
Improving an Algorithm for Approximate Pattern Matching �Gonzalo Navarro Ricardo Baeza-YatesDepartment of Computer ScienceUniversity of ChileBlanco Encalada 2120 - Santiago - Chilefgnavarro,rbaezag@dcc.uchile.clAbstractWe study a recent algorithm for fast on-line approximate string matching. This is theproblem of searching a pattern in a text allowing errors in the pattern or in the text. Thealgorithm is based on a very fast kernel which is able to search short patterns using a non-deterministic �nite automaton, which is simulated using bit-parallelism. A number of techniquesto extend this kernel for longer patterns are presented in that work. However, the techniquescan be integrated in many ways and the optimal interplay among them is by no means obvious.The solution to this problem starts at a very low level, by obtaining basic probabilisticinformation about the problem which was not previously known, and ends integrating analyticalresults with empirical data to obtain the optimal heuristic. The conclusions obtained via analysisare experimentally con�rmed. We also improve many of the techniques and obtain a combinedheuristic which is faster than the original work.This work shows an excellent example of a complex and theoretical analysis of algorithmsused for design and for practical algorithm engineering, instead of the common practice of �rstdesigning an algorithm and then analyzing it.1 IntroductionApproximate string matching is one of the main problems in classical string algorithms, withapplications to text searching, computational biology, pattern recognition, etc.The problem can be formally stated as follows: given a (long) text of length n, a (short) patternof length m, and a maximal number of errors allowed k, �nd all segments (called \occurrences"or \matches") whose edit distance to the pattern is at most k. Text and pattern are sequences ofcharacters from an alphabet � of size �. We call � = k=m the error ratio or error level.The edit distance between two strings a and b is the minimum number of edit operations needed totransform a into b. The allowed edit operations are deleting, inserting and replacing a character.Therefore, the problem is non-trivial for 0 < k < m, i.e. 0 < � < 1.The solutions to this problem di�er if the algorithm is on-line (that is, the text is not known inadvance) or o�-line (the text can be preprocessed). In this work we focus on on-line algorithms,where the classical solution, involving dynamic programming, is O(mn) time [20, 21].�This work has been supported in part by FONDECYT grant 1950622.1



In the last years several algorithms have been presented that achieve O(kn) comparisons in theworst-case [28, 11, 14, 15] or in the average case [29, 11, 8], by taking advantage of the propertiesof the dynamic programming matrix (e.g. values in neighbor cells di�er at most in one). The bestaverage complexity achieved under this approach is O(kn=p�) [8].Other approaches attempt to �lter the text, reducing the area in which dynamic programmingneeds to be used [26, 30, 25, 24, 9, 10, 18, 7, 22]. The �ltration is based on the fact that someportions of the pattern must appear with no errors even in an approximate occurrence. Thesealgorithms achieve \sublinear" expected time in many cases for low error ratios (i.e. not all textcharacters are read, O(kn log� m=m) is a typical �gure), but the �ltration is not e�ective for largerratios, and some algorithms are not practical if m is not very large.In [29], the use of a deterministic �nite automaton (DFA) which recognizes the approximate occur-rences of the pattern in the text is proposed. Although the search phase is O(n), the DFA can behuge. In [19, 13] the automaton is computed in lazy form (i.e. only the states actually reached inthe text are generated).Yet other approaches use bit-parallelism [1, 2, 33]. This technique simulates parallelism on asequential processor using bit operations. This takes advantage of the fact that the processoroperates in all the bits of the computer word in parallel. In a RAM machine of word lengthw = 
(logn) bits, this can reduce the number of real operations by a factor of O(1=w). In [31] thecells of the dynamic programming matrix are packed in diagonals to achieve O(mn log(�)=w) timecomplexity. In [34] a Four Russians approach is used to pack the matrix in machine words (theyend up in fact with a DFA where they can trade the number of states for their internal complexity).In [33], a non-deterministic �nite automaton (NFA) that recognizes the approximate occurrences ofthe pattern is used, which has only a few states and a regular structure. They achieve O(kmn=w)time by parallelizing in bits the work of such automaton. A recent work in this trend is [17], whichparallelizes the dynamic programming algorithm to obtain O(mn=w) cost in the worst case andO(kn=w) on average.In [3, 5] we proposed a new algorithm based on the bit-parallel simulation of the same NFA of[33]. The simulation, however, is completely di�erent and a core algorithm which is O(n) time forsmall patterns (independently of k) was obtained. The algorithm is the fastest one in that case. Anumber of techniques to extend that algorithm for longer patterns were shown:� Automaton partitioning simulates the NFA using many computer words, triyng not to workon inactive portions of the automaton.� Pattern partitioning cuts the pattern in pieces and searches all them with less errors, buildingup the occurrences of the complete pattern from the matches of the pieces.� Superimposition searches many pieces using a single automaton which serves as a �lter forthe multipattern search. Its matches have to be veri�ed to check which piece (if any) actuallymatched.However, those techniques can be combined in non-trivial ways and their optimal interaction is notobvious and was not obtained in [3, 5]. This optimal arrangement depends on the parameters ofthe search problem, the most important of which being2



� The error level tolerated (�). In general, �ltering techniques (such as pattern partitioning orsuperimposition) work well only for moderately low error levels. As we see in Section 3, thebehavior of the problem changes drastically depending on the error level to tolerate.� The pattern length (m). Our basic techniques work for short patterns and we need to extendthem to work on longer ones.� The alphabet size (�). The larger the alphabet, the less probable is that two random stringsmatch, which improves the e�ciency of �ltration algorithms.� The length in bits of the computer word (w). We simulate automata using the bits of computerwords, so the longer it is, the longer patterns can be accommodated.In this paper we study in depth the techniques, �nding out the range of parameters where each onecan be applied and the optimal way to combine them. The analysis starts at a very low level, �ndingthe probability of an approximate occurrence. Each technique is analytically and experimentallystudied to determine its expected behavior, and then optimized. At the end, we combine optimallythe techniques.Throughout the work, experimental validation of the analytical results is provided and sometimesused as part of the heuristic results. As a separate contribution obtained in part thanks to theanalysis, we improve many of the techniques themselves. Those improvements translate into betterexecution times in the combined algorithm which were not possible to obtain using the originaltechniques, even using them in the optimal way. Moreover, due to the new techniques, mostprevious analyses are signi�cantly modi�ed.As a side e�ect, we show the interplay between algorithm analysis and design and the feedbackbetween theory and practice. We highlight the use of analysis for design as well as experimentalresults for design.The main improvements obtained over our previous work of [3, 5] are:� We use our algorithms to verify potential matches instead of relying on classical dynamicprogramming. This improves the algorithms for high error levels when the patterns are notvery long.� We use a new technique to verify potential matches which is capable of early discardinguninteresting candidates. This makes all our algorithms more resistant to the error level,which translates into better execution times even for low error levels.� We improve the search time when the pattern is long and the error level is not very high,by improving the register usage of the algorithm. This doubles the searching performance insome cases. More importantly, it allows to keep the same performance of the core algorithmin patterns up to 8 times longer.� We improve search times for high error levels in up to 20% by using code that assumes a higherror level. This is achieved by avoiding performing some expensive bookkeeping which payso� only for low error levels. 3



