
A General Pratical Approach to Pattern Matchingover Ziv-Lempel Compressed TextGonzalo Navarro� Mathieu Ra�notyAbstractWe address in this paper the problem of string matching on Lempel-Ziv compressed text.The goal is to search a pattern in a text without uncompressing. This is a highly relevant issue,since it is essential to have compressed text databases where e�cient searching is still possible.We develop a general technique for string matching when the text comes as a sequence of blocks.This abstracts the essential features of Lempel-Ziv compression. We then apply the scheme toeach particular type of compression. We present the �rst algorithm to �nd all the matches ofa pattern in a text compressed using LZ77. When we apply our scheme to LZ78, we obtaina much more e�cient search algorithm, which is faster than uncompressing the text and thensearching on it. Finally, we propose a new hybrid compression scheme which is between LZ77and LZ78, being in practice as good to compress as LZ77 and as fast to search in as LZ78. Weshow also how to search some extended patterns on Lempel-Ziv compressed text, such as classesof characters and approximate string matching.1 IntroductionString matching is one of the most pervasive problems in computer science, with applications invirtually every area. It is also one of the oldest and richest area of development. The stringmatching problem is: given a pattern P = p1:::pm and a text T = t1:::tu, both sequences of symbolsover a �nite alphabet � of size �, �nd all the occurrences of P in T . There are many algorithmsto solve this problem, from classical to very recent [18, 8, 4, 14, 26, 9, 25]. The complexity of thisproblem is O(u) in the worst case and O(u log(m)=m) on average, where u = jT j and m = jP j, andthere exist variants of [8, 9] which achieve this complexity. In practice, however, [26, 25] are thefastest algorithms in most cases.Another old and rich area in computer science is text compression. Its aim is to exploit theredundancies of the text to reduce its space usage. There are many di�erent compression schemes,among which the Ziv-Lempel family [31, 32] is one of the best in practice because of their good com-pression ratios combined with e�cient compression and decompression times. Other compressionschemes are Hu�man coding [15] and arithmetic coding [28], among others.Today's textual databases are an excellent example of applications where both problems arecrucial: the texts should be kept compressed to save space and I/O time, and they should bee�ciently searched. Surprisingly, these two combined requirements are not easy to achieve together,as the only solution before the 90's was to process queries by uncompressing the texts and thensearching into them.�Dept. of Computer Science, University of Chile. Blanco Encalada 2120, Santiago, Chile.gnavarro@dcc.uchile.clyInstitut Gaspard Monge, Cit�e Descartes, Champs-sur-Marne, 77454 Marne-la-Vall�ee Cedex 2, France.raffinot@monge.univ-mlv.fr 1

The compressed matching problem was �rst de�ned in the work of Amir and Benson [1] as thetask of performing string matching in a compressed text without decompressing it. Giving a textT , a corresponding compressed string Z = z1 : : : zn, and a pattern P , the compressed matchingproblem consists in �nding all occurrences of P in T , using only P and Z. A naive algorithm, which�rst decompresses the string Z and then performs standard string matching, takes time O(u+m).An optimal algorithm takes worst-case time O(n+m), where n = jZj. In [2], a new criterion, calledextra space, for evaluating compressed matching algorithms, was introduced. According to the extraspace criterion, algorithms should use at most O(n) extra space, optimally O(m) in addition to then-length compressed �le.We de�ne now a variation, where we are required to report all the text positions which matchthe pattern. That is, given P and Z, report all the jxj such that T = xPy. The optimal algorithmfor this problem takes O(n + R) time, where R is the number of matches (we disregard patternpreprocessing costs).Two di�erent approaches have emerged in the last years to combine compression and searchingin textual databases. A �rst one is strongly oriented to natural language texts, which are assumedto be composed of words which follow some statistical rules. The basic idea is to compress thetext using Hu�man, where the words instead of the characters are taken as the symbols [7, 21]. AsHu�man assigns a �xed code to each symbol, searching a given string is a matter of compressingit and searching it in the compressed text using a classical string matching algorithm with minormodi�cations [23, 22]. Despite its simplicity, this approach is very e�ective on natural languagetext, with better compression ratios than those of the Ziv-Lempel family, and search times whichare between 2 and 8 times faster than the fastest algorithms for standard string matching over theuncompressed text. They are also able to search for complex patterns (such as regular expressions)and allow errors in the search, provided that words are matched against words. A weakness of thisscheme is that it does not work well on small texts (say, less than 10 Mb), since in that case thevocabulary is almost as big as the text itself.Another practical approach is an ad-hoc technique [19], which however is not so fast, obtainscompression ratios of near 70% (against 30% to 40% of Ziv-Lempel algorithms) and relies on theASCII encoding.The second line of research considers Ziv-Lempel compression, which is based on �nding repe-titions in the text and replacing them with references to similar strings previously appeared. LZ77is able to reference any substring of the text already processed, while LZ78 references only a singleprevious reference plus a new letter that is added. In both cases, the referenced text is to be foundis normally limited by a window which precedes the current text position.String matching in Ziv-Lempel compressed texts is much more complex, since the pattern canappear in di�erent forms across the compressed text. In [2] a compressed matching algorithm forLZ78 is presented, which works in timeO(n+m2) and space O(n+m2). For LZ77, the only result is[11], which is a randomized algorithm to determine in time O(n log2(u=n) +m) whether a patternis present or not in an LZ77-compressed text, but they do not �nd all the pattern occurrences.Other algorithms for di�erent speci�c search problems have been presented in [13, 17]. This secondbranch is rather theoretical and, to the best of our knowledge, no actual implementations havebeen developed.In this paper we aim at e�cient algorithms for string matching on Ziv-Lempel compressed texts.2

We present new theoretical developments but also give practical implementations and experimentson our algorithms. The main results of this work are� We develop a general technique for string matching on a text which is given as a sequence ofblocks. This abstracts the essential features of Ziv-Lempel compressed texts and is the basisfor the algorithms which run over speci�c members of the family.� We apply our technique for LZ77-compressed texts. The result is the �rst algorithm tosearch under this compression scheme (recall that [11] cannot �nd all the occurrences of thepattern). The algorithm, however, is O(u) time at best. In practice, the algorithm is slowerthan uncompressing the text and searching it with a classical algorithm.� We apply the technique to the LZ78 compression scheme. The result is an algorithm whichturns out to be a practical implementation of the theoretical proposal of [2]. This algorithm isO(n+R) time in the worst and average case, and is in practice twice as fast as decompressingand searching.� We propose a hybrid compression scheme which is between LZ77 and LZ78, which keeps someof the good features of LZ77 and which can be searched in O(min(u; n logm) + R) time onaverage (and O(min(u;mn) + R) in the worst case). In practice, the compression e�ciencyis similar to LZ77 and the search time is similar to LZ78.� We show how to search some extended patterns in a sequence of blocks, such as how to allowclasses of characters or approximate string matching, the last one being an open problemadvocated in [2].Our approach is oriented to practical text searching and relies on bit-parallelism. Bit-parallelismis a general technique to take advantage of the fact that the computer operates in parallel over allthe bits of the machine word, so that if a process is so simple that it can be expressed with bitoperations we can perform many of those steps in a single operation of the processor. If we callw the length in bits of the machine word (typically 32 or 64), then the possible speedups are upto O(w). The complexity results presented assume that m = O(w), otherwise we have to multiplythe u and n of our complexities by m=w.2 String Matching on BlocksWe describe in this section a general technique to perform exact and approximate string matchingwhen the text is presented as a sequence of atomic strings (here called \blocks") instead of asequence of characters. This technique is the basis for all the di�erent searching algorithms onLempel-Ziv compressed text, which are described in the next sections.Our general assumption is that the blocks either have just one letter (and we can know whichis that letter) or are formed by a concatenation of previously seen blocks. We describe an onlinealgorithm where we process the text block by block. At any moment of the search we denote T 0the text already processed (and its length in characters is jT 0j). When we �nish the search, T 0 = T ,i.e. the original text. 3

