
Fast Multi-DimensionalApproximate Pattern MatchingGonzalo Navarro Ricardo Baeza-YatesDept. of Computer Science, University of ChileBlanco Encalada 2120 - Santiago - Chilefgnavarro,rbaezag@dcc.uchile.clAbstractWe address the problem of approximate string matching in d dimensions, that is, to �nd a patternof size md in a text of size nd with at most k < md errors (substitutions, insertions and deletionsalong any dimension). We use a novel and very exible error model, for which there exists only analgorithm to evaluate the similarity between two elements in two dimensions at O(m4) time. Weextend the algorithm to d dimensions, at O(d!m2d) time and O(d!m2d�1) space. We also give the�rst search algorithm for such model, which is O(d!mdnd) time and O(d!mdnd�1) space. We showhow to reduce the space cost to O(d!(3m2)d�1) with little time penalty. Finally, we present the �rstsublinear-time (on average) searching algorithm (i.e. not all text cells are inspected), which is roughlyO((k=m)d�1nd) time for k=m < 1=(d(2 log�m + log� d))1=d, where � is the alphabet size. These arethe �rst search algorithms for the problem. As a side-e�ect we analyze an already proposed algorithmfor multidimensional exact string matching. Our algorithms work also for hyper-rectangular patternsand hyper-rectangular texts.1 IntroductionApproximate pattern matching is the problem of �nding a pattern in a text allowing errors (insertions,deletions, substitutions) of characters. A number of important problems related to string processinglead to algorithms for approximate string matching: text searching, pattern recognition, computationalbiology, audio processing, etc. Two dimensional pattern matching with errors has applications, forinstance, in computer vision (i.e. searching a subimage inside a large image) and matching secondarystructure of RNA. In three dimensions, we �nd applications for searching allowing errors in video data(where the time is the third dimension) or in some types of medical data (e.g. MRI brain scans).For one dimension this problem is well-known, and is modeled using the edit distance. The editdistance between two strings a and b, ed(a; b), is de�ned as the minimum number of edit operations thatmust be carried out to make them equal. The allowed operations are insertion, deletion and substitutionof characters in a or b. The problem of approximate string matching is de�ned as follows: given a text oflength n, and a pattern of length m, both being sequences over an alphabet � of size �, �nd all segments(or \occurrences") in text whose edit distance to pattern is at most k, where 0 < k < m. The classicalsolution is O(mn) time and involves dynamic programming [18].Krithivasan and Sitalakshmi (KS) [15] proposed a simple extension to two dimensions. Given twoimages of the same size, the edit distance is the sum of the edit distance of the corresponding row images.This de�nition is justi�ed when the images are transmitted row by row and there are not too manycommunication errors (e.g. photocopy images, where most errors come from the mechanical tractionmechanism along one dimension only, or images transmitted by fax), but it is not appropriate otherwise.Using this model they de�ne an approximate search problem where a subimage of size m�m is searched1



������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

General (BY)Rows (KS)Figure 1: Alternative error models.into a large image of size n� n, which they solve in O(m2n2) time using a generalization of the classicalone-dimensional algorithm.In [4], Baeza-Yates (BY) de�ned a more general extension (there called RC), where the errors can oc-cur along rows or columns at any time. This model is much more robust and useful for more applications.We are interested in this general model in this work. Figure 1 gives an example.Although in [4] they give an O(m4) time algorithm to compute the edit distance among two imagesof size m�m, they do not give any algorithm to search a subimage inside a larger image allowing errors.In this work, we �rst generalize the edit distance algorithm to d dimensions with complexityO(d!m2d).We then give an O(d!mdnd) time algorithm for the search problem, matching the same complexity ofthe simpler KS model in two dimensions, and show how to reduce the space requirements so that theydepend only on the pattern size. We also give a new �ltering algorithm that allows to quickly discardlarge parts of the text that cannot contain a match. This algorithm searches the pattern in average timeO((k=m)d�1nd) time for k=m < 1=(d(2 log� m + log� d))1=d, where � is the alphabet size. These are the�rst searching algorithm for this problem.2 Previous WorkThe classical dynamic programming algorithm [18] to search a pattern in a text allowing errors usesdynamic programming and is O(mn) time and O(m) space.This solution was later improved by a number of algorithms, which we do not cover here. The onlyone of interest to this work is a �ltering algorithm [19, 7, 5]. It states that if a pattern is cut in k + 1pieces, then any occurrence with up to k errors must contain one of the pieces unchanged. This is obvioussince k errors cannot alter the k+1 pieces given the edit operations that we consider (which cannot altertwo pieces at the same time). The algorithm simply scans the text using a multipattern exact searchalgorithm for all the pieces. Each time a piece is found, it uses dynamic programming over an area oflength m+ 2k where the approximate occurrence can be found.The multipattern search can be carried out in O(n) worst-case search time by using an Aho-Corasickmachine [1], or in O(n=m) best-case time using Commentz-Walter [11] or another Boyer-Moore typealgorithm adapted to multipattern search. The total cost of veri�cations keeps below O(n) time providedk=m � 1=(3 log� m).Two dimensional string matching was �rst considered by Bird and Baker [10, 9], who obtain O(n2)worst-case time. Good average results are presented by Zhu and Takaoka in [20]. The best average case2



result is due to Baeza-Yates and R�egnier [8], who obtain O(n2=m) time on average and O(n2) in theworst case.The case of two dimensional approximate string matching usually considers only substitutions forrectangular patterns, which is much simpler than the general case with insertions and deletions. Forsubstitutions, the pattern shape matches the same shape in the text (e.g. if the pattern is a rectangle,it matches a rectangle of the same size in the text). For insertions and deletions, instead, rows and/orcolumns of the pattern can match pieces of the text of di�erent length. Under the substitutions model,one of the best results on the worst case is due to Amir and Landau [3], which achieves O((k+ log�)n2)time but uses O(n2) space. A similar algorithm is presented in [12]. Ranka and Heywood solve the sameproblem in O((k+m)n2) time and O(kn) space. Amir and Landau also present a di�erent algorithm run-ning in O(n2 logn log logn logm) time. On average, the best algorithm is due to Karkk�ainen and Ukkonen[13], with its analysis and space usage improved by Park [17]. The expected time is O(n2k=m2 log� m)for k < m2=(4 log� m) using O(m2) space (O(k) space on average). This time result is optimal for theexpected case.Krithivasan and Sitalakshmi (KS) [15] de�ned the edit distance in two dimensions as the sum of theedit distance of the corresponding row images. Using this model they search a subimage of size m�minto a large image of size n � n, in O(m2n2) time using a generalization of the classical one-dimensionalalgorithm. Krithivasan [14] presents for the same model an O(m(k+logm)n2) algorithm that uses O(mn)space. Amir and Landau [3] give an O(k2n2) worst case time algorithm using O(n2) space. Amir andFarach [2] also considered non-rectangular patterns achieving O(k(k+pm logmpk logk)n2) time.In [6] we use the same model and improve the expected case to O(n2k log� m =m2) on average fork < m(m + 1)=(5 log� m), using O(m2) space. This time matches the optimal result allowing onlysubstitutions, and is also optimal [13], being the restriction on k only a bit stricter. For higher errorlevels, [6] presents an algorithm with time complexity O(n2k=(wp�)) (where w is the size in bits of thecomputer word), which works for k < m(m+ 1)(1� e=p�). It is also shown that this limit on k cannotbe improved.In [4], Baeza-Yates de�ned more general models, where the errors can occur along rows or columns.Three distances R, C and L are de�ned, and for the �rst two it is shown that the �lters of [6] can be appliedto obtain the same complexity and slightly reduced tolerance to errors, i.e. k < m(m + 1)=(7 log� m).A fourth model de�ned in [4] is called RC, which generalizes R and C since the errors can occur alongrows or columns at any time. This model is much more robust and useful for more applications, and isthe one we use in this work. We cover this model in detail in the next section.3 Multidimensional Approximate SearchingThe classical dynamic programming algorithm [16] to compute the edit distance between two one-dimensional strings A and B of length m1 and m2 computes a matrix C0::m1;0::m2 . The value Ci;jholds the edit distance between A1::i and B1::j . The construction algorithm is as followsCi;0  i ; C0;j  jCi;j  if Ai = Bj then Ci�1;j�1 else 1 + min(Ci�1;j�1; Ci�1;j; Ci;j�1)and the distance ed(A;B) is the �nal value of Cm1;m2 . The rationale of the formula is that if Ai = Bjthen the cost to convert A1::i into B1::j is that of converting A1::i�1 into B1::j�1. Otherwise we have tomake one error and select among three choices: (a) convert A1::i�1 into B1::j�1 and replace Ai by Bj , (b)convert A1::i�1 into B1::j and delete Ai, and (c) convert A1::i into B1::j�1 and insert Bj .3



