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Abstract

Several string matching algorithms exist, the most famous are Knuth-Morris-Pratt (KMP), Boyer-
Moore (BM), and some variations on BM, like Hoorspool and Sunday. Most of these algorithms rely on
different kinds of automata to speed up the search, which were traditionally made deterministic. After
1990, two new approaches have been studied separately. The first one simulates the automata in their
nondeterministic form by using bits and exploiting the intrinsic parallelism inside the computer word,
e.g. Shift-Or. Those algorithms are extended to handle classes of characters and errors in the pattern
and/or in the text, their drawback being their inability to skip characters. The second one uses “suffix
automata” to design new optimal string matching algorithms, e.g. BDM and Turbo_BDM. In this paper
we merge both approaches to obtain a new algorithm, called BNDM, which uses a nondeterministic
suffix automaton simulated using bit-parallelism. This algorithm is 20%-25% faster than BDM, uses less
memory, it is 2-3 times faster than Shift-Or, it is 10%-40% faster than all the BM family, and it is very
simple to implement. The algorithm becomes the fastest in all cases, except for extremely short or
extremely long patterns (e.g. on English we are the fastest between 2 and 110 characters). Moreover, the
algorithm inherits all the flexibility of the bit-parallel paradigm: we show that all the extensions devised
for Shift-Or to handle classes of characters, multiple patterns and even errors can be speeded-up with
the technique to skip characters. We obtain faster, very competitive algorithms for all these extensions.
In particular ours is by far the fastest technique to deal with classes of characters. As a theoretical
development related with this, we introduce a new automaton to recognize suffixes of patterns with
classes of characters. To the best of our knowledge, this automaton has not been studied before.

1 Introduction

The string-matching problem is to find all the occurrences of a given pattern p = p1ps2...pn in a large text
T = t1t3...t,, both sequences of characters from a finite character set X. This problem is fundamental in
computer science and is the basic part of many others, like text retrieval, symbol manipulation, computational
biology, data mining, network security, etc.

Several algorithms exist to solve this problem. One of the most famous, and the first having linear worst-
case behavior, is Knuth-Morris-Pratt (KMP) [17]. The search is done by scanning the text character by
character, and for each text position : remembering the longest prefix of the pattern which is also a suffix of
t1...t;. This approach is O(n) worst-case time but it needs to scan all characters in the text, independently
of the pattern. A second algorithm, as famous as KMP, which allows to skip characters, is Boyer-Moore
(BM) [8]. The search is done inside a window of length m, ending at position 7 in the text. It searches
backwards a suffix of ¢; ...¢; which is also a suffix of the pattern. If the suffix is the whole pattern a match
is reported. Then the window is shifted to the next occurrence of the suffix in the pattern. This algorithm
leads to several variations, like Hoorspool [15] and Sunday [25]. This latest one is considered as the fastest
string-matching algorithm in practice.

A large part of the research in efficient algorithms for string matching can be regarded as looking for
automata which are efficient in some sense. For instance, KMP is simply a deterministic automaton that
searches the pattern, being its main merit that it is O(m) in space and construction time. Many variations
of the BM family are supported by an automaton.
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Another automaton, called “suffix automaton” is used in [10, 12, 11, 18, 24], where the idea is to search
a substring instead of a prefix (as KMP), or a suffix (as BM). Optimal sublinear algorithms on average,
like BDM or Turbo_.BDM [12, 11], have been obtained with this approach, which has also been extended to
multipattern matching [10, 11, 24] (i.e. looking for the occurrences of all patterns).

Another related line of research is to take those automata in their nondeterministic form instead of
making them deterministic. Usually the nondeterministic versions are very simple and regular and can be
simulated using “bit-parallelism” [2]. This technique uses the intrinsic parallelism of the bit manipulations
inside computer words to perform many operations in parallel. Competitive algorithms have been obtained
for exact string matching [3, 28], as well as approximate string matching [3, 28, 29, 5, 19]. Although these
algorithms generally work well only on patterns of moderate length, they are simpler, more flexible (e.g.
they can easily handle classes of characters), and have very low memory requirements.