� We obtain a heuristic to automatically combine the techniques in an optimal way, based onanalytical and empirical results.A summary of the organization and results presented in the paper follows. In section 2 we explainthe main features of the core algorithm presented in [3, 5]. In section 3 we study the main statisticsof the problem that drive all the average-case analysis that follows. We consider speci�cally theprobability of matching when errors are allowed and the portion of the NFA which is active onaverage. In section 4 we present the automaton partitioning technique, explain the general idea,optimize the way to partition the NFA and present new techniques to improve register usage.In section 5 we explain the pattern partitioning technique, optimize the partitioning scheme andpresent a new technique to integrate the matches of the pattern pieces. In section 6 we describe thetechnique of superimposing automata and show how to optimize the amount of superimposition.In section 7 we build the complete heuristic based on the previous results, �nding the optimalway to combine the above techniques. In section 8 we compare experimentally the combinedalgorithm against the fastest algorithms we know. Finally, we present our conclusions and futurework directions in section 9.A compiled version of the complete algorithm is publicly available (see Section 7.2). All the ex-perimental results of this paper were obtained on a Sun UltraSparc-1 of 167 MHz running Solaris2.5.1, with 64 Mb of RAM. This is a 32-bit machine, i.e. w = 32. All the times are measured inseconds of user (CPU) time per megabyte of text. Except otherwise stated, our experiments havea standard deviation of 10%.2 A Bit-Parallel Core AlgorithmIn this section we review the main points of the algorithm [3, 5]. We refer the reader to the originalarticles for more details.Consider the NFA for searching "patt" with at most k = 2 errors shown in Figure 1. Everyrow denotes the number of errors seen. The �rst one 0, the second one 1, and so on. Everycolumn represents matching the pattern up to a given position. At each iteration, a new textcharacter is considered and the automaton changes its states. Horizontal arrows represent matchinga character (since we advance in the pattern and in the text, and they can only be followed if thecorresponding match occurs), vertical arrows represent inserting a character in the pattern (sincewe advance in the text but not in the pattern, increasing the number of errors), solid diagonalarrows represent replacing a character (since we advance in the text and pattern, increasing thenumber of errors), and dashed diagonal arrows represent deleting a character of the pattern (theyare empty transitions, since we delete the character from the pattern without advancing in the text,and increase the number of errors). Finally, the self-loop at the initial state allows to consider anycharacter as a potential starting point of a match, and the automaton accepts a character (as theend of a match) whenever a rightmost state is active.This NFA has (m+ 1)� (k + 1) states. We assign number (i; j) to the state at row i and columnj, where i 2 0::k; j 2 0::m. Initially, the active states at row i are at the columns from 0 to i, torepresent the deletion of the �rst i characters of the pattern.4
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�� �� �� �� ��� � � �����Figure 1: An example NFA for approximate string matching. After processing the text "xat",active states (those containing a \1") are (2; 3), (2; 4) and (1; 3), besides those always active of thelower-left triangle. We enclose in dotted the states actually represented by the algorithm.Many algorithms for approximate string matching consist fundamentally in simulating this automa-ton by rows or columns. The dependencies introduced by the diagonal empty transitions preventedthe bit-parallel computation of the new values. In [3, 5] we have shown that by simulating theautomaton by diagonals (i.e. packing the bits of the diagonals in machine words), it is possible tocompute all values in parallel (using bit-parallelism). Hence, when all the bits to represent �t in acomputer word, the parallel update formula for each new text character read is O(1) cost and veryfast in practice.For this simulation, it su�ces to represent only the complete diagonals of the automaton (excludingthe �rst one). The total number of bits needed to represent the automaton is (m � k)(k + 2). Ifwe call w the number of bits in the computer word, the core algorithm is O(n) time in the worstand average case whenever (m� k)(k+ 2) � w.A central part of the algorithm is the de�nition of an m bits long mask t[c], representing match ormismatch against the pattern for each character c. That is, if the pattern is patt = p1:::pm (withpi 2 �), then t[c] = b1:::bm, where the bit bi is set whenever pi 6= c. This t[ ] table is similar tothat used in the Shift-Or algorithm for exact string matching [2], and it allows more sophisticatedsearching: at each position of the pattern, we can allow not only a single character, but a class ofcharacters, at no additional search cost. This is expressed as an extended pattern, which has a setof characters at each position, i.e. it belongs to P(�)� instead of ��. Those patterns are denoted aspatt = C1:::Cm, where Ci � �. To search an extended pattern it su�ces to set t[c] to \match" atposition i for every c 2 Ci. For example, we can search in case-insensitive by allowing each positionto match the upper-case and lower-case versions of the letter. We show later other applications ofthis ability for our purposes. 5



An separate speedup technique considers that any occurrence of the pattern must begin with oneof its k + 1 initial letters (otherwise we will spend more than k errors in inserting those letters).We can therefore traverse the text with a fast search for one of those characters, and start theautomaton only when we �nd one. The �ltering is resumed when the automaton runs out of activestates. As shown in [5] this can double in practice the performance of the automaton for low errorlevels, although its performance (and even its convenience) depends on �, � and m.This technique can be used for other algorithms as well, as long as they are slower than the searchfor one character (which outrules most �ltration algorithms), and they can easily be restarted andterminated.3 The Statistics of the ProblemAs we see later, a number of techniques to handle a long pattern rely on searching pieces of thepattern or even more complex constructions, and then performing a costly veri�cation step eachtime a piece is found. Therefore, for an average case analysis and to compare di�erent heuristics,it is essential to determine which is the probability of �nding a pattern in a text position allowingerrors. Another statistical information which is necessary for our average-case analysis is relatedto which portion of the NFA has active states, as our algorithms try to simulate only the activeportion of the NFA.In all the average-case analysis of this paper we assume that the patterns are not extended. Aneasy way to consider extended patterns is to replace � by �=s in all the formulas, where s is thesize of the Ci sets corresponding to pattern positions. This is because the probability of crossing ahorizontal edge of the automaton is not 1=� anymore, but s=�.3.1 Probability of MatchingGiven a pattern of length m which is searched in a text, both pattern and text being randomsequences over an alphabet of size � (the letters are selected with uniform probability), we want to�nd the probability f(m; k) of a match with k errors or less at a given text position. Recall thatwe use � = k=m.As we show shortly, this probability grows very abruptly as a function of �, being exponentiallydecreasing withm for small �. The importance of being exponentially decreasing withm is that thecost to verify a text position is O(m2), and therefore if that event occurs with probability O(
m)for some 
 < 1 then the total cost of veri�cations is O(m2
m) = o(1), which makes the veri�cationcost negligible. On the other hand, as soon as the cost ceases to be exponentially decreasing itbegins to be at least 1=m, which yields a total veri�cation cost of O(mn). This is the same cost ofplain dynamic programming.In [3, 5] it is shown that f(m; k) � 
m, where
 =  1�� 2�1�� (1� �)2!1�� �  e2�(1� �)2!1�� (1)6