This algorithm takes O(m1m2) space and time. It is easily adapted to search a pattern P in a textT allowing up to k errors [18]. In this case we want to report all the text positions j such that a su�x ofT1::j matches P with at most k errors. This time the matrix is C0::n;0::m and the construction formula isCi;0  0 ; C0;j  jCi;j  if Pi = Tj then Ci�1;j�1 else 1 +min(Ci�1;j�1; Ci�1;j; Ci;j�1)where the only change is that a pattern of length zero matches with no errors at any text position. Allthe positions i such that Ci;m � k are reported. This takes O(mn) time. The space can be reduced toO(m) by noticing that only the old and new column of the matrix need to be stored. We de�ne led(T; P )as the smallest edit distance among the pattern P and a su�x of T , and therefore led(T1::i; P ) = Ci;m.In [4], a natural extension to the edit distance notion for two dimensional strings (or \images")A andB was de�ned (called RC in that paper, and ed2 in this work). It allows the errors to occur along anydimension. An algorithm to compute the edit distance among two images is de�ned. For simplicity weassume that they are square and of the same sizem�m, although it is easy to remove that limitation. Thealgorithm computes a four-dimensional matrix C0::m;0::m;0::m;0::m, so that Ci;j;p;q = ed(A1::i;1::j; B1::p;1::q).C is built using the formulasCi;0;0;0  i ; C0;j;0;0  jC0;0;p;0  p ; C0;0;0;q  qCi;j;p;q  min( Ci�1;j;p�1;q + ed(Ai;1::j; Bp;1::q); Ci�1;j;p;q + j; Ci;j;p�1;q + q;Ci;j�1;p;q�1 + ed(A1::i;j; B1::p;q) Ci;j�1;p;q + i; Ci;j;p;q�1 + p )which has a very similar rationale of the one-dimensional case: at each point we can solve the last row(�rst line of the min() formula) or the last column (second line of the min() formula). In each case, weeither insert the whole row, delete the whole row, or replace the row of A by the row of B (and ed() givesthe best way to do it). This algorithm is O(m6) time and O(m4) space. However, by precomputing allthe values Horizi;j;p;q = ed(Ai;1::j; Bp;1::q) V erti;j;p;q = ed(A1::i;j; B1::p;q)(i.e. all the row-wise and column-wise alignments), the search time drops to O(m4) and the space doesnot change. This is because the ed() of the C formula are obtained in constant time, and Horiz consistsof m2 one-dimensional edit distance computations, among Ai;� and Bp;�. The same holds for V ert.In [4] they mention that this algorithm extends to d dimensions in time O(m2d) but they do notgive the details. We give a detailed algorithm in the next section and show that the exact complexity isO(d!m2d). Also, no algorithm was given in [4] to search a subimage in a larger image using the abovedistance function. We do so in the following sections. We �nally extend the one-dimensional �lteringalgorithm to more dimensions.Before extending the result to more dimensions, we show how the space can be reduced to O(m3).We can select, say, i as the most external variable of the iteration to �ll the matrix. Therefore, we needonly the values at iteration i � 1 to compute the values at iteration i. Hence, we do not need to storeall the cells of all the i-th iterations, just the last one. The same can be done with Horiz and V ert, byusing i as the most external iteration variable.4 Edit Distance in More DimensionsThe idea of the previous section can be extended to compute edd(), i.e. the edit distance generalized tod dimensions. The algorithm is O(d!m2d) time and O(m2d�1) space.4