The method works as follows. We process the blocks one by one. For each new block B, wecompute a description for B which has all the information of the block which is relevant for thesearch. This description is denoted D(B) = (L;O; S; P;M), where� L = jBj, that is, the length of B in characters� O = O�s(B) = the length in characters of the text we had processed when B appeared� S = Su�(B) = all the pattern positions1 which either start a complete occurrence of B insidethe pattern, or start a proper pattern su�x which matches with a pre�x of B. Formally,Su�(B) = fjxj; P = xByg [fjxj; jxj > 0 ^ jzj > 0 ^ P = xz ^ B = zy g� P = Pref(B) = all the pattern positions which either follow a complete occurrence of B insidethe pattern, or follow a proper pattern pre�x which matches with a su�x of B. Formally,Pref(B) = fjxBj; P = xBy ^ jyj > 0g [fjzj; jzj > 0 ^ jyj > 0 ^ P = zy ^ B = xz g� M = Matches(B) = all the block positions where the pattern occurs (; if jBj < jP j). Formally,Matches(B) = fjxj; B = xPygFigure 1 illustrates these concepts.
������
������
������

������
������
������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

S

P ������
������
������

������
������
������

����
����
����
���������

�����
�����
���������
����
����
��������

����
����
��������

����
����
��������

����
����
��������

����
����
����

S S S S

P PFigure 1: Pre�xes (P) and su�xes (S) for a long and a short block. The pattern has the diagonaltiling and the possible blocks have a bar tiling. The su�xes (dotted lines) and pre�xes (dashedlines) are pattern positions. Pre�xes are marked after the position where they �nish, su�xes aremarked at the position they start.The description D(B) of a new block B is obtained in two forms: (a) the block is an explicitletter and then we obtain the description directly, or (b) the block is a concatenation of other blockspreviously known, and we obtain its description by operating on the descriptions of the previousblocks.Once the description of the new block is computed, we use that description to update the stateof the search. This concludes the processing of the block and we move to the next one. The state ofthe search contains the matches that have already occurred and the potential matches in progress,that is,1To simplify the notation, we number pattern positions starting at zero.4

� Res(T 0) = the text positions that matched up to now, formallyRes(T 0) = fjxj; T 0 = xPyg� Active(T 0) = the set of positions following the pattern pre�xes which match a su�x of thecurrent text. Formally,Active(T 0) = fjxj; jxj > 0 ^ jyj > 0 ^ P = xy ^ T 0 = zxgHence, when we complete the text processing and T 0 is not a text pre�x anymore but the wholetext, Res(T) is our answer. The initial state of the search is Res(�) = Active(�) = ;, and T 0 = �.We have de�ned already the information we keep, and consider now how to compute thatinformation. For the formulas that follow, we de�ne some auxiliary functions, namely� Lefti, which receives a set of Su�() positions not smaller than i, subtracts i to all them andthen adds new pattern positions �lling the hole left by the shift. Formally,Lefti(X) = fx� i; x 2 Xg [fm� i;m� i+ 1; :::; m� 1g� Righti, which does the same for Pref() positions, in the other direction. Formally,Righti(X) = fx+ i; x 2 Xg [f1; 2; :::; ig� Addi(X) = fi+ x; x 2 Xg, which adds i to all the elements of the set.� Subtri(X) = fi� x; x 2 Xg, which subtracts all the elements of the set from i.2.1 Description of a LetterThe base case of our scheme is to obtain the description of a block which is a letter a. We have� jBj = 1� O�s(B) = jT 0j� Su�(B) = fjxj; P = xayg� Pref(B) = fjxaj; P = xay ^ jyj > 0g� Matches(B) = if P = a then f0g else ;which is a direct application of the general formulas.5

2.2 Concatenating Two BlocksAssume that our block B is de�ned as the concatenation of one or more previous blocks. If onlyone previous block B0 is referenced, we just copy its de�nition. We show now how to concatenatetwo blocks, since the case of more than two blocks is a simple iteration over this procedure. Weare given two blocks B1 and B2, and we have to obtain the description for their concatenationD(B) = D(B1B2) = D(B1) �D(B2) (where we de�ne � as the concatenation of block descriptions).The formulas are as follows� jBj = jB1j+ jB2j� O�s(B) = jT 0j� Su�(B) = Su�(B1) \ LeftjB1j(Su�(B2))� Pref(B) = Pref(B2) \ RightjB2j(Pref(B1))� Matches(B) = Matches(B1) [AddjB1j(Matches(B2))[(SubtrjB1j(Pref(B1) \ Su�(B2)) \ f0; 1; 2; :::; jBj �mg)We explain now the rationale for the formulas (see Figure 2). The �rst two are immediate. Weexplain Su�(B). If the number i belongs to Su�(B1B2) then either� i � m�jB1j, that is, a pre�x of B1B2 is a su�x of P . Notice that in this case also a pre�x ofB1 is a su�x of P . Since LeftjB1j will add all these positions, they will appear in the resultif and only if they are present in Su�(B1), which is correct.� i < m�jB1j, that is, B1 appears inside P and is immediately followed by an occurrence of B2(which can be a complete occurrence or share a pre�x with the pattern su�x). If we subtractjB1j to the elements in Su�(B2), then we are interested in the positions which also appear inSu�(B1) (which since i < m� jB1j can only correspond to complete occurrences of B1).
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������

