
Block Addressing Indices for Approximate Text Retrieval �Ricardo Baeza-Yates Gonzalo NavarroDepartment of Computer ScienceUniversity of ChileBlanco Encalada 2120 - Santiago - Chilefrbaeza,gnavarrog@dcc.uchile.clAbstractThe issue of reducing the space overhead when indexing large text databases is becomingmore and more important, as the text collections grow in size. Another subject, which is gainingimportance as text databases grow and get more heterogeneous and error prone, is that of 
exiblestring matching. One of the best tools to make the search more 
exible is to allow a limitednumber of di�erences between the words found and those sought. This is called \approximatetext searching", which is becoming more and more popular.In recent years some indexing schemes with very low space overhead have appeared, some ofthem dealing with approximate searching. These low overhead indices (whose most notoriousexponent is Glimpse) are modi�ed inverted �les, where space is saved by making the lists ofoccurrences point to text blocks instead of exact word positions. Despite their existence, little isknown about the expected behavior of these \block addressing" indices, and even less is knownwhen it comes to cope with approximate search.Our main contribution is an analytical study of the space-time trade-o�s for indexed textsearching. We study the space overhead and retrieval times as functions of the block size. We�nd that, under reasonable assumptions, it is possible to build an index which is simultaneouslysublinear in space overhead and in query time. This surprising analytical conclusion is validatedwith extensive experiments, obtaining typical performance �gures. These results are valid forclassical exact queries as well as for approximate searching.We apply our analysis to the Web, using recent statistics on the distribution of the docu-ment sizes. We show that pointing to documents instead of to �xed size blocks reduces spacerequirements but increases search times.1 IntroductionOne of the most outstanding characteristics of modern textual databases is their impressive sizes.Special-purpose collections such as trec [18] contains hundreds of gigabytes in its last version. TheWeb, a gigantic ad-hoc distributed text collection, had more than 1 terabyte estimated in 1998 [5].Handling text collections of these sizes and being able to e�ciently search on them is becoming acomplex task [5, 36]. First of all, it is impossible to sequentially search the whole text for the userspeci�ed strings of interest. Even the fastest sequential algorithms would need from minutes tohours for answering the simplest queries, not to mention the extra problems of a distributed textconnected by relatively slow links like large portions of the Web. Specialized data structures built�This work has been supported in part by Fondef (Chile) grant 96-1064.1



on the text, called indices, are used to speed up the search. This causes a space problem, since notonly the text has to be stored but also its index, which typically needs from 20% to 200% extraspace over the text size.However, this is not the only problem. Many text databases, like the Web, are heterogeneous anderror-prone, since they store data from di�erent sources and there is little or no quality controlon them. Errors coming from misspelling, mistyping or from optical character recognition (OCR)are examples of agents that inevitably degrade the quality of large text databases. Words whichare stored erroneously are no longer retrievable by means of exact queries. Moreover, even thequeries may contain errors, for instance in the case of misspelling a foreign name or missing anaccent mark. The last years witnessed di�erent improvements on query 
exibility, some of themregarding the type of patterns that can be searched for. From tools as simple as case sensitivenessto the ability to search regular expressions and to allow some errors in the matches, virtually nocurrent commercial text index is limited to simply search for exact patterns. Of course, searchingsuch \extended" patterns is harder than the classical search for simple ones, which demands newindexing techniques to speed up this task.Some indices dealing with the space problem and with more 
exible searching have appeared inrecent years, Glimpse [25] probably being the best known exponent. Most of them are modi�edinverted �les, based on the concept of block addressing: the text is logically split in blocks andthe index is able to tell which blocks a word appears in, but not its exact positions. Despite theirexistence as software systems, little is known about the expected behavior of block addressingindices. Even less is known about their performance regarding searching for extended patterns.In this work, we study the use of block addressing to obtain indices which are sublinear in spaceand in query time simultaneously, and show analytically a range of valid block sizes to achievethis. The combined sublinearity means that, as the text grows, the space overhead of the indexand the time to answer a query become less and less signi�cant as a proportion of the text size.This surprising result applies to classical queries as well as to queries that allow errors in thematches, which is one of the most important classes of extended patterns. Ours is an average caseanalysis which gives \big-O" (i.e. growth rate) results and is strongly based on some heuristic ruleswidely accepted in Information Retrieval (IR). We validate these analytical results with extensiveexperiments, obtaining typical performance �gures.Finally, we apply our analysis to an interesting particular case of document addressing (where thedocuments are of variable size): we use recently obtained statistics from the distribution of thepage sizes in the Web [13] and apply our machinery to determine the space overhead and retrievaltime of an index for a collection of Web pages. We show that having documents of di�erent sizesreduces space requirements in the index but increases search times if the documents have to betraversed.As a side result, we prove new relations between some laws of Information Retrieval which werepreviously unnoticed. We also study experimentally how many di�erent words from a text matcha query when errors are allowed in the matches, and conjecture that a similar rule is followed byother extended patterns.This paper is organized as follows. In Section 2 we explain the issue of text searching allowingerrors. In Section 3 we present inverted �les and the concept of block addressing. In Section 42