In this paper we merge some aspects of the two approaches in order to obtain a fast string matching
algorithm, called Backward Nondeterministic Dawg Matching (BNDM), which can be extended to classes
of characters, to multipattern search and to allow errors in the pattern and/or in the text, like Shift-Or
[3]. This algorithm uses a nondeterministic suffix automaton that is simulated using bit-parallelism. This
new algorithm has the advantage of being faster than previous algorithms which could be extended in such
a way (typically 2-3 times faster than Shift-Or), faster than BDM (20%-25% faster), and in fact being the
fastest on-line algorithm since it is 10%-40% faster than all the BM family'. Only for very short patterns
(i.,e. m < 1 to m < 8 depending on the alphabet size) or very long patterns (i.e. m > 80 to m > 150
depending on the architecture) our algorithm is not the fastest since, in the first case Sunday and in the
second case BDM, become faster than BNDM. Additionally BDNM uses few space in comparison with the
BDM or Turbo BDM algorithms (it does not need to construct the deterministic suffix automaton), and it
is very simple to implement (e.g. it is easy to implement complex variations of BDM like Turbo_.BDM and
BM_BDM). Moreover, the BDM family has never been studied to handle classes of characters. We give a
new definition of an automaton designed to recognize suffixes of “limited expressions” [29] (i.e patterns with
classes of characters) and we simulate its nondeterministic version using bit-parallelism.

This paper is organized as follows. In section 2 we present the suffix automaton and the BDM algorithm.
In section 3 we present the bit-parallelism approach. In section 4 we present our new algorithms for short
and long patterns. We present more complex and improved versions in section 5. The extension to classes
of characters is presented in section 6, to multipattern matching in section 7 and to approximate string
matching in section 8. We then present experimental results in section 9. We give our conclusions and future
work directions in section 10.

We use the following definitions throughout the paper.

A word z € T* is a factor (or substring) of p if p can be written p = uzv, u,v € I*. We denote
Fact(p) the set of factors of p. A factor z of p is called a suffir of pis p = uz, v € T*. The set of
suffixes of p is called Suff(p). When we want to emphasize the inter-letter positions in the pattern, we write
p="p1 ' o2 %ot ™ ™

We denote as by...b; the bits of a computer word of length /. We use exponentiation to denote bit
repetition (e.g. 031 = 0001). Since the length w of the computer word is fixed, we are hiding the details
on where we store the £ bits inside it. We give such details when they are relevant. Finally, we use C-like
syntax for operations on the bits of computer words: “|” is the bitwise-or, “&” is the bitwise-and, “ ™7 is
the bitwise-xor and “~” complements all the bits. The shift-left operation, “<<”, moves the bits to the left
and enters zeros from the right, 1.e. b, bp—_1...b201 << 7 = by_y...b2b10". The shift-right, “>>" moves the
bits in the other direction. Finally, we can perform arithmetic operations on the bits, such as addition and
subtraction, which operates the bits as if they formed a number. For instance, b;...5,10000—1 = b,...5,01111.

An earlier partial version of this work appeared in [21].

!The software Agrep [27] is faster, since it uses a BM algorithm over pairs of characters instead of single ones. As this
technique is orthogonal and can be used in all other algorithms we do not include it as a different algorithm and defer the study
of this technique to future work.



2 Searching with Suffix Automata

We describe in this section the BDM pattern matching algorithm [12, 11]. This algorithm is based on a
suffix automaton. We first describe such automaton and then explain how is it used in the search algorithm

2.1 Suffix Automata

A suffiz automaton on a pattern p = pipz...pm (frequently called DAWG(p) - for Deterministic Acyclic
Word Graph) is the minimal (incomplete) deterministic finite automaton that recognizes all the suffixes of
this pattern. By “incomplete” we mean that some transitions are not present.

The nondeterministic version of this automaton has a very regular structure and is shown in Figure 1.
We show now how the corresponding deterministic automaton is built.

BebabsbsbsbsGxD

Figure 1: A nondeterministic suffix automaton for the pattern p = baabbaa. Dashed lines represent epsilon
transitions (i.e. they occur without consuming any input). I is the initial state of the automaton.