A (2d)-dimensional matrix C is computed (d dimensions for A and d dimensions for B), and the ed()of the above formula is replaced by edd�1. If the values of edd�1 are not precomputed then we haveO(m2d�1) space (by using the trick of selecting one variable as the most external in the iteration) plusthe space needed to compute edd�1 (only one at a time is computed). This gives the recurrenceS1 = m ; Sd = m2d�1 + Sd�1which yields O(m2d�1) space. The time, on the other hand, involves to �ll m2d cells, where each cellperforms a minimum over 3d elements (i.e. insertion, deletion and edd�1 in d dimensions). This makesit necessary to compute d times the function edd�1(). That isT1 = m2 ; Td = m2d 3d + m2d d Td�1which yields O(d!md(d+1)). This matches the O(m6) result for two dimensions mentioned in [4].However, we may precompute all the necessary values of edd�1(). Along each one of the d dimensions,we take all them2 (i; p) possible combinations of values of the selected dimension inA and B, and computeedd�1() between the (d� 1)-dimensional objects which result from restricting the selected dimension to iin A and to j in B. Once this is done, the edd�1 computations can be taken as constants in the formulaof edd(). The time cost is now T1 = m2 ; Td = m2d 3d + dm2Td�1which yields O(d!m2d) time (which matches the improved O(m4) algorithm of [4] for two dimensions).This is a big improvement over the naive algorithm. The space requirements are, however, higher. Wehave to store, for the d-dimensional object,m2d cells plus the precomputed values, along each dimension,of all the m2 combinations of (i; p) values for that dimension, and all the space for the lower dimensionsresulting for each pair (i; p). That isS1 = m ; Sd = m2d + dm2Sd�1which yields O(d!m2d), and we can use the trick of the external variable to reduce this to O(d!m2d�1).5 A Dynamic Programming Search AlgorithmWe modify the edit distance algorithm so that instead of computing the edit distance between twoelements, it searches a small pattern P of size md inside a large text T of size nd. The idea is a simplemodi�cation of the edit distance algorithm. For two dimensions the formula is as followsCi;0;0;0  0 ; C0;j;0;0  0C0;0;p;0  p ; C0;0;0;q  qCi;j;p;q  min( Ci�1;j;p�1;q + led(Ai;1::j; Bp;1::q); Ci�1;j;p;q + q; Ci;j;p�1;q + q;Ci;j�1;p;q�1 + led(A1::i;j; B1::p;q) Ci;j�1;p;q + p; Ci;j;p;q�1 + p )where the only di�erences are that the basic values are zero when the pattern is of size zero, that wepenalize insertions and deletions according to the pattern size, and that instead of ed() we use led(), sothat we select the best su�x of the text along each dimension. If we are searching allowing up to k errors,then we report all text (i; j) positions such that Ci;j;m;m � k.The form to extend this to more dimensions is immediate. By repeating the analysis of the abovesection, we see that the naive algorithm is O(d!(mn) d(d+1)2 ) time and O(mdnd�1) space (since n is muchlarger than m, we select one of the text coordinates as the most external variable). By precomputing thedistances in lower dimensions, the search algorithm is O(d!mdnd) time and O(d!mdnd�1) space.5