we study analytically the space-time trade-o�s related to the block size. In Section 5 we validateexperimentally the analysis. In Section 6 we apply our analysis to the Web statistics. Finally, inSection 7 we give our conclusions and future work directions. A previous partial version of thiswork appeared in [3].2 Text Searching Allowing ErrorsOne of the main goals when searching for extended patterns is to �nd words whose exact spellingis not known. This encompasses also those text words which are incorrectly written. The problemof correcting misspelled words in written text is rather old. We could �nd references from thetwenties [26], and perhaps there are older ones. By the sixties, a number of ad-hoc models tomatch incorrectly written versions of a word existed, like those of Blair [10], Damerau [14] and thepopular Soundex method, described for instance in [21, 17]. However, some time elapsed until it wasrealized [34] that such ad-hoc models were inferior1 to simple variants of the so-called Levenshtein(or edit) distance [23, 24].The edit distance between two strings is de�ned as the minimum number of character insertions,deletions and replacements needed to make them equal. For example, the edit distance between"color" and "colour" is 1, while between "survey" and "surgery" is 2. Phonetic issues can beincorporated in this distance, by changing the cost of the di�erent operations. The goal is, then,to �nd the text words which are close (in the sense of edit distance) to a given pattern.More formally, the problem of approximate string matching (or string matching allowing errors) isde�ned as follows: given a text (of size n) and a pattern, retrieve all the segments (or \occurrences")of the text whose edit distance to the pattern is at most k (the number of allowed \errors"). Thisproblem has a number of other applications in computational biology, signal processing, etc.There exist a number of solutions for the on-line version of this problem [31] (i.e. the pattern canbe preprocessed but the text cannot). All these algorithms traverse the whole text sequentially. Ifthe text database is large, even the fastest on-line algorithms are not practical, and preprocessingthe text becomes mandatory. This is normally the case in IR. However, the �rst indexing schemesfor this problem are only a few years old.There are two types of indexing mechanisms that address this problem: sequence-retrieving andword-retrieving. The �rst ones can retrieve every matching substring of the text, and they do notrely on the concept of word. This makes them suitable for applications such as genetic databases.However, the existing indices are rather immature. Almost all are prototypes in an experimentalstage and unable to handle large volumes of text. The indices typically take four to twelve timesthe size of the text. Some examples are [12, 16, 22, 30, 32, 33].Word-retrieving indices, although less general, are better suited to natural language applicationsand IR. They rely on the concept of word, and are able of retrieving every word whose edit distanceto the pattern is at most k. This simpli�cation allows the existence of very e�cient implementations.As all them are inverted �les with a modi�ed search technique, we defer their discussion to thenext section.1Semantic similarity is a di�erent issue, not covered in this paper.3



3 Inverted Files and Block AddressingAn inverted index (or �le) has two parts: vocabulary and occurrences [15, 5]. The vocabulary ofthe text is the list of distinct words that appear in it. The occurrences contain, for each vocabularyword, the list of the text positions where the word appears. A classical query is solved by searchingthe pattern in the vocabulary (using binary search or an auxiliary data structure) and retrievingthe list of its occurrences (i.e. the positions where the pattern appears in the text). Search timesare very good, but the best implementations of inverted indices pose a 20% to 30% space overheadover the text size.3.1 Block AddressingBlock addressing is a technique to reduce the space requirements of an inverted �le. It was �rstproposed in a system called Glimpse (see Section 3.3). The idea is that the text is logically dividedin blocks, and the occurrences do not point to exact word positions but only to the blocks wherethe word appears. Space is saved because there are less blocks than text positions (and hence thepointers are shorter), and also because all the occurrences of a given word in a single text blockare referenced only once. Figure 1 illustrates a block addressing index with r blocks of size b (i.e.n = rb).
b wordsblock ofb wordsblock ofb wordsblock of r blocksText

words occurrences
IndexFigure 1: The word indexing scheme.Searching in a block addressing index is similar to searching in a traditional one (which we call\full inverted index" in this paper). The pattern is searched in the vocabulary and a list of blockswhere the pattern appears is retrieved. However, to obtain the exact pattern positions in the text,4



a sequential search over the qualifying blocks becomes necessary. The index is therefore used as a�lter to avoid a sequential search over some blocks, while the others need to be checked. Hence,the reduction in space requirements is obtained at the expense of higher search costs.At this point the reader may wonder which is the advantage of pointing to arti�cial blocks insteadof pointing to documents (or �les), this way following the natural divisions of the text collection.If we consider the case of simple queries (say, one word), where we are required to return only thelist of matching documents, then pointing to documents is a very adequate choice. Moreover, aswe see later, it may reduce space requirements with respect to using blocks of �xed size. Also, if weuse blocks of �xed size and pack many short documents in a logical block, we will have to traversethe matching blocks (even for these simple queries) to determine which documents inside the blockactually matched.However, consider the case where we are required to deliver the exact positions which match apattern. In this case we need to sequentially traverse the qualifying blocks or documents to �ndthe exact positions. Moreover, in some types of queries such as phrases or proximity queries, theindex can only tell that two words appear in the same block, and we need to traverse it in order todetermine if they form a phrase.In this case, pointing to documents of di�erent sizes is not a good idea because larger documents aresearched with higher probability and searching them costs more. In fact, the expected cost of thesearch is directly related to the variance in the size of the pointed documents. This suggests thatif the documents have di�erent sizes it may be a good idea to (logically) partition large documentsinto blocks and to put together small documents, such that blocks of the same size are used.3.2 Searching Allowing ErrorsAn inverted �le can be easily converted into an e�cient word-retrieving index for approximatestring matching. This idea, again, was �rstly proposed for Glimpse (see Section 3.3). To search anapproximate pattern in the text, we start by sequentially scanning the vocabulary, word by word,using an on-line algorithm. This allows to collect the set of di�erent words that match the query.Once these words are known, their positions in the text are retrieved and all the lists are mergedinto a single one, which is the �nal answer.This scheme works well because the vocabulary grows slowly as the text grows, and in large textcollections it takes less than 1% of the text size. This well-known phenomenon in IR, called Heaps'law [19], is described in detail later in this paper.When combined with block addressing, the result is a two-stage sequential search process. First,the vocabulary is sequentially searched and the list of qualifying blocks is obtained. Second, eachsuch block is sequentially traversed to �nd the actual matches. The second step, as explained, maybe absent if we point to documents, search for a single word, and want only the list of qualifyingdocuments.Notice that this idea can be used not only for approximate searching, but also to search for anyextended pattern, as long as words in the pattern are matched to words in the text.5