Given a factor z of the pattern p, endpos(z) is the set of all the pattern positions where an occurrence
of z ends (there is at least one, since z is a factor of the pattern, and there are as many as repetitions of z
inside p). Formally, given z € Fact(p), we define endpos(z) = {i / Fu, p1p2...pi = uz}. We call each such
integer a position. For example, endpos(baa) = {3,7} in the word baabbaa. Notice that endpos(e) is the
complete set of possible positions (recall that € is the empty string). Notice that for any v, v, endpos(u) and
endpos(v) are either disjoint or one contained in the other.

We define an equivalence relation = between factors of the pattern. For u, v € Fact(p), we define

u = v if and only if endpos(u) = endpos(v)

(notice that one of the factors must be a suffix of the other for this equivalence to hold, although the converse
is not true). For instance, in our example pattern p = baabbaa, we have that baa = aa because in all the
places where aa ends in the pattern, baa ends also (and vice-versa).

The nodes of the DAWG correspond to the equivalence classes of =, i.e. to sets of positions. A state,
therefore, can be thought of as a factor of the pattern already recognized, except because we do not distinguish
between some factors. Another way to see it is that the set of positions is in fact the set of active states in
the nondeterministic automaton.

There is an edge labeled ¢ from the set of positions {i1,72,...9} to ¥ (41 + 1,0) Up(ia + 1,0) U ... U
¥p (3%, o), where

. itifi<mandp;, =¢
WU):{{} <

? otherwise

which is the same to say that we try to extend the factor that we recognized with the next text character
o, and keep the positions that still match. If we are left with no matching positions, we do not build the
transition. The initial state corresponds to the set {0..m}. Finally, a state is terminal if its corresponding
subset of positions contains the last position m (i.e. we matched a suffix of the pattern). As an example,
the deterministic suffix automaton of the word baabbaa is given in Figure 2.

The (deterministic) suffix automaton is a well known structure [9, 7, 11, 23], and we do not prove any of
its properties here (neither the correctness of the previous construction). The size of DAWG(p) is linear in m
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Figure 2: Deterministic suffix automaton of the word °6'a2a3b%b%a

6a7

(counting both nodes and edges), and a linear on-line construction algorithm exists [9]. A very important fact
for our algorithm is that this automaton can not only be used to recognize the suffixes of p, but also factors
of p. By the suffix automaton definition, there is a path labeled by z form the initial node of DAWG(p) if
and only if z is a factor of p.

2.2 Search Algorithm

The suffix automaton structure is used in [12, 11] to design a simple pattern matching algorithm called BDM.
This algorithm is O(mn) time in the worst case, but optimal on average (O(nlogm/m) time?). Other more
complex variations such as Turbo_.BDM[12] and MultiBDM][11, 24] achieve linear time in the worst case. To
search a pattern p = pipa...pm in a text T = t1¢3...t,, the suffix automaton of p" = pmpm—1...p1 (i€
the pattern read backwards) is built. A window of length m is slid along the text, from left to right. The
algorithm searches backwards inside the window for a factor of the pattern p using the suffix automaton.
During this search, if a terminal state is reached which does not correspond to the entire pattern p, the
window position is remembered (in a variable last). This corresponds to finding a prefiz of the pattern
starting at position last inside the window and ending at the end of the window (since the suffixes of p”
are the reverse prefixes of p). Since we remember the last prefix recognized backwards, we have the longest
prefix of p in the window. This backward search ends in two possible forms:

1. We fail to recognize a factor, i.e we reach a letter o that does not correspond to a transition in
DAWG(p"). Figure 3 illustrates this case. We then shift the window to the right, its starting posi-
tion corresponding to the position last (we cannot miss an occurrence because in that case the suffix
automaton would have found its prefix in the window).

2. We reach the beginning of the window, therefore recognizing the pattern p. We report the occurrence,
and we shift the window exactly as in the previous case (notice that we have the previous last value).

The pseudo-code of the BDM algorithm is given figure 2.2. We note §p 4w a(q, o) the transition function
of the suffix automaton. dpawe(q, o) is the node that we reach if we move along the edge labeled by o from
the node ¢. If such an edge does not exist, Spawa(q, o) is null.

Search example: we search the pattern aabbaab in the text
T=abbabaabbaakb.

We first build DAWG(p" =baabbaa), which is given in Figure 2. We note the current window between square
brackets and the recognized prefix in a box. We begin with
T=[abbabaalbbaab, m="7,last=71.

