are required to �nd all their occurrences in the text. This problem hasmany applications, for instance� Spelling: instead of searching incorrect words in the dictionary to �nd the most likely variants,we may search the dictionary in the text, hopefully at much less cost.45

Bit-parallel packing(very limited)[BY89,WM92a]O(mn), only 1 error[MM96]thousandsof patterns Bit-parallel superimposition[ours 97]or splitting in k+1 piecesor bit-parallel countingBest for up to 100 patternsFigure 3.6: Taxonomy of algorithms that search multiple patterns allowing errors.� Information retrieval: when synonym or thesaurus expansion is done on a keyword and thetext is error-prone, we may want to search all the variants allowing errors.� Batched queries: if a system receives a number of queries to process, it may improve e�ciencyby searching all them in a single pass.� Single-pattern queries: some algorithms for a single pattern allowing errors (e.g. patternpartitioning, see Section 5.5) reduce the problem to the search of many subpatterns allowingless errors, and they bene�t from multipattern search algorithms.The number r of patterns may range from a few ones (in applications of synonym or thesaurusexpansion) to thousands (in spelling applications). Of course the goal is to be more e�cient than rsequential searches.The algorithm of Wu and Manber [WM92a] is able to search many patterns in parallel allowingerrors. However, this capability is extremely limited since all the patterns must �t in a computerword, i.e. rm � w. If there are more patterns, many separate searches have to be performed. Thepossible speedup is limited by bw=mc, i.e. the search cannot be parallelized at all if m > w=2.In 1996, Muth and Manber [MM96] presented an algorithm able to search thousands of patterns inparallel with essentially no degradation in the search cost, which is O(mn). However, the techniqueis limited to k = 1. The idea is based on the fact that we can allow just one deletion in thepattern and/or in the text and the result is the same. A hash table stores all the alternatives ofeliminating one letter from all patterns, and the text is traversed doing the same and searching the(m� 1)-length substrings in the hash table.As part of this thesis, we presented two new algorithms for multipattern approximate searching in1997 [BYN97b]. The �rst algorithm is based on our bit-parallel algorithm (Section 3.1.4). Since wecan put more than one letter in the arrows of the automaton (thanks to the mechanism of classes ofcharacters), we \superimpose" many automata and perform a single search with the superimposedautomaton. The search works as a �lter, since by superimposing "this" and "wait" we can match"wais" with zero errors. We present a di�erent hierarchical veri�cation technique which works onthe number of patterns superimposed rather than on the pattern pieces. We analyze how manypatterns can be superimposed so that the �lter works well. The result is the fastest algorithm formedium error level and a small number of patterns (say, less than 15).The other algorithm presented in [BYN97b] extends the �lter of the (k+1) pieces (see Section 3.1.3),so that we search now r(k + 1) pieces. This algorithm is the fastest one for a moderate number ofpatterns (say, 100 or less) and low error levels. 46

Also in 1997, we presented another �lter for multipattern approximate searching [Nav97a] (also partof this thesis). The �lter is a multipattern version of the counting �lter [JTU96] of Section 3.1.3(which is simpli�ed and studied more in depth in our paper). The algorithm combines the �lter withbit-parallelism: the counters for many patterns are kept in a single computer word and updated inparallel. The algorithm was the fastest for for moderate error levels when it was created, but it isnot anymore after hierarchical veri�cation appeared.We implement all the referenced algorithms in this thesis, since all them were the best at somepoint.3.3 Indexed SearchingIf the text is large and has to be searched frequently, even the fastest on-line algorithms are notpractical, and preprocessing the text becomes necessary. Therefore, many indexing methods havebeen developed for exact string matching [WMB94]. However, only a few years ago, indexingtext for approximate string matching was considered one of the main open problems in this area[WM92a, BY92]. Hence, the area is rather new.We divide this presentation in two classes of indices, one of them able to solve the general problem(sequence-retrieving indices) and the other able to solve the restricted case of an index on naturallanguage that retrieves whole words that match the pattern (not any sequence), which we call word-retrieving indices. This is briey discussed in Sections 2.10 and 2.7. We made contributions in bothareas (see Figure 3.7).
Sequence retrieving
Word retrieving Depth-�rst searchMinimumredundancySampling the textAll text q-gramsSimulating text traversalFiltering

Vocabulary searchPartial inversionFull inversion (analysis)
Figure 3.7: Taxonomy of indexed searching. The areas where we made contributions are in boldface.When discussing indices, not only their retrieval performance is of interest, but also their spacerequirements and building cost. This last cost, however, is less interesting because it is assumedto be amortized over a number of searches. In general it is very di�cult to give useful analyticalresults on the performance of sequence-retrieving indices. Only an experimental comparison canshow their real performance.Sequence-retrieving indices are much more immature than word-oriented ones (since they addressa harder problem). Their speedups over the sequential algorithms are still unsatisfactory, and they47

take up too much space. Our goal in this thesis with respect to indexing has been to �nd alternativeswhich are more reasonable for typical text retrieval. We �rst cover word-retrieving indices and thenthe two di�erent kinds of sequence-retrieving indices.3.3.1 Word-Retrieving Indices [See Figure 3.8]
Improvements to GlimpseAnalysis of block addressing[ours 97] Vocabularyas ametric space[ours 98][MW94]Glimpse: block addressing+ vocabulary search[ANZ97]Igrep: full inversionAnalysis in [ours 97] [SM96]Vocabulary as a trieFigure 3.8: Taxonomy of word retrieving indices.Word retrieving indices are basically inverted indices (see Section 2.10), where approximate searchingis converted into a sequential search over the vocabulary. An inverted index can in principle be builtin O(n) time by keeping the vocabulary in a trie data structure and storing the list of occurrencesat the leaves. However, this is not realistic if the index does not �t in main memory. There existalgorithms that work well on secondary memorywhose cost isO(n log(n=M)) whereM is the amountof available main memory. It is possible nowadays to build an inverted index for 1 Gb of text in 20minutes or so. The space requirements of these indices is O(n) if all the occurrences of the wordsare stored (typically 15%-40% of the text size if stopwords are not indexed). If block-addressing isused these requirements are smaller, as we see next.The �rst proposal for a word-retrieving index (called Glimpse) was due to Manber and Wu in 1993[MW94]. In a very practical approach, they propose a scheme based on a modi�ed inverted �leand sequential approximate search, as explained in Section 2.10. The text is logically divided into\blocks". The index stores all the di�erent words of the text (the \vocabulary"). For each word,the list of the blocks where the word appears is kept.To search a word allowing errors, an on-line approximate search algorithm (in this case, Agrep[WM92b]) is run over the vocabulary. Then, for every block where a matching word is present,a new sequential search is performed over that block (using Agrep again). The search in thevocabulary is cheap because it is small compared to the text size (Section 2.9).The idea of using blocks makes the index small, at the cost of having to traverse parts of the textsequentially. The index is small not only because the pointers to the blocks are small, but alsobecause all the occurrences in a single block are referenced only once.Glimpse uses 250{256 blocks, which works well for moderate-size texts. For larger texts, it is possibleto point to �les instead of blocks, or even to occurrences of words (full inversion). Typical �guresfor the size of the index with respect to the text are: 2-4% for blocks, 10-15% for �les, and 25-30%for words. Glimpse works well for texts of up to 200 Mb and moderate error ratio. Queries areanswered in a few seconds, depending on the complexity of the query.48

In 1997, as part of this thesis, we implemented a similar index and improved its search algorithm[BYN97a]. In the same lines of Glimpse, the text is divided into blocks and an on-line approximatesearch algorithm is run over the vocabulary (in this case, our bit-parallel algorithm [BYN96b], whichis especially well suited for short patterns like words). However, once the list of matching wordsof each block is obtained, the approximate algorithm is not used anymore. Instead, a multipleexact pattern matching algorithm is used to search the matching words in the blocks. It is shownexperimentally that this is up to �ve times faster than Glimpse.In the same work, it is also shown analytically and experimentally that it is possible to have asublinear-size index with sublinear search times, even for approximate word queries. A practicalexample shows that the index can be O(n0:94) in space and in retrieval time. We also applied theanalysis to Web document size statistics, obtaining new interesting results. This is a very importantanalytical result which is experimentally validated and makes a very good case for the practical useof this kind of index. Moreover, these indices are amenable to compression. Block-addressing indicescan be reduced to 10% of their original size [BMNM+93], and the �rst works on searching the textblocks directly in their compressed form are just appearing [MNZBY98b, MNZBY98a] with verygood performance in time and space (not part of this thesis).Also in 1997, Ara�ujo, Navarro and Ziviani take the approach of full inversion in an index calledIgrep [ANZ97]. For each word, the list of all its occurrences in the text are kept and the text isnever accessed. The search on the vocabulary is as before (using [BYN96b]), but the second phaseof the search changes completely: once the matching words in the vocabulary are identi�ed, all theirlists are merged. Phrases can also be searched, by splitting them into words. The approach is muchmore resistant than Glimpse to the size of the text collection, and is shown to work well with textcollections of more than 1 Gb. The price is the higher space requirements (30%-40% of the textsize). It is easy to compress these indices to at least 15-20% of the text size by storing di�erentialinstead of absolute positions, although this makes impossible the use of some search optimizationtechniques. A 1 Gb text collection can be searched for single word queries in nearly 2 seconds fork � 2. Even using pointers to words, Glimpse does not work well with such large texts.The analytical results of [ANZ97] are part of this thesis (not the rest). The analysis shows that,under the assumption that the vocabulary size is O(n�) for � � 0:5 (which is validated in that workand in previous ones [Hea78]), the retrieval costs are near O(n0:4::0:8) for useful searches (i.e. thosewith reasonable precision).Notice that the part of the search which is still not optimized is the sequential search in thevocabulary. This is because the vocabulary is not very large (a few megabytes) and thereforecan be sequentially searched in a few seconds. Although this solution is reasonable for a singleend-user, other setups may require faster algorithms. In 1996, Shang and Merettal [SM96] useda trie to arrange all the words of a dictionary and reported improvements for k = 1. This is aparticular case of what is done in the next section for the general problem. Although the algorithmis very fast, it poses high space requirements.In 1997, as part of this thesis [BYN98b] we presented a di�erent search scheme based on regardingthe vocabulary as a metric space and using a data structure to index such metric space. A metricspace is a set of elements with a distance function (see Section 2.1), which in our case is the set ofwords and the edit distance function. Using a suitable data structure to index the vocabulary as ametric space, the search time is sublinear and practical reductions of up to 60% in the search timeare obtained. We need much less space than [SM96].49

3.3.2 Simulating Text Traversal [See Figure 3.9]
Simple search on su�x trees[BYG90, Gon92]Also works on su�x arrays[ours 97]Improvedonline algorithmAnalyzed the indexPartition into less errors

[JU91]Searchingon DAWGsBetweenO(m) andO(mn)[Ukk93]Searchon su�x treesO(mQmin(m;logQ)+R) timeO(mQ) extra space[Cob95]Improvedtime toO(mQ+R)and extra space toO(Q)
Depth-�rst searchMinimum redundancy

Figure 3.9: Taxonomy of indices that simulate text traversal.This type of sequence-retrieving index is based on simulating a sequential algorithm, but runningit on the su�x tree or DAWG of the text (see Section 2.7) instead of the text itself. Since everydi�erent substring in the text is represented by a single node in the tree or automaton, it is possibleto avoid the repetitions that occur in the text. Those indices take O(n) space and construction time,but their construction is very ine�cient if the text does not �t in main memory (their constructionalgorithm is not optimized for secondary memory). Moreover, they are very ine�cient in spacerequirements, since they take at least 12 times the text size (i.e. an overhead of 1200% at least).This can be partially overcome by using compression. In [KU96], a compression technique is pro-posed which obtains an index of size O(nH= logn), where H is the entropy of the text characters,which in the worst case is O(1). They show experiments on natural language where the space re-quirements are 2:5n bytes (i.e. 250% overhead). This is much better, although still insu�cient forvery large texts.3.3.2.1 Minimum RedundancyThe �rst work on this type of index is due to Jokinen and Ukkonen, in 1991 [JU91]. The proposal forthis type of index is based on the DAWG of the text (see Section 2.7), where the idea is to traversethe DAWG instead of the text. Since each node of the DAWG represents a di�erent substring ofthe text, this traversal avoids to process many times the same substring, therefore avoiding the textredundancies.In 1993, Ukkonen presented an algorithm in the lines of [JU91], this time based on su�x trees insteadof DAWGs [Ukk93]. The DAWG functionality was replaced with su�x links (see Section 2.7). This50

algorithm is based on the fact that the state of the search at a given point in the text is onlyinuenced by the last characters read (m+k or less). Ukkonen calls \viable pre�xes" the substringsthat can be pre�xes of an approximate occurrence of the pattern. The algorithms traverse inthe su�x tree all the di�erent viable pre�xes, simulating the dynamic programming algorithmbehavior. The already visited states store their column values to avoid recomputation. Ukkonenpresents three di�erent algorithms, with times O(mQ + n), O(mQ logQ + R) and O(m2Q + R),where R is the number of matches found and Q is the number of viable pre�xes, which is shown tobe O(min(n;mk+1�k)). The extra space needed is O(mQ).In 1995, Cobbs [Cob95] used a very similar idea but with improved results: O(mQ+R) search timeand O(Q) extra space.3.3.2.2 Depth-First SearchAround 1988, Gonnet proposed (independently of the above work) a simpli�ed version of [Ukk93],to be run on su�x trees (later applied to computational biology in Darwin [Gon92]). The idea is alimited depth-�rst search on the su�x tree. Since every substring of the text (i.e. every potentialoccurrence) starts at the root of the su�x tree, it is su�cient to explore every path starting at theroot, descending by every branch up to where it can be seen that that branch does not representthe beginning of an occurrence of the pattern. This algorithm inspects more nodes than [Ukk93],but it is simpler and does not need the su�x links. For instance, with an additional O(logn) timefactor penalty, the algorithm runs on su�x arrays, which take 4 times the text size instead of 12times. This scheme is analyzed in [BYG90], where it is shown that at most O((� � 1)k(m�k�1))nodes are inspected2.As part of this thesis [BYNST97] we implemented the algorithm [BYG90, Gon92] over su�x trees in1997, replacing dynamic programming with our bit-parallel algorithm (explained in Section 3.1.4).This algorithm cannot work on the more complex setup of [Ukk92], since that one needs someadaptations of the dynamic programming algorithm that were not easy to parallelize. We alsoanalyze this algorithm, �nding that the number of inspected nodes is sublinear for � < (1 �e=p�)(log� n)=m if log� n � m, and for � < (log� n)=m � 1 or � < 1 � e=p� otherwise. Thisalgorithm can also be run on a su�x array, i.e. on an index which is 4 times the text size. Theexperimental results shows that this idea is up to 150 times faster than Cobbs' algorithm, andtherefore the simpli�cation pays o�.In the same work, we adapt the on-line pattern partitioning techniques of [BYN96b] (see Sec-tion 3.1.3), so that the pattern is split in j subpatterns which can be searched with the bit-parallelalgorithm with at most k=j errors. All the occurrences are collected and the matching positionsveri�ed. This idea worked surprisingly well, being an order of magnitude faster than all existingindexing schemes. We suggest how to reduce the space usage for this index and show that morestudy is needed to fully understand how this idea works. The suggested index is in fact based ontext samples but uses approximate searching on them.2In fact, it is easy to show that at most O(�m+k) nodes are inspected, but the result of [BYG90] holds for generalacyclic regular expressions. 51

3.3.3 Filtration Indices [See Figure 3.10]
[Shi96]Split in k+s piecesImproves for long patterns Restricts positionsof preserved q-grams[HS94][JU91]q-grams counting�lterBetweenO(m) andO(kn)

Text h-samples reduce space[BYNST97]Search approximate samples
Split pattern in k+1 piecesUse all the text q-grams[ours 97]O(kn=�1=�) time [ST95]O(nm(k+logm)=�q) time [Mye94]Store all text q-gramsSearch all variants of patternO(knpow(�) logn) time[LST96]Grampse: block addressingFigure 3.10: Taxonomy of �ltration indices.This second type of sequence-retrieving indices is based on adapting an on-line �ltering algorithm(see Section 3.1.3). The �lters that are based in locating substrings of the patterns without errorscan build an index to quickly �nd those substrings. The advantage of those indices is that they aresmaller. They can also be built in linear time (with similar algorithms as for inverted indices). SeeSection 2.10 for a quick initial discussion.Their size and performance depend a lot on the length of the q-grams stored. If the q-grams arereasonable short and pose no space problems, the main problem of these indices is their linear spaceconsumption to store the q-grams positions in the text (this can vary depending on how many textq-grams are indexed). However, it is possible to reduce the space consumption, as shown in [KS96].The method makes use of the Lempel-Ziv idea for text compression which replaces each repetitionof the text by a reference to its �rst occurrence. The paper shows how to e�ciently search on suchcompressed data structure, which takes O(n= logn) space if q is small.Two crucial factors that a�ect the size of the index are the length of the q-grams (i.e. the value q),and the sampling step h, which is the distance among two text samples. The size of the \vocabulary"(i.e. number of di�erent q-grams) depends exponentially on q (it is upper bounded by �q), and thenumber of pointers to the text is n=h. The value q is normally rather small (3 to 5 in practice), andit cannot be shorter without a�ecting the �ltration e�ciency. With respect to the sampling step, wecan divide the q-gram indices in two types: those that take all the (m�q+1) overlapping q-grams ofthe pattern and only some samples of the text (n=h samples), and those that take non-overlappingq-grams in the pattern (we say that they \sample" the pattern) and all the (n�q+1) q-grams of thetext. The second type obviously takes more space, but is able to cope with higher error ratios. In52

fact, the text sampling indices seem to tolerate only low error levels for practical natural languageapplications.The idea of using q-grams for indexed approximate string matching is very old [Ull77, OM88]. How-ever, the methods were not fully developed until the 1991 work of Jokinen and Ukkonen [JU91].Their proposal for this case is an index of text q-grams, based on the observation that if an ap-proximate match of P with at most k di�erences ends at T:::j, then at least (m + 1 � (k + 1)q)q-grams of P occur in Tj�m+1::j . This is because Tj�m+1::j includes m � q + 1 q-grams, of whichat most kq can be altered by k edit operations. The text is divided into two layers of consecutive,non-overlapping blocks of length 2(m� 1). Then, the number of pattern q-grams in each block iscounted. For each block with enough pattern q-grams, the respective text area is examined usingdynamic programming. Notice that this is in fact an o�-line version of the �lter [Ukk92]. Since itis based on counting, we do not classify this index as sampling the text or not, although all theindices that followed can be divided in this manner.3.3.3.1 All q-grams on the TextIn 1994, Myers [Mye94] proposed an index where every sequence of the text up to a given lengthq is stored, together with the list of its positions in the text. To search for a pattern of length atmost q � k, all the maximal strings with edit distance at most k to the pattern are generated, andeach one is searched. Later, the lists are merged. Longer patterns are split in as many pieces asnecessary to make them of the required length. Instead of simply verifying each of the approximateoccurrences of the substrings, the algorithm goes up level by level in the partition process, obtainingthe approximate occurrences of that level by combining those of their two children in the next level.Query complexity is shown to be O(knpow(�) logn) on average, where pow(�) is a concave functionof � satisfying pow(0) = 0. This is sublinear when pow(�) < 1, which restricts the error ratiosup to where the scheme is e�cient. This maximum allowed error ratio increases with the alphabetsize. For example, the formula shows that �max is 0:33 for � = 4 and 0:56 for � = 20. Experimentscon�rm those computations.In 1994, Holsti and Sutinen [HS94] improved the �ltration condition of [JU91], using the fact that apreserved pattern q-gram cannot move more than k positions away from its original position. Thismethod does not use the block-oriented scheme of Jokinen and Ukkonen, but a window-orientedapproach: each occurrence of a pattern q-gram in T marks a corresponding window where anapproximate match might be located. The search times slightly improve those of [JU91], but theindex keeps the same: all the text q-grams are stored.In 1996, Shi [Shi96] proposed another alternative based on storing all the text q-grams (see alsoSection 3.1.3). The pattern is split in k+s parts, which cover the whole pattern and do not overlap.The paper reports that much less veri�cations are triggered than for the particular case s = 1.However, this is true for quite long patterns, which are very rare in typical text retrieval. Shiproposes the use of a su�x tree to locate the occurrences of the pieces of the pattern, but a muchsmaller q-gram index could be used.In 1998 and as part of this thesis [BYN97c] we implemented a simple and practical index, basedon splitting the pattern in k + 1 pieces (see Section 3.1.3). The goal is to obtain an index whichis useful for natural language, as the on-line version of this �lter is the most e�cient for shortpatterns like words. All the n text q-grams are indexed. To search a pattern, it is split in k + 1pieces, each piece is searched with no errors in an index, and all their occurrences are veri�ed fora complete match. Since in natural language a simple equal-length partition may give very bad53

results depending on the resulting substrings, an O(m2k) dynamic programming algorithm is usedto select the best pattern split, i.e. the one that minimizes the total number of text positions toverify. It is shown that the search time is O(kn=�1=�). For instance, with an index which is 1.5 to3 times the text size, reasonable approximate queries take 20% to 60% of the time of the on-linealgorithm. We found experimentally that in typical text searching it is impossible in practice to useblock addressing and still have a useful index. We believe that this is currently the most practicalindex for typical text retrieval. In our experimental results we show that this index is many timesfaster than Myers' on English text, although it is slower on DNA. It is also slower than those basedon su�x trees, but these pose impractical space requirements.3.3.3.2 Sampling the TextSutinen and Tarhio gave in 1995 [ST95] a static version of their on-line algorithm (see Section 3.1.3).The idea is based on observing a sequence of q-samples, i.e. non-overlapping q-grams of the textat �xed periods of length h (h is determined by the error level to tolerate). The main contributionof the static variation is saving space: only every h-th q-sample of text T is stored into the index.At �rst sight, this seems to result in a di�erent index for each m and k, but they can adjust s inthe formula of h so that the index, precomputed according to a �xed h, can be applied. They showthat their method needs less space for � < 0:3, and is e�ective for low error levels (e.g. m = � = 40and k � 4). The search times are O(nm(k + logm)=�q). Compared to our index [BYN97b], thisindex takes much less space, though it much less tolerant to errors as well (in fact, too restrictive fornatural language, although it improves for longer patterns). This can be noticed by comparing therespective on-line algorithms. Direct experimental results, however, are still not possible becausethe current implementation does not support approximate searching.The block-addressing idea presented in Section 2.10 to reduce space requirements can be applied tothis type of index too, at the cost of (much) higher search time. This has been presented in 1996in a variation of Glimpse, called Grampse [LST96]. In addition to conventional q-grams, Grampseuses also \gapped q-grams" (i.e. their letters are not consecutive in the pattern but picket at �xedintervals). Compared to Glimpse, Grampse works faster in locating sequences of words, and is usefulfor agglutinating languages such as Finnish.In 1997, the possibility of an index based on approximate occurrences of parts of the pattern (insteadof exact occurrences) was proposed in [BYNST97] (not part of this thesis). Similarly to the approachof [Mye94], all the elements at a given distance of the q-grams of the pattern are searched in theindex. The �ltration condition, however, is stricter since it requires that more than one element ispresent in the potential match. This index has not been implemented up to date.
54

Chapter 4Basic ToolsIn this chapter we present a number of basic tools which are used throughout the thesis, andtherefore we have decided to collect them in a single chapter previous to the rest of the work. Theseresults have been published in [BYN96b, BYN96a, BYN98d, NBY98b, BYN98e].4.1 Statistics of the ProblemIn this section we (partially) answer some natural questions about the distribution and statisticalbehavior of approximate string matching, which turn out to be very hard. These questions arenot only interesting by themselves, but are also essential for the average-case analysis of all thealgorithms of this thesis and for the practical selection of the correct algorithms for each scenario.Some of these questions are: what is the probability of an approximate occurrence? How manyoccurrences are there on average? How many columns of the dynamic programming matrix areactive? We give here our new results.In all the average-case analysis of this work we assume that the patterns are not extended. An easyway to consider classes of characters is to replace � by �=s in all the formulas, where s is the sizeof the Pi sets corresponding to pattern positions. This is because the probability of matching suchpattern position is not 1=� anymore, but s=�. For other extended patterns our analysis simply donot apply, and a case-by-case consideration is necessary.An analysis of the probability of the occurrence of a pattern allowing errors can be found in [RS97].However, the �nal expression is extremely complex, has P and k built-in, and does not allowderiving any general result. It can be used for, given a �xed P and k, compute the probability(using a computer program) for that particular pattern and number of errors. It is of no use toderive general results. The results that we present in this chapter are simpler and of general use1.4.1.1 Probability of MatchingLet f(m; k) be the probability of a random pattern of length m matching a given text position withk errors or less (i.e. that the text position is reported as the end of a match). We �nd analyticalupper and lower bounds for this probability and present later an experimental veri�cation.1We have also developed a simple C+Maple program which, given a speci�c pattern P and a number of errors k,builts its NFA, converts it to a DFA and then uses the Markov model to compute the probability of the �nal states,therefore �nding its exact matching probability as a function of �. But this is not the real problem.55

In particular, we are interested in which is the error level up to where the probability of verifying isexponentially decreasing with m. The importance of being exponentially decreasing with m is thatthe cost of verifying a text position is O(m2), and therefore if that event occurs with probabilityO(m) for some < 1 then the total cost of veri�cations is O(m2m) = o(1), which makes theveri�cations cost negligible. On the other hand, we show that as soon as the cost ceases to beexponentially decreasing it begins to be at least 1=m, which yields a total veri�cation cost ofO(mn). This is the same cost of plain dynamic programming. Hence, the limit � < 1�e=p� whichwe prove next corresponds, in theory, to the maximum error level up to where any algorithm basedon �ltration can work well2.4.1.1.1 An Upper BoundWe show that the matching probability is O(m) for = 1�� 2�1�� (1� �)2!1�� � � e2�(1� �)2�1�� (4.1)If our only aim is to make such probability exponentially small withm, we take the bound for = 1and consider valid any error level strictly smaller than the bound. This is� < �� = 1� ep� (4.2)while given a value the condition on � is given by Eq. (4.4), which is shown later.To prove f(m; k) = O(m), we consider an upper bound to f : suppose a text area Ta::b matches thepattern. Since we only report segments whose last character matches the pattern, we know that Tbis in P . We consider Ta as the �rst character matching the pattern. Then, the length s = b� a+ 1is in the range m�k::m+k. Since there are up to k errors, at leastm�k characters of the patternmust be also in the text. Under a uniform model, the probability of that many matches is 1=�m�k.Since these characters can be anywhere in the pattern and in the text, we havef(m; k) � mXs=m�k 1�m�k� mm� k�� s� 2m� k � 2� + m+kXs=m+1 1�s�k� ms� k�� s� 2s � k � 2� (4.3)where the two combinatorials count the ways to choose them�k (or s�k) matching characters fromthe pattern and from the text, respectively. The \�2" in the second combinatorials are becausethe �rst and last characters of the text must match the pattern. We divided the sum in two partsbecause if the area has length s > m, then more than m� k characters must match, namely s� k.See Figure 4.1.First assume constant � (we cover the other cases later). We begin with the �rst summation, whichis easy to solve exactly to get (1 � �)�mk �2=�m�k. However, we prefer to analyze its largest term(the last one), since it is useful for the second summation too. The last term is1�m�k� mm� k�� m� 2m� k � 2� = (1� �)2�m�k �mk�2�1 + O� 1m��2Notice that this limit is useless for � < 8, but is the limit we can formally prove. We show shortly that replacinge by 1.09 �ts better the real data. 56

Text

Pattern: m=9, k=5

First one
matches

Last one
matches

m

s

At least 9-5=4 matchesFigure 4.1: Upper bound for f(m; k).and by using Stirling's approximation x! = (x=e)xp2�x(1 + O(1=x)) we have(1� �)2�m�k mmp2�mkk(m� k)m�kp2�kp2�(m� k)!2�1 + O� 1m��which is � 1�1���2�(1� �)2(1��)�m m�1 �1� �2�� + O� 1m��where the last step is done using Stirling's approximation to the factorial.Clearly, for the summation to be O(m) (< 1), this largest term must be of that order, and thishappens if and only if the base of the exponential is � . On the other hand, the �rst summationis bounded by k + 1 times the last term, so the �rst summation is O(m) if and only if this lastterm is (recall that our exponential is multiplied by m�1 and therefore we can safely multiply it byk + 1). That is � � � 1�2�(1� �)2(1��)� 11�� = 1 11��� 2�1�� (1� �)2It is easy to show analytically that e�1 � � �1�� � 1 if 0 � � � 1, so for = 1 it su�ces that� � e2=(1� �)2, or equivalently � � 1� e=p� (hence Eq. (4.2)), while for arbitrary ,� � 1� ep� 12(1��) (4.4)is a su�cient condition for the largest (last) term to be O(m), as well as the whole �rst summation.We address now the second summation, which is more complicated. First, observe thatm+kXs=m+1 1�s�k� ms � k�� s � 2s� k � 2� � m+kXs=m 1�s�k� ms � k��sk�a bound that we later �nd tight. In this case, it is not clear which is the largest term. We can seeeach term as 1�r�mr ��k + rk �57

where m � k � r � m. By considering r = xm (x 2 [1 � �; 1]) and applying again Stirling'sapproximation, the problem is to maximize the base of the resulting exponential, which ish(x) = (x+ �)x+��xx2x(1� x)1�x��Elementary calculus leads to solve a second-degree equation that has roots in the interval [1� �; 1]only if � � �=(1��)2 (indeed, this condition is necessary just for x � 1��). Since due to Eq. (4.4)we are only interested in � � 1=(1� �)2, �h(x)=�x does not have roots, and the maximum of h(x)is at x = 1� �. That means r = m � k, i.e. the �rst term of the second summation, which is thesame largest term of the �rst summation.We conclude that f(m; k) � 2k + 1m m �1 + O� 1m�� = O (m)and therefore Eqs. (4.2) and (4.4) hold for the whole summation. When reaches 1, the probabilityis very high, since only considering the term s = m we have
(1=m).Since we obtained an O() result, it su�ces for the condition to hold after a givenm0, so if k = o(m)we always satisfy the condition.4.1.1.2 A Lower BoundOn the other hand, the only optimistic bound we can prove is based on considering that onlyreplacements are allowed (i.e. Hamming distance). In this case, given a pattern of length m, thenumber of strings that are at distance i from it are obtained by considering that we can freelydetermine the i places of mismatch, and that at those places we can put any character except thatof the pattern, i.e. �mi �(� � 1)i = �mi � �i (1 + O(1=�))Although we should sum the above probabilities for i from zero to k, we use the largest i = k as a(tight) lower bound. Hence, the probability of matching is obtained by dividing the above formula(with i = k) by �m (the total number of possible text windows of length m), to obtainf(m; k) � �mk� 1�m�k = mmkk(m� k)m�k�m�kpm �(1) = 1� �1�� (1� �)�!(1��)m �(m�1=2)which since e�1 � � �1�� � 1, can be lower bounded by f(m; k) � �m m�1=2, where� = � 1(1� �)��1��Therefore an upper bound for the maximum allowed value for � is � � 1� 1=�, since otherwise wecan prove that f(m; k) is not exponentially decreasing on m (i.e. it is
(m�1=2)).4.1.1.3 Experimental Veri�cationWe verify our analysis experimentally in this section. The experiment consists of generating a largerandom text (n = 10 Mb) and running the search of a random pattern on that text, allowing k = m58

errors. At each text character, we record the minimum allowed error k for which that text positionwould match the pattern. We repeat the experiment with 1,000 random patterns.Finally, we build the (cumulative) histogram, �nding how many text positions have matched foreach k value. We consider that k is \safe" up to where the histogram values become signi�cant,that is, as long as few text positions have matched. The threshold is set to n=m2, since m2 is thecost of verifying a match. However, the selection of this threshold is not very important, since thehistogram is extremely concentrated. For example, for m in the hundreds, it moves from almostzero to almost n in just �ve or six increments of k.Figure 4.2 shows the results for m = 300, showing the maximum \safe" � value. The curve� = 1 � 1=p� is included to show its closeness to the experimental data. Least squares give theapproximation �� = 1� 1:09=p�, with a relative error smaller than 1%.
++ + + + + +��� � � � �

� � � � � �2 10 20 30 40 50 60 �0.20.40.60.8
1.0� � Upper bound 1� 1=�The curve 1� 1=p�Experimental data+ Exact lower bound with = 1 (Eq. (4.1))� Conservative lower bound, Eq. (4.2)Figure 4.2: Theoretical and practical bounds for �, for m = 300 and di�erent � values. We plotthe maximum � value which does not trigger too many veri�cations.Figure 4.3 validates other theoretical assumptions. On the left we show that the matching proba-bility undergoes a sharp increase at �� (this is the histogram we have built). On the right we showthat �� is essentially independent on m. Notice, however, that our assumptions are a bit optimisticsince for short patterns the matching probability is somewhat higher.This shows that our upper bound analysis matches reality better, provided we replace e by 1:09 inthe formulas. We do so at the places of this work that require practical tuning, while we keep usinge (i.e. the value we can actually prove) in the theoretical developments.4.1.2 Active ColumnsIn Section 3.1.1 we explained the cut-o� heuristic of Ukkonen [Ukk85b], which for each characterworks a time proportional to the number of active columns in the dynamic programming matrix.At the end of each iteration the last active column may increase in one (if a horizontal automatonarrow is crossed from the last active column to the next one), or may decrease in one or more (ifthe last active column runs out of active states, the next-to-last may be well before it). In this casethe algorithm goes backward in the matrix looking at the new last active column.As we later use this same idea, it is interesting to know which is the average number of active59

0.0 1.00.0 0.2 0.4 0.6 0.8 1.00.0
1.0
0.00.10.20.30.40.50.60.70.8
0.9

�p
200 1000200 400 600 800 10000.0

1.0
0.00.10.20.30.40.50.60.70.8
0.9

m��
Figure 4.3: On the left, probability of an approximate match as a function of the error level(m = 300). On the right, maximum allowed error level as a function of the pattern length. Bothcases correspond to random text with � = 32.columns. Ukkonen conjectured that the last active column was O(k) on average and therefore hisalgorithmwasO(kn) on average. However, this was proved much later by Chang and Lampe [CL92].We �nd here a tighter bound.More formally, if we call cr the minimumrow of an active state at column r in the NFA of Section 2.2)3, then the question is: which is the largest r satisfying cr � k? The columns satisfying cr � k arethose active. We follow here the proof of [CL92] and �nd a tighter bound. If we call L the lastactive column, we have E(L) � K +Xr>K r Pr(cr � k)for anyK. Since we know from the previous section that if k=r < 1�e=p�, then Pr(cr � k) = O(r)with < 1, we take K = k=(1� e=p�) to obtainE(L) � k1� e=p� + Xr>k=(1�e=p�) r O(r) = k1� e=p� + O(1) (4.5)which shows that, on average, the last active column is O(k). This re�nes the proof of [CL92],which shows that the heuristic of [Ukk85b] is O(kn).The e of the above formula has the same source as in the previous section and hence can be replacedby 1.09 in practice. By using least squares on experimental data we �nd that a very accurate formulais E(L) = 0:9 k1� 1:09=p� (4.6)with a relative error smaller than 3.5%.Figure 4.4 (left side) shows the last active column for random patterns of length 30 on random text,for di�erent values of �. Given the strong linearity, we take a �xed k = 5 and use least squares to�nd the slope of the curves. From that we obtain the 0.9 above. The right side of the �gure showsthe experimental data and the �tted curve (for m = 30). The results are the same for any k lessthan m(1� 1:09=p�).3Alternatively, cr is the value at row r of the current column in the dynamic programming matrix (see Section60

5 305 10 15 20 25 300
30
0510152025
30

k 10 6010 20 30 40 50 600
20
051015
20

�Figure 4.4: On the left, last active column for � = 2, 4, 8, 16, 32 and 64 (curves read from left toright). On the right, last active column for k = 5, experimental (full line) and theoretical (dashed).4.2 Partitioning LemmasAs explained in Section 3.1.3, it is well known that the problem of approximate string matching canbe reduced to a number of subproblems by partitioning the pattern into subpatterns, which can besearched with less errors.The oldest partitioning idea of this kind traces back to [WM92a], where they show that if the patternis split in k+ 1 pieces, then at least one piece must appear unaltered in an approximate occurrenceof the pattern. This is obvious, since k errors cannot alter the k + 1 pieces4. The idea is to searchfor all the k + 1 pieces at the same time, and each time a piece is found, the neighborhood of thematch is checked for an approximate occurrence of the complete pattern. Figure 4.5 illustrates thisidea.
Figure 4.5: Illustration of the partitioning lemma for k + 1 pieces. In this case k = 2.In [Mye94], a more general version of this lemma is presented. It is shown that the pattern can becut in 2i pieces, and that each piece can be searched with bk=2ic errors. It is also shown how tohandle uneven partitions in this binary decomposition process.In this section we present the most general version we have used of the pattern partitioning idea.2.2).4Notice that this \obvious" fact depends on the types of operations allowed. For instance, a single transpositioncan alter two pieces. However, the fact is true for our insertion, deletion and replacement operations.61

This idea is used in many occasions later in this work.Partitioning Lemma: If Occ = Ta::b matches P with k errors, and P = x0 P1 x1 ::: xj�1 Pj xj(i.e. a concatenation of subpatterns Pi not necessarily contiguous but non-overlapping), then Occincludes a substring that matches at least one of the Pi's, with baik=Ac errors, where A =Pji=1 ai.Proof: Otherwise, each Pi matches inside Occ with at least baik=Ac+1 > aik=A errors. Summingup the errors of all the pieces we have more than Ak=A = k errors and therefore a complete matchis not possible.The original partitioning lemma of [WM92a] corresponds to the case j = k + 1, ai = 1, and Pi'scontiguous and of similar length. That is, some piece is found with 0 errors. [Mye94] is anotherparticular case.In Chapter 5 we use a version of the Lemma with j contiguous subpatterns which are found withbk=jc errors, i.e. ai = 1. In the next section we show a hierarchical veri�cation technique that makesfull use of the power of the ai's of the Lemma, but the patterns are still contiguous (i.e. xr = "),and is used in Chapter 5 and Section 6.1. Finally, a splitting optimization technique presented inSection 9.1 uses non-contiguous subpatterns (although the restricted case j = k + 1).Notice that, unless we are limited for some reason, the best we can do is to select contiguoussubpatterns, since this reduces the probability of �nding them in the text.Our general version does not include a generalization of [WM92a] presented in [Shi96]: if we partitionthe pattern in k+ s pieces, then s pieces appear unaltered. The idea is to force more than one pieceto match in order to trigger a veri�cation.Yet another possible generalization which is not covered here is to allow that the subpatterns overlap.This is the basis of the q-gram ideas presented in [ST95, ST96] and others (see Sections 3.1.3 and3.3.3). Overlapping pieces is in principle a bad idea because a single error may destroy many pieces.However, it leads to smaller indices and is useful for very low error levels or long patterns.4.3 Hierarchical Veri�cationThis is a technique we use in various forms throughout this work, aimed at minimizing the veri�ca-tion cost for potential occurrences. We present and analyze them now, and give more details laterwhen they are used.4.3.1 Pattern SplittingIn the previous section we have mentioned that the problem of approximate string matching can bedecomposed in j searches with bk=jc errors, and that the matches found by any of those j searchesare to be checked for an occurrence of the complete pattern. The Lemma is useful if we have ane�cient algorithm for the smaller subproblems, so that we use the less e�cient algorithm (e.g.dynamic programming) only in the neighborhood of the matches of a subpattern. In this sectionwe consider the best way to perform the veri�cation of the candidate areas.A �rst alternative is just to run the more expensive algorithm in the candidate areas. If one is ableto determine which piece of the pattern was found, then it su�ces to check an area of lengthm+2k.This area is obtained by placing the pattern in the text so that the piece found is aligned to thetext position where it was found, and allowing k more characters at each end of that area. This is62

because it is useless consider more than k characters at each end, since if more than k insertionsare necessary a match is not possible. On the other hand, if the pattern position of the piece foundis not known, we must consider m+k characters in each direction from the matching text position,for a total area of size 2(m+ k). In any case, if an O(mn) veri�cation algorithm is used, the costof verifying each candidate area is O(m2).In this section we consider a more elaborate veri�cation algorithm, which we call \hierarchicalveri�cation". It has been mentioned (in a di�erent context) in [Mye94], although our version issimpler and better suited to text retrieval.First assume that j is a power of 2. Then, we form a tree by recursively splitting the pattern in twohalves of size bm=2c and dm=2e (halving also the number of errors, i.e. bk=2c) until the pieces aresmall enough to be searched with the core algorithm. Those pieces (leaves of the tree) are searchedin the text. Each time a leaf reports an occurrence, its parent node checks the area looking for itspattern (whose size is about twice the size of the leaf pattern). Only if the parent node �nds thelonger pattern, it reports the occurrence to its parent, and so on. The occurrences reported by theroot of the tree are the �nal answers.This construction is correct because the partitioning lemma applies to each level of the tree, i.e.any occurrence reported by the root node must include an occurrence reported by one of the twohalves, so we search both halves. The argument applies then recursively to each half.Figure 4.6 illustrates this concept. If we search the pattern "aaabbbcccddd" with four errors in thetext "xxxbbxxxxxxx", and split the pattern in four pieces to be searched with one error, the piece"bbb" will be found in the text. In the original approach, we would verify the complete patternin the text area, while with the new approach we verify only its parent "aaabbb" and immediatelydetermine that there cannot be a complete match.aaabbbcccdddaaabbb cccdddccc dddbbbaaaFigure 4.6: The hierarchical veri�cation method for a pattern split in 4 parts. The boxes (leaves)are the elements which are really searched, and the root represents the whole pattern. At least onepattern at each level must match in any occurrence of the complete pattern. If the bold box isfound, all the bold lines may be veri�ed.If j is not a power of two we try to build the tree as well balanced as possible. This is because anunbalanced tree will force the veri�cation of a long pattern because of the match of a short pattern(where the long pattern is more than twice as long as the short one). The same argument showsthat it is not a good idea to use ternary or higher arity trees. Finally, we could increase j to havea perfect binary partition, but shorter pieces trigger more veri�cations.In order to handle partitions which are not a power of two, we need the strong version of thePartitioning Lemma of the previous section. For instance, if we determine j = 5, we have topartition the tree in, say, a left child with three pieces and a right child with two pieces. Thestandard partitioning lemma tells us that each subtree could search its pattern with bk=2c errors,63

but this will increase the veri�cations of the subtree with the shorter pattern. In fact, we can searchthe left subtree with b3k=5c errors and the right one with b2k=5c errors. Continuing with thistechnique we arrive to the leaves, which are searched with bk=5c errors as expected.In subsequent chapters we apply this hierarchical veri�cation method in di�erent cases and showits practical improvements over the simple veri�cation algorithm. We now analyze the cost of thisveri�cation algorithm.We analyze the average amount of veri�cation work to perform per character for each subpattern.We assume that j = 2s for integer s, and that m = 2s`. Hence, we search j subpatterns of length `.Recall that since we search patterns of length m=j with k=j errors, the error level � is essentiallythe same for any subproblem. Hence, the probability for any subpattern of length m0 to match inthe text is O(m0) (where < 1, Eq. (4.1)). To verify the occurrence of a pattern of length ` = m=j,an area of length `0 = m=j + 2k=j = O(`) must be checked. The cost of that veri�cation is O(`2)(at most, since we assume the use of plain dynamic programming5).Consider a given subpattern of length `. It matches a given text position with probability O(`).This match causes its parent to perform a veri�cation in an area of length 2`0 (since the parent isof length 2`). With some probability the parent pattern is not found and the veri�cation ends here.Otherwise the parent is found and we must proceed upward in the tree. The probability of havingto continue the veri�cation isPr(parent node = child node) = Pr(parent ^ child)Pr(child) � Pr(parent)Pr(child) = 2`` = `and therefore with probability at most ` we pay the next veri�cation which spans an area of length4`0, and so on. Notice that in the next veri�cation we will �nd the longer pattern with probability2`.This process continues until we either �nd the complete pattern or we fail to �nd a subpattern. Thetotal amount of work to perform is` ((2`)2 + ` ((4`)2 + 2` ((8`)2 + :::))) = ` (2`)2 + 2` (4`)2 + 4` (8`)2 + :::which formally is sXi=1 `2i�1 (2i`)2 = 4`2 s�1Xi=0 4i �`�2iThe summation can be bounded with an integral to �nd that it is between C(`) � C(m) and` + C(`)� C(m=2), where C(x) = x(x ln(1=)� 1)=(`2 ln2(1=) ln2). Therefore, as only the �rstterm of the summation is 4`2`, the summation is �(`) and the total veri�cation cost isO(`2 `) = O((m=j)2`) (4.7)which is much better than O(m2`), which is the cost when the veri�cation is not hierarchical.We now generalize the above analysis by assuming that the veri�cation tree is pruned when thepatterns are of length `r, and the subtrees are replaced by arbitrary objects which match withprobability p (this is of interest later in this work).5Since this area is already suspicious, we cannot ensure a random letter distribution that could encourage the useof better algorithms on average. 64

