
Fast and Flexible String Matchingby Combining Bit-parallelism and Su�x AutomataGonzalo Navarro� Mathieu Ra�notyAbstractSeveral string matching algorithms exist, the most famous are Knuth-Morris-Pratt (KMP), Boyer-Moore (BM), and some variations on BM, like Hoorspool and Sunday. Most of these algorithms rely ondi�erent kinds of automata to speed up the search, which were traditionally made deterministic. After1990, two new approaches have been studied separately. The �rst one simulates the automata in theirnondeterministic form by using bits and exploiting the intrinsic parallelism inside the computer word,e.g. Shift-Or. Those algorithms are extended to handle classes of characters and errors in the patternand/or in the text, their drawback being their inability to skip characters. The second one uses \su�xautomata" to design new optimal string matching algorithms, e.g. BDM and Turbo BDM. In this paperwe merge both approaches to obtain a new algorithm, called BNDM, which uses a nondeterministicsu�x automaton simulated using bit-parallelism. This algorithm is 20%-25% faster than BDM, uses lessmemory, it is 2-3 times faster than Shift-Or, it is 10%-40% faster than all the BM family, and it is verysimple to implement. The algorithm becomes the fastest in all cases, except for extremely short orextremely long patterns (e.g. on English we are the fastest between 2 and 110 characters). Moreover, thealgorithm inherits all the
exibility of the bit-parallel paradigm: we show that all the extensions devisedfor Shift-Or to handle classes of characters, multiple patterns and even errors can be speeded-up withthe technique to skip characters. We obtain faster, very competitive algorithms for all these extensions.In particular ours is by far the fastest technique to deal with classes of characters. As a theoreticaldevelopment related with this, we introduce a new automaton to recognize su�xes of patterns withclasses of characters. To the best of our knowledge, this automaton has not been studied before.1 IntroductionThe string-matching problem is to �nd all the occurrences of a given pattern p = p1p2 : : : pm in a large textT = t1t2 : : : tn, both sequences of characters from a �nite character set �. This problem is fundamental incomputer science and is the basic part of many others, like text retrieval, symbol manipulation, computationalbiology, data mining, network security, etc.Several algorithms exist to solve this problem. One of the most famous, and the �rst having linear worst-case behavior, is Knuth-Morris-Pratt (KMP) [17]. The search is done by scanning the text character bycharacter, and for each text position i remembering the longest pre�x of the pattern which is also a su�x oft1 : : : ti. This approach is O(n) worst-case time but it needs to scan all characters in the text, independentlyof the pattern. A second algorithm, as famous as KMP, which allows to skip characters, is Boyer-Moore(BM) [8]. The search is done inside a window of length m, ending at position i in the text. It searchesbackwards a su�x of t1 : : : ti which is also a su�x of the pattern. If the su�x is the whole pattern a matchis reported. Then the window is shifted to the next occurrence of the su�x in the pattern. This algorithmleads to several variations, like Hoorspool [15] and Sunday [25]. This latest one is considered as the fasteststring-matching algorithm in practice.A large part of the research in e�cient algorithms for string matching can be regarded as looking forautomata which are e�cient in some sense. For instance, KMP is simply a deterministic automaton thatsearches the pattern, being its main merit that it is O(m) in space and construction time. Many variationsof the BM family are supported by an automaton.�Dept. of Computer Science, University of Chile. Blanco Encalada 2120, Santiago, Chile. gnavarro@dcc.uchile.cl.Partially supported by Chilean Fondecyt Grant 1-950622.yInstitut Gaspard Monge, Cit�e Descartes, Champs-sur-Marne, 77454 Marne-la-Vall�ee Cedex 2, France.raffinot@monge.univ-mlv.fr 1

Another automaton, called \su�x automaton" is used in [10, 12, 11, 18, 24], where the idea is to searcha substring instead of a pre�x (as KMP), or a su�x (as BM). Optimal sublinear algorithms on average,like BDM or Turbo BDM [12, 11], have been obtained with this approach, which has also been extended tomultipattern matching [10, 11, 24] (i.e. looking for the occurrences of all patterns).Another related line of research is to take those automata in their nondeterministic form instead ofmaking them deterministic. Usually the nondeterministic versions are very simple and regular and can besimulated using \bit-parallelism" [2]. This technique uses the intrinsic parallelism of the bit manipulationsinside computer words to perform many operations in parallel. Competitive algorithms have been obtainedfor exact string matching [3, 28], as well as approximate string matching [3, 28, 29, 5, 19]. Although thesealgorithms generally work well only on patterns of moderate length, they are simpler, more
exible (e.g.they can easily handle classes of characters), and have very low memory requirements.In this paper we merge some aspects of the two approaches in order to obtain a fast string matchingalgorithm, called Backward Nondeterministic Dawg Matching (BNDM), which can be extended to classesof characters, to multipattern search and to allow errors in the pattern and/or in the text, like Shift-Or[3]. This algorithm uses a nondeterministic su�x automaton that is simulated using bit-parallelism. Thisnew algorithm has the advantage of being faster than previous algorithms which could be extended in sucha way (typically 2-3 times faster than Shift-Or), faster than BDM (20%-25% faster), and in fact being thefastest on-line algorithm since it is 10%-40% faster than all the BM family1. Only for very short patterns(i.e. m � 1 to m � 8 depending on the alphabet size) or very long patterns (i.e. m � 80 to m � 150depending on the architecture) our algorithm is not the fastest since, in the �rst case Sunday and in thesecond case BDM, become faster than BNDM. Additionally BDNM uses few space in comparison with theBDM or Turbo BDM algorithms (it does not need to construct the deterministic su�x automaton), and itis very simple to implement (e.g. it is easy to implement complex variations of BDM like Turbo BDM andBM BDM). Moreover, the BDM family has never been studied to handle classes of characters. We give anew de�nition of an automaton designed to recognize su�xes of \limited expressions" [29] (i.e patterns withclasses of characters) and we simulate its nondeterministic version using bit-parallelism.This paper is organized as follows. In section 2 we present the su�x automaton and the BDM algorithm.In section 3 we present the bit-parallelism approach. In section 4 we present our new algorithms for shortand long patterns. We present more complex and improved versions in section 5. The extension to classesof characters is presented in section 6, to multipattern matching in section 7 and to approximate stringmatching in section 8. We then present experimental results in section 9. We give our conclusions and futurework directions in section 10.We use the following de�nitions throughout the paper.A word x 2 �� is a factor (or substring) of p if p can be written p = uxv, u; v 2 ��. We denoteFact(p) the set of factors of p. A factor x of p is called a su�x of p is p = ux, u 2 ��. The set ofsu�xes of p is called Su�(p). When we want to emphasize the inter-letter positions in the pattern, we writep = 0 p1 1 p2 2:::pm�1 m�1 pm m.We denote as b`:::b1 the bits of a computer word of length `. We use exponentiation to denote bitrepetition (e.g. 031 = 0001). Since the length w of the computer word is �xed, we are hiding the detailson where we store the ` bits inside it. We give such details when they are relevant. Finally, we use C-likesyntax for operations on the bits of computer words: \j" is the bitwise-or, \&" is the bitwise-and, \ b " isthe bitwise-xor and \�" complements all the bits. The shift-left operation, \<<", moves the bits to the leftand enters zeros from the right, i.e. bmbm�1:::b2b1 << r = bm�r :::b2b10r. The shift-right, \>>" moves thebits in the other direction. Finally, we can perform arithmetic operations on the bits, such as addition andsubtraction, which operates the bits as if they formed a number. For instance, b`:::bx10000�1 = b`:::bx01111.An earlier partial version of this work appeared in [21].1The software Agrep [27] is faster, since it uses a BM algorithm over pairs of characters instead of single ones. As thistechnique is orthogonal and can be used in all other algorithms we do not include it as a di�erent algorithm and defer the studyof this technique to future work. 2