2The lower bound of O(nlogm/m) on average for any pattern matching algorithm under a Bernouilli probability model and
a RAM complexity model is from A. C. Yao [30].



Search for a factor with the DAWG

Record in last the window position when a terminal state is reached

la§t

LI LT o] | EENEEEEEEEEEN
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Figure 3: Basic search with the suffix automaton

BDM(p =P1pP2...Pmy T = t1t2 cee tn)

1 Preprocessing

2 Build DAWG(p")

3 Search

4. pos — 0

5. While (pos <=n —m) do

6 jem

7 state < initial state of DAWG(p")

8 While state # nulland 7 > 0 do

9. if 7 > 1 and state is terminal then last < j
10. state < dp awa(state, Tpostj)

11. je—g3—-1

12. End of while

13. if 7 = 0 report an occurrence at pos + 1
14. pos < pos + last

15. End of while

Figure 4: Pseudo-code of the BDM algorithm. The variable pos points at the character just before the
window, j is used to traverse the window backwards and last to record the last prefix matched.



1. T= [abbabala]]bbaab. ais afactor of 6. T = abbab[aabba]. ba is a factor of

p" and a reverse prefix of p. last = 6. p.
2. T=[abbablaa]]bbaab. aais a factor of 7. T= abbab[aabb], baa is a factor
p" and a reverse prefix of p. last = 5. of p", and a reverse prefix of p. last = 4.
3. T — [abba]bbaab. aab is a factor 8 T=abbablaablbaabl|]. baabis a factor
of p". of p.
AT — [abb]bbaab. We fail 9.T:Tabbab[aa].baabblsafactor
of p”.

to recognize the next a. So we shift the win-

dow to last. We search again in the position: 10. T= abbab|a ]. baabba is a

T=oabbablaabbaab],last=71. factor of p”.

5. T = abbab[aabbaa@]. bis a factor of 11. T = abbab[]. We recognize

p. the word aabbaab and report an occurrence.

3 Bit-Parallelism

In [3], a new approach to text searching was proposed. It is based on bit-parallelism [2]. This technique
consists in taking advantage of the intrinsic parallelism of the bit operations inside a computer word. By
using cleverly this fact, the number of operations that an algorithm performs can be cut down by a factor
of at most w, where w is the number of bits in the computer word. Since in current architectures w is 32 or
64, the speedup is very significative in practice.

The Shift-Or algorithm uses bit-parallelism to simulate the operation of a nondeterministic automaton
that searches the pattern in the text (see Figure 5). As this automaton is simulated in time O(mn), the
Shift-Or algorithm achieves O(mn/w) worst-case time (optimal speedup). Notice that if we convert the
nondeterministic automaton to a deterministic one to have O(n) search time, we get a version of the KMP
algorithm [17] (KMP, however, is twice as slow as Shift-Or for m < w).
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Figure 5: A nondeterministic automaton to search the pattern p = baabbaa in a text. The initial state is 0.

We explain now the Shift-And algorithm, which is an easier-to-explain (though a little less efficient)
variant of Shift-Or. The algorithm builds first a table B which for each character stores a bit mask b,,...5;.
The mask in BJc] has the i-th bit set if and only if p; = ¢. The state of the search is kept in a machine word
D =d,,...d1, where d; is set whenever p;p;...p; matches the end of the text read up to now (another way to
see it is to consider that d; tells whether the state numbered 7 in Figure 5 is active). Therefore, we report a
match whenever d,, is set.

We set D = 0 originally, and for each new text character T;, we update D using the formula

D' « ((D<<1)|0™ 1) & B[T}]

The formula is correct because the i-th bit is set if and only if the (¢—1)-th bit was set for the previous text
character and the new text character matches the pattern at position ¢. In other words, Tj_;41..7; = p1..p; if



and only if Tj_;11..75_1 = p1..p;—1 and T; = p;. Again, it is possible to relate this formula to the movement
that occurs in the nondeterministic automaton for each new text character: each state gets the value of the
previous state, but this happens only if the text character matches the corresponding arrow. Finally, the
“ 0™~11” after the shift allows a match to begin at the current text position (this operation is saved in the
Shift-Or, where all the bits are complemented). This corresponds to the self-loop at the beginning of the
automaton.