���������������
���������������
���������������
���������������

��������������
��������������
��������������
��������������

���������������
���������������
���������������
���������������

��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

���������������
���������������
���������������
���������������

P S S S

B1 B2

B1 B2

B1 B2Figure 2: Su�xes of the concatenation of two blocks. It is possible that the result involves only B1(rightmost pair) or that it involves both. In this case B1 is completely inside the pattern and B2may or may not be totally inside (leftmost and middle pairs, respectively).The rationale for Pref() is analogous to Su�(). For Matches(B), there are three parts. The �rstone is the matches which are inside B1, and the second one is the same for B2 (displaced since6

now B2 comes after B1 in B). The third one accounts for matches that appear only when B1 andB2 are concatenated. If a pre�x of the pattern is at the end of B1, and the corresponding su�x isat the beginning of B2, then we have the pattern in B1B2. The Subtr converts pattern to blockpositions and the �nal set which is intersected with the results ensures that we have really pre�xesand su�xes instead of substrings of the blocks.2.3 Updating the Search StateWe want now to update the state of our search by processing a new block B whose description hasjust been computed. The formulas to obtain the new Res(T 0B) and Active(T 0B) values from theold Res(T 0) and Active(T 0) ones are� Active(T 0B) = RightjBj(Active(T 0)) \ Pref(B)� Res(T 0B) = Res(T 0) [AddjT 0j(Matches(B))[SubtrjT 0j(Active(T 0) \ Su�(B) \ fm� jBj; m� jBj+ 1; :::; m� 1g)The new Active(T 0B) value considers that, since a new block B has been added to T 0, thepattern pre�xes that are su�xes of T 0B are those that are already su�xes of B (i.e. Pref(B)), orthose which are su�xes of T 0 and are followed by B in the pattern. As before, Right does the trickof considering both cases in a single formula.The new value Res(T 0B) adds to Res(T 0) not only the matches which are completely insideB, but also those which appear when T 0 is concatenated to B. For this sake, we consider patternpre�xes which are su�xes of T 0 (i.e. Active(T 0)), and which are followed by the correspondingpattern su�x in B. The �nal intersection ensures that the complete pattern has appeared. Figure 3illustrates.
������
������
������

������
������
������

������
������
������

������
������
������

�������
�������
�������
�������

�����������
�����������
�����������

�����������
�����������
�����������

P

B

P

P

PP

T’

������
������
������

������
������
������

������
������
������

������
������
������

������������������
������������������
������������������
������������������

�����������
�����������
�����������

�����������
�����������
�����������

P S

B

P P

T’Figure 3: Updating the state of the search. In the �rst case we illustrate the updating of Active(T 0)(a short block is added). In the second case we show how the matches are updated (when a longblock is added). In general both updates are necessary.2.4 Extended PatternsWe show now how to handle some extended patterns in this paradigm. A �rst alternative, which iseasily implemented using bit-parallelism (see next section) is to allow classes of characters, i.e. thepattern at position i matches not just one letter but a set of letters. The pattern can then be seenas a sequence of sets of characters P = c1 : : : cm, ci � �. This is easily implemented by modifyingour equations for a single letter a, so that instead of P = xay we require P = xAy ^ a 2 A.7

Approximate searching can also be performed in this scenario. In this case we allow that thepattern does not match exactly but up to k errors. An alternative de�nition is that we want all thetext segments t such that dist(t; P) � k, where dist(a; b) gives the minimum number of operations(errors) to perform on P or t to transform one into the other. There are many choices to de�newhat is an error, but the most commonly used are: allow substitutions (Hamming distance) orallow substitutions, insertions, and deletions (Levenshtein distance). If we want to search all thepattern occurrences with up to 0 < k < m substitution errors, we keep for each block and eachi 2 0::k a description Di(B). It represents all the block information when the matches are allowedto contain up to i errors. There is a di�erent search state for each i (i.e. Activei(T 0)), representingthat a pattern pre�x matches a text su�x with up to i errors. Res(T 0) is the same for any i, andkeeps track of the matches allowing k errors.We write Prefi(B) and Su�i(B) when we refer to Di(B), while the other components are inde-pendent on i. Matches(B) refers to the matches allowing up to k errors which occurred completelyinside the block.Given D(B) = (L;O; S; P;M) and D(B0) = (L;O; S 0; P 0;M) we de�ne D(B) [D(B0) =(L;O; S [S 0; P [P 0;M) as their union. With this notation we can express the concatenation oftwo blocks Di(B) = Di(B1B2), allowing i errors:Di(B) = i[j=0Dj(B1) �Di�j(B2)(where we recall that � represents the concatenation of descriptions). The reason for this formulais as follows: imagine that we search with k = 2 errors. Then, we can pair a pre�x that matchedwith zero errors with a su�x that matched with two errors, or a pre�x that matched with one errorwith a su�x that matched with one error, or a pre�x that matched with two errors with a su�xthat matched with zero errors. In general, the sum of errors between pre�x and su�x must be k.This is easily generalized if we are interested in i � k errors.To update the Activei(T 0) values we use a similar idea, i.e.Activei(T 0B) = i[j=0RightjBj(Activej(T 0)) \ Prefi�j(B)where the rationale is the same as before: we match with i errors if we already matched a patternpre�x with j errors and the block starts with the corresponding pattern su�x matched with i� jerrors. Figure 4 illustrates.
Pattern prefix Pattern suffix

0 errors

1 error

0 errors

1 error

2 errors2 errorsFigure 4: Updating Active(T 0) when 2 errors are allowed.8

The Res(T 0) value is interested only in k errors:Res(T 0B) = Res(T 0) [AddjT 0j(Matches(B))[SubtrjT 0j(Activek(T 0) \ Su�k(B) \ fm� jBj; m� jBj+ 1; :::; m� 1g)while however the other Activei(T 0) values are necessary to maintain Activek(T 0).The values for an individual letter a is also modi�ed:� Su�i(B) = f0; 1; 2; :::;m� 1g� Prefi(B) = f1; 2; 3; :::;m� 1g� Matches(B) = if (m = k + 1 ^ P = xay) then f0g else ;Notice that if k > 0 (i.e. our case of interest), then a single letter matches at any patternposition. On the other hand, the pattern matches inside the letter only if we can delete all itsletters and leave a single one which is equal to a (the case of deleting all the letters is not consideredbecause it implies m = k, which is a trivial problem).The case of the Levenshtein distance is more complicated, because the matches may not havethe same length. In this case we need to store, instead of initial and �nal positions of matches(Prefi(B) and Su�i(B)), the segments of the pattern that match with i errors or less. We de�neSegmi(B) = f(i; j); dist(Pi::j�1; B) � kginstead of Prefi(B) and Su�i(B). For block concatenation, instead of intersecting pre�xes of B1with su�xes of B2, we consider the segments of B1 immediately followed by segments of B2 andtake their concatenation. We do not work out the details because, as explained in the next section,we do not have an e�cient implementation (the naive implementation is O(m2k2n) if we performO(n) block concatenations).3 A Bit-Parallel ImplementationUntil now, we have de�ned our algorithms in terms of sets of pattern positions. We present nowa very well-suited implementation paradigm which allows to convert the previous algorithms intoe�cient implementations.We use the technique called bit-parallelism [3]. This technique takes advantage of the fact thatthe processor works in parallel on all the bits of the computer word. We call w the number of bits ofthe computer word, which is 32 or 64 in current architectures. If one is able to map the elements ofa set on bits, and to express the operations to perform on them by using only the operators providedby the processor (which are rather limited, i.e. bit shifts, masking, etc.), then one can e�ectivelyparallelize the work on the set, obtaining speedups of up to O(w) over the original algorithm.This paradigm was invented in 1989 by Baeza-Yates and Gonnet [4] for a text searching algo-rithm called Shift-Or. If we consider m � w, then we keep the state of the search in a computerword D, whose i-th bit tells whether the pre�x of length i of the pattern matches the current text9