2 Searching with Su�x AutomataWe describe in this section the BDM pattern matching algorithm [12, 11]. This algorithm is based on asu�x automaton. We �rst describe such automaton and then explain how is it used in the search algorithm2.1 Su�x AutomataA su�x automaton on a pattern p = p1p2 : : : pm (frequently called DAWG(p) - for Deterministic AcyclicWord Graph) is the minimal (incomplete) deterministic �nite automaton that recognizes all the su�xes ofthis pattern. By \incomplete" we mean that some transitions are not present.The nondeterministic version of this automaton has a very regular structure and is shown in Figure 1.We show now how the corresponding deterministic automaton is built.I 0 1 2 3 4 5 6 7b a a b b a a� � � � � � � �Figure 1: A nondeterministic su�x automaton for the pattern p = baabbaa. Dashed lines represent epsilontransitions (i.e. they occur without consuming any input). I is the initial state of the automaton.Given a factor x of the pattern p, endpos(x) is the set of all the pattern positions where an occurrenceof x ends (there is at least one, since x is a factor of the pattern, and there are as many as repetitions of xinside p). Formally, given x 2 Fact(p), we de�ne endpos(x) = fi = 9u; p1p2:::pi = uxg. We call each suchinteger a position. For example, endpos(baa) = f3; 7g in the word baabbaa. Notice that endpos(�) is thecomplete set of possible positions (recall that � is the empty string). Notice that for any u; v, endpos(u) andendpos(v) are either disjoint or one contained in the other.We de�ne an equivalence relation � between factors of the pattern. For u; v 2 Fact(p), we de�neu � v if and only if endpos(u) = endpos(v)(notice that one of the factors must be a su�x of the other for this equivalence to hold, although the converseis not true). For instance, in our example pattern p = baabbaa, we have that baa � aa because in all theplaces where aa ends in the pattern, baa ends also (and vice-versa).The nodes of the DAWG correspond to the equivalence classes of �, i.e. to sets of positions. A state,therefore, can be thought of as a factor of the pattern already recognized, except because we do not distinguishbetween some factors. Another way to see it is that the set of positions is in fact the set of active states inthe nondeterministic automaton.There is an edge labeled � from the set of positions fi1; i2; : : : ikg to
p(i1 + 1; �) [
p(i2 + 1; �) [: : :[
p(ik; �), where
p(i; �) = (fig if i � m and pi = �; otherwisewhich is the same to say that we try to extend the factor that we recognized with the next text character�, and keep the positions that still match. If we are left with no matching positions, we do not build thetransition. The initial state corresponds to the set f0::mg. Finally, a state is terminal if its correspondingsubset of positions contains the last position m (i.e. we matched a su�x of the pattern). As an example,the deterministic su�x automaton of the word baabbaa is given in Figure 2.The (deterministic) su�x automaton is a well known structure [9, 7, 11, 23], and we do not prove any ofits properties here (neither the correctness of the previous construction). The size of DAWG(p) is linear in m3

0,1,2,3,4,5,6,7 1,4,5 2,6 3,72,3,6,7 4 5 6 7b a a b b a aba baFigure 2: Deterministic su�x automaton of the word 0b1a2a3b4b5a6a7(counting both nodes and edges), and a linear on-line construction algorithm exists [9]. A very important factfor our algorithm is that this automaton can not only be used to recognize the su�xes of p, but also factorsof p. By the su�x automaton de�nition, there is a path labeled by x form the initial node of DAWG(p) ifand only if x is a factor of p.2.2 Search AlgorithmThe su�x automaton structure is used in [12, 11] to design a simple pattern matching algorithm called BDM.This algorithm is O(mn) time in the worst case, but optimal on average (O(n logm=m) time2). Other morecomplex variations such as Turbo BDM[12] and MultiBDM[11, 24] achieve linear time in the worst case. Tosearch a pattern p = p1p2 : : : pm in a text T = t1t2 : : : tn, the su�x automaton of pr = pmpm�1 : : : p1 (i.ethe pattern read backwards) is built. A window of length m is slid along the text, from left to right. Thealgorithm searches backwards inside the window for a factor of the pattern p using the su�x automaton.During this search, if a terminal state is reached which does not correspond to the entire pattern p, thewindow position is remembered (in a variable last). This corresponds to �nding a pre�x of the patternstarting at position last inside the window and ending at the end of the window (since the su�xes of prare the reverse pre�xes of p). Since we remember the last pre�x recognized backwards, we have the longestpre�x of p in the window. This backward search ends in two possible forms:1. We fail to recognize a factor, i.e we reach a letter � that does not correspond to a transition inDAWG(pr). Figure 3 illustrates this case. We then shift the window to the right, its starting posi-tion corresponding to the position last (we cannot miss an occurrence because in that case the su�xautomaton would have found its pre�x in the window).2. We reach the beginning of the window, therefore recognizing the pattern p. We report the occurrence,and we shift the window exactly as in the previous case (notice that we have the previous last value).The pseudo-code of the BDM algorithm is given �gure 2.2. We note �DAWG(q; �) the transition functionof the su�x automaton. �DAWG(q; �) is the node that we reach if we move along the edge labeled by � fromthe node q. If such an edge does not exist, �DAWG(q; �) is null.Search example: we search the pattern aabbaab in the textT = a b b a b a a b b a a b:We �rst build DAWG(pr =baabbaa), which is given in Figure 2. We note the current window between squarebrackets and the recognized pre�x in a box. We begin withT = [a b b a b a a]b b a a b, m = 7, last = 7.2The lower bound of O(n logm=m) on average for any pattern matching algorithm under a Bernouilli probability model anda RAM complexity model is from A. C. Yao [30]. 4

� lastWindowRecord in last the window position when a terminal state is reachedSearch for a factor with the DAWGlastThe maximum pre�x starts at lastFail to recognize a factor at �: the pattern can not start before �.�safe shift New windowFigure 3: Basic search with the su�x automatonBDM(p = p1p2 : : : pm, T = t1t2 : : : tn)1. Preprocessing2. Build DAWG(pr)3. Search4. pos 05. While (pos <= n�m) do6. j m7. state initial state of DAWG(pr)8. While state 6= null and j > 0 do9. if j > 1 and state is terminal then last j10. state �DAWG(state; Tpos+j)11. j j � 112. End of while13. if j = 0 report an occurrence at pos+ 114. pos pos + last15. End of whileFigure 4: Pseudo-code of the BDM algorithm. The variable pos points at the character just before thewindow, j is used to traverse the window backwards and last to record the last pre�x matched.5

1. T = [a b b a b a a] b b a a b. a is a factor ofpr and a reverse pre�x of p. last = 6.2. T = [a b b a b a a] b b a a b. aa is a factor ofpr and a reverse pre�x of p. last = 5.3. T = [a b b a b a a] b b a a b. aab is a factorof pr.4. T = [a b b a b a a] b b a a b. We failto recognize the next a. So we shift the win-dow to last. We search again in the position:T = a b b a b [a a b b a a b], last = 7.5. T = a b b a b [a a b b a a b]. b is a factor ofpr .
6. T = a b b a b [a a b b a a b]. ba is a factor ofpr.7. T = a b b a b [a a b b a a b]. baa is a factorof pr , and a reverse pre�x of p. last = 4.8. T = a b b a b [a a b b a a b]. baab is a factorof pr .9. T = a b b a b [a a b b a a b]. baabb is a factorof pr .10. T = a b b a b [a a b b a a b]. baabba is afactor of pr.11. T = a b b a b [a a b b a a b]. We recognizethe word aabbaab and report an occurrence.3 Bit-ParallelismIn [3], a new approach to text searching was proposed. It is based on bit-parallelism [2]. This techniqueconsists in taking advantage of the intrinsic parallelism of the bit operations inside a computer word. Byusing cleverly this fact, the number of operations that an algorithm performs can be cut down by a factorof at most w, where w is the number of bits in the computer word. Since in current architectures w is 32 or64, the speedup is very signi�cative in practice.The Shift-Or algorithm uses bit-parallelism to simulate the operation of a nondeterministic automatonthat searches the pattern in the text (see Figure 5). As this automaton is simulated in time O(mn), theShift-Or algorithm achieves O(mn=w) worst-case time (optimal speedup). Notice that if we convert thenondeterministic automaton to a deterministic one to have O(n) search time, we get a version of the KMPalgorithm [17] (KMP, however, is twice as slow as Shift-Or for m � w).0 1 2 3 4 5 6 7� b a a b b a aFigure 5: A nondeterministic automaton to search the pattern p = baabbaa in a text. The initial state is 0.We explain now the Shift-And algorithm, which is an easier-to-explain (though a little less e�cient)variant of Shift-Or. The algorithm builds �rst a table B which for each character stores a bit mask bm:::b1.The mask in B[c] has the i-th bit set if and only if pi = c. The state of the search is kept in a machine wordD = dm:::d1, where di is set whenever p1p2:::pi matches the end of the text read up to now (another way tosee it is to consider that di tells whether the state numbered i in Figure 5 is active). Therefore, we report amatch whenever dm is set.We set D = 0 originally, and for each new text character Tj , we update D using the formulaD0 ((D << 1) j 0m�11) & B[Tj]The formula is correct because the i-th bit is set if and only if the (i�1)-th bit was set for the previous textcharacter and the new text character matches the pattern at position i. In other words, Tj�i+1::Tj = p1::pi if6