3.3 Representative SystemsAlthough pointing to documents is an old practice, using blocks of �xed size was �rst proposed in asearching software called Glimpse, due to Manber and Wu [25]. In a very practical approach, theypresent a scheme combining a block addressing inverted �le and the ability to search for extendedpatterns (which includes approximate searching).To search an extended pattern, the vocabulary is sequentially scanned, word by word, with Agrep[37]. Agrep is an e�cient on-line text searching software, which treats the vocabulary as a simplepiece of text. For each matching word, all the blocks where it appears in the text are marked.Then, for every marked block (i.e. where some matching word is present), a new sequential searchis performed over that block (using Agrep again). The idea of sequentially traversing the vocabularyleads to a great deal of 
exibility in the supported query operations.The use of blocks makes the index small, at the cost of having to traverse parts of the text sequen-tially. This scheme works well if not too many blocks are searched, otherwise it becomes similarto sequentially searching on the text using Agrep. If the number of allowed errors in the pattern isreasonable (1{3), the number of matching words is small. Otherwise the query is of little use in IRterms, because of its low precision.Glimpse has a limited 
exibility regarding the number or size of the blocks to use. The basic scheme(called the tiny tindex) uses 200 to 250 blocks, and works reasonably well for text collections ofup to 200 Mb. As the text grows more, the blocks become too large and almost always matchthe query, which converts the search into a sequential scan over the whole text. To cope withlarger texts, Glimpse o�ers an index addressing �les instead of blocks (\�le addressing"), which iscalled the small index. Finally, for very large texts it can be switched to full inversion (i.e. wordaddressing), where each word points to its exact occurrences in the text. This is called the mediumindex. Typical �gures for the index size with respect to the text are: 2-4% for blocks (tiny), 10-15%for �les (small), 25-30% for words (medium). The last percentage is similar to the overheads ofclassical full inverted �les.As an example of full inversion we mention a recent one, Igrep [2], which inherits from Glimpse theability of (and the technique used for) searching extended patterns and allowing errors. Since everytext word is referenced in the list of occurrences, the index poses a �xed overhead over the textsize, close to 30-35% in this case. Since the sequential traversal over the blocks is not necessary, thetext is never accessed and the approach is much more resistant to the size of the text collection.Apart from those of Glimpse, the index is enriched with further capabilities to search phrases ofextended patterns and to search a complete phrase allowing a given number of errors across thewhole phrase. The index is built in a single pass over the text using an in-place construction.A detailed analysis of the search times for di�erent types of simple and extended patterns is pre-sented in [2]. The analysis shows that the retrieval costs are sublinear for useful searches (i.e. thosewith reasonable precision).We cannot �nish this section without mentioning compression. Compressing the text and/or theinverted �le is an orthogonal technique to reduce the overall space usage. This trend is also rathernew, since compression and searching have been traditionally regarded as exclusive tasks [7].6



New text compression techniques have been studied to make the compressed text suitable of beingaccessed randomly, and decompressed quickly if needed [27]. These abilities are essential to beused in a text retrieval system. The scheme uses a Hu�man coding [20] on words, where the wordsinstead of the characters are the symbols to be coded. Since the words are the symbols of the coder,a table with all the words (that is, a vocabulary) is stored together with the compressed �le. Ontop of this technique, two lines of development have emerged.A �rst one was implemented in a system called MG [9, 36, 8], which is a compressed inverted �lethat indexes compressed text. The index points to document and does not search the text directly.Only the qualifying documents are decompressed. The authors show that the overall e�ciency ismaintined despite the decompression e�ort, and sometimes even improved thanks to reduced I/Oe�orts. Note that the inverted �le can be integrated with the compressed text since both use thetext vocabulary.A second line of development is direct searching on compressed text (without decompressing). Thishas been proposed in a software called Cgrep [29, 28]. Cgrep is a compressor able to e�ciently searchfrom simple patterns to regular expressions, allowing or not errors. It is based on Hu�man codingon words. The search starts in the vocabulary, much as in inverted indices. Once the matchingwords are obtained, their compressed codes are searched in the compressed text. Although there isno indexing and all the text has to be traversed, the search is a multipattern exact search for thecompressed codes of the matching words, which can be much faster than the original search (e.g.an approximate search). This allows Cgrep to be faster than Agrep.Finally, there exists undergoing work to integrate Cgrep into a block addressing compressed index,much like MG except for the extended patterns handled and because some text blocks have to besearched (with Cgrep). Index and text compression reduce the e�ective size of the text collectionsto handle, but unlike block addressing, they cannot make it sublinear if we assume constant entropyin the text.4 Average Space-Time Trade-o�sGlimpse and Igrep are two extremes of a single idea. Glimpse achieves small space overhead atthe cost of sequentially traversing parts of the text. Igrep achieves better performance by keepinga large index. We study in this section the possibility of having an intermediate index, which issublinear in size and query performance at the same time. We show that this is possible in general,under reasonable assumptions.Our analysis is strongly based on some widely accepted heuristic rules which are explained next.Those rules deal with average cases of natural language text. We obtain results regarding thegrowth rate of index sizes and query times, and therefore our analysis uses the O(), o(), 
(), !()and �() notation. We recall that they correspond, respectively, to the signs �, <, �, > and =with respect to the growth rate of the functions2.2More formally, f(n) is O(g(n)) i� there exist n0; c > 0 such that for all n > n0, f(n) � c� g(n). f(n) is 
(g(n))i� g(n) is O(f(n)). f(n) is �(g(n)) if f(n) is O(g(n)) and 
(g(n)). f(n) is o(g(n)) if f(n) is not 
(g(n)). f(n) is!(g(n)) if f(n) is not O(g(n)). 7