su�x. All the bits start with value zero, and a match is reported whenever the m-th bit of Dsignals a match. The update formula upon reading a new text character isD0 = (D << 1) j T [a]where T [a] is a mask whose i-th bit tells whether Pi = a, we are assuming that 0 represents amatch and a 1 a mismatch, \j" is the bitwise-or of the computer word, and \<< `" is a bit shiftoperation which assigns the i-th bit to the (i+ `)-th, setting the �rst ` to zero. Other operationsallowed in most architectures are bitwise-and (&), shift to the other direction (>>), and, which ismore sophisticated, arithmetic operations such as addition and subtraction which operate on thebit mask as if it was a number.The Shift-Or algorithm is O(n) provided m � w. If the computer word is too short to hold onebit per pattern position, then dm=we computer words are used for the simulation, and the searchtakes in the worst case O(mn=w) time. It is not hard to show that on average it takes O(n), sinceO(1) computer words have active states on average.Our implementation can indeed be seen as a Shift-Or algorithm working on blocks insteadof letters. The sets Pref(B), Su�(B), and Active(T 0) are represented by bit masks. Hence, forblocks of one letter a we have Su�(B) = T [a] and Pref(B) = (T [a] << 1). The formulas toconcatenate blocks are directly translated by noticing that Left` and Right` are converted into\>> `" and \<< `", respectively (taking care of the borders which must get active bits), andunion and intersection are converted into \j" and \&" respectively. Hence, all those operations onsets are performed in O(1) time if m � w, and O(m=w) time in general. In practical text searchingwe can assume m = O(w).On the other hand, the sets Res(T 0) and Matches(B) are explicitly stored in an array. However,it is not di�cult to see that the total amount of work to handle them is O(R), where R is thenumber of occurrences of the pattern in the text. The cost cannot be o(R) if we report all theoccurrences.Hence, if f(n) concatenations are performed along all the process, our total search cost isO(f(n) +R). The value of f(n) depends on the compression algorithm.The bit-parallel paradigm allows to seamlessly expand the type of patterns we are able to search.Since the T table is the only connection between the pattern and the search, we can for instanceallow having classes of characters, that is, each pattern position matches with a set of charactersinstead of just one character. To achieve this, just set the i-th bit of T [a] to \match" for any a 2 Pi.Other extended patterns considered in [29], such as regular expressions, are not easily adapted tothis scheme. It is also possible to handle errors in the matches, such as replacement errors [4] (atO(m log(k)=w) cost per character) or insertions, deletions and replacements at O(mk=w) [29, 5] oreven O(m=w) [24] cost per character. The implementation of our technique to handle mismatchesis O(k2f(n) +R) cost, while the extension for Levenshtein distance is not easily implemented.In all cases, the space complexity of our algorithms is O(n + R), since we need to store thedescriptions of the blocks already seen and the matches found. Notice that this n refers in fact tothe size of the compression window.Finally, we consider the practical problem of uncompressing a neighborhood of the occurrences.In practice it is undesirable that we just give the text positions matching the pattern. It is muchbetter to uncompress and show a neighborhood of the match. This neighborhood can be de�ned10

as the line holding the occurrence, the record (delimited by some given pattern), a �xed number ofcharacters, etc.Assume that we know a pattern position and want to show a neighborhood. We just decompressthe surrounding blocks forward and backward, until from the plain text obtained we determine thatthe neighborhood has been decompressed. To decompress a block we have two cases: (a) the blockis a letter, in which case we deliver the letter, (b) the block is a concatenation of other blocks, inwhich case we decompress each of those blocks in turn. This process takes O(N) time at most(where N is the size of the decompressed neighborhood), since at each step we either obtain onecharacter of N or split the �nal text to be obtained, and it is not possible to split it more thanO(N) times. This shows that it is practical to show a part of a Ziv-Lempel compressed �le withoutnecessarily uncompressing the whole �le.4 LZ78 Compression4.1 Compression AlgorithmThe Ziv-Lempel compression algorithm of 1978 (usually named LZ78 [32]) is based on a dictionaryof blocks, in which we add every new block computed. At the beginning of the compression,the dictionary contains a single block b0 of length 0. The current step of the compression is asfollows: if we assume that a pre�x t1 : : : ti of T has been already compressed in a sequence of blocksZ = b1 : : : bc, all them in the dictionary, then we look for the longest pre�x of the rest of the textti+1 : : : tu which is a block of the dictionary. Once we found this block, say bk of length lk, weconstruct a new block bc+1 = (k; ti+lk+1), we write the pair at the end of the compressed �le Z, i.eZ = b1 : : : bcbc+1, and we add the block to the dictionary. It is easy to see that this dictionary ispre�x-closed (i.e. any pre�x of an element is also an element of the dictionary) and a natural wayto represent it is a trie.We give as an example the compression of the word ananas in Figure 5. The �rst block is (0; a),and next (0; n). When we read the next a, a is already the block 1 in the dictionary, but an is notin the dictionary. So we create a third block (1; n). We then read the next a, a is already the block1 in the dictionary, but as do not appear. So we create a new block (1; s).
0

1

a

2

n

0

1

a

2

n

n

3

0

1

a

2

n

n

3

s

4

1

a

0

a

(0,a)

Prefix encoded

Dictionary

Compressed file

an

(0,a)(0,n)

anan

(0,a)(0,n)(1,n) (0,a)(0,n)(1,n)(1,s)

ananas

Figure 5: Compression of the word ananas with the algorithm LZ78.11

The compression algorithm is O(u) in the worst case and e�cient in practice if the dictionaryis stored as a trie, which allows rapid searching of the new text pre�x (for each character of Twe move once in the trie). The decompression needs to build the same dictionary (the pair thatde�nes the block c is read at the c-th step of the algorithm), although this time it is not convenientto have a trie, and an array implementation is preferable. Compared to LZ77, the compression israther fast but decompression is slow. LZ78 is used by Unix's Compress program.Many variations on LZ78 exist, which deal basically with the best way to code the pairs in thecompressed �le, or with the best way to update the window. A particularly interesting variantis from Welch, called LZW [27]. In this case, the extra letter (second element of the pair) is notcoded, but it is taken as the �rst letter of the next block (the dictionary is started with one blockper letter). A variant over this is presented by Miller and Wegman [20] (which we call LZMW) ,where the new block is not the previous one plus the �rst letter of the new one, but simply theconcatenation of the previous and the new one.4.2 Pattern Matching in LZ78 Compressed FilesOur general algorithm for searching in a sequence of blocks Z = b1 : : : bn can be directly applied ifwe consider the new letter added after each block created by the LZ78 compression algorithm asa separate block. That is, each new pair (k; a) read at step c is taken as a reference to a previousblock (bk) followed by a literal block (a). Hence, we compute the description of the concatenationof bk and a and add at as the new block bc to our dictionary. At the same time, we update thestate of the search using the description of bc just computed. Of course, in practice we manage thisone-letter block in a special way, to speed-up the block concatenation. We keep all the descriptionsof the blocks bk in an array which is directly accessed.The algorithm we obtain is quite the same as in [2]. The main di�erences are that we obtainthis algorithm as a particular case of a general string search algorithm for text that comes inblocks, that their algorithm is originally designed for LZW compression, and that we search all theoccurrences of the pattern, not only the �rst one. Moreover, we present a practical implementationbased on bit-parallelism, while [2] is a theoretical work that has not been implemented. To ourknowledge ours is the �rst real implementation of this algorithm. It is quite easy to adapt ouralgorithm to work on other variants of LZ78, such as LZW or LZMW. In particular we can easilyadapt to di�erent window management policies. The simplest one is that when the compressormemory is full, the dictionary is deleted and compression is restarted. Others try to remove theleast interesting blocks from the dictionary, e.g. [12]. Our searcher can follow the same steps of thecompressor along the search, using the same amount of memory.4.3 AnalysisThe theoretical complexity of the pattern matching algorithm is O(n + R) (recall that, as we usebit-parallelism, we have O(mn=w + R) time for long patterns). If n = o(u), this is faster thansearching in the uncompressed text. In practical terms, the algorithm is rather e�cient since noextra work apart from one block concatenation and one update of the search is performed perelement of the compressed �le.Our experimental results, however (Section 7), show that the algorithm takes in practice twice12