and only if Tj�i+1::Tj�1 = p1::pi�1 and Tj = pi. Again, it is possible to relate this formula to the movementthat occurs in the nondeterministic automaton for each new text character: each state gets the value of theprevious state, but this happens only if the text character matches the corresponding arrow. Finally, the\j 0m�11" after the shift allows a match to begin at the current text position (this operation is saved in theShift-Or, where all the bits are complemented). This corresponds to the self-loop at the beginning of theautomaton.The cost of this algorithm is O(n). Although we consider only masks of length m here, in practice themasks are of length w (as explained earlier) and some provisions may be necessary to handle the unwantedextra bits. For patterns longer than the computer word (i.e. m > w), the algorithm uses dm=we computerwords for the simulation (not all them are active all the time), with a worst-case cost of O(mn=w) and anaverage case cost of O(n).This algorithm is very simple, and has some further advantages. The most immediate one is that it isvery easy to extend it to handle classes of characters. That is, each pattern position does not only matcha single character but a set of characters. If Ci is the set of characters that match the position i in thepattern, we set the i-th bit of B[c] for all c 2 Ci. In [3] they show also how to allow a limited number k ofmismatches in the occurrences, at O(nm log(k)=w) cost.Later [28] enhanced this paradigm to support extended patterns, which allow wild cards, regular ex-pressions, approximate search with nonuniform costs, and combinations. Further development of the bit-parallelism approach for approximate string matching lead to some of the fastest algorithms for short patterns[5, 19]. In most cases, the key idea was to simulate a nondeterministic �nite automaton. It is interestingalso to mention [13], which searches allowing mismatches by using a combination of bit-parallelism andBoyer-Moore.Bit-parallelism has became a general way to simulate simple nondeterministic automata instead of con-verting them to deterministic. This is how we use it in our algorithm.4 Bit-Parallelism on Su�x AutomataWe simulate the BDM algorithm using bit-parallelism. The result is an algorithm which is simpler, uses lessmemory, has more locality of reference, and is easily extended to handle more complex patterns, as shownin the next sections. We �rst assume that m � w and show later how to extend the algorithm for longerpatterns.4.1 The Basic AlgorithmWe simulate the automaton of Figure 1 on the reversed pattern. Just as for Shift-And, we keep the state ofthe search using m bits of a computer word D = dm:::d1.The BDM algorithm moves a window over the text. Each time the window is positioned at a newtext position just after pos, it searches backwards the window Tpos+1::Tpos+m using the DAWG automaton,until either m iterations are performed (which implies a match in the current window) or the automatoncannot follow any transition. In our case, the bit di at iteration k is set if and only if pm�i+1::m�i+k =Tpos+1+m�k ::Tpos+m. Some observations follow� Since we begin at iteration 0, the initial value for D is 1m (recall that we use exponentiation to denotebit repetition).� There is a match if and only if after iteration m it holds dm = 1.� Whenever dm = 1, we have matched a pre�x of the pattern in the current window. The longest pre�xmatched (excluding the complete pattern) corresponds to the next window position (variable last).7

BNDM (p = p1p2:::pm; T = t1t2:::tn)1. Preprocessing2. For c 2 � do B[c] 0m3. For i 2 1::m do B[pm�i+1] B[pm�i+1] j 0m�i10i�14. Search5. pos 06. While pos <= n�m do7. j m; last m8. D = 1m9. While D 6= 0m do10. D D & B[Tpos+j]11. j j � 112. if D & 10m�1 6= 0m then13. if j > 0 then last j14. else report an occurrence at pos+ 115. D D << 116. End of while17. pos pos+ last18. End of whileFigure 6: Bit-parallel code for BDM. Some optimizations are not shown for clarity.� Since there is no initial self-loop, this automaton eventually runs out of active states. Moreover, states(m � k)::m are inactive at iteration k.The algorithm is as follows. Each time we position the window in the text we initialize D and scan thewindow backwards. For each new text character we update D. Each time we �nd a pre�x of the pattern(dm = 1) we remember the position in the window. If we run out of 1's in D then there cannot be a matchand we suspend the scanning (this corresponds to not having any transition to follow in the automaton). Ifwe can perform m iterations then we report a match.We use a mask B which for each character c stores a bit mask. This mask sets the bits correspondingto the positions where the pattern has the character c (just as in the Shift-And algorithm). Interestinglyenough, the formula to update D turns out to be very similar to that of the Shift-Or algorithm:D0 (D & B[Tj]) << 1which should not be surprising given the similarity between both automata. The algorithm is summarized inFigure 6. Some optimizations done on the real code, related to improved
ow of control and bit manipulationtricks, are not shown for clarity.Search example: we search the pattern aabbaab in the textT = a b b a b a a b b a a b:We note the current window between square brackets and the recognized pre�x in a box. We begin withT = [a b b a b a a] b b a a b, D = 1 1 1 1 1 1 1, B = a 1 1 0 0 1 1 0b 0 0 1 1 0 0 1 , m = 7, last = 7, j = 7.8

1. T = [a b b a b a a] b b a a b.1 1 1 1 1 1 1& 1 1 0 0 1 1 0D = 1 1 0 0 1 1 0 j = 6last = 62. T = [a b b a b a a] b b a a b.1 0 0 1 1 0 0& 1 1 0 0 1 1 0D = 1 0 0 0 1 0 0 j = 5last = 53. T = [a b b a b a a] b b a a b.0 0 0 1 0 0 0& 0 0 1 1 0 0 1D = 0 0 0 1 0 0 0 j = 4last = 54. T = [a b b a b a a] b b a a b.0 0 1 0 0 0 0& 1 1 0 0 1 1 0D = 0 0 0 0 0 0 0 j = 3last = 5We fail to recognize the next a. So we shift thewindow to last. We search again in the posi-tion: T = a b b a b [a a b b a a b], last = 7,j = 7.5. T = a b b a b [a a b b a a b].1 1 1 1 1 1 1& 0 0 1 1 0 0 1D = 0 0 1 1 0 0 1 j = 6last = 7

6. T = a b b a b [a a b b a a b].0 1 1 0 0 1 0& 1 1 0 0 1 1 0D = 0 1 0 0 0 1 0 j = 5last = 77. T = a b b a b [a a b b a a b].1 0 0 0 1 0 0& 1 1 0 0 1 1 0D = 1 0 0 0 1 0 0 j = 4last = 48. T = a b b a b [a a b b a a b].0 0 0 1 0 0 0& 0 0 1 1 0 0 1D = 0 0 0 1 0 0 0 j = 3last = 49. T = a b b a b [a a b b a a b].0 0 1 0 0 0 0& 0 0 1 1 0 0 1D = 0 0 1 0 0 0 0 j = 2last = 410. T = a b b a b [a a b b a a b].0 1 0 0 0 0 0& 1 1 0 0 1 1 0D = 0 1 0 0 0 0 0 j = 2last = 411. T = a b b a b [a a b b a a b].1 0 0 0 0 0 0& 1 1 0 0 1 1 0D = 1 0 0 0 0 0 0 j = 0last = 4Report an occurrence at 6.4.2 Handling Longer PatternsWe can cope with longer patterns by setting up an array of words Dt and simulating the work on a longcomputer word (we call this a \multi-word simulation" of the simple algorithm). We propose a di�erentalternative which was experimentally found to be faster.If m > w, we partition the pattern in M = dm=we consecutive subpatterns si, p = s1 s2 ::: sM , sothat each subpattern si is of length mi = w if i < M and the last one has the remaining characters (i.e.mM = m �w(M � 1)). Those subpatterns can therefore be searched with the basic algorithm.We now search s1 in the text with the basic algorithm. If s1 is found at a text position j, we verifywhether s2 follows it. That is, we position a window at Tj+m1 ::Tj+m1+m2�1 and use the basic algorithmfor s2 in that window. If s2 is in the window, we continue similarly with s3 and so on. This process endseither because we �nd the complete pattern and report it, or because we fail to �nd some subpattern si inits window.We have to shift the window now. An easy alternative is to use the shift last1 that corresponds to thesearch of s1. However, if we tested the subpatterns s1 to si, each one gives a possible shift lasti, and we usethe maximum of all shifts. 9