and therefore f(m; k) is exponentially decreasing with m whenever 
 < 1, i.e.� < �� = 1� ep� (2)On the other hand, the only optimistic bound we can prove is based on considering that onlyreplacements are allowed (i.e. Hamming distance). In this case, given a pattern of length m, thenumber of strings that are at distance i from it are obtained by considering that we can freelydetermine the i places of mismatch, and at those places we can put any character except that ofthe pattern, i.e.  mi !(� � 1)i =  mi ! �i (1 +O(1=�))Although we should sum the above probabilities for i from zero to k, we use the largest i = k as a(tight) lower bound. Hence, the probability of matching is obtained by dividing the above formula(with i = k) by �m (the total number of possible text windows of length m), to obtainf(m; k) �  mk! 1�m�k = mmkk(m� k)m�k�m�kpm �(1) =  1� �1�� (1� �)�!(1��)m �(m�1=2)(where we used Stirling's approximation to the factorial). Since e�1 � � �1�� � 1, the aboveexpression can be lower bounded by f(m; k) � �m m�1=2, where� = � 1(1� �)��1��Therefore an upper bound for the maximum allowed value for � is � � 1� 1=�, since otherwise wecan prove that f(m; k) is not exponentially decreasing on m (i.e. it is 
(m�1=2)).Hence, the limit � < 1� e=p� corresponds to the maximum error level up to where we can provethat the algorithms based on �ltration can work well, and we can prove that they cannot work wellfor � > 1� 1=�.We now verify this analysis empirically. The experiment we performed consists of generating alarge random text and running the search of a random pattern on that text, with k = m errors. Ateach text character, we record the minimum k for which that position would match the pattern.Finally, we analyze the histogram, �nding how many text positions matched for each k value. Weconsider that k is safe up to where the histogram values become signi�cant. The threshold is setto n=m2, since m2 is the cost to verify a match. However, the selection of this threshold is notvery important, since the histogram is extremely concentrated. For example, it has �ve or sixsigni�cative values for m in the hundreds.Figure 2 shows the results for m = 300. The curve � = 1� 1=p� is included to show its closenessto the experimental data. Least squares give the approximation �� = 1� 1:09=p�, with a relativeerror smaller than 1%.Figure 3 validates other theoretical assumptions. On the left we show that the matching probabilityundergoes a sharp increase at ��. On the right we show that this point is essentially independent onm. Notice, however, that our assumptions are a bit optimistic since for short patterns the matchingprobability is somewhat higher. 7
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 = 1 (Eq. (1))� Conservative lower bound, Eq. (2)Figure 2: Theoretical and practical bounds for �, for m = 300.3.2 Active ColumnsA question related to the previous one is: which is the average number of automaton columns whichhave active states? That is, if we call cr the smallest row with active states in column r of ourNFA, which is the largest r satisfying cr � k? Those columns satisfying cr � k are called active,and columns past the last active one need not be updated. Since our simulation avoids workingon the inactive portions of the automaton, the question of the active columns is important for theaverage-case analysis of our algorithm (especially for partitioned automata).Ours is not the �rst algorithm pro�ting from active columns. Ukkonen de�ned active columns in[29], and modi�ed the dynamic programming algorithm so that it does not work past the last activecolumn. The algorithm keeps track of the current last active column. At the end of each iterationthis last column may increase in one (if a horizontal automaton arrow is crossed from the last activecolumn to the next one), or may decrease in one or more (if the last active column runs out ofactive states, the next-to-last may be well before it). In this case the algorithm goes backward inthe matrix looking at the new last active column.Ukkonen conjectured that the last active column was O(k) on average and therefore his algorithmwas O(kn) on average. However, this was proved much later by Chang and Lampe [8]. We foundin [3, 5] a tighter bound, namely k1� e=p� + O(1) (3)which is O(k). The e of the formula has the same source as before and hence can be replaced by1.09 in practice. By using least squares on experimental data we �nd that a very accurate formulais 0:9 k1� 1:09=p� (4)with a relative error smaller than 3.5%. 8
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4 Automaton PartitioningThis technique, presented in [3, 5], is the simplest way to extend the algorithm to handle longerpatterns. We �rst present the general method and then optimize it.4.1 General MethodIf the automaton does not �t in a single word, we just partition it using a number of machine wordsfor the simulation. Those subautomata behave di�erently than the simple one, since they mustcommunicate their �rst and last diagonals with their lateral neighbors, as well as propagate activestates down to the cells below (see Figure 5). We say that the automaton is partitioned in I � J\cells", arranged in I \d-rows" (set of rows packed in a cell) and J \d-columns" (set of automatondiagonals packed in a cell).
J d-columns

I d-rowsFigure 5: A 2 � 3 partitioned automaton where `c = 3; `r = 2; I = 2; J = 3. We selected acell (bold edges) and shaded all the nodes of other cells a�ected by it. The bold-edged cell mustcommunicate with those neighbors that own shaded nodes.Let's suppose �rst that k is small and m is large. Then, the automaton can be \horizontally" splitin as many subautomata as necessary, each one holding a number of diagonals. Note that we needthat at least one automaton diagonal �ts in a single machine word, i.e. k + 2 � w.Suppose, on the other hand, that k is close to m, so that the width m�k is small. In this case, theautomaton is not wide but tall, and a vertical partitioning becomes necessary. These subautomatamust propagate the �-transitions down to all subsequent subautomata. In this case, we need thatat least one automaton row �ts in a machine word, i.e. 2(m� k) � w (the 2 is because we need anover
ow bit for each diagonal of each cell).When none of the two previous conditions hold, we need a generalized partition in d-rows andd-columns. We use I d-rows and J d-columns, so that each cell contains `r bits of each one of `cdiagonals. It must hold that (`r + 1)`c � w. There are many options to pick (I; J) for a givenproblem. The correct choice is a matter of optimization.If we divide the automaton in I � J subautomata (I d-rows and J d-columns), we must updateI cells at each d-column. However, we use a heuristic similar to [29] (i.e. not processing the m10



columns but only up to the last active one), so we work only on active automaton diagonals (seeSection 3.2). The expense of working on less d-columns is having to keep account of the possiblevariation of the last active column for each text character.4.2 Theoretical AnalysisSince automaton partitioning gives us some freedom to arrange the cells, we �nd out now the bestarrangement.In Section 3.2 we obtained the expected value for the last active column in the automaton (Eq. (3)).This measures active columns and we work on active diagonals. To obtain the last active diagonalwe subtract k, to obtain that on average we work on ke=(p� � e) diagonals.This is because the last active column depends on the error level k. Hence, at automaton row i(where only i errors are allowed) the last active column is lcol(i) = i=(1� e=p�). Hence, the lastactive column de�nes a diagonal line across the automaton whose slope is 1=(1� e=p�). Figure 6illustrates the situation. All the active states of the automaton are to the left of the dasheddiagonal. The number of diagonals a�ected from the �rst one (thick line) to the dashed one isk=(1� e=p�)� k.i k0 Initial diagonalLast active diagonallcol(i) = i=(1�e=p�))Automaton Last active column:k k=(1�e=p�)Figure 6: Converting active columns to active diagonals. The shaded area represents the activestates of the automaton.Since we pack (m�k)=J diagonals in a single cell, we work on average on ke=(p�� e)�J=(m�k)d-columns. Each d-column must work on all its I cells. On the other hand, there are only Jd-columns. Hence our total complexity isI J min�1; ke(m� k)(p� � e)� nwhich shows that any choice for I and J is the same for a �xed IJ . Since IJ � (m� k)(k + 2)=w(total number of bits to place divided by the size of the computer word), the �nal cost expressionis independent (up to round-o�s) of I and J :min�m� k ; kep� � e� k + 2w n (5)11