4.1 Modeling the TextWe assume some empirical rules widely accepted in IR, which are shown accurate in our experi-ments.The �rst one is Heaps' law [19], which relates the text size n and the average vocabulary size V bythe formula V = �(n�) for 0 < � < 1.The second rule is the generalized Zipf's law [38], which states that if the words of the vocabularyare sorted in decreasing order of frequency, then the frequency of the i-th word is n=(i�H(�)V ), whereH(�)V =PVj=1 1=j�, for some � � 1. For � = 1 it holds H(1)V = lnV + O(1), while for � > 1 we haveH(�)V = O(1).Something which is not said in the literature and that is our �rst contribution is that these tworules can be related. Assume that the least frequent word appears O(1) times in the text (this ismore than reasonable in practice, since a large number of words appear only once). Since there are�(n�) di�erent words, then the least frequent word has rank i = �(n�). The number of occurrencesof this word is, by Zipf's law, ni�H(�)V = � nn��H(�)V !and this must be O(1). This implies that, as n grows, � = 1=�. This equality may not hold exactlyfor real collections. This is because the relation is asymptotical and hence is valid for su�cientlylarge n, and because Heaps' and Zipf's rules are approximations. For instance, in the texts of thetrec-2 collection [18] (described in Section 5), � is between 0.4 and 0.6, while � is between 1.7and 2.0. Considering each collection separately, �� is between 0.80 and 1.04.We point out now other assumptions we make. We assume that user queries distribute uniformlyin the vocabulary, i.e. every word in the vocabulary can be searched with the same probability.This is not true in practice, since unfrequent words are searched with higher probability (see sometentative models in [11]). On the other hand, approximate searching makes this distribution moreuniform, since unfrequent words may match match with k errors with other words, with littlerelation to the frequencies of the matched words. In general, however, the assumption of uniformdistribution in the vocabulary is pessimistic.Finally, the words are assumed to be uniformly distributed in the text. Although widely accepted,this rule may not be true in practice, since words tend to appear repeated in small areas of the text.Uniform distribution in the text is another pessimistic assumption we make, since more blocks aretraversed when the distribution is uniform.Recall Figure 1. The text of n words is divided into r blocks of size b (hence n � rb). Thevocabulary (i.e. every di�erent word in the text) is stored in the index. For each word, the list ofblocks where it appears is stored.4.2 Query Time ComplexityTo search an approximate pattern, a �rst pass runs an on-line algorithm over the vocabulary. Thesets of blocks where each matching word appears are collected. For each such block, a sequential8



search is performed on that block.The sequential pass over the vocabulary is linear in V , hence it is �(n�), which is sublinear in thesize of the text.An important issue is how many words of the vocabulary match a given pattern with k errors. Inprinciple, there is a constant bound to the number of distinct words which match a given patternwith k errors, and therefore we can say that O(1) words in the vocabulary match the pattern.However, not all those words will appear in the vocabulary. Instead, while the vocabulary sizeincreases, the number of matching words that appear increases too, at a lower rate3. We showexperimentally in the next section that a good model for the number of matching words in thevocabulary is O(n�) (with � < �).For classical word queries we have � = 0 (i.e. only one word matches). For pre�x searching, regularexpressions and other multiple-matching queries, we conjecture that the set of matching wordsgrows also as O(n�) if the query is going to be useful in terms of precision. However, this issuedeserves a separate study and is out of the scope of this paper.Since the average number of occurrences of each word in the text is n=V = �(n1��), the averagenumber of occurrences of the pattern in the text is O(n1��+�). This fact is surprising, since one canthink in the process of traversing the text, where each word appears with a �xed probability andtherefore there is a �xed probability of matching each new word. Under this model the number ofmatching words is a linear proportion of the text. The fact that this is not the case (demonstratedexperimentally in the next section) shows that this model is not realistic. The new words thatappear as the text grows deviate it from the model of words appearing with �xed probability.This observation is our second contribution. Notice that the root of this fact lies in the restrictionimposed by these indices, stating that words must be matched completely instead of allowing anytext substring. If we allowed to match the pattern against any text substring, then the matchingprobability would be clearly uniform, and sublinear retrieval time should be impossible if we had tocollect all the matches (since there would be �(n) matches). However, as we force to match againstcomplete words, the fact that more and more di�erent words are appearing makes the matchingprobability to be reduced as the text grows, and the total number of matches is sublinear in thetext size. This is a basic limitation of sequence-retrieving indices with respect to word-retrievingindices.The blocks to work on in the text are those including some (exact or approximate) occurrence ofthe pattern. We model the process as follows: an approximate search �rst selects O(n�) randomwords from the vocabulary, which is of size �(n�). Hence, the probability of a given vocabularyword to be selected by the search is O(n���). To determine whether a block needs to be searched ornot, imagine that we take each one of its b words and look whether it is selected in the vocabulary.We work on the block if any of its words has been selected in the vocabulary.The probability of a word from the block to be selected is O(n���). The probability that noneof the words in the block is selected is therefore (1 � O(n���))b. The total amount of work is3This is the same phenomenon observed in the size of the vocabulary. In theory, the total number of English wordsis �nite and therefore V = O(1). But in practice that limit is never reached, and the model V = O(n�) describesreality much better. 9