The cost of this algorithm is O(n). Although we consider only masks of length m here, in practice the
masks are of length w (as explained earlier) and some provisions may be necessary to handle the unwanted
extra bits. For patterns longer than the computer word (i.e. m > w), the algorithm uses [m/w]| computer
words for the simulation (not all them are active all the time), with a worst-case cost of O(mn/w) and an
average case cost of O(n).

This algorithm is very simple, and has some further advantages. The most immediate one is that it is
very easy to extend it to handle classes of characters. That is, each pattern position does not only match
a single character but a set of characters. If C; is the set of characters that match the position ¢ in the
pattern, we set the i-th bit of B[c] for all ¢ € C;. In [3] they show also how to allow a limited number % of
mismatches in the occurrences, at O(nmlog(k)/w) cost.

Later [28] enhanced this paradigm to support extended patterns, which allow wild cards, regular ex-
pressions, approximate search with nonuniform costs, and combinations. Further development of the bit-
parallelism approach for approximate string matching lead to some of the fastest algorithms for short patterns
[5, 19]. In most cases, the key idea was to simulate a nondeterministic finite automaton. It is interesting
also to mention [13], which searches allowing mismatches by using a combination of bit-parallelism and
Boyer-Moore.

Bit-parallelism has became a general way to simulate simple nondeterministic automata instead of con-
verting them to deterministic. This is how we use it in our algorithm.

4 Bit-Parallelism on Suffix Automata

We simulate the BDM algorithm using bit-parallelism. The result is an algorithm which is simpler, uses less
memory, has more locality of reference, and is easily extended to handle more complex patterns, as shown
in the next sections. We first assume that m < w and show later how to extend the algorithm for longer
patterns.

4.1 The Basic Algorithm

We simulate the automaton of Figure 1 on the reversed pattern. Just as for Shift-And, we keep the state of
the search using m bits of a computer word D = d,...d;.

The BDM algorithm moves a window over the text. Each time the window is positioned at a new
text position just after pos, it searches backwards the window Tpos41..Tpos+m using the DAWG automaton,
until either m iterations are performed (which implies a match in the current window) or the automaton
cannot follow any transition. In our case, the bit d; at iteration k is set if and only if pp—iy1..m—itk =
Tpos+1+m—k--Tpos+m. Some observations follow

e Since we begin at iteration 0, the initial value for D is 1™ (recall that we use exponentiation to denote
bit repetition).

e There is a match if and only if after iteration m it holds d,, = 1.

e Whenever d,,, = 1, we have matched a prefix of the pattern in the current window. The longest prefix
matched (excluding the complete pattern) corresponds to the next window position (variable last).



BNDM (p = P1P2...Pm;, T = tltz...tn)

1. Preprocessing

2. For c € ¥ do Blc] + 0™

3. For i € 1.m do B[pm—it1] < B[pm—it1] | 0™7*10° 7!
4. Search

5. pos <0

6. While pos <=n—m do

7. jem, last —m

8. D=1"

9. While D # 0™ do

10. D+ D & B[Tpostj]

11. jeg—1

12. if D & 10™™' # 0™ then

13. if 7> 0 then last « j

14. else report an occurrence at pos + 1
15. D+ D<<1

16. End of while

17. pos  pos + last

18. End of while

Figure 6: Bit-parallel code for BDM. Some optimizations are not shown for clarity.

e Since there is no initial self-loop, this automaton eventually runs out of active states. Moreover, states
(m — k)..m are inactive at iteration k.

The algorithm is as follows. Each time we position the window in the text we initialize D and scan the
window backwards. For each new text character we update D. Each time we find a prefix of the pattern
(dm = 1) we remember the position in the window. If we run out of 1’s in D then there cannot be a match
and we suspend the scanning (this corresponds to not having any transition to follow in the automaton). If
we can perform m iterations then we report a match.

We use a mask B which for each character ¢ stores a bit mask. This mask sets the bits corresponding
to the positions where the pattern has the character ¢ (just as in the Shift-And algorithm). Interestingly
enough, the formula to update D turns out to be very similar to that of the Shift-Or algorithm:

D' « (D & B[Tj]) << 1

which should not be surprising given the similarity between both automata. The algorithm is summarized in
Figure 6. Some optimizations done on the real code, related to improved flow of control and bit manipulation
tricks, are not shown for clarity.