5.1 CorrectnessWe now prove that the above algorithm is correct (in two dimensions). This extends easily to moredimensions.Lemma: For each text position (i; j), it is possible to perform Ci;j;m;m edit operations in the patternP (converting it into P 0) so that the pattern P 0 matches the text su�x T::i; ::j, and this is not possiblewith less operations.Proof: We prove the Lemma for any Ci;j;p;q. The Lemma is obviously true for the base case of theformula. For the recursive case, we inductively assume that the Lemma is true for the subproblems.We consider the �rst line of the update formula, which corresponds to the rows (the other cases areequivalent).If the value for Ci;j;p;q is obtained using a row insertion in the pattern, then we can inductively alignP1::p;1::q at T::i�1;j with cost Ci�1;j;p;q, and then insert the text segment Ti;j�p+1::j in P at the cost of pmore errors so as to align P1::p;1::q at T::i;j.If the value for Ci;j;p;q is obtained using a row deletion in the pattern, then we can inductively alignP1::p�1;1::q at T::i;j with cost Ci;j;p�1;q, and then delete the pattern row Pp;1::q from P at the cost of pmore errors so as to align P1::p;1::q at T::i;j.Finally, if we obtain Ci;j;p;q by replacing Pp;1::q with a row su�x of Ti;::j, then the led() of the formulagives the optimal way to do it, so that we align P1::p�1;1::q at T::i�1;j with cost Ci�1;j;p�1;q, and thenconvert the pattern row Pp;1::q to some text row su�x of Ti;::j, at led(Ti;1::j; Pp;1::q) cost.Alternatively, we can use the recursion on the column values. It is also clear that this cannot be donebetter. On the other hand, we can use induction over the number of dimensions to show that the Lemmais correct for any d-dimensional problem.5.2 Reducing the Space RequirementsThe space requirement of the algorithm is O(d!mdnd�1), which is too high. This is awkward since theproblem exhibits high locality. That is, the fact that a text position matches or not depends only on thelast (m+ k)d-size text \su�x" that ends at that point. In fact, if we cut the text in (n=s)d subtexts (ofd dimensions) of size sd, we can work separately at each subtext. However, we need to start, at eachdimension, m+ k positions behind the cube so as to have the context properly initialized when we reachthe cube. The total amount of work is (n=s)dd!md(m + k + s)d and the total space requirements ared!md(m + k + s)d�1. Notice that if k > m we just need to start 2m positions behind the subtext ateach dimension, since if more than m errors are made along a given line, it is better to just perform mreplacements.For instance, we may select s = m, and then we obtain an algorithm which is at most O(d!3dmdnd)time and O(d!3dm2d�1) space (assuming a worst case k > m), which is much more reasonable. Theminimum possible space requirement is O(d!2dm2d�1), at time cost O(d!2dm2dnd) (that is, s = 1).6 Multidimensional Exact String MatchingIn [8], they allow to search, in two dimensions, a pattern in a text in O(n2=m) average time. Theytraverse only the text rows of the form i�m searching for all the pattern rows at the same time (usingan Aho-Corasick machine [1]), and verify all potential matches. It is easy to see that no match can bemissed with the �lter. 6



2-d  text

2-d pattern

2-d pattern

3-d  text3-d pattern

3-d patternFigure 2: Algorithm for exact searching. All the pattern \rows" are searched in n=m text \rows" at thesame time.In [8], the authors briey mention that their technique can be extended to more dimensions byselecting one dimension and recursively using an algorithm for (d� 1) dimensions on the m-th \rows" ofsuch text. However no more details are given, nor any analysis.We give now a more detailed explanation of the algorithmand analyze it. We select one dimension (say,coordinate i) and obtain n=m di�erent (d�1) dimensional objects of the form Tm;1::n;1::n;:::, T2m;1::n;1::n;:::,..., Tim;1::n;1::n;:::, and so on. On the other hand, we obtain m patterns of (d � 1) dimensions, namelyP1;1::m;1::m;:::, P2;1::m;1::m;:::, ..., Pp;1::m;1::m;::: and so on. All the m subpatterns are searched in each oneof the (d� 1) dimensional subtexts. See Figure 2. Each time one of the (d� 1) dimensional subpatternsis found in a text position, the complete d-dimensional pattern is checked.An important part of the analysis of [8] for two dimensions is that the total cost to verify potentialmatches is not too large. It is not immediate that this is still valid for more dimensions, since a verylarge number of one-dimensional patterns are �nally veri�ed.The cost to verify a potential match in d dimensions is always O(1) on average, since we have tocheck if md letters of the pattern are equal to the text at a given position. Since we stop the checking assoon as we �nd a mismatch, we verify more than c characters with probability 1=�c. Hence, the averagenumber of characters checked is P 1=�c = O(1) (even for patterns of unbounded size).We denote by Ed;r the average search cost for r patterns in d dimensions. The existence of the Aho-Corasick [1] algorithm implies that E1;r = n. Now, for d dimensions, we perform n=m searches for rmpatterns on d� 1 dimensions, and check all the candidates that occur. The probability of a pattern ofsize md�1 occurring in a text position is 1=�md�1, but we multiply that by rm because we search for rmdi�erent patterns. As the average cost to verify each potential match is O(1), and the (d�1) dimensionaltexts are of size nd�1, we have thatEd;r = nm �Ed�1;rm + nd�1 rm�md�1� = nmEd�1;rm + ndr�md�1which gives Ed;r = ndmd�1 + d�1Xw=1 ndr�mw = O�nd � 1md�1 + r�m��(where the �rst term corresponds to the actual searches which are all done in one dimension).In particular, to search for one pattern we can replace r by 1 in this �nal formula (although thealgorithm internally uses multipattern search). This formula matches the result for two dimensions, since7