the time of a Shift-Or run on the uncompressed text. This is because Shift-Or is very simple, andalthough we process many characters of the uncompressed text in one shot, in practice the costof each step is big enough to amortize any possible gain due to compression. A speci�c problemis the locality of reference: the compressed matching algorithm reads random positions in thearray of block de�nitions, while the uncompressed algorithm works basically in-place. The cachingmechanism of the computer largely favors this last approach.However, there is a positive result. Searching the compressed �le with this algorithm is twiceas fast as decompressing it and then searching the uncompressed �le. For this comparison we areassuming that the �le is compressed with LZ77 (which is much faster than LZ78 to decompress)and consider the times of gunzip, which is an optimized decompression software. Hence, if the textcollection is kept compressed (which is de�nitely of interest) then it is much faster to search directlythe compressed �les.We have tried to further improve our algorithm. For instance, we have created a variant calledMark-LZ78. In this compression algorithm, we mark with a bit ag for each block if the block isa leaf of the dictionary trie or not, to avoid storing the block description if this block is not usedanymore. However, as we show in the experiments, the performance does not improve.5 LZ77 Compression5.1 Compression AlgorithmThe Ziv-Lempel compression algorithm of 1977 (usually named LZ77 [31]) is, in some sense, simplerthan LZ78, since the basic idea is just to recognize two repeated segments of the text and tomark the second as a reference (position in the text and length of the repeated part) to the �rstone. More formally, assume that a pre�x t1 : : : ti of T has been already compressed in a sequenceof block Z = b1 : : : bc. We look for the longest pre�x v of ti+1 : : : tu which appears already int1 : : : titi+1 : : : ti+jvj�1. Once we have it, say that we �nd it v starting at position j � i, we adda new block (j; jvj) to the compressed �le. A special case occurs if v is empty, in which case ti+1is a new letter and we code it with a special block (0; ti+1). With the same example ananas, weobtained: (0; a) nanas; (0; a)(0; n) anas; (0; a)(0; n)(1; 3) s; (0; a)(0; n)(1; 3)(0; s).Notice that the above de�nition allows that the referenced block overlaps the one which isbeing compressed. Another variant avoids this for simplicity, i.e. v must be found in t1 : : : ti. Inthis case the compression of ananas becomes: (0; a) nanas; (0; a)(0; n) anas; (0; a)(0; n)(1; 2) as;(0; a)(0; n)(1; 2)(1; 1) s; (0; a)(0; n)(1; 2)(1; 1)(0; s).Yet another variant codes the repeated block and then the letter which follows it in the stilluncompressed text. There are many other variants as well, mainly related to how to represent thepairs in the compressed �le and how to compress fast. In general, the position j is coded as thedi�erence i + 1 � j, since the last occurrence of the block is used and v is normally restricted tonot appear too far away from ti.LZ77 compresses more than LZ78, both in theory and in practice. From a theoretical pointof view, the variant which allows overlaps can obtain a compressed �le of O(1) blocks in the bestcase, while the one not allowing overlaps obtains at most O(logu). LZ78, on the other case, cannotobtain less than O(pu). This is easily seen by considering the best-case �le T = au. In practice itis also true that LZ77 compresses more than LZ78. LZ77 is implemented in the Gnu gzip program.13

Compression is rather slow with LZ77. It is expensive in time and space memory to �nd thelongest pre�x of the uncompressed part of the �le that appears already in the compressed part.In theory, the compression is O(u) in space and in time by the use of a su�x tree or a DAWGautomaton [31, 30]. In practice, the search in done in a bu�er window and an large hash table isnormally used, as in gzip. An experimental comparison of di�erent techniques to �nd the pre�x canbe found in [6]. The decompression algorithm, on the other hand, is very fast (faster than for LZ78)because to decompress a block is it just necessary to copy a part of the text and no dictionary hasto be kept.5.2 Pattern Matching in LZ77 Compressed FilesOur algorithm for LZ77 is an adaptation of the general algorithm on blocks, with a main di�erence.On LZ77 compressed �les, when we want to process a new block, the situation shown in Figure 6generally occurs: the new block references a sequence of r contiguous previously processed blocks,but it overlaps with the �rst and last one (u and v in the Figure). That is, the new block does notexactly correspond to previously processed blocks. Therefore, we do not have all the informationon the blocks u and v that we need to concatenate the blocks.We solve this by computing recursively the descriptions of the two blocks u and v with thesame method. That is, we simulate that we are back in the text, where those blocks appeared, andcompute their description (this may trigger more recursive invocations with the same purpose).When we �nally obtain the descriptions of u and v, we concatenate all the referenced blocks toobtain the description of the new block. Another possibility is that the new block is completelyinside another block already processed, in which case we have to recursively consider the blocksthat de�ne the referenced block.
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
��
��
��

��
��
��

���
���
���

���
���
���

Blocks already computed

v New BlockuFigure 6: Recursive computation of the description of a block in LZ77 compressed �les.We explain now a technique to concatenate the r blocks in low average time. Instead of com-puting Pref(B) and Su�(B) of the �rst block, then concatenating with the second, then to thethird, until the r blocks are concatenated, we compute Su�(B) from the �rst block to the r-th andPref(B) from the r-th block to the �rst one. We analyze this shortly.5.3 Analysis and ImprovementsWe analyze now the many aspects of our algorithm and propose some improvements.Block concatenation. If we use the proposed block concatenation technique, we have that inthe worst case only the �rst m blocks can a�ect Su�(B) and only the last m blocks can a�ect14