Although this algorithm searches on a shorter window (i.e. of length w < m) and therefore it performsshorter shifts than the multi-word simulation, this multi-word simulation has to work on M computer wordsto traverse the window, in general cancelling any possible bene�t from performing a longer shift. Finally,the multi-word simulation switches very fast the Dt word it operates on, while our algorithm operates along time over a single Dt word, therefore making it pro�table to put it in a computer register for fasteroperation.4.3 AnalysisThe preprocessing time for our algorithm is O(m+ j�j) if m � w, and O(m(1 + j�j=w)) otherwise.In the simple case m � w, the analysis is the same as for the BDM algorithm. That is, O(mn) in theworst case (e.g. T = an; p = am�1b), O(n=m) in the best case (e.g. T = an; p = bm), and O(n logj�jm=m)on average. Our algorithm, however, bene�ts from more locality of reference, since we do not access anautomaton but only a few variables which can be put in registers (with the exception of the B table). Aswe show in the experiments, this di�erence makes our algorithm the fastest one.When m > w, our algorithm is O(nm2=w) in the worst case (since each of the O(mn) steps of the BDMalgorithm forces to work on dm=we computer words). The best case occurs when the text traversal usings1 always performs its maximum shift after looking one character, which is O(n=w). We show, �nally, thatthe average case is O(n logj�j w=w). Clearly these complexities are worse than those of the simple BDMalgorithm for long enough patterns. We show in the experiments up to which length our version is faster inpractice.The search cost for s1 is O(n logj�j w=w). With probability 1=j�jw, we �nd s1 and verify for the rest ofthe pattern. The search for s2 in the window costs O(w) at most. With probability 1=j�jw we �nd s2 andsearch for s3, and so on. The total cost incurred by the existence of s2:::sM is at mostMXi=1 wj�jwi � " = wj�jw = O(1)which therefore does not a�ect the main cost to search s1 (neither in theory since the extra cost is O(1) nor inpractice since " is very small). We consider the shifts now. The search of each subpattern si provides a shiftlasti, and we take the maximum shift. Now, the shift lasti participates in this maximum with probability1=j�jwi. The longest possible shift is w. Hence, if we sum (instead of taking the maximum) the longestpossible shifts w with their probability of participating, we get into the same sum above, which is " = O(1).Therefore, the average shift is last1 + " = last1 +O(1), and hence the cost is that of searching s1 plus lowerorder terms.Notice that, on the other hand, the multi-word simulation has worse complexity, namely O(n logj�j(m)=w),since it performs the same number of operations as BDM (i.e. O(n logj�j(m)=m)) but for each operation ithas to update O(m=w) machine words.5 Further Improvements5.1 A Linear Time AlgorithmAlthough our algorithm has optimal average case, it is not linear in the worst case even for m � w, since wecan traverse the complete window backwards and advance it in one character (e.g. T = an; p = am�1b). Inthe worst case, the algorithm is O(nm2=w). Our aim now is to reduce its worst case to O(nm=w), i.e. O(n)when m = O(w). 10

In the last few years, studies have been undertaken to obtain faster and linear worst case algorithms(and still sublinear on average) using DAWGs, for instance Turbo RF3 in [12], Turbo BDM in [12] or in[18]. The main idea is to avoid retraversing the same characters in the backward window veri�cation.When we determine that the window must be advanced in last positions, for last < m, we already knowthat Ti+last::Ti+m�1 is a pre�x of the pattern, and therefore it is possible to use this knowledge to avoidtraversing backwards the complete window Ti+last::Ti+last+m�1. The ending position (i+ last+m�1) of thepre�x in the window is usually called the critical position. Therefore, we want to avoid that the backwardwindow veri�cation continues after reaching the critical position.The main problem is how to determine the next shift if we are not going to traverse again the areaTi+last::Ti+m�1. Recall that we have not stored information about the next possible shifts following last (weonly remembered the shortest shift).Two main strategies exist. The �rst one is to use a KMP algorithm to read again the characters we readwith the DAWG if we reached the critical position. We keep in memory the longest pre�x of the patternthat is also a su�x of the text we read. We stop using the KMP algorithm when the maximal pre�x wefound is less than half the size of the pattern. This strategy is used in [11, 18, 24]. The algorithm obtainedis linear in the worst case, but the DAWG is used just to \help" KMP to skip some characters.The second strategy makes a better use of the power of DAWGs by adding a kind of BM machine to theBDM algorithm. To explain the algorithm we need the de�nition of a border: the border of a string u is theset of pre�xes of u which are also su�xes.The algorithm works as follows: if we reach the critical position after reading a factor z with the DAWG,it is possible to know whether zr is a su�x of the pattern p.� If zr is a su�x, we have recognized the whole pattern p, and the next shift corresponds to the longestpre�x of p that is also a su�x of p, i.e the longest border of p, which can be computed in advance.� If zr is not a su�x, it appears in the pattern in a set of positions which is given by the state we reachedin the su�x automaton. If we shift to the rightmost occurrence of zr in the pattern, like in the BMalgorithm, the shift is safe.It is not di�cult to simulate this idea in our BNDM algorithm. To know if the factor z we read withthe DAWG is a su�x, we just have to test if there is a 1 at the jzj-th bit in D, i.e. djzj. To get therightmost occurrence, we seek the rightmost 1 in D, which we can get (if it exists) in constant time withlog2(D& � (D � 1)) 4. We implemented this algorithm under the name BM BNDM in the experimentalpart of this paper, and it turns out to be the fastest version of BNDM in practice.However, this algorithm remains quadratic, because we do not keep a pre�x of the pattern after the BMshift. To make it linear, we must keep this pre�x. This situation is shown in Figure 7.Let u be the pre�x before the critical position. The Turbo RF (second variation) [12] uses a complicatedpreprocessing phase to associate in linear time an occurrence of zr in the pattern to a border bu of u, inorder to obtain the maximal pre�x of the pattern that is a su�x of uzr. Moreover, the Turbo RF uses asu�x tree, and it is quite di�cult (though not impossible) to use this preprocessing phase on DAWGs. Withour simulation, this preprocessing phase becomes simple. To each pre�x ui of the pattern p, we associatea mask Bord[i] that registers the starting positions of the borders of ui (� included). This table can beprecomputed in O(m) time. Now, to join one occurrence of zr with a border of u, we want the positionswhich start a border of u and continue with an occurrence of zr . The �rst set of positions is Bord[i], andthe second one is precisely the current D value (i.e. positions in the pattern where the recognized factorz ends). Hence, the bits of X = Bord[i] & D are the positions satisfying both criteria. As we want the3Turbo RF uses a su�x tree, but it can be adapted to DAWGs.4In practice, it is faster and cleaner to implement this log2 by shifting the mask to the right until it becomes zero. Using thistechnique we can use the simpler expressionD ^ (D� 1) and get the same result. However, the log2 expression is important intheory because it can be computed in constant time. 11

WindowSearch for a factor with the DAWGcritical positionzrwe reached the critical position, but uzr is not the pattern p.critical positionuiuisafe shiftborderof ui zr New critical positionFigure 7: Skeleton of the BM shift if we reach the critical position.rightmost such occurrence (i.e. the maximal pre�x), we take again log2(X & � (X � 1)). We implementedthis algorithm under the name Turbo BNDM in the experimental part of this paper.5.2 A Constant-Space AlgorithmIt is also interesting to notice that, although the algorithm needs O(j�jm=w) extra space, we can make itconstant space on a binary alphabet �2 = f0; 1g. The trick is that in this case, B[1] = p and B[0] = � B[1].Therefore, we need not extra storage apart from the pattern itself to perform all the operations. In theory,any text over a �nite alphabet � could be searched in constant space by representing the symbols of � withbits and working on the bits (the misaligned matches have to be later discarded). This involves an averagesearch time ofO� n log2 j�jm log2 j�j log2(m log2 j�j)� = Normal time � log2 j�j � �1 + log2 log2 j�jlog2m �which if the alphabet is considered of constant size is of the same order of the normal search time.We present now some extensions applicable to our basic scheme, which form a successful combination ofe�ciency and
exibility. The general concept is that all the extensions devised for the Shift-Or algorithmcan be enriched with our approach to speed them up.6 Handling Classes of CharactersAs in the Shift-Or algorithm, we allow that each position in the pattern matches not only a single characterbut an arbitrary set of characters. Some solutions for the case of don't care characters (i.e. pattern positionsthat match any character) have been presented in [14, 22, 1], but these have been shown to be only oftheoretical interest in [3]. Simple attempts to extend classical algorithms such as KMP or BM do not workwell. To the best of our knowledge, the fastest algorithm for this problem is Shift-Or.This type of patterns is called \limited expressions" in [29], and it is a subset of the wealth of alternativesfor \extended patterns" presented in [3, 28]. Although formally it is enough to say that each pattern positioncan match a set of characters, it is useful to give an intuitive idea of the power allowed. The following patternsare examples of limited expressions: 12