3 dimensions1 dimension

2 dimensions

Figure 3: Filtering algorithm for k = 2. In each case, some block appears unchanged.there we have d = 2 and then 1=�m = o(1=m). In general, if d is assumed to be �xed, the above resultfor r = 1 can be bounded by O(nd=md�1).The space complexity of the algorithm corresponds to the Aho-Corasick machine, whose space re-quirements are proportional to the total number of patterns, i.e. O(rmd). We use this algorithm as abuilding block in the next section.7 A Fast Filter for Multidimensional Approximate SearchingWe present now an e�ective �lter to quickly discard large parts of the text which cannot contain a match,so that we use the dynamic programming algorithm to verify only the text areas which could contain anoccurrence of the pattern. In this section we assume k < m, since otherwise the �lter is not applicable.The �lter is based on a generalization of the one-dimensional �lter explained in Section 2. In thatcase, we cut the pattern in (k + 1) pieces, and since each error can destroy at most one piece, we havealways one piece left untouched inside each occurrence.In two and more dimensions, we cut the pattern in (k+1) pieces along each dimension (see Figure 3).Since each error occurs along one dimension only, at least one of the pieces is left untouched (althoughwe do not know which one). Hence, we search for all the (k + 1)d pieces at the same time in the text(with no errors). Those pieces are of size (m=(k + 1))d, and can be searched with the algorithm of theprevious section in average timend  1(m=(k+ 1))d�1 + (k + 1)d�m=(k+1)! = (k + 1)dnd � 1(k + 1)md�1 + 1�m=(k+1)�and the space is O(md).Each time one such piece is found, we have to verify a surrounding text area to check for a possiblematch. This area extends (m+ 2k) positions along each dimension (since the match could start at mostk positions backwards or �nish up to k positions forward). Hence, the cost of a veri�cation is the sameas that of searching the pattern in a text of size (m+ 2k)d allowing errors, which is O(d!md(m+ 2k)d).The total number of veri�cations is obtained by multiplying the number of pattern pieces (k + 1)d by8