Search example: we search the pattern aabbaab in the text
T=abbabaabbaakb.

We note the current window between square brackets and the recognized prefix in a box. We begin with

(1100110
T=[abbabaa]bbaab, D=1111111,B= 510011001

,m="T,last=T7,7=T.




1. T= [abbabaa]lbbaab. 6. T— abbablaabbalabl|].
1 1 1 1 1 1 1 =6 0 1 1 0o 0 1 O i =5
j= j=
& 1 1 0 0 1 1 O ] —6 & 1 1 0 0 1 1 O ] —7
D=1 1 0 0 1 1 0© ast = D=0 1 0 0 0 1 0© ast =
2. T= [abbablaa]]bbaab. 7.T=abbablaabblaabl]|].
1 001 10 0 1 00 0 100 =
j=5 & [[1 1 001 1 0 J
& [[1 1 00 11 0 o last — 4
511 o o o 1 0 0 last =5 D=1 0o o o0 1 0 ©
8 T=abbablaablbaabl|].
3. T=[abbalbaa|lbbaab 0 0 0 1 0 0 0O j=3
0 0 0 1 0 0 O i—4 & 0o 0 1 1 0 0 1 last — 4
& |lo o 1 0 0 1 J D=0 0 0 1 0 0 0 ast =
D=0 0 o 0 0 0 last =5
9. T=abbablaalbbaabl|].
0 0 1 0o O O O L
4. T= [abblabaal]lbbaab 2 lo o 11 00 1 J—2_
0 01 0 0 0 O j=3 D=1T0o 0o 1 0 0 o o last = 4
& 1 1 0 0 1 1 O .
D=0 0 0 0 0 0 0 last =5
] ] ] 10. T= abbab[alabbaab|]
We fail to recognize the next a. So we shift the 0 1 0 0 0 o o o
window to last. We search again in the posi- & |1 1 0 0 1 1 o0 ; _t— 4
tion: T= abbabl[aabbaab], last =7, D=0 1 0 0 0 0 0 ast =
j=
5 T:abbab[aabbaa@]. 11. T= abbab[|laabbaabl|].
1T 1 1 1 1 1 1 1000000 =0
j=6 & [[1 1 0 0 1 1 0 )=
& [[o o 1 1 0 0 1 last — 4
=To o 1 1 0 o0 1 last =17 D=1 0o 0 0o 0 0 o©

Report an occurrence at 6.

4.2 Handling Longer Patterns

We can cope with longer patterns by setting up an array of words D; and simulating the work on a long
computer word (we call this a “multi-word simulation” of the simple algorithm). We propose a different
alternative which was experimentally found to be faster.

If m > w, we partition the pattern in M = [m/w] consecutive subpatterns s;, p = s1 $2 ... spr, so
that each subpattern s; is of length m; = w if ¢ < M and the last one has the remaining characters (i.e.
mp = m — w(M — 1)). Those subpatterns can therefore be searched with the basic algorithm.

We now search s; in the text with the basic algorithm. If s; is found at a text position j, we verify
whether s; follows it. That is, we position a window at Tj4m,..Tj4m,+m,—1 and use the basic algorithm
for s, in that window. If s5 is in the window, we continue similarly with s3 and so on. This process ends
either because we find the complete pattern and report it, or because we fail to find some subpattern s; in
its window.

We have to shift the window now. An easy alternative is to use the shift last; that corresponds to the
search of s;. However, if we tested the subpatterns s; to s;, each one gives a possible shift last;, and we use
the maximum of all shifts.



Although this algorithm searches on a shorter window (i.e. of length w < m) and therefore it performs
shorter shifts than the multi-word simulation, this multi-word simulation has to work on M computer words
to traverse the window, in general cancelling any possible benefit from performing a longer shift. Finally,
the multi-word simulation switches very fast the D; word it operates on, while our algorithm operates a
long time over a single D; word, therefore making it profitable to put it in a computer register for faster
operation.

4.3 Analysis

The preprocessing time for our algorithm is O(m + |2]) if m < w, and O(m(1 + |X|/w)) otherwise.