� word in case insensitive, i.e. fw; Wgfo; Ogfr; Rgfd;Dg.� wo.d, where the '.' means any character, i.e. fwgfog�fdg.� wor[a-z], where [a-z] means any character in the range from 'a' to 'z', i.e. fwgfogfrgfa::zg.� wo[abx]d, where [abx] means 'a', 'b' or 'x', i.e. fwgfogfa; b; xgfdg.� w[�ou]rd, where [�o] means any character except 'o' and 'u', i.e. fwgfog(�� fo; ug)fdg.We denote a limited expression p = C1C2 : : :Cm. A word x = x1x2 : : :xr in �� is a factor of a lim-ited expression p = C1C2 : : :Cm if there exists an i such that x1 2 Ci�r+1; x2 2 Ci�r+2; : : : ; xr 2 Ci.Such an i is called a position of x in p. A factor x = x1x2 : : :xr of p = C1C2 : : :Cm is a su�x ifx1 2 Cm�r+1; x2 2 Ci�r+2; : : : ; xr 2 Cm.Similarly to the �rst part of this work, we design an automaton which recognizes all su�xes of a limitedexpression p = C1C2 : : :Cm. This automaton is not anymore a DAWG. We call it Extended DAWG. To ourknowledge, this kind of automaton has never been studied. We �rst give a formal construction, and thenprove its correctness.6.1 ConstructionThe construction we use is quite similar to the one given for the DAWG, but with the new de�nitionof su�xes. For any x factor of p, we denote L-endpos(x) the set of positions of x in p. For example,L-endpos(baa) = f3; 7g in the limited expression b[a,b]abbaa, and L-endpos(bba) = f3; 6g (notice that, unlikebefore, the sets of positions may be non-disjoint and no one a subset of the other). We de�ne the equivalencerelation �E for u; v factors of p byu �E v if and only if L-endpos(u) = L-endpos(v):We de�ne
p(i; �) with i 2 f0; 1; : : : ;m;m+ 1g; � 2 � by
p(i; �) = (fig if i � m and � 2 Ci; otherwiseLemma 1 Let p be a limited expression and �E the equivalence relation on its factors (as previously de�ned).The equivalence relation �E is compatible with the concatenation on words.Proof. Let u and v be two di�erent factors of p that belong to the same equivalence class q, and let � 2 �.S = fi1; i2; : : : ; ikg is the set of positions corresponding to q. Two cases appear:� if u� (resp. v�) is not a factor of p, neither is v� (resp. u�). Suppose u� is not a factor, but v� is.Then there exists a position 2 � i � m where v� ends in p. Hence v ends at i� 1. But, as u and v areat the same positions, u appears also at position i � 1 in p, and u� appears in i. A contradiction.� if u� (resp. v�) is a factor of p, v� (resp. u�) is also a factor of p and u� �E v�. Assume that u�is a factor, then u� ends in p at positions S� =
(i1; �) [: : :[
(ik; �). As v ends at the same set ofpositions S as u, v� ends at S� too. Therefore u� and v� belong to the same equivalence class.Hence, the equivalence �E is compatible with the concatenation. 2This lemma allows us to de�ne an automaton from this equivalence class. States of the automaton arethe equivalence classes of �E . There is an edge labeled by � from the set of positions fi1; i2; : : : ikg to
p(i1 +1; �)[
p(i2+ 1; �)[: : :[
p(ik + 1; �), if this is not empty. The initial node of the automaton is theset that contains all the positions. Terminals nodes of the automaton are the set of positions that containm. As an example, the su�x automaton of the word [a,b]aa[a,b]baa is given in Figure 8.13

0,1,2,3,4,5,6,7 1,4,5 2,6 3,74,51,2,3,4,6,7 2,3,4,7 3,4 4 5 6 7a a a a,b b a aa ab b
b b aa,bbFigure 8: Extended DAWG of the limited expression 0[a; b]1a2a3[a; b]4b5a6a7Lemma 2 The Extended DAWG of a limited expression p = C1C2 : : :Cm recognizes the set of su�xes of p.Proof.1. Let u = u1u2 : : :ur be a su�x of p. We show that u is recognized by Extended DAWG(p). We callEr = fi1; i2; : : : ikg the set of ending positions of u in p, which is not empty since it at least containsm. We denote: E0 = f0; 1; 2; : : : ;mg and Ej = fi1 � r + j; i2 � r + j; : : : ; ik � r + jg:E0 is the initial set of Extended DAWG(p). There is a path from E0 to a state E01 � E1 labeled withu1, because E01 =
p(1; u1) [
p(2; u1) [: : : [
p(m;u1), and there is at least one u1 in the positionsE1 (set of beginning positions of u in p). Assume now there is a path from the initial state labelledby u1u2 : : :uj arriving at the set of nodes E0j, j < r and E0j � Ej. Let E0j+1 the state we reachedby using the edge labeled with uj+1 from E0j . This state exists, because Ej � E0j, Ej is not emptyand uj+1 appears at least at position Ej+1. More than that, for the same reason, Ej+1 � E0j+1. Byinduction, we proved that there is a path from the initial node labeled by u arriving at the set of nodesE0r, which contains Er. As Er contains m, E0r also does. Therefore, E0r is marked as a terminal statein Extended DAWG(p) and the su�x u is recognized.2. If there is a path from the initial state to a �nal state labeled by the word u in Extended DAWG(p),then we show that u is a su�x of p. Let now Ej be the state we reach with u1 : : :uj. Er contains m.To arrive at this state by reading ur, ur must at least belong to Em, and the previous state, Er�1,contains m � 1. By induction, it is clear that ur 2 Cm; ur�1 2 Cm�1; : : :u1 2 Cm�r+1, and hence u isa su�x of p.Therefore, Extended DAWG(p) recognizes the set of su�xes of p. 2We can use this new automaton to recognize the set of su�xes of a limited expression p. We do notgive an algorithm to build this Extended DAWG in its deterministic form, but we simulate the deterministicautomaton using bit-parallelism.6.2 A Bit-parallel Implementationfrom the above construction, the only modi�cation that our algorithm needs is that the B table has the i-thbit set for all characters belonging to the set of the i-th position of the pattern. Therefore we simply changeline 3 (part of the preprocessing) in the algorithm of Figure 6 toFor i 2 1::m; c 2 � do if c 2 Ci then B[c] B[c] j 0m�i10i�114

such that now the preprocessing takes O(j�jm) time but the search algorithm does not change.We combine the
exibility of limited expressions with the e�ciency of a Boyer-Moore-like algorithm.It should be clear, however, that the e�ciency of the shifts can be degraded if the classes of charactersare signi�cantly large and prevent long shifts. However, as we show later in the experiments, this is muchmore resistant than some simple variations of Boyer-Moore since it uses more knowledge about the matchedcharacters.We point out now another extension related to classes of characters: the text itself may have basiccharacters as well as other symbols denoting sets of basic characters. This is common, for instance, in DNAdatabases. We can easily handle such texts. Assume that the symbol C represents the set fc1; :::; crg. Thenwe set B[C] = B[c1] j ::: j B[cr]. This is much more di�cult to achieve with algorithms not based inbit-parallelism.7 Searching for Multiple PatternsSuppose we are interested in searching a set of patterns P 1:::P r (where P i = pi1::pimi), i.e. reporting theoccurrences of all P i's. Assume that they are all of the same length m, otherwise truncate them to thelength of the shortest one. This may be ine�ective for patterns of very di�erent lengths but it is a commonpractice in all the algorithms of the Boyer-Moore family as well.If the total length of the patterns does not exceed the size of a computer word, i.e. r � m � w, we canvery e�ciently search all the patterns in parallel, exploiting again the intrinsic parallelism inside computerwords. This technique, based on an arrangement described in [3], concatenates the r patterns P 1:::P r asfollows P = p11 p21 :::pr1 p12 p22 :::pr2 ::::: p1m p2m :::prm(i.e. all the �rst letters, then all the second letters, etc.) and searches P just as a single pattern. The onlydi�erence in the algorithm of Figure 6 is that the shift is not in one bit but in r bits in line 15 (since we haver bits per multipattern position) and that instead of looking for the highest bit dm of the computer word weconsider all the r bits corresponding to the highest position. That is, we replace the old 10m�1 test maskby 1r0r(m�1) in line 12.This will automatically search for words of length m and keep all the bits needed for each word. Moreover,it will report the matches of any of the patterns and will not allow shifting more than what all patternsallow to shift.An alternative arrangement is as follows: P = P 1 P 2 ::: P r(i.e. just concatenate the patterns). In this case the shift in line 15 is for one bit, and the mask for line 12 is(10m�1)r . On some processors a shift in one position is faster than a shift in r > 1 positions, which could bean advantage for this arrangement. On the other hand, in this case we must clear the bits that are carriedfrom the highest position of a pattern to the next one, replacing line 15 for D = (D << 1) & (1m�10)r.This involves an extra operation. Finally, this arrangement allows to have patterns of di�erent lengths forthe algorithm of [3] which is not possible in their current proposal.Clearly this technique cannot be applied to the case m > w. However, if 2m � w and r�m > w we dividethe set of patterns into dr=bw=mce groups, so that the patterns in each group �t in w bits. Therefore thecost to search r patterns of length m can be made O(rm2n=w) in the worst case, and O(rn=w) in the bestcase. This is respectively better than O(rmn) and O(rn=m) (which corresponds to sequentially searchingthe r patterns with BDM). 15