This formula has two parts. First, for � < 1�e=p�, it is O(k2n=(p�w)) time. Second, if the errorratio is high (� � 1 � e=p�), it is O((m � k)kn=w). This last complexity is also the worst caseof this algorithm. Recall that in practice the value e should be replaced by 1.09 and the averagenumber of active columns is that of Eq. (4).4.3 Practical TuningSince the gross analysis does not give us any clue about which is the optimal selection for I and J ,we perform more detailed considerations.The automaton is partitioned into a matrix of I rows and J columns, each cell being a small sub-automaton, that stores `r rows of `c diagonals of the complete automaton. Because of the nature ofthe update formula, we need to store (`r + 1)`c bits for each sub-automaton. Thus, the conditionsto meet are (`r + 1)`c � w ; I = �k + 1`r � ; J = �m� k`c �Notice that in some con�gurations the cells are better occupied than in others, due to round-o�s. That is, once we select `r and `c, the best possible packing leaves some bits unused, namelyw � (`r + 1)`c.Given the freedom that the above conditions give us, we compare now the alternatives we have,to �nd out the best one. One could, in fact, try every I and J and pick the con�guration withless cells. Since we work proportionally to the number of cells, this seems to be a good criterion.Some con�gurations need more cells than others because, due to round-o�s, they use less bits ineach computer word (i.e. cell). In the worst possible con�guration, w=2 + 1 bits can be used outof w, and in the best one all the w bits can be used. It is clearly not possible to use as few as w=2bits or less, since in that case there is enough room to pack the bits of two cells in one, and theabove equations would not hold. Hence, the best we can obtain by picking a di�erent I and J isto reduce the number of cells by a factor of 2.However, it is shown in [3] that by selecting minimal I , the possible automata are: (a) horizontal(I = 1), (b) horizontal and with only one diagonal per cell (I = 1; `c = 1), or (c) not horizontalnor vertical, and with only one diagonal per cell (I > 1; J > 1; `c = 1). Those cases can be solvedwith a simpler update formula (2 to 6 times faster than the general one), since some cases ofcommunication with the neighbors are not present. Moreover, a more horizontal automaton makesthe strategy of active columns work better.This much faster update formula is more important than the possible 2-fold gains due to round-o�s.Hence, we prefer to take minimal I , i.e.I = d(k + 1)=(w� 1)e ; `r = d(k + 1)=Ie ; `c = bw=(`r + 1)c ; J = d(m� k)=`ceHowever, the three cases mentioned do not cover (d) a purely vertical partitioning, (i.e. J = 1),which is applicable whenever 2(m� k) � w and has also a simple update formula. The selectionfor vertical partitioning is Jv = 1, `vc = m�k, `vr = bw=(m�k)c� 1, Iv = d(k+1)=`vre. Figure 7shows an experimental comparison between (c) and (d).12
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Figure 7: Time in seconds for vertical partitioning (dashed line) versus minimal rows partitioning(solid line). We use m = 50, w = 32, � = 32, n = 1 Mb, random text and patterns.The mechanism we use to determine the optimal setup and predict its search cost integrates ex-perimental and analytical results, as follows.� We experimentally obtain the time that each type of automaton spends per text character(using least squares over real measures). We express those costs normalized so that the costof the core algorithm is 1.00. These costs have two parts:{ A base cost that does not depend on the number of cells: (a) 1.02, (b) 1.13, (c) 0.12, (d)1.66.{ A cost per processed cell of the automaton: (a) 1.25, (b) 0.83, (c) 2.27, (d) 1.36.{ A cost spent in keeping account of which is the last active diagonal: (a) 0.68, (b) 0.20,(c) 1.66. Notice that although at a given text position this work can be proportionalto the number of active columns, the amortized cost is O(1) per text position. To seethis, consider that at each text character we can at most increment in one the last activecolumn, and therefore no more than n increments and n decrements are possible in atext of size n. Hence the correct choice is to consider this cost as independent on thenumber of cells of the automaton.� We analytically determine using Eq. (4) the expected number of active d-columns.� Using the above information, we determine whether it is convenient to keep track of the lastactive column or just modify all columns (normally the last option is better for high errorratios). We also determine which is the most promising partition.Since this strategy is based on very well-behaved experimental data, it is not surprising that itpredicts very well the cost of automaton partitioning and that it selected the best strategy inalmost all cases we tried (in some cases it selected a strategy 5% slower than the optimal, but notmore). 13



Finally, notice that the worst case complexity of O(k(m� k)=w) per inspected character is worsethan the O(m) of dynamic programming when the pattern length gets large, i.e. m > w=(�(1��)).This ensures that automaton partitioning is better for m � 4w, which is quite large. In fact, weshould also account for the constants involved. The constant for partitioned automata is nearlytwice as large as that of dynamic programming, which makes sure that this method is betterfor m � 2w. We use therefore a partitioned automaton instead of dynamic programming as ourveri�cation engine for potential matches in the sections that follow.Figure 8 shows an experimental comparison between plain dynamic programming, the Ukkonencuto� variant [29] and our partitioned automaton for large patterns. In the worst moment of thepartitioned automaton, it is still faster than dynamic programming up to m = 60, which con�rmsour assumptions. The peaks in the right plot is not due to variance, but to integer round-o�s whichare inherent to our algorithm (this is explained more in detail in Section 8).
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Figure 8: Time in seconds for partitioned automaton (thick line) versus dynamic programming(dashed line) and the Ukkonen's improvement (solid thin line). The left plot is for m = 50 and theright one for m = 100. We use w = 32, � = 32, n = 1 Mb, random text and patterns.4.4 Improving Register UsageWe �nish this section explaining an improvement in the engineering of the algorithms that leadsto triplicating the performance in some cases. The improvement is based on better usage of thecomputer registers.The main di�erence in the cost between the core algorithm and an horizontally partitioned au-tomaton is that in the �rst case we can put in a register the machine word which simulates theautomaton. This cannot be done in a partitioned automaton, since we use an array of words. Thelocality of accesses of those words is very low, i.e. if there are a active d-columns, we update foreach text character all the words from the �rst one to the a-th. Hence, we cannot keep them inregisters.An exception to the above statement is the case a = 1. This represents having active only the �rst14



cell of the horizontal automaton. We can, therefore, put that cell in a register and traverse the textupdating it, until the last diagonal inside the cell becomes active. At that point, it is possible thatthe second cell will be activated at the next character and we must resume the normal searchingwith the array of cells. We can return to the one-cell mode when the second cell becomes inactiveagain.With this technique, the search cost for a pattern is equal to that of the core algorithm until thesecond automaton is activated, which in some cases is a rare event. In fact, we must adjust theabove prediction formulas, so that the horizontal automata cost the same as the core algorithm(1.00), and we add the above computed cost only whenever their last diagonal is activated. Theprobability of this event is f(`c + k; k).This technique elegantly generalizes a (non-elegant) truncation heuristic proposed in earlier work.It stated that, for instance, if we had m = 12; k = 1, better than partitioning the automatonin two we could just truncate the pattern in one letter, use the core algorithm and verify eachoccurrence. With the present technique we would automatically achieve this, since the last letterwill be isolated in the second cell of the horizontal automaton.Notice that this idea cannot be applied to the case I > 1, since in that case we have always morethan one active cell. In order to use the technique also for this case, and in order to extend theidea to not only the �rst cell, we could develop specialized code for two cells, for three cells, andso on, but the e�ort involved and the complexity of the code are not worth it.Figure 9 shows the improvements obtained over the old version. The better register usage is morenoticeable for low error levels (horizontal partitioning). This version of our partitioned automatonis automatically determining whether to use the speedup technique of the end of Section 2 or not.
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Figure 9: Time in seconds for partitioned automata before (thin line) and after (thick line) improv-ing register usage. We use m = 60, w = 32, � = 32, n = 1 Mb, random text and patterns.15