the probability of a piece matching, i.e. �(m=(k+1))d. Hence, the total expected cost for veri�cations is(k + 1)dd!md(m+ 2k)dnd=�(m=(k+1))d.We want that the total cost of veri�cations does not exceed the cost to search the pieces. This holdspessimistically for k + 1m � 1(d(2 log� m+ log� d))1=d(the exact formula is easy to obtain but gives less intuition). Notice that this bound tends to 1 as dgrows, which improves our �lter for higher dimensions.Notice that, since we only verify pieces of the text of size (m + 2k)d, the space requirement of thisalgorithm is O(d!md(m+2k)d�1). This is a form of our previous technique to reduce space requirements,although in this case we only check a few portions of the text.8 ConclusionsWe have presented the �rst algorithms to search a multidimensional pattern in multidimensional textallowing editing errors along any dimension. This is a new model recently proposed in [4]. We havegeneralized their algorithm to compute edit distance to d dimensions, where we obtained O(d!m2d) timeand O(d!m2d�1) space (where the compared elements are of size md).We have obtained and proved the correctness of the �rst search algorithm for this model, where apattern of size md is searched in a text of size nd at O(d!mdnd) time and O(d!mdnd�1) space. We haveshown how to trade time for space, for instance with O(d!3d�1m2d�1) space we have O(d!nd(3m)d) time.Finally, we have proposed a �lter which obtains roughly (k=m)d�1nd average search time wheneverthe number of allowed errors is low enough. That is, we even do not inspect all the text characters.As a side e�ect, we extend to d dimensions and analyze a previous algorithm for exact two-dimensionalpattern matching [8].These are the �rst search algorithms and fast �lters for the �rst model which extends successfully theconcept of approximate string matching to more than one dimension. Although the algorithms have beenpresented for square d-dimensional pattern and text, they are trivially extended for hyper-rectangularelements.Our �lter can be improved by noticing that in fact more than one of the (k + 1)d subpatterns mustmatch. For more than one dimension, any error can destroy at most all the elements of a line, i.e. onlyk(k + 1) elements can be altered, and therefore (k + 1)d � k(k + 1) subpatterns must match (althoughtheir relative positions can be a little altered). If we redo the analysis considering that all these piecesmust match we �nd that the �lter is e�ective for virtually any k < m. However, the search algorithm ismore complex. We plan to pursue on this in future work.References[1] A. Aho and M. Corasick. E�cient string matching: an aid to bibliographic search. CACM, 18(6):333{340, June 1975.[2] A. Amir and M. Farach. E�cient 2-dimensional approximate matching of non-rectangular �gures.In Proc. SODA'91, pages 212{223, 1991.[3] A. Amir and G. Landau. Fast parallel and serial multidimensional approximate array matching.Theoretical Computer Science, 81:97{115, 1991.9



[4] R. Baeza-Yates. Similarity in two-dimensional strings. In Proc. COCOON'98, LNCS, Taipei, Taiwan,August 1998. Springer-Verlag. To appear.[5] R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string matching. In Proc.CPM'96, LNCS 1075, pages 1{23, 1996.[6] R. Baeza-Yates and G. Navarro. Fast two-dimensional approximate pattern matching. In Proc.LATIN'98, number 1380 in LNCS, pages 341{351. Springer-Verlag, 1998.[7] R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern matching. In Proc.CPM'92, LNCS 644, pages 185{192, 1992.[8] R. Baeza-Yates and M. R�egnier. Fast two dimensional pattern matching. Information ProcessingLetters, 45:51{57, 1993.[9] T. Baker. A technique for extending rapid exact string matching to arrays of more than one dimen-sion. SIAM Journal on Computing, 7:533{541, 1978.[10] R. Bird. Two dimensional pattern matching. Inf. Proc. Letters, 6:168{170, 1977.[11] B. Commentz-Walter. A string matching algorithm fast on the average. In Proc. ICALP'79, number 6in LNCS, pages 118{132. Springer-Verlag, 1979.[12] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, Oxford, UK, 1994.[13] J. Karkk�ainen and E. Ukkonen. Two and higher dimensional pattern matching in optimal expectedtime. In Proc. SODA'94, pages 715{723. SIAM, 1994.[14] K. Krithivasan. E�cient two-dimensional parallel and serial approximate pattern matching. Tech-nical Report CAR-TR-259, University of Maryland, 1987.[15] K. Krithivasan and R. Sitalakshmi. E�cient two-dimensional pattern matching in the presence oferrors. Information Sciences, 43:169{184, 1987.[16] S. Needleman and C. Wunsch. A general method applicable to the search for similarities in theamino acid sequences of two proteins. J. of Molecular Biology, 48:444{453, 1970.[17] K. Park. Analysis of two dimensional approximate pattern matching algorithms. In Proc. CPM'96,LNCS 1075, pages 335{347, 1996.[18] P. Sellers. The theory and computation of evolutionary distances: pattern recognition. J. of Algo-rithms, 1:359{373, 1980.[19] S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83{91, October 1992.[20] R. Zhu and T. Takaoka. A technique for two-dimensional pattern matching. Comm. ACM,32(9):1110{1120, 1989. 10