Pref(B), so the worst case time for concatenating the blocks becomes O(min(u;mn)).We show now that on average only O(logm) blocks are processed until Su�(B) becomes stable.Each new block character we process will either extend the current su�xes of the set Su�(B) ormake them dissappear from the set. Each su�x is removed from the set with probability 1 � 1=�(i.e. if the new block character block cannot extend it). Before we read the block characters allthe m pattern positions are in Su�(B), and therefore on average no pattern positions remain in theset after O(logm) block characters are read (after the i-th character is read, the pattern positionsm� i to m� 1 cannot be removed from the set, but their situation cannot change anyway).Even if we consider all blocks of length 1 (worst case), we work O(n logm) because of concate-nations. The same reasoning holds for Pref(B).The only part of the block concatenation which cannot skip blocks is the computation ofMatches(B). However, this adds up O(R) along all the search. Therefore, the total time forblock concatenation is O(min(u; n logm) +R) on average.Finding the blocks. We consider now how to �nd the indices of the block that de�ne a textposition j. We keep an array with the blocks already seen. Binary searching the text positionamong these blocks adds O(n logn) to the cost. Instead, we keep a table of O(n) entries where theelement i points to the block where the text position biu=nc is de�ned. By accessing this table wedirectly arrive at the correct block with an average inaccuracy of O(u=n), and a �nal binary search�nds the correct position, for a total cost of O(n log(u=n)) (in practice a linear search is faster forthe �nal part). This gives good results in practice. Another alternative is that the compressordoes not store the text position and length of the repeated part, but instead it gives the blocknumbers involved and the o�sets inside u and v. Since a text position needs O(logu) bits and ablock number plus an o�set inside the block needs on average O(logn+ log(u=n)) = O(logu) bits,the order of compression ratio should not worsen. We show in the experiments that this version ofthe algorithm (called Block-LZ77) is faster than the plain version, since no searching of the textposition is necessary. However, compression ratios worsen signi�cantly in practice due to round-o�s.Computing partial blocks. However, the really costly part of the algorithm is not here, but inthe recursive computation of the partial blocks u and v. If we consider that each time we performa recursive call we \split" the original block B in a new place, then it is clear that at most jBjrecursive calls can be done until we have split it in single characters and therefore we have foundthe de�nition of each one. This shows that the total cost of the recursive calls is O(u) in the worstcase. Our experiments suggest that this is also the average case, but we were not able to analyzeit. Consider now the cost of the recursive invocations in the case where the new block B is strictlyinside its referencing block. For instance, a letter which repeats inside a large block could triggera long chain of recursive invocations until its real de�nition is found. In the worst case, we couldhave a block of size s which references one of size s�1, and this one references another of size s�2,and so on. We would work O(s), but the size of the text at that point is O(s2). Hence, at textposition i we cannot work more than pi, which gives a total worst-case cost of O(npu), which istoo high. This problem does not dissappear if the compressor always stores the �rst occurrence ofthe repeated block instead of the last one, because we may not point to the �rst occurrence when15

we consider partial blocks.Hence the total amount of work is !(u) in the worst case whenever n = !(pu), and we conjecturethat this is also the average case. See the left plot of Figure 7, where we have experimented withthe English text described in Section 7. Least squares �tting shows that a good model for thenumber of recursive invocations per text character is 0:177 + 0:1 lnu (with less than 0.5% error inthe approximation). The experiment suggests that the algorithm is O(u logu) on average. Thisis, unfortunately, worse than uncompressing and searching. We present now some techniques toimprove this situation.Improvements. A �rst improvement we tried consisted in storing more information than simplyone description per block. For instance, when we compute the description for the partial blocks uand v (which are not part of the original sequence of blocks), we could store instead of discardingthem. If later another block needs the description of u and v, we have already computed them.Figure 7 (right plot) shows that the total amount of recursive calls is reduced using this technique,and we conjecture that in this case we work O(u) (least squares �tting yields a complexity ofO(u0:99927)). These blocks, however, cannot be easily stored in the array of blocks since they donot belong to the sequence. A hashing implementation gave bad results in practice, that is, thecost to add the new blocks outweighted the gains of having them already computed. This couldchange for longer texts, if the orders of the two algorithms are di�erent.
200 400 600 800 100012000.4

1.6
0.40.60.81.01.21.4 u 200 400 600 800 1000 12000.4

1.6
0.40.60.81.01.21.4 nFigure 7: Number of recursive invocations (thick line) and block concatenations (thin line) per textcharacter, for natural language text. The left plot shows the basic algorithm and the right plotshows the improvement of adding the computed blocks.Another improvement, and which gave good practical results, was to try to compute less (insteadof more) information. Our aimwas to avoid the recursive computation of u and v. Hence, instead ofcomputing their descriptions recursively, we just assume that they match all the pattern positions.If they are short enough we will not have a match even assuming this, and we could process themwithout actually obtaining their descriptions. Only when we �nd a (possible) match we backtrackto the point where it could have been started and compute correctly the involved blocks. Foreach block, we store whether it has been correctly or pessimistically computed. As we show in the16

experiments, this improves search times for patterns of length 15 or more in practice. However, themethod is limited since we cannot skip more than m characters of T without having at least onecharacter correctly computed, hence in the very best case we pay O(u=m) with this speedup. Wecall this algorithm Skip-LZ77 (and combined with Block-LZ77 it yields Skip-Block-LZ77).Final remarks. Even with all these improvements, the experiments show that this algorithmis much slower than decompressing (with gunzip) and searching (with Shift-Or). Although oursis the �rst algorithm to search in LZ77-compressed text, we believe that it is not possible inpractice to beat a decompress-then-search approach. The root of this limitation lies in the needto recursively compute u and v. Another consequence of the existence of partial blocks is that,even if the compressor uses a window of �xed size to select the strings to repeat, we need to keepin memory all the previous blocks, since even if they are not directly referenced anymore, we mayneed to resort to them in case of partial blocks. We propose in the next section a slightly di�erentcompression scheme which gets rid of all the aspects of LZ77 compression that degrade the searchingperformance.We �nish this section with a couple of comments. First, as it is clear from the algorithm, wedo not handle the case of overlapping compression, i.e. when the referenced block can overlap withthe new block B. Although we could handle it, the result is the same in cost as if the compressoravoided such overlapping (i.e. performing many steps, where a step ends when an overlap occurs).Second, other variants of LZ77 are easily accommodated. Finally, we notice that a neighborhoodof size N around the occurrences can be obtained using the general mechanism at O(Npu) cost(or, according to the empirical results, O(N logu) cost). This is because of the cost to �nd thede�nitions of the incomplete blocks.6 A New Hybrid Compression AlgorithmIt became clear in the previous section that the worst part of the cost of the algorithm was due tothe cost of recursively computing partial blocks, and of �nding the block corresponding to a textposition. We design a new compression algorithm between the LZ78 and LZ77, to have multiple-block compression (not just one block like in LZ78), but also to avoid the recursive situation whichappears in searching LZ77-compressed �les (Figure 6).We propose the following algorithm. Assume that a pre�x t1 : : : ti of T has been already com-pressed in a sequence of block Z = b1 : : : bc. We look now for the longest pre�x v of ti+1 : : : tu whichis equal to a sequence br : : : br+h already present in the compressed �le. If there are many alternativechoices for the same v, we take the one with the minimum of blocks (to reduce the cost of concate-nations). And if still several possibilities occur, we take the �rst occurrence (the minimum in thenumber of the �rst block). We code this new block by (r; h). As in LZ77, if v is empty (i.e the letterti+1 is new), we code a special block (0; ti+1). With the same example ananas, we obtain: (0; a)nanas; (0; a)(0; n) anas; (0; a)(0; n)(1; 1) as; (0; a)(0; n)(1; 1)(1; 0) s; (0; a)(0; n)(1; 1)(1; 0)(0; s).The main advantage of this compression scheme is that it avoids the recursive case in the LZ77pattern matching (Figure 6), because we know already that the new block corresponds directly toa concatenation of already processed blocks. Moreover, we do not need to search the text positionin the blocks, since we can directly access the relevant blocks.17