5 Pattern PartitioningWe present now a di�erent technique to cope with long patterns. This technique was developed in[3, 5], and is improved here. We �rst explain the general method and then optimize it.5.1 General MethodThe following lemma, proved in [3, 5], suggests a way to partition a large problem into smallerones.Lemma: If segm = Text[a::b] matches patt with k errors, and patt = P1:::Pj (a concatenationof subpatterns), then segm includes a segment that matches at least one of the Pi's, with bk=jcerrors.The Lemma allows us to reduce the number of errors if we divide the pattern, provided we searchall the subpatterns. Each match of a subpattern must be checked to determine if it is in fact acomplete match. Suppose we �nd at text position i the end of a match for the subpattern endingat position s in the pattern. Then, the potential match must be searched in the area betweenpositions i� s+1�k and i� s+1+m+ k of the text, an (m+2k)-wide area. This checking mustbe done with an algorithm resistant to high error levels, such as our partitioned automaton1.To perform the partition, we pick an integer j, and split the pattern in j subpatterns of length m=j(more precisely, if m = qj + r, with 0 � r < j, r subpatterns of length dm=je and j � r of lengthbm=jc). Because of the lemma, it is enough to check if any of the subpatterns is present in the textwith at most bk=jc errors.If we partition the pattern in j parts, we have to perform j searches. Moreover, those searcheswill together trigger more veri�cations as j grows (i.e. a piece split in two will trigger all theveri�cations triggered by the original piece plus spurious ones). This fact is re
ected in the formulafor the match probability of Section 3.1 (Eq. (1)), since the match probability is now O(
m=j),which may be much larger than O(
m) even for a single piece. Therefore, we prefer to keep j small.A �rst alternative is to make j just large enough for the subproblems to �t in a computer word,that is j� = min � j = ��mj �� �kj ����kj �+ 2� � w ^ �mj � > �kj � �where the second guard avoids searching a subpattern of length m0 with k0 = m0 errors (those oflength dm=je are guaranteed to be longer than bk=jc if m > k). Such a j� always exists if k < m.Solving the above equation (disregarding roundo�s) we obtainj� = m� k +p(m� k)2 + wk(m� k)w = m d(w; �)1In fact, we used plain dynamic programming in previous work, but as shown in Section 4.4 the partitionedautomaton is faster except for very long patterns. As we see shortly, however, we elaborate more on this veri�cationtechnique. 16



where d(w; �) = 1� �w �1 +q1 + w�=(1� �)�As a function of �, d(w; �) is convex and is maximized for � = 1=2 (1 � 1=(pw � 1)), where ittakes the value 1=(2(pw � 1)). To give an idea of the reduction obtained, this maximum value is0.11 for w = 32 and 0.07 for w = 64.Excluding veri�cations, the search cost is O(j�n). For very low error ratios (� < 1=w), j� =O(m=w) and the cost is O(mn=w). For higher error ratios, j� = O(pmk=w) and then the searchcost is O(pmk=w n). Both cases can be obviously bounded by O(mn=pw).A second alternative is to use a smaller j (and therefore the automata still do not �t in a computerword) and combine this technique with automaton partitioning for the subpatterns. We considerthis alternative next.5.2 Optimal Selection for jIt is possible to use just automaton partitioning (Section 4) to solve a problem of any size. It isalso possible to use just pattern partitioning, with j large enough for the pieces to be tractablewith the kernel algorithm directly (i.e. j = j�).It is also possible to merge both techniques: partition the pattern into pieces. Those pieces may ormay not be small enough to use the kernel algorithm directly. If they are not, search them usingautomaton partitioning. This has the previous techniques as particular cases.To obtain the optimal strategy, consider that if we partition in j subpatterns, we must perform jsearches with bk=jc errors. For � < 1 � e=p�, the cost of solving j subproblems by partitioningthe automaton is (using Eq. (5))ke=jp��e (k=j + 2)w jn = ke(k=2 + 2)(p� � e)w nwhich shows that the lowest cost is obtained with the largest j value, and therefore j = j� is thebest choice.However, this is just an asymptotic result. In practice the best option is more complicated due tosimpli�cations in the analysis, constant factors, and integer roundo�s. For instance, a pattern with4 pieces can be better searched with two horizontal automata of size (I = 1; J = 2) than with foursimple automata (especially given the improvements of Section 4.4). The cost of each automatondepends heavily on its detailed structure. Therefore, to determine the best option in practice wemust check all the possible j values, from 1 to j� and predict the cost of each strategy. This costaccounts for running j automata of the required type (which depends on j), as well as for the costto verify the potential matches multiplied by their probability of occurrence (using Eq. (1)).17



5.3 A Hierarchical Veri�cation AlgorithmThe original proposal for pattern partitioning (presented in [3, 5]) stopped working long beforethe limit � < 1 � 1:09=p�, as it can be seen in the original references and in Figure 11. Thiswas because all the pattern was veri�ed whenever any piece matched. Hence, the total cost forveri�cations for a single piece was O(m2
m=j�). For that cost to be O(1), we need 
 � 1=m2j�=m,i.e. � � 1� ep� m j�m�k = 1� ep� m 2d(w;�)1��which clearly decreases as m grows. Therefore, the original method degraded for longer patterns.This was caused mainly because a large pattern was veri�ed although the probability to verify itincreased with j� (i.e. with m).We propose now a di�erent veri�cation technique which does not degrade as the pattern gets longer.The idea is to try to quickly determine that the match of the small piece is not in fact part of acomplete match. A technique similar to this hierarchical veri�cation was mentioned in [16], in thecontext of indexed searching.First assume that j is a power of 2. Then, we recursively split the pattern in two halves of sizebm=2c and dm=2e (halving also the number of errors, i.e. bk=2c) until the pieces are small enoughto be searched with the core algorithm (i.e. (m�k)(k+2) � w, where m and k are the parametersfor the subpatterns). Those pieces (leaves of the tree) are searched in the text. Each time a leafreports an occurrence, its parent node checks the area looking for its pattern (whose size is closeto twice the size of the leaf pattern). Only if the parent node �nds the longer pattern, it reportsthe occurrence to its parent, and so on. The occurrences reported by the root of the tree are the�nal answers.This construction is correct because the partitioning lemma applies to each level of the tree, i.e.any occurrence reported by the root node must include an occurrence reported by one of the twohalves, so we search both halves. The argument applies then recursively to each half.Figure 10 illustrates this concept. If we search the pattern "aaabbbcccddd" with four errors in thetext "xxxbbxxxxxxx", and split the pattern in four pieces, the piece "bbb" will be found in thetext. In the original approach, we would verify the complete pattern in the text area, while withthe new approach we verify only its parent "aaabbb" and immediately determine that there cannotbe a complete match.In the Appendix (Eq. (8)) we analyze this method and show that the total amount of veri�cationwork for each piece is O((m=j)2
m=j). This is much better than O(m2
m=j), and in particular itis O(1) whenever 
 < 1. Hence, with this veri�cation method the acceptable error level does notdegrade as the pattern grows.If j is not a power of two we try to build the tree as well balanced as possible. This is because anunbalanced tree will force the veri�cation of a long pattern because of the match of a short pattern(where the long pattern is more than twice as long as the short one). The same argument showsthat it is not a good idea to use ternary or higher arity trees. Finally, we could increase j to havea perfect binary partition, but the shorter pieces trigger more veri�cations.In order to handle partitions which are not a power of two, we need a stronger version of the18