In the simple case m < w, the analysis is the same as for the BDM algorithm. That is, O(mn) in the
worst case (e.g. T = a™, p=a™ 1b), O(n/m) in the best case (e.g. T = a™, p = b™), and O(nlogz m/m)
on average. Our algorithm, however, benefits from more locality of reference, since we do not access an
automaton but only a few variables which can be put in registers (with the exception of the B table). As
we show in the experiments, this difference makes our algorithm the fastest one.

When m > w, our algorithm is O(nm?/w) in the worst case (since each of the O(mn) steps of the BDM
algorithm forces to work on [m/w] computer words). The best case occurs when the text traversal using
s1 always performs its maximum shift after looking one character, which is O(n/w). We show, finally, that
the average case is O(n log|5 w/w). Clearly these complexities are worse than those of the simple BDM
algorithm for long enough patterns. We show in the experiments up to which length our version is faster in
practice.

The search cost for s is O(nlogjy w/w). With probability 1/||*, we find s; and verify for the rest of
the pattern. The search for s; in the window costs O(w) at most. With probability 1/|X|* we find s and
search for s3, and so on. The total cost incurred by the existence of s»...s37 is at most

M w w
- < g = — = O(l)
DigE < T e

which therefore does not affect the main cost to search s; (neither in theory since the extra cost is O(1) nor in
practice since ¢ is very small). We consider the shifts now. The search of each subpattern s; provides a shift
last;, and we take the maximum shift. Now, the shift last; participates in this maximum with probability
1/|Z|¥*. The longest possible shift is w. Hence, if we sum (instead of taking the maximum) the longest
possible shifts w with their probability of participating, we get into the same sum above, which is ¢ = O(1).
Therefore, the average shift is last; + ¢ = last; + O(1), and hence the cost is that of searching s; plus lower
order terms.

Notice that, on the other hand, the multi-word simulation has worse complexity, namely O(n logx, (m)/w),
since it performs the same number of operations as BDM (i.e. O(n loglzl(m)/m)) but for each operation it
has to update O(m/w) machine words.

5 Further Improvements

5.1 A Linear Time Algorithm

Although our algorithm has optimal average case, it is not linear in the worst case even for m < w, since we
can traverse the complete window backwards and advance it in one character (e.g. T = a®, p = a™ 1b). In
the worst case, the algorithm is O(nm?/w). Our aim now is to reduce its worst case to O(nm/w), i.e. O(n)
when m = O(w).
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In the last few years, studies have been undertaken to obtain faster and linear worst case algorithms
(and still sublinear on average) using DAWGs, for instance Turbo RF? in [12], Turbo.BDM in [12] or in
[18]. The main idea is to avoid retraversing the same characters in the backward window verification.
When we determine that the window must be advanced in last positions, for last < m, we already know
that T;4iqst.. Ti4m—1 1s a prefix of the pattern, and therefore it is possible to use this knowledge to avoid
traversing backwards the complete window T; 1 14s¢.- T; t1ast+m—1. The ending position (i+last+m—1) of the
prefix in the window is usually called the critical position. Therefore, we want to avoid that the backward
window verification continues after reaching the critical position.

The main problem is how to determine the next shift if we are not going to traverse again the area
T;tiast--Titm—1. Recall that we have not stored information about the next possible shifts following last (we
only remembered the shortest shift).

Two main strategies exist. The first one is to use a KMP algorithm to read again the characters we read
with the DAWG if we reached the critical position. We keep in memory the longest prefix of the pattern
that is also a suffix of the text we read. We stop using the KMP algorithm when the maximal prefix we
found is less than half the size of the pattern. This strategy is used in [11, 18, 24]. The algorithm obtained
is linear in the worst case, but the DAWG is used just to “help” KMP to skip some characters.

The second strategy makes a better use of the power of DAWGs by adding a kind of BM machine to the
BDM algorithm. To explain the algorithm we need the definition of a border: the border of a string u is the
set of prefixes of u which are also suffixes.

The algorithm works as follows: if we reach the critical position after reading a factor z with the DAWG,
it is possible to know whether z” is a suffix of the pattern p.

e If 2" is a suffix, we have recognized the whole pattern p, and the next shift corresponds to the longest
prefix of p that is also a suffix of p, i.e the longest border of p, which can be computed in advance.

e If 27 is not a suflix, it appears in the pattern in a set of positions which is given by the state we reached
in the suffix automaton. If we shift to the rightmost occurrence of 2" in the pattern, like in the BM
algorithm, the shift is safe.