8 Approximate String MatchingApproximate string matching is the problem of �nding all text segments which are at a \distance" of atmost k to the pattern. This has a number of applications in text retrieval, computational biology, patternrecognition, signal processing, etc. Of course, the nature of the problem depends directly on the distancefunction we use. Many distances exist, and among them two are commonly used: the Hamming and theLevenshtein (or edit) distance. We explain now how to use our algorithm for approximate matching withthese two distances.8.1 Hamming DistanceThe Hamming distance between two words is the minimal number of substitutions of letters that have to beperformed to make them equal. For example, d("test","text") = 1. A number of algorithms exist to solvethis problem [4, 13, 26].To adapt our algorithm to this problem, we still move a window of the size of the pattern on the text, andsearch backward a su�x u of the window which matches the pattern with at most k substitutions. For eachposition of the text, instead of just using one bit of the computer word to know whether ur is at position iin the reverse pattern pr, we use L = blog2(k)c + 1 bits to encode the distance between ur and the factorof length juj which ends at position i in pr. We remember this time in the variable last the longest su�x ofthe window that matches a pre�x of the pattern with a distance less or equal to k (this is done in O(1) bytesting the highest bits of the computer word). If all the errors in the computer word are greater than k,we can shift the window to last since no pattern factor matches the window with k errors or less. Figure 9illustrates this algorithm. a b b a b b b b b baba bPattern a b b a b b b b b baba bPattern bbbsafe shift New windowabaabbb
lastD abaa1 4 2 2 2 4 1 3 2 2 3 - - -Remember in last the longest pre�x that matches with at most 1 errorSearch backward for a factor with at most 1 errorlastD - - -- --53332533Fail to recognize a factor with at most 1 errorabaaFigure 9: Basic search for approximate pattern matching with the Hamming distance.16

8.2 Edit DistanceThe Levenshtein distance (or just edit distance) between two words is the minimal number of substitutions,insertions and deletions of letters needed to make them equal. For instance, d("survey","surgery") = 2.A number of solutions to this problem exist, being [6, 5, 19, 16, 20, 29] the fastest in practice. We presenttwo extensions of our algorithm for approximate string matching.8.2.1 Partitioning into Exact SearchingIn [28], a simple but very e�ective �lter is proposed for approximate string matching. It is based on theobservation that if a pattern of length m appears with at most k errors in a text position, and we divide thepattern in k + 1 pieces, then at least one of the pieces will appear with no errors in the occurrence (since kerrors cannot alter k+1 pieces). Therefore, they propose to split the pattern into k+1 pieces of equal lengthbm=(k+1)c (discarding some characters at the end if necessary) and searching all the pieces in parallel. Themechanism they propose is very similar to our setup of Section 7 (although the bit arrangement is di�erent).However, they use the Shift-Or algorithm to search and therefore their e�ciency is limited. On the otherhand, they keep their ability to handle classes of characters and other extensions.Later, [6] proposed the use of a multipattern Boyer-Moore strategy to perform the above search, whichat the cost of not allowing limited expressions gives a much more e�cient algorithm. In [5] this algorithmwas implemented and shown to be the fastest in practice when the number of errors is low enough (this is,k=m � 1=(3 logj�jm) on random text and k=m � 1=4 on natural language).Our multipattern search technique presented in Section 7 combines the best of both worlds: our perfor-mance is comparable to that of the algorithms of the Boyer-Moore family, and we keep the
exibility of theShift-Or approach to handle classes of characters. In this case the Sunday extension to multipattern searchused in [5] is slightly faster in general because the search patterns are rather short. We show later theirrelative performance.8.2.2 A New Bit-Parallel AlgorithmIn [28] another algorithm for approximate string matching is presented. It is based on the bit-parallelsimulation of an NFA built from the pattern, which recognizes its approximate occurrences in the text. In[5] this automaton is simulated using a di�erent technique.Our approach is based on the same automaton. We modify the NFA so that it recognizes not only thewhole pattern but also any su�x of the pattern, allowing up to k errors.Figure 10 illustrates the modi�ed NFA. First disregard the state labeled \I" and the �-transitions leavingit. Each row denotes the number of errors seen. The �rst one 0, the second one 1, and so on. Every columnrepresents matching the pattern up to a given position. At each iteration, a new text character is readand the automaton changes its states. Horizontal arrows represent matching a character, vertical arrowsrepresent insertions into the pattern, solid diagonal arrows represent replacements, and dashed diagonalarrows represent deletions in the pattern (they are �-transitions). The automaton accepts a text position asthe end of a match with k errors whenever the rightmost state of the last row is active.Consider now the initial state \I" we added. The �-transitions leaving from the initial state allow theautomaton to recognize, allowing k errors, not only the whole pattern but also any su�x of it. Our secondmodi�cation on the original automaton of [28, 5] is the removal of a self-loop at the top-left state, whichallowed it to start a match at any text position. Our automaton, therefore, recognizes su�xes of the patternwhich start at the beginning of the text window.In the case of edit distance, the size of the matching text segment may range from m � k to m + k. Wemove a window of length m� k on the text, and we search backward a su�x u of the window with matchesthe pattern with at most k errors. This search is done using the NFA explained above, which is built on thereversed pattern. We remember in the variable last the longest su�x of the window that matches a pre�x17

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

ε ε

εε

y e

y

y e

e

ε

ε

r

r

r

ε

ε

v

v

v

ε

ε

u

u

no errors

2 errors

1 error

ε

ε

s

s

s

I

ε ε ε ε ε εε

uFigure 10: Our NFA to recognize su�xes of the reversed pattern.of the pattern with a distance less or equal to k. This is done in constant time by checking whether therightmost bottom state of the NFA is active. On the other hand, if the NFA runs out of active states weknow that a match is not possible in the window and we can shift to the last position where we found apre�x, as in the exact matching algorithm.Each time we move the window to a new position we restart the automaton with all its states active,which represents setting the initial state to active and letting the �-transitions
ush this activation to all theautomaton (the states in the lower-left triangle are also activated to allow initial insertions). If after readingthe whole window the automaton still has active states, then it is possible that the current window startsan occurrence, so we use the traditional automaton to compute the edit distance from the initial windowposition in the text. After reading at most m + k characters we have either found a match starting at thewindow position or left the automaton without active states.The rationale for this algorithm is as follows. We are interested only in occurrences that start at thecurrent window position. Any occurrence has a length between m� k and m + k. If there is an occurrenceof the pattern p starting at the window position with k errors, then a pre�x of p must match the �rst m� kcharacters with k errors or less. Hence, we cannot miss an occurrence if we keep count of the matches of allthe pattern pre�xes in a window of length m�k. If the automaton runs out of active states, then we cannotmiss the start of an occurrence and we shift the window to the next candidate. Finally, if the automatonhas active states after reading the complete window, then a match starting at the window is possible and wehave to check it explicitly since we can only ensure that a factor of the pattern matches in the window.The automaton can be simulated in a number of ways. Wu and Manber do it row-wise (each row of theautomaton is packed in a computer word), while Baeza-Yates and Navarro do it diagonal-wise. In this casewe prefer the technique of Wu and Manber, since in [5] the initial diagonals of length � k are discarded andthey are needed here.9 Experimental ResultsWe ran extensive experiments on random and natural language text to show how e�cient are our algorithmsin practice. The experiments were run on a Sun UltraSparc-1 of 167 MHz, with 64 Mb of RAM, runningSunOS 5.5.1. We measured CPU times and repeated the experiments many times so that the results were18