aaabbbcccdddaaabbb cccdddccc dddbbbaaaFigure 10: The hierarchical veri�cation method. The boxes (leaves) are the elements which arereally searched, and the root represents the whole pattern. At least one pattern at each level mustmatch in any occurrence of the complete pattern. If the bold box is found, all the bold lines maybe veri�ed.partitioning lemma of Section 5.1. For instance, if we determine j = 5, we have to partitionthe tree in, say, a left child with three pieces and a right child with two pieces. The standardpartitioning lemma tells us that each subtree could search its pattern with bk=2c errors, but thiswill increase the veri�cations of the subtree with the shorter pattern. In fact, we can search the leftsubtree with b3k=5c errors and the right one with b2k=5c errors. Continuing with this policy wearrive to the leaves, which are searched with bk=5c errors each as expected. The stronger versionof the Lemma followsStronger Lemma: If segm = Text[a::b] matches patt with k errors, and patt = P1:::Pj (aconcatenation of subpatterns), then segm includes a segment that matches at least one of the Pi's,with baik=Ac errors, where A =Pji=1 ai.Proof: Otherwise, each Pi matches with at least baik=Ac + 1 > aik=A errors. Summing up theerrors of all the pieces we have more than Ak=A = k errors and therefore a match is not possible.Although when there are few matches (i.e. low error level) plain and hierarchical veri�cation behavesimilarly, there is an important di�erence for medium error levels: hierarchical veri�cation is moretolerant to errors. We illustrate this fact in Figure 11. As it can be seen, both methods eventuallyare overwhelmed by veri�cations before reaching the limit � = 1� 1:09=p�. This is because, as jgrows, the cost of veri�cations O((m=j)2
m=j) increases. In the case � = 32, the theoretical limitis �� = 0:83 (i.e. k = 50), while the plain method ceases to be useful for k = 35 (i.e. � = 0:58) andthe hierarchical one works well up to k = 42 (i.e. � = 0:7). For English text the limit is �� = 0:69,while the plain method works up to k = 30 (� = 0:50) and the hierarchical one up to k = 35(� = 0:58).It is also noticeable that hierarchical veri�cation works a little harder in the veri�cations once theybecome signi�cative (very high error levels). This is because the hierarchy of veri�cations makes itto check many times the same text area. On the other hand, we notice that the use of partitionedautomata instead of dynamic programming for the veri�cation of possible matches is especiallyadvantageous in combination with our hierarchical veri�cation, since in most cases we verify onlya short pattern, where the automaton is much faster than dynamic programming.19
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Figure 11: Time in seconds for pattern partitioning using plain (thin line) and hierarchical (thickline) veri�cation. We use m = 60, w = 32, and n = 1 Mb. On the left, random text (� = 32). Onthe right, English text.6 Superimposed AutomataThis technique was �rst presented in [4] for multipattern approximate search, and integrated intothe single-pattern algorithm in [5]. We �rst explain it and then �nd the optimal form to use it.6.1 General MethodWhen we use pattern partitioning, the search is divided into a number of subsearches for smallerpatterns P1; :::; Pj. The aim of this technique is to avoid searching each subpattern separately, bycollapsing a number r of searches in a single one.In pattern partitioning all the patterns have almost the same length. If they di�er (at most inone), we truncate them to the shortest length. Hence, all the automata have the same structure,di�ering only in the labels of the horizontal arrows.The superimposition is de�ned as follows: we build the t[ ] table for each pattern (Section 2), andthen take the bitwise-or of all the tables. The resulting t[ ] table matches in its position i with thei-th character of any of the patterns involved. We then build the automaton as before using thistable.The resulting automaton accepts a text position if it ends an occurrence of a much more relaxedpattern (in fact, an extended pattern, see the end of Section 2), namely C1:::Cm, with Ci =fP1[i]; :::; Pr[i]g. For example, if the search is for patt and wait, the string watt is accepted withzero errors (see Figure 12). Each occurrence reported by the automaton has to be veri�ed for allthe patterns involved.For a moderate number of patterns, this still constitutes a good �ltering mechanism, at the samecost of a single search. Clearly, the relaxed pattern triggers many more veri�cations than the simple20



p or w� � ���� ��
no errors1 error2 errors

a ta tt or ia tt or i
t or ip or wp or w�

�� �� �� �� ������� � � �Figure 12: An NFA to �lter the parallel search of patt and wait.ones. This limits the amount of possible superimposition.If we use pattern partitioning in j pieces and superimpose in groups of r pieces, we must performdj=re superimposed searches. We keep the groups of almost the same size, namely bj=dj=rec anddj=dj=ree.We group subpatterns which are contiguous in the pattern. When an occurrence is reported wecannot know which of the superimposed subpatterns caused the match (since the mechanism doesnot allow to know), so we check whether the concatenation of the subpatterns appears in the area.From that point on, we use the normal hierarchical veri�cation mechanism.6.2 Optimizing the Amount of SuperimpositionSuppose we decide to superimpose r patterns in a single search. We are limited in the amountof this superimposition because of the increase in the error level to tolerate, with the consequentincrease in the cost of veri�cations. We analyze now how many patterns can we superimpose.As shown in Section 3.1 (Eq. (1)), the probability of a given text position matching a randompattern is O(
m), where 
 depends on � and �. This cost is exponentially decreasing with m for� < 1� e=p�, while if this condition does not hold the probability is very high.In this formula, 1=� stands for the probability of a character crossing a horizontal edge of theautomaton (i.e. the probability of two random characters being equal). To extend this result,we notice that we have r characters on each edge now, so the above mentioned probability is1�(1�1=�)r � r=�. The (pessimistic) approximation is tight for r << �. We use the approximationbecause in practice r will be quite modest compared to �.Hence, the value of 
 when superimposing r patterns (which we call 
 0 to keep unchanged the old21