obtained by multiplying the number of blocks (r) times the work to do per selected block (b) timesthe probability that some word in the block is selected. This is��rb�1� �1� n����b�� = � �n �1� e��(b=n���)�� (1)where for the last step we used that (1 � x)y = ey ln(1�x) = ey(�x+O(x2)) = e��(yx)) providedx = o(1).We are interested in determining in which cases the above formula is sublinear in n or not. Ex-pressions of the form \1� e�x" appear a couple of times in this analysis. We observe that they areO(x) whenever x = o(1) (since e�x = 1� x+ O(x2)). On the other hand, if x = 
(1), then e�x isfar away from 1, and therefore \1� e�x" is 
(1).For the search cost to be sublinear, it is thus necessary that b = o(n���), which we call the\condition for time sublinearity". When this condition holds, we derive from Eq. (1) thatTime = � �n� + bn1��+�� (2)where we recall that the �rst n� in the time formula corresponds to the vocabulary traversal.4.3 Space ComplexityWe consider space now. The average size of the vocabulary itself is already sublinear. However,the total number of references to blocks where each word appears may be linear (it is truly linearin the case of full inversion, which corresponds to single-word blocks, i.e. b = 1).The analysis is very simple if we notice that each block of size b has O(b�) di�erent words, by Heaps'law. Each di�erent word that appears in each di�erent block will correspond to a di�erent entry inthe inverted index. Hence, the size of this index is just the number of di�erent words of each blocktimes the number of di�erent blocks, that is, O(rb�). Hence, for the space to be sublinear we justneed r = o(n), or equivalently, b = !(1).However, we have assumed the validity of an asymptotic rule such as Heaps' law for blocks, whichare much smaller than the whole text. As we show in the experiments, the rule is still valid butthe � of the blocks converges to its de�nitive value when the blocks are larger than 1 Mb. In theAppendix we redo this analysis using the Zipf's law and reasoning with the whole collection, whichis much more complex. The result is O(rb1=�). This con�rms that for both rules to be valid it musthold � = 1=�. In the analysis that follows, � and 1=� can be used interchangeably whenever thespace complexity is involved. In particular, we use 1=� to draw the actual numbers, since it is moreprecise. So we have Space = � �rb�� = � �rb1=�� (3)4.4 Combined SublinearitySimultaneous time and space complexity can be achieved whenever b = o(n���) and r = o(n). Tobe more precise, assume we want to spendSpace = � (n
)10



space for the index. Given that the vocabulary alone is O(n�), 
 � � must hold. Solving rb� = n
with Eq. (3) we have r = ��n 
��1�� � ; b = ��n 1�
1���Since the condition for time sublinearity imposes b = o(n���), we conclude
 > �(
) = 1� (1� �)(� � �)(which implies 
 � �). In that case, the time complexity (computed using Eq. (2)) becomesTime = ��n� + n1��+�+ 1�
1���(and �(n) if 
 � �(
)). Note that the above expression turns out to be just the number of matchingwords in the text times the block size.Note that 
 = 1 corresponds to full inversion, where Space = �(n) and Time = �(n1��+�). This isthe search complexity of the Igrep software [2]. On the other extreme, the \tiny" index of Glimpsecorresponds to 
 = �, in which case Time = �(n) and Space = �(n�), i.e. just the necessary tostore the vocabulary. None of these two extremes achieve simultaneous sublinearity.The practical values of the trec collection (described in Section 5) show that 
 must be largerthan 0.77 .. 0.89 in practice, in order to answer queries with at least one error in sublinear timeand space.Figure 2 shows possible time and space combinations for � = 0:4 and � = 1:87, values thatcorrespond to the collection we use in the experiments. The values correspond to searching withk = 2 errors, which, as found in the next section, has � = 0:18. If less space is used, the timekeeps linear (as in Glimpse). If we consider classical exact queries, then � = 0 (since only one wordmatches in the vocabulary), and then it is possible, for instance, to have an index which is O(n0:85)in space and retrieval time.The �gure also shows schematically the valid time and space combinations. We plot the exponentsof n for varying 
. As the plot shows, the only possible combined sublinear complexity is achievedin the range �(
) < 
 < 1, which is quite narrow.It is interesting also to consider for which 
 we obtain an index which is O(n
) space and time(i.e. both complexities are equal). This gives a good measure of what can be achieved in combinedsublinearity. The resulting formula is 1 + (1� � + �)(1� �)2� �which, assuming � between 0.4 and 0.6, ranges from 0.83 to 0.85 for classical queries (� = 0) andfrom 0.89 to 0.93 for reasonable approximate queries (� = 0:2). It is interesting that this measureis not monotonous with respect to �, achieving the optimum for � = 2 � p2� � (e.g. � = 0:59for � = 0 or � = 0:66 for � = 0:2). If � has its optimum value, then a combined sublinearity withexponent 2p2� � + (2 � �) can be achieved, which for exact queries means O(n0:83) space andsearch time. It is not possible to obtain a lower combined sublinearity.11
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Figure 2: On the left, valid combinations for time and space complexity assuming � = 1:87,� = 0:4 and � = 0:18. On the right, time and space complexity exponents. The area of combinedsublinearity is shaded.We end this section with a couple of practical considerations regarding this kind of index. First,using blocks of �xed size imposes no penalty on the overall system, since the block mechanism is alogical layer and the �les do not need to be physically split or concatenated.Another consideration that arises is how to build the index incrementally if the block size b hasto vary when n grows. Reindexing each time with a new block size is impractical. A possiblesolution is to keep the current block size until it should be doubled, and then process the lists ofoccurrences making equal all blocks numbered 2i with those numbered 2i + 1 (and deleting theresulting duplicates). This is equivalent to deleting the least signi�cant bit of the block numbers.The process is linear in the size of the index (i.e. sublinear in the text size) and fast in practice.Splitting blocks due to deletions in the text collection is however more complicated, but manycollections never decrease signi�cantly in size.5 Experimental ValidationIn this section we validate experimentally the previous analysis. For our experiments, we make useof the trec-2 collection [18]. We have chosen the following texts: ap Newswire (1989), doe - Shortabstracts from doe publications, fr - Federal Register (1989), wsj - Wall Street Journal (1987, 1988,1989) and zi� - articles from Computer Selected disks (Zi�-Davis Publishing). Table 1 presentssome statistics about the �ve text �les. We considered a word as a contiguous string of charactersin the set fA: : :Z, a: : :z, 0: : :9g separated by other characters not in the set fA: : :Z, a: : :z, 0: : :9g.In the vocabulary the words are processed in a case-insensitive fashion.We obtain our empirical values of � and � from these �les. In this section we use mainly the wsjcollection, which contains 250 Mb of text, 200 Mb of which is indexable (i.e. after remotion ofstop-words and separators). Throughout this section we talk in terms of the size of the �lteredtext, which takes 80% of the original text. We measure n and b in bytes, not in words.12