within �2% with 95% con�dence (this involved thousands of repetitions).We used texts of 10 Mb of size over which we searched many patterns. We ran experiments on randomtext with uniformly distributed alphabets of sizes from 2 to 64, as well as non-random text, such as Englishtext (from the TREC Wall Street Journal collection), French text (a Bible), Spanish text (E-mail archives)and DNA sequences. In random text the patterns were randomly generated on the same alphabet, while fornon-random texts the patterns were selected randomly from the same text (at word beginnings in the caseof natural language). We show results for short patterns (m � w) as well as for long patterns (m > w).Exact Matching. We included in the comparison the best classical algorithms such as Boyer-Moore andSunday (which is strictly better than Horspool on average), Knuth-Morris-Pratt (which is not shown in theplots because it was very slow, always close to 0.14 seconds per megabyte), Shift-Or (which is not alwaysshown, being always close to 0.07 seconds per megabyte), classical BDM, and our three bit-parallel variants:BNDM, BM BNDM and Turbo BNDM.Figure 11 shows the results for random text and short patterns. As it can be seen, our bit-parallelalgorithms are the fastest in all cases, except for very short patterns (m � 1 to m � 8 depending onthe alphabet size). The BM BNDM algorithm is the fastest one, although the di�erence against simpleBNDM is small. Our algorithms are especially good for small alphabets since they use more informationon the matched pattern than others. The exception is Boyer-Moore, which however is slower because ofits complexity (notice that Boyer-Moore is faster than BDM, but slower than BNDM). Therefore, our bit-parallel versions are the fastest, which does not happen to the classical BDM version. For larger alphabetsanother very simple algorithm gets very close: Sunday. However, a di�erence of 10% is always obtained.Figure 12 shows the results on random text and longer patterns, for the relevant algorithms only. Wedid not include the more complex variations of our algorithm because they have already been shown verysimilar to the simple one. We did not include also the algorithms which are known to not improve, such asShift-Or and KMP. As it can be seen, our algorithm ceases to improve because it basically searches for the�rst w letters of the pattern, while the classical DAWGs keep improving. In fact, our algorithm ceases tobe the best for m close to 80-150 depending on the alphabet size and the architecture. This value would atleast duplicate in a 64-bit architecture.Figure 13 shows the results on non-random text: English and DNA. The results are very similar torandom text for j�j = 16 and j�j = 4, respectively. On English text our algorithms are the fastest for2 � m � 110, i.e. practically everywhere. For DNA this range reduces to 6 � m � 90. On French andSpanish we obtained results similar to English.Classes of Characters. We show some illustrative results using classes of characters, which were generatedas follows: we generated random texts of several alphabet sizes, j�j = 4; 16 and 64, inside which we searchedrandom patterns of length 15 (resp. 30). In those patterns we introduced from 1 to 7 (resp. 1 to 15) jokersrandomly placed. By a joker we mean a class of characters that matches all the alphabet. The resultsare shown in Figure 14. Our algorithm is the fastest in all cases, far below Shift-Or (which stays almostconstant whatever the number of jokers is), Sunday and Boyer-Moore extended to classes of characters5. Asthe length of the patterns grows, the di�erence between our algorithm and the others increases sharply.Multipattern Search. We also present some results on our multipattern algorithm, to show that althoughwe take the minimum shift among all the patterns, we can still do better than searching each pattern in turn.We take random groups of �ve patterns of length 6 and show how our multipattern algorithm (in its twoversions) performs against �ve sequential searches with our sequential algorithm, and against the parallelversion proposed in [3]. As it can be seen, our �rst arrangement is slightly more e�cient than the secondone, they are always more e�cient than a sequential search (although the improvement is not �ve-fold buttwo- or three-fold because of shorter shifts), and are more e�cient than the proposal of [3] provided j�j � 8.5These extensions consist simply in rede�ning the equality among characters when a joker is involved.19

� � � � � � � � � �� � � � � � � � �� � � � � � � �305 10 15 20 25 303
10
345678
910 mt � � � � � � � � �� � � � � � � � �� � � � � � � �305 10 15 20 25 302

7
23456
7

mt
� � � � � � � � � �� � � � � � � � � �� � � � � � � � �305 10 15 20 25 302

7
23456
7

mt � � � � � � � � �� � � � � � � � �305 10 15 20 25 302
6
2345
6

mt
� � � � � � � � � �� � � � � � � � �305 10 15 20 25 302.0

5.5
2.02.53.03.54.04.5
5.05.5 mt � � � � � � � � � �� � � � � � � � �305 10 15 20 25 302.0

5.5
2.02.53.03.54.04.5
5.05.5 mt

BDMBNDM BM BNDMTurbo BNDM � Shift-Or� Sunday � Boyer-MooreFigure 11: Times in 1/100-th of seconds per megabyte, for random text on short patterns, j�j = 2, 4, 8, 16,32 and 64 (in reading order). 20

� � � � � � � � � � � � �40 16040 60 80 100 120 140 1602.0
5.5
2.02.53.03.54.04.5
5.05.5 mt � � � � � � � � � � � � �� � � � � � � � � � � � �40 16040 60 80 100 120 140 1601.5

5.0
1.52.02.53.03.54.0
4.55.0 mt

� � � � � � � � � � � � �� � � � � � � � � � � � �
40 16040 60 80 100 120 140 1601.5

3.6
1.51.82.12.42.73.0
3.33.6 mt � � � � � � � � � � � � �� � � � � � � � � � � � �

40 16040 60 80 100 120 140 1601.5
2.7
1.51.82.12.4
2.7

mt
� � � � � � � � � � � � �� � � � � � � � � � � � �40 16040 60 80 100 120 140 1601.5

2.4
1.51.82.1
2.4

mt � � � � � � � � � � � � �� � � � � � � � � � � � �40 16040 60 80 100 120 140 1601.5
2.4
1.51.82.1
2.4

mt
BDM BNDM (ours) � Sunday � Boyer-MooreFigure 12: Times in 1/100-th of seconds per megabyte, for random text on long patterns, j�j = 2, 4, 8, 16,32 and 64 (in reading order). 21

� � � � � � � � �� � � � � � � � �� � � � � � � � � 305 10 15 20 25 302
7
23456
7

mt � � � � � � � � � � � � �� � � � � � � � � � � � �40 16040 60 80 100 120 140 1601.7
2.5
1.71.92.12.3 mt

� � � � � � � � �� � � � � � � � � �� � � � � � � � �305 10 15 20 25 302
7
23456
7

mt � � � � � � � � � � � � �� � � � � � � � � � � � �40 16040 60 80 100 120 140 1601.5
4.5
1.52.02.53.03.54.0
4.5

mt
BDMBNDM BM BNDMTurbo BNDM � Shift-Or� Sunday � Boyer-MooreFigure 13: Times in 1/100-th of seconds for non-random text: English (�rst line) and DNA (second line).The left plots show short patterns and the right plots show long patterns.

22

� �� � � � � � � �� � � �
0 70 1 2 3 4 5 6 70

8
0123456
78 kt � � � � �� � � � � � � � � � � � � � � �� � � � � � � �

0 150 3 6 9 12 150
8
0123456
78 kt

� � �� � � � � � � �� � � � � � �
0 70 1 2 3 4 5 6 70

8
0123456
78 kt � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � �

0 150 3 6 9 12 150
8
0123456
78 kt

� � � �� � � � � � � �� � � � � � �
0 70 1 2 3 4 5 6 70

8
0123456
78 kt � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � �

0 150 3 6 9 12 150
8
0123456
78 kt

BNDM � Shift-Or � Sunday � Boyer-MooreFigure 14: Times to search with classes of characters, in 1/100-th of seconds per megabyte. k is the numberof jokers (classes matching all �) in the pattern (randomly placed). The �rst column is for patterns of sizem = 15 and the second for m = 30. The �rst row stands for j�j = 4, the second for j�j = 16 and the lastone for j�j = 64. 23

� � � � � �� � � � � �
� � � � � �� � � � � �2 4 8 16 32 640

40
051015202530
3540 j�jt

� Multi-BNDM (1) � Multi-BNDM (2) � Multi-WM � BNDMFigure 15: Times in 1/100-th of seconds per megabyte, for multipattern search on random text of di�erentalphabet sizes (x axis).Searching Allowing Substitutions. We show now the performance of our approximate string matchingalgorithm. for Hamming distance. Figure 16 shows the results for m = 10. We show random text withj�j = 8 as well as English text. In this case our algorithm is the fastest for moderate error levels (i.e. k � 3).The same happens for 4 � j�j � 16 and pattern lengths between 10 and 16. We included in the comparisonall the other algorithms we are aware of, as well as some which were designed for edit distance and whichwe adapted for this simpler case [20, 5, 6].It is interesting to notice that for Hamming distance our algorithm beats exact partitioning [6], which isthe fastest known algorithm for edit distance. In the areas where exact partitioning is faster, our algorithm isstill reasonably competitive. Moreover, we can e�ciently handle classes of characters, while exact partitioningquickly degrades if it uses the Sunday search algorithm. On the other hand, it can be made more resistantto errors by using our extension of BNDM to multipattern search.Searching Allowing Errors. We show now the performance of our extensions to deal with errors. We�rst show how our multipattern algorithm performs when used for approximate string matching. We includethe fastest known algorithms in the comparison. We compare those algorithms against our version of [6](where the Sunday algorithm is replaced by our BNDM), while we consider [28] not as the bit-parallelalgorithm presented there but the other proposal, namely reduction to exact searching using their algorithmfor multipattern search shown in the previous experiment. Figure 17 shows the results for di�erent alphabetsizes and m = 20 (we obtained similar results for m = 10 and 30). As it can be seen, our implementation ofexact partitioning is quite close to [6] (sometimes even faster) and therefore our algorithm is a competitiveyet more
exible replacement, while it is faster than the other
exible candidate [28].Since BNDM is not very good for very short patterns, our algorithm works better for m = 20 and 30.Moreover, it ceases to be competitive for higher error levels since the length of the patterns to search for isO(m=k).Finally, we show the performance of our new algorithm for approximate string matching based on theNFA simulation. Figure 18 shows the results. As the algorithm works well for very low error levels, we showonly the case k = 1, for random (j�j = 4) and English text. In the �rst case (very similar to DNA) ouralgorithm outperforms all the others (this happens also for k = 2 and k = 3). For English text, it can beseen that for very low error levels and intermediate pattern lengths, our algorithm becomes very close to [6],which is the fastest known algorithm for low error levels, beating all the other algorithms.24