 value) is 
 0 =  r�� 2�1�� (1� �)2!1�� = r1�� 
 (6)and therefore the new limit for � is � < 1� er r�or alternatively the limit for r (i.e. the maximum amount of superimposition rlim that can be usedgiven the error level) is rlim = � (1� �)2e2which for constant error level is O(�) independent on m. However, this is not the only restrictionon r.If we use pattern partitioning in j pieces and superimpose in groups of r pieces, we must performj=r superimposed searches. In the last part of the Appendix (Eq. (9)) we show that the expectedcost due to veri�cations is O(
 0`r2`2) per search, where ` = m=j. For this cost to be O(1) we needa new (stricter) condition on r. This is obtained by expanding 
 0 using Eq. (6): re2�(1� �)2!`(1��) r2`2 = O(1)which yields r� = �0@ rlim(rlim`) 22+`(1��) 1A = ��r1� 22+`(1��)lim �which approaches rlim for large ` (i.e. partitioning the pattern into less pieces). In the analysisthat follows we make the simplifying assumption r� = rlim2.Notice that superimposition may give more arguments to partition a pattern in j < j� pieces. Onthe other hand, thanks to the new veri�cation mechanism of Section 5.3 we can superimpose morepatterns than in the original work, which translates into better performance everywhere, not onlywhen the error level is becoming high.Considering the above limit, the total search cost becomes 1=r� = O(1=(� (1� �)2)) times that ofpattern partitioning. For instance, if we partition in j� pieces (so that they can be searched withthe core algorithm), the search cost becomesO�m d(w; �)�(1� �)2 n�which for � � 1=w is O(mn=(w�)), and for higher error level becomes O(pmk=(w�) n) (this isbecause 1� � is lower bounded by e=p�). Again, a general bound is O(mn=pw�).2A recent work on multipattern approximate searching shows that by applying the idea of hierarchical veri�cationto the number r of patterns we achieve in fact r� = rlim, since the cost to verify r superimposed patterns does notdepend on r anymore [6]. 22



A natural question is for which error level can we superimpose all the j� patterns to perform justone search, i.e. when r� = j� holds. That ism d(w; �) = �(1� �)2e2whose approximate solution is � < �1 = 1� e2m�pw (7)where as always we must replace e by 1.09 in practice. As we see in the experiments, this boundis pessimistic because of the roundo� factors which a�ect j� for medium-size patterns.Notice that superimposition stops working when r� = 1, i.e. when � = 1� e=p�. This is the samepoint when pattern partitioning stops working. We show in Figure 13 the e�ect of superimpositionon the performance of the algorithm and its tolerance to the error level. As we see in Section 8,we achieve almost constant search time until the error level becomes medium. This is because weautomatically superimpose as much as possible given the error level.
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Figure 13: Times in seconds for superimposed automata. Superimposition is forced to r = 2 (solidline), 4 (dashed line) and 6 (dotted line). The larger r, the faster the algorithm but it stops workingfor lower error levels. We use m = 100, w = 32, and n = 1 Mb and random text and patterns with� = 32.6.3 Optimal Grouping and AligningTwo �nal aspects allow further optimization. A �rst one is that it is possible to try to form thegroups so that the patterns in each group are similar (e.g. they are at small edit distance amongthem, or they share letters at the same position). This would decrease the probability of �ndingspurious matches in the text. A possible disadvantage of this heuristic is that since the subpatternsare not contiguous we cannot simply verify whether their concatenation appears, but we have tocheck if any of the corresponding leaves of the tree appears. The probability that the concatenationappears is much lower. 23



A second one is that, since we may have to prune the longer subpatterns of each group, we candetermine whether to eliminate the �rst or the last character (the patterns di�er at most in one),using the same idea of trying to make the patterns as similar as possible.None of these heuristics have been tested yet.7 Combining All the TechniquesAt this point, a number of techniques have been described, analyzed and optimized. They canbe used in many combinations for a single problem. A large pattern can be split in one or moresubpatterns (the case of \one" meaning no splitting at all). Those subpatterns can be small enoughto be searched with the kernel algorithm or they can be still large and need to be searched with apartitioned automaton. Moreover, we can group those automata (simple or partitioned) to speedup the search by using superimposition.The analysis helped us to �nd more e�cient veri�cation techniques and to determine the caseswhere each technique can be used. However, a number of questions still arise. Which is the correctchoice to split the pattern versus the size of the pieces? Is it better to have less pieces or smallerpieces? How does the superimposition a�ect this picture? Is it better to have more small piecesand superimpose more pieces per group or is it better to have larger pieces and smaller groups?We study the optimal combination in this section. We begin showing the result of a theoreticalanalysis and then explain the heuristic we use.7.1 A Theoretical ApproachThe analysis recommends using the maximal possible superimposition, r = r�, to reduce the numberof searches. As proved in Section 5.2, it also recommends to use the maximal j = j�. This givesthe following combined (simpli�ed) average complexity for our algorithm, illustrated in Figure 14:� If the problem �ts in a machine word (i.e. (m� k)(k+2) � w), the core algorithm is used atO(n) average and worst-case search cost.� If the error level is so low that we can cut the pattern in j� pieces and superimpose all them(i.e. � < �1, Eq. (7)) then superimposed automata gives O(n) average search cost.� If the error level is not so low but it is not too high (i.e. � < ��, Eq. (2)), then use patternpartitioning in j� parts, to obtain O(pmk=(w�) n) average search cost.� If the error level is too high (i.e. � > ��) we must use automaton partitioning at O(k(m�k)n=w) average and worst-case search cost.On the other hand, the worst-case search cost is O(k(m � k)=w n) in all cases. This is the sameworst-case cost of the search using the automaton. This is because we use such an automaton toverify the matches, and we never verify a text position twice with the same automaton. We keepthe state of the search and its last text position visited to avoid backtracking in the text due tooverlapping veri�cation requirements. This argument is valid even with hierarchical veri�cation.24
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�1 ��Figure 14: The simpli�ed complexity of our algorithm.7.2 A Practical Heuristic and a Searching SoftwareClearly the theoretical analysis alone is insu�cient at this point. The results are asymptotic anddo not account for many details which are important in practice, such as roundo�s and constantfactors.The real costs are so complex that the best way to �nd the optimal combination relies on tryingall the possible values of j, from 1 to j� and for r, from 1 to j. For each possible value of r andj, we compute the cost of performing the dj=re searches with simple or partitioned automata asexplained in Section 4.3. We also account for the probability of matching the (possibly superim-posed) automata in the text, which is obtained from Eq. (6), as well as the cost of such veri�cation.This is an inextricable mix of theoretical and empirical results. This prediction algorithm costsO(k2), which is quite modest. Its outcome is not only the recommended combination of techniquesto use, but also the expected cost of the search.This heuristic algorithm has been implemented as a software system, which is publicly availablefrom http://www.dcc.uchile.cl/�gnavarro/pubcode. This software uses the techniques in anoptimal way, but it also allows to force the use of any combination for test purposes. It also allowsto force or avoid using the twist mentioned at the end of Section 2 (to compare against otheralgorithms that could also use it). It reports the combination of parameters used, the time spent inthe search and the number of matches found. It can optionally print those matches. Currently thesoftware needs to be provided with the value of � (more exactly, with the inverse of the probabilitythat two random letters match, which is � on random text and close to 13 in lowercase Englishtext). We plan in the future a self-adjusting feature that makes it able not only of determine thetype of text it is in, but also to change the strategy if the selected combination proves bad.25