Files Text Vocabulary Vocab./Text � �Size (bytes) #Words Size (bytes) #Words Size #Wordsap 266,533,400 41,849,991 1,785,467 193,550 0.67% 0.46% 0.46 1.87doe 192,723,764 28,997,050 1,770,336 179,311 0.92% 0.62% 0.52 1.70fr 272,323,115 39,560,980 1,053,680 117,964 0.39% 0.30% 0.48 1.94wsj 279,534,695 43,392,799 1,379,793 159,727 0.49% 0.37% 0.40 1.87zi� 253,177,255 39,426,198 1,404,570 161,502 0.55% 0.41% 0.51 1.79Table 1: Text �les from the TREC collection.The collection is considered as a unique large �le, which is logically split into blocks of �xed size. Thelarger the blocks, the faster to build and the smaller the index, but also the larger the proportionof text to search sequentially at query time. To measure the behavior of the index as n grows, weindex the �rst 20 Mb of the collection, then the �rst 40 Mb, and so on, up to 200 Mb.5.1 Vocabulary GrowthWe measure V , the number of words in the vocabulary in terms of n (the text size). Figure 3 (leftside) shows the growth of the vocabulary. Using least squares we �t the curve V = 78:81n0:40. Therelative error is very small (0.84%). Therefore, � = 0:4 for our experiments.
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Figure 3: Vocabulary tests for the wsj collection. On the left, the number of words in the vocab-ulary. On the right, number of vocabulary words matching a query.We then measure the number of words that match a given pattern in the vocabulary. For eachtext size, we select words at random from the vocabulary allowing repetitions. This is to mimiccommon IR scenarios. In fact, not all user queries are found in the vocabulary in practice, whichreduces the number of matches. Hence, this test is pessimistic in that sense.Observe that we could reduce the variance in the experiments by selecting once the set of queriesfrom the index of the �rst 20 Mb. However, our experiments have shown that this is not a good13



policy. The reason is that the �rst 20 Mb will contain almost all common words, whose occurrencelists grow faster than the average. Most uncommon words will not be included. Therefore, theresult is unfair, making the times to look linear when they are in fact sublinear.We test k = 1, 2 and 3 errors. To avoid taking into account queries with very low precision (e.g.searching a 3-letter word with 2 errors may match too many words), we impose limits on the lengthof words selected: only words of length 4 or more are searched with one error, length 6 or morewith two errors, and 8 or more with three errors.We perform a number of queries which is large enough to ensure a relative error smaller than 5%with a 95% con�dence interval. Figure 3 (right side) shows the results. We use least squares to �tthe curves 0:31n0:14 for k = 1, 0:61n0:18 for k = 2 and 0:88n0:19 for k = 3. In all cases the relativeerror of the approximation is under 4%. These are the � values mentioned in the analysis.Figure 4 shows the evolution of the � value as the text collection grows. We show its value for upto 1 Mb. As it can be seen, � starts at a higher value and converges to the de�nitive 0:40 as thetext grows. For 1 Mb it has almost reached its de�nitive value.
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Figure 4: Value of � as the text grows. We added at the end the value for the 200 Mb collection.5.2 Space versus Time for Fixed Block SizeWe show the space overhead of the index and the time to answer queries allowing k = 2 errors,for three di�erent �xed block sizes: 2 Kb, 32 Kb and 512 Kb. See Figure 5. Observe that thetime is measured in a machine-independent way, since we show the percentage of the whole textthat is sequentially searched. Since the processing time in the vocabulary is negligible, the timecomplexity is basically proportional to this percentage. The decreasing percentages indicate thatthe time is sublinear.The queries are the same used to measure the amount of matching in the vocabulary, again ensuringat most 5% of error with a con�dence level of 95%. Using least squares we obtain that the amountof traversed text is 0:10n0:79 for b = 2 Kb, 0:45n0:85 for b = 32 Kb, and 0:85n0:89 for b = 512 Kb.In all cases, the relative error of the approximation is under 5%. As expected from the analysis,14