The compression can still be performed in O(u) time by using a sparse su�x tree [16] whereonly the block beginnings are inserted and when we fall out of the trie we consider the last nodevisited which corresponds to a block ending. Decompression is slower than for LZ77, since we needto keep track of the blocks already seen to be able to retrieve the appropriate text. Finally, thecompression ratio is in principle worse than for LZ77 since we are limited in the text segments thatwe can use. On the other hand, our numbers are smaller since we code block positions in O(logn)bits instead of text positions in O(logu) bits. Moreover, if we use a simple trick, the compressionis in general better than for LZ78 since we are not limited to using just one block. The trick is: wemark with one bit in the r of a block (r; h) whether h is greater than 0 or not, obtaining r0. If h isgreater than 0, we replace the block (r; h) with (r0; h), and if not with (r0).The searching algorithm is like that of LZ77 except because we do not need to search forthe blocks and we do not have to recursively �nd the partial blocks u and v (they simply donot exist now). From the analysis of the LZ77 pattern matching algorithm we have that we workO(min(u; n logm)+R) on average and O(min(u;mn)+R) in the worst case (thanks to the improvedalgorithm to concatenate blocks). In practice, this algorithm performance is very close to LZ78pattern matching. We also tried a marked version (called Mark-Hybrid) where for each block a bitis stored which tells whether or not the block will be used again, but as for LZ78, the search timesdo not improve in practice.Unlike LZ77, we can use less memory if the compressor restricts the references to a window ofthe text. Since there are no recursive references, those blocks which are far away in the past neednot be stored since they will not be referenced anymore. Hence, as in LZ78, we need the samememory as the compressor. A window of size N can be displayed in O(N) time.7 Experimental ResultsWe show in this section our empirical results on the behavior or our search and compression schemes.We �rst study the compression techniques and later the searching performance.We use two �les for the experiments. One is an English literary text (from B. Franklin) of 1.29Mb, and the other is the DNA chain of \h.inuenzae", of 1.36 Mb.7.1 Compression PerformanceIt is interesting to study the compression performance of the algorithms for two reasons: �rst, wepropose a hybrid compression scheme which we have to evaluate in terms of compression ratios.Second, our search algorithms use a technique to code the pairs which speeds up search time butwhich is suboptimal: the numbers are stored in as many bytes as needed (using the highest bit todenote if there are more bytes or not).We �rst compare the number of bits needed to code a �le with our hybrid compresion schemeagainst the same number for LZ77 and LZ78. We call this approach \bit-coding". This is aimedto give and idea of the expected compression performance when the �le is compressed with a realtechnique (such as Elias codes [10]). Many other tricks are possible, for instance gzip uses Hu�mancoding on the pairs, since they are not uniformly distributed. A deeper study of the best techniqueto code the pairs in our hybrid compressor is deferred for future study.18

Table 1 shows the results. The \Ideal" row counts exactly the bits used by each number storedin the compressed �le, while both \Elias" rows count the number of bits needed to represent thenumbers using these codes2 [10]. The letters, however, are always represented with 6 bits (Englishlowercase text) and 2 bits (DNA text). The percentages in parenthesis represent di�erent variants ofthe compressors: for LZ77 it refers to the version where blocks and o�sets are referenced instead oftext positions, while for LZ78 and Hybrid it represents the versions where the blocks are marked toknow if they will be used again or not. With our Hybrid compression method, we obtain estimatedcompression ratios comparable to LZ77. The Hybrid and LZ77 compression is better than LZ78except for DNA text, where only two bits are necessary to code a letter. The block version of theLZ77 compresses quite badly, and its Elias- code gives it a size bigger than the original �le onnatural language text.Method File Bit-LZ77 (blocks) Bit-LZ78 (marked) Bit-Hybrid (marked)Ideal English 29.67% (52.45%) 39.01% (40.87%) 29.28% (31.24%)DNA 28.03% (47.21%) 24.98% (26.45%) 29.08% (31.15%)Elias- English 59.34% (104.90%) 66.87% (85.17%) 58.57% (62.48%)DNA 56.06% (94.43%) 47.01% (67.30%) 58.18% (62.30%)Elias-� English 48.96% (74.25%) 54.90% (57.57%) 46.17% (48.75%)DNA 45.77% (73.14%) 37.39% (39.59%) 46.40% (49.03%)Table 1: Estimated compression ratios with three di�erent methods. For each number in thecompressed �le, if we note n the bits needed to code it, then Ideal counts only n, Elias- counts 2nand Elias-� counts n + 2dlog2 ne.We now perform a practical comparison using our byte-coding techniques against good LZ77 andLZ78 compressors, namely gzip and Compress respectively. This is to show how much compressionare we losing in order to ease the searching process.Table 2 shows the compression ratios achieved. The percentages in parenthesis have the samemeaning as before. Interestingly, Compress is better than gzip on DNA, which rarely happens onnatural language texts. Our compression ratios are more or less 10% worse than the one of gzip forour LZ77 and our hybrid compression and 15% worse for our LZ78. Our byte compression methodis very simple, and these results show in which proportion our compression ratios could be improvedby engineering techniques, keeping in mind that complicating the encoding of the numbers risks toslow down the pattern matching process.File gzip Compress Byte-LZ77 (blocks) Byte-LZ78 (marked) Byte-Hybrid (marked)English 35.58% 38.90% 44.49% (79.32%) 54.41% (56.20%) 43.29% (45.24%)DNA 30.44% 27.96% 41.07% (75.24%) 43.17% (44.90%) 42.23% (44.22%)Table 2: Compression ratios for classical compressors and our byte versions.2Recall that Elias- precedes the number x by its length in unary, while Elias-� uses Elias- to code that lengththat precedes the number. 19

7.2 Searching AlgorithmsWe compare now the search times for our algorithms against the decompressing and searchingapproach. The experiments were run on a Sun UltraSparc-1 of 167 MHz, with 64 Mb of RAM,running Solaris 2.5.1. We consider user times, which are within 2% of accuracy with 95% con�dence.The times are expressed in seconds.In general, searching a compressed text has the additional advantage over the uncompressedtext that it performs less I/O. However, this is relevant if we compare compressed searching versusuncompressed searching. This is not what we compare here: we consider that the text is alwayscompressed. Hence, we measure the cost of searching it without decompressing versus the cost ofdecompressing it and then searching. Clearly the last task can be done using an intermediate bu�erin main memory, and therefore the I/O is the same in both cases.Figure 8 compares the marked and unmarked versions of LZ78 and the Hybrid compressor. Asit can be seen, there is no advantage in practice by the use of marking. Therefore, we do not furtherconsider the marked versions. Another conclusion we take from the �gure is that the searcher forHybrid compression is slightly faster than for LZ78 on English text but slower for DNA. This maybe related to the good performance of the LZ78 compressor on DNA.
� � � � � � �� � � � � � �� � � � � � �� � � � � � �5 305 10 15 20 25 300.15