Once a leaf is found, we must verify an area of length `r to determine whether their concatenationappears. That concatenation is found with probability O(`r). When it is found, its parent isveri�ed (an area of length 2`r), which continues the veri�cation with probability 2`r. Hence, theveri�cation cost per piece isp 4(`r)2 (1 + `r + C(`r)� C(m=2)) = O(p (`r)2(1 + `r)) = O(p (`r)2) (4.8)4.3.2 Superimposed SearchingAnother kind of hierarchical veri�cation is used in this thesis: given a number r of patterns, weare able to superimpose them in such a way that we perform a single search. The probability ofsuch pattern matching the text is the same as for a single pattern, except because the alphabet sizeis reduced from � to �=r. Moreover, when we �nd a match, we are not able to say which is thepattern that actually matched (in fact it is possible that none matched). Hence, we must verify allthe patterns in the area to determine which matched, if any.An alternative to check all the r patterns is to apply hierarchical veri�cation. Assume that r is apower of two. Then, when the \superimposed" search reports a match, run two new searches overthe suspicious area: one which superimposes the �rst half of the patterns and another with thesecond half. Repeat the process recursively with each of the two searches that �nds again a match.At the end, the searches will represent single patterns and if they �nd a match we know that thatpattern has been really found (see Figure 4.7). Of course the preprocessing for the required subsetsof patterns are done beforehand (they are 2r � 1 = O(r), so the space and preprocessing cost doesnot change). If r is not a power of two then one of the halves may have one more pattern than theother. 123412 341 2 3 4Figure 4.7: The hierarchical veri�cation method for 4 patterns superimposed. Each node of the treerepresents a check (the root which represents in fact the global �lter). If a node passes the check,its two children are tested. If a leaf passes the check, its pattern has been found.The advantage of this hierarchical veri�cation is that it can remove a number of candidates fromconsideration in a single test. Moreover, it can even �nd that no pattern has really matched beforeactually checking any speci�c pattern (i.e. it may happen that none of the two halves match ina spurious match of the whole group). The worst-case overhead over plain veri�cation is just aconstant factor, that is, twice as many tests over the suspicious area (2r� 1 instead of r).On average, as we show now analytically and later experimentally (in Section 7.1, hierarchicalveri�cation is by far superior to plain veri�cation.Given an area of length ` to check for r patterns, the naive veri�cation will take O(rT (`)) time,where T (`) is the veri�cation cost for a single pattern. We analyze now the e�ect of this hierarchicalveri�cation. We call r̀ the matching probability when r patterns of length ` are superimposed.65

Following Eq. (4.1), we have r = � e2r�(1� �)2� 1�� = r1�� (4.9)where we notice that the old corresponds now to 1.For each match we have to verify an area of length O(`) (at cost T (`)) for two sets of r=2 superim-posed patterns each. Each set is found with probability r̀=2 and so on. As before, we obtain theprobability that a group of size r=2 matches given that the larger set matched isP (parent node = child node) = P (parent ^ child)P (child) � P (parent)P (child) = r̀=2r̀ = 12`(1��)where we have used Eq. (4.9) for the last step. In particular r=2i = r=2i(1��).The total cost due to veri�cations is thereforer̀ 2 T (`) + 2 r̀=2r̀ 2 T (`) + 2 r̀=4r̀=2 ::: ! ! = 2T (`)r̀ + 4T (`)r̀=2+ 8T (`)r̀=4+ :::or more formally 2T (`) log2 r�1Xi=0 2ir̀=2i = 2T (`)r̀ log2 r�1Xi=0 2(1�`(1��))iand since the summation is O(1) we have a total cost of (r̀T (`)). Hence, we work O(T (`)) perveri�cation instead ofO(rT (`)) that we would work using a naive veri�cation. This shows that we donot pay more per veri�cation by superimposing more patterns (although the matching probabilityis increased).Notice that we assumed that the summation is O(1), which is not true for � � 1�1=`. This happensonly for very high error levels, which are of no interest in practice.
66

Part IOn-line Searching

67

This Part of the thesis is devoted to on-line approximate searching. This is the problem of �nding apattern in a text when there is no time to preprocess the text. Only the pattern can be preprocessed.This is the area which has received most attention from the community since the seventies and whereit is most di�cult to improve current results.We present three chapters in this part. Chapter 5 is devoted to one of the best results of this thesis: anew bit-parallel algorithmwhich is currently the fastest for short patterns. Chapter 6 presents threedi�erent �ltration algorithms, some of which are improvements over previously known versions. Ourimprovement over one of these is currently the fastest known algorithm for moderate error levels.At the end of Chapter 6 we study more in depth the technique of using a deterministic automatonwhich is partially built.We present in Figure I.1 the \map" of the current best algorithms for each case of interest in textsearching. The exact values correspond to English text, although similar �gures are observed onrandom text for � = 8 to 64. We have not studied in depth other cases, such as very long patternsor very small alphabets. As it can be seen, our new �ltering algorithm of Section 6.1 is the best formoderate error ratios. For short patterns, our bit-parallel algorithm of Chapter 5 is the best. In theremaining area the best is Myers' new bit-parallel algorithm [Mye98], except for long patterns andhigh error ratios where the Four Russians technique of Wu, Manber and Myers [WMM96] remainsthe best. Hence, the algorithms of this thesis are the fastest ones for short patterns or for moderateerror levels. Less interestingly, they are also the fastest for very high error levels.It is important to notice that these results are \a posteriori". That is, the other algorithms we havecreated in this thesis have been the best in some areas at their times of publication (see the originalpapers). This is a very fast-moving and highly competitive area. For instance, a previous mapof this kind can be found in [BYN98d]. One of the latest inventions in this area has been Myers'algorithm, which has swept under the carpet a number of previously outstanding algorithms.
0 10 3020 60

Our NFA
m10 40810

Our Exact Part. (sec. 6.1)0.510.3 11 9 8 72(ch. 5)
400.7� Bit-parallel Matrix [Mye98] [WMM96]Four Russians1

Figure I.1: The areas where each algorithm is the best for English text and w = 32. The numbersindicate megabytes per second in our machine. 68

Chapter 7, the third of this Part, deals with multiple patterns, that is, we have to search manypatterns at the same time allowing errors. Despite having received less attention, this problemis very important and has applications to spelling, information retrieval and even to the classicalproblem of a single pattern, as we explain in the chapter. We present three new algorithms, whichare carefully analyzed and experimentally tested. These are the only algorithms that exist for nowfor this problem when k > 1, and they also improve previous work (which exists only for k = 1) whenthe number of patterns is not larger than 50{150 (depending on the parameters of the problem).All the three algorithms are extensions of on-line single-pattern algorithms.Figure I.2 gives a gross map of the best current algorithms for multipattern matching, for somechoices of pattern length and number of patterns. The same observations made for Figure I.1 apply.
m = 303� Hashing [MM96]0.2490500.31.3 0.14 0.08Exact Partitioning (sec 7.2)NONE USEFUL0.5 0.03 0.02

NONE USEFUL mr = 89 30� 0.30.75 1.250.080.3 0.13 0.010.5 Exact Partitioning (sec 7.2)m = 950 Hashing [MM96]0.1 SuperimposedAutomata (sec. 7.1)0.26 0.24 r100Exact Partitioning (sec 7.2)0.040.82 0.02NONE USEFUL0.3�0.4
(sec. 7.1)

0.030.130.25
Sup. Autom. r

Figure I.2: The areas where each algorithm is the best for English text and w = 32. The numbersindicate megabytes per second in our machine.
69

Chapter 5A Bit-Parallel AlgorithmIn this chapter we present a new algorithm for on-line approximate string matching. The algorithmis based on the simulation using bit operations of a non-deterministic �nite automaton built fromthe pattern and using the text as input. The running time achieved is O(n) for small patterns (i.e.whenever mk = O(w)). Longer patterns can be processed by partitioning the automaton into manymachine words, at O(mk=w n) search cost. We allow generalizations in the pattern, such as classesof characters, gaps and others, at essentially the same search cost.We then explore other novel techniques to cope with longer patterns. We show how to partition thepattern into short subpatterns which can be searched with less errors using the simple automaton, toobtain an average cost close to O(pmk=w n). Moreover, we allow superimposing many subpatternsin a single automaton, obtaining near O(pmk=(�w) n) average complexity.Finally, we combine analytical and experimental results to design an optimal heuristic to combineall the techniques. The experiments show that our algorithm is among the fastest for typical textsearching, being the fastest in an important range of parameters of the problem.This work has been published in [BYN96b, BYN96a, BYN98d, NBY98b].5.1 A New Parallelization TechniqueConsider again the NFA of Figure 2.5, which recognizes the approximate occurrences of the patternin the text. This NFA has (m+ 1)� (k + 1) states. We assign number (i; j) to the state at row iand column j, where i 2 0::k; j 2 0::m. Initially, the active states at row i are at the columns from0 to i, to represent the deletion of the �rst i characters of the pattern.Consider the boolean matrix A corresponding to this automaton. Ai;j is 1 if state (i; j) is activeand 0 otherwise. The matrix changes as each character of the text is read. The new values A0i;j canbe computed from the current ones by the following ruleA0i;j = (Ai;j�1 & (Tcurrent = Pj)) j Ai�1;j j Ai�1;j�1 j A0i�1;j�1 (5.1)which is used for i 2 0::k; j 2 1::m. If i = 0 only the �rst term is used. Note that the emptytransitions are represented by immediately propagating a 1 at any position to all the elementsfollowing it in its diagonal, all in a single iteration (thus computing the "-closure). The self-loop atthe initial state is represented by the fact that column j = 0 is never updated.It is not hard to prove by induction that once an automaton state is active, then all the states below70

it in the same column are active too. The same happens to the states below it in the same diagonal,and in fact with all the states in the triangle limited by the column and the diagonal.It is then possible to describe the automaton by the minimum rows of the states active at eachcolumn. This observation allows relating the automaton to the classical dynamic programmingmatrix (see Section 2.2). Notice that what the current column of the dynamic programming matrixstores at position j is the minimum row of this NFA which is active in column j of the automaton.In this sense, the dynamic programming matrix corresponds to simulating this automaton bycolumns (i.e. packing columns in machine words) [BY96]. On the other hand, the work of Wuand Manber ([WM92a], see Section 3.1.4) consists fundamentally in simulating this automaton byrows (packing each row in a machine word). In both cases, the dependencies introduced by thediagonal empty transitions prevent the parallel computation of the new values. In [BY91] it wasshown that this dependence can be avoided by simulating the automaton by by diagonals, suchthat each diagonal captures the "-closure. However, the associated bit-parallel update formulas aremore complex and no solution was devised in [BY91]. We present next a realization of this idea, by�nding a constant-time update formula. This achievement leads to a new and fast algorithm.Suppose we use just the full diagonals of the automaton (i.e. those of length k+1). See Figure 5.1.This presents no problem, since those (shorter) diagonals below the full ones always have value 1,while those past the full ones do not inuence state (m; k). The last statement may not be obvious,since the vertical transitions allow carrying 1's from the last diagonals to state (m; k). However, each1 present at the last diagonals must have crossed the last full diagonal, where the empty transitions(deletions) would have immediately copied it to the state (m; k). That is, any 1 that goes again tostate (m; k) corresponds to a segment containing one that has already been reported 1.
p

p

p

a

a

a

t

t

t

t

t

t

Σ Σ ΣΣ

Σ Σ ΣΣ

Σ Σ Σ ΣΣ

Σ Σ Σ ΣΣ
ε ε ε ε

ε ε ε ε

1 error

no errors

1

1

1 1

1

0 0

0

1 1

1

0 0

0

1

Σ

2 errorsFigure 5.1: Our representation of the NFA. We enclose in dotted lines the states actually representedin our algorithm.1If reporting those spurious matches is required we just have to check the right neighborhood of the positionsreported with this algorithm using a wider automaton that includes the last diagonals. This also allows telling theexact number of errors of each match. As we show later, this horizontal extension, even if it requires extra machinewords, is not signi�catively more expensive. 71

As already mentioned, whenever state (i; j) is active, states (i+d; j+d) are also active for all d > 0(due to the " transitions). Thus, if we number diagonals regarding the column they begin at, thestate of each diagonal i can be represented by a number Di, the smallest row value active in thatdiagonal (i.e. the smallest error). Then, the state of this simulation consists of m� k+ 1 values inthe range 0::k + 1. Note that D0 is always 0, hence there is no need to store it.The new values for Di (i 2 1::m�k) after we read a new text character c are derived from Eq. (5.1)D0i = min(Di + 1; Di+1 + 1; g(Di�1; c)) (5.2)where g(Di; c) is de�ned asg(Di; c) = min(fk + 1g [f j = j � Di ^ Pi+j = c g)The �rst term of the D0 update formula represents a substitution, which follows the same diagonal.The second term represents the insertion of a character (coming from the next diagonal above).Finally, the last term represents matching a character: we select the minimum active state (hencethe min of the g formula) of the previous diagonal that matches the text and thus can move to thecurrent one. The deletion transitions are represented precisely by the fact that once a state in adiagonal is active, we consider that all subsequent states on that diagonal are active (so we keepjust the minimum). The empty initial transition corresponds to D0 = 0. Finally, we �nd a matchin the text whenever Dm�k � k.This simulation has the advantage that it can be computed in parallel for all i, since there is nodependency between the current values of di�erent diagonals. We use this property to design a fastalgorithm that exploits bit-parallelism for small patterns, and then extend it to handle the generalcase.5.2 A Linear Algorithm for Small PatternsWe show in this section how to simulate the automaton by diagonals using bit-parallelism, assumingthat our problem �ts in a single machine word. We �rst select a suitable representation for ourproblem and then describe the algorithm.Since we have m� k non-trivial diagonals, and each one takes values in the range 0::k+ 1, we needat least (m�k)dlog2(k+2)e bits. However, we cannot e�ciently compute the g function in parallelfor all i with this optimal representation. We could precompute and store it, but it would takeO(�(k + 1)m�k) space if it had to be accessed in parallel for all i. At this exponential space cost,the automaton approach of Section 3.1.2 is preferable.Therefore, we use a unary encoding for the Di values, since in this case g can be computed inparallel. Thus, we need (m� k)(k+ 2) bits to encode the problem, where each of the m� k blocksof k+2 bits stores the value of a Di. Then we must have (m� k)(k+ 2) � w (where we recall thatw is the length in bits of the computer word). We address later the case where this does not hold.Each value ofDi is stored as 1's aligned to the right of its (k+2)-wide block (thus there is a separatorat the highest bit always having 0). The blocks are stored contiguously, the last one (i = m � k)aligned to the right of the computer word. Thus, our bit representation of state D1; :::; Dm�k isD = 0 0k+1�D1 1D1 0 0k+1�D2 1D2 ::: 0 0k+1�Dm�k 1Dm�kwhere we use exponentiation to denote digit repetition.72

Until now we have used a numerical view of the process, where the state of the search is representedby a sequence of numbers Di and some arithmetical operations are performed on them. There is,on the other hand, a more logical view, where we just consider the automaton as having active (1)and inactive (0) states, so that the 1's move across the arrows as they can.In fact, what our word contains is a rearrangement of the 0's and 1's of (the relevant part of) theautomaton. It is important to notice that the rearrangement exchanges 0's and 1's and reads thediagonals left-to-right and upwards (see D in Figure 5.2).separator separator(0,1) (1,3) (0,2)(2,4)(1,2) �nal state0 0 0 00 1 1 1D (2,3)B['t'] 0 0 1 1t a 0 0 0 1t atpFigure 5.2: Encoding of the example NFA. In this example, b[0t0] = 0011.As both forms of reading the formulas are equivalent and direct, we encourage the reader to con-sider the formulas that follow under these two alternative interpretations, as one may be easierto grasp than the other depending on the reader. We make more explicit now how are these twointerpretations:Numerical: consider our bit arrangement as a sequence of numbers Di represented in unary nota-tion. Interpret the operations as arithmetical manipulations.Logical: consider our bit mask as a mapping from the automaton states to bit positions (recallthat 0's and 1's are interchanged). Interpret the operations as bits that move from one placeto another.With our bit representation, taking minimum is equivalent to anding, adding 1 is equivalent toshifting one position to the left and oring with a 1 at the rightmost position, and accessing the nextor previous diagonal means shifting a block (k + 2 positions) to the left or right, respectively.The computation of the g function is carried out by de�ning, for each character c, an m bits longmask b[c], representing match (0) or mismatch (1) against the pattern, and then computing a maskB[c] having at each block the (k + 1) bits long segment of b[c] that is relevant to that block (seeFigure 5.2). That is, b[c] = (c 6= Pm) (c 6= Pm�1) ::: (c 6= P1) (5.3)where each condition stands for a bit and they are aligned to the right. So we precomputeB[c] = 0 sk+1(b[c]; 0) 0 sk+1(b[c]; 1) ::: 0 sk+1(b[c]; m� k � 1)for each c, where sj(x; i) shifts x to the right in i bits and takes the last j bits of the result (thebits that \fall" are discarded). Note that B[c] �ts in a computer word if the problem does.73

We have now all the elements to implement the algorithm. We represent the current state bya computer word D. The value of all Di's is initially k + 1, so the initial value of D is Din =(0 1k+1)m�k . The formula to update D upon reading a text character c is derived from Eq. (5.2)D0 = (D << 1) j (0k+11)m�k& (D << (k + 3)) j (0k+11)m�k�10 1k+1& (((x+ (0k+11)m�k) ^ x) >> 1)& Din (5.4)where x = (D >> (k + 2)) j B[c]We explain now how this formula is obtained:� The update formula is a sequence of and's, corresponding to the min of Eq. (5.2). Forinstance, if we represent 3 and 5 in unary using 8 bits, we have 00000111 and 00011111,respectively. If we perform an and on these representations, we get 00000111 & 00011111 =00000111, which is the representation of 3, i.e. min(3; 5).� The �rst line corresponds to Di + 1. This is obtained by shifting the bits to the left oneposition and putting a 1 in the \hole" left by the shift. For instance, if we do this to therepresentation of 4 in eight bits (00001111) we get (00001111 << 1) j 00000001 = 00011111,which is the representation of 5. This operation occurs inside each one of the m�k diagonalsrepresented.� The second line corresponds to Di+1 + 1. In this case the shift is by k + 3 positions, fromwhich k + 2 account for bringing the data of the next diagonal to the position of the currentone, and the extra position shifted does the e�ect of the +1 as in the previous item. In thiscase we also put the 1 to �ll all the holes, except for the last diagonal which does not getanything from the next one. The formula sets this last diagonal in 01k+1, which correspondsto all inactive states.� The third line is the g function applied to the previous diagonal. First, x is obtained by takingthe states of the previous diagonal (hence the shift to the right in k+ 2 positions) and or-ingthem with the mask B[c], where c is the text character read and B aligns with the mappingfrom automaton states to bit positions. The e�ect of the or is that only the bits which werealready active (i.e. zero) and can cross the horizontal arrow of the automaton (i.e. have Bin zero in the proper place) remain active (zero). The rest of the processing on x propagatesthe active states down to the rest of the states of the diagonal (i.e. "-transitions). In ourrepresentation this means that we want the zero of the lowest bit position to be propagatedto all the higher bit positions. This is obtained by adding 1, which will invert all the bits,from lowest to highest, until a zero is found. That zero is also inverted but the inversion isnot propagated anymore. Finally, the \^" (exclusive or) operation compares two numbersbitwise and sets to 0 the positions where the bits are equal and to 1 the others. If we comparethe original x and the new result of adding 1, we have that all the bits from the lowest oneto the �rst zero (inclusive) di�er, and the rest are equal. Since we wanted zeros from the�rst zero of x to the highest bit, it is just a matter of shifting one position to the right. Forinstance, if x = 01001011, we add 1 to obtain 01001011 + 00000001 = 01001100, and thenthe exclusive-or yields 01001100 ^ 01001011 = 00000111, which after shifting one position tothe right becomes 00000011. This last number represents the propagation of the lowest zeroof x to the left. 74

� Finally, the fourth line ensures the invariant of having zeros in the separators (needed to limitthe propagation of \+").Note that we are assuming that the shifts get zeros from both borders of the word (i.e. unsignedsemantics). If this is not the case in a particular architecture, additional masking is necessary 2.We detect that state (m; k) is active by checking whether D & (1 << k) is 0. When we �nd amatch, we clear the last diagonal. This ensures that our occurrences always end with a match.5.2.1 A Simple FilterWe can improve the previous algorithm (and in fact most other algorithms as well) by noticingthat any approximate occurrence of the pattern with k errors must begin with one of its k+ 1 �rstcharacters. This allows quickly discarding large parts of the text performing very few operationsper character.We do not run the automaton through all text characters, but scan the text looking for any of thek+1 initial characters of the pattern. Only then do we start the automaton. When the automatonreturns to its initial con�guration, we resume the scanning. The scanning is much cheaper than theoperation of our automaton, and in fact it is cheaper than the work done per text character in mostother algorithms (except possibly �ltration algorithms).We precompute a boolean table S[c], that stores for each character c whether it is one of the �rstk+1 letters of the pattern. Observe that this table alone solves the problem for the case k = m� 1(since each positive answer of S is an occurrence).5.2.2 The CodeFigure 5.3 presents the complete algorithm (i.e. using the automaton plus the �lter). For simplicity,we do not re�ne the preprocessing, which can be done more e�ciently than the code suggests.5.3 Handling Extended PatternsWe show now that some of the extended patterns considered in [BYG92, WM92a, WMM96] andexplained Section 3.2.1 in can be introduced into our algorithm at no additional search cost.As in the Shift-Or algorithm for exact matching [BYG92], we can specify classes of characters. Thisis achieved by modifying the b[] table (5.3), making any element of the set to match that position,with no running time overhead. That is, if P = P1:::Pm where now Pi � �, then we replace thecondition (c 6= Pi) of (5.3) by (c 62 Pi).In addition to classes of characters, we can support the # operator as de�ned in [WM92a]. That is,x#y allows zero or more arbitrary characters among the strings x and y in the occurrences. Thosecharacters are not counted as errors. As shown in [WM92a], in order to handle this operator wemust enforce that whenever an automaton state in column jxj is active, it keeps active from thenon.2Although programming language standards such as ANSI C ensure this property, those speci�cations are notalways followed by all implementations, especially when the underlying architecture does not favor it.75

search (T; n; P;m; k)f /* preprocessing */for each c 2 �f b[c] = (c 6= Pm) (c 6= Pm�1) ::: (c 6= P1)B[c] = 0 sk+1(b[c]; 0) 0 sk+1(b[c]; 1) ::: 0 sk+1(b[c]; m� k � 1)S[c] = (c 2 P1::k+1)gDin = (0 1k+1)m�kM1 = (0k+11)m�kM2 = (0k+11)m�k�1 0 1k+1M3 = 0(m�k�1)(k+2) 0 1k+1G = 1 << k/* searching */D = Dini = 0while (++ i <= n)if (S[Ti]) /* is one of the first k + 1 characters? */do f x = (D >> (k + 2)) j B[Ti]D = ((D << 1) j M1) & ((D << (k + 3)) j M2)& (((x+M1) ^ x) >> 1) & Dinif (D & G == 0)f report a match ending at iD = D j M3 /* clear last diagonal */ggwhile (D ! = Din && ++i <= n)gFigure 5.3: Algorithm to search for a short pattern. Recall that strings start at position 1.Hence, to search for x1#x2#:::#xt we create aD# word having all 1's except at all states of columnsjx1j, jx1j+ jx2j; :::; jx1j+ jx2j+ :::+ jxt�1j. We now modify the computation of x in Eq. (5.2), whichbecomes x = ((D >> (k + 2)) j B[c]) & (D j D#)(clearly this technique is orthogonal to the use of classes of characters).We can modify the automaton to compute the edit distance (more precisely, determine whether theedit distance is � k or not). This is obtained by eliminating the initial self-loop and initializing theautomaton at D = Din. However, we need to represent the k+1 initial diagonals that we discarded.If we need the exact edit distance, we must also represent the last k diagonals that we discarded.If there is no a priori bound on the distance, we need to set k = m.We can search for whole words, running the edit-distance algorithm only from word beginnings(where we re-initialize D = Din), and checking matches only at the end of words.Searching with di�erent integral costs for insertion and substitution (including not allowing suchoperations) can be accommodated in our scheme, by changing the arrows. Deletion is built intothe model in such a way that in order to accommodate it we must change the meaning of our76

\diagonals", so that they are straight "-transition chains.Other generalizations are studied in [WM92a]. We can handle them too, although not as easilyand e�ciently as the previous ones. One such generalization is the combination in the pattern ofparts that must match exactly with others that can match with errors. The adaptation to avoidpropagation of "-closures in our scheme is ad-hoc and not as elegant as in [WM92a]. However, webelieve that the most e�ective way to handle these patterns is to quickly search for the parts thatmatch exactly and then try to extend those matches to the complete pattern, using the automatonto compute edit distance.Another such generalization is the approximate search of regular expressions. In [WM92a], theregularities among rows allow solving any regular expression of m letters using dm=8e or evendm=16e operations per text character, using dm=8e28dm=we or dm=16e216dm=we machine words ofmemory, respectively. Our automaton is not so regular, and we would need roughly O(k2) timesthe space requirements and operations per text character of [WM92a]. To be more precise, in ourscheme their formulas are still valid provided we replace m by (m� k)(k+ 2). For instance, at thecost they pay for m � 32, we can only solve for m � 9. However, our scheme is still reasonablyapplicable for short expressions.5.4 Partitioning Large AutomataIf the automaton does not �t in a single word, we can partition it using a number of machine wordsfor the simulation.First suppose that k is small and m is large. Then, the automaton can be \horizontally" split intoas many subautomata as necessary, each one holding a number of diagonals. We call \d-columns"those sets of diagonals packed in a single machine word. Those subautomata behave di�erently thanthe simple one, since they must communicate their �rst and last diagonals with their neighbors.Thus, if (m � k)(k + 2) > w, we partition the automaton horizontally in J d-columns, whereJ = d(m � k)(k + 2)=we. Note that we need that at least one automaton diagonal �ts in a singlemachine word, i.e. k + 2 � w.Suppose now that k is large (close to m, so that the width m � k is small). In this case, theautomaton is not wide but tall, and a vertical partitioning becomes necessary. The subautomatabehave di�erently than the previous ones, since we must propagate the "-transitions down to allsubsequent subautomata. In this case, if (m�k)(k+2) > w, we partition the automaton verticallyin I d-rows (each d-row holding some automaton rows of all diagonals), where I has the sameformula as J . The di�erence is that, in this case, we need that at least one automaton row �ts ina machine word, i.e. 2(m� k) � w (the 2 is because we need an overow bit for each diagonal ofeach cell).When none of the two previous conditions hold, we need a generalized partition in d-rows andd-columns. We use I d-rows and J d-columns, so that each cell contains `r bits of each one of `cdiagonals. It must hold that (`r + 1)`c � w (see Figure 5.4).Simulating the automaton is now more complex, but it follows the same principle of the updateformula (5.4). We have a matrix of automataDi;j (i 2 0::I� 1; j 2 0::J � 1), and a matrix of masksBi;j coming from splitting the original B. The new update formula for a text character c is77

J d-columns

I d-rowsFigure 5.4: A 2 � 3 partitioned automaton where `c = 3; `r = 2; I = 2; J = 3. We selected acell (bold edges) and shaded all the nodes of other cells a�ected by it. The bold-edged cell mustcommunicate with those neighbors that own shaded nodes.D0i;j = (Di;j << 1) j ((Di�1;j >> (`r � 1)) & (0`r1)`c)& ((Di;j << (`r + 2)) j((Di�1;j << 2) & (0`r1)`c) j(Di�1;j+1 >> ((`r + 1)(`c � 1) + `r � 1)) j(Di;j+1 >> ((`r + 1)(`c � 1)� 1)))& (((x+ (0`r1)`c) ^ x) >> 1)& Dinwhere x = ((Di;j >> (`r + 1)) j (Di;j�1 << (`r + 1)(`c � 1)) j Bi;j [c])& ((D0i�1;j >> (`r � 1)) j (1`r0)`c)and it is assumed D�1;j = Di;J = 1(`r+1)`c and Di;�1 = 0(`r+1)`c . We �nd a match wheneverDI�1;J�1 has a 0 in its last position, i.e. at (k� `r(I � 1))+ (`r + 1)(`cJ � (m� k)), counting fromthe right. In that case, we must clear the last diagonal, i.e. that of Di;J�1 for all i.If we divide the automaton in IJ subautomata (I d-rows and J d-columns), we must update I cellsat each d-column. However, we use the cut-o� heuristic of [Ukk85b] (see Section 3.1.1), i.e. wedo not process the m columns but only up to the last active one. That is, we work only on activeautomaton diagonals. Figure 5.5 illustrates.
Figure 5.5: Illustration of active diagonals. The shaded areas are the active states of the automaton.It is only necessary to work on the area surrounded by dashed lines.There are many options to pick (I; J) for a given problem. The best choice is a matter of optimization78

which we address later. All the techniques to handle extended patterns are easily implemented ina partitioned automaton.5.5 Partitioning the PatternThe Partitioning Lemma proved in Section 4.2 allows us to reduce the number of errors if we dividethe pattern, provided we search all the subpatterns. Each match of a subpattern must be checkedto determine if it is in fact a complete match (notice that the subpatterns can be extended patternsthemselves). Suppose we �nd at position T::i the end of a match for the subpattern ending at P::j .Then, the potential match must be searched in the area Ti�j+1�k::i�j+1+m+k , an (m+2k)-wide area.This checking must be done with an algorithm resistant to high error levels, such as our automatonpartitioning technique. As we show later, for moderately long patterns this is faster than plaindynamic programming and the cut-o� heuristic of [Ukk85b]. Recall that we use the hierarchicalveri�cation technique explained in Section 4.3.1.To perform the partition, we pick an integer j, and split the pattern into j subpatterns of lengthm=j (more precisely, if m = qj + r, with 0 � r < j, r subpatterns of length dm=je and j � r oflength bm=jc). Because of the Lemma, it is enough to check if any of the subpatterns is present inthe text with at most bk=jc errors.If we partition the pattern in j parts, we have to perform j searches. Moreover, those searches willtogether trigger more veri�cations as j grows (i.e. a piece split in two will trigger all the veri�cationstriggered by the original piece plus spurious ones). This fact is reected in the formula for the matchprobability of Section 4.1 (Eq. (4.1)), since the match probability is now O(m=j), which may bemuch larger than O(m) even for a single piece. Therefore, we prefer to keep j small.A �rst alternative is to make j just large enough for the subproblems to �t in a computer word,that is j� = min � j = ��mj �� �kj ����kj �+ 2� � w ^ �mj � > �kj � � (5.5)where the second condition avoids searching a subpattern of length m0 with k0 = m0 errors (those oflength dm=je are guaranteed to be longer than bk=jc if m > k). Such a j� always exists if k < m.A second alternative is to use a smaller j (and therefore the automata still do not �t in a computerword) and combine this technique with automaton partitioning for the subpatterns.Figure 5.6 shows the general algorithm, which is written in that way for clarity. In a practicalimplementation, it is better to run all subsearches in synchronization, picking at any moment thecandidate whose initial checking position is the leftmost in the set, checking its area and advancingthat subsearch to its next candidate position. This allows us to avoid re-verifying the same textbecause of di�erent overlapping candidate areas, which is done by remembering the last checkedposition and keeping the state of the checking algorithm.The e�ectiveness of this method is limited by the error level. If the subpatterns appear very often,we spend a lot of time verifying candidate text positions. In Section 5.7 we �nd out which is themaximal error level for this scheme to be e�cient.A special case of this algorithm occurs if we use j = k+1, since then the pieces are searched with zeroerrors. This is a qualitatively di�erent algorithm which was previously known (see Section 3.1.3).We can perform a single multipattern search, using an Aho-Corasick machine [AC75] to guaranteeO(n) total search time, or an extension of the Boyer-Moore family which is faster for few patterns.79

PatternPartition (T; n; P;m; k)f j = min f r = (dm=re � bk=rc)(bk=rc+ 2) � w ^ bm=rc > bk=rcgif (j = 1) search (T; n; P;m; k)else f a = 1for r 2 0::j � 1f len = (r < m % j) ? dm=je : bm=jcb = a + len� 1for each position i reported by search(T; n; Pa::b; len; bk=jc)check the area Ti�b+1�k::i�b+1+m+ka = b+ 1g g g Figure 5.6: Algorithm for pattern partitioning.Wu and Manber [WM92a] propose to use the multipattern version of the Shift-Or, whose advantageis exibility in the queries. In particular, if the pattern is extended, the multipattern Shift-Oralgorithm is the correct choice. Baeza-Yates and Perleberg, on the other hand, propose to extenda Boyer-Moore type algorithm [BYP96].For non extended patterns, we preferred to use the Sunday algorithm [Sun90] extended to multipat-tern search. However, in Section 6.1 we elaborate more on this algorithm and �nd new improvementson it. Therefore, in this chapter we do not consider the partition into k + 1 pieces as part of thebit-parallel algorithm.5.6 Superimposing the SubpatternsWhen the search is divided into a number of subsearches for smaller patterns P 1; :::; P r, it is possibleto avoid searching for each one separately. We describe a technique, called superimposition, tocollapse a number of searches into a single one.In our scheme, all patterns have almost the same length. If they di�er (at most by one), we truncatethem to the shortest length. Hence, all the automata have the same structure, di�ering only in thelabels of the horizontal arrows.The superimposition is de�ned as follows: we build the b[] table for each pattern (Eq. (5.3)), andthen take the bitwise-and of all the tables. The resulting b[] table matches in the position i withthe i-th character of any pattern. We then build the automaton as before using this table. Theresulting automaton accepts a text position if it ends an occurrence of a much more relaxed pattern(in fact it is an extended pattern), namelyfP 11 ; :::; P r1g ::: fP 1m; :::; P rmgfor example, if the search is for "patt" and "wait", the string "watt" is accepted with zero errors(see Figure 5.7). Each occurrence reported by the automaton has to be veri�ed for all the patternsinvolved.For a moderate number of patterns, this still constitutes a good �ltering mechanism, at the samecost of a single search. Clearly, the relaxed pattern triggers many more veri�cations than the simpleones. This severely limits the amount of possible superimposition. However, as we show later, in80

Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ

ε ε εε

ε ε εε

iort

iort

iortworp

worp

worp

Σ

 no errors

1 error

2 errors

Σ Σ Σ Σ

Σ Σ Σ Σ

a t

a t

a t

Figure 5.7: An NFA to �lter the parallel search of "patt" and "wait".practice this can cut the search times by a factor of two or three. This idea has been applied tomultiple approximate string matching, where similar speedup �gures were obtained (see Chapter 7).We analyze later how many subpatterns can be collapsed while keeping the number of veri�cationslow. We must then form sets of patterns that can be searched together, and search each setseparately. If we use pattern partitioning in j pieces and superimpose in groups of r pieces, wemust perform dj=re superimposed searches. We keep the groups of almost the same size, namelyr0 = bj=dj=rec and r0 = dj=dj=ree. Notice that extended patterns containing #'s may not besuperimposed because their D# words are di�erent.We group subpatterns which are contiguous in the pattern. When an occurrence is reported wecannot know which of the superimposed subpatterns caused the match (since the mechanism doesnot allow knowing), so we check whether the concatenation of the subpatterns appears in the area.From that point on, we use the normal hierarchical veri�cation mechanism.Observe that having the same character at the same position for two patterns improves the �ltere�ciency. This fact can be used to select the best partition of the pattern.5.7 Analysis and OptimizationIn this section we analyze the di�erent aspects of our algorithms, and use this analysis to �nd theoptimal choice for the many alternatives that have been left open. The theoretical analysis is inter-mingled with practical tuning sections and experiments showing their performance and con�rmingthe analysis.It is important to notice that our average-case analysis assumes that the pattern is not extendedand that text and patterns are random strings over an independently generated and uniformlydistributed alphabet of size �. If the alphabet is not uniformly distributed we must replace the �in the formulas by 1=p, where p is the probability that two random letters match. For generalizedpatterns, the average values are di�erent, but we are not able to compute them.81

� � �� � � � �
1 81 2 3 4 5 6 7 80.0

4.0
0.00.51.01.52.02.53.0
3.54.0 k � � �� � � �

1 81 2 3 4 5 6 7 80.00.00.51.01.52.02.53.0
3.54.0 k� By Rows� By Rows (�xed k) By DiagonalsBy Diagonals (+S table)Figure 5.8: Times in seconds form = 9, n = 1 Mb. The plot on the left is for random text (� = 32),and that on the right is for English text.5.7.1 The Simple AlgorithmThe preprocessing phase of this algorithm can be optimized to take O(� +mmin(m; �)) time, andit requires O(�) space. The search phase needs O(n) time.However, this algorithm is limited to the case in which (m� k)(k + 2) � w. In the RAM model itis assumed log2 n � w, so a machine-independent bound is (m� k)(k + 2) � log2 n.Since (m�k)(k+2) takes its maximum value when k = m=2� 1, we can assure that this algorithmcan be applied whenever m � 2(pw � 1), independently of k. That is, we have a linear algorithmfor m = O(plogn), for example, m � 9 for w = 32 bits, or m � 14 for w = 64 bits.Our algorithm shares with Wu and Manber work [WM92a] the NFA model and the idea of usingbit-parallelism. However, the parallelization techniques are di�erent. We compare both algorithmsin their most simple setups.A general implementation of the Wu and Manber code needs to use an array of size k+1. However,we implemented optimized versions for k = 1, 2 and 3. That is, a di�erent code was developed foreach k value, in order to avoid the use of arrays and enable the use of machine registers. We showboth algorithms (optimized and general). We also show the e�ect of our simple speed-up heuristic(the S table), running our algorithm with and without that �ltration heuristic.Figure 5.8 shows the results. We show the case m = 9 (where we can use the simple algorithm).This test was run on a Sun SparcStation 4 running Solaris 2.3, with 32 Mb of RAM and w = 32.5.7.2 Automaton Partitioning5.7.2.1 Search CostThe preprocessing time and space complexity of this algorithm is O(mk�=w). Since automatonpartitioning gives us some freedom to arrange the cells, we �nd out now the best arrangement.First recall that we work only on the active diagonals of the automaton. In Section 4.1 we obtained82

the expected value for the last active column in the automaton (Eq. (4.5)). This measures activecolumns and we work on active diagonals. To obtain the last active diagonal we subtract k, toobtain that on average we work on ke=(p� � e) diagonals.This is because the last active column depends on the error level k. Hence, at automaton row i(where only i errors are allowed) the last active column is lcol(i) = i=(1� e=p�). Hence, the lastactive column de�nes a diagonal line across the automaton whose slope is 1=(1� e=p�). Figure 5.9illustrates the situation. All the active states of the automaton are to the left of the dashed diagonal.The number of diagonals a�ected from the �rst one (thick line) to the dashed one is k=(1�e=p�)�k.i k0 Initial diagonalLast active diagonallcol(i) = i=(1�e=p�))Automaton Last active column:k k=(1�e=p�)Figure 5.9: Converting active columns to active diagonals. The shaded area represents the activestates of the automaton.Since we pack (m�k)=J diagonals in a single cell, we work on average on ke=(p�� e)�J=(m�k)d-columns. Each d-column must work on all its I cells. On the other hand, there are only Jd-columns. Hence our total complexity isI J min�1; ke(m� k)(p� � e)� nwhich shows that any choice for I and J is the same for a �xed IJ . Since IJ � (m� k)(k + 2)=w(total number of bits to place divided by the size of the computer word), the �nal cost expressionis independent (up to round-o�s) of I and J :min�m� k ; kep� � e� k + 2w n (5.6)This formula has two parts. First, for � < 1� e=p�, it is O(k2n=(p�w)) time. Second, if the errorratio is high (� � 1 � e=p�), it is O((m � k)kn=w). This last complexity is also the worst caseof this algorithm. Recall that in practice the value e should be replaced by 1.09 and the averagenumber of active columns is that of Eq. (4.6).5.7.2.2 Practical TuningSince the crude analysis does not give us any clue about which is the optimal selection for I and J ,we perform a more detailed analysis. The automaton is partitioned into a matrix of I rows and Jcolumns, each cell being a small sub-automaton that stores `r rows of `c diagonals of the completeautomaton. Because of the nature of the update formula, we need to store (`r + 1)`c bits for each83

sub-automaton. Thus, the conditions to meet are(`r + 1)`c � w ; I = �k + 1`r � ; J = �m � k`c �Notice that in some con�gurations the cells are better occupied than in others, due to round-o�s. That is, once we select `r and `c, the best possible packing leaves some bits unused, namelyw � (`r + 1)`c.One could, in fact, try every I and J and pick the con�guration with fewer cells. Since we workproportionally to the number of cells, this seems to be a good criterion. Some con�gurations needmore cells than others because, due to round-o�s, they use less bits in each computer word (i.e.cell). In the worst possible con�guration, w=2 + 1 bits can be used out of w, and in the best oneall the w bits can be used. It is clearly not possible to use as few as w=2 bits or less, since in thatcase there is enough room to pack the bits of two cells in one, and the above equations would nothold. Hence, the best we can obtain by picking a di�erent I and J is to reduce the number of cellsby a factor of 2.However, by selecting minimal I , the possible automata are3: (a) horizontal (I = 1), (b) horizontaland with only one diagonal per cell (I = 1; `c = 1), or (c) not horizontal nor vertical, and withonly one diagonal per cell (I > 1; J > 1; `c = 1). Those cases can be solved with a simpler updateformula (2 to 6 times faster than the general one), since some cases of communication with theneighbors are not present. Moreover, a more horizontal automaton makes the strategy of activecolumns work better.This much faster update formula is more important than the possible 2-fold gains due to round-o�s.Hence, we prefer to take minimal I , i.e.I = d(k + 1)=(w� 1)e ; `r = d(k + 1)=Ie ; `c = bw=(`r + 1)c ; J = d(m� k)=`ceHowever, the three cases mentioned do not cover (d) a purely vertical partitioning, (i.e. J = 1),which is applicable whenever 2(m�k) � w and has also a simple update formula. The selection forvertical partitioning is Jv = 1, `vc = m� k, `vr = bw=(m� k)c � 1, Iv = d(k+ 1)=`vre. Figure 5.10shows an experimental comparison between (c) and (d).The mechanism we use to determine the optimal setup and predict its search cost integrates exper-imental and analytical results, as follows.� We experimentally obtain the time that each type of automaton spends per text character(using least squares over real measures). We express those costs normalized so that the costof the core algorithm is 1.00. These costs have two parts:{ A base cost that does not depend on the number of cells: (a) 1.02, (b) 1.13, (c) 0.12, (d)1.66.{ A cost per processed cell of the automaton: (a) 1.25, (b) 0.83, (c) 2.27, (d) 1.36.{ A cost spent in keeping account of which is the last active diagonal: (a) 0.68, (b) 0.20,(c) 1.66. Notice that although at a given text position this work can be proportional tothe number of active columns, the amortized cost is O(1) per text position. To see this,consider that at each text character we can at most increment by one the last active3This is true provided we solve the case k =m� 1 with a simpler algorithm, i.e. the S �lter alone.84