� � � �� � �+ +� � � � �� � � � �1 51 2 3 4 50.0
4.0
0.00.51.01.52.02.53.0
3.54.0 kt � � � �� � �+ + +� � � � �� � � � �1 51 2 3 4 50.0

4.0
0.00.51.01.52.02.53.0
3.54.0 kt

OursPart.Ex. [6] NFA [5]Shift-Or [4] � BY-�lter [4]� EM-�lter [13] + TU-�lter [26]� DFA [20] � Counting [4]NaiveFigure 16: Times in 1/10-th of seconds per megabyte, for approximate search under Hamming distance onrandom (left, j�j = 8) and English (right) text. We use m = 10 and the x axis is the number of errorsallowed.
� � � � � � � �� � � � � � � � � �� � � � �+ + + + + + + + + +� � � � � � � � � �
1 101 2 3 4 5 6 7 8 9 100.0

4.0
0.00.51.01.52.02.53.0
3.54.0 kt � � � � � � � � � �� � � � � � � � � �� � � � � � � � � �+ + + + + + + + + +� � � � � � � � � �

1 101 2 3 4 5 6 7 8 9 100.0
4.0
0.00.51.01.52.02.53.0
3.54.0 kt

Exact Part. (BNDM)Exact Part. [6] Exact Part. [28]� Bit-par. NFA [5] � Bit-par. Matrix [19]� Counting [16] + DFA [20]� Four Russians [29]Figure 17: Times in 1/10-th of seconds per megabyte, for random text on patterns of length 20, and j�j =16 and 64 (�rst and second column, respectively), using edit distance. The x axis is the number of errorsallowed. 25

� � � � � �� � � � � � �+ + + + + +� � � � � �5 305 10 15 20 25 300.0
4.0
0.00.51.01.52.02.53.0
3.54.0 mt � � � � � � �� � � � � �+ + + + + + +� � � � � �

5 305 10 15 20 25 300.0
1.8
0.00.30.60.91.21.5
1.8

mt
BNDM (ours)Exact Part. [6] � Bit-par. NFA [5]� Bit-par. Matrix [19] + DFA [20]� Four Russians [29]Figure 18: Times in 1/10-th of seconds per megabyte, for random text (j�j = 4, on the left) and Englishtext (on the right) and k = 1 error, for m = 5 to 30, under edit distance.10 Conclusions and Future WorkWe present a new algorithm (called BNDM) based on the bit-parallel simulation of a nondeterministic su�xautomaton. This automaton has been previously used in deterministic form in an algorithm called BDM.Bit-parallelism is a general way to simulate nondeterministic automata using the bits of the computer word.Our new algorithm is experimentally shown to be very fast on average. It is the fastest algorithm in all casesfor patterns from length 5 to 120 (depending of the size of the alphabet and the length of the computerword). For instance, on English our algorithm is the fastest for pattern lengths between 2 and 110, i.e. almosteverywhere. We present also some variations called TurboBNDM and BM BNDM which are derived fromthe corresponding variants of BDM. These variants are much more simply implemented using bit-parallelismand become practical algorithms. TurboBNDM has average performance very close to BNDM, though O(n)worst case behavior. BM BNDM is slightly faster than BNDM.The BNDM algorithm can be extended in simple ways to solve a large set of problems, like matchingclasses of characters, approximate pattern matching and multiple pattern matching. We show experimentallyits good performance in all cases.We hope that this work opens a new line of development, namely the combination of bit-parallel techniqueswith those able to skip characters, this way keeping the best of both worlds: speed and
exibility.The new su�x automaton we introduce and simulate for classes of characters has never been studied.A study of this new automaton (maximal number of nodes and edges, minimality, algorithms to build it,average number of nodes and edges) would be interesting by itself and should permit to extend the BDMand Turbo RF to handle classes of characters.Agrep software [27] is sometimes faster than our algorithm, especially on natural language. This isbecause Agrep uses BM algorithms on blocks of characters. This is an orthogonal technique than can beincorporated in all algorithms, and a general study of this technique would permit to improve the practicalspeed of pattern matching softwares. We are working at this.26

References[1] K. Abrahamson. Generalized string matching. SIAM Journal on Computing, 16(6):1039{1051, 1987.[2] R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World Computer Congress, volume I,pages 465{476. Elsevier Science, September 1992.[3] R. Baeza-Yates and G. Gonnet. A new approach to text searching. CACM, 35(10):74{82, October 1992.[4] R. Baeza-Yates and G. Gonnet. Fast string matching with mismatches. Information and Computation,108(2):187{199, 1994.[5] R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica, 1998. To appear.An earlier shorter version appeared in Proc. CPM'96, pages 1{23, 1996.[6] R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern matching. In Proc. CPM'92,pages 185{192. Springer-Verlag, 1992. LNCS 644.[7] Anselm Blumer, Andrzej Ehrenfeucht, and David Haussler. Average sizes of su�x trees and dawgs.Discrete Applied Mathematics, 24(1):37{45, 1989.[8] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications of the ACM, 20(10):762{772, 1977.[9] M. Crochemore. Transducers and repetitions. Theor. Comput. Sci., 45(1):63{86, 1986.[10] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski, and W. Rytter.Fast practical multi-pattern matching. Rapport 93{3, Institut Gaspard Monge, Universit�e de Marne laVall�ee, 1993.[11] Maxime Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.[12] A. Czumaj, Maxime Crochemore, L. Gasieniec, S. Jarominek, Thierry Lecroq, W. Plandowski, andW. Rytter. Speeding up two string-matching algorithms. Algorithmica, 12:247{267, 1994.[13] N. El-Mabrouk and M. Crochemore. Boyer-Moore strategy to e�cient approximate string matching. InProc. of CPM'96, number 1075 in Lecture Notes in Computer Science, pages 24{38. Springer-Verlag,Berlin, 1996.[14] M. J. Fischer and M. Paterson. String matching and other products. In R. M. Karp, editor, ProceedingsSIAM-AMS Complexity of Computation, pages 113{125, Providence, RI, 1974.[15] R. N. Horspool. Practical fast searching in strings. Softw. Pract. Exp., 10:501{506, 1980.[16] P. Jokinen, J. Tarhio, and E. Ukkonen. A comparison of approximate string matching algorithms.Software Practice and Experience, 26(12):1439{1458, 1996.[17] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM Journal onComputing, 6(1):323{350, 1977.[18] T. Lecroq. Recherches de mot. Th�ese de doctorat, Universit�e d'Orl�eans, France, 1992.[19] G. Myers. A fast bit-vector algorithm for approximate pattern matching ba sed on dynamic progamming.In Proc. CPM'98, pages 1{13. Springer-Verlag, 1998.[20] G. Navarro. A partial deterministic automaton for approximate string matching. In Proc. of WSP'97,pages 112{124. Carleton University Press, 1997.27

[21] G. Navarro and M. Ra�not. A bit-parallel approach to su�x automata: Fast extended string matching.In Proc. CPM'98, LNCS v. 1448, pages 14{33. Springer-Verlag, 1998.[22] R. Y. Pinter. E�cient string matching with don't care pattern. In A. Apostolico and Z. Galil, editors,Combinatorial Algorithms on Words, pages 11{29. Springer-Verlag, Berlin, 1985.[23] Mathieu Ra�not. Asymptotic estimation of the average number of terminal states in dawgs. In Proc.WSP'97, pages 140{148. Carleton University Press, 1997.[24] Mathieu Ra�not. On the multi backward dawg matching algorithm (MultiBDM). In Proc. WSP'97,pages 149{165. Carleton University Press, 1997.[25] D. Sunday. A very fast substring search algorithm. CACM, 33(8):132{142, August 1990.[26] J. Tarhio and E. Ukkonen. Approximate Boyer-Moore string matching. SIAM J. on Computing,22(2):243{260, 1993.[27] S. Wu and U. Manber. Agrep { a fast approximate pattern-matching tool. In Proc. of USENIX TechnicalConference, pages 153{162, 1992.[28] S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83{91, October 1992.[29] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate limited expressionmatching. Algorithmica, 15(1):50{67, 1996.[30] A. Yao. The complexity of pattern matching for a random string. SIAM J. on Computing, 8:368{387,1979.

28