the space overhead becomes linear (since 
 = 1) and the time is sublinear. The analysis predictsO(n0:78), which is close to these results, especially for b = 2 Kb. This happens because the factthat b = O(1) shows up earlier (i.e. for smaller n) when b is smaller. The curves with larger b willconverge to the same exponents for larger n.
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Figure 5: Experiments for �xed block size b. On the left, space taken by the indices. On the right,percentages of the text sizes sequentially searched allowing k = 2 errors.5.3 Space versus Time for Fixed Number of BlocksTo show the other extreme, we take the case of �xed r. The analysis predicts that the time shouldbe linear and the space should be sublinear (more speci�cally, O(n1=�) = O(n0:53)). This is themodel used in Glimpse for the tiny index (where r � 256).See Figure 6, where we measure again space overhead and query times allowing k = 2 errors, forr = 28, 212 and 216. Using least squares we �nd that the space overhead is sublinear in the textsize n. For r = 28 we have that the space is 0:87n0:53, for r = 212 it is 0:78n0:75, and for r = 216 itis 0:74n0:87. The relative error of the approximation is under 3%. As before, the curve for smallerr matches the analysis better, for similar reasons (i.e. the e�ect is noticed sooner for smaller r).On the other hand, the percentage of the traversed text increases. This is because the proportionof text traversed (Eq. (1)) is (1� e�Theta(n1��+�)), which tends to 1 from below as n grows.5.4 Sublinear Space and TimeFinally, we show experimentally in Figure 7 that time and space can be simultaneously sublinear.We test 
 = 0:92, 0.94 and 0.96, again for k = 2 errors. The analysis predicts the values shown inthe table of Figure 2.Using least squares we �nd that the space overhead is sublinear and very close to the predictions:0:40n0:89, 0:41n0:92 and 0:42n0:95. The error of the approximations is under 1%.15



20040 80 120 160 2000
80
0102030405060
7080 n (Mb)Mb r = 28r = 212r = 216

20040 80 120 160 2000
50
010203040
50

n (Mb)% r = 216r = 212r = 28
Figure 6: Experiments for �xed number of blocks r. On the left, space taken by the indices. Onthe right, percentages of the text sizes sequentially searched, allowing k = 2 errors.The percentage of the traversed text decreases, showing that the time is also sublinear. The leastsquares approximation shows that the query times for the above 
 values are 0:24n0:95, 0:17n0:94and 0:11n0:91, respectively. The relative error is smaller than 2%.Hence, we can have for this text an O(n0:94) space and time index if 2 errors are allowed (ouranalysis predicts O(n0:93)).
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Figure 7: Experiments for �xed 
 (simultaneous sublinearity). On the left, space taken by theindices. On the right, percentages of the text sizes sequentially searched, allowing k = 2 errors.As another example, we show in Figure 8 the results on simultaneous sublinearity for the ziffcollection, which has near 220 Mb after remotion of stop-words and separators. The values for thiscollection are � = 0:51 and � = 1:79. Least squares show a very good agreement with the analysis:we have 0:71n0:92 for 
 = 0:92, 0:60n0:94 for 
 = 0:94 and 0:55n0:95 for 
 = 0:96. The relativeerror is below 0.5%. The times, for k = 2 errors, give 0:22n0:99 for 
 = 0:92, 0:17n0:98 for 
 = 0:94and 0:14n0:96 for 
 = 0:96. Hence, we can have an O(n0:96) space and time index for ziff. It16



is interesting to notice that, although ziff has a larger vocabulary than wsj, the results are notbetter. This is because the number of matching words in the vocabulary is also higher.
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Figure 8: Experiments for �xed 
 (simultaneous sublinearity) for the ziff collection. On theleft, space taken by the indices. On the right, percentages of the text sizes sequentially searched,allowing k = 2 errors.6 Application: Analyzing the WebIn [13], an empirical model for the distribution of the sizes of the Web pages is presented, backedby thorough experiments4. This distribution is as follows: the probability that a Web page is ofsize x is p(x) = �k�x1+�for x � k, and zero otherwise. The cummulative distribution isF (x) = 1� �kx��where k and � are constants dependent on the particular collection: k is the minimum documentsize, and � = 1:36 when considering only textual data.As explained before, pointing to documents instead of blocks may or may not be convenient interms of query times. We analyze now the space and time requirements when we point to Webpages. We analyze space �rst.As the Heaps' law states that a document with x words has x� di�erent words, we have thateach new document of size x added to the collection will insert x� new references to the lists ofoccurrences (since each di�erent word of each di�erent document has an entry in the index). Hence4The model was re�ned in [6], but this does not change the asymptotic results we obtain here.17



the average number of new entries in the occurrence list per document isZ 1k p(x)x�dx = �k��� � (4)To determine the total size of the collection, we consider that r documents exist, whose averagelength is b� = Z 1k p(x)xdx = �k�� 1 (5)and therefore the total size of the collection isn = r�k�� 1 (6)The size of the vocabulary in the �nal collection isn� = � r�k�� 1��and the �nal size of the occurrence lists is (using Eqs. (4) and then (6))r�k��� � = �� 1�� � 1k1�� n (7)A �rst result is that the space of the index is �(n) (this should be clear as b� = O(1)). Weconsider now what happens if we take the average document length and use blocks of that �xedsize (splitting long documents and putting short documents together as explained). In this case,the size of the vocabulary is O(n�) as before, and we assume that each block is of a �xed sizeb = zb� = z�k=(�� 1) (Eq. (5)). We have introduced a constant z to control the size of our blocks.In particular, if we use the same number of blocks as Web pages, then z = 1. Then the size of thelists of occurrences is (r=z)b� = r ��k�z�z(�� 1)� = ��� 1z�k �1�� n(using Eq. (6) for the last step). Now, if we divide the space taken by the index of documents bythe space taken by the index of blocks (using the previous equation and Eq. (7)), the ratio isdoc: index sizeblock index size = z1���1��(�� 1)��� � (8)which is independent on k and rounds 80% for z = 1 and � = 0:4::0:6. This shows that indexingdocuments yields an index which takes 80% of the space of a block addressing index, if we haveas many blocks as documents. Figure 9 shows the ratio as a function of � and �. As it can beseen, the result varies slowly with �, while it depends more on � (tending to 1 as the documentsize distribution is more uniform).The fact that the ratio varies so slowly with � is good because we already know that the � valueis quite di�erent for small documents. As a curiosity, notice that there is a � value which gives the18