34 4934 39 44 490.0
5.0
0.00.51.01.52.02.53.03.54.0
4.55.0

kt
Figure 5.10: Times in seconds for vertical partitioning (dashed line) versus minimal rows partitioning(solid line). We use m = 50, w = 32, � = 32, n = 1 Mb, random text and patterns.column, and therefore no more than n increments and n decrements are possible in atext of size n. Hence the correct choice is to consider this cost as independent on thenumber of cells of the automaton.� We analytically determine using Eq. (4.6) the expected number of active d-columns.� Using the above information, we determine whether it is convenient to keep track of the lastactive column or just modify all columns (normally the last option is better for high errorratios). We also determine which is the most promising partition.Since this strategy is based on very well-behaved experimental data, it is not surprising that itpredicts very well the cost of automaton partitioning and that it selected the best strategy inalmost all cases we tried (in some cases it selected a strategy 5% slower than the optimal, but notmore).Finally, notice that the worst case complexity ofO(k(m�k)=w) per inspected character is worse thanthe O(m) of dynamic programming when the pattern length gets large, i.e. m > w=(�(1��)). Thisensures that automaton partitioning is better for m � 4w, which is quite large. In fact, we shouldalso account for the constants involved. The constant for partitioned automata is nearly twice aslarge as that of dynamic programming, which makes sure that this method is better form � 2w. Weuse therefore a partitioned automaton instead of dynamic programming as our veri�cation enginefor potential matches in the sections that follow.Figure 5.11 shows an experimental comparison between plain dynamic programming, the Ukkonencuto� variant [Ukk85b] and our partitioned automaton for large patterns. In the worst momentof the partitioned automaton, it is still faster than dynamic programming up to m = 60, whichcon�rms our assumptions. As explained at the end of Section 5.9, the peaks in our algorithm aregenuine.5.7.2.3 Improving Register UsageWe �nish this section explaining an improvement in the engineering of the algorithm that leadsto triplicating the performance in some cases. The improvement is based on better usage of the85

10 5010 20 30 40 500
5
01234
5

kt
20 10020 40 60 80 1000

14
0246810
1214 kt

Figure 5.11: Times in seconds for partitioned automaton (thick line) versus dynamic programming(dashed line) and the Ukkonen's improvement (solid thin line). The left plot is for m = 50 and theright one for m = 100. We use w = 32, � = 32, n = 1 Mb, random text and patterns.computer registers.The main di�erence in the cost between the core algorithm and an horizontally partitioned au-tomaton is that in the �rst case we can put in a register the machine word which simulates theautomaton. This cannot be done in a partitioned automaton, since we use an array of words. Thelocality of accesses of those words is very low, i.e. if there are a active d-columns, we update foreach text character all the words from D1 to Da. Hence, we cannot keep them in registers.An exception to the above statement is the case a = 1. This represents having active only the �rstcell of the horizontal automaton. We can, therefore, put that cell in a register and traverse the textupdating it, until the last diagonal inside the cell becomes active. At that point, it is possible thatthe second cell will be activated at the next character and we must resume the normal searchingwith the array of cells. We can return to the one-cell mode when the second cell becomes inactiveagain.With this technique, the search cost for a pattern is equal to that of the core algorithm until thesecond automaton is activated, which in some cases is a rare event. In fact, we must adjust theabove prediction formulas, so that the horizontal automata cost the same as the core algorithm(1.00), and we add the above computed cost only whenever their last diagonal is activated. Theprobability of this event is f(`c + k; k).This technique elegantly generalizes a (non-elegant) truncation heuristic proposed in earlier versionsof this work [BYN98d]. It stated that, for instance, if we hadm = 12; k = 1, better than partitioningthe automaton in two we could just truncate the pattern by one letter, use the core algorithm andverify each occurrence. With the present technique we would automatically achieve this, since thelast letter will be isolated in the second cell of the horizontal automaton.Notice that this idea cannot be applied to the case I > 1, since in that case we have always morethan one active cell. In order to use the technique also for this case, and in order to extend the ideato not only the �rst cell, we could develop specialized code for two cells, for three cells, and so on,but the e�ort involved and the complexity of the code are not worth it.Figure 5.12 shows the improvements obtained over the old version. The better register usage ismore noticeable for low error levels (horizontal partitioning).86

10 3010 20 300.0
1.0
0.00.20.40.60.8
1.0

kt
Figure 5.12: Times in seconds for partitioned automata before (thin line) and after (thick line)improving the register usage. We use m = 60, w = 32, � = 32, n = 1 Mb, random text andpatterns.5.7.3 Pattern Partitioning5.7.3.1 Search CostThe cost of pattern partitioning depends on the number j of pieces used. In the worst case eachtext position must be veri�ed, and since we avoid re-checking the same text, we have the same costas automaton partitioning. We consider the average case in which follows. This analysis holds onlyfor non-extended patterns.The minimum number of pieces j� is given by Eq. (5.5), from which we derive the next equation�mj� � kj��� kj� + 2� = wwhose solution (disregarding roundo�s) isj� = m� k +p(m� k)2 + wk(m� k)w = m d(w; �) (5.7)where d(w; �) = 1� �w �1 +p1 + w�=(1� �)�As a function of �, d(w; �) is convex and is maximized for � = 1=2 (1� 1=(pw� 1)), where it takesthe value 1=(2(pw � 1)). To give an idea of the reduction obtained over the classical O(mn) cost,this maximum value is 0.11 for w = 32 and 0.07 for w = 64.Observe that we discarded the second condition of Eq. (5.5), namely bm=jc > bk=jc. This is becauseif bm=jc = bk=jc, then j > m� k, which implies � > 1� 1=(w� 1). As we show next, this value of� is outside our area of interest (i.e. it is larger than 1� 1=p�), except for � > (w � 1)2, that is,extremely large alphabets (e.g. � close to 1000 for w = 32).Excluding veri�cations, the search cost isO(j�n). For very low error ratios (� < 1=w), j� = O(m=w)and the cost is O(mn=w). For higher error ratios, j� = O(pmk=w) and then the search cost is87

O(pmk=w n). Both cases can be obviously bounded by O(mn=pw). The preprocessing time andstorage requirements for the general algorithm are j times those of the simple one.We consider now the other component of the search cost, that is, the cost to verify the neighborhoodsof the text places which match some subpattern. If we simply verify the complete area for thecomplete pattern, then we have that for each matching piece we have to pay O(m2) time to verifythe neighborhood of the area where it occurred. In Section 4.1 we have proven that the probabilitythat a piece of length m=j� matches is O(m=j�), where is de�ned in Eq. (4.1) and it holds that < 1 whenever � < 1�e=p� (notice that � is the same for all the subpatterns). Then, the averagecost paid to check all the matches of each piece is O(m2m=j�). For this cost (which has to be addedup for all the j� pieces) not to a�ect the total O(j�n) search cost, we need � 1=m2j�=m, i.e.� � 1� ep� m j�m�k = 1� ep� m d(w;�)1��which decreases as m grows. Therefore, this method degrades for longer patterns. This is causedmainly because a large pattern is veri�ed whenever any pieces matches. Hence, the veri�cation costkeeps constant while the probability to make the veri�cation increases with j� (i.e. with m). Thismakes this method to stop working long before the limit � < 1� 1:09=p� shown in Section 4.1.However, the hierarchical veri�cation technique presented in Section 4.3.1 does not degrade as thepattern grows. In that section (Eq. (4.7)) we show that the total amount of veri�cation work foreach piece is O((m=j�)2m=j�). This is much better than O(m2m=j�), and in particular it is O(1)whenever < 1, so it does not a�ect the total search cost of the pieces, even if m grows.Although when there are few matches (i.e. low error level) the simple and hierarchical veri�cationmethods behave similarly, there is an important di�erence for medium error levels: the hierarchicalalgorithm is more tolerant to errors. We illustrate this fact in Figure 5.13. As it can be seen, bothmethods eventually are overwhelmed by the veri�cations before reaching the limit � = 1�1:09=p�.This is because, as j grows, the cost of veri�cations O((m=j�)2m=j�) increases. In the case � = 32,the theoretical limit is �� = 0:83 (i.e. k = 50), while the simple method ceases to be useful fork = 35 (i.e. � = 0:58) and the hierarchical one works well up to k = 42 (i.e. � = 0:7). ForEnglish text the limit is �� = 0:69, while the simple method works up to k = 30 (� = 0:50) and thehierarchical one up to k = 35 (� = 0:58).It is also noticeable that the hierarchical method works a little harder in the veri�cations oncethey become signi�cative (very high error levels). This is because the hierarchy of veri�cationsmakes it to check many times the same text area. On the other hand, we notice that the use ofpartitioned automata instead of dynamic programming for the veri�cation of possible matches isespecially advantageous in combination with hierarchical veri�cation, since in most cases we verifyonly a short pattern, where the automaton is much faster than dynamic programming.5.7.3.2 Optimal Selection for jIt is possible to use just automaton partitioning to solve a problem of any size. It is also possibleto use just pattern partitioning, with j large enough for the pieces to be tractable with the kernelalgorithm directly (i.e. j = j�).It is also possible to merge both techniques: partition the pattern into pieces. Those pieces may ormay not be small enough to use the kernel algorithm directly. If they are not, search them usingautomaton partitioning. This has the previous techniques as particular cases.88

10 6010 20 30 40 50 600
9
01234567
89 kt

10 6010 20 30 40 50 600
14
0246810
1214 kt

Figure 5.13: Times in seconds for simple (thin line) versus hierarchical (thick line) algorithms forpattern partitioning. We use m = 60, w = 32, and n = 1 Mb. On the left, random text (� = 32).On the right, English text.To obtain the optimal strategy, consider that if we partition in j subpatterns, we must perform jsearches with bk=jc errors. For � < 1 � e=p�, the cost of solving j subproblems by partitioningthe automaton is (using Eq. (5.6))ke=jp��e (k=j + 2)w jn = ke(k=2 + 2)(p� � e)w nwhich shows that the lowest cost is obtained with the largest j value, and therefore j = j� is thebest choice.However, this is just an asymptotic result. In practice the best option is more complicated due tosimpli�cations in the analysis, constant factors, and integer roundo�s. For instance, a pattern with4 pieces can be better searched with two horizontal automata of size (I = 1; J = 2) than with foursimple automata (especially given the improvements of Section 5.7.2.3). The cost of each automatondepends heavily on its detailed structure. Therefore, to determine the best option in practice wemust check all the possible j values, from 1 to j� and predict the cost of each strategy. This costaccounts for running j automata of the required type (which depends on j), as well as for the costto verify the potential matches multiplied by their probability of occurrence (using Eq. (4.1)).5.7.4 Superimposition5.7.4.1 Optimizing the Amount of SuperimpositionSuppose we decide to superimpose r patterns in a single search. We are limited in the amountof this superimposition because of the increase in the error level to tolerate, with the consequentincrease in the cost of veri�cations. We analyze now how many patterns we can superimpose.As shown in Section 4.1 (Eq. (4.1)), the probability of a given text position matching a randompattern is O(m), where depends on � and �. This cost is exponentially decreasing with m for� < 1� e=p�, while if this condition does not hold the probability is very high.In this formula, 1=� stands for the probability of a character crossing a horizontal edge of theautomaton (i.e. the probability of two random characters being equal). To extend this result,89

we notice that we have r characters on each edge now, so the above mentioned probability is1�(1�1=�)r � r=�. The (pessimistic) approximation is tight for r << �. We use the approximationbecause in practice r will be quite modest compared to �.Hence, the value of when superimposing r patterns (which we call 0 to keep unchanged the old value) is 0 = r�� 2�1�� (1� �)2!1�� = r1�� (5.8)and therefore the new limit for � is � < 1� er r�or alternatively the limit for r (i.e. the maximum amount of superimposition r� that can be usedgiven the error level) is r� = � (1� �)2e2which for constant error level is O(�) independent on m. This is not the only restriction on r,because we must check all the r superimposed patterns in the area and therefore the veri�cationscost more. However, as shown in Section 4.3.2, our average veri�cation cost is independent onr provided we search them hierarchically. Thanks to this and the other hierarchical veri�cationmechanism (of Section 4.3.1) we can superimpose more patterns than if using simple veri�cation.This translates into better performance everywhere, not only when the error level is becoming high.Considering the above limit, the total search cost becomes 1=r� = O(1=(� (1� �)2)) times that ofpattern partitioning. For instance, if we partition in j� pieces (so that they can be searched withthe core algorithm), the search cost becomesO�m d(w; �)�(1� �)2 n�which for � � 1=w is O(mn=(w�)), and for higher error level becomes O(pmk=(w�) n) (this isbecause 1� � is lower bounded by e=p�). Again, a general bound is O(mn=pw�).A natural question is for which error level can we superimpose all the j� patterns to perform justone search, i.e. when r� = j� holds. That ism d(w; �) = �(1� �)2e2whose approximate solution is � < �1 = 1� e2m�pw (5.9)where as always we must replace e by 1.09 in practice. As we see in the experiments, this bound ispessimistic because of the roundo� factors which a�ect j� for medium-size patterns.Notice that superimposition stops working when r� = 1, i.e. when � = 1� e=p�. This is the samepoint when pattern partitioning stops working. We show in Figure 5.14 the e�ect of superimpositionon the performance of the algorithm and its tolerance to the error level. As we see in Section 5.9,we achieve almost constant search time until the error level becomes medium. This is because weautomatically superimpose as much as possible given the error level.90

10 8010 20 30 40 50 60 70 800.0
4.0
0.00.40.81.21.62.02.42.83.2
3.6

kt
Figure 5.14: Times in seconds for superimposed automata. Superimposition is forced to r = 2 (solidline), 4 (dashed line) and 6 (dotted line). The larger r, the faster the search but it stops workingfor lower error levels. We use m = 100, w = 32, and n = 1 Mb and random text and patterns with� = 32.5.7.4.2 Optimal Grouping and AligningTwo �nal aspects allow further optimization. A �rst one is that it is possible to try to form thegroups so that the patterns in each group are similar (e.g. they are at small edit distance amongthem, or they share letters at the same position). This would decrease the probability of �ndingspurious matches in the text. A possible disadvantage of this heuristic is that since the subpatternsare not contiguous we cannot simply verify whether their concatenation appears, but we have tocheck if any of the corresponding leaves of the tree appears. The probability that the concatenationappears is much lower.A second one is that, since we may have to prune the longer subpatterns of each group, we candetermine whether to eliminate the �rst or the last character (the pattern lengths di�er at most byone), using the same idea of trying to make the patterns as similar as possible.None of these heuristics have been tested yet.5.8 Combining All the TechniquesAt this point, a number of techniques have been described, analyzed and optimized. They can beused in many combinations for a single problem. A large pattern can be split into one or moresubpatterns (the case of \one" meaning no splitting at all). Those subpatterns can be small enoughto be searched with the kernel algorithm or they can be still large and need to be searched with apartitioned automaton. Moreover, we can group those automata (simple or partitioned) to speedup the search by using superimposition.The analysis helped us to �nd more e�cient techniques and to determine the area where eachtechnique can be used. However, a number of questions still arise. Which is the correct choice tosplit the pattern versus the size of the pieces? Is it better to have fewer pieces or smaller pieces? Howdoes the superimposition a�ect this picture? Is it better to have more small pieces and superimposemore pieces per group or is it better to have larger pieces and smaller groups?91

We study the optimal combination in this section. We begin showing the result of a theoreticalanalysis and then explain the heuristic we use.5.8.1 A Theoretical ApproachThe analysis recommends using the maximal possible superimposition, r = r�, to reduce the numberof searches. As proved in Section 5.7.3.2, it also recommends to use the maximal j = j�. This givesthe following combined (simpli�ed) average complexity for our algorithm, illustrated in Figure 5.15:
10 �1

t=n pmk=(�w) k(m�k)=wpattern partitioning+ superimpositionautomatonpartitioning
�1 ��Figure 5.15: The simpli�ed complexity of our algorithm.� If the problem �ts in a machine word (i.e. (m� k)(k+ 2) � w), the core algorithm is used atO(n) average and worst-case search cost.� If the error level is so low that we can cut the pattern in j� pieces and superimpose all them(i.e. � < �1, Eq. (5.9)) then superimposed automata gives O(n) average search cost.� If the error level is not so low but it is not too high (i.e. � < ��, Eq. (4.2)), then use patternpartitioning in j� parts, to obtain near O(pmk=(w�) n) average search cost.� If the error level is too high (i.e. � > ��) we must use automaton partitioning at O(k(m �k)n=w) average and worst-case search cost.On the other hand, the worst-case search cost is O(k(m � k)=w n) in all cases. This is the sameworst-case cost of the search using the automaton. This is because we use such an automaton toverify the matches, and we never verify a text position twice with the same automaton. We keepthe state of the search and its last text position visited to avoid backtracking in the text due tooverlapping veri�cation requirements. This argument is valid even with hierarchical veri�cation.5.8.2 A Practical Heuristic and a Searching SoftwareClearly the theoretical analysis alone is insu�cient at this point. The results are asymptotic anddo not account for many details which are important in practice, such as roundo�s and constantfactors. 92

The real costs are so complex that the best way to �nd the optimal combination relies on tryingall the possible values of j, from 1 to j� and for r, from 1 to j. For each possible value of rand j, we compute the predicted cost of performing the dj=re searches with simple or partitionedautomata as explained in Section 5.7.2.2. We also account for the probability of matching the(possibly superimposed) automata in the text, which is obtained from Eq. (5.8), as well as thecost of such veri�cation. This is an inextricable mix of theoretical and empirical results. Thisprediction algorithm costs O(k2), which is quite modest. Its outcome is not only the recommendedcombination of techniques to use, but also the expected cost of the search.This heuristic algorithm has been implemented as a software system, which is publicly availablefrom http://www.dcc.uchile.cl/�gnavarro/pubcode. This software uses the techniques in anoptimal way, but it also allows forcing the use of any combination for test purposes. It also allowsforcing or avoid using the twist mentioned in Section 5.2.1. It reports the combination of parametersused, the time spent in the search and the number of matches found. It can optionally print thosematches. Currently the software needs to be provided with the value of �. We plan in the future aself-adjusting feature that makes it able not only of determine the type of text it is in, but also tochange the strategy if the selected combination proves bad.5.9 Experimental ComparisonIn this section we experimentally compare our combined heuristic against the fastest previous al-gorithms we are aware of. Since we compare only the fastest algorithms, we leave aside [Sel80,Ukk85a, GP90, LV89, Tak94, Wri94, WM92a, Ukk85b, ST95], which are not competitive in therange of parameters that we study here. Our algorithm is shown using and not using speed-upof Section 5.2.1, since it could be applied to many other algorithms as well (but generally not to�ltration algorithms).We tested random patterns against 10 Mb of random text. We test � = 32 and English text. Eachdata point was obtained by averaging the Unix's user time over 10 trials. We present all the timesin tenths of seconds per megabyte of text.The algorithms included in this comparison follow (in alphabetical code order). More completeexplanations on these algorithms can be found in Chapter 3, while we emphasize here their operativedetails. Notice that we are not including other algorithms developed in this thesis4, these areconsidered later in their respective chapters.Agrep [WM92b] is a widely distributed exact and approximate search software oriented to naturallanguage text. It is limited (although not intrinsically) to m � 32 and k � 8.BM is a �lter based on applying a Boyer-Moore-type machinery [TU93]. The code is from J.Tarhio.BPM (bit-parallel matrix) is a recent work [Mye98] based on the bit-parallel simulation of thedynamic programming matrix. The code is from G. Myers and has di�erent versions for oneand for multiple machine words.Count is a counting �lter proposed in [JTU96], which slides a window over the text counting thenumber of letters in the text window that are present in the pattern. We use our own variant4Notice that we include some algorithms such as Counting and DFA which, although not created in this thesis, wehave studied more in depth and implemented more e�ciently.93

(window of �xed size, see Section 6.2). In that section we also present an improvement overthis technique.CP is the column partitioning algorithm (kn.clp) of [CL92], which computes only the places wherethe value of the dynamic programming matrix does not change along each column. The codeis from W. Chang.DFA converts the NFA into a deterministic automaton which is computed in lazy form. Thealgorithm is proposed in [Kur96] and studied more in detail in Section 6.4. The code is ours.EP (exact partitioning) is the �ltering algorithm proposed in [WM92a] which splits the patternin k + 1 pieces and searches them using a Boyer-Moore multipattern algorithm, as suggestedin [BYP96]. The code is ours and uses an extension of the Sunday [Sun90] algorithm (animprovement over this code is given in Section 6.1).Four-Russians applies a Four Russians technique to pack many automaton transitions in computerwords. The code is from the authors [WMM96], and is used with r = 5 as suggested in theirpaper (r is related with the size of the Four Russians tables).NFA - NFA/NS is our combined heuristic, with and without the speed-up technique.Figure 5.16 shows the results for random text with � = 32. As it can be seen, our algorithm is moree�cient than any other when the problem �ts in a single word (m = 9), except for low error level,where EP is unbeaten. For very low error level our algorithm is also beaten by BM. For longerpatterns, our algorithm is the fastest one up to shortly after � = 1=2. Again, EP is the exception,since it is faster up to � = 1=3 approximately. For � > 1=2, BPM is the fastest one, except whenthe pattern is longer than w letters and the error level is high. In this �nal case, 4-Russians is wins.Figure 5.17 shows the results for English text. The results are similar but the allowed error ratiosare reduced: our algorithm is the fastest up to � = 1=3 approximately, except for EP which is fasterfor � � 1=5. Agrep is also very e�cient for low error levels, quite close to EP. The strange behaviorfor Agrep in the case m = 9 occurs because as soon as it �nds a match in the line it reports the lineand abandons the search of that line, hence improving for very high error ratios.Finally, Figure 5.18 shows the results for long patterns and �xed error level. The results show thatfor long patterns our algorithm and BPM are the fastest if the error level is not too high. For lowerror levels the algorithm EP is better, but it degrades as m grows.The reader may be curious about the strange behavior of some of the curves in our algorithms.Those are not caused by statistical deviations in the tests but are due to integer round-o�s, whichare intrinsic to our algorithms. For instance, if we had to use pattern partitioning to split a searchwith m = 30 and k = 17, we would need to search four subpatterns, while for k = 18 we need justthree. As another example, consider automaton partitioning for m = 20 and k = 13, 14 and 15.The number of cells to work on (IJ) change from four to three and then to �ve. The use of thesmart heuristic eliminates most of those peaks, but some remain.Another possible concern for the reader is how the results of the experiments di�er from one platformto another. Is it possible that algorithms faster than others become slower on another machine?Our experience is that in general the results can be projected to other machines with no changes.We have made the same experiments on a Sun SparcClassic with 16 Mb of RAM running SunOS4.1.3 and on an Intel 486 DX of 100 MHz with 16 Mb of RAM running Linux. The only di�erenceoccurs with respect to algorithms that require large amounts of memory (e.g. [WMM96, Nav97b]),which obviously bene�t bene�t from larger RAMs.94

� � � � �+ + + + +� � � � � � � �� � � � � � � �� � � � � � � �
1 81 2 3 4 5 6 7 80

5
01234
5

kt � � � � � � �+ + + + + +� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �
1 131 3 5 7 9 11 130

5
01234
5

kt
� �+ +� � � �� � � �� � � �

1 191 3 5 7 9 11 13 15 17 190
5
01234
5

kt � �+ +� � � � �� � � �� � � �
1 221 4 7 10 13 16 19 220

5
01234
5

kt
� � �+ +� � � � � � �� � �� � � � � �
1 281 4 7 10 13 16 19 22 25 280

6
012345
6

kt � � � �+ + + +� � � � � � � � � � � �� � � �� � � � � � � � � � � � � � �
1 551 7 13 19 25 31 37 43 49 550

10
02468
10

kt
NFANFA/NS EPAgrep � Count+ BM BPM� 4-Russ. � DFA� CPFigure 5.16: Experimental results for random text (� = 32). From top to bottom and left to right,m =9, 15, 20, 25, 30 and 60. 95

� � � �+ + +� � � � � � � �� � � � � � � �� � � � � � � �
1 81 2 3 4 5 6 7 80

6
012345
6

kt � � � � �+ + + +� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � �
1 131 3 5 7 9 11 130

5
01234
5

kt
� �+ +� � � �� � � �� � �
1 191 3 5 7 9 11 13 15 17 190

6
012345
6

kt � �+� � � � � �� � �� � � �
1 221 4 7 10 13 16 19 220

8
0246
8

kt
� �+ +� � � � � � � �� � � �� � � � �

1 281 4 7 10 13 16 19 22 25 280
8
0123456
78 kt � � �+ + +� � � � � � � � � � � � � �� � � �� � � � � � � � �

1 551 7 13 19 25 31 37 43 49 550
12
0246810
12

kt
NFANFA/NS EPAgrep � Count+ BM BPM� 4-Russ. � DFA� CPFigure 5.17: Experimental results for English text. From top to bottom and left to right, m =9,15, 20, 25, 30 and 60. 96

� � � � � � � � � �+ + + + + + + + + +� � � � � � �� � � � � � � � � �� � � �
10 10010 20 30 40 50 60 70 80 90 1000

3
012
3

mt � � � � � � � � � �+ + + + + + + + + +� � � � � � � � � �� � � � � � � � � �� � � � �
10 10010 20 30 40 50 60 70 80 90 1000

4
0123
4

mt
� � � �+ + +� � �� � �� � �

4 1004 20 36 52 68 84 1000
4
0123
4

mt � �+� � � �� � �� �
4 1004 20 36 52 68 84 1000

5
01234
5

mt
�+� � � �� �� � � �

4 1004 20 36 52 68 84 1000
7
012345
67 mt � � �+ +� � � � � �� �� � � � � �

4 1004 20 36 52 68 84 1000
8
0246
8

mt
NFANFA/NS EPAgrep � Count+ BM BPM� 4-Russ. � DFA� CPFigure 5.18: Experiments for long patterns. On the left, random text (� = 32), on the right, Englishtext. From top to bottom, the plots are for � = 0:1, � = 0:25 and � = 0:5.97

Chapter 6Filtering and Automata AlgorithmsWe present a number of di�erent �ltration and automata-based approaches in this chapter. Thegeneral idea of �lters is to quickly obtain su�cient conditions to discard large text areas so thatmore expensive algorithms need to be run only on the areas that cannot be discarded. The ideaof the automaton approach is to convert it to deterministic and reduce the memory requirements.The ideas presented in this chapter have been published in [NBY98d, Nav97a, NR98b, Nav97b],and some preliminary results can be also found in [BYN96b, BYN96a, BYN98d].6.1 Reduction to Exact SearchIn this section we implement a �lter proposed in [BYP96] to which little attention was paid before.The result is the fastest known algorithm for approximate string matching. This algorithm, however,can only be used for low error levels. By using a new algorithm to verify potential matches and anew optimization technique for biased texts (such as English), the algorithm becomes the fastest onefor medium error levels too. This includes most of the interesting cases in this area, and thereforethe result is the fastest algorithm for most cases of interest.6.1.1 The Original AlgorithmThe idea of this algorithm is explained in Section 3.1.3. As explained there, the original presentationis from [WM92a], who state the following lemma:Lemma: If a pattern is partitioned in k + 1 pieces, then at least one of the pieces can be foundwith no errors in any approximate occurrence of the pattern.This property is easily veri�ed by considering that k errors cannot alter all the k + 1 pieces of thepattern, and therefore at least one of the pieces must appear unaltered. In fact it is a particularcase of our Partitioning Lemma proved in Section 4.2. Since in this case j = k + 1, the pieces aresearched with bk=(k + 1)c = 0 errors.This reduces the problem of approximate string searching to a problem of multipattern exact searchplus veri�cation of potential matches. That is, we split the pattern in k + 1 pieces and search allthem in parallel with a multipattern exact search algorithm. Each time we �nd a piece in the text,we verify a neighborhood to determine if the complete pattern appears.In the original proposal [WM92a], a variant of the Shift-Or algorithm was used for multipattern98

search. To search r patterns of length m0, this algorithm is O(rm0n=w). Since in this case r = k+1and m0 = bm=(k+1)c, the search cost is O(mn=w), which is the same cost for exact searching usingShift-Or. Later, in [BYP96], the use of a multipattern extension of an algorithm of the Boyer-Moore(BM) family was proposed. However, no more attention was paid to this idea until this thesis.In this work we have implemented the above idea. To select the BM algorithm to extend tomultipattern search, we have considered that in practice there would be a few, short pieces tosearch. We have selected to extend the Sunday [Sun90] algorithm. The extension is as follows.We split the pattern in pieces of length bm=(k+1)c and dm=(k+1)e and form a trie with the pieces.We also build a pessimistic d table with all the pieces (the longer pieces are pruned to build thistable). This table stores, for each character, the smallest shift allowed among all the pieces. Now,at each text position we enter in the trie using the text characters from that position on. If we endup in a leaf, we found a piece, otherwise we did not. In any case, we use the d table to shift to thenext text position. This simple idea works very well.We consider veri�cations now. Suppose we �nd at T::i the end of a match for the subpattern endingat P::j . Then, the potential match must be searched in the area Ti�j+1�k::i�j+1+m+k , an (m+ 2k)-wide area. This checking must be done with an algorithm resistant to high error levels, such asdynamic programming.This algorithm is the fastest one in practice when the total number of veri�cations triggered is lowenough, in which case the search cost is O(kn=m) = O(�n) in the best case (this is because thepieces are of length m=(k + 1) � 1=�). We �nd out now when the total amount of work due toveri�cations is not higher.An exact pattern of length ` appears in random text with probability 1=�`. In our case, this is1=�bm=(k+1)c � 1=�1=�. Since the cost to verify a potential match using dynamic programming isO(m2), and since there are k+1 � �m pieces to search, the total cost for veri�cations is m3�=�1=�.This cost must be O(�) so that it does not a�ect the total cost of the algorithm. This happensfor � < 1=(3 log�m). On English text we found empirically the limit � < 1=5 for moderate sizepatterns.Compared to the original proposal of [WM92a], the use of the Sunday algorithm is less exiblebecause it cannot search for extended patterns. However, in [NR98a] the Sunday algorithm wasreplaced with another one based on bit-parallel su�x automata. The resulting algorithm has almostthe same performance and is able to search some extended patterns. However, we focus in simplepatterns in this section and keep using the Sunday algorithm.6.1.2 Applying Hierarchical Veri�cationThe hierarchical veri�cation technique presented in Section 4.3.1 is useful here. The idea is to tryto quickly determine that the match of a small piece is not in fact part of a complete match. Hence,instead of verifying the complete area of interest we perform a hierarchical veri�cation with longerand longer pieces of the pattern that contain the matching piece.If we use the hierarchical veri�cation algorithm, the analysis of Section 4.3.1 (Eq. (4.8)) shows thatthe veri�cation cost per piece is `2=�b mk+1c, where ` = m=(k+1) � 1=�. Since there are k+1 � �mpieces to search, the total cost for veri�cations is m=(��1=�). This cost must be O(�) so that itdoes not a�ect the total cost of the algorithm. This happens for� < 1log�m+ 2 log�(1=�) = 1log�m+�(log� log�m)99

Figure 6.1 illustrates the improvement obtained. As it can be seen, on random text the hierarchicalveri�cation works well up to � = 1=2, while simple veri�cation works well up to � = 1=3. On theother hand, after that point the veri�cations cost much more than in the simple method. This isbecause of the hierarchy of veri�cations which is carried out for most text positions when the errorlevel is high. On the other hand, it is hard to improve the barrier of � < 1=2 with this method,since at this point we are searching for single characters and performing a veri�cation each timesome of the characters is found in the text (which is very frequent).
5 305 10 15 20 25 300

30
0510152025
30

kt
5 305 10 15 20 25 300

30
0510152025
30

kt
Figure 6.1: The hierarchical (solid line) versus the simple (dashed line) veri�cation technique. Weuse m = 60 and show random (left, � = 32) and English text (right). We show the time in secondsfor n = 10 Mb of text.6.1.3 Optimizing the PartitionWhen splitting the pattern, we are free to determine the k+1 pieces as we like. This is a consequenceof our general version of the Partitioning Lemma (Section 4.2), and can be used to minimize theexpected number of veri�cations when the letters of the alphabet do not have the same probabilityof occurrence (as in English text).For example, imagine that Pr(0e0) = 0:3 and Pr(0z0) = 0:003. Then, if we search for "eeez" it isbetter to partition it as "eee" and "z" (with probabilities 0.0027 and 0.003 respectively) ratherthan "ee" and "ez" (with probabilities 0.09 and 0.0009 respectively). More generally, assumingthat the probability of a sequence is the product of the individual letter probabilities1, we want apartition that minimizes the sum of the probabilities of the pieces (which is directly related to thenumber of veri�cations to perform).We present now a dynamic programming algorithm to optimize the partition of P1::m. Let R[i; j] =Qjr=i+1 Pr(Pr) for every 0 � i � j � m. It is easy to see that R can be computed in O(m2) timesince R[i; j] = R[i; j� 1]� Pr(Pj). Using R we build two matrices, namely- SP [i; k] = sum of the probabilities of the pieces in the best partition for Pi+1::m with k errors.- C[i; k] = where the next piece must start in order to obtain SP [i; k].1Although we are using a model of individual letters (i.e. 0-order Markov chain), we can easily extend it to ahigher order model (e.g. considering probabilities of pairs of letters).100

This takes O(m2) space. The algorithm of Figure 6.2 computes the optimal partition in O(m2k)time. /* building R */for (i = 0;i � m;i++) R[i; i] = 1:0;for (d = 1;d � m;d++)for (i = 0;i � m� d;i++)R[i; i+ d] = Pr(Pi+1)� R[i+ 1; i+ d];/* computing SP and C */for (i = 0;i < m;i++)SP [i; 0] = R[i;m];C[i; 0] = m;for (r = 1;r � k;r ++)for (i = 0;i < m� r;i++)SP [i; r] = minj 2 i+1::m�r(R[i; j]+ SP [j; r� 1]);C[i; r] = j that minimizes the expression above;Figure 6.2: Dynamic programming algorithm to optimize the partition of the pattern.The �nal probability of veri�cation is SP [0; k] (note that we can use it to estimate the real cost ofthe algorithm in runtime, before running it on the text). The pieces start at `0 = 0, `1 = C[`0; k],`2 = C[`1; k� 1], ..., `k = C[`k�1; 1].As we presented the optimization, the obtained speedup is very modest and even counterproductivein some cases. This is because we consider only the probability of verifying. The search times of theextended Sunday algorithm degrades as the length of the shortest piece is reduced, as it happens inan uneven partition. We consider in fact a cost model which is closer to the real search cost. Weoptimize 1minimum length + Pr(verifying)�m2Figure 6.3 shows experimental results comparing the normal versus the optimized partitioning algo-rithms. We repeated this experiment 100 times because of its very high variance. This experimentis only run on English text since it has no e�ect on random text. Both cases use the originalveri�cation method, not the hierarchical one. As it can be seen, the achieved improvements areespecially noticeable in the intermediate range of errors.6.1.4 Experimental ComparisonIn this section we experimentally compare the old and new algorithms against the fastest algorithmswe are aware of. These are explained in detail in Section 5.9.We tested random text with � = 32, and English text. Each data point was obtained by averagingthe Unix's user time over 50 trials on 10 megabytes of text. We present all the times in tenths ofseconds per megabyte. From the algorithms described in Section 5.9 we only include those thatproved to be the best ones: EP (i.e. the original version of this algorithm), NFA (i.e. the algorithmof Chapter 5) and BPM. The improved algorithm of this section is labeled HEP (for \hierarchicalexact partitioning"). 101

1 71 2 3 4 5 6 70
10
02468
10

k 3 153 6 9 12 150
20
0481216
20

kFigure 6.3: The optimized (solid line) and the normal splitting (dashed line), for m = 10 and 30 on10 Mb of English text.On English text we add two extra algorithms: Agrep and a version of our algorithm that includesthe splitting optimization. On English text the code \HEP" corresponds to our algorithm withhierarchical veri�cation and splitting optimization, while \HEP/NO" shows hierarchical veri�cationand no splitting optimization.As seen in Figure 6.4, for � = 32 the new algorithm is more e�cient than any other for � < 1=2,while for English text it is the fastest for � < 1=3. Notice that although Agrep is normally fasterthan EP (i.e. the original version of this technique), we are faster than Agrep with the hierarchicalveri�cation, and the splitting optimization improves a little over this.Figure 6.5 shows the results for long patterns and �xed error level. For very low error level (� = 0:1)our new algorithm improves a little over EP, although for natural language Agrep is the fastest form � 50. For low error level (� = 0:25) the new algorithm HEP is works much better than the oldEP, and becomes the fastest even where EP is not even competitive. Hence, although this algorithmalso degrades as m grows, it is much more resistant to the pattern length.6.1.5 ExtensionsAs explained, this algorithm can reasonably handle extended patterns if the BNDM search algorithmof [NR98a] is used instead of the Sunday extension. Figure 6.6 shows the relative performance ofBNDM with respect to Sunday. The three curves correspond to the same algorithm (withouthierarchical veri�cation or splitting optimization) where the multipattern search is implementedwith BNDM, Sunday or WM (i.e. the �rst proposal of [WM92a]).As it can be seen, Sunday is (almost always) better but BNDM is reasonably competitive and moreexible (moreover, its performance does not degrade signi�cantly if classes of characters are allowed,see [NR98a, NR98b]).We can adapt the �lter to other distance functions quite easily. Di�erent costs of the operationscan be accommodated by simply determining the minimum number of operations k necessary toreach the allowed error level. We can allow other operations as well, although some of them requiremore care. For instance, if we allow transpositions we have that a single operation can alter twopattern pieces, and therefore we must split the pattern in 2k + 1 pieces instead of k + 1.102

1 61 2 3 4 5 60.0
2.0
0.00.40.81.21.6
2.0

kt
1 51 2 3 4 50.0

2.0
0.00.40.81.21.6
2.0

kt

1 131 3 5 7 9 11 130.0
3.0
0.00.51.01.52.02.5
3.0

kt
1 91 2 3 4 5 6 7 8 90.0

3.0
0.00.51.01.52.02.5
3.0

kt

1 191 4 7 10 13 16 190.0
3.0
0.00.51.01.52.02.5
3.0

kt
1 151 3 5 7 9 11 13 150.0

3.0
0.00.51.01.52.02.5
3.0

kt
HEP HEP/NO EP Agrep BM NFAFigure 6.4: Experimental results for random (� = 32, left) and English text (right). From top tobottom m =10, 20 and 30. 103

10 10010 20 30 40 50 60 70 80 90 1000
3
012
3

mt
10 10010 20 30 40 50 60 70 80 90 1000

4
0123
4

mt

4 1004 20 36 52 68 84 1000
4
0123
4

mt
4 1004 20 36 52 68 84 1000

5
01234
5

mt
HEP EP Agrep BM NFAFigure 6.5: Times for long patterns. On the left, random text (� = 32), on the right, English text.From top to bottom, the plots are for � = 0:1 and � = 0:25.We are working on better cost functions for the splitting optimization technique. We also plan tostudy the on-line e�ect of splitting the pattern in more than k + 1 pieces (so that more than onepiece has to match), as suggested in [Shi96] for o�-line searching.6.2 A Counting FilterWe present in this section a very simple and e�cient algorithm for on-line approximate stringmatching. It is based on a previously known counting-based �lter [JTU96] that searches for a singlepattern by quickly discarding uninteresting parts of the text. We give a simpli�ed implementationof the algorithm as well as a novel analysis. We also extend the �lter to improve its e�ciency for lowerror levels, reaching O(�em=� n) search cost. This �lter is used later in Section 7.3 for multipatternapproximate searching.The algorithm that we extend is a �lter based on counting matching positions [JTU96] 2. The �lteris linear on average, and as any �ltration algorithm, is useful up to a certain � value. Its strongest2The real story is that we reinvented (a simpler version of) this algorithm by the time in which it was accepted inSoftware Practice and Experience but not yet published.104