8 Experimental ComparisonIn this section we experimentally compare our combined heuristic against the fastest previousalgorithms we are aware of. Since we compare only the fastest algorithms, we leave aside [21, 28,11, 14, 25, 31, 33, 29, 24], which are not competitive in the range of parameters we study here. Ouralgorithm is shown using and not using speedup explained at the end of Section 2, since it couldbe applied to many other algorithms as well (but generally not to �ltration algorithms).We tested random patterns against 10 Mb of random text on a Sun UltraSparc-1 of 167 MHzrunning Solaris 2.5.1, with 64 Mb of RAM. This is a 32-bit machine, i.e. w = 32. We use � = 32.We also tested lower-case English text, selecting the patterns randomly from the same text, at thebeginning of words of length at least 4, to mimic classical information retrieval queries. To checkthe in
uence of the fact that we selected the patterns from the same text (and therefore there arealways matches) we also tested the e�ect of selecting the patterns from another text, but therewere no noticeable di�erences.Each data point was obtained by averaging the Unix's user time over 20 trials. We present all thetimes in seconds per megabyte of text. The standard deviation of the results is below 5%. Wemeasure preprocessing and searching time together, since preprocessing time is totally negligible.The slowest preprocessing time was 2 milliseconds, which is less than 1% of the fastest searchingtime on 10 Mb.The algorithms included in this comparison are (in alphabetical code order)Agrep [32] is a widely distributed exact and approximate search software oriented to naturallanguage text. It is limited (although not intrinsically) to m � 32 and k � 8.BM is a �lter based on applying a Boyer-Moore-type machinery [27]. The code is from the authors.BPM (bit-parallel matrix) is a recent work [17] based on the bit-parallel simulation of the dynamicprogramming matrix. The code is from the author and has di�erent versions for one and formultiple machine words.Count is a counting �lter proposed in [12], which slides a window over the text counting thenumber of letters in the text window that are present in the pattern. When the number ishigh enough, the area is veri�ed. We use our own variant, implemented in [18] (window of�xed size).CP is the column partitioning algorithm (kn.clp) of [8], which computes only the places where thevalue of the dynamic programming matrix does not change along each column. The code isfrom the authors.DFA converts the NFA into a deterministic automaton which is computed in lazy form. Thealgorithm is proposed in [13] and studied more in detail in [19], whose implementation weuse.EP (exact partitioning) is the �ltering algorithm proposed in [33] which splits the pattern in k+1pieces and searches them using a Boyer-Moore multipattern algorithm, as suggested in [7].The code is ours and uses an extension of the Sunday [23] algorithm.26



Four-Russians applies a Four Russians technique to pack many automaton transitions in com-puter words. The code is from the authors [34], and is used with r = 5 as suggested in theirpaper (r is related with the size of the Four Russians tables).NFA - NFA/NS is our combined heuristic, with and without the speed-up technique.Figure 15 shows the results for random text with � = 32. As it can be seen, our algorithm is moree�cient than any other when the problem �ts in a single word (m = 9), except for low error level,where EP is unbeaten. For longer patterns, our algorithm is the fastest ones up to shortly after� = 1=2. Again, EP is the exception, since it is faster up to � = 1=3 approximately. For � > 1=2,BPM is the fastest one, except when the pattern is longer than w letters and the error level is high.In this �nal case, Four Russians is the winner.Figure 16 shows the results for English text. The results are similar but the allowed error ratios arereduced: our algorithm is the fastest up to � = 1=3 approximately, except for EP which is fasterfor � � 1=5. Agrep is also very e�cient for low error levels, quite close to EP. The strange behaviorfor Agrep occurs because as soon as it �nds a match in the line it reports the line and abandonsthe search of that line, hence being faster for very high error ratios.Finally, Figure 17 shows the results for long patterns and �xed error level. The results show thatfor long patterns our algorithm and BPM are the fastest if the error level is not too high. For lowerror levels the algorithm EP is better, but it degrades as m grows.The reader may be curious about the strange behavior of some of the curves in our algorithms.Those are not caused by statistical deviations in the tests but are due to integer round-o�s, whichare intrinsic to our algorithms. For instance, if we had to use pattern partitioning to split a searchwith m = 30 and k = 17, we would need to search four subpatterns, while for k = 18 we need justthree. As another example, consider automaton partitioning for m = 20 and k = 13, 14 and 15.The number of cells to work on (IJ) change from four to three and then to �ve. The use of thesmart heuristic eliminates most of those peaks, but some remain.We end by noticing that as a general rule, the use of the speedup technique described at the endof Section 2 seems to pay o� up to the same point where the EP algorithm stops working. Weanalyzed in [5] this point, obtaining that it is close to 1=(3 log� m). We use this value to determinewhether or not to use the technique.9 Conclusions and Future WorkWe presented a case study of analysis of algorithms applied to the improvement and tuning of apractical algorithm. The algorithm consists of a fast kernel to search a pattern in a text allowingerrors which works only for short patterns, and a number of techniques to extend it to longerpatterns. The techniques can be applied in combination and their optimal interplay was not trivialto deduce.We used the analysis and the empirical data to obtain the optimal combination and showed exper-imentally the correctness of the conclusions. This work shows an excellent example of a complexand theoretical analysis of algorithms applied to practical algorithm engineering.27
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m0) (where 
 < 1, Eq. (1)). To verify the occurrence of a pattern of length ` = m=j, anarea of length `0 = m=j + 2k=j = O(`) must be checked. The cost of that veri�cation is O(`2).Consider a given subpattern of length `. It matches a given text position with probability O(
`).This match causes its parent to perform a veri�cation in an area of length 2`0 (since the parent30



is of length 2`). With some probability the parent pattern is not found and the veri�cation endshere. Otherwise the parent is found and we must proceed upward in the tree. The probability ofhaving to continue the veri�cation isP (parent node = child node) = P (parent ^ child)P (child) � P (parent)P (child) = 
2`
` = 
`and therefore with probability 
` we pay the next veri�cation which spans an area of length 4`0,and so on. Notice that the next veri�cation will �nd the longer pattern with probability 
2`.This process continues until we either �nd the complete pattern or we fail to �nd a subpattern.The total amount of work to perform is
` ( (2`)2 + 
` ( (4`)2 + 
2` ( (8`)2 + :::))) = 
` (2`)2 + 
2` (4`)2 + 
4` (8`)2 + :::which formally is rXi=1 
`2i�1 (2i`)2 = 4`2 r�1Xi=0 4i �
`�2iThe summation can be bounded with an integral to �nd that it is between C(`) � C(m) and
` + C(`)� C(m=2), where C(x) = 
x(x ln(1=
)� 1)=(`2 ln2(1=
) ln2). Therefore, the summationis �(
`) and the total veri�cation cost is O(`2 
`) (8)We now generalize the above analysis by assuming that the veri�cation tree is pruned when thepatterns are of length `r, and the subtrees are searched using superimposed automata, which matchwith probability 
 0` (for 
 0 < 1, Eq. (6)).Once a leaf is found, we must verify an area of length `r to determine whether their concatenationappears. That concatenation is found with probability O(
`r). When it is found, its parent isveri�ed (an area of length 2`r), which continues the veri�cation with probability 
2`r. Hence, theveri�cation cost per piece is
 0` 4(`r)2 (1 + 
`r + C(`r)� C(m=2)) = O(
 0``2r2(1 + 
`r)) = O(
 0``2r2) (9)
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