minimum ratio for document versus block index (i.e. the worst behavior for the block index). Thisis �� = �� 1= ln(z�=(�� 1)), which is �� � 0:61 for z = 1.If we want to have the same space overhead for the document and the block indices, we simplymake the expression of Eq. (8) equal to 1 and obtain z � 1:4::1:7 for � = 0:4::0:6, i.e. we need tomake the blocks larger than the average of the Web pages. This translates into worse search times.By paying more at search time we can obtain smaller indices (letting z grow over 1.7).
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0.750.800.85 �Figure 9: On the left, ratio between both indices as a function of � for �xed � = 0:5 (the dashedline shows the actual � value for the Web). On the right, the same as a function of � for � = 1:36(the dashed lines enclose the typical � values). In both cases we use the standard z = 1.To show how retrieval times are a�ected by a non-uniform distribution when we have to traversethe matching blocks, we do the analysis for the document size distribution of the Web. As we haveshown, if a block has size x then the probability that it has to be traversed is (1�e��(x=n���)). Wemultiply this by the cost x to traverse it and integrate over all the possible sizes, so as to obtainits expected traversal cost (recall Eq. (1))Z 1k x(1� e��(x=n���))p(x)dxwhich we cannot solve. However, we can separate the integral in two parts. (a) x = o(n���) and(b) x = 
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(1). Splitting the integral in two parts we obtain� �k�2� � n(���)(1��) + �k��� 1 n(���)(1��)! = � �k�(2� �)(�� 1) n(���)(1��)!Now that we have the cost per block, we multiply by r = (� � 1)n=(�k) (Eq. (6)) to obtain the19



total amount of work. This is k��12� � n1�(��1)(���)On the other hand, if we used blocks of �xed size, the time complexity (using Eq. (2)) would beO(bn1��+�), where b = zb�. The ratio between both search times isdoc: index traversalblock index traversal = (�� 1)n(2��)(���)�(2� �)zk2��which shows that the document index would be asymptotically slower than a block index as thetext collection grows. In practice, the ratio is between O(n0:2) and O(n0:4). The value of z is notimportant here since it is a constant.7 Conclusions and Future WorkWe focused on the problem of block addressing for approximate word retrieving indices. Theseindices address two problems of outmost importance in modern textual databases: space overheadand querying 
exibility.We found theoretically and experimentally that it is possible to obtain a block addressing indexwhich is at the same time sublinear in space (like Glimpse) and in query time performance (like fullinverted indices), even when errors are allowed in the match. We also showed practical compromisesachieving that goal. For instance, we built for our example text an index which is O(n0:94) spaceand answers queries in O(n0:94) time allowing 2 errors. Those results apply to classical queries too,not only to approximate searching. For instance, for the same text collection it would be possibleto answer classical queries in O(n0:85) time and space. We �nally analyze the query times andspace requirements of an index which points to Web pages, considering their typical distribution.It would be interesting to investigate this tradeo� in other contexts. For instance, approximatequeries on patterns of lengthm can be answered using a su�x tree [1] of the text in time exponentialwithm but independent on the text size n. The su�x tree takes linear space (with a constant factorthat makes it impractical for information retrieval applications but still attractive for computationalbiology). On the other hand, the problem can be solved in O(n) time with sequential searching,using an automaton whose size is exponential in m [35]. It is not known whether it is possible toobtain a tradeo� between these worst-case complexities.There are also interesting issues for future research more on the practical side. The sequentialsearch on the blocks, if needed, dominates the time to search in the vocabulary. We have presentedin [3] an approach based on replacing the approximate searching on the blocks by a multipatternsearching (since after the vocabulary search we know exactly which words match the query). Thisidea is in fact the essence of the success of Cgrep [29].On the other hand, when the sequential search is not necessary, improving the vocabulary searchis of interest. In [4] we have shown how approximate searching can be improved by structuring thevocabulary as a metric space. This relies on the fact that the edit distance is a metric.20
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1. The O(a) most frequent words appear in �(r) blocks, and therefore contribute �(ar) to thesize of the lists of occurrences. This is because each term of the summation (9) is 
(1)provided b = 
 �i�H(�)V � which is equivalent to i = O(a).2. The O(V � a) least frequent words appear nearly each one in a di�erent block, that is, if theword appears ` times in the text, it appears in 
(`) blocks. This is because r(1� e��(`=r)) =�(`) whenever ` = o(r). For `i = n=(i�H(�)V ), this is equivalent to i = !(a).Summing the contributions of those lists and bounding with an integral we haveVXi=a+1 ni�H(�)V = nH(�)V 1=a��1 � 1=V ��1� � 1 (1 + o(1)) = �� na��1� = �(ar)where we realistically assume � > 1 (we consider the case � = 1 shortly).Therefore, the total space for the lists of occurrences is always �(ar) = �(rb1=�) for � > 1.We have left aside the case � = 1, because it is usually not true un practice. However, we shownow what happens in this case. We have that a = �(b= logV ) = �(b= logn). Summing the twoparts of the vocabulary we have that the space for the lists of occurrences is�� nlogn + n�1� log blogn + log lognlogn ��which is sublinear provided b = 
(n�), for every � < 1 (e.g. b = n= logn). This condition opposesto the one for time sublinearity, even for classical searches with � = 0. Therefore, it is not possibleto achieve combined sublinearity in this (unrealistic) case.
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