1 41 2 3 40.0
2.0
0.00.51.01.5
2.0

kt
1 51 2 3 4 50.0

2.0
0.00.51.01.5
2.0

kt

1 71 2 3 4 5 6 70.0
2.0
0.00.51.01.5
2.0

kt
1 101 2 3 4 5 6 7 8 9 100.0

3.0
0.00.51.01.52.02.5
3.0

kt

1 101 2 3 4 5 6 7 8 9 100.0
4.0
0.00.51.01.52.02.53.0
3.54.0 kt

1 121 3 5 7 9 110.0
4.0
0.00.51.01.52.02.53.0
3.54.0 kt

Using BNDMUsing Sunday Using WMFigure 6.6: Times for random text on patterns of length 10 , 20 and 30 (one per row), and � = 16and 64 (�rst and second column, respectively). 105

point is its extreme simplicity. Despite that simplicity, it is among the fastest ones in its area ofusefulness.6.2.1 A Simple Counting FilterIn this section we describe a minor variation of [JTU96] (also very close to [GL89]). Our approach issimpler because we use a �xed-size instead of variable-size text window (a possibility already notedin [Ukk92]).We begin by proving a very simple lemma, which is a special case (q = 1) of Lemma 7 of [JU91].Lemma: If there are i � j such that ed(Ti::j; P) � k, then Tj�m+1::j includes at least m � kcharacters of P .Proof: Suppose the opposite. If j�i < m, then we observe that there are less thanm�k charactersof P in Ti::j . Hence, more than k characters must be deleted from P to match the text. If j� i � m,we observe that there are more than k characters in Ti::j that are not in P , and hence we mustinsert more than k characters in P to match the text. A contradiction in both cases.Note that in case of repeated characters in the pattern, they must be counted as di�erent occur-rences. For example, if we search aaaa with one error in the text, the last four letters of eachoccurrence must include at least three a's.The �lter is based on the lemma. It passes over the text examining an m-letters long window. Itkeeps track of how many characters of P are present in the current text window (accounting formultiplicities too). If, at a given text position j, m� k or more characters of P are in the windowTj�m+1::j , the window area is veri�ed with a classical algorithm (e.g. [Ukk85b]). Veri�cation is ofcourse necessary, since the characters of the text could be at di�erent positions in the pattern.To avoid re-veri�cation due to overlapping areas, we keep track of the last position veri�ed and thestate of the veri�cation algorithm. If a new veri�cation requirement starts before the last veri�edposition, we start the veri�cation from the last veri�ed position, avoiding to re-verify the precedingarea.Observe that it is not necessary to verify the longer area Tj�m�k+1::j (what would be the obviousarea, since the occurrence can be of length up tom+k). This is because the lemma holds also for thewindow at any position inside an occurrence, so that the counter will reach m�k alsom characterspast the beginning of the occurrence. A longer occurrence will keep triggering veri�cations while thewindow is inside the occurrence. This fact, together with our mechanism to avoid re-veri�cationsby keeping the current state of veri�cation, ensures that the occurrence will be caught.We implement the �ltering algorithm as follows: we build a table A where, for each character c 2 �,the number of times that c appears in P is initially stored. Throughout the algorithm, each entryof A indicates how many occurrences of that character can still be taken as belonging to P . Wealso keep a counter count of matching characters. To advance the window, we must include the newcharacter Tj+1 and exclude the last character, Tj�m+1. To include the new character, we subtractone at the proper entry of A. If the entry was greater than zero before the operation, it is becausethe character is in P , so we increment the counter count. To exclude the old character, we addone at the proper entry of A. If the entry is greater than zero after the operation, it is becausethe character was in P , so we decrement count. When the counter reaches m � k we verify thepreceding area.When A[c] is negative, it means that the character c must leave the window �A[c] times before we106

accept it again as belonging to the pattern. For example, if we run the pattern "aloha" over thetext "aaaaaaaa", it will hold A[0a0] = �3, and the value of count will be 2. Figure 6.7 illustrates.
c A[c]

h e l l o l 2-100-1X XX XX aoheSearching 'aloha'Figure 6.7: An example of the counting �lter. The crosses represent elements which A accepts, andthe circles are the elements that appeared in the window. A[c] stores circles minus crosses, andcount counts circled crosses.Figure 6.8 shows the pseudocode of the algorithm. As it can be seen, the algorithm is not onlylinear (excluding veri�cations), but the number of operations per character is very small.CountFilter (T,n,P,m,k)f /* preprocessing */for (c 2 �) A[c] = 0;for (i = 1; i � m; i++) A[Pi]++;count = �(m� k); /* searching */for (j = 1; j � m; j++) /* fill the initial window */if (A[Tj]�� > 0) count++;for (; j � m; j++) /* move the window */f if (count � 0) f verify Tj�m::j�1 with dynamic programming gif (++A[Tj�m] > 0) count��;if (A[Tj]�� > 0) count++;gg Figure 6.8: The code of the �ltering algorithm.Finally, we notice that classes of characters can be used with this algorithm. If the pattern matchesa set of characters Ci at position i, then we simply increment A[c] for all c 2 Ci. This, however,may degrade the �ltering capability of the algorithm.6.2.2 AnalysisThe space requirement of the algorithm is O(�). The preprocessing cost is O(�+m). If the numberof veri�cations is negligible, the algorithm is O(n) search time.In the worst case all the text positions are veri�ed, and the algorithm takes the same as dynamic107

programming, i.e. O(mn). This is because we avoid re-verifying a text position, even in the case ofoverlapping veri�cation requirements.The di�cult part of the analysis is the maximum error ratio � that the �ltration scheme cantolerate while keeping the number of veri�cations low. If the probability of verifying is O(1=m2)the algorithm keeps linear on average. If it exceeds 1=m, it becomes completely ine�ective. Thisis because the veri�cations cost O(m2), and hence this is the point where the algorithm becomesO(mn), the same as plain dynamic programming. We call that point the \limit of usability", andsay that the algorithm is \useful" before that limit. We present two di�erent analysis: �rst an exactanalysis and second a more usable one.6.2.2.1 Exact AnalysisWe obtain the probability Pr(m; k; �) of triggering a veri�cation at a given text position, when thepattern and the text are random and uniformly distributed over an alphabet of size �.We analyze the case in which the pattern has all its letters di�erent. We model the countingprocess as follows: consider a set of � urns of unlimited capacity, one per character of the alphabet.From those � urns, m represent the characters that belong to the pattern. We say that those urns\belong" to the pattern. We scan the m characters of the text window, and put each one into itscorresponding urn. What the counter of our algorithm keeps is thus the number of nonempty urnsbelonging to the pattern. When that number of urns reaches m� k a veri�cation is triggered.Hence, we want to compute �rst the probability of, givenm already selected urns out of �, randomlythrowing m balls and at the end having exactly j empty urns from the selected ones.We use exponential generating functions (egf) and the symbolic method [SF96]. Since the textcharacters put in the urns are distinguishable (because di�erent orderings produce di�erent texts)we use labeled objects. The ordering inside a urn does not count, hence there is one urn of eachsize and its egf is ez . A nonempty urn cannot have size zero, hence its egf is ez � 1. Finally, wecan select the j empty urns out of the m distinguished ones. The egf of the total number of textwindows leaving exactly j empty distinguished urns, m� j nonempty distinguished urns and withno restriction on the remaining � �m urns ispm;j;�(z) = �mj � (ez � 1)m�j ez(��m)where the variable z counts the number of balls used, i.e. the size of the text window. Therefore,we want the coe�cient of zm=m!.The part (ez � 1)m�j can be written as [AS72, page 824](m� j)! Xn�m�j� nm� j � znn!where fnmg is the Stirling number of the second kind (the number of ways to partition a set of nelements into m nonempty subsets).We expand the expression of pm;j;�(z) to obtain�mj �0@(m� j)! Xm1�m�j � m1m� j � zm1m1!1A 0@Xm2�0 (� �m)m2zm2m2! 1A108

from where the coe�cient of zm=m! can be extracted. This ism!j! Xm1+m2=m� m1m� j � (� �m)m2�mm1�by renaming r = m1 and m2 = m� r we getm!j! mXr=m�j �mr �� rm� j � (� �m)m�rwhich by expanding the Stirling number and dividing by the total number of possible text windowscon�gurations becomesp(m; j; �) = 1�m�mj �m�jXi=0 �m� ji �(�1)m�j�i(� �m+ i)m(which is easier to compute).The same result can of course be obtained without generating functions, where �mj � corresponds toselecting the j empty urns, r representing the number of characters of the text window that fallinto the distinguished urns, (m� j)!f rm�jg the ways to �ll the nonempty urns and (� �m)m�r theways to distribute the rest of the characters in the unrestricted urns.Since the probability of triggering a veri�cation is equivalent to having exactly j empty urns, fordisjoint cases j = 0::k, we get Pr(m; k; �) = kXj=0 p(m; j; �)If the pattern has repeated characters, the probability of triggering a veri�cation is smaller. Thisis easily seen by imagining that we make a given character of the pattern equal to another one.This makes a number of veri�cation-triggering text windows that were di�erent because of orderingthese two characters di�erently to be equal now. However, the exact analysis is very di�cult.Our formula is very accurate but gives little intuition about its meaning. We derive now a pessimisticbound for the limit of linearity and usability.6.2.2.2 A Simpler FormulaWe �nd an upper bound for the probability of triggering a veri�cation, and use it to derive a safelimit for � to make veri�cation costs negligible. We consider constant � and varying m (the resultsare therefore a limit on �). We then extend the results to the other cases.The upper bound is obtained by using a pessimistic model which is simpler than reality. We assumethat every time a letter in the text window matches the pattern, it is counted regardless of howmany times it appeared in the window. Therefore, if we search aloha with 1 error in the textwindow aaaaa the veri�cation will be triggered because there are 5 letters in the pattern (where infact our counter will not trigger a veri�cation because it counts only 2 a's).Consider a given letter in the text window. The probability of that letter being counted is thatof appearing in the pattern. This is the same as being equal to some letter of the pattern. Theprobability of not being equal to a given letter is (1 � 1=�). The probability of not being in thepattern is therefore p = (1� 1=�)m. 109

In our simpli�ed model, each pattern letter is counted independently of the rest. Therefore thenumber X of letters in the text window that did not match the pattern is the sum of m (windowlength) random variables that take the value 1 with probability p, and zero otherwise. This has aBinomial distribution B(m; p).Therefore, our question is when the probability Pr(X � k) is O(1=m2) (so that the algorithm islinear) or when it is O(1=m) (so that it is useful). In the proof we use O(1=m2), since as we willsee shortly the result is the same for any polynomial in 1=m.We �rst analyze the case where the mean of the distribution is beyond k, i.e. mp > k. This is thesame as the condition � < p. As Pr(X = j) increases with j for j < mp, we have Pr(X � k) �k Pr(X = k).Therefore, it su�ces to prove that Pr(X = k) = O(1=m3) for linearity or that Pr(X = k) =O(1=m2) for usefulness. By using the Stirling approximation to the factorial we havePr(X = k) = �mk�pk(1� p)m�k = mmpk(1� p)m�kkk(m� k)m�k O(pm)which can be rewritten as � p�(1� p)1����(1� �)1���m O(pm)It is clear that the above formula is O(1=m) or O(1=m2) or O(1=m3) whenever the base of theexponential is < 1. This is p�(1� p)1�� < ��(1� �)1�� (6.1)To determine the cases where the above condition is valid, we de�ne the functionf(x) = x�(1� x)1��which reaches its maximum at x = �. This shows that Eq. (6.1) holds everywhere, and thereforethe probability of matching is O(1=m2) in the area under consideration, i.e. whenever � < p.On the other hand, if the mean of the distribution is less than k, then just the term of the summationcorresponding to the mean r = mp is (using Stirling again)�mmp�pmp(1� p)m(1�p) = �pp(1� p)1�ppp(1� p)1�p�m
(m�1=2) =
(m�1=2) (6.2)which is not O(1=m).Therefore, we arrive at the conclusion that the �lter is linear and useful whenever� < p = �1� 1��m = e�m=� (1 +O(1=�)) (6.3)and is not useful otherwise.We have considered the case of constant � = k=m. Obviously, the �lter is linear for k = o(m) andis not useful for k = m � o(m). The unexplored area is k = mp� o(m). It is easy to see that the�lter is not useful in this case, by considering Pr(X = mp� �) with � = o(m), and using Stirling asin Eq. (6.2). The resulting condition is 1� �2=(m2p(1� p)) = O(m�1=2), which does not hold forany � = o(m). 110

6.2.3 A Sampling TechniqueOne of the drawbacks of the �lter is its inability to skip characters, that is, it has to inspect everytext character. This puts it in disadvantage against other sublinear �lters like that of Section 6.1.In this section we show how we can skip characters.To imagine this, it is better to think that the �lter counts the number of mismatches, and it triggersa veri�cation when it cannot �nd more than k mismatches. Imagine now that we examine one outof s text characters. To avoid loosing a match, we must pessimistically consider that the characterwhich has not been examined is present in the pattern. That is, we examine only some of thewindow positions and we must obtain more than k mismatches from the examined positions only.It is clear that, the larger s, the faster the algorithm but the less tolerant to the error level it is, i.e.it will be harder to �nd the k mismatches and to avoid the veri�cation of the window.To analyze this algorithm, consider that we have now m0 = m=s window positions to reject thepattern (i.e. to collect more than k characters not present in the pattern) but the number k doesnot change. However, the pattern has still m letters. The analysis of Section 6.2.2.2 can be reusedby noticing that the pattern length is used to compute p, while the rest of the analysis uses m asthe number of window positions inspected. Hence, if we inspect one position out of s, the maximumtolerable error level is k=m0 < e�m=� (1 +O(1=�))or equivalently s < e�m=�=�Finally, our search cost is O(n=s), i.e. O ��em=� n�6.2.4 ExperimentsWe �rst show experiments about the maximum allowable error ratio for the �lter (i.e. up to whereit is better than plain dynamic programming). Later, we compare our algorithms against others.6.2.4.1 Maximum Error RatioWe experimentally �nd out which is the limit of usability of the algorithm for di�erent types oftexts, and use least squares to �nd a formula which is very accurate for the range of values we areinterested in practice, i.e. m � 100 and 20 � � � 60. That type of formula was selected among anumber of classes we tried, since it gave us the best results. It is close in spirit to Eq. (6.3) (recallthat that equation is pessimistic).The experiments were carried out as follows. For every � in the set f20; 30:::60g and every m inf4::100g, we generated a random text of 1 Mb, and repeated 100 times the experiment of generatinga random pattern and verifying which was the maximum error (k) up to where the number ofveri�cations triggered was less than 1=m times the size of the text.Separately for each value of �, we used least squares for the model �max = abm, which gave us thebest results. Later, once a di�erent value of a and b was obtained for each �, we used the modelsa = c�d and b = 1� f�g. The result is the formula�max = 0:11 �0:43(1� 0:032=�0:37)m111

for which we obtained an average squared error near 0.0004 (its square root being 0.02).We also performed the test on English text. The experimental results are shown in Figure 6.9.The jumps in the experimental curves are not due to variance in the experiments, but to thecomplexity of the combinatorial nature of the process (the same jumps appear in the resultingformula of Section 6.2.2.1). The smooth curves are those obtained with least squares. Our theoreticalpessimistic approximations are totally below the experimental curves, but have the same shape ofthose of least squares. Therefore, they are less exact for very small or very large m. In the �rst casethis is because the analysis works with probabilities of the form O(1=m), which allows larger errorsfor small m. In the second case it is because the pessimistic part of the model refers to letters thatappear many times in the text window of length m, which is more noticeable for large m (when itis more probable to repeat letters).
10 10010 20 30 40 50 60 70 80 90 1000.0

0.6
0.00.10.20.30.4
0.50.6

m
�

Figure 6.9: Experimental maximum level of usefulness of our algorithm. The lowest line is forEnglish text. The rest of non-smooth lines are for � = 20; 30:::60 (from lower to upper). Thesmooth lines are our approximation.6.2.4.2 Comparison among AlgorithmsIn this section we experimentally compare the di�erent versions of our algorithms among them andagainst EP (see Section 5.9). Figure 6.10 compares our basic algorithm and the sampling technique,as well as EP. It can be seen that sparser sampling yields a faster algorithm if the error level is lowenough, otherwise it is counterproductive (in particular, the sampling idea is of useless on Englishtext). As it can be seen, however, EP is faster when it works well.To compare our algorithm against the others, we refer the reader to Figures 5.16 and 5.17 (ourimplementation is called \Count"). As it can be seen, this algorithm is not the fastest, but it isvery simple and competitive. The algorithms which improve over it come all from this same thesis,except for Myers' BPM algorithm [Mye98] which appeared later. At the moment it was published,the algorithm was the fastest in a small � band, since although not as fast as sublinear �lters likeEP, it was more resistant to the error level (our improvement of Section 6.1 did not exist by then).Apart from the simplicity of the algorithm, the value of this section is in the novel analysis of thearea of applicability and in that the algorithm is the basis for the development of a multipattern112

1 151 3 5 7 9 11 13 150.00
0.30
0.000.050.100.150.200.250.30

k 1 151 3 5 7 9 11 13 150.0
1.2
0.00.20.40.60.8
1.01.2

kFigure 6.10: Our algorithm using di�erent steps versus EP (thick dashed line). The thick solidline is the original algorithm and the thin lines show the use of the sampling technique taking onesample each 2,3 and 4 characters (solid, dashed and dotted lines, respectively). We show megabytesper second for m = 30, for random (left, � = 64) and English text (right).search algorithm which is the fastest one for intermediate error levels (Section 7.3).Extending this �lter to di�erent distance functions is not di�cult, it is just a matter of determininghow many letters must be present in an approximate occurrence. Instead of m � k, we must usethis number. Allowing transposition is especially easy since we do not account for the positions ofthe letters in the �lter. If only transpositions were allowed, we would use this �lter allowing zeroerrors.6.3 A Su�x Automaton ApproachWe present a new �ltering algorithm based on the combination of our NFA and a su�x automaton.The NFA is modi�ed so that it recognizes every su�x of the pattern allowing k errors. The result isan algorithmwhich is able to skip characters and to handle at the same time pattern extensions suchas classes of characters. A lower bound on its average complexity is O(�n=(1� �)), and thereforeit is not useful for � > 1=2. Experimental results show that it is competitive against the fastest�ltration algorithms, and that in some restricted cases it is the fastest known �lter. This idea isincluded in [NR98b].6.3.1 Adapting the NFASection 2.4 presented a nondeterministic �nite automaton (NFA) which is built from the patternand the number of errors and recognizes all the approximate occurrences of the pattern in a text.This automaton is simulated using the bits of the computer word: row-wise (i.e. packing the rowsin computer words) in [WM92a] and diagonal-wise in Chapter 5. As we have shown, bit-parallelismhas the advantage that it allows performing more exible searching.On the other hand, we have shown in Section 2.8 how bit-parallelism can be used to simulate a113

Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

εεεεεε

εεεεεε

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

I

ε ε ε ε ε εε

y e

y

y e

e

r

r

r

v

v

v

u

u

no errors

2 errors

1 error

s

s

s

u

Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

Figure 6.11: Our NFA to recognize su�xes of the pattern "survey" reversed.su�x automaton, which is used for exact string matching (algorithm BNDM, which is an extensionof BDM [CCG+94, CR94]).We now merge both approaches. We modify the NFA so that it recognizes not only the wholepattern but also any su�x of the pattern, allowing up to k errors. We also modify it so that itcomputes edit distance from the point it is started. As for BNDM, we build the automaton on thereversed pattern. Figure 6.11 illustrates the modi�ed NFA.Consider the initial state \I" we added. The "-transitions leaving from the initial state allow theautomaton to recognize with k errors not only the whole pattern but also any su�x of it. Oursecond modi�cation on the original automaton of Section 2.4 is the removal of the self-loop at thetop-left state, which allowed it to start a match at any text position. Our automaton, therefore,recognizes su�xes of the pattern which start at the beginning of the text window.6.3.2 The Search AlgorithmWe move a window over the text, and we are interested only in occurrences that start at the currentwindow position. Any occurrence has a length between m� k and m+ k. If there is an occurrenceof the pattern P starting at the window position with k errors, then a pre�x of P must matchthe �rst m � k characters with k errors. Hence, we cannot miss an occurrence if we keep count ofthe matches of all the pattern pre�xes in a window of length m� k. If there are no more patternsubstrings matching with k errors, then we cannot miss an occurrence and we can shift the windowto the last pre�x that matched (with errors).To keep count of the pattern pre�xes that match with errors, we use the adapted automaton. Thesearch process inherits from BNDM, as follows. We move a window of length m � k on the text,and search backwards a su�x of the window which matches the pattern with at most k errors. Thissearch is done using the modi�ed NFA explained above, which is built on the reversed pattern. Weremember in the variable last the longest su�x of the window that matches a pre�x of the pattern(in fact, a pre�x of the reversed pattern read backwards) with a distance less or equal to k. Thisis done in constant time by checking whether the rightmost bottom state of the NFA is active. Onthe other hand, if the NFA runs out of active states we know that a match is not possible in the114

window (since no pattern substring matches a su�x of the window with k errors or less) and wecan shift to the last position where we found a pattern pre�x, as in the exact matching algorithm.Notice that the automaton has no active states if and only if its last row has no active states.Each time we move the window to a new position we restart the automaton with all its states active,which represents setting the initial state to active and letting the "-transitions ush this activationto all the automaton (the states in the lower left triangle are also activated to allow the deletion ofthe �rst letters of the pattern). If after reading the whole window the automaton still has activestates, then it is possible that the current window starts an occurrence, so we use the traditionalautomaton to compute the edit distance from the initial window position in the text. After readingat most m+ k characters we have either found a match starting at the window position or left theautomaton without active states.Notice that if the automaton has active states after reading the complete window, then a matchstarting at the window is possible and we have to check it explicitly since we can only ensure thata substring of the pattern matches in the window.The automaton can be simulated in a number of ways. Wu and Manber do it row-wise (each rowof the automaton is packed in a computer word), while in Chapter 5 we do it diagonal-wise. In thiscase we prefer the technique of Wu and Manber, since in our approach the initial diagonals of length� k are discarded, and they are needed here. Although we can adapt our automaton to computeedit distance, this will require more computer words, which will be all active because we start withall 1's. On the other hand, this approach is good only for very small k values and intermediate m,where Wu and Manber use k+1 computer words and our approach needs the same number or evenmore words. As shown in Chapter 5, the speed of the row-wise implementation is similar to that ofthe diagonal-wise for very small k if we put the computer words in registers.6.3.3 AnalysisAs the automaton cannot run out of active states before examining more than k letters, and weskip at most m� k positions, a lower bound on the complexity of this algorithm is
(kn=(m� k)).We show now that the average case is not very di�erent.We know from Section 4.1 that the probability of matching has a very abrupt nature, jumpingfrom almost zero to almost one in a short period. Speci�cally, if � < 1 � e=p� the probability isexponentially decreasing on m, and it becomes at least
(1=m) after that point.When we are traversing the window backwards, the automaton is alive after reading i letters when-ever some substring of length i of the pattern matches the text with k errors or less. As there arem�i � m such substrings, we have that the probability of some substring matching is exponentiallydecreasing with i whenever k=i < 1� e=p�, and becomes almost 1 for smaller i. Hence, on averagewe inspect k=(1 � e=p�) letters with very high probability, and at the next letter the automatonnormally has no more active states.On the other hand, when we shift the window we align it to the last time where the automatonhad a �nal state active. Since this phenomenon is so abrupt, the probability of a su�x matching issimilar (except for polynomial factors in i) to that of a substring matching, so on average we shiftexactly to the position following the place where the automaton was without active states.Hence, we work on k=(1�e=p�) letters and then shift (m�k)�k=(1�e=p�) positions. Therefore,115

our average complexity is O� �n(1� �)(1� e=p�)� ��where we have excluded the cost of veri�cations, which is assumed to be negligible since we suppose� < 1� e=p�. The above formula is sublinear for� < 1� e=p�3� e=p�which for large alphabets tends to 1=3.If we have a long pattern we have to multiply the above formula by O(m=w), which is the per-character cost of a multi-word simulation.6.3.4 Experimental ResultsWe compare now the performance of our algorithm against others. The codes are the same asthose of Section 5.9, and we have selected only the fastest ones for this case. Figure 6.12 shows theresults. As the algorithm works well for very low error levels, we show only the cases k = 1 to 3,for random (� = 4) and English text. In the �rst case our algorithm outperforms all the others(including that of Section 6.1, which is in general the fastest one). For English text it does not,although it is competitive for k = 1 and intermediate pattern lengths. This is also the case of otheralphabet sizes. Notice that we have implemented specialized code for each �xed k value, and that ageneral implementation would probably be much slower. Hence, this algorithm should be regardedas a good choice for very low error levels.More re�nements are possible for this algorithm. For instance, we can avoid verifying a text windowif it does not start with a match. This is achieved with the same mechanism used in Chapter 5to eliminate the states of the upper-right triangle of shorter diagonals and clear the last completediagonal at each match. Although, we have obtained appreciable speedups applying these tech-niques, these occur for high error levels where the algorithm is not competitive anyway, while theperformance for low error levels (where the algorithm is competitive) degraded.Notice that the only algorithm that beats signi�cantly this one is that of Section 6.1, i.e. also partof this thesis.6.4 A Partial Deterministic AutomatonOne of the simplest approaches to approximate string matching is to consider the associated non-deterministic �nite automaton and make it deterministic. Besides automaton generation, the searchtime is O(n) in the worst case. This solution is mentioned in the classical literature but has notbeen pursued further, due to the large number of automaton states that may be generated.We study the idea of generating the deterministic automaton on the y. That is, we only generatethe states that are actually reached when the text is traversed. We show that this limits drasticallythe number of states actually generated. Moreover, the algorithm is quite competitive. We presentsome empirical results on the growth of the automaton.116

� � � � � �� � � � � �5 305 10 15 20 25 300.0
2.5
0.00.51.01.52.0
2.5

mt � � � � � � �� � � � � �5 305 10 15 20 25 300.0
1.2
0.00.30.60.9
1.2

mt
� � � � � �� � � � � � �5 305 10 15 20 25 300.0

2.5
0.00.51.01.52.0
2.5

mt � � � � � � �� � � � � �� � � � � � �5 305 10 15 20 25 300.0
2.5
0.00.51.01.52.0
2.5

mt
� � � � � �� � � � � � �5 305 10 15 20 25 300.0

3.0
0.00.51.01.52.02.5
3.0

mt � � � � � � �� � � � � �� � � � �5 305 10 15 20 25 300.0
3.0
0.00.51.01.52.02.5
3.0

mt
BNDM (this)HEP EP� BM � BPM� NFAFigure 6.12: Times in 1/10-th of seconds per megabyte, for random text (� = 4, on the left) andEnglish text (on the right), k = 1 to 3 (�rst, second and third row, respectively). The x axis is thepattern length. 117

6.4.1 Lazy AutomataAs explained in Chapter 2, the problem of approximate string matching can be solved using a matrixor using a nondeterministic �nite automaton (NFA). In any case we have a concept of state of thesearch, which is given in the �rst case by the set of values of the current matrix column and bythe set of active states in the second case. In [Ukk85b] the use of a deterministic �nite automaton(DFA) is proposed, where each \state of the search" is converted into a state of the automaton. Eachstate could be identi�ed, for instance, with the set of values of the current column of the dynamicprogramming matrix. Building this automaton is equivalent to precompute all possible transitionsbetween di�erent columns instead of doing it on the y as the text is processed. Once the automatonis built we need only O(n) time to process the text instead of O(mn), because the transition betweencolumns is done at O(1) cost instead of O(m) as in classical dynamic programming.To reduce the number of states, the property of \active columns" is used in [Ukk85b] (see Sec-tion 3.1.1), so that every column value larger than k + 1 is converted to k + 1, this way reducingthe number of states without a�ecting the output of the algorithm. Unfortunately, as shown in Sec-tion 3.1.2, the number of states of this automaton is very large, which means that the preprocessingtime and space requirement is not acceptable in practice.We return to the idea of building the DFA. However, we observe that most of the states of the DFAare never reached throughout the search. Therefore, instead of building the automaton beforehandand then using it to search the text, we have a partially built automaton. This partial automatonhas only the states and transitions that have been reached. As we search, if we �nd a transitionwhich has not been computed yet, we compute it before proceeding. This is as e�cient as buildingthe automaton completely, but the number of states can be much smaller.The idea of on-the-y construction of DFAs is not new. For instance, it has been mentionedbefore, although not exploited, for the more restricted case of string matching allowing characterreplacements (no deletions nor insertions) [BYG94]. It has also been used for the general problemin [Kur96], where it was implemented on a lazy functional language. Kurtz arrives at similarconclusions about performance, although we study the idea more in depth, include more algorithmsin the comparison and our test suite is much larger and has no hidden performance factors that couldbe included in a functional language implementation. We also study the growth of the automaton,as well as techniques to work with a limited amount of memory.6.4.2 The AlgorithmWe begin with some terminology. A deterministic �nite automaton or DFA is a set of states con-nected by transitions. Transitions are arrows among states labeled with symbols drawn from analphabet �. There is exactly one transition leaving every state for each alphabet symbol. One ofthe states is initial and some states are �nal. The automaton is run over a text beginning in itsinitial state. Given each text character, it follows the appropriate transition and reaches a newstate. We say that the automaton accepts a text position whenever it is at a �nal state just afterthat position is read.A partial DFA is a DFA where some transitions are missing. A missing transition means that westill have not computed to which state it should go.A con�guration represents the state of the search at a given moment. It can be represented as theset of active or inactive states of the NFA, or as the current (active) values of the the dynamicprogramming algorithm. Each possible con�guration corresponds to a state of the DFA.118

Our DFA will have one state per \known" con�guration. Only the con�gurations (states) which areactually reached in the processing of the text will be present.We begin with a partial DFA with just one state and all missing transitions. The state correspondsto the initial con�guration (Ci = i). We traverse the text exactly as if we had a complete DFA.The di�erence is that, whenever we must follow a missing transition, we compute it. That is, wetake the current state (we store the con�guration that corresponds to each state) and perform anO(m) step of the classical algorithm. This gives us the con�guration of a new state. We search thecon�guration among the known states. If it already exists, we put the previously missing transitionpointing to that state. Otherwise, we must �rst create a new state (with all transitions missing).The advantage of such construction is that, although the DFA of a pattern can be very large, onlya small portion of the states may be actually reached along the text. Of course, the larger the text,the more states will be generated, but this larger text will compensate for the e�ort of generatingthe automaton. Note that in natural language some substrings never appear, no matter how longthe text is.The only disadvantage is that once the complete DFA is generated, the con�guration to which eachstate corresponds needs not be stored, while in the partial DFA we need to keep those con�gurationsall the time to be able to generate new transitions and states. This extra space turns out to beabout a 25% extra per generated state, which is not too much, especially because many fewer statesare generated in the partial DFA (as we show in the experimental section). On the other hand, thecomplete DFA algorithm needs to keep all con�gurations to generate the DFA, and only then canfree their space. Therefore, at some point it demands strictly more memory than what the partialDFA algorithm demands along the whole search. Figure 6.13 sketches the algorithm.Search (T; n; P;m; k)Aut initial state (configuration Ci = i)state initial state8c 2 �, transition(Aut; state; c) unknownfor (i = 1;i � n;i++)f nstate transition(Aut; state; Ti)if (nstate = unknown)f nconf perform step(conf(Aut; state); Ti)nstate state in Aut corresponding to nconfif (nstate not found)f nstate new stateAut Aut [fnstateg8c 2 �, transition(Aut; nstate; c) unknowngtransition(Aut; state; Ti) nstategstate nstateif (state is final) report matchg Figure 6.13: The partial DFA algorithm.The � in the algorithm does not stand for the complete alphabet, but only for those symbols119

appearing in the pattern, plus one that represents \any symbol not in the pattern". The alphabetis then mapped to the interval [0::p] where p � m, and therefore creating a new state costs O(m).The text characters are mapped in O(1) time by using a global O(�) size table.Now we point out some details of the algorithm.We represent con�gurations as the current Ci values of the classical dynamic programming algo-rithm. Therefore the con�gurations are O(m) size. The action perform step of the algorithm simplymakes a step of the classical algorithm on the given con�guration, and therefore it is O(m) time.Since we work only on active values, our representation for a column is [a; c1; :::; ca], where a is theposition of the last active value. As shown in Section 4.1, the average number of active values isO(k). However, this is not true if we compute each con�guration only once.Once nconf has been computed, it is necessary to know whether it corresponds to a state which isalready present in the automaton. Therefore, we must search in a set of \known" con�gurations.This search can be done in time proportional to the length of the searched con�guration (i.e. O(m))in the worst case. The data structure to achieve this is a trie on the a+1 \digits" of the con�guration.The structure of this trie is quite particular. The root hasm�k sub-tries (one per possible a value).The sub-trie number i has height i. Every non-root node which is not a leaf has at most 3 children.This is because the di�erence between two consecutive values in the column is �1, 0 or 1. This fact,already noticed in [Ukk85b], allows saving a lot of space in the trie implementation. This structureis used in [Kur96].However, we found that a simple hashing turns out to be the most e�cient data structure in practice.We take the hash function over the a+ 1 \digits" of the con�guration. Collisions are resolved witha linked list. If the table size and the hash function are well chosen, the average cost is O(m) (toevaluate the hash function), at much less space consumption.6.4.3 AnalysisWe call s and t the total number of states and transitions, respectively, in the complete automaton.This is an upper bound to those actually generated (s0 and t0, respectively). As explained inSection 3.1.2, the number of states can be upper bounded by s = O(min(3m; (2min(�;m)m)km; (k+2)m�k(k + 1)!)), where we replaced � by min(�;m) because of our character mapping (this is alsonoted in [Mel96]).The number of transitions is therefore t = O(smin(m; �)). We have s0 = O(min(s; n)) andt0 = O(min(t; n)), since each text character can create at most one state and transition. Thespace needed by our algorithm is O(s0min(m; �) + t0) = O(s0min(m; �)) in the worst case, i.e.O(min(s; n)min(m; �)). The algorithm uses linear time except for the generation of the statesand new transitions, each one costing O(m). This makes the total cost of the algorithm O(n +s0min(m; �) + t0m) = O(n+ t0m) = O(n+mmin(t; n)).It is extremely di�cult to set up a correct probabilistic model to compute the number of states thatare generated on average after reading n random symbols. We make the simplifying assumptionthat each new character produces a random transition. This assumption is pessimistic since sometransitions are much more probable than others. The uniform model maximizes the total numberof states visited.The probability of a given transition not being generated at a particular text position is (1� 1=t).120

Therefore, the average number of generated states after reading n text characters ist0 = t�1� �1� 1t�n� = t�1� e�n=t� +O(1=t)and therefore the average time complexity is O(n+mt(1 � e�n=t)). Notice that (1� e�n=t) is thefactor by which building our partial DFA is more e�cient than building the full DFA. We havethree cases now[n = o(t)] In this case e�n=t = 1� n=t+O((n=t)2), which makes the total time cost O(n+mn(1 +o(1))) = O(mn). That is as bad as plain dynamic programming. However, in this case thepartial DFA is asymptotically better than the full DFA (i.e. partial/full = 1� e�n=t = o(1)).[n = !(t)] In this case we have that the time is O(n + mt) = o(mn), and therefore we improvedynamic programming. If n =
(mt), then the algorithm is O(n).[n = �(t)] We have that (1� e�n=t) = �(1) (i.e. constant) and therefore the total time is �(mn),although the constant is smaller. For instance, if n = t it is � 0:63mn.This shows that the algorithm is competitive when the text is large compared to the size of theautomaton, which is intuitively clear. However, this analysis is pessimistic and the results are muchbetter in practice, as well as the e�ciency ratio among partial and full DFA. We show this in thenext section.6.4.4 ExperimentsWe present some experimental results collected on English text. We �rst show the growth of theautomata and then we compare our algorithm against the others. We used 10 Mb of �ltered text.Each data point was obtained by averaging over 10 trials.6.4.4.1 Automaton GrowthWe experimentally show in Figure 6.14 the growth of the partial and complete DFAs as the errorlevel increases and as the traversed text increases.As it can be seen, the size of the automaton grows slowly with the text size after a sharp start. Evenafter processing 10 Mb of natural language, the sizes are less than 20% of the complete automata(except for very small k where the complete automata are very small anyway). Memory limitationsprevented us to compute automata with more than 500,000 states (although we used a 128 Mbmachine for this task). For m = 20 we could not generate the complete automaton past k = 6 andfor m = 30 past k = 5. For those larger patterns our improvement is more dramatic, since thepartial DFAs are completely manageable up to k = 10 or 11, being hundreds of times smaller. Form = 30 we could not even compute the partial automata past k = 18.We apply now least squares over the curves to understand how the automata grow. As a functionof n, the growth of the partial automata shows a clear O(nb) slope. Curve �tting using the models = anb gives a relative error close to 0.25%. We show in Figure 6.15 the a and b values for m = 10,20 and 30, as a function of the error level �. As it can be seen, up to some point the a value growsslowly and the exponent b shows a somewhat linear increase. After that point, a grows abruptlyand the exponent stops growing (in fact, the phenomenon is so abrupt that we could not obtain the121

1 91 2 3 4 5 6 7 8 90
2500

05001000150020002500
k 0 100 1 2 3 4 5 6 7 8 9 100

1000
02004006008001000

n(Mb)
1 191 3 5 7 9 11 13 15 17 190

350000
050000100000150000200000250000300000350000

k 0 100 1 2 3 4 5 6 7 8 9 100
100000

020000400006000080000100000
n(Mb)

1 171 3 5 7 9 11 13 15 170
500000

0100000200000300000400000500000
k 0 100 1 2 3 4 5 6 7 8 9 100

500000
0100000200000300000400000500000

n(Mb)Figure 6.14: Number of states of the partial and complete DFAs. The rows are for m = 10, 20 and30, respectively. The left column shows the growth in terms of k (for n=1 to 10 Mb, from lower toupper, and the thick line for the full automaton). The right column shows the growth in terms ofn (for k = 1 to m� 1, in general from lower to upper).122

0.0 1.00.0 0.2 0.4 0.6 0.8 1.00
700
0100200300400500600700

� 0.0 1.00.0 0.2 0.4 0.6 0.8 1.00.0
0.6
0.00.10.20.30.40.5
0.6

�Figure 6.15: The a (left) and b (right) values from the �tting s = anb of the partial DFA size as afunction of the text size. Dashed lines correspond to m = 20, solid thin lines to m = 20 and thicklines to m = 30.values for m = 30 after that point). Interestingly enough, this point where the behavior changescorresponds to our limit � < 1 � 1:09=p� of Eq. (4.2). Both a and b, on the other hand, seemto increase as m grows. This is not exactly true for m = 10, but in this case the distortion maycorrespond to the fact that the total number of states is not so high. If, on the other hand, weconsider the growth of the automata as a function of �, we observe the same abrupt phenomenon.Finally, we have not considered the e�ect of the alphabet size. A more complete study of the growthof the DFA is left for future work.6.4.4.2 Comparison Against Other AlgorithmsWe refer the reader to Section 5.9 for an experimental comparison between the DFA and others. Forshort patterns it is quite close to the fastest bit-parallel algorithms. By the time it was published,it was the fastest for intermediate error levels, i.e. between the point where �ltration algorithmsstopped working and where it had so many states that was slow. Later improvements (all part ofthis same thesis, except Myers' BPM algorithm [Mye98]) covered the areas where this algorithmwas the best.6.4.5 Working with Limited MemoryA problem of the automaton approach is that for long patterns and medium or high error levelsit requires a huge amount of memory. When this happens, a lot of states are generated and neverreused. On our current scheme, those states are never deallocated. In [Kur96] it is proposed thatonly a �xed set of nodes (the �rst departing from the initial state) are computed and the rest relieson dynamic programming. This may behave badly if the selection of the set of states is not adequatefor the current text. We propose a more dynamic version now, which adapts to the real text. Noneof these ideas have been implemented yet.When we need to create a new state and the memory limit has been reached, we select a victimstate and, instead of allocating new space for the new state, we reuse the space of the victim state.Two issues to solve are how to select the victim and how to perform the replacement inside a graph.If we have enough memory to store the most used states, the e�ect of eliminating those states rarely123

used will be negligible.6.4.5.1 Victim SelectionThis is an issue that appears on algorithms for virtual memory management, and we can borrowtheir policies too. In particular we believe that selecting the least recently used (LRU) state couldgive good results. In our case, \using" a state means being at it at some moment. This policy canbe implemented by keeping an implicit doubly-linked list comprising all the states of the automaton.Each time a state is traversed, we put it at the end of the list. This involves updating 5 pointers,which unfortunately is quite expensive since it is done for each text character. An alternative is tokeep, for each node, the last text position where the node was traversed (i.e. each time we traversea node we reset the value). This works much less per character, although to select the victim weneed to perform a linear pass over all the states, which is expensive. This cost could be alleviated ifwe eliminate a large number of rarely used nodes, so that this operation is infrequent. For instance,if we eliminate a constant fraction of the states, the extra cost of the linear search is O(1) percharacter (amortized).Other policies such as least frequently used (LFU) are possible. In this case we keep a counter ofthe number of times we traversed a state. However, an aging policy should ideally be used so thatstates heavily used in the past can be deallocated in the future. The process of victim selectionneeds also a linear search over the nodes.6.4.5.2 Victim ReplacementBesides reusing the memory space allocated for the victim, we must make sure that the graph re-mains consistent. We remove all the transitions leaving the victim state. This can make unreachablethe target nodes of those transitions. This is not a problem since we have a separate search structureto �nd nodes (hash table or trie, as explained before), and we could �nd them later to connect themto the graph. If, on the other hand, we prefer to eliminate them, then standard garbage collectiontechniques can be applied to determine their reachability, namely keeping a counter of incomingtransitions which if reaches zero means that the state is no longer reachable.Notice that the cascade elimination of unreachable states may end up removing recently used states.On the other hand, LFU is more resistant to this problem, because in general a state made unreach-able because of the elimination of the only state leading to it has been used less frequently than itspredecessor.We must also eliminate those transitions that lead to the victim state. In our current schemethose transitions are hard to �nd. A �rst alternative is that each state keeps a list of incomingtransitions. A second one is that all states and transitions store their creation time (where \time"means the position in the text). Under normal operation, the creation time of a transition is largerthan that of its target state. When a victim is replaced by a new state, however, this ceases to betrue for the transitions that lead to the removed state. Hence, we do not immediately remove theincoming transitions. Rather, we defer removal to the time of normal operation: before followingany transition, we check that the creation times are appropriate. Otherwise we know that thetarget state has been replaced and therefore remove the transition. In general, keeping the list ofincoming states does not require much more space and does not degrade the normal operation ofthe automaton. 124

Chapter 7Multiple PatternsThe problem of approximately searching a set of patterns (i.e. �nding the occurrences of all them)has been considered only recently. A trivial solution to the multipattern search problem is toperform r searches, and our aim is to search more e�ciently. We present three new algorithms foron-line multipattern matching allowing errors. These are extensions of previous algorithms thatsearch for a single pattern. The average running time achieved is in all cases linear in the text sizefor moderate error level, pattern length and number of patterns. They adapt (with higher costs) tothe other cases. However, the algorithms di�er in speed and thresholds of usefulness. We analyzetheoretically when each algorithm should be used, and show experimentally their performance. Theonly previous solution for this problem allows only one error [MM96]. Our algorithms are the �rstones to allow more than one error, and are faster than [MM96] for fewer than 50{150 patterns,depending on the parameters of the problem.The results of this work have appeared in [BYN97b, Nav97a, BYN98e].Many of the ideas we propose here can be used to adapt other single-pattern approximate searchingalgorithms to the case of multipattern matching. For instance, the idea of superimposing automata(Section 7.1) can be adapted to most bit-parallel algorithms, such as [Mye98]. Another fruitful ideais that of exact partitioning (Section 7.2), where a multipattern exact search is easily adapted tosearch the pieces of many patterns. There are many other �ltering algorithms of the same type,e.g. [ST96].Since the algorithms presented are extensions of on-line algorithms explained in previous chapters,the reader will frequently �nd backward pointers. We did our best to �nd a good compromisebetween self-containment and non-repetitiveness.7.1 Superimposed AutomataIn this section we describe an approach based on the bit-parallel simulation of an NFA which is ableto search the pattern allowing errors. This algorithm searches for a single pattern and is developedin Chapter 5. The only connection between the search algorithm and the pattern is given by a tableb[c], whose i-th bit is zero if and only if Pi = c. As explained in Chapter 5, the b[] table mechanismallows to have a set of characters at each pattern position, instead of just a single character. Itsu�ces to set b[c] to \match" at position i for every c 2 Pi. We use this property to search formultiple patterns. 125

Section 5.6 describes in detail how we \superimpose" the NFA's of the r patterns we want to search,so we do not repeat the argument here1. We just recall that we build an automaton which searchesa much more relaxed pattern, that is, at position i it matches with the i-th letter of any of thepatterns. Hence, it �nds any of our patterns and many others which are not of interest. When theautomaton �nds a match, we have to verify which of the patterns have matched, if any, since thesuperimposed automaton does not allow us to know it.A simple veri�cation alternative (which we call \plain") is that once a superimposed automatonreports a match, we try the individual patterns one by one in the suspicious area. However, a smarterveri�cation technique (which we call \hierarchical") is described in Section 4.3.2 (do not confusewith the hierarchical veri�cation presented in Section 4.3.1). Although in Chapter 5 we used thisveri�cation to simplify the analysis, we did not implement it because in practice we superimposedfew patterns and the impact would be minimal. In this chapter we have implemented it and presentlater experimental results.If the number of patterns is too large, the �lter will be very relaxed and will trigger too manyveri�cations. In that case, we partition the set of patterns into groups of r0 patterns each, buildthe automaton of each group and perform dr=r0e independent searches. The cost of this search isO(r=r0 n), where r0 is small enough to make the cost of veri�cations negligible on average. This r0always exists, since for r0 = 1 we have a single pattern per automaton and no veri�cation is needed(indeed, the process has degenerated into sequential searching).As in the original algorithm, we can handle classes of characters in the patterns.7.1.1 Handling Longer PatternsIf the length of the patterns does not allow to put their automata in single computer words (i.e.(m�k)(k+2) > w), we partition the problem. We adapt the two partitioning techniques explainedin Chapter 5.Automaton Partitioning: if the automaton does not �t in a single word, we can partition it usinga number of machine words for the simulation: once the (large) automata have been superimposed,we partition the automaton into a matrix of subautomata, each one �tting in a computer word.Once the automaton is partitioned, we run it over the text updating its subautomata. Each steptakes time proportional to the number of cells to update, i.e. O(k(m�k)=w). Recall, however, thatit is not necessary to update all the subautomata, since those on the right may not have any activestate. We keep track of up to where need we to update the matrix of subautomata, working onlyon \active" cells.The technique of grouping in case of a very relaxed �lter is used here too. We use the heuristicof sorting the patterns and packing neighbors in the same group, trying to have the same �rstcharacters.Pattern Partitioning: is based on the Partitioning Lemma proved in Section 4.2. We can reducethe size of the NFA's if we divide the pattern in j parts, provided we search all the sub-patterns withbk=jc errors. Each match of a sub-pattern must be veri�ed to determine if it is in fact a completematch.1This mechanism is used in Chapter 5 to speed up pattern partitioning, while here we use it as a truly multipatternsearch algorithm. 126