0.23
0.150.170.190.210.23

m � � � � � �� � � � � � �� � � � � �� � � � � � �5 305 10 15 20 25 300.13
0.21
0.130.150.170.190.21

m� LZ78� Mark-LZ78 � Hybrid� Mark-HybridFigure 8: Comparison of the marked and unmarked versions of LZ78 and Hybrid compressors. Theleft plot is for English text and the right one for DNA.Figure 9 compares all the search algorithms together, as well as decompression (with gunzip)plus search times (with Shift-Or and BNDM [25], a bit-parallel searcher which is the fastest inpractice together with [26]). It can be seen that Block-LZ77 improves signi�cantly over LZ77, andthat the Skip-LZ77 versions improve as the pattern length grows. However, all the LZ77 searchalgorithms are not competitive against decompressing and searching, especially on DNA. On theother hand, both the Hybrid and LZ78 search algorithms are twice as fast as decompressing andsearching. 20

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �5 305 10 15 20 25 300.0
1.6
0.00.20.40.60.81.01.2
1.4 m

� � � � � � �� � � � � � �� � � � � � �� � � � � � �5 305 10 15 20 25 302.23.22.22.42.62.83.0 � � � � � � �� � � � � � �5 305 10 15 20 25 300.01.00.00.20.40.60.81.0 m� LZ77� Skip-LZ77 � Block-LZ77� Skip-Block-LZ77 � LZ78� Hybrid gunzip + Shift-Orgunzip + BNDMFigure 9: Comparison of the search algorithms. The dotted line is the time taken by gunzip alone.The left plot is for English text and the right one for DNA.
21

8 ConclusionsWe have focused in the problem of string matching on Ziv-Lempel compressed text. This is animportant practical problem, as it is of interest to be able to keep the texts compressed and at thesame time being able to e�ciently search on it.We presented a general paradigm to search in a text that is expressed as a sequence of blocks,which abstracts the main features of Ziv-Lempel compression. Then, we applied the techniqueto the di�erent variants, i.e. LZ77 and LZ78. For LZ78, we are able to search in half the timeof uncompressing and searching, while for LZ77 our algorithm, although much slower, is the �rstone proposed to search on LZ77 compressed text. This motivated us to present a new hybridcompression technique which allows to search as fast as in LZ78 but which keeps many of thefeatures of LZ77 compression, being in practice similar in compression ratios.Therefore, we are able to search in a compressed text faster than uncompressing and thensearching. In general, on the other hand, searching on compressed text at the same speed of onuncompressed text seems di�cult to achieve in practice because of a basic problem of locality ofreference.Future work involves studying better the performace of our hybrid compression, both in theoryand in practice (especially on �nding better methods to encode the numbers). We also plan to workmore in understanding the behavior of the algorithm to search in LZ77 compressed text. This isa �eld where important theoretical and practical development is necessary, and we have presentednew results in both aspects. We hope that more improvements are to come.References[1] A. Amir and G. Benson. E�cient two-dimensional compressed matching. In Proc. SecondIEEE Data Compression Conference, pages 279{288, March 1992.[2] A. Amir, G. Benson, and M. Farach. Let sleeping �les lie: Pattern matching in Z-compressed�les. Journal of Computer and System Sciences, 52(2):299{307, 1996.[3] R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World Computer Congress,volume I, pages 465{476. Elsevier Science, September 1992.[4] R. Baeza-Yates and G. Gonnet. A new approach to text searching. Communications of theACM, 35(10):74{82, October 1992.[5] R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string matching. In Proc.CPM'96, number 1075 in LNCS, pages 1{23, 1996.[6] T. Bell and D. Kulp. Longest-match string searching for Ziv-Lempel compression. Software{Practice and Experience, 23(7):757{771, July 1993.[7] J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A locally adaptive data compression scheme.Communications of the ACM, 29:320{330, 1986.22

[8] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications of the ACM,20(10):762{772, 1977.[9] A. Czumaj, Maxime Crochemore, L. Gasieniec, S. Jarominek, Thierry Lecroq, W. Plandowski,and W. Rytter. Speeding up two string-matching algorithms. Algorithmica, 12:247{267, 1994.[10] P. Elias. Universal codeword sets and representations of the integers. IEEE Transactions onInformation Theory, 21:194{203, 1975.[11] M. Farach and M. Thorup. String matching in Lempel-Ziv compressed strings. In 27th ACMAnnual Symposium on the Theory of Computing, pages 703{712, 1995.[12] E. Fiala and D. Greene. Data compression with �nite windows. Communications of the ACM,32(4):490{505, 4 1989.[13] L. Gasieniec, M.Karpinksi, W.Plandowski, and W. Rytter. E�cient algorithms for Lempel-Zivencodings. In Proc. of the Scandinavian Workshop on Algorithm Theory, 1996.[14] R. N. Horspool. Practical fast searching in strings. Software Practice and Experience, 10:501{506, 1980.[15] D. Hu�man. A method for the construction of minimum-redundancy codes. Proc. of theI.R.E., 40(9):1090{1101, 1952.[16] J. K�arkk�ainen and E. Ukkonen. Sparse su�x trees. In COCOON'96, pages 219{230, 1996.LNCS v. 1090.[17] M. Karpinski, A. Shinohara, and W. Rytter. Pattern matching problem for strings with shortdescriptions. Nordic Journal of Computing, 4(2):172{186, 1997.[18] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings. SIAMJournal on Computing, 6(1):323{350, 1977.[19] U. Manber. A text compression scheme that allows fast searching directly in the compressed�le. ACM Transactions on Information Systems, 15(2):124{136, 1997.[20] V. Miller and M. Wegman. Variations on a theme by Ziv and Lempel. In CombinatorialAlgorithms on Words, volume 12 of NATO ASI Series F, pages 131{140. Springer-Verlag,1985.[21] A. Mo�at. Word-based text compression. Software Practice and Experience, 19(2):185{198,1989.[22] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Direct pattern matching on compressedtext. In Proc. SPIRE'98, pages 90{95. IEEE CS Press, 1998.[23] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast searching on compressed textallowing errors. In Proc. SIGIR'98, pages 298{306. York Press, 1998.23

[24] G. Myers. A fast bit-vector algorithm for approximate pattern matching based on dynamicprogamming. In Proc. CPM'98, LNCS v. 1448, pages 1{13, 1998.[25] G. Navarro and M. Ra�not. A bit-parallel approach to su�x automata: Fast extended stringmatching. In Proc. CPM'98, LNCS v. 1448, pages 14{33, 1998.[26] D. Sunday. A very fast substring search algorithm. Communications of the ACM, 33(8):132{142, August 1990.[27] T. A. Welch. A technique for high performance data compression. IEEE Computer Magazine,17(6):8{19, June 1984.[28] I. Witten, R. Neal, and J. Cleary. Arithmetic coding for data compression. Communicationsof the ACM, 30(6):520{541, 1987.[29] S. Wu and U. Manber. Fast text searching allowing errors. Communications of the ACM,35(10):83{91, October 1992.[30] M. Zipstein. Data compression with factor automata. Theor. Comput. Sci., 92(1):213{221,1992.[31] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans.Inf. Theory, 23:337{343, 1977.[32] J. Ziv and A. Lempel. Compression of individual sequences via variable length coding. IEEETrans. Inf. Theory, 24:530{536, 1978.

24