Once we partition all the patterns, we are left with j�r subpatterns to be searched with bk=jc errors.We simply group them as if they were independent patterns to search with the general method.The only di�erence is that we have to verify the complete patterns when we �nd a sub-pattern.As said in Section 5.5, we apply hierarchical veri�cation (which is explained in Section 4.3.1) on thepattern pieces to grow up the complete pattern. This is similar to the hierarchical veri�cation on aset of patterns we are proposing here, but it works bottom-up instead of top-down and it operateson pieces of the pattern rather than on sets of patterns. That is, instead of checking the completepattern we check the concatenation of two pieces containing the one that matched, and if it matchesthen we check the concatenation of four pieces, and so on.As we are using our hierarchical veri�cation on the sets of pattern pieces to determine which piecematched given that a superimposition of them matched, we are coupling two di�erent hierarchicalveri�cation techniques in this case: we �rst use our new mechanism to determine which piecematched from the superimposed group and then use the technique of Section 4.3.1 to determine theoccurrence or not of the complete pattern the piece belongs to.7.2 Partitioning into Exact SearchingThis technique (called \exact partitioning" for short) is based on a single-pattern �lter which reducesthe problem of approximate searching to a problem of multipattern exact searching. The single-pattern algorithm is explained in Section 6.1.The idea is based on a particular case of the Partitioning Lemma which states that if we partitionthe pattern in k+1 pieces, then at least one piece must appear unchanged in any occurrence with kerrors or less. Since there are e�cient algorithms to search for a set of patterns exactly, we partitionthe pattern in k+1 pieces (of similar length), and apply a multipattern exact search for the pieces.Each occurrence of a piece is veri�ed to check if it involves a complete match. If there are not toomany veri�cations, this algorithm is extremely fast. We use the same technique for hierarchicalveri�cation of a single pattern presented in Section 4.3.1.We can easily add more patterns to this scheme. Suppose we have to search for r patterns P 1; :::; P r.We cut each one into k+1 pieces and search in parallel for all the r�(k+1) pieces. When a piece isfound in the text, we use a classical algorithm to verify its pattern in the candidate area (this time wenormally know which pattern to verify, since we know which piece matched). As for superimposedautomata, this constitutes a good �lter if the number of patterns and errors is not too high. Unlikesuperimposed automata, grouping and hierarchical veri�cation are of no use here, since there areno more matches in the union of patterns than the sum of the individual matches. The only reasonto superimpose fewer patterns is that the shifts of a multipattern Boyer-Moore-like algorithm arereduced as the number of patterns grow, but as we show later this is not important in practice(recall that we use an extension of the Sunday [Sun90] algorithm).7.3 A Counting FilterWe present now a �lter based on counting letters in common between the pattern and a text window.The single-pattern version of this �lter is presented in Section 6.2. The idea is to slide a windowof length m over the text and keep track of how many letters of the window are present in thepattern, triggering a veri�cation when there are m � k matches or more. The code is very simpleand is shown in Figure 6.8. It is based on keeping a counter count of how many characters in the127

current text window match the pattern, and a table A[c] which for each character tells how manycharacters of the text window can currently be taken as part of the pattern. Actually, we keepcounter � (m� k), so when it reaches zero we trigger a veri�cation.To search r patterns in the same text, we use bit-parallelism to keep all the counters in a singlemachine word. We must do that for the A[] table and for count.The values of the entries of A[] lie in the range [�m::m], so we need exactly 1 + dlog2(m+ 1)e bitsto store them. This is also enough for count, since it is in the range [�(m� k)::k]. Hence, we canpack � w1 + dlog2(m+ 1)e�patterns of length m in a single search (recall that w is the number of bits in the computer word).If the patterns have di�erent lengths, this limit holds for the longest one. If we have more patterns,we must divide the set in subsets of at most this size and search each subset separately. We focusour attention on a single subset now.The algorithm simulates the simple one as follows. We have a table MA[] that packs all the A[]tables. Each entry of MA[] is divided in bit areas of the appropriate length. In the area of themachine word corresponding to each pattern, we store its normal A[] value, set to 1 the mostsigni�cant bit of the area, and subtract 1. When, in the algorithm, we have to add or subtract 1,we can easily do it in parallel without causing overow from an area to the next. Moreover, thecorresponding A[] value is not positive if and only if the most signi�cant bit of the area is zero.Figure 7.1 illustrates. MA[c]McountA[c]count+2j+2j�110000m = 5; k = 1; r = 4; j = 3 MA [a]MA [l]MA [o]MA [h]MA [e]count � 0A[c] > 00 10 0111 111 1 11 01 Mcount0 1 1 1Figure 7.1: Scheme and an example of the bit-parallel counters. The example follows that ofFigure 6.7.We have a parallel counter Mcount, where the areas are aligned with MA[]. It is initialized bysetting to 1 the most signi�cant bit of each area and then subtracting m� k at each one. Later, wecan add or subtract 1 in parallel without causing overow. Moreover, the window must be veri�edfor a pattern whenever the most signi�cant bit of its area reaches 1. The condition can be checked128

in parallel, although if some counter reaches zero we sequentially verify which one did it. Note thatthis allows to have di�erent k values for each pattern. It is also possible to have di�erent m values,but the performance of the algorithm may be degraded if they are very di�erent, because we haveto use the longest text window for all the patterns, and the width of the bit areas corresponds tothe longest pattern.Finally, observe that the counters that we want to selectively increment or decrement correspondexactly to the MA[] areas that have a 1 in their most signi�cant bit (i.e. those whose A[] valueis positive). This allows an obvious bit mask-shift-add mechanism to perform this operation inparallel on all the counters.Figure 7.2 shows the pseudocode of the parallel algorithm. As it can be seen, the algorithm is morecomplex than the simple version but the number of operations per character is still very low.CountFilter (T,n,P 1::r,m,k)f /* preprocessing */` = dlog2me;for (c 2 �) MA[c] = (01`)r;for (s = 0; s < r; s++)for (i = 1; i � m; i++) MA[P s+1i] += 10s(`+1);high = (10`)r;ones = (0`1)r;Mcount = (10` � (m� k)) � ones;/* searching */for (j = 1; j � m; j++) /* fill the initial window */f Mcount += (MA[Tj] >> `) & ones;MA[Tj] �= ones;gfor (; j � n; j++) /* move the window */f if (Mcount & high 6= 0) then /* verify the area */verify Tj�m::j�1 with dynamic programming(for each pattern whose high Mcount bit is 1)MA[Tj�m] += ones;Mcount �= (MA[Tj�m] >> `) & ones;Mcount += (MA[Tj] >> `) & ones;MA[Tj] �= ones;ggFigure 7.2: The code of our multiple-pattern algorithm, in C-like notation.As in the original algorithm, we can handle classes of characters in this scheme.129

7.4 AnalysisWe are interested in the complexity of the presented algorithms, as well as in the restrictions that� and r must satisfy for each mechanism to be e�cient in �ltering most of the unrelevant part ofthe text.To this e�ect, we de�ne two concepts. First, we say that a multipattern search algorithm is optimalif it searches r patterns in the same time it takes to search one pattern. If we call Cn;r the costto search r patterns in a text of size n, then an algorithm is optimal if Cn;r = Cn;1. Second, wesay that a multipattern search algorithm is useful if it searches r patterns in less than the time ittakes to search them one by one with the corresponding sequential algorithm, i.e. Cn;r < rCn;1. Aswe work with �lters, we are interested in the average case analysis, since in the worst case none isuseful.We compare in Table 7.1 the complexities and limits of applicability of all the algorithms. Theanalysis leading to these results is presented later in this section.Algorithm Complexity Optimality UsefulnessSimple Superimp. r�(1��)2 n � < 1� ep r� � < 1� e=p�Automaton Part. �m2r�w(1��) n � < 1� ep r� � < 1� e=p�Pattern Part. mr�pw(1��) n � < 1� ep r� � < 1� e=p�Part. Exact Search �1 + rm��1=�� n � < 1log�(rm)+�(log� log�(rm)) � < 1log� m+�(log� log� m)Counting r logmw n � < e�m=� � < e�m=�Muth & Manber mn k = 1 k = 1Table 7.1: Complexity, optimality and limit of applicability for the di�erent algorithms.We present in Figure 7.3 a schematical representation of the areas where each algorithm is the bestin terms of complexity. We show later that the experiments con�rm these �gures. Notice that ourlimits come in fact from big-O expressions, so they only give an idea of the real scenario.� Exact partitioning is the fastest choice in most reasonable scenarios, for the error levels whereit can be applied. First, it is faster than counting for m= logm < ��1=�=w, which does nothold asymptotically but holds in practice for reasonable values of m. Second, it is fasterthan superimposing automata for min(pw;w=m) < �1=��1=(1=�� 1), which is true in mostpractical cases.� The only algorithm which can be faster than exact partitioning is that of Muth & Manber[MM96], namely for r > ��1=�. However, it is limited to k = 1.� For increasing m, counting is asymptotically the fastest algorithm since its cost grows asO(logm) instead of O(m) thanks to its optimal use of the bits of the computer word. However,its applicability is reduced as m grows, being in practice useless at the point where it winsover exact partitioning.� When the error level is too high for exact partitioning, superimposing automata is the onlyremaining alternative. Automaton partitioning is better for m � pw, while pattern parti-130

tioning is asymptotically better. Both algorithms have the same limit of usefulness, and forhigher error levels no �lter can improve over a sequential search.NONEUSEFUL PatternPartitioningPartitioningAutomatonPartitioning into Exact Search1�e=p�1= log�mpw m� NONEUSEFUL 1�e=p�1= log�mPartitioning into Exact SearchSuperimposed Automata rMuth-Manber��1=��Figure 7.3: The areas where each algorithm is better, in terms of �, m and r. In the left plot(varying m), we have assumed a moderate r (say, less than 50).We detail now the analysis of each algorithm.7.4.1 Superimposed AutomataSuppose that we search r patterns. As explained before, we can partition the set in groups of r0patterns each, and search each group separately (with its r0 automata superimposed). The size ofthe groups should be as large as possible, but small enough for the veri�cations to be not signi�cant.As shown in Section 5.7.4, the matching probability is the same as for a single pattern, provided wereplace � by �=r.As the single-pattern algorithm is O(n) time, the multipattern algorithm is optimal on averagewhenever the total cost of veri�cations is O(1) per character. Since each veri�cation costs O(m)(because we use a linear-time algorithm on an area of length m + k = O(m)), we need that thetotal number of veri�cations performed is O(1=m) per character, on average. If we used the plainveri�cation scheme, this would mean that the probability that a superimposed automaton matchesa text position should be O(1=(mr)), as we have to perform r veri�cations.In a previous version of this work [BYN97b], where hierarchical veri�cation was not used, weanalyzed the cost of veri�cations. In that case, we had that as r was increased, matching was moreprobable (because it was easier to cross a horizontal edge of the automaton) and it costed more(because we had to check the r patterns one by one). The results was that there were two di�erentlimits on the maximum allowable r, one for each of the two facts just stated. The limit due to theincreased cost of each veri�cation was more stringent than that of increased matching probability.Moreover, the resulting analysis was very complex.This improves considerably with hierarchical veri�cation. As we show in Section 4.3.2, the averagecost to verify a match of the superimposed automaton is O(m) when hierarchical veri�cation isused, instead of the O(rm) cost of plain veri�cation. That is, the cost does not grow as the numberof patterns increases.Hence, the only limit that prevents us from superimposing all the r patterns is that the matchingprobability becomes higher. That is, if � > 1 � epr=�, then the matching probability is too high131

and we will spend too much time verifying almost all text positions. On the other hand, we cansuperimpose as much as we like before that limit is reached. This tells that the best r (which wecall r�) is the maximum one not reaching the limit, i.e.r� = �(1� �)2e2 (7.1)which matches the result obtained in Section 5.7.4.Since we partition in sets small enough to make the veri�cations not signi�cant, the cost is simplyO(r=r� n) = O(rn=(�(1� �)2)).This means that the algorithm is optimal for r = O(�) (taking the error level as a constant), oralternatively � � 1� epr=�. On the other hand, for � > 1� e=p�, the cost is O(rn), not betterthan the trivial solution (i.e. r� = 1 and hence no superimposition occurs and the algorithm is notuseful). Figure 7.4 illustrates. 1tprtse2�(1��)2tp 1r 1� ep�r �1� eprp�Figure 7.4: Behavior of superimposed automata. On the left, the cost increases linearly with r, withslope depending on �. On the right, the cost of a parallel search (tp) approaches r single searches(rts) when � grows.Automaton Partitioning: the analysis for this case is similar to the simple one, except becauseeach step of the large automaton takes time proportional to the total number of subautomata, i.e.O(k(m � k)=w). In fact, this is a worst case since on average not all cells are active, but we usethe worst case because we superimpose all the patterns we can until the worst case of the search isalmost reached. Therefore, the cost formula ise2(1� �)2� k(m� k)w rn = O� �m2�w(1� �) rn�This is optimal for r = O(�w) (for constant �), or alternatively for � � 1� epr=�. It is useful for� � 1� e=p�.Pattern Partitioning: we have now jr patterns to search with bk=jc errors. The error level isthe same for subproblems (recall that the subpatterns are of length m=j).To determine which piece matched from the superimposed group, we pay O(m) independently ofthe number of pieces superimposed (thanks to the hierarchical veri�cation). Hence the limit for ourgrouping is given by Eq. (7.1). In both the superimposed and in the single-pattern algorithm, we132

also pay to verify if the match of the piece is part of a complete match. As we show in Section 4.3.1,this cost is negligible for � < 1� e=p�, which is less strict than the limit given by Eq. (7.1).As we have jr pieces to search, the complexity isjre2�(1� �)2 n = O� m�pw(1� �) rn�(recall that j = O((m� k)=pw), from Eq. (5.7) and the development that follows).On the other hand, the search cost of the single-pattern algorithm is O(jrn). With respect to thesimple algorithm for short patterns, both costs have been multiplied by j, and therefore the limitsfor optimality and usefulness are the same.If we compare the complexities of pattern versus automaton partitioning, we have that patternpartitioning is better for k > pw. This means that for constant � and increasing m, patternpartitioning is asymptotically better.7.4.2 Partitioning into Exact SearchingIn Section 6.1 we analyze this algorithm as follows. Except for veri�cations, the search time canbe made O(n) in the worst case by using an Aho-Corasick machine [AC75], and O(�n) in the bestcase if we use a multipattern Boyer-Moore algorithm. This is because we search pieces of lengthm=(k + 1) � 1=�.We are interested in analyzing the cost of veri�cations. Since we cut the pattern in k + 1 pieces,they are of length bm=(k + 1)c or dm=(k + 1)e. The probability of each piece matching is at most1=�bm=(k+1)c. Hence, the probability of any piece matching is at most (k + 1)=�bm=(k+1)c.We can easily extend that analysis to the case of multiple search, since we have now r(k+1) piecesof the same length. Hence, the probability of verifying is r(k+1)=�bm=(k+1)c. We check the matchesusing a classical algorithm such as dynamic programming. Note that in this case we know whichpattern to verify. As we show in Section 4.3.1, the total veri�cation cost if the pieces are of length` is O(`2) (in our case, ` = m=(k + 1)). Hence, the search cost isO �1 + rm��1=�� nwhere the \1" must be changed to \�" if we consider the best case of the search.We consider optimality and usefulness now. An optimal algorithm should pay O(n) total searchtime, which holds for� < 1log�(rm) + log�(1=�) = 1log�(rm) + �(log� log�(rm))where the last equality is obtained by noticing that � < 1=(3 log�m+log� r) is a pessimistic boundvalid when plain veri�cation is used. This last result applies also if we consider the best case of thesearch.The algorithm is always useful, since it searches at the same cost independently on the numberof patterns, and the number of veri�cations triggered is exactly the same as if we searched eachpattern separately. However, if � > 1=(log�m+ �(log� log�m)), then both algorithms (single andmultipattern) work as much as dynamic programming and hence the multipattern search is notuseful (see Section 6.1). The other case when the algorithm could not be useful is when the shiftsof a Boyer-Moore search are shortened by having many patterns up to the point where it is betterto perform separate searches. This never happens in practice.133

7.4.3 CountingIf the number of veri�cations is negligible, each pass of the algorithms is O(n). In the case ofmultiple patterns, only O(w= logm) patterns can be packed in a single search, so the cost to searchr patterns is O(rn log(m)=w).In Section 6.2.2.2 we obtain a pessimistic bound on the maximum error level � that the �ltrationscheme can tolerate while keeping the number of veri�cations low, namely � < e�m=� (Eq. (6.3)).This is in fact the limit value for � so that the matching probability is O(1=mc) for any constantc > 0.We assume that we use dynamic programming to verify potential matches. If the probability ofverifying is at most log(m)=(wm2) then the algorithm keeps linear (i.e. optimal) on average. Thealgorithm is always useful since the number of veri�cations triggered with the multipattern searchis the same as for the single-pattern version. However, if the matching probability exceeds 1=mthen both algorithms work O(rmn) as for dynamic programming and hence the �lter is not useful.Therefore, � < e�m=� is both the limit of optimality and usefulness of our algorithm.7.5 Experimental ResultsWe experimentally study our algorithms and compare them against previous work. We tested with10 Mb of random text (� = 32) and lower-case English text. Each data point was obtained byaveraging the Unix's user time over 10 trials. We present all the times in tenths of seconds per Mb.Figure 7.5 compares the plain and hierarchical veri�cation methods against a sequential applicationof the r searches, for the case of superimposed automata when the automaton �ts in a computerword. Hierarchical veri�cation clearly outperforms plain veri�cation in all cases. Moreover, theanalysis for hierarchical veri�cation is con�rmed since the maximum r up to where the cost of theparallel algorithm does not grow linearly is very close to r� = (1� �)2�=1:092. On the other hand,the algorithm with simple veri�cation degrades sooner, since the veri�cation cost grows with r.The mentioned maximum r� value is the point where the parallelism ratio is maximized. That is, ifwe have to search for more than r� patterns, it is better to split them in groups of size r� and searcheach group sequentially. To stress this point, Figure 7.6 shows the quotient between the parallel andthe sequential algorithms, where the optimum is clear for superimposed automata. On the otherhand, the exact partitioning algorithm does not degrade its parallelism ratio, as predicted by theanalysis. When we compare our algorithms against the others, we use this r� value to obtain theoptimal grouping for the superimposed automata algorithms. The exact partitioning, on the otherhand, performs all the searches in a single pass. We have not included counting in this test becauseits degree of parallelism is �xed and cannot be controlled.Notice that the plots which depend on r show the point where r� should be selected. Those whichdepend in k (for �xed r), on the other hand, just show how the parallelization works as the errorlevel increases, which cannot be controlled by the algorithm.Now that we have established that hierarchical veri�cation is superior we do not consider plainveri�cation anymore. We turn now to the problem of selecting among pattern partitioning orautomaton partitioning. Figure 7.7 shows the case of patterns of length 30. As it can be seen thereis no clear winner. It depends on the error level and the number of patterns.Figure 7.8 shows the speedups, including that of exact partitioning. The picture is much morecomplex now. The speedup of pattern partitioning is easily predicted by noticing that it just splits134

0 300 5 10 15 20 25 300
20
0481216
20

rt
0 300 5 10 15 20 25 300

20
0481216
20

rt

0 300 5 10 15 20 25 300
30
06121824
30

rt
0 300 5 10 15 20 25 300

30
06121824
30

rt

1 71 2 3 4 5 6 70
10
02468
10

kt
1 71 2 3 4 5 6 70

10
02468
10

kt
Sequential Plain Veri�cation Hierarchical Veri�cationFigure 7.5: Comparison of sequential and superimposed automata for m = 9. The left plots are onrandom text and the right plots on English text. The rows correspond to k = 1, k = 3 and r = 5,respectively. 135

0 300 5 10 15 20 25 300.0
1.0
0.00.20.40.60.8
1.0

rtprts
0 300 5 10 15 20 25 300.0

1.0
0.00.20.40.60.8
1.0

rtprts
0 300 5 10 15 20 25 300.0

1.0
0.00.20.40.60.8
1.0

rtprts
0 300 5 10 15 20 25 300.0

1.0
0.00.20.40.60.8
1.0

rtprts
1 71 2 3 4 5 6 70.0

1.0
0.00.20.40.60.8
1.0

ktprts
1 71 2 3 4 5 6 70.0

1.0
0.00.20.40.60.8
1.0

ktprts
Exact Partitioning Superimposition (plain verif.) Superimposition (hierarchical verif.)Figure 7.6: Ratio between parallel and sequential automata algorithms for m = 9. The left plotsare on random text and the right plots on English text. The rows correspond to k = 1, k = 3 andr = 5, respectively. 136

0 300 5 10 15 20 25 300
40
08162432
40

rt
0 300 5 10 15 20 25 300

40
08162432
40

rt

0 300 5 10 15 20 25 300
40
08162432
40

rt
0 300 5 10 15 20 25 300

80
0204060
80

rt

1 251 5 9 13 17 21 250
60
01020304050
60

kt
1 251 5 9 13 17 21 250

60
01020304050
60

kt
Sequential Automaton Part. Superimposed Automaton Part.Sequential Pattern Part. Superimposed Pattern Part.Figure 7.7: Comparison of sequential and superimposed automata algorithms for m = 30. The leftplots are on random text and the right plots on English text. The rows correspond to k = 4, k = 8and r = 5, respectively. 137

the pattern in small ones and resorts to the simple algorithm. That is, for m = 30 and k = 4 itsplits the pattern in 4 pieces for which m = 7 or 8 and k = 1. Since the optimum r� for those singlepieces is close to 16, the method gets it optimum speedup near r� = 4. The case of automatonpartitioning is more complex, since now the search cost is not uniform but it depends on the numberof active cells of the automaton. There are local optima separated by bad combinations. Finally,there is an optimum for exact partitioning (given by the Boyer-Moore shifts). However, we checkedthat the di�erence is not so important to justify splitting a single search in two.We compare now our algorithms among them and against others. We begin with short patternswhose NFA �t in a computer word. Figure 7.9 shows the results for increasing r and Figure 7.10for increasing �. For low and moderate error levels, exact partitioning is the fastest algorithm. Inparticular, it is faster than previous work [MM96] when the number of patterns is below 50 (forEnglish text) or 150 (for � = 32). When the error level increases, superimposed automata is thebest choice. This agrees with the analysis.We consider longer patterns now (m = 30). Figure 7.11 shows the results for increasing r andFigure 7.12 for increasing �. We have a similar scenario: exact partitioning is the best where it canbe applied, and improves over previous work [MM96] for r up to 90{100. For these longer patternsthe superimposed automata technique also degrades, and only rarely is it able to improve over exactpartitioning. In most cases it only begins to be the best when it (and all the others) are no longeruseful.As it can be seen, counting is competitive but it is never the fastest algorithm. It is howeversimple and elegant, and its theoretical complexity is good as m grows. When it was �rst published[Nav97a] (before hierarchical veri�cation improved the other two algorithms) it was the fastest forintermediate error levels.There is number of heuristic optimizations which can be done on our algorithms and which we havenot pursued yet, for instance� If the patterns have di�erent lengths, we truncate them to the shortest one when superimposingautomata. We can select cleverly the substrings to use, since having the same character atthe same position in two patterns improves the �ltering mechanism.� We used simple heuristics to group subpatterns in superimposed automata. These can beimproved to maximize common letters too. A more general technique could group patternswhich are at small edit distance (i.e. a clustering technique).� We are free to partition each pattern in k + 1 pieces as we like in exact partitioning. This isused in Section 6.1 to minimize the expected number of veri�cations when the letters of thealphabet do not have the same probability of occurrence (e.g. in English text). We presentedan O(m3) dynamic programming algorithm to select the best partition, and this could beapplied to multipattern search.
138

0 300 5 10 15 20 25 300.1
1.5
0.10.30.50.70.91.1
1.3 rtprts

0 300 5 10 15 20 25 300.1
1.5
0.10.30.50.70.91.1
1.3 rtprts

0 300 5 10 15 20 25 300.1
1.5
0.10.30.50.70.91.1
1.3 rtprts

0 300 5 10 15 20 25 300.1
1.5
0.10.30.50.70.91.1
1.3 rtprts

1 171 5 9 13 170.1
1.5
0.10.30.50.70.91.1
1.3 ktprts

1 171 5 9 13 170.1
1.5
0.10.30.50.70.91.1
1.3 ktprts

Exact Partitioning Pattern Partitioning Automaton PartitioningFigure 7.8: Ratio between parallel and sequential algorithms for m = 30. The left plots are onrandom text and the right plots on English text. The rows correspond to k = 4, k = 8 and r = 5,respectively. 139

� � �� � � � � � � �0 1000 10 20 30 40 50 60 70 80 901000
10
02468
10

rt � � � �� � � � � � � �0 1000 10 20 30 40 50 60 70 80 901000
10
02468
10

rt
� � � � �

0 1000 10 20 30 40 50 60 70 80 901000
20
0481216
20

rt � � �
0 1000 10 20 30 40 50 60 70 80 901000

50
010203040
50

rt
Exact Partitioning Superimposed Automata� Counting � Muth & ManberFigure 7.9: Comparison among algorithms for m = 9 and increasing r. The rows show k = 1 andk = 3, respectively. The left plot shows random text, the right one shows English text.

140

� � � �1 71 2 3 4 5 6 70
20
051015
20

kt � � �1 71 2 3 4 5 6 70
20
051015
20

kt
� � � �1 71 2 3 4 5 6 70

30
0510152025
30

kt � � �
1 71 2 3 4 5 6 70

30
0510152025
30

kt
Exact Partitioning Superimposed Automata � CountingFigure 7.10: Comparison among algorithms for m = 9 and increasing k. The rows show r = 8 andr = 16, respectively. The left plot shows random text, the right one shows English text.

141

� � � � � � � �� � � � � � � � �0 1000 10 20 30 40 50 60 70 80 901000
30
0510152025
30

rt � � � � � � � �� � � � � � � �0 1000 10 20 30 40 50 60 70 80 901000
30
0510152025
30

rt
� � � � � � � � �
0 1000 10 20 30 40 50 60 70 80 901000

30
0510152025
30

rt � � � � � � � �
0 1000 10 20 30 40 50 60 70 80 901000

30
0510152025
30

rt
� � � � � � �

0 1000 10 20 30 40 50 60 70 80 901000
30
0510152025
30

rt �0 1000 10 20 30 40 50 60 70 80 901000
100
020406080

100
rt

Exact Partitioning Pattern Partitioning Automaton Partitioning� Counting � Muth & ManberFigure 7.11: Comparison among algorithms for m = 30 and increasing r. The rows show k = 1,k = 4 and k = 8, respectively. The left plot shows random text, the right one shows English text.Pattern partitioning is not run for k = 1 because it should resort to exact partitioning.142

� � � � � �1 211 5 9 13 17 210
60
01020304050
60

kt � � � �1 151 3 5 7 9 11 13 150
70
01020304050
6070 kt

� � � � � �
1 171 5 9 13 170

60
01020304050
60

kt � � � �1 151 3 5 7 9 11 13 150
70
01020304050
6070 kt

Pattern Partitioning Automaton PartitioningExact Partitioning � CountingFigure 7.12: Comparison among algorithms for m = 30 and increasing k. The rows show r = 8 andr = 16, respectively. The left plot shows random text, the right one shows English text.
143

Part IIIndexed Searching

144

This Part of this thesis deals with indexing techniques for approximate string matching. Theproblem of indexing a text to answer approximate queries is quite di�cult and was considered until1992 the big open problem in this area. Since 1992, two kinds of indices have appeared. A �rst one(\word-retrieving") aims to index natural language text and to retrieve whole words which matchthe query with up to k errors. The second one (\sequence-retrieving") keeps the original problemand does not assume special text characteristics.Word-retrieving indices have been very successful in practice, with a performance approachingthat of exact searching for reasonable queries. Their restriction of matching words against wordsis reasonable in many information retrieval scenarios, although it is not acceptable in others. Forinstance, the text may not be natural language, may be an agglutinating language, or we may simplynot want to lose a match when the error involves a separator character. Sequence-retrieving indicesare the only answer for these scenarios. However, they are still rather immature and extremelyprimitive as software systems, with huge space overheads and in many cases poor speedups oversequential searching.This Part has two chapters. Chapter 8 is devoted to word-retrieving indices. The �rst part of thechapter analyzes the performance of those indices using some heuristic rules widely accepted inInformation Retrieval. We prove that their retrieval times are sublinear in the text size (normallynear O(n0:4::0:8)). We then consider block addressing, showing that it is possible to adjust the blocksize so that the index remains sublinear in query times and it is at the same time sublinear in spacerequirements. The band is quite narrow, e.g. we show an example where both quantities grow asO(n0:94) for k = 2 errors. This analysis holds for exact searching as well, and makes an excellentcase of this kind of indices. We con�rm our analysis with experimental results.Chapter 8 also improves the search algorithms currently used in word-retrieving indices. We presenta 5-fold improvement to the search in blocks (which applies to extended patterns and regularexpressions as well) and an independent 2-fold improvement to search the vocabulary.Chapter 9 deals with sequence-retrieving indices. We �rst present a new index based on indexingsubstrings of the text to implement an o�-line version of the fast on-line �lter of Section 6.1. Theresulting index takes 2 to 4 times the text size and allows reducing the search times, which range from10% to 60% of the time of the on-line algorithm. This is an index whose space overhead, toleranceto errors and performance shows a good tradeo�, making it a viable alternative in practice. Weshow that this technique can be implemented over a word-retrieving index, which could allow tosolve the problem of allowing errors that involve separators for natural language texts.The second part of Chapter 9 reconsiders an existing index which uses a su�x tree to simulateon-line traversal avoiding the text redundancies. Our on-line algorithm of Chapter 5 is used insteadof dynamic programming. The cost is that we cannot use the smartest techniques to traverse thesu�x tree, because they are based on dynamic programming and are not easily bit-parallelizable.We show experimentally, however, that it is much better in practice to use a faster algorithm anda less sophisticated traversal algorithm. On the other hand, pattern partitioning outperforms allthe others by far, and we believe that this technique deserves much more study. We propose tosimulate it with a q-gram index to reduce the space requirements.Finally, it would be interesting to settle down the question of the possibility of sublinear-timesequence-retrieving indices for natural language text.145

Chapter 8Word-Retrieving IndicesIn this chapter we address the case of inverted indices used for approximate string matching. Asexplained in Section 2.10, these indices are able to return only whole words or phrases which match agiven search pattern allowing errors. This simpli�cation of the problem is in many cases acceptable,and allows the development of practical indexing schemes. Our contributions are of two kinds: wehave analyzed the behavior of these types of indices (�nding many unexpected results) and we haveproposed and tested some improvements to speed up their existing exponents. This work has beenpublished in [ANZ97, BYN97a, BYN98b, BYN98a].We remark that our analysis is approximate, since it relies on empirical rules such as Heaps' Law orZipf's Law (see a complete list of assumptions in Section 2.9), which are only rough approximationsto the statistical structure of texts. Moreover, the results are valid only for queries useful to theuser (i.e. with reasonable degree of precision). Finally, our analysis considers the average case andgives \big-O" (i.e. growth rate) results.For the experiments of this chapter, we use one of the collections contained in trec [Har95], namelythe Wall Street Journal (wsj) collection, which contains 278 �les of almost 1 Mb each, for a totalof 250 Mb of text. To mimic common IR scenarios, all the texts were transformed to lower-case, allseparators to single spaces (except line breaks); and stopwords were eliminated. We are left withalmost 200 Mb of �ltered text. Throughout this chapter we talk in terms of the size of the �lteredtext, which takes 80% of the original text. To measure the behavior of the index as n grows, weindex the �rst 20 Mb of the collection, then the �rst 40 Mb, and so on, up to 200 Mb.8.1 Vocabulary StatisticsWe present in this section our new results about the statistics of the vocabulary of a text collection.We �rst show an analytical observation which is independent on the type of queries performed, andlater present an empirical result on the amount of expected matching of an approximate query in avocabulary.8.1.1 Combining Heaps' and Zipf's LawsSection 2.9 explains the rules which we assume govern the behavior of natural language texts. Themost interesting rules are Heaps' Law (which drives the vocabulary growth as the text grows) andZipf's Law (which rules the frequencies of the vocabulary words in the text). As a reminder, Heaps'146

Law states that a text of n words has a vocabulary of size V = �(n�) for 0 < � < 1, and Zipf's Lawstates that the frequency of the i-th most frequent word is n=(i�H(�)V), where H(�)V =PVj=1 1=j�, forsome � � 1. For � = 1 it holds H(1)V = lnV + O(1), while for � > 1 we have H(�)V = O(1).Something which is not said in the literature is that these two rules can be related. Assume thatthe least frequent word appears O(1) times in the text (this is more than reasonable in practice,since a large number of words appear only once). Since there are �(n�) di�erent words, then theleast frequent word has rank i = �(n�). The number of occurrences of this word is, by Zipf's Law,ni�H(�)V = � nn��H(�)V !and this must be O(1). This implies that, as n grows, � = 1=�. This equality may not hold exactlyfor real collections. This is because the relation is asymptotical and hence is valid for su�cientlylarge n, and because Heaps' and Zipf's rules are approximations. For instance, in the texts of thetrec collection [Har95], � is between 0.4 and 0.6, while � is between 1.7 and 2.0. Considering eachcollection separately, �� is between 0.80 and 1.04.8.1.2 Vocabulary MatchingAn issue which is central to any analysis of the performance of approximate searching on invertedindices is how many words of the vocabulary match a given pattern with k errors. In principle, thereis a constant bound to the number of distinct words which match a given pattern with k errors, andtherefore we can say that O(1) words in the vocabulary match the pattern. However, not all thosewords will appear in the vocabulary. Instead, while the vocabulary size increases, the number ofmatching words that appear increases too, at a lower rate1. We show experimentally that a goodmodel for the number of matching words in the vocabulary is O(n�) (with � < �).For classical word queries we have � = 0 (i.e. only one word matches). For pre�x searching, regularexpressions and other multiple-matching queries, we conjecture that the set of matching words growsalso as O(n�) if the query is going to be useful in terms of precision. However, this issue deserves aseparate study and is out of the scope of this thesis.Since the average number of occurrences of each word in the text is n=V = �(n1��), the averagenumber of occurrences of the pattern in the text is O(n1��+�). This fact is surprising, since one canthink in the process of traversing the text word by word, where each word of the vocabulary hasa �xed probability of being the next text word, and hence there is a �xed probability of matchingeach new text word. Under this model the number of matching words is a �xed proportion of thetext size. The fact that this is not the case (demonstrated experimentally in this chapter) showsthat this model does not really hold on natural language text.The root of this fact is not in that a given word does not appear with a �xed probability. Indeed,the Heaps' Law is compatible with a model where each word appears at �xed text intervals. Forinstance, imagine that Zipf's Law stated that the i-th word appeared n=2i times. Then, the �rstword could appear in all the odd positions, the second word in all the positions multiple of 4 plus2, the third word in all the multiples of 8 plus 4, and so on. The real reason for the sublinearity isthat, as the text grows, there are more words, and one selects randomly among them. Notice that,1This is the same phenomenon observed in the size of the vocabulary. In theory, the total number of words is �niteand therefore V = O(1). But in practice that limit is never reached, and the model V = O(n�) describes reality muchbetter. 147

asymptotically, this means that the length of the words must be m =
(logn), and therefore, asthe text grows, we search on average longer and longer words. This allows that even in the modelwhere there are n=�m matches, this number is indeed o(n).8.1.3 ExperimentsWe present in this section empirical evidence supporting our previous statements. We �rst measureV , the number of words in the vocabulary in terms of n (the text size). Figure 8.1 (left side) showsthe growth of the vocabulary. Using least squares we �t the curve V = 78:81n0:40. The relativeerror is very small (0.84%). Therefore, � = 0:4 for the wsj collection.
40 20040 80 120 160 20020406080100120140160

n (Mb)�103
40 20040 80 120 160 2000

35
0510152025
3035 n (Mb)k = 1k = 2k = 3

Figure 8.1: Vocabulary tests for the wsj collection. On the left, the number of words in thevocabulary. On the right, number of matching words in the vocabulary.We measure now the number of words that match a given pattern in the vocabulary. For each textsize, we select words at random from the vocabulary allowing repetitions. This is to mimic commonIR scenarios. In fact, not all user queries are found in the vocabulary in practice, which reduces thenumber of matches. Hence, this test is pessimistic in that sense.We test k = 1, 2 and 3 errors. To avoid taking into account queries with very low precision (e.g.searching a 3-letter word with 2 errors may match too many words), we impose limits on the lengthof words selected: only words of length 4 or more are searched with one error, length 6 or morewith two errors, and 8 or more with three errors.We perform a number of queries which is large enough to ensure a relative error smaller than 5%with a 95% con�dence interval. Figure 8.1 (right side) shows the results. We use least squares to �tthe curves 0:31n0:14 for k = 1, 0:61n0:18 for k = 2 and 0:88n0:19 for k = 3. In all cases the relativeerror of the approximation is under 4%. The exponents are the � values mentioned later in thischapter.We could reduce the variance in the experiments by selecting once the set of queries from the indexof the �rst 20 Mb. However, our experiments have shown that this is not a good policy. The reasonis that the �rst 20 Mb will contain almost all common words, whose occurrence lists grow fasterthan the average. Most uncommon words will not be included. Therefore, the result is unfair,making the times to look linear when they are in fact sublinear.148

8.2 Full Inverted IndicesIn this section we present the analysis of a full inverted index used for approximate string match-ing, �nding that the retrieval times, even for complex patterns, are sublinear in the text size forreasonable queries.The Igrep software [ANZ97] is a full inverted index described in Section 3.3.1. Although the im-plementation of this index is not part of this thesis, its analysis is. The aim of this section is toanalytically prove that the search times are sublinear in the text size. As an empirical con�rmation,we show some experimental results.Igrep is able to search a single word or an extended pattern that matches a single word, such as aregular expression. It can also search \phrases". A phrase is a sequence of single words or extendedpatterns. Phrases of j elements match with sequences of j words in the text. Finally, it can search asingle element or a phrase allowing up to k errors in the whole match. We analyze now its retrievaltimes, explaining in the process the algorithms used.8.2.1 Retrieval TimesThere are a number of di�erent types of query. Each type involves carrying out di�erent tasks.We �rst analyze the cost of each task, and then use the results to deduce the cost of each type ofquery. The description of the tasks follow, together with their analysis. Recall that the size of thevocabulary is V = O(n�), which is normally in the range 0.4 to 0.6 [Hea78, ANZ97].bin-search: binary searching a word in the vocabulary and retrieving the list. Since the search isbinary, we have O(logn�) = O(logn) cost for this type of task.seq-search: sequentially searching a word in the vocabulary is O(n�). This is the case of regularexpressions, extended patterns and approximate string matching, since all them can be re-duced to deterministic automata. Alternative schemes achieve O(kn�) time for approximatesearching or O(mn�=w) for regular expressions and extended patterns. These quantities canall be considered O(n�) for our purposes.lst-merge: list merging of j lists of occurrences happens in approximate searching, extended pat-terns, etc. Since the average size of each list of occurrences is n=V = O(n1��) and we mergeordered lists to produce an ordered list, we work O(n1��j log j) (using a heap of size j).We point out now the times for each type of query, as follows:Simple words: the word is searched in the vocabulary and the list of occurrences is retrieved. Ifthe search is binary, we have O(logn�) = O(logn) search cost for this type of query. Withother data structures the search time can be even less, e.g. O(m) by using hashing or a trie.Phrases of j simple words: each one of the j words is searched in the vocabulary at a total costof O(j logn). Then, the j lists of occurrences are \intersected", in the sense that we checkthe text positions where the j words are contiguous and in the proper order (the algorithm isvery similar to a list intersection). To perform this pseudo-intersection, the shortest amongthe j lists is selected, and its positions are binary searched inside the other lists to verify itssurrounding area. We prove now that the shortest list among j is O(1) length and thereforethe total cost of the list intersection is O(j logn).149

To show that, we use the Zipf's Law and our result of Section 8.1.1, namely �� = 1. If weconsider X1::Xj the rank of the words present in a phrase (which are uniformly distributedover [1::V]), and call f(i) the number of occurrences of the i-th most frequent word, we haveP (min f(Xi) � a) = (P (f(X1) � a))jand since f(i) = n=(i�H(�)V), we invert f to get0@P 0@X1 � na H(�)V !1=�1A1Ajwhich given that Xi distributes uniformly over [1::V] is0@ na H(�)V !1=� 1V 1Aj = (a H(�)V)�j=�where the last equality is obtained by cancelling n1=� with 1=V = 1=n� = 1=n1=�.Hence, the expectation of the length of the shortest list isVXa=1 P (minf(Xi) � a) � 1�H(�)V �j=� Xa�1 1aj=�which is O(1) for j > �. This is typically out of question for phrases of three words or more.However, for j = 2 that may not be the case, although it is generally true (e.g. in the treccollection, where � < 2 always holds). If � � 2, we can bound the summation with an integralto get that the expectation is smaller than 1 + V 1�j=�=(j � 1) + O(1=j) = O(n�(1��j)). Inthat case the total cost of the intersection is O(n�(1��j) logn).Extended patterns, regular expressions and approximate word matching: the pattern issequentially searched in the vocabulary and all the lists of occurrences of the resulting matchesare merged. The time of the sequential search is O(n�). If p vocabulary words match, wemerge them using a heap. The lists are of average length n=V = n1�� , and therefore the totalmerge time is O(pn1�� log p). Hence, the total cost of this type of query is O(n�+pn1�� log p).Phrases formed with complex patterns: we perform the j searches as those for the above ex-pressions (which add up O(j(n� + pn1�� log p))), plus an intersection of the lists. Those listsdo not obey the Zipf's Law because they come from the union of random words, and are ofaverage length O(pn1��). Hence, the trick of using the shortest list does not work and thetotal intersection cost for the j lists (using a heap again) is O(pn1��j log j). The total timeis thus O(j(n� + pn1�� log(pj))).Approximate phrase matching of j words and k errors: is solved by searching each phraseelement with up to k errors. For each of the j elements, k+1 lists are initialized where the wordsthat matched each element with each number of errors are stored. This costs j seq-searchesconsidering a number of di�erent lst-inters, which has a cost of O(j(n� + pn1�� log p) +�k+jj �pn1��j log j), under the same conditions as above. This is because we try all alternatives150

of selecting a list of each word, such that the total number of errors does not exceed k. Thatis kXi=0 �i+ j � 1i � = �k + jj �Again, the lists of occurrences are O(pn1��) size, where p corresponds to searching a singleword with k errors.In all these results, we can consider j and k as small constants. On the other hand, as we show inSections 8.1.2 and 8.1.3, p = O(n�) for � in the range 0.1 .. 0.2 if the precision is reasonably good(i.e. k � 3 for words). The same should happen for complex patterns, since otherwise a large pvalue means a query which has too low precision and is of no use to the �nal user. This conditioncan be detected beforehand.Therefore, exact search queries can be solved at O(logn) expected time, while complex patterns orsearching allowing errors costs O(nmax(�;1��+�)), which is in the range O(n0:4::0:8) depending on thevocabulary size and the complexity of the search. In reasonable cases it is O(n0:6), which is nearO(pn). We also point out that the disk accesses to the index are sequential (except for bu�eringlimitations). This matches with the results of Section 8.3.8.2.2 Experimental ResultsIn this section we present some experimental results which are useful to con�rm the analysis2. Theseresults were obtained using an isolated Sun SparcStation 4 with 128 megabytes of RAM runningSolaris 2.5.1. The text used was part of a newer trec collection (trec-3), where the ziff collectionhas near 700 Mb. The experiments use this collection. More details and experiments are found inthe original paper [ANZ97, ANZ98], where the Heaps' and Zipf's Laws are experimentally validated,and other parameters such as index construction time and space are studied. In this section weonly present the results which are relevant to our analysis.First, we experimentally validate the fact that the length of the shortest list is constant if selectedamong 3 or more random lists. Figure 8.2 shows the results. As it can be seen, the shortest amongtwo lists remains somewhat increasing, while among more than two lists stabilize in the long term.This is especially clear for j = 5, while the same should happen to the others for longer texts.We now consider time complexity. The experiments to measure query times considered exact andapproximate queries (k = 0; 1; 2; 3), phrase patterns containing 1, 2, 3, 4, and 5 words. The patternswere randomly chosen from the texts, avoiding patterns containing stopwords.Figure 8.3 shows the retrieval times as a function of the number of words j in the query. Asanalytically predicted, the costs for zero errors are basically independent on the number of words,with a very slow increment for the merging process (where the qualifying words are binary searchedin the other lists). For one error or more, the costs increase linearly with the number of words, asthe analysis predicts. This is because each of the j lists comes from merging many short lists, andthen we have to intersect those j lists.What the analysis did not predict is the sharp increase for j = 2. This does not come fromgenerating the lists for each pattern, but from the intersections. For instance, for k = 2 we have ahigher cost for j = 2, which comes from intersecting the �rst pattern with one error and the second2The results come from a joint work with Nivio Ziviani and Marcio Drumond Ara�ujo, which is not yet published[ANZ98]. The implementation of the index is part of Drumond's Master's Thesis and not of ours.151

Figure 8.2: Length of the shortest among j lists, for j = 2 to 5.pattern with one error (which we call the combination [1,1]). The other alternatives (where oneword matches exactly and the others with two errors, i.e. [0,2] and [2,0]) are cheaper since one ofthe lists is typically very short. When we move to j = 3 then any possible combination with k = 2errors contains one word that matches exactly, and hence all the merges are cheaper. The samehappens to k = 3, where with j = 2 we have expensive combinations such as [1,2] and [2,1], andwith j = 3 we have [1,1,1], but the costs are cheaper for j � 4. This shows empirically that thecosts are high for 1 < j � k.We show in Figure 8.4 the retrieval times as a function of the number k of errors allowed. As itcan be seen, the retrieval times increase sharply as the number of errors goes from 0 to 3. For morethan 3 errors the amount of text retrieved makes the query useless for any practical purpose.Finally, we show that the retrieval times are, as predicted, sublinear in the text size if the numberof allowed errors is not too high. Figure 8.5 shows the performance as a function of the text size, forqueries of one to three words. Table 8.1 shows the results of the least squares �tting of the curves(up to �ve words, although we do not plot the case of four and �ve words here). We have used themodel O(nx) for all the entries, even for k = 0, since this includes the time to read the results fromdisk. The relative error of the approximation goes from 1% to 9%. As it can be seen, the resultsare as predicted in the sense that sublinear times are obtained when the number of allowed errors isreasonable. Phrase patterns are also a�ected by the phenomenon described before, which worsensthe complexities for 1 < j � k.1 word 2 words 3 words 4 words 5 wordsk = 0 :064n:531 :057n:572 :054n:582 :050n:595 :049n:601k = 1 :087n:524 :043n:742 :059n:698 :066n:700 :078n:691k = 2 :076n:589 :028n:969 :053n:836 :075n:786 :010n:754k = 3 :058n:698 :021n1:239 :033n1:089 0:60n:968 :082n:923Table 8.1: Least squares �tting for the retrieval times.152

Figure 8.3: Retrieval times as a function of the number of words in the query.
153

Figure 8.4: Retrieval times as a function of the number of errors allowed.154

Figure 8.5: Retrieval times for patterns of one to three words, as a function of the text size.155

8.2.3 Di�erential PointersIn the previous analysis we assume that the pointers are not compressed. This allows performinga binary search on the list of pointers, therefore avoiding the cost of a sequential search. A verysimple technique to reduce the space requirements of inverted �les is to store di�erential pointers,i.e. each pointer gives the di�erence between its real value and the previous one. This works wellbecause the list of pointers of each vocabulary word has increasing values. In practice this allowsreducing the space in 50% or more. However, we cannot perform a binary search anymore (exceptby storing absolute pointers at regular intervals). If we have to sequentially process the lists, theanalysis of the retrieval times is identical except for the phrases of simple words, which now mustbe processed by merging rather than by binary searching. That is, we pay O(n1��j log j) time forthis case. In particular, if we have to deliver the resulting text positions, then even searching onesimple word costs O(n1��), which is its expected number of occurrences in the text.8.3 Block Addressing Inverted IndicesGlimpse and Igrep are two extremes of a more general idea (see Section 3.3.1). The �rst one (inits \tiny" index) cuts the text in a �xed number of blocks (\block addressing") to reduce spacerequirements, and sequentially veri�es the occurrences inside the matching blocks. However, whenthe text is large enough all the blocks have to be checked and the index is not useful anymore. Igrepstores all the positions of all the words, which makes it resistant to huge text sizes but imposes alinear space overhead. Glimpse has sublinear space overhead, while Igrep, as shown in the previoussection, has sublinear query time.In this section we study the use of block addressing to obtain indices which are sublinear in space andin query time, and show analytically a range of valid combinations to achieve this. The combinedsublinearity means that, as the text grows, the space overhead of the index and the time to answera query become less and less signi�cant as a proportion of the text size. We validate this analysiswith extensive experiments, obtaining typical performance �gures.Once we establish our results for block addressing indices where the block size is �xed, we consideran interesting particular case of document addressing (where the documents are of variable size):we use recently obtained statistics from the distribution of the page sizes in the Web [CB96] andapply our machinery to determine the space overhead and retrieval time of an index for a collectionof Web pages. We show that having documents of di�erent sizes reduces space requirements in theindex but increases search times if the documents have to be traversed.We recall from Section 2.10 the index structure: the text is logically divided into \blocks". Theindex stores all the di�erent words of the text (the vocabulary). For each word, the list of the blockswhere the word appears is kept. We call b the size of the blocks and r the number of blocks, so thatn � rb (see Figure 8.6).At this point the reader may wonder which is the advantage of pointing to arti�cial blocks insteadof pointing to documents (or �les), this way following the natural divisions of the text collection.This issue is raised in Section 2.9, but we explain it more in detail here. If we consider the case ofsimple queries (say, one word), where we are required to return only the list of matching documents,then pointing to documents is a very adequate choice. Moreover, as we see later, it may reducespace requirements with respect to using blocks of the same size. Moreover, if we pack many shortdocuments in a logical block, we will have to traverse the matching blocks (even for these simplequeries) to determine which documents inside the block actually matched.156

b wordsblock ofb wordsblock ofb wordsblock of r blocksText
words occurrences

IndexFigure 8.6: The block-addressing indexing scheme.However, consider the case where we are required to deliver the exact positions which match apattern. In this case we need to sequentially traverse the matching blocks or documents to �nd theexact positions. Moreover, in some types of queries such as phrases or proximity queries, the indexcan only tell that two words are in the same block, and we need to traverse it in order to determineif they form a phrase.In this case, pointing to documents of di�erent sizes is not a good idea because larger documents aresearched with higher probability and searching them costs more. In fact, the expected cost of thesearch is directly related to the variance in the size of the pointed documents. This suggests thatif the documents have di�erent sizes it may be a good idea to (logically) partition large documentsinto blocks and to put together small documents, such that blocks of the same size are used.8.3.1 Average Space-Time Trade-o�sGlimpse and Igrep are two extremes of a single idea. Glimpse achieves small space overhead at thecost of sequentially traversing parts of the text. Igrep achieves better performance by maintaininga large index. We study in this section the possibility of having an intermediate index, which issublinear in size and query performance at the same time. We show that this is possible in general,under reasonable assumptions.In Section 8.2 we considered in detail the case of complex queries formed by phrases and extendedpatterns. Those queries in most cases introduced additional factors to the complexity of the basicsearch, which for the sake of sublinearity with respect to n can be disregarded. Therefore, wesimply consider the case of approximate word searching from now on, knowing that the result isgeneralizable to a more complex query. 157

8.3.1.1 Query Time ComplexityTo search an approximate pattern, a �rst pass runs an on-line algorithm over the vocabulary. Thesets of blocks where each matching word appears are collected. For each such block, a sequentialsearch is performed on that block.The sequential pass over the vocabulary is linear in V , hence it is �(n�), which is sublinear in thesize of the text. On the other hand, the blocks to work on in the text are those including some (exactor approximate) occurrence of the pattern. We model the process as follows: an approximate search�rst selects O(n�) random words from the vocabulary, which is of size �(n�). Hence, the probabilityof a given vocabulary word to be selected by the search is O(n���). To determine whether a blockneeds to be searched or not, we take each one of its b words and look if they are selected in thevocabulary. We work on the block if any of its words has been selected in the vocabulary.The probability of a word from the block to be selected is O(n���). The probability that noneof the words in the block is selected is therefore (1 � O(n���))b. The total amount of work isobtained by multiplying the number of blocks (r) times the work to do per selected block (b) timesthe probability that some word in the block is selected. This is��rb�1� �1� n����b�� = ��n�1� e�b=n����� (8.1)where for the last step we used that (1�x)y = ey ln(1�x) = ey(�x+O(x2)) = �(e�yx) provided x = o(1).We are interested in determining in which cases the above formula is sublinear in n or not. Ex-pressions of the form \1� e�x" appear frequently in this analysis. We observe that they are O(x)whenever x = o(1) (since e�x = 1 � x + O(x2)). On the other hand, if x =
(1), then e�x is faraway from 1, and therefore \1� e�x" is
(1).For the search cost to be sublinear, it is thus necessary that b = o(n���), which we call the \conditionfor time sublinearity". When this condition holds, we derive from Eq. (8.1) thatTime = ��n� + bn1��+�� (8.2)which matches the results of Section 8.2, where b = 1.8.3.1.2 Space ComplexityWe consider space now. The average size of the vocabulary itself is already sublinear. However, thetotal number of references to blocks where each word appears may be linear (it is truly linear in thecase of full inversion, which corresponds to single-word blocks, i.e. b = 1 as studied in Section 8.2).The analysis is very simple if we notice that each block of size b has O(b�) di�erent words, by Heaps'Law. Each di�erent word that appears in each di�erent block will correspond to a di�erent entry inthe inverted index. Hence, the size of this index is just the number of di�erent words of each blocktimes the number of di�erent blocks, that is,Space = ��rb�� = ��rb1=�� (8.3)Hence, for the space to be sublinear we just need r = o(n), or equivalently, b = !(1).However, we have assumed the validity of an asymptotic rule such as Heaps' Law for blocks, whichare much smaller than the whole text. Figure 8.7 shows the evolution of the � value as the text158

collection grows. We show its value for up to 1 Mb. As it can be seen, � starts at a higher valueand converges to the de�nitive 0:40 as the text grows. For 1 Mb it has almost reached its de�nitivevalue. Hence, the Heaps' Law holds for smaller blocks but the � value is higher than its asymptoticlimit.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2000.0

1.0
0.00.10.20.30.40.50.60.70.8
0.9

n (Mb)�
Figure 8.7: Value of � as the text grows. We added at the end the value for the 200 Mb collection.We analyze now the space usage using Zipf's Law instead of Heaps' Law. The analysis is morecomplex in this case, but the result is the same if we replace � by 1=�. This con�rms that forboth rules to be valid it must hold � = 1=�. In the analysis that follows, � and 1=� can be usedinterchangeably whenever the space complexity is involved. In particular, we use 1=� to draw laterthe actual numbers, since it is more precise.Suppose that a word appears ` times in the text. The same argument used for Eq. (8.1) shows thatit appears in �(r(1 � e�`=r)) blocks on average. Recall that the index stores an entry in the listof occurrences for each di�erent block where a word appears. Under the Zipf's Law, the numberof occurrences of the i-th most frequent word is `i = n=(i�H(�)V). Therefore, the number of blockswhere it appears is ��r�1� e�`i=r�� = ��r�1� e�b=(i�H(�)V)��and the total number of references to blocks isr VXi=1 1� e�b=(i�H(�)V) (8.4)a summation which is hard to solve exactly. However, we can still obtain the required big-Oinformation. We show now that there is a threshold a such thata = bH(�)V !1=�1. The O(a) most frequent words appear in �(r) blocks, and therefore contribute �(ar) to thesize of the lists of occurrences. This is because each term of the summation (8.4) is
(1)provided b =
�i�H(�)V � which is equivalent to i = O(a).159

2. The O(V � a) least frequent words appear nearly each one in a di�erent block, that is, if theword appears ` times in the text, it appears in
(`) blocks. This is because r(1�e�`=r) = �(`)whenever ` = o(r). For `i = n=(i�H(�)V), this is equivalent to i = !(a).Summing the contributions of those lists and bounding with an integral we haveVXi=a+1 ni�H(�)V = nH(�)V 1=a��1 � 1=V ��1� � 1 (1 + o(1))= �� na��1� = �(ar)where we realistically assume � > 1 (we consider the case � = 1 shortly).Therefore, the total space for the lists of occurrences is always �(ar) = �(rb1=�) for � > 1.We have left aside the case � = 1, because it is usually not true un practice. However, we show nowwhat happens in this case. We have that a = �(b= logV) = �(b= logn). Summing the two parts ofthe vocabulary we have that the space for the lists of occurrences is�� nlogn + n�1� log blogn + log lognlogn ��which is sublinear provided b =
(n�), for every � < 1 (e.g. b = n= logn). This condition opposesto the one for time sublinearity, even for classical searches with � = 0. Therefore, it is not possibleto achieve combined sublinearity in this (unrealistic) case.8.3.1.3 Combined SublinearitySimultaneous time and space complexity can be achieved whenever b = o(n���) and r = o(n). Tobe more precise, assume we want to spendSpace = � (n)space for the index. Given that the vocabulary alone is O(n�), � � must hold. Solving rb� = nwith Eq. (8.3) we have r = ��n ��1�� � ; b = ��n 1�1�� �Since the condition for time sublinearity imposes b = o(n���), we conclude > � = 1� (1� �)(� � �)(which implies � �). In that case, the time complexity (computed using Eq. (8.2)) becomesTime = ��n� + n1��+�+ 1�1�� �(and �(n) if � �). Note that the above expression turns out to be just the number of matchingwords in the text times the block size.The combined Time� Space complexity isTime� Space = ��n�+ + n1��+�+ 1��1�� �160

which, if 2� � 1 + �, is minimized for = 1 (full inversion), where Space = �(n) and Time =�(nmax(�;1��+�)), as obtained in Section 8.2. On the other extreme, the \tiny" index of Glimpsecorresponds to = �, in which case Time = �(n) and Space = �(n�), i.e. just the necessaryto store the vocabulary. On the other hand, when 2� > 1 + �, the minimum is obtained for = 1� (2� � �)(1� �)=(2� �).The practical values of the trec collection show that must be larger than 0.77 .. 0.89 in practice,in order to answer queries with at least one error in sublinear time and space. Figure 8.8 showspossible time and space combinations for � = 0:4 and � = 1:87, values that hold for the wsjcollection we use in the experiments. The values correspond to searching with k = 2 errors, which,as found in Section 8.1.3, has � = 0:18. If less space is used, the time remains linear (as in Glimpse).The �gure also shows schematically the valid time and space combinations. We plot the exponentsof n for varying . As the plot shows, the only possible combined sublinear complexity is achievedin the range � < < 1, which is quite narrow.Space Timen0:90 n0:99n0:92 n0:95n0:94 n0:91n0:96 n0:87n0:98 n0:82n1:00 n0:78
β µ 10

γ

Space

Time

β

1

0

1−β+ν

Figure 8.8: On the left, valid combinations for time and space complexity assuming � = 1:87,� = 0:4 and � = 0:18. On the right, time and space complexity exponents. The area of combinedsublinearity is shaded.We end this section with a couple of practical considerations regarding this kind of index. First,using blocks of �xed size imposes no penalty on the overall system, since the block mechanism is alogical layer and the �les do not need to be physically split or concatenated.Another consideration that arises is how to build the index incrementally if the block size b hasto vary when n grows. Reindexing each time with a new block size is impractical. A possiblesolution is to keep the current block size until it should be doubled, and then process the lists ofoccurrences making equal all blocks numbered 2i with those numbered 2i + 1 (and deleting theresulting duplicates). This is equivalent to deleting the least signi�cant bit of the block numbers.The process is linear in the size of the index (i.e. sublinear in the text size) and fast in practice.Splitting blocks due to deletions in the text collection is however more complicated, but manycollections never decrease signi�cantly in size.8.3.2 Analyzing the WebIn [CB96], an empirical model for the distribution of the sizes of the Web pages is presented, backedby thorough experiments. This distribution is as follows: the probability that a Web page is of size161

x is p(x) = �k�x1+�for x � k, and zero otherwise. The cumulative distribution isF (x) = 1� �kx��where k and � are constants dependent on the particular collection. k is the minimum documentsize, and � = 1:36 when considering textual data.As explained before, pointing to documents instead of blocks may or may not be convenient interms of query times. We analyze now the space and later the time requirements when we point toWeb pages.As the Heaps' Law states that a document with x words has x� di�erent words, we have thateach new document of size x added to the collection will insert x� new references to the lists ofoccurrences (since each di�erent word of each di�erent document has an entry in the index). Hencethe average number of new entries in the occurrence list per document isZ 1k p(x)x�dx = �k��� � (8.5)To determine the total size of the collection, we consider that r documents exist, whose averagelength is b� = Z 1k p(x)xdx = �k�� 1 (8.6)and therefore the total size of the collection isn = r�k�� 1 (8.7)The size of the vocabulary in the �nal collection isn� = � r�k�� 1��and the �nal size of the occurrence list is (using Eqs. (8.5) and then (8.7))r�k��� � = �� 1�� � 1k1�� n (8.8)A �rst result is that the space of the index is �(n) (this should be clear since b� = O(1)). Weconsider now what happens if we take the average document length and use blocks of that �xedsize (splitting long documents and putting short documents together as explained). In this case,the size of the vocabulary is O(n�) as before, and we assume that each block is of a �xed sizeb = zb� = z�k=(� � 1) (Eq. (8.6)). We have introduced a constant z to control the size of ourblocks. In particular, if we use the same number of blocks as Web pages, then z = 1. Then the sizeof the lists of occurrences is(r=z)b� = r ��k�z�z(�� 1)� = ��� 1z�k �1�� n162

(using Eq. (8.7) for the last step). Now, if we divide the space taken by the index of documents bythe space taken by the index of blocks (using the previous equation and Eq. (8.8)), the ratio isdocument indexblock index = z1���1��(�� 1)��� � (8.9)which is independent on k and rounds 80% for z = 1 and � = 0:4::0:6. This shows that indexingdocuments yields an index which takes 80% of the space of a block addressing index, if we haveas many blocks as documents. Figure 8.9 shows the ratio as a function of � and �. As it can beseen, the result varies slowly with �, while it depends more on � (tending to 1 as the document sizedistribution is more uniform).The fact that the ratio varies so slowly with � is good because we already know that the � valueis quite di�erent for small documents. As a curiosity, notice that there is a � value which gives theminimum ratio for document versus block index (i.e. the worst behavior for the block index). Thisis �� = �� 1ln z���1which is �� � 0:61 for z = 1.If we want to have the same space overhead for the document and the block indices, we simplymake the expression of Eq. (8.9) equal to 1 and obtain z � 1:4::1:7 for � = 0:4::0:6, i.e. we need tomake the blocks larger than the average of the Web pages. This translates into worse search times.By paying more at search time we can obtain smaller indices (letting z grow over 1.7).
1.0 1.51.0 1.1 1.2 1.3 1.40.0

1.0
0.00.10.20.30.40.50.60.70.8
0.9

� 0.2 0.80.2 0.3 0.4 0.5 0.6 0.70.75
0.90
0.750.800.85 �Figure 8.9: On the left, ratio between both indices as a function of � for �xed � = 0:5 (the dashedline shows the actual � value for the Web). On the right, the same as a function of � for � = 1:36(the dashed lines enclose the typical � values). In both cases we use the standard z = 1.To show how retrieval times are a�ected by a non-uniform distribution when we have to traversethe matching blocks, we do the analysis for the document size distribution of the Web. As we haveshown, if a block has size x then the probability that it has to be traversed is (1� e�x=n���). Wemultiply this by the cost x to traverse it and integrate over all the possible sizes, so as to obtain its163

expected traversal cost (recall Eq. (8.1))Z 1k x(1� e�x=n���)p(x)dxwhich we cannot solve3. However, we can separate the integral in two parts. (a) x = o(n���) and(b) x =
(n���). In the �rst case the traversal probability is O(x=n���) and in the second case itis
(1). Splitting the integral in two parts we obtain�� �k�2� � n(���)(1��) + �k��� 1 n(���)(1��)� = �� �k�(2� �)(�� 1) n(���)(1��)�Now that we have the cost per block, we multiply by r = (�� 1)=(�k) n (Eq. (8.7)) to obtain thetotal amount of work. This is k��12� � n1�(��1)(���)On the other hand, if we used blocks of �xed size, the time complexity (using Eq. (8.2)) would beO(bn1��+�), where b = zb�. The ratio between both search times isdoc: index traversalblock index traversal = (�� 1)n(2��)(���)�(2� �)zk2��which shows that the document index would be asymptotically slower than a block index as thetext collection grows. In practice, the ratio is between O(n0:2) and O(n0:4). The value of z is notimportant here since it is a constant.8.3.3 Experimental ValidationIn this section we validate experimentally the previous analysis. The collection is considered as asingle large �le, which is logically split into blocks of �xed size. The larger the blocks, the faster tobuild and the smaller the index, but also the larger the proportion of text to search sequentially atquery time. We measure n and b in bytes, not in words.8.3.3.1 Fixed Block SizeWe show the space overhead of the index and the time to answer queries for three di�erent �xedblock sizes: 2 Kb, 32 Kb and 512 Kb. See Figure 8.10. Observe that the time is measured ina machine-independent way, since we show the percentage of the whole text that is sequentiallysearched. Since the processing time in the vocabulary is negligible, the time complexity is basicallyproportional to this percentage. The decreasing percentages indicate that the time is sublinear.The queries are the same used to measure the amount of matching in the vocabulary, again ensuringat most 5% of error with a con�dence level of 95%. Using least squares we obtain that the amountof traversed text is 0:10n0:79 for b = 2 Kb, 0:45n0:85 for b = 32 Kb, and 0:85n0:89 for b = 512 Kb.In all cases, the relative error of the approximation is under 5%. As expected from the analysis,the space overhead becomes linear (since = 1) and the time is sublinear (the analysis predictsO(n0:78), which is close to these results).We observe that the analysis is closer to the curve for smaller b. This is because the fact thatb = O(1) shows up earlier (i.e. for smaller n) when b is smaller. The curves with larger b shouldconverge to the same exponents for larger n.3Which is more convincing, Maple cannot solve. 164

20040 80 120 160 2000
80
0102030405060
7080 n (Mb)Mb b = 512Kbb = 32Kbb = 2Kb

20040 80 120 160 2000
60
01020304050
60

n (Mb)% b = 2Kbb = 32Kbb = 512Kb
Figure 8.10: Experiments for �xed block size b. On the left, space taken by the indices. On theright, percentages of the text sizes sequentially searched.8.3.3.2 Fixed Number of BlocksTo show the other extreme, we take the case of �xed r. The analysis predicts that the time shouldbe linear and the space should be sublinear (more speci�cally, O(n1=�) = O(n0:53)). This is themodel used in Glimpse for the tiny index (where r � 256).See Figure 8.11, where we measure again space overhead and query times, for r = 28, 212 and 216.Using least squares we �nd that the space overhead is sublinear in the text size n. For r = 28 wehave that the space is 0:87n0:53, for r = 212 it is 0:78n0:75, and for r = 216 it is 0:74n0:87. Therelative error of the approximation is under 3%. As before, the analysis is closer to the curve forsmaller r, by similar reasons (the e�ect is noticed sooner for smaller r).On the other hand, the percentage of the traversed text increases. This is because the proportionof text traversed (Eq. (8.1)) is (1� e�n1��+�), which tends to 1 as n grows.

20040 80 120 160 2000
80
0102030405060
7080 n (Mb)Mb r = 28r = 212r = 216

20040 80 120 160 2000
50
010203040
50

n (Mb)% r = 216r = 212r = 28
Figure 8.11: Experiments for �xed number of blocks r. On the left, space taken by the indices. Onthe right, percentages of the text sizes sequentially searched.165

8.3.3.3 Sublinear Space and TimeFinally, we show experimentally in Figure 8.12 that time and space can be simultaneously sublinear.We test = 0:92, 0.94 and 0.96. The analysis predicts the values shown in the table of Figure 8.8.Using least squares we �nd that the space overhead is sublinear and very close to the predictions:0:40n0:89, 0:41n0:92 and 0:42n0:95. The error of the approximations is under 1%.The percentage of the traversed text decreases, showing that the time is also sublinear. The leastsquares approximation shows that the query times for the above values are 0:24n0:95, 0:17n0:94and 0:11n0:91, respectively. The relative error is smaller than 2%.Hence, we can have for this text an O(n0:94) space and time index (our analysis predicts O(n0:93)).
20040 80 120 160 2000

70
01020304050
6070 n (Mb)Mb = 0:92 = 0:94 = 0:96

20040 80 120 160 2000
25
05101520
25

n (Mb)% = 0:96 = 0:94 = 0:92
Figure 8.12: Experiments for �xed (simultaneous sublinearity). On the left, space taken by theindices. On the right, percentages of the text sizes sequentially searched.As another example, we give in Figure 8.13 the results on simultaneous sublinearity for the ziffcollection, which has near 220 Mb after �ltering. The values for this collection are � = 0:51 and� = 1:79. Least squares show a very good agreement with the analysis: we have 0:71n0:92 for = 0:92, 0:60n0:94 for = 0:94 and 0:55n0:95 for = 0:96. The relative error is below 0.5%. Thetimes give 0:22n0:99 for = 0:92, 0:17n0:98 for = 0:94 and 0:14n0:96 for = 0:96. Hence, we canhave an O(n0:96) space and time index for ziff. It is interesting to notice that, although ziff hasa larger vocabulary than wsj, the results are not better. This is because the number of matchingwords in the vocabulary is also higher.8.4 Improving the Search AlgorithmsIn this last section we study di�erent improvements to the search algorithm typically used for ap-proximate searching on inverted indices. First we show how the vocabulary search can be improved(only for approximate searching) and later how the search on the blocks, if necessary, can also beimproved (this works for regular expressions and extended patterns as well).Unfortunately the two optimizations hardly can be applied in conjunction. When the indexingscheme makes it necessary to traverse the blocks, the gains due to faster vocabulary search aretotally marginal (less than 1%). Faster vocabulary search is of interest when either full inversion isused or block traversal is not necessary, and therefore the vocabulary search dominates the overallsearch time. 166

20 22020 60 100 140 180 2200
50
010203040
50

n (Mb)Mb = 0:92 = 0:94 = 0:96
20 22020 60 100 140 180 2200

25
05101520
25

n (Mb)% = 0:96 = 0:94 = 0:92
Figure 8.13: Experiments for �xed (simultaneous sublinearity) for the ziff collection. On theleft, space taken by the indices. On the right, percentages of the text sizes sequentially searched.8.4.1 Vocabulary SearchUntil now, we have relied on an on-line search in the vocabulary of the text. To reduce the time ofthat on-line search, we show now how to index the vocabulary as a metric space. We show that withreasonable space overhead we can improve by a factor of two over the fastest on-line algorithms,when the tolerated error level is low (which is reasonable in text searching).Since the vocabulary of the text is quite small compared to the text itself, an on-line search on ittakes a few seconds at most. While this may be adequate for the case of a single end-user, it isinteresting to improve the search time for other scenarios. For example, the algorithm could bea module of another more complex package (say, a linguistic analyzer) and receive thousands ofsearch requests. As another example, consider a a Web search engine which receives many requestsper second and cannot spend even a few seconds to traverse the vocabulary. In this section weorganize the vocabulary as a metric space using the edit distance function ed(), and use a knowndata structure to index such spaces. This idea may also have other applications where a dictionaryof words is searched allowing errors, such as in spelling problems.The technique that we present needs to compute the exact edit distance among strings, and thereforeit relies on the classical algorithm. The result is that, although it may perform a few evaluations ofthe edit distance (say, 5% of the whole vocabulary), it may be slower than an on-line traversal witha fast algorithm. On the other hand, many of the fastest algorithm could not be usable if someextension over the edit distance was desired, while the classical algorithm (and hence our technique)can accommodate many extensions at no extra cost.8.4.1.1 Searching in General Metric SpacesThe concept of \approximate" searching has applications in a vast number of �elds. Some examplesare images, �ngerprints or audio databases; machine learning; image quantization and compression;text retrieval (for approximate string matching or for document similarity); genetic databases; etc.All those applications have some common characteristics. There is a universe U of objects, and anonnegative distance function d : U � U �! R+ de�ned among them. This distance satis�es thethree axioms that makes the set a metric space (see Section 2.1). The smaller the distance between167

two objects, the more \similar" they are. This distance is considered expensive to compute (e.g.comparing two �ngerprints). We have a �nite database S � U , which is a subset of the universe ofobjects and can be preprocessed (to build an index, for instance). Later, given a new object fromthe universe (a query q), we must retrieve all similar elements found in the database. There aredi�erent queries depending on the application, but the simplest one is: given a new element q anda maximum distance k, retrieve all the elements in the set which are at distance at most k from q.This is applicable to our problem because we have a set of elements (the vocabulary) and thedistance ed() satis�es the stated axioms. A number of data structures exist to index the vocabularyso that the queries can be answered without inspecting all the elements. Our distance is discrete(i.e. gives integer answers), which determines the data structures which can be used. We brieysurvey the main applicable structures now.The �rst proposed structure is the Burkhard-Keller Tree (or BK-tree) [BK73], which is de�ned asfollows: an arbitrary element a 2 S is selected as the root, whose subtrees are identi�ed by integervalues. In the i-th children we recursively build the tree for all elements in S which are at distancei from a. This process can be repeated until there is only one element to process, or there are nomore than b elements (and we store a bucket of size b).To answer queries of the form (q; k), we begin at the root and enter into all children i such thatd(a; q)� k � i � d(a; q) + k, and proceed recursively (the other branches are discarded using thetriangular inequality). If we arrive to a leaf (bucket of size one or more) we compare sequentiallyall the elements. We report all the elements x found that satisfy d(q; x)� k.Another structure is called \Fixed-Queries Tree" or FQ-tree [BYCMW94]. This tree is basically aBK-tree where all the elements stored in the nodes of the same level are the same (and of course donot necessarily belong to the set stored in the subtree), and the real elements are all in the leaves.The advantage of such construction is that some comparisons are saved between the query and thenodes along the backtracking that occurs in the tree. If we visit many nodes of the same level, wedo not need to perform more than one comparison per level. This is at the expense of somewhattaller trees. Another variant is proposed in [BYCMW94], called \Fixed-Height FQ-trees", whereall the leaves are at the same depth h, regardless of the bucket size. This makes some leaves deeperthan necessary, which makes sense because we may have already performed the comparison betweenthe query and one intermediate node, therefore eliminating for free the need to compare the leaf.In [Sha77], an intermediate structure between BK-trees and FQ-trees is proposed.An analysis of the performance of FQ-trees is presented in [BYCMW94], which disregarding somecomplications can be applied to BK-trees as well. They basically show that the number of traversednodes is O(nx), where n is the size of the set and 0 < x < 1 depends on the metric space. It canalso be shown that the �xed-height variant traverses a sublinear number of nodes [BYN98b].Some approaches designed for continuous distance functions , e.g. [Uhl91, Yia93, Bri95, FL95], arenot covered in this brief review. The reason is that these structures do not use all the informationobtained from the comparisons, since this cannot be done in continuous spaces. This is, however,done in discrete spaces and this fact makes the reviewed structures superior to those for continuousspaces, although they would not be directly applicable to the continuous case. We also do not coveralgorithms which need O(n2) space such as [Vid86] because they are impractical for our application.It is not the aim of this thesis to improve on this techniques for general metric spaces. We justmake use of the available ones for our goals. 168

8.4.1.2 The Vocabulary as a Metric SpaceTraversing the whole vocabulary on-line is like comparing the query against the whole database ina metric space. Our proposal is to organize the vocabulary such as to avoid the complete on-linetraversal. This organization is based on the fact that we want, from a set of words, those whichare at edit distance at most k from a given query. The edit distance ed() used satis�es the axiomswhich make it a metric, in particular a discrete metric.The proposal is therefore, instead of storing the vocabulary as a sequence of words, organize it asa metric space using one of the available techniques. The distance function to use is ed(), whichis computed by dynamic programming in time O(m1m2), where m1 and m2 are the lengths of thetwo words to compare. Although this comparison takes more than many e�cient algorithms, it willbe carried out only a few times to get the answer. On the other hand, the dynamic programmingalgorithm is very exible to add new editing operations or changing their cost, while the moste�cient on-line algorithms are not that exible.Figure 8.14 shows our proposed organization. The vocabulary is stored as a contiguous text (withseparators among words) where the words are sorted. This allows exact or pre�x retrieval by binarysearch, or another structure can be built onto it. The search structure to allow errors goes on topof that array and allows approximate or exact retrieval. Metric SpaceData StructureApproximateSearch
Exact or specialized search Vocabulary... doctor j doctoral j document j documental j extra j ...Figure 8.14: Proposed data structure.An important di�erence between the general assumptions and our case is that the distance functionis not so costly to compute as to make negligible all other costs. For instance, the space overheadand non-locality of accesses incurred by the new search structures could eliminate the advantage ofcomparing the query against less words in the vocabulary. Hence, we do not consider simply thenumber of comparisons but the complete CPU times of the algorithms, and compare them againstthe CPU times of the best sequential search algorithms run over the complete vocabulary. Moreover,the e�ciency in all cases depends on the number of errors allowed (all the algorithms worsen if moreerrors are allowed). We have also to consider the extra space incurred because the vocabulary isalready large to �t in main memory. Finally, although the asymptotic analysis of the Appendixshows that the number of traversed nodes is sublinear, we must verify how does this behave for thevocabulary sizes which are used in practice.It is interesting to notice that any structure to search in a metric space can be used for exact169

searching, since we just search allowing zero errors (i.e. distance zero). Although not as e�cientas data structures designed speci�cally for exact retrieval (such as hashing or binary search), thesearch times may be so low that the reduced e�ciency is not as important as the fact that we donot need an additional structure for exact search (such as a hash table).8.4.1.3 Experimental ResultsWe tested two di�erent structures: BK-trees (BKT) and FQ-trees (FQT). We tested buckets of size1, 10 and 20. As explained before, other structures for metric spaces are not well suited to this case(we veri�ed experimentally this fact). We used the 500,000 words (5 Mb) vocabulary of the Englishtrec collection (1 Gb). The vocabulary was randomly permuted and separated in 10 incrementalsubsets of size 50,000 to 500,000.Our �rst experiment deals with space and time overhead of the data structures that implement thesearch in a metric space, and its suitability for exact searching. Figure 8.15 shows the results. Asit can be seen, build times are slightly superlinear (O(n logn) in fact, since the height is O(logn)).The overhead to build them is normally below 2 minutes, which is a small percentage (10% at most)of the time normally taken to build an index for a 1 Gb text database.If we consider extra space, we see that the BKT poses a �xed space overhead, which reaches amaximum of 115% for b = 1. This corresponds to the fact that the BKT stores at most one nodeper element. The space of the FQT is slightly superlinear (the internal nodes are empty) and forthis experiment is well above 200% for b = 1.Finally, we show that the work to do for exact searching involves a few distance evaluations (20 orless) with very low growth rate (logarithmic). This shows that the structure can be also used forexact searching.We show in Figure 8.16 the query performance of the indices to search with one error. As it can beseen, no more than 5-8% of the dictionary is traversed (the percentage is decreasing since the numberof comparisons are sublinear). The user times correspond quite well to the number of comparisons.We show the percentage of user times using the structures versus the best on-line algorithm for thiscase (the one presented in Section 6.1). As it can be seen, for the maximum dictionary size we reach40% of the on-line time for the best metric structures. From those structures, we believe that BKTwith b = 1 is the best choice, since it is faster than all the FQT's (and takes less space). Anotheralternative which takes less space (close to 70%) is BKT with b = 10, while it achieves 60% of thetimes of on-line searching.The result for two errors (not shown) is not so good. This time the metric space algorithms donot improve the on-line search, despite that the best ones traverse only 17%-25% of the vocabulary.The reason is that the o�-line algorithms are much more sensitive to the error level than the on-lineones. This shows that our scheme is only useful to search with one error.Table 8.2 shows the results of the least squares �tting over the number of comparisons performedby the di�erent data structures. For k = 0 we obtain a good logarithmic approximation, while thebucket size seems to a�ect the constant rather than the multiplying factor.For k = 1, the results con�rm the fact that the structures inspect a sublinear number of nodes.Notice that the exponent is smaller for BKT than for FQT, although the last ones have a betterconstant. The constant, on the other hand, seems to keep unchanged when the bucket size varies(only the exponent is a�ected). This allows extrapolating that BKT will continue to improve overFQT for larger data sets (it is well known that all the conclusions about metric space data structures170

� � � � � � �� � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
1 101 2 3 4 5 6 7 8 9 100

5000000
010000002000000300000040000005000000

n � � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �1 101 2 3 4 5 6 7 8 9 100

100
020406080

100
nsec

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �1 101 2 3 4 5 6 7 8 9 100
300
050100150200250300

n � � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �1 101 2 3 4 5 6 7 8 9 106
22
6101418
22

n� FQT b = 1� BKT b = 1 � FQT b = 10� BKT b = 10 � FQT b = 20� BKT b = 20Figure 8.15: Comparison of the data structures. From top to bottom and left to right, number ofdistance evaluations and user times to build them, extra space taken over the vocabulary size, andnumber of distance evaluations for exact search. The x axis is expressed in multiples of 50,000.
171

� � � � � � � � � �� � � � � � � � � �� � � � � � � � �
� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
1 101 2 3 4 5 6 7 8 9 100

20000
040008000120001600020000

n � � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �1 101 2 3 4 5 6 7 8 9 100
8
0123456
78 n%

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �
1 101 2 3 4 5 6 7 8 9 100.00

0.20
0.000.040.080.120.160.20

nsec � � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �� � � � � � � � � �1 101 2 3 4 5 6 7 8 9 1030
100
304050607080
90100

n%
� FQT b = 1� BKT b = 1 � FQT b = 10� BKT b = 10 � FQT b = 20� BKT b = 20Figure 8.16: Search allowing one error. The �rst row shows the number of comparisons (on the left,absolute number, on the right, percentage over the whole dictionary). The second row shows usertimes (on the left, seconds, on the right, percentage over the best on-line algorithm). The x axis isexpressed in multiples of 50,000.

172

Structure k = 0 k = 1 k = 2BKT (b = 1) 0:87 ln(n)� 1:52 2:25 n0:639 1:91 n0:822BKT (b = 10) 0:96 ln(n) + 0:39 2:21 n0:673 1:52 n0:859BKT (b = 20) 0:69 ln(n) + 8:36 2:16 n0:691 1:42 n0:871FQT (b = 1) 1:91 ln(n)� 10:84 0:36 n0:777 0:54 n0:926FQT (b = 10) 1:17 ln(n) + 0:26 0:50 n0:798 0:63 n0:921FQT (b = 20) 1:73 ln(n)� 1:58 0:49 n0:814 0:69 n0:919Table 8.2: Least squares �tting for the number of comparisons made by the di�erent data structures.depend strongly on the particular space and distance function, so this does not allow a generalizationto other cases). The results for k = 2 increase the exponent (which will be close to 1 for k = 3).The relative error is between 15% and 20% in all cases.The least squares �tting over the real CPU times give similar growth rates, for instance it is O(n0:65)for BKT (b = 1).Our implementation of the BK-trees is not optimized for space. We estimate that with a carefulimplementation the overhead can be reduced from 100% to 65%. This overhead is quite reasonablein most cases.The only alternative structure we are aware of is [SM96], where the vocabulary is organized intoa trie data structure. In the trie, each node represents a unique substring of the vocabulary. Thedynamic programming algorithm is run on the trie instead of on the plain vocabulary, thereforeeliminating the possible substring repetitions that appear (a very similar technique is proposed in[Ukk93, Cob95] for sequence-oriented indices, see Section 3.3.2). The search on the trie is abandonedas soon as it can be seen that a match with k errors is not possible.We have implemented this scheme, obtaining very fast construction times (7 seconds for the 5 Mbvocabulary) and very fast search times (for the maximum size, 0.0054 seconds for k = 1 and 0.0669for k = 2), which outperforms our scheme by an order of magnitude. However, the main problemof tries is their high space overhead. Naive implementations may pose 400% or more overhead overthe text size.We have carefully implemented a version that optimizes space, and obtained 100% extra overheadover the text. This is similar to the overhead we have presented for the BK-trees. However, ourimplementation of the BK-trees is not optimized for space. With a careful implementation canobtain only 65% overhead.We are currently working on new data structures to index metric spaces which could dramaticallyimprove the e�ectiveness of the current scheme. However, these are not yet �nished and are notpart of this thesis.8.4.2 Block SearchWe propose a new strategy for approximate searching on block addressing indices, which we ex-perimentally �nd 4-5 times faster than Glimpse, and that unlike Glimpse, takes advantage of thevocabulary information even when the whole text has to be veri�ed.We also start the search by sequentially scanning the vocabulary with an on-line approximate search173

algorithm. Once the blocks to search have been obtained, Glimpse uses Agrep (i.e. approximatesearching) again over the blocks. However, this can be done better.Since we have run an on-line search over the vocabulary �rst, we know not only which blocks containan approximate match of the search pattern, but also which words of the vocabulary matched thepattern and are present in each block. Hence, instead of using again approximate search over eachblock as Glimpse, we can run an exact (multipattern) search for those matching words found inthe vocabulary. Currently we perform a single search with all the patterns involved over all thematching blocks. As future work we plan to perform a di�erent search on each block, so thatonly the patterns present in that block are searched. In most cases, this can be done much moree�ciently than approximate searching. Moreover, since as we show later, most of the search timeis spent in the search of the text blocks (if this is needed), this improvement has a strong impacton the overall search time.We use an extension of the Boyer-Moore-Horspool-Sunday algorithm [Sun90] to multipattern search.This gave us better results than an Aho-Corasick machine, since as shown in Figure 8.1, few wordsare searched on each block (this decision is also supported by [Wat96]).We compared this strategy against Glimpse version 4.0. We used the \small" index provided byGlimpse, i.e. the one addressing �les (i.e. the sequential search must be done on the matching �les).Our index used also �les as the addressing unit for this comparison. The tests were run on a SunSparcServer 1000 with 128 Mb of RAM, running Solaris 2.5, which was not performing other tasks.However, only 4 Mb of RAM were used by the indexers. We used the wsj collection.The stopword mechanism and treatment of upper and lower-case letters is somewhat particular inGlimpse. We circumvent this problem by performing all �ltering and stopword elimination directlyin the source �les, and then using both indices without �ltering or stopwords considerations.Our indexer took near 16 minutes to index the collection (i.e. more than 10 Mb per minute), whileGlimpse took 28 minutes. This is due to di�erent internal details which are not of interest to thiswork, e.g. the indexers have di�erent capabilities apart from approximate searching. Both indicestook approximately 7 Mb. This is less than 3% of the size of the collection (this low percentage isbecause the �les are quite large).We are not comparing the complete indexing mechanisms, but only their strategy to cope withapproximate search of words when they have to be sequentially searched on the text. Issues suchas a di�erent addressing granularity will not change the proportion between the search times.In both indices we retrieve whole words that match the pattern. This is the default in this chapterand we believe that this option is more natural to the �nal user than allowing subword matching(i.e. "sense" matching with one error in "consensus").Table 8.3 (upper part) shows the times obtained (user times). As it can be seen, the mechanism wepropose is 4-5 times faster in practice (i.e. taking into account all the processing needed). We alsoshow the percentage of the text sequentially inspected and the average number of matches found,as well as the number of words matching in the vocabulary. We can see that an important part ofthe text is inspected, even for queries with acceptable precision (this is because the �les are large).Moreover, the times are almost proportional to the amount of sequential search done (we processnear 5 Mb/sec, while Glimpse is close to 1 Mb/sec). Therefore, the advantage of searching with amultipattern exact search instead of an approximate search algorithm is evident. Even if the wholetext is searched (in which case Glimpse is not better than Agrep, i.e. a complete sequential search),our indexing scheme takes advantage of the vocabulary, because it never searches the text for anapproximate pattern. 174

Errors Ours Glimpse Ours/Glimpse % inspected # matches # vocab. matchesMatching Complete Words1 8.20 34.99 23.42% 24.94% 871.86 4.972 18.05 82.50 21.91% 43.83% 2591.02 25.543 29.37 143.69 20.43% 77.81% 7341.84 31.15Subword Matching Allowed1 39.37 16.05 245.30% 41.45% 44541.50 159.072 73.04 64.12 113.91% 64.28% 44991.80 230.483 75.84 132.56 57.21% 77.39% 31150.50 182.92Table 8.3: Times (in seconds) and other statistics to retrieve all occurrences of a random word withdi�erent number of errors.Table 8.3 (lower part) presents the case in which subword matching is also allowed. The precision ismuch lower (i.e. there are more matches), which shows that this query is unlikely to be interestingfor the users. It can also be seen that much more text is traversed. The performance of ouralgorithm degrades due to a larger amount of words matching in the vocabulary, which reducesthe e�ectiveness of our multipattern exact searching against plain approximate search (this shouldimprove when we implement a separate search per block with only the patterns that matched thatblock). On the other hand, Glimpse improves for one and two errors because of specialized internalalgorithms to deal with this case. The net result is that our algorithm is slower for one and twoerrors, although it is still faster for three errors. This test shows that our approach is better whennot too many words match in the vocabulary, which is normally the case of useful queries.The idea of multipattern search on the blocks is in fact the essence of the success of Cgrep[MNZBY98b, MNZBY98a]. Cgrep is not an inverted �le but a compressor able to e�ciently searchfrom simple patterns to regular expressions, allowing or not errors. It is based on Hu�man codingon words. Since the words are the symbols of the coder, a table with all the words (that is, a vocab-ulary!) is stored together with the compressed �le. The search starts in the vocabulary, much as inour inverted indices. Once the matching words are obtained, their compressed codes are searchedin the compressed text. Although there is no indexing and all the text has to be traversed, thesearch is a multipattern exact search for the compressed codes of the matching words, which can bemuch faster than the original search (e.g. an approximate search). This allows Cgrep to be fasterthan Agrep. As future work we plan to integrate our block addressing index with the compressionscheme of Cgrep, so that the index and the text are compressed and the search on the compressedblocks is done using Cgrep.
175

Chapter 9Sequence-Retrieving IndicesIn this chapter we consider indices able to solve the general approximate string matching problem,i.e. to retrieve any text sequence which is at distance k or less from the pattern. As shownin Chapter 2, there are two main types of sequence-retrieving indices. We present new ideas inboth areas, as well as novel analytical results. The results of this chapter have been published in[BYN97c, NBY98c, BYNST97].9.1 An Index Based on SamplingWe propose a sequence-retrieving indexing technique which is practical and powerful, and especiallyoptimized for natural language text. It is an inverted index built on the vocabulary of all the textsubstrings of length q, and the search is an o�-line version of Section 6.1 (i.e. the pattern is splitin k+ 1 pieces which are searched with no errors). We design an algorithm to optimize the patternpartition so that the total number of veri�cations to perform is minimized (this idea does not work sowell in on-line searching, as explained in Section 6.1). This is especially useful for natural languagetexts and allows knowing in advance the expected cost of the search and the expected relevance ofthe query to the user. We show experimentally the performance of the index, �nding that it is apractical alternative for text retrieval: the space overhead is between two and four times the textsize, and for useful queries the retrieval times are reduced from 10% to 60% of the best on-linealgorithm.9.1.1 Indexing Text SubstringsAt indexing time, we select a �xed length q. Every text q-gram (substring of length q) is storedin the index (in lexical order). To resemble traditional inverted lists, we call vocabulary the setof all di�erent q-grams. The number of di�erent q-grams is denoted V , which is � n (in a textof n characters there are n � q + 1 q-grams, but only V di�erent q-grams) 1. Together with eachq-gram, we store the list of the text positions where it appears, in ascending positional order as ina traditional inverted index (see Section 2.10). Figure 9.1 shows a small example.If block addressing (Section 2.10) is used, the text is divided in blocks of a �xed length b, and allthe q-grams that start in the block are considered to lie inside the block. Only the ascending list1For the correctness of the algorithms, it is necessary that the last q� 1 su�xes of the text are entered as q-gramstoo, even when they are of length < q. 176

21 43extetextxtext e tx 4 ...e x tIndexText 321
Figure 9.1: The indexing scheme for q = 4.of the blocks where each q-gram appears is stored in this case. This makes the index smaller (sincethere is only one reference for all the occurrences of a q-gram in a single block, and also the pointersto blocks can be smaller).To search a pattern of length m with k errors, we split the pattern in k+1 pieces, search each piecein the index of q-grams of the text, and merge all the occurrences of all the pieces, since each oneis a candidate position for a match. The neighborhood of each candidate position is then veri�edwith a sequential algorithm as in Section 6.1. If blocks are used, each candidate block must becompletely traversed with an on-line algorithm. Figure 9.2 illustrates the search process.

vocabularyoccurrences TEXTINDEXxxxPATTERN Veri�cation vocabularyoccurrences TEXTINDEXxxx OnlineApprox.PATTERN Search
Figure 9.2: The search process, with exact addressing and block addressing.Of course the pattern pieces may not have the same length q. If a piece is shorter than q, all theq-grams with the piece as pre�x are to be considered as occurrences of the piece (they are contiguousin the index of q-grams). If the piece is longer, it is simply truncated to its �rst q characters (itis possible to verify later, in the text, whether the q-gram starts in fact an occurrence of the piecebefore verifying the whole area).When the pattern is split in k + 1 pieces, we are free to select those pieces as we like. We explain177

this idea in the on-line algorithm (Section 6.1, see also Section 4.2): knowing or assuming a givencharacter distribution for the text to search, the pieces are selected so that the probabilities of allpieces are similar. This minimizes the total number of veri�cations to perform, on average.Although in Section 6.1 we use this technique, there are two drawbacks in that case: �rst, wehave to estimate the probabilities of the pieces (in that case we multiply the individual characterprobability); and second, the Boyer-Moore-like search algorithm that we use degrades as the shortestpiece gets shorter. Hence, in that case we include the search cost in the cost model and the resultsare positive but modest.We can do much better here. The key point is that it is very cheap to compute in advance the exactnumber of veri�cations to perform for a given piece. We just locate the piece in the q-gram indexwith binary search. In the general case we obtain a contiguous region, for pieces shorter than q.By storing, for each q-gram, the accumulated length of the lists of occurrences, we can subtract thelengths at the endpoints of the region to obtain immediately the number of veri�cations to perform.The complete process takes O(logV) = O(logn).We adapt the dynamic programming algorithm of Section 6.1 that computes the optimal partition.As a side result, we know in advance the total cost to pay to retrieve the results, which as explainedis useful as early feedback to the user. The only di�erence is in the computation of R[i; j], which iscarried out as explained in the previous paragraph. This takes O(m2 logn) if the pieces are binarysearched. As explained in the original formulation of the algorithm, we need O(m2) space andO(m2k) time to build the other tables. If we replace the binary search by a trie of q-grams, thetime to build the initial R table can be lowered to O(m2): for each i we start at the root of thetrie and �nd the q-grams corresponding to R[i; i], R[i; i+ 1], R[i; i+ 2], and so on. Each new cell isfound in O(1) time, and there are O(m2) cells. Hence the total cost of this optimization can be aslow as O(m2k).Notice that, since it is possible that q is small, we may select pieces of the pattern whose beginningsare farther apart than q characters, and therefore the k + 1 pieces are non-contiguous. This makesuse of the xr of the Partitioning Lemma of Section 4.2.9.1.2 AnalysisWe analyze the time and space requirements of our index, as well as its retrieval performance.9.1.2.1 Building the IndexTo build the index we scan the text in a single pass, using hashing to store all the q-grams thatappear in the text. This q must be selected as large as possible, but small enough for the totalnumber of such q-grams to be small (practical values for natural language text are q = 3::5).Although we scan every q-gram and any good hash function of a q-gram takes O(q) time, the totalexpected time is kept O(n) instead of O(nq) by using a technique similar to Karp-Rabin [KR87] (i.e.the hash value of the next q-gram can be obtained in O(1) from the current one). The occurrencesare found in ascending order, hence each insertion takes O(1) time.Therefore, this index is built in O(n) expected time and a single pass over the text. The worst casecan be made O(n) by modifying Ukkonen's technique to build a su�x tree in linear time [Ukk95](we only want the tree up to height q). 178

9.1.2.2 Index SpaceWe analyze space now. To determine the number of di�erent q-grams in random text, consider thatthere are �q di�erent \urns" (q-grams) and n \balls" (q-grams in the text) to be assigned to theurns. The probability of a q-gram to be selected by a ball is 1=�q. Therefore, the probability ofa q-gram not being selected in n trials is (1� 1=�q)n. Hence, the average number of q-grams thatappear in the n trials is V = �q(1� (1� 1=�q)n) = �(�q(1� e�n=�q)) = �(min(n; �q)). This showsthat q must be kept o(log� n) for the vocabulary space to be sublinear. We show practical sizes inthe experiments.We consider the lists of occurrences now. Since we index all positions of all q-grams, the spacerequirements are O(n), being e�ectively 4n on a 32-bit architecture2. If block addressing is used(with blocks of size b), we consider that there is an entry in the list of occurrences per di�erentq-gram mentioned in each di�erent block. Reusing the analysis of the vocabulary, each block has�(min(b; �q)) di�erent q-grams. Multiplying this by the number of blocks (n=b), we have that thetotal size of the occurrence lists is O(nmin(1; �q=b)), which is o(n) if and only if b = !(�q)o(b), orq = o(log� b).9.1.2.3 Retrieval TimeWe now turn our attention to the time to answer a query. The �rst splitting optimization phaseis O(m2(k + logn)) or just O(m2k) as explained. Once we have all the positions to verify, we cancheck each zone using a classical algorithm at a cost of O(m2) each. However, we have shown inSection 4.3.1 that the cost of a veri�cation can be made O(`2) on average by using the hierarchicalveri�cation technique (where ` is the length of the searched piece). This cost is exactly the same asin the on-line version of Section 6.1 since it is related to the number of occurrences of the pieces inthe text.We analyze only the case of random text (natural language is shown in the experiments). Underthis assumption, we discard the e�ect of the optimization and assume that the pattern is split inpieces of lengths as similar as possible. In fact, the optimization technique makes more di�erence innatural language texts, making the approach in that case more similar in performance to the caseof random text.It should be clear that if k andm are �xed, this index can never be sublinear in time, simply becauseon random text the number of occurrences of the pattern grows linearly as the text grows and wehave to verify all those positions. In the analysis which follows we speak in terms of sublinearityand derive order conditions on b and q. This is reasonable since we can control them and makethem grow as n grows. However, when the conditions imply that m or k must grow as a function ofn to obtain the sublinearity, we are in fact meaning that it is not reasonable to consider that suchsublinearity is achievable.We split the pattern in pieces of length bm=(k + 1)c and dm=(k + 1)e. In terms of probabilityof occurrence, the shorter pieces are � times more probable than the others. The total cost of2We store just one pointer for each q-gram position. This allows indexing up to 4 Gb of text. Therefore we woulduse more than four bytes to index longer texts. On the other hand, we are not considering here the possibility ofusing a compressed list of positions, which can considerably reduce the space requirements, typically to 2 bytes perpointer. Our implementation uses such compressed pointers179

veri�cations is no more than m2(k + 1)�b mk+1c nwhich is sublinear for � = o(1=(log�(m=�))), i.e. � = o(1=(log�m+ log� log�m)). As this does notinvolve q or b, sublinear veri�cation cost is not achievable.However, we are not considering that, if q is very small, it is possible that the pieces are longerthan q. In this case we must truncate the pieces to length q and use the list of occurrences of theresulting q-grams. Before triggering a veri�cation on each occurrence of such q-grams, we can verifyin the text if the occurrence of the q-gram is in fact an occurrence of the longer piece. As this takesO(1) time on average for each occurrence of each of the (k + 1) lists, we have an additional timeof O(kn=�q), which is sublinear provided q = !(log� k). This time is obtained by considering thateach text character belongs to the k + 1 selected q-grams with probability O(k=�q).On the other hand, if we use block addressing, we must �nd the exact candidate positions beforeverifying them with the above technique. To do this, we use the on-line algorithm (i.e. thatof Section 6.1) which in turn �nds the candidate areas and veri�es them. Excluding the aboveconsidered veri�cations, the on-line algorithm runs in linear time . Therefore, we show under whichrestrictions a sublinear part of the text is sequentially traversed. This new condition is stricter thanthe previous � = o(1= log�(m=�)).The probability of a text position matching one piece is, as explained, (k+1)=�bm=(k+1)c. Therefore,the probability of a block (of size b) being sequentially traversed is1� �1� k + 1�b mk+1 c�band since there are n=b blocks and traversing each one costs O(b), we have that the expected amountof work to traverse blocks is n times the above expression, which isn�1� e� b(k+1)�bm=(k+1)c ��1 + O�k=�b mk+1 c��and this is sublinear approximately for b = o(�1=�=m)Hence, combined time and space sublinearity is obtained when the block size b satis�es b = !(�q)and b = o(�1=�=m) (we also need q = !(log� k)). Unfortunately, even for b = 1 we needm = o(�1=�),which is an order condition imposed over variables which are, at least in principle, not dependenton n.9.1.3 ExperimentsWe show experimentally the index construction times and sizes for di�erent values of q, with char-acter and block addressing. We also show the querying e�ectiveness of the indices, by comparingthe percentage of the query time using the index against that of using the on-line algorithm. Theexperimental values agree well with our analysis in terms of the error ratios and block sizes up towhere the indices are useful.For the tests we use a collection of 8.84 Mb of English literary text3 �ltered to lower-case and withall separators converted to a single space. We test the cases q = 3::5, as well as character addressing3This includes the writings of Franklin we use in most cases in this thesis, as well as Poe, Emerson, Wilde, Yeatsand Andersen. 180

and block addressing with blocks of size 2 Kb to 64 Kb. Blocks smaller than 2 Kb were of nointerest because the index size was the same as with character addressing, and larger than 64 Kbwere of no interest because query times were too close to the on-line algorithm.Figure 9.3 shows index build time and space overhead for di�erent q values and block sizes. Thesize of the vocabulary �le was 61 Kb for q = 3, 384 Kb for q = 4 and 1.55 Mb for q = 5, whichshows a sharp increase.
1 2K 4K 8K 16K 32K 64K0.0

4.5
0.00.51.01.52.02.53.03.5
4.04.5 b

t q = 3q = 4q = 5
1 2K 4K 8K 16K 32K 64K0.0

4.0
0.00.51.01.52.02.53.0
3.54.0 bq = 3q = 4q = 5Figure 9.3: On the left, index construction times (minutes of user time). On the right, their spaceoverhead (i.e. index space divided by text space). The dotted line shows a 100% overhead.We show now query times. We tested queries of length m = 8, 16 and 24 (i.e. from a word to ashort phrase). The queries were randomly chosen from the text at the beginning of non-stopwords.This setup mimics common text retrieval scenarios. For m = 8 we show tests with k = 1 and 2; form = 16 with k = 1::4 and for m = 24 with k = 1::6. Every data point was obtained by averagingUnix's user time over 100 random trials.Figure 9.4 shows the percentage of text traversed by using the index (the on-line algorithm shouldtraverse the whole text). As it can be seen, the percentage of text traversed is very low for theindex that stores the exact occurrences of the q-grams. The block addressing indices, on the otherhand, traverse much more text and they are useful only for small block sizes.Figure 9.5 shows actual query execution times as a percentage of the on-line algorithm. It can be seenthat the situation worsens. This happens because there is an important overhead in manipulatingthe index. This not only plays against the indexed algorithms, but even makes it better to usethe on-line algorithm when the �ltration e�ciency of the index is not good (moreover, the indiceswith larger b become better because the overhead is less and the veri�cations are the same). In thecharacter addressing index, this happens for � > 1=4. Up to that point, the search times are under10 seconds. The block addressing indices, on the other hand, cease to be useful too soon, namelyfor � > 1=8.Finally, we show the e�ect of our splitting optimization technique, by comparing, for characteraddressing indices, the retrieval times using and not using the optimization. As Figure 9.6 shows,the improvement due to the optimization is very signi�cant. Even when the length of the q-gramsdo not allow selecting longer pieces, the optimization technique selects the least frequent q-grams.There is some work about this index that we leave for the future. We should incorporate thehierarchical veri�cation techniques to improve its behavior for intermediate error levels. There arealso more possible improvements which are speci�c for the indexed version. Pattern pieces longer181

1 21 20100020406080100 k 1 41 2 3 40100020406080100 k 1 61 2 3 4 5 60100020406080100 k
1 21 20100020406080100 k 1 41 2 3 40100020406080100 k 1 61 2 3 4 5 60100020406080100 k
1 21 20100020406080100 k 1 41 2 3 40100020406080100 k 1 61 2 3 4 5 60100020406080100 kFigure 9.4: Percentage of text traversed using the index. The rows correspond to q = 3, 4 and 5,and the columns to m = 8, 16 and 24. The dashed line corresponds to character addressing, solidlines to block addressing. From lower to upper they correspond to b = 2, 4, 8, 16, 32 and 64 Kb.182

1 21 2
12020406080100120 k 1 41 2 3 4

12020406080100120 k 1 61 2 3 4 5 6
12020406080100120 k

1 21 2
12020406080100120 k 1 41 2 3 4

12020406080100120 k 1 61 2 3 4 5 6
12020406080100120 k

1 21 2
12020406080100120 k 1 41 2 3 4

12020406080100120 k 1 61 2 3 4 5 6
12020406080100120 kFigure 9.5: Query time using the index divided by query time using the on-line algorithm (percent-age). The rows correspond to q = 3, 4 and 5, and the columns to m = 8, 16 and 24. The dashedline corresponds to character addressing, solid lines to block addressing. From lower to upper (atk = 1) they correspond to b = 2, 4, 8, 16, 32 and 64 Kb.183

1 21 2030123 k 1 41 2 3 40401234 k 1 61 2 3 4 5 608012345678 k
1 21 2030123 k 1 41 2 3 40401234 k 1 61 2 3 4 5 608012345678 k
1 21 2030123 k 1 41 2 3 40401234 k 1 61 2 3 4 5 608012345678 kFigure 9.6: Comparison of retrieval times using the splitting optimization technique (dashed line)versus not using it (solid line), for the character addressing index. The rows correspond to q = 3, 4and 5, and the columns to m = 8, 16 and 24. 184

than q are truncated. This loses part of the information on the pattern. This case could justify theapproach of [Shi96] of splitting the pattern in more than k + 1 pieces and forcing more than onepiece to match before verifying. Extending the scheme to matching more than one piece reducesthe number of veri�cations but leads to a more complex algorithm, whose costs may outweight thegains of less veri�cations. Another interesting idea which has not been pursued is to try many splitsand to intersect the results (somehow resembling [GPY94]). We are currently studying these issues.A di�cult problem for word-retrieving indices is to account for errors involving separators (sincethey split the words). On an index like this one this is not a problem, but this index takes morespace. However, if the search pattern does not include separators we should not index any q-gramincluding a separator, which drastically reduces their number. Moreover, we could use the textwords (like word-retrieving indices) instead of the q-grams, and search the pattern pieces inside thewords, with a fast on-line exact searching algorithm. This would be in fact our partitioning intoexact search implemented over a traditional inverted index. We leave this for future work as well.The question of sublinearity for sequence-retrieving indices is interesting. In the natural languagemodel we can prove query time sublinearity by assuming that we only search for complete words,and using heuristic rules which show that the vocabulary of a text grows as it grows. On theother hand, sublinearity can never occur if we consider random text, since each new character hasa �xed probability of matching and therefore the output is of size
(n). The indices based on su�xtrees achieve sublinear time (in fact, independent on n) but they do not report all the matches,just subtrees whose leaves contain all the matches. Whether the number of matches on naturallanguage is or not sublinear if we allow any sequence (not only words) to match our query is aninteresting subject of future study, as it can settle the question of the possibility of sublinear-timesequence-retrieving indices for natural language text. On the other hand, one can consider that thenumber of matches is very low and count them in a separate variable R. Although formally we haveR =
(n), for practical queries the constant is very small.9.2 An Index Based on Su�x TreesSu�x trees are used as indices for approximate string matching because they factor out the repeti-tions that occur in the text. As explained in Section 3.3.2, the idea is to simulate the text traversalof an on-line algorithm, running it on the su�x tree instead of on the text. The algorithm whichminimizes the number of nodes traversed is [Cob95], while [BYG90, Gon92] is simpler but inspectsmore nodes. In this section we show that the latter index can be adapted to use a node processingalgorithm which is faster than dynamic programming, namely our algorithm of Chapter 5. We giveanalytical results for this technique, and test it experimentally in the next section. We �nish thissection by presenting a new technique based on pattern partitioning, so that the pattern is split inmany patterns which are searched in the su�x tree and their occurrences veri�ed for a completematch. We show in the experiments of the next section that this technique outperforms all theothers.9.2.1 Using the Bit-parallel AutomatonThe idea of [BYG90, Gon92] is a limited depth-�rst search on the su�x tree. Since every substringof the text (i.e. every potential occurrence) starts at the root of the su�x tree, it is su�cient toexplore every path starting at the root, descending by every branch up to where it can be seen thatthat branch does not represent the beginning of an occurrence of the pattern.185

More speci�cally, we compute the edit distance between the tree path and the pattern, and if atsome node we obtain a distance of k or less then we know that the text substring represented by thenode matches the pattern. We report all those nodes (to obtain the actual matches it is necessary totraverse all the leaves of the su�x tree which descend from those nodes, since they are extensions ofthe matching substring). On the other hand, when we can determine that the edit distance cannotbe as low as k, we abandon the path. This happens at depth m+ k + 1 but can happen before.We propose now a variation on the previous algorithm, based on our algorithms of Chapter 5.The idea is to replace the use of dynamic programming by our bit-parallel on-line algorithm overthe su�x tree. This algorithm uses bit parallelism to simulate an automaton that recognizes theapproximate pattern. It improves the performance, achieving linear time for small patterns. If thepattern is long, the automaton is partitioned in many computer words.We need to modify the automaton to compute edit distance (Section 5.3). Hence, we remove theinitial self-loop. We do not need to add the initial lower-left triangle, since if a substring matcheswith initial deletions we will �nd (in other branch) another version of it which does not need thedeletions (to see this, notice that if a 1 �nally exits from the lower-left triangle and reaches the �nalstate, then the same path can be followed by a su�x of the text area that matched). When theautomaton runs out of active states we can abandon the search.This bit-parallel variation is only possible because of the simplicity of the traversal. For instance, theidea does not work on the more complex setup of [Ukk92, Cob95], since these need some adaptationsof the dynamic programming algorithm that are not easy to parallelize. Hence, the tradeo� is: weuse a faster algorithm to process the nodes, but we cannot use a smart algorithm to traverse lessnodes. We show experimentally that this idea pays o�.As we have shown that approximate string matching is simulated using an automaton, this algorithmcan be seen as a particular case of general automaton searching over a trie [BYG96]. However, inthis case the automaton is nondeterministic and converting it to deterministic is not practical, sinceit tends to generate large automata (see Section 6.4).9.2.2 AnalysisAn asymptotic analysis on the performance of a depth-�rst search over su�x trees is immediateif we consider that we cannot go deeper than level m + k since past that point the edit distancebetween the path and our pattern is larger than k and we abandon the search. Therefore, the mostwe can work is O(�m+k), which is independent on n and hence O(1). Another clear way to see thisis to use the analysis of [BYG96], where the problem of searching an arbitrary regular expressionover a su�x trie is considered. This includes this case, because we run an automaton. Their resultfor this case indicates constant time (i.e. depending on the size of the automaton only) because theautomaton has no cycles.However, we are interested in a more detailed analysis, namely when n is not so large in comparisonto m + k. We �rst analyze which is the average number of nodes at level ` in the su�x tree ofthe text, for small `. Since almost all su�xes of the text are longer than ` (i.e. all except the last`), we have nearly n su�xes that reach that level. However, not all these su�xes are di�erent intheir �rst ` characters. The total number of nodes at level ` is the number of di�erent su�xesonce they are pruned at ` characters. This is the same as the number of di�erent `-grams in thetext. We can reuse the analysis of Section 9.1.2.2 to �nd out that the number of such nodes is�(�`(1� e�n=�`)) = �(min(n; �`)) if the text is random. That shows that the average case is closeto the worst case: up to level log� n all the possible �` nodes exist, while for deeper levels all the186

di�erent n nodes exist. We thus work on this worst case.We now get into the second part of the analysis. We need to determine which is the probability ofthe automaton being active at a given node of depth ` in the su�x tree. Notice that the automatonis active if and only if some automaton state of the last row is active. This is equivalent to somepre�x of the pattern matching with k errors or less the text substring represented by the su�x treenode under consideration. So we can partially reuse our analysis of Section 4.1.Since we are computing edit distance now, the probability of a pattern pre�x of length m0 matchinga text substring of length ` must consider all the characters of the text substring. As done inSection 4.1, we have that at least `�k of the text must match the pattern when ` � m0, and that atleast m0�k characters of the pattern must match the text whenever m0 � `. Hence, the probabilityof matching is upper bounded by1�`�k� ``� k�� m0`� k� or 1�m0�k� `m0 � k�� m0m0 � k�depending on whether ` � m0 or m0 � `, respectively. Notice that this imposes that m0 � k � ` �m0 + k. We also assume m0 � k, since otherwise the matching probability is 1. As k � m0 � m, wehave that ` � m+ k, otherwise the matching probability is zero. Hence the matching probability is1 for ` � k and 0 for ` > m+ k, and we are interested in what happens in between.Since we are interested in any pattern pre�x matching the current text substring, we add up all thepossible lengths from k to m:X̀m0=k 1�`�k� ``� k�� m0`� k� + mXm0=`+1 1�m0�k� `m0 � k�� m0m0 � k�which is very similar to Eq. (4.3) if we replace the s and m there by m0 and ` here, respectively.The only di�erences are the absence of \�2" (which does not a�ect the outcome) and the upperlimit of the second summation, which is m+ k there and is not `+ k here. In this formula the limitis m, which is not upper bounded in terms of ` and k.There is in fact a semantic di�erence which (fortunately) is not reected in the formula: here weare summing over di�erent pattern lengths and a �xed text length, while in Section 4.1 we summedover di�erent text lengths for a �xed pattern length. This is a consequence of the symmetry of theproblem.All the reasoning of Section 4.1 can be followed in order to obtain an equivalent to Eq. (4.2), where� = k=`. The only point where the di�erence in the upper limit plays a role is when we show that�h(x)=�x does not have roots in the interval of the second summation, but in fact there are no rootsafter m0 � `, and therefore the upper limit is not important.Hence, the result is that the matching probability is very high for � = k=` > 1�e=p�, and otherwiseit is O(`) for < 1. Therefore, we can pessimistically consider that in levels` � L(k) = k1� e=p� = O(k)all the nodes in the su�x tree are visited, while deeper nodes at level ` > L(k) are visited withprobability O(`) for < 1 (notice that this result is very similar to that of Eq. (4.5)).We are left with three disjoint cases to analyze, illustrated in Figure 9.7. We say that the index is\useful" if the number of nodes it traverses does not grow proportionally to the text size n.187

σ
����������������������

����������������������

����������������������������

��������������
��������������
��������������
��������������

log n

σ

����������������������

��������������������������

��������������������������

����������������������������

σlog nlog n

all nodes

some nodes
m+k

L(k)

a)

c)b)

no node

Figure 9.7: The upper left �gure shows the visited parts of the tree. The rest shows the threedisjoint cases in which the analysis is split.a) m+ k < log� n, i.e. n > �m+k or \very large n"It is clear in this case that, even if we worked on all the possible nodes (i.e. up to depthm+ k), the total amount of work would still be less than n and would not grow as n grows.Therefore, the index is always useful in this case, whose condition is equivalent to � <(log� n)=m� 1.b) L(k) � log� n, i.e. n � �L(k), or \very small n"In this case, since on average we work on all the nodes up to level log� n, the total work isn, i.e. the amount of work is proportional to the text size. This shows that the index simplydoes not work for very small texts, being an on-line search preferable.Therefore, the index is never useful in this case, whose condition is equivalent to � >(log� n)=m (1� e=p�).c) L(k) < log� n � m+ k, i.e. \intermediate n"In this case, we work on all nodes up to L(k) and on some nodes up to m + k. The totalamount of nodes visited is L(k)X̀=0 �` + log�(n)�1X`=L(k)+1 `�` + m+kX`=log� n `nThe �rst term of the expression is proportional to �L(k), and smaller than n because we areassuming L(k) < log� n. It does not grow as n grows.188

Since due to Eq. (4.1) we have that � > 1, the the second summation is at most4(�)log� n = n1+log� which is sublinear in n if and only if < 1.The third summation, provided < 1, is at mostnlog� n1� = n1+log� 1� which again is sublinear in n only if < 1.Therefore, the index is useful in this case when < 1. An equivalent condition is � <(log� n)=m (1� e=p�) ^ � < 1� e=p�.Since the total time is proportional to the number of nodes visited, we conclude that� If (log� n)=m � 1, the retrieval time grows sublinearly if and only if � < (log� n)=m (1�e=p�).� If (log� n)=m > 1, the retrieval time grows sublinearly if and only if � < (log� n)=m � 1 or� < 1� e=p�.The cost to inspect a node is O(1) for small patterns (i.e. (m� k)(k + 2) � w), while otherwise itis O(k(m� k)=w) (in the original scheme [BYG90, Gon92] the cost to inspect a node is O(m)).Notice that we have not considered the time to report the matches, we just return subtrees of thesu�x tree whose leaves are answers. If we had to enumerate all the matches, we could never achievesublinear time, since if f(m; k) is the matching probability per character, there exist on averagef(m; k)n =
(n) text positions to report.9.2.3 A New Algorithm Based on Pattern PartitioningFrom the analysis it is clear that we prefer that m and k be small numbers. We present herea new algorithm that partitions the original pattern into smaller sub-patterns, which have to belocated and produce a set of potential candidates. Those candidates are later veri�ed using anon-line algorithm on the text occurrences. This idea is based on the pattern partitioning techniqueof Chapter 5.The new algorithm follows. We divide the pattern in j pieces, such that each piece can be searchedwith the simple (non-partitioned) automaton. Then we search in the su�x tree the j pieces usingthe algorithm we proposed in Section 9.2.1. We then collect all the matches found and verify allthem in the text for a complete occurrence.Since we perform j searches of the same kind of Section 9.2.1, the same analysis holds providedwe multiply the cost by j and replace m by m=j and k by k=j. Recall that the j given by pat-tern partitioning is j = O((m� k)=pw). However, to achieve search sublinearity, apart from theconsiderations of Section 9.2.1, we need also that the total number of veri�cations be sublinear (noveri�cations are required in Section 9.2.1). This, unfortunately, is not possible since as explainedeach text position has a �xed probability of matching the pattern, and therefore the total number4In the case of � � 1 it would be even less, i.e. at most log� n.189

of matches is
(n). As we need to verify at least all those matches, we pay
(n). Notice that theapproach of Section 9.2.1 does not consider the task of reporting the matches, since it reports su�xtree nodes which root all the leaves that are answers.As we show experimentally in the next section, this idea works by far better than all the otherexisting indexing schemes. This is because the search on a su�x tree degrades quickly as m or kgrow, up to the point where it is better to perform j searches with patterns of length m=j andk=j errors. If we partition the pattern, however, we immediately loose the sublinearity because thenumber of veri�cations to perform grows at the same rate of the text size n. On the other hand,this is an asymptotic result and in practice the idea works well.We may consider the problem of which is the best partition to perform. We initially used the jgiven by pattern partitioning (i.e. the one making the subautomata �t in a computer word), butthe experimental results show that we probably would have obtained better results by partitioningeven more. This is a subject independent of which type of automaton we use to search in the nodes.The larger j is, the more searches we will have to perform and the more veri�cation work we willdo, but those searches themselves will be much cheaper.In the extreme case, we can partition the pattern in k + 1 pieces and search them in the su�xtree with zero errors. Searching all the pieces in the su�x tree costs O(m), and later we have toverify all their occurrences. It is not hard to see that this is basically what our index of samples ofSection 9.1 does. The di�erence is that it prunes the su�x tree at depth q, and therefore we mustin some cases content ourselves with a pruned pattern piece. But, as the experiments show, evenin the cases where q is large enough, the performance of the index is not as good as that of patternpartitioning. This shows that we are paying too much to verify the pieces, and that the optimumis not in this extreme (the other extreme is not partitioning at all, which as clearly shown by theexperiments is not the optimum either).Hence, the best choice is in between. We have to balance between traversing too many nodes of thesu�x tree and verifying too many text positions. In fact, the other index which does precisely thisis Myers' index [Mye94], which is explained in Section 3.3.3. Myers' index collects all text q-grams,and given the pattern it generates all the strings at distance at most k from the pattern, searchesthem in the index and merges the results. This is the same work of a su�x tree provided that we donot enter too deep (i.e. q � m+ k). If q < m+ k, Myers' approach splits the pattern and searchesthe subpatterns in the index, checking all the potential occurrences.There are two fundamental di�erences between Myers' index and our approach. First, Myers' indexis not a su�x tree and therefore it limits the maximum value for m + k beforehand. This is areasonable way to reduce space requirements, and gives the method to select j. Second, it generatesall the strings at a given distance and searches them, instead of traversing the structure to see whichof them exist. This makes Myers' approach degrade as the alphabet size grows (in the experimentswe show that it works well on DNA but very badly on English). It would be much better tosimulate the traversal on a su�x tree using the index of substrings. Each movement in the su�xtree is replaced by a binary search on the set of (sorted) substrings, which adds a modest additionalO(logn) factor to the search time.We believe that indexing substrings and simulating a su�x tree traversal on them is a very in-teresting choice, which extends naturally our index based on samples, corrects the bad choice ofgenerating all the strings in Myers' index, and allows to have search times similar to our patternpartitioning index without its huge space requirements. We leave the research on this index forfuture work. 190

9.3 Experimental ResultsWe compare our indices with the other existing proposals. However, as the task to program anindex is rather heavy, we have only considered other indices when they are already implemented.Hence, the indices included in this comparison areMyers': The index proposed by Myers [Mye94], described in Section 3.3.3. The implementationwe use is from the author, and it is able to search some lengths only, not an arbitrarym. Theallowed lengths depend on the alphabet size.Cobbs': The index proposed by Cobbs [Cob95], described in Section 3.3.2. We use the imple-mentation of the author, which is not optimized for space (although the su�x tree index isnaturally space-demanding). Actually the search does not use a su�x tree but a DAWG (seeSection 2.7), which is similar. The code is restricted to work on an alphabet of size 4 or less.Samples(q): Our index based on samples presented in Section 9.1. We show the results for q = 3to 6.Dfs(a=p): Our index based on su�x trees presented in Section 9.2. We show the results for the basetechnique (a) and pattern partitioning (p), explained in Sections 9.2.1 and 9.2.3, respectively.In particular, approximate searching on other q-gram indices (see Section 3.3.3) is not yet imple-mented and therefore is excluded from our tests. We know, however, that their space requirementsare very low (close to a word-retrieving index), but also that since the index simulates the on-linealgorithm, its tolerance to errors is very low to be practical (see Section 5.9).All the indices were set to show the matches they found, in order to put them in a reasonably realscenario. We used two di�erent texts for our experiments:� DNA text (\h.inuenzae"), which is a 1.34 Mb �le composed solely of the letters fA,C,G,Tg.This �le is called dna in our tests, and h-dna is the �rst half megabyte of it.� English literary text (from B. Franklin), which is �ltered as explained in Chapter 2 except forline breaks which are also converted to spaces (actually, we use underscores instead of spacesto avoid problems with some of the indices). This text has 1.26 Mb, and is called fra in theexperiments. The text called h-fra is the �rst half megabyte of fra. Observe that Cobbs'index cannot be built on this text because of its restrictions to the alphabet size.The texts are rather small, in some cases too small to appreciate the speedup obtained with someindices. This is because of the limitations imposed by su�x trees (we had problems to build thesu�x trees for the texts larger than half a megabyte). However, the experiments still serve to obtainbasic performance numbers on the di�erent indices.We present the user and system times to build the indices and the space they take in Table 9.1. The�rst clear result of the experiment is that the space usage of the indices is very high. In particular,the indices based on su�x trees or DAWGs (Dfs and Cobbs') take 35 to 65 times the text size. Thisoutrules them except for very small texts (for instance, building Cobbs' index on 1.34 Mb took 12hours of real time in our machine of 64 Mb of RAM). From the other indices, Myers' took 7-9 timesthe text size, which is much better but still too much in practice. The best option in terms of spaceis our Samples index, which takes from 1 to 7 times the text size, depending on q and �. The larger191

Indexer dna h-dna fra h-fraMyers' 5.84u+0.35s 2.08u+0.12s 5.22u+0.34s 2.01u+0.12s10.68 Mb (7.97X) 4.50 Mb (9.00X) 9.39 Mb (7.46X) 4.18 Mb (8.35X)Samples(3) 3.84u+0.15s 1.39u+0.07s 9.29u+0.28s 3.51u+0.12s1.53 Mb (1.14X) 0.57 Mb (1.15X) 2.52 Mb (2.00X) 1.02 Mb (2.05X)Samples(4) 5.53u+0.19s 1.95u+0.10s 15.05u+0.41s 5.90u+0.24s2.04 Mb (1.52X) 0.77 Mb (1.53X) 3.48 Mb (2.77X) 1.48 Mb (2.98X)Samples(5) 7.37u+0.24s 2.62u+0.08s 20.82u+0.70s 8.70s+0.35s2.48 Mb (1.85X) 0.94 Mb (1.87X) 5.18 Mb (4.11X) 2.32 Mb (4.65X)Samples(6) 10.53u+0.32s 3.88u+0.13s 32.86u+1.34s 13.19u+0.97s2.90 Mb (2.16X) 1.11 Mb (2.23X) 7.65 Mb (6.07X) 3.54 Mb (7.07X)Cobbs' 108.70u+532.81s 30.50u+76.06s n/a n/a87.99 Mb (65.67X) 32.93 Mb (65.85X)Dfs 30.89u+104.17s 6.48u+0.42s 28.46u+76.86s 6.43u+0.61s52.25 Mb (38.99X) 19.55 Mb (39.10X) 44.66 Mb (35.45X) 17.66 Mb (35.32X)Table 9.1: Times (in seconds) to build the indices and their space overhead. The time is separatedin the cpu part (\u") and the i/o part (\s"). The space is expressed in megabytes, and also theratio index/text is shown in the format rX, meaning that the index takes r times the text size.q or �, the larger the index. Samples(5), which takes 2-4 times the text size, performs well at querytime.Compared to its size, Myers' index was built very quickly, thanks to the technique of packing manycharacters in an integer. The Dfs index, on the other hand, was built faster than Cobbs'. Noticethat the su�x trees are built very quickly when they �t in RAM (which happens with the versionsof half a megabyte of the texts), but for larger texts the construction time is dominated by the I/O,and it takes too much.We consider now query times. We have tested short and medium-size patterns, searching with 1, 2and 3 errors the short ones and with 2, 4 and 6 the medium ones. The short patterns were of length10 for DNA and 8 for English, and the medium ones were of length 20 and 16, respectively (this isbecause of the restrictions of Myers' index). We selected 1000 random patterns from each �le anduse the same set for all the k values of that length, and for all the indices. We present in Tables 9.2and 9.3 the average time per query measured in milliseconds. We include also the time of on-linesearching for comparison purposes. We use our on-line software of Chapter 5, which selects the beststrategy given the search parameters (the partitioning into exact searching of Section 6.1 is one ofits possible strategies).The results clearly show a number of facts.� Our strategy Dfs(a) of using a simpler traversal algorithm on the su�x tree and in returnusing a faster search algorithm de�nitely pays o�, since our algorithm is 20 to 150 times fasterthan Cobbs', at the same or less space requirements. Independently of this fact, the su�x treeindices seem to be basically independent on the type of text, but very sensitive to the growthof m or k. In fact, the di�erences between fran and dna are due to the di�erent values ofm used. Cobbs' index is never better than on-line searching, but our faster implementationimproves over the on-line search for smallm and k values. The big problem with this type of192

Indexer dna h-dna fra h-fra(m = 10) (m = 10) (m = 8) (m = 8)1: 131.0u+21.35s 1: 55.01u+15.24s 1: 59.74u+17.31s 1: 29.99u+9.00sOn-line 2: 152.6u+20.56s 2: 62.41u+15.48s 2: 114.8u+20.86s 2: 52.77u+11.56s3: 188.7u+20.36s 3: 84.20u+15.33s 3: 142.2u+20.56s 3: 60.30u+13.76s1: 38.46u+227.6s 1: 35.00u+116.3s 1: 420.5u+198.5s 1: 185.0u+99.1sMyers' 2: 149.3u+227.8s 2: 96.10u+117.4s 2: 2698u+206.2s 2: 1066u+103.1s3: 1187u+232.1s 3: 688.0u+117.8s 3: 3179u+205.5s 3: 1261u+109.2s1: 655.3u+2207s 1: 243.0u+813.6s 1: 60.71u+182.4s 1: 29.47u+68.92sSamples(3) 2: 1836u+4471s 2: 718.5u+1702s 2: 377.4u+901.6s 2: 129.9u+315.0s3: 5468u+13668s 3: 2079u+5168s 3: 1410u+2925s 3: 552.5u+1202s1: 235.2u+779.8s 1: 94.52u+290.6s 1: 44.80u+109.7s 1: 22.38u+46.10sSamples(4) 2: 1425u+3186s 2: 568.0u+1251s 2: 379.2u+915.1s 2: 142.2u+30.23s3: 5788u+13750s 3: 2151u+5179s 3: 1966u+2973s 3: 819.1u+1156s1: 119.7u+308.5s 1: 50.91u+116.6s 1: 44.74u+102.1s 1: 23.20u+44.47sSamples(5) 2: 1507u+3287s 2: 583.6u+1244s 2: 564.8u+845.6s 2: 183.0u+312.8s3: 6870u+13448s 3: 2600u+5097s 3: 3392u+29.34s 3: 1297u+11.82s1: 118.5u+295.0s 1: 51.59u+113.6s 1: 53.12u+105.7s 1: 25.78u+45.42sSamples(6) 2: 1727u+3369s 2: 677.3u+1237s 2: 782.0u+907.4s 2: 254.0u+324.4s3: 10816u+14147s 3: 4126u+5081s 3: 5593u+3002s 3: 2347u+1185s1: 110.0u+192.5s 1: 101.8u+156.0sCobbs' 2: 588.1u+1989s 2: 377.0u+1113s n/a n/a3: 3370u+14291s 3: 1835u+6060s1: 3.13u+7.81s 1: 1.45u+0.00s 1: 4.80u+11.41s 1: 1.88u+0.03sDfs(a) 2: 54.31u+146.8s 2: 22.29u+0.00s 2: 35.31u+99.50s 2: 9.77u+0.05s3: 397.3u+1218s 3: 152.8u+0.28s 3: 157.2u+455.0s 3: 35.65u+0.10s1: 3.19u+8.47s 1: 1.51u+0.00s 1: 4.44u+9.12s 1: 1.96u+0.00sDfs(p) 2: 1.40u+0.00s 2: 1.34u+0.00s 2: 32.51u+66.87s 2: 9.92u+0.00s3: 2.12u+0.01s 3: 1.66u+0.00s 3: 146.5u+439.9s 3: 34.95u+0.02sTable 9.2: Query times (in milliseconds) for short patterns and for 1, 2 and 3 errors. The time isseparated in the cpu part (\u") and the i/o part (\s").
193

Indexer dna h-dna fra h-fra(m = 20) (m = 20) (m = 16) (m = 16)2: 184.6u+22.18s 2: 75.16u+16.61s 2: 60.59u+17.56s 2: 29.91u+9.48sOn-line 4: 311.4u+21.70s 4: 116.0u+15.79s 4: 116.3u+20.83s 4: 50.71u+14.98s6: 779.2u+21.42s 6: 297.4u+15.77s 6: 205.6u+20.58s 6: 92.36u+13.37s2: 123.6u+225.1s 2: 68.21u+112.8s 2: 426.1u+203.4s 2: 325.0u+106.2sMyers 4: 1596u+237.7s 4: 651.0u+105.9s 4: 3802u+205.1s 4: 1619u+111.4s6: 13149u+266.4s 6: 5269u+142.2s 6: 5444u+217.0s 6: 2329u+117.1s2: 876.7u+2494s 2: 335.4u+937.3s 2: 41.26u+120.6s 2: 22.53u+51.65sSamples(3) 4: 3406u+6342s 4: 1296u+2355s 4: 255.5u+488.7s 4: 105.5u+194.2s6: 6567u+13264s 6: 2711u+5363s 6: 1682u+2245s 6: 648.3u+872.5s2: 286.3u+768.8s 2: 120.6u+296.6s 2: 26.38u+47.77s 2: 18.93u+21.69sSamples(4) 4: 1912u+2568s 4: 714.4u+913.6s 4: 242.0u+391.0s 4: 102.9u+160.2s6: 7093u+13239s 6: 2820u+5913s 6: 1972u+2226s 6: 817.0u+890.0s2: 111.4u+287.3s 2: 48.35u+110.1s 2: 22.89u+35.40s 2: 18.60u+17.05sSamples(5) 4: 1637u+2141s 4: 669.3u+899.1s 4: 257.1u+410.9s 4: 109.1u+166.2s6: 7861u+12590s 6: 3169u+5102s 6: 3049u+2292s 6: 1176u+892.1s2: 57.30u+114.8s 2: 30.53u+46.22s 2: 23.60u+31.03s 2: 18.03u+17.71sSamples(6) 4: 1746u+2141s 4: 716.6u+882.2s 4: 314.6u+388.2s 4: 127.2u+162.9s6: 11878u+13320s 6: 4550u+5098s 6: 4698u+2328s 6: 1781u+894.3s2: 726.1u+1700s 2: 496.3u+974.0sCobbs' 4: *** 4: 8060u+14447s n/a n/a6: *** 6: ***2: 52.07u+177.4s 2: 18.97u+0.13s 2: 28.98u+69.75s 2: 13.08u+0.03sDfs(a) 4: 2106u+7889s 4: 437.1u+0.10s 4: 431.4u+1282s 4: 124.3u+0.10s6: 11341u+40604s 6: 2516u+0.00s 6: 2136+6433s 6: 512.6u+0.00s2: 7.93u+17.15s 2: 3.52u+0.00s 2: 9.01u+15.05s 2: 3.87u+0.01sDfs(p) 4: 6.06u+1.66s 4: 5.42u+0.00s 4: 46.50u+109.8s 4: 20.72u+0.00s6: 94.10u+80.52s 6: 67.01u+0.01s 6: 269.8u+722.3s 6: 77.40u+0.00s*** One single query took more than 10 minutes.Table 9.3: Query times (in milliseconds) for moderate-length patterns, and for 2, 4 and 6 errors.The time is separated in the cpu part (\u") and the i/o part (\s").
194

index is of course the huge space requirements it poses.� Myers' index behaves well for DNA text but it worsens quickly as the alphabet size grows(i.e. English text). This is because the number of strings at distance k or less from the querygrows exponentially with �, and the algorithm generates all those strings. For DNA the indexis a good alternative, since although it is 3 to 25 times slower than Dfs(a), it takes 4 timesless space. The index also degrades for medium-size patterns, i.e. when it has to performpattern partitioning. It is better than on-line searching in the case of 10% of error (this couldimprove on a larger text). Finally (always on DNA) it is better than our Samples index whenthe pattern is short, but not when pattern partitioning is necessary.� The Samples index reaches its optimum performance for q between 5 and 6, depending on thecase. Unlike Myers', this index improves as � grows, so it works better on English text thanon DNA. In DNA it produces a small index (4 times smaller than Myers') but in general hasworse search times (except for m = 20 and 10% of error, which is also the only case wherethe index improves over on-line searching and even gets close to Dfs(a)). The index for q = 5on English text is half the size of Myers' index, and it also obtains good results for mediumpatterns and low error levels. As we have shown in Section 9.1, these �gures improve for largertexts.� However, the de�nitive winner is Dfs(p), which works on the same data structure of Dfs(a)but partitions long patterns into many subsearches of short patterns. The query times areby far the lowest among all the indices. The experiments show a non-monotonic behavioras k grows, which is due to di�erent partitioning techniques. For instance, for m = 10 andk = 1 the search �ts in a computer word and hence there is no partitioning, for a total costof 3.19 on dna. When we move to k = 2 the automaton does not �t in a computer word andtwo searches with m = 5 and k = 1 are performed, the time being 1.40 in this case. Thisshows that the best partitioning has little to do with the shape of the automaton, and thatthe technique deserves more study, in order to determine the best partitioning and to �nd agood alternative to replace the su�x tree data structure.We �nish this chapter with Figure 9.8, which illustrates the empirical results on space and querytime complexity for the di�erent indices. There is a di�erent plot for each value of n, m, k and �,so we have decided to illustrate the case of short patterns and k = 1, on both DNA and Englishtext. The Figure gives a quick grasp of the current time and space tradeo�s.
195

8X 35X2XX

(English)

(English)

(DNA)

65X

Cobbs’

Dfs
3ms

50ms

100ms

400ms

Time

(DNA)

Samples

Samples

Myers’

Myers’

SpaceFigure 9.8: Space-time trade-o�s on sequence-retrieving indices, in the case of short patterns andone error, and the texts dna and fra.
196

Chapter 10ConclusionsThe aim of this thesis was to address the problem of string matching allowing errors, a rather oldproblem in string matching which is gaining importance in the last years thanks to its applicationsin computational biology and information retrieval. In this section we present the \big picture" ofwhat has been obtained and what is left.10.1 Results ObtainedWe divided the thesis in two main areas: on-line and indexed searching.On-line searching is the oldest avor of the problem, and at the same time still the most fast-movingand competitive area. It consists on searching the pattern in the text when there is no possibilityto preprocess the text. Our most important achievements in this area are� We have obtained new results on the probabilistic behavior of approximate searching, provingthat the probability of an approximate occurrence is a function of the error level � which goesabruptly from almost zero to almost one, and obtaining theoretical and empirical values forthat threshold � value. This allows to understand much better the expected behavior of manysearch algorithms and to determine which one to use in each case. Despite that some morere�ned work can still be done, our result is generally enough for most practical purposes.� We have designed a number of new algorithms, some of which are currently the fastest knownon-line search algorithms. In particular, our new algorithms are now the best ones for shortpatterns and for moderate error levels, which covers almost all the cases of interest in typicaltext searching.� We have presented many new algorithms for multipattern approximate searching, which is arather new area where we expect more movement in the near future. We basically extendedmany of our algorithms for one pattern to the multipattern case. Currently our algorithmsare the best everywhere, except for the case of one error and hundreds of patterns.� These results are due to strong and novel algorithmic ideas (such as the bit-parallel simulationacross diagonals of the NFA, pattern partitioning, hierarchical veri�cation, and superimposi-tion), as well as careful algorithm engineering and successful application and combination ofpractical techniques (some of them previously known).197

Indexed searching, on the other hand, is a newer area (practically born in 1992) where much moredevelopment is necessary. In this case the text can be preprocessed and a persistent data structureon it (index) can be built to speed up later querying. Our main achievements for this area are� We have analytically studied the behavior of word-retrieving indices (those able to retrievewhole words that match the query). One of the most outstanding results is that it is possibleto use block addressing to have indices which are sublinear in space overhead and retrievaltime simultaneously. This makes an excellent case for the use of this type of index. The resultholds also for exact searching. We also analyzed full inverted indices and Web indices.� We have presented new indexing schemes for sequence-retrieving (i.e. general) indices, whichare currently among the best ones. An index based on samples proves to be very adequatefor large natural language databases. A second index that combines su�x trees with patternpartitioning seems to be a very promising alternative that could sweep out all the other choicesif implemented on a more space-economical data structure. This last index requires furtherstudy in order to understand and optimize its behavior.� We also presented a number of minor tricks which however give impressive improvements onthe practical behavior of indices for approximate searching.As a whole, we believe that this thesis makes a valuable contribution to the �eld. First, theprobabilistic behavior of the problem is much better understood now, together with the expectedbehavior of on-line and indexed algorithms which depend on these probabilities. Second, we haveintroduced a number of strong and original algorithmic ideas which have not only been fruitfulfor us, but could be exploited in the future as well, by ourselves and by other researchers. Third,using these novel ideas and cleverly applying and combining old results and practical techniques,we have obtained new indexing and searching algorithms which are currently the fastest ones in awide spectrum of parameters of the problem, especially in the areas of typical text searching. Oneof the most basic lessons learned is that theory and practice must go together in order to achievethe best results, we need good ideas but also simplicity, we need good algorithms but also cleverimplementations, we need analytical results but also experiments.10.2 Future WorkA number of directions for future work have been mentioned along this thesis at the appropriatepoints. We collect them here, although we give more details when they are mentioned in theiroriginal context.� Despite that our analysis of approximate matching probability was precise enough for ourpurposes, a more exact (and still useful) analysis would be interesting.� We have studied in depth the range of parameters typical of text searching, but other caseswith applications to other areas such as small alphabets or very long patterns are interestingas well.� We believe that there could be still place for improvement on the techniques that try to skipcharacters in an approximate search. We have presented some new algorithms, and perhapsthere are others still waiting. 198

� For information retrieval, it is interesting to work more on extended patterns and regularexpressions combined with approximate searching. We believe that the full power of bit-parallelism has not yet been exploited.� Working on more complex distance functions is of interest. For instance, few works allowtranspositions, despite that they are extremely frequent as typing errors. Under the editdistance, two errors are necessary to simulate a transposition.� Improving the partitioning into exact search algorithm for natural language could yield inter-esting practical improvements. For instance, we still need to study more in depth the costfunction we minimize for splitting optimization.� It would be of theoretical interest to analytically or empirically study the growth of the DFAfor approximate searching, and of some practical interest to study its behavior with limitedmemory.� Improved techniques to handle multiple patterns are yet to be devised. With respect to ourtechniques, we still need to study better heuristics to group and align the subpatterns.� We can still optimize more our improved algorithms for word-retrieving indices, looking forbetter metric space data structures for the vocabulary search or performing a di�erent multi-pattern search per block with only the words that exist in that block.� It is interesting to join block addressing indices with compression techniques, which drasticallyreduce the space requirements and give improved search times.� Not allowing errors involving a separator is the weak point of word retrieving indices. We planto address this issue by implementing a partition into exact searching over a word retrievingindex.� Our index based on text substrings can be improved in many ways, the most immediate ofthem being to include hierarchical veri�cation. Other alternatives, such as partitioning inmore than k + 1 pieces or intersecting many di�erent splits, should be studied as well.� The idea of pattern partitioning on su�x tree indices seems very promising and deservesmore study to understand exactly how the process works and which is the best partitioningscheme. We plan to simulate this algorithm on a q-gram index to reduce space requirements.Hierarchical veri�cation should also be added here.10.3 Open QuestionsThere are some interesting aspects in the future of this problem as we foresee it. An important ques-tion is: will approximate string matching remain as an interesting problem? We positively believethat the answer is \yes", since most of its sources are not short-term situations. Signals transmittedby physical means will remain having transmission errors (especially if the air becomes a commonmedium, as the wireless communications gurus hope), and future work on speech recognition willdoubtlessly trigger more requirements on this area. DNA and protein analysis will keep being avery active area of research in the foreseeable future (and perhaps even more active than today).Although OCR softwares may improve in the future (we all hope so!), somebody will have to typethe texts for the �rst time (in paper or directly in electronic form), and that people will keep making199

typing and spelling errors (or alternatively text editing softwares will prevent the errors, in whichcase those softwares will become new applications for our problem). If we consider that more andmore people are getting access to electronic publishing (e.g. news, Web pages, etc.), then it is clearnot only that the text databases will keep growing and growing, but also that at least a large pro-portion of them will be heterogeneous, poorly organized and carelessly written. Searching allowingerrors will become the standard practice, and it will be more and more important to �nd the needlein the haystack of available text. The expected growth of automated linguistic tools to analyze textsemantics will probably be another area of application for approximate string matching.The other question is: is there room for new developments, or is this area closed with respect towhat can be done? With respect to on-line searching, it is our belief that it will be very di�cultto obtain better results. Bit-parallelism has been exploited to its limit, �ltering approaches workso little per text character that hardly could one do less without losing matches. We believe thatthere is still some room for improvements on techniques that skip characters, but that will not bea breakthrough. Another area which is still open is that of new distance functions, such as to allowtranspositions or even more complex distance functions, where many applications in computationalbiology are waiting. There is also little development for multipattern matching of hundreds ofpatterns, which will probably become an active area in the future, with applications to spelling andcomputational linguistics.There are some theoretical questions still open, such as which is the probability of an approximatematch, how does the matching probability behave on natural language or which is the worst-casecomplexity of this problem if the space is polynomial in m.Other more exotic areas we have not included in this thesis will probably be important in the future.Approximate searching on multidimensional text, for instance, could become a competitor of thecurrent image processing techniques for pattern recognition. Currently, this area needs not onlybetter algorithms, but also to account for rotations and scalings before we can say that it is ofreal use for subimage searching (there are separate developments for rotations, scaling and errors,but they have not been merged). Approximate string matching on compressed text will be anotherimportant area of development, if the tendency of joining textual databases and compression iscon�rmed. Although there are good solutions for a restricted problem (approximate word matchingon natural language text), the general problem is still open.With regard to indexed approximate string matching, we believe that it is going to be the starproblem of this area in the future, not only because indices are the only answer to handle the hugetexts that will become commonplace in future information retrieval applications, but also becauseof its di�culty. When words are matched to words, the problem is rather well solved already andwe only expect marginal improvements to the general technique in the future (although the problemof including separators must be solved). On the other hand, if we insist in the general problem,indices are very immature and �nding a major improvement would be a real breakthrough. Findinga good index for unrestricted approximate string matching is considered \El Dorado" of this area.Perhaps it exists, perhaps not. Who can tell? We are the explorers...
200

Bibliography[ABF96] A. Amir, G. Benson, and M. Farach. Let sleeping �les lie: pattern matching inz-compressed �les. J. of Computer and Systems Sciences, 52(2):299{307, 1996.[Abr87] K. Abrahamson. Generalized string matching. SIAM J. on Computing, 16:1039{1051,1987.[AC75] A. Aho and M. Corasick. E�cient string matching: an aid to bibliographic search.Comm. of the ACM, 18(6):333{340, June 1975.[ADKF75] V. Arlazarov, E. Dinic, M. Konrod, and I. Faradzev. On economic construction of thetransitive closure of a directed graph. Soviet Mathematics Doklady, 11:1209{1210,1975. Original in Russian in Doklady Akademi Nauk SSSR, v. 194, 1970.[AG85] A. Apostolico and Z. Galil. Combinatorial Algorithms on Words. Springer-Verlag,New York, 1985.[AG87] A. Apostolico and C. Guerra. The Longest Common Subsequence problem revisited.Algorithmica, 2:315{336, 1987.[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algo-rithms. Addison-Wesley, 1974.[ANZ97] M. Ara�ujo, G. Navarro, and N. Ziviani. Large text searching allowing errors. In Proc.WSP'97, pages 2{20. Carleton University Press, 1997.[ANZ98] M. Ara�ujo, G. Navarro, and N. Ziviani. Large text searching allowing errors. Journalversion of [ANZ97], in preparation, 1998.[Apo85] A. Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithmson Words, NATO ISI Series, pages 85{96. Springer-Verlag, 1985.[AS72] M. Abramowitz and I. Stegun, editors. Handbook of Mathematical Functions. DoverPublications, NY, 1972.[BBH+85] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. Chen, and J. Seiferas. Thesamllest automaton recognizing the subwords of a text. Theoretical Computer Science,40:31{55, 1985.[BCW90] T. Bell, J. Cleary, and I. Witten. Text Compression. Prentice Hall, New Jersey, 1990.[BK73] W. Burkhard and R. Keller. Some approaches to best-match �le searching. Comm.of the ACM, 16(4):230{236, 1973.201

[Bla60] C. Blair. A program for correcting spelling errors. Information and Control, 3:60{67,1960.[BM77] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Comm. of the ACM,20(10):762{772, 1977.[BMNM+93] T. Bell, A. Mo�at, C. Nevill-Manning, I. Witten, and J. Zobel. Data compressionin full-text retrieval systems. J. of the American Society for Information Science,44:508{531, 1993.[Bri95] S. Brin. Near neighbor search in large metric spaces. In Proc. VLDB'95, pages574{584. Morgan Kaufmann, 1995.[BSSU74] W. Beyer, M. Stein, T. Smith, and S. Ulam. A molecular sequence metric andevolutionary trees. Mathematical Biosciences, 19:9{25, 1974.[BY89] R. Baeza-Yates. E�cient Text Searching. PhD thesis, Dept. of Computer Science,Univ. of Waterloo, May 1989. Also as Research Report CS-89-17.[BY91] R. Baeza-Yates. Some new results on approximate string matching. In Workshop onData Structures, Dagstuhl, Germany, November 1991. (abstract).[BY92] R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World ComputerCongress, volume I, pages 465{476. Elsevier Science, September 1992.[BY96] R. Baeza-Yates. A uni�ed view of string matching algorithms. In SOFSEM'96:Theory and Practice of Informatics, number 1175 in LNCS, pages 1{15. Springer-Verlag, 1996. Invited paper.[BYCMW94] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proximity matching using �xed-queries trees. In Proc. CPM'94, number 807 in LNCS, pages 198{212. Springer-Verlag, 1994.[BYG90] R. Baeza-Yates and G. Gonnet. All-against-all sequence matching. Dept. of ComputerScience, University of Chile, 1990.[BYG92] R. Baeza-Yates and G. Gonnet. A new approach to text searching. Comm. of theACM, 35(10):74{82, October 1992. Preliminary version in SIGIR'89, 1989.[BYG94] R. Baeza-Yates and G. Gonnet. Fast string matching with mismatches. Informationand Computation, 108(2):187{199, 1994. Preliminary version as Tech. Report CS-88-36, Data Structuring Group, Univ. of Waterloo, Sept. 1988.[BYG96] R. Baeza-Yates and G. Gonnet. Fast text searching for regular expressions or au-tomaton searching on a trie. J. of the ACM, 43, 1996.[BYN96a] R. Baeza-Yates and G. Navarro. A fast heuristic for approximate string matching.In Proc. WSP'96, pages 47{63. Carleton University Press, 1996.[BYN96b] R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string matching.In Proc. CPM'96, number 1075 in LNCS, pages 1{23. Springer-Verlag, 1996.[BYN97a] R. Baeza-Yates and G. Navarro. Block-addressing indices for approximate text re-trieval. In Proc. ACM CIKM'97, pages 1{8. ACM Press, 1997.202

[BYN97b] R. Baeza-Yates and G. Navarro. Multiple approximate string matching. In Proc.WADS'97, number 1272 in LNCS, pages 174{184. Springer-Verlag, 1997.[BYN97c] R. Baeza-Yates and G. Navarro. A practical index for text retrieval allowing errors.In R. Monge, editor, Proc. of the XXIII Latin American Conference on Informatics(CLEI'97), pages 273{282, 1997.[BYN98a] R. Baeza-Yates and G. Navarro. Block-addressing indices for approximate textretrieval. Technical Report TR/DCC-98-11, Dept. of Computer Science, Univ.of Chile, 1998. Submitted. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-blkaddr.ps.gz.[BYN98b] R. Baeza-Yates and G. Navarro. Fast approximate string matching in a dictionary.In Proc. SPIRE'98, pages 14{22. IEEE Computer Press, 1998.[BYN98c] R. Baeza-Yates and G. Navarro. Fast two-dimensional approximate pattern matching.In Proc. LATIN'98, number 1380 in LNCS, pages 341{351. Springer-Verlag, 1998.[BYN98d] R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica,1998. To appear.[BYN98e] R. Baeza-Yates and G. Navarro. New and faster �lters for multiple approxi-mate string matching. Technical Report TR/DCC-98-10, Dept. of Computer Sci-ence, Univ. of Chile, 1998. Submitted. ftp://ftp.dcc.uchile.cl/pub/users/-gnavarro/multi.ps.gz.[BYNST97] R. Baeza-Yates, G. Navarro, E. Sutinen, and J. Tarhio. Indexing methods for approx-imate text retrieval. Technical Report TR/DCC-97-2, Dept. of CS, Univ. of Chile,March 1997. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/seqidx.ps.gz.[BYP96] R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern matching.Information Processing Letters, 59:21{27, 1996. Preliminary version in CPM'92,LNCS 644, 1992.[BYR90] R. Baeza-Yates and M. R�egnier. Fast algorithms for two dimensional and multiplepattern matching. In Proc. SWAT'90, number 447 in LNCS, pages 332{347. Springer-Verlag, 1990.[BYR98] R. Baeza-Yates and B. Ribeiro, editors. Modern Information Retrieval. Addison-Wesley, 1998. To appear.[CB96] M. Crovella and A. Bestavros. Self-similarity in World Wide Web tra�c: Evidenceand possible causes. In ACM Sigmetrics Conference on Measurement and Modelingof Computer Systems, pages 160{169. ACM Press, 1996.[CCG+94] A. Czumaj, M. Crochemore, L. Gasieniec, S. Jarominek, Thierry Lecroq,W. Plandowski, and W. Rytter. Speeding up two string-matching algorithms. Algo-rithmica, 12:247{267, 1994.[CH98] R. Cole and R. Hariharan. Approximate string matching: a simpler faster algorithm.In Proc. ACM-SIAM SODA'98, pages 463{472. SIAM Press, 1998.203

[CL92] W. Chang and J. Lampe. Theoretical and empirical comparisons of approximatestring matching algorithms. In Proc. CPM'92, number 644 in LNCS, pages 172{181.Springer-Verlag, 1992.[CL94] W. Chang and E. Lawler. Sublinear approximate string matching and biologicalapplications. Algorithmica, 12(4/5):327{344, Oct/Nov 1994. Preliminary version inFOCS'90, 1990.[CLR91] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press,1991.[CM94] W. Chang and T. Marr. Approximate string matching and local similarity. In Proc.CPM'94, number 807 in LNCS, pages 259{273. Springer-Verlag, 1994.[Cob95] A. Cobbs. Fast approximate matching using su�x trees. In Proc. CPM'95, pages41{54, 1995.[CR94] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, Oxford,UK, 1994.[Cro86] M. Crochemore. Transducers and repetitions. Theoretical Computer Science, 45:63{86, 1986.[CW79] B. Commentz-Walter. A string matching algorithm fast on the average. In Proc.ICALP'79, number 6 in LNCS, pages 118{132. Springer-Verlag, 1979.[Dam64] F. Damerau. A technique for computer detection and correction of spelling errors.Comm. of the ACM, 7(3):171{176, 1964.[DFG+97] G. Das, R. Fleisher, L. Gasieniek, D. Gunopulos, and J. K�ark�ainen. Episode match-ing. In Proc. CPM'97, number 1264 in LNCS, pages 12{27. Springer-Verlag, 1997.[DM79] R. Dixon and T. Martin, editors. Automatic speech and speaker recognition. IEEEPress, 1979.[FBY92] W. Frakes and R. Baeza-Yates, editors. Information Retrieval: Data Structures andAlgorithms. Prentice-Hall, 1992.[FL95] C. Faloutsos and K. Lin. Fastmap: a fast algorithm for indexing, data miningand visualization of traditional and multimedia datasets. ACM SIGMOD Record,24(2):163{174, 1995.[FP74] M. Fisher and M. Paterson. String matching and other products. Complexity ofComputation - SIAM AMS Proc., 7:113{125, 1974.[GBY91] G. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Structures.Addison-Wesley, 2nd edition, 1991.[GG88] Z. Galil and R. Giancarlo. Data structures and algorithms for approximate stringmatching. J. of Complexity, 4:33{72, 1988.[GK82] W. Goad and M. Kanehisa. Pattern recognition in nucleic acid sequences. I - Ageneral method for �nding local homologies and symmetries. Nucleic Acid Research,10(1):247{263, 1982. 204

[GKHO97] R. Giegerich, S. Kurtz, F. Hischke, and E. Ohlebusch. A general technique to improve�lter algorithms for approximate string matching. In Proc. WSP'97, pages 38{52.Carleton University Press, 1997. Preliminary version as Technical Report 96-01,Universit�at Bielefeld, Germany, 1996.[GL89] R. Grossi and F. Luccio. Simple and e�cient string matching with k mismatches.Information Processing Letters, 33(3):113{120, November 1989.[Gon92] G. Gonnet. A tutorial introduction to Computational Biochemistry using Darwin.Technical report, Informatik E.T.H., Zuerich, Switzerland, 1992.[GP90] Z. Galil and K. Park. An improved algorithm for approximate string matching. SIAMJ. on Computing, 19(6):989{999, 1990. Preliminary version in ICALP'89, LNCS 372,1989.[GPY94] D. Greene, M. Parnas, and F. Yao. Multi-index hashing for information retrieval. InProc. FOCS'94, pages 722{731. IEEE Press, 1994.[Han93] C. Hancart. On Simon's string searching algorithm. Information Processing Letters,47:95{99, 1993.[Har95] D. Harman. Overview of the Third Text REtrieval Conference. In Proc. Third TextREtrieval Conference (TREC-3), pages 1{19, 1995. NIST Special Publication 500-207.[HD80] P. Hall and G. Dowling. Approximate string matching. ACM Computing Surveys,12(4):381{402, 1980.[Hea78] J. Heaps. Information Retrieval - Computational and Theoretical Aspects. AcademicPress, NY, 1978.[Hor80] R. N. Horspool. Practical fast searching in strings. Software Practice and Experience,10:501{506, 1980.[HS94] N. Holsti and E. Sutinen. Approximate string matching using q-gram places. In Proc.7th Finnish Symposium on Computer Science, pages 23{32. University of Joensuu,1994.[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Com-putation. Addison-Wesley, 1979.[JTU96] P. Jokinen, J. Tarhio, and E. Ukkonen. A comparison of approximate string matchingalgorithms. Software Practice and Experience, 26(12):1439{1458, 1996. Preliminaryversion in Technical Report A-1991-7, Dept. of Computer Science, Univ. of Helsinki,1991.[JU91] P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching instatic texts. In Proc. MFCS'91, volume 16, pages 240{248. Springer-Verlag, 1991.[KG82] M. Kanehisa and W. Goad. Pattern recognition in nucleic acid sequences. II - An ef-�cient method for �nding locally stable secondary structures. Nucleic Acid Research,10(1):265{277, 1982. 205

[KMP77] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings.SIAM J. on Computing, 6(1):323{350, 1977.[Knu73] D. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.Addison-Wesley, 1973.[KR87] R. Karp and M. Rabin. E�cient randomized pattern-matching algorithms. IBM J.Research and Development, 31(2):249{260, March 1987.[KS95] J. Kececioglu and D. Sanko�. Exact and approximation algorithms for the inversiondistance between two permutations. Algorithmica, 13:180{210, 1995.[KS96] J. K�arkk�ainen and E. Sutinen. Lempel-Ziv index for q-grams. In Proc. ESA'96,number 1136 in LNCS, pages 378{391. Springer-Verlag, 1996.[KU96] J. K�arkk�ainen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index struc-tures for string matching. In Proc. WSP'96, pages 141{155. Carleton UniversityPress, 1996.[Kur96] S. Kurtz. Approximate string searching under weighted edit distance. In Proc.WSP'96, pages 156{170. Carleton University Press, 1996.[Lev65] V. Levenshtein. Binary codes capable of correcting spurious insertions and deletionsof ones. Problems of Information Transmission, 1:8{17, 1965.[Lev66] V. Levenshtein. Binary codes capable of correcting deletions, insertions and rever-sals. Soviet Physics Doklady, 10(8):707{710, 1966. Original in Russian in DokladyAkademii Nauk SSSR, 163(4):845{848, 1965.[LMS98] G. Landau, E. Myers, and J. Schmidt. Incremental string comparison. SIAM J. onComputing, 27(3):557{582, 1998.[LS97] T. Luczak and W. Szpankowski. A suboptimal lossy data compression based onapproximate pattern matching. IEEE Trans. on Information Theory, 43:1439{1451,1997.[LST96] O. Lehtinen, E. Sutinen, and J. Tarhio. Experiments on block indexing. In Proc.WSP'96, pages 183{193. Carleton University Press, 1996.[LV88] G. Landau and U. Vishkin. Fast string matching with k di�erences. J. of Computerand Systems Science, 37:63{78, 1988. Preliminary version in FOCS'85, 1985.[LV89] G. Landau and U. Vishkin. Fast parallel and serial approximate string matching. J.of Algorithms, 10:157{169, 1989. Preliminary version in ACM STOC'86, 1986.[LW75] R. Lowrance and R. Wagner. An extension of the string-to-string correction problem.J. of the ACM, 22:177{183, 1975.[Man52] B. Mandelbrot. An informational theory of the statistical structure of language. InProc. Symposium on Applications of Communication Theory, pages 486{500, 1952.[Mas27] H. Masters. A study of spelling errors. Univ. of Iowa Studies in Education, 4(4),1927. 206

[McC76] E. McCreight. A space-economical su�x tree construction algorithm. J. of the ACM,23(2):262{272, Apr 1976.[Mel96] B. Melichar. String matching with k di�erences by �nite automata. In Proc. ICPR'96,pages 256{260. IEEE CS Press, 1996. Preliminary version in Computer Analysis ofImages and Patterns, LNCS 970, 1995.[MM89] G. Myers and W. Miller. Approximate matching of regular expressions. Bull. Math.Bio., 51:5{37, 1989.[MM90] U. Manber and G. Myers. Su�x arrays: a new method for on-line string searches.In Proc. ACM-SIAM SODA'90, pages 319{327. SIAM Press, 1990.[MM96] R. Muth and U. Manber. Approximate multiple string search. In Proc. CPM'96,number 1075 in LNCS, pages 75{86. Springer-Verlag, 1996.[MNF57] G. Miller, E. Newman, and E. Friedman. Some e�ects of intermittent silence. Amer-ican J. of Psychology, 70:311{312, 1957.[MNF58] G. Miller, E. Newman, and E. Friedman. Length-frequency statistics for writtenEnglish. Information and Control, 1:370{380, 1958.[MNZBY98a] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Direct pattern matching oncompressed text. In Proc. of the 5th South American Symposium on String Processingand Information Retrieval (SPIRE'98), pages 90{95. IEEE CS Press, 1998. ftp://-ftp.dcc.uchile.cl/pub/users/gnavarro/spire98.3.ps.gz.[MNZBY98b] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast searching on compressedtext allowing errors. In B. Croft, A. Mo�at, C. Rijsbergen, R. Wilkinson, and J. Zobel,editors, Proc. SIGIR'98, pages 298{306. York Press, 1998.[Mor68] D. Morrison. PATRICIA { Practical Algorithm To Retrieve Information Coded InAlphanumeric. J. of the ACM, 15(4):514{534, October 1968.[MP80] W. Masek and M. Paterson. A faster algorithm for computing string edit distances.J. of Computer and System Sciences, 20:18{31, 1980.[MW94] U. Manber and S. Wu. glimpse: A tool to search through entire �le systems. InProc. USENIX Technical Conference, pages 23{32. USENIX Association, Berkeley,CA, USA, Winter 1994. Preliminary version as Technical Report 93-34, Dept. ofComputer Science, Univ. of Arizona, Oct. 1993.[Mye86a] G. Myers. Incremental alignment algorithms and their applications. Technical Report86{22, Dept. of Computer Science, Univ. of Arizona, 1986.[Mye86b] G. Myers. An O(ND) di�erence algorithm and its variants. Algorithmica, 1:251{266,1986.[Mye94] E. Myers. A sublinear algorithm for approximate keyword searching. Algorithmica,12(4/5):345{374, Oct/Nov 1994. Perliminary version in Technical Report TR90-25,Computer Science Dept., Univ. of Arizona, Sept. 1991.207

[Mye98] G. Myers. A fast bit-vector algorithm for approximate pattern matching based on dy-namic progamming. In Proc. CPM'98, number 1448 in LNCS, pages 1{13. Springer-Verlag, 1998.[Nav97a] G. Navarro. Multiple approximate string matching by counting. In Proc. WSP'97,pages 125{139. Carleton University Press, 1997.[Nav97b] G. Navarro. A partial deterministic automaton for approximate string matching. InProc. WSP'97, pages 112{124. Carleton University Press, 1997.[Nav98a] G. Navarro. Improved approximate pattern matching on hypertext. In Proc.LATIN'98, number 1380 in LNCS, pages 351{357. Springer-Verlag, 1998.[Nav98b] G. Navarro. Improved approximate pattern matching on hypertext. Technical ReportTR/DCC-98-8, Dept. of Computer Science, Univ. of Chile, 1998. Submitted. ftp://-ftp.dcc.uchile.cl/pub/users/gnavarro/hyper.ps.gz.[NBY98a] G. Navarro and R. Baeza-Yates. Fast multi-dimensional approximate patternmatching. Technical Report TR/DCC-98-7, Dept. of Computer Science, Univ.of Chile, 1998. Submitted. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-multidim.ps.gz.[NBY98b] G. Navarro and R. Baeza-Yates. Improving an algorithm for approximate pat-tern matching. Technical Report TR/DCC-98-5, Dept. of Computer Science, Univ.of Chile, 1998. Submitted. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-dexp.ps.gz.[NBY98c] G. Navarro and R. Baeza-Yates. A practical index for text retrieval allowing errors.Technical Report TR/DCC-98-9, Dept. of CS, Univ. of Chile, 1998. Submitted.ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/practidx.ps.gz.[NBY98d] G. Navarro and R. Baeza-Yates. Very fast and simple approximate string matching.Technical Report TR/DCC-98-6, Dept. of Computer Science, Univ. of Chile, 1998.Submitted. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/hpexact.ps.gz.[Nes86] J. Nesbit. The accuracy of approximate string matching algorithms. J. of Computer-Based Instruction, 13(3):80{83, 1986.[NR98a] G. Navarro and M. Ra�not. A bit-parallel approach to su�x automata: Fast ex-tended string matching. In Proc. CPM'98, number 1448 in LNCS, pages 14{33.Springer-Verlag, 1998.[NR98b] G. Navarro and M. Ra�not. Fast and exible string matching by combining bit-parallelism and su�x automata. Technical Report TR/DCC-98-4, Dept. of ComputerScience, Univ. of Chile, 1998. Submitted. ftp://ftp.dcc.uchile.cl/pub/users/-gnavarro/bndm2.ps.gz.[NR98c] G. Navarro and M. Ra�not. A general practical approach to pattern matching overZiv-Lempel compressed text. Technical Report TR/DCC-98-12, Dept. of ComputerScience, Univ. of Chile, 1998. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/-lzsrch.ps.gz. 208

[NW70] S. Needleman and C. Wunsch. A general method applicable to the search for similari-ties in the amino acid sequences of two proteins. J. of Molecular Biology, 48:444{453,1970.[OM88] O. Owolabi and R. McGregor. Fast approximate string matching. Software Practiceand Experience, 18(4):387{393, 1988.[PW95] P. Pevzner and M. Waterman. Open combinatorial problems in computational mole-cular biology. In Proc. 3rd Israel Symposium on Theory of Computing and Systems,pages 158{163. IEEE Press, 1995.[Rib97] V. Ribeiro. Personal communication. 1997.[Riv76] R. Rivest. Partial-match retrieval algorithms. SIAM J. on Computing, 5(1), 1976.[RS97] M. R�egnier and W. Szpankowski. On the approximate pattern occurrence in a text.In Proc. Compression and Complexity of SEQUENCES'97. IEEE Press, 1997.[San72] D. Sanko�. Matching sequences under deletion/insertion constraints. In Proc. of theNational Academy of Sciences of the USA, volume 69, pages 4{6, 1972.[Sel80] P. Sellers. The theory and computation of evolutionary distances: pattern recogni-tion. J. of Algorithms, 1:359{373, 1980.[SF96] R. Sedgewick and P. Flajolet. Analysis of Algorithms. Addison-Wesley, 1996.[Sha77] M. Shapiro. The choice of reference points in best-match �le searching. Comm. ofthe ACM, 20(5):339{343, 1977.[Shi96] F. Shi. Fast approximate string matching with q-blocks sequences. In Proc. WSP'96,pages 257{271. Carleton University Press, 1996.[Sim94] I. Simon. String matching algorithms and automata. In Results and Trends inTheoretical Computer Science, number 814 in LNCS, pages 386{395. Springer-Verlag,1994.[SK83] D. Sanko� and J. Kruskal, editors. Time Warps, String Edits, and Macromolecules:The Theory and Practice of Sequence Comparison. Addison-Wesley, 1983.[SM96] H. Shang and T. Merrettal. Tries for approximate string matching. IEEE Transac-tions on Knowledge and Data Engineering, 8(4), August 1996.[ST95] E. Sutinen and J. Tarhio. On using q-gram locations in approximate string matching.In Proc. ESA'95, number 979 in LNCS, pages 327{340. Springer-Verlag, 1995.[ST96] E. Sutinen and J. Tarhio. Filtration with q-samples in approximate string matching.In Proc. CPM'96, number 1075 in LNCS, pages 50{61. Springer-Verlag, 1996.[Sun90] D. Sunday. A very fast substring search algorithm. Comm. of the ACM, 33(8):132{142, August 1990.[SV97] S. Sahinalp and U. Vishkin. Approximate pattern matching using locally consis-tent parsing. Manuscript, University of Maryland Institute for Advanced ComputerStudies (UMIACS), 1997. 209

[Tak94] T. Takaoka. Approximate pattern matching with samples. In Proc. ISAAC'94, num-ber 834 in LNCS, pages 234{242. Springer-Verlag, 1994.[TU93] J. Tarhio and E. Ukkonen. Approximate Boyer-Moore string matching. SIAM J. onComputing, 22(2):243{260, 1993. Preliminary version in SWAT'90, LNCS 447, 1990.[Uhl91] J. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Infor-mation Processing Letters, 40:175{179, 1991.[Ukk85a] E. Ukkonen. Algorithms for approximate string matching. Information and Control,64:100{118, 1985. Preliminary version in Proc. Int. Conf. Found. Comp. Theory,LNCS 158, 1983.[Ukk85b] E. Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132{137,1985.[Ukk92] E. Ukkonen. Approximate string matching with q-grams and maximal matches.Theoretical Computer Science, 1:191{211, 1992.[Ukk93] E. Ukkonen. Approximate string matching over su�x trees. In Proc. CPM'93, pages228{242, 1993.[Ukk95] E. Ukkonen. Constructing su�x trees on-line in linear time. Algorithmica, 14(3):249{260, Sep 1995.[Ull77] J. Ullman. A binary n-gram technique for automatic correction of substitution,deletion, insertion and reversal errors in words. The Computer Journal, 10:141{147,1977.[UW93] E. Ukkonen and D. Wood. Approximate string matching with su�x automata. Al-gorithmica, 10:353{364, 1993. Preliminary version in Report A-1990-4, Dept. ofComputer Science, Univ. of Helsinki, April 1990.[Vid86] E. Vidal. An algorithm for �nding nearest neighbours in (approximately) constantaverage time. Pattern Recognition Letters, 4:145{157, 1986.[Vin68] T. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4:52{58,1968.[Wat95] M. Waterman. Introduction to Computational Biology. Chapman and Hall, 1995.[Wat96] B. Watson. The performance of single and multiple keyword pattern matching algo-rithms. In Proc. WSP'96, pages 280{294. Carleton University Press, 1996.[WB74] R. Wagner and T. Brown. Order-n swap-extended correction of regular languages.Technical report, Systems & Information Science Program, Vanderbilt University,1974.[Wei73] P. Weiner. Linear pattern matching algorithms. In Proc. IEEE Symp. on Switchingand Automata Theory, pages 1{11. IEEE Press, 1973.[WF74] R. Wagner and M. Fisher. The string to string correction problem. J. of the ACM,21:168{178, 1974. 210

[WL83] W. Wilbur and D. Lipman. Rapid similarity searches in nucleic acid and protein databanks. In Proc. of the National Academy of Sciences of the USA, volume 80, pages726{730, 1983.[WM92a] S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM,35(10):83{91, October 1992.[WM92b] S. Wu and U. Manber. Agrep { a fast approximate pattern-matching tool. In Proc.USENIX Technical Conference, pages 153{162, Berkeley, CA, USA, Winter 1992.USENIX Association.[WMB94] I. Witten, A. Mo�at, and T. Bell. Managing Gigabytes. Van Nostrand Reinhold,New York, 1994.[WMM95] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate regularexpression matching. J. of Algorithms, 19(3):346{360, 1995. Submitted in 1992.[WMM96] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate lim-ited expression matching. Algorithmica, 15(1):50{67, 1996. Preliminary version asTechnical Report TR29-36, Computer Science Dept., Univ. of Arizona, 1992.[Wri94] A. Wright. Approximate string matching using within-word parallelism. SoftwarePractice and Experience, 24(4):337{362, April 1994.[WS78] R. Wagner and J. Seiferas. Correcting counter-automaton-recognizable languages.SIAM J. on Computing, 7:357{375, 1978.[Yao79] A. Yao. The complexity of pattern matching for a random string. SIAM J. onComputing, 8:368{387, 1979.[Yia93] P. Yianilos. Data structures and algorithms for nearest neighbor search in generalmetric spaces. In Proc. ACM-SIAM SODA'93, pages 311{321. SIAM Press, 1993.[Zip49] G. Zipf. Human Behaviour and the Principle of Least E�ort. Addison-Wesley, 1949.
211