It is not difficult to simulate this idea in our BNDM algorithm. To know if the factor z we read with
the DAWG is a suffix, we just have to test if there is a 1 at the |z|-th bit in D, i.e. d|,;. To get the
rightmost occurrence, we seek the rightmost 1 in D, which we can get (if it exists) in constant time with
log,(D & ~ (D — 1)) *. We implemented this algorithm under the name BM_BNDM in the experimental
part of this paper, and it turns out to be the fastest version of BNDM in practice.

However, this algorithm remains quadratic, because we do not keep a prefix of the pattern after the BM
shift. To make it linear, we must keep this prefix. This situation is shown in Figure 7.

Let u be the prefix before the critical position. The Turbo_RF (second variation) [12] uses a complicated
preprocessing phase to associate in linear time an occurrence of 2" in the pattern to a border b, of u, in
order to obtain the maximal prefix of the pattern that is a suffix of uz". Moreover, the Turbo_RF uses a
suffix tree, and it is quite difficult (though not impossible) to use this preprocessing phase on DAWGs. With
our simulation, this preprocessing phase becomes simple. To each prefix u; of the pattern p, we associate
a mask Bord[i] that registers the starting positions of the borders of u; (e included). This table can be
precomputed in O(m) time. Now, to join one occurrence of z" with a border of w, we want the positions
which start a border of u and continue with an occurrence of z". The first set of positions is Bord[i], and
the second one is precisely the current D value (i.e. positions in the pattern where the recognized factor
z ends). Hence, the bits of X = Bord[i] & D are the positions satisfying both criteria. As we want the

3Turbo RF uses a suffix tree, but it can be adapted to DAWGs.

*In practice, it is faster and cleaner to implement this log, by shifting the mask to the right until it becomes zero. Using this
technique we can use the simpler expression D * (D — 1) and get the same result. However, the log, expression is important in
theory because it can be computed in constant time.
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Figure 7: Skeleton of the BM shift if we reach the critical position.

rightmost such occurrence (i.e. the maximal prefix), we take again log,(X & ~ (X — 1)). We implemented
this algorithm under the name Turbo BNDM in the experimental part of this paper.

5.2 A Constant-Space Algorithm

It is also interesting to notice that, although the algorithm needs O(|X|m/w) extra space, we can make it
constant space on a binary alphabet o = {0,1}. The trick is that in this case, B[1] = p and B[0] = ~ BJ[1].
Therefore, we need not extra storage apart from the pattern itself to perform all the operations. In theory,
any text over a finite alphabet 3 could be searched in constant space by representing the symbols of 3 with
bits and working on the bits (the misaligned matches have to be later discarded). This involves an average
search time of

<nlog2 |Z]

mlog, 7] logz(mlog2|2|)> = Normal time x log, |Z| X <1—|—

log, log, |E|>

log, m

which if the alphabet is considered of constant size is of the same order of the normal search time.

We present now some extensions applicable to our basic scheme, which form a successful combination of
efficiency and flexibility. The general concept is that all the extensions devised for the Shift-Or algorithm
can be enriched with our approach to speed them up.

6 Handling Classes of Characters

As in the Shift-Or algorithm, we allow that each position in the pattern matches not only a single character
but an arbitrary set of characters. Some solutions for the case of don’t care characters (i.e. pattern positions
that match any character) have been presented in [14, 22, 1], but these have been shown to be only of
theoretical interest in [3]. Simple attempts to extend classical algorithms such as KMP or BM do not work
well. To the best of our knowledge, the fastest algorithm for this problem is Shift-Or.

This type of patterns is called “limited expressions” in [29], and it is a subset of the wealth of alternatives
for “extended patterns” presented in [3, 28]. Although formally it is enough to say that each pattern position
can match a set of characters, it is useful to give an intuitive idea of the power allowed. The following patterns
are examples of limited expressions:
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e word in case insensitive, i.e. {w,W}{o,0}{r,R}{4,D}.

e wo.d, where the ’.’ means any character, i.e. {w}{o}X{d}.

e wor[a-z], where [a-z] means any character in the range from ’a’ to ’z?,i.e. {w}{o}{r}{a..z}.
e wolabx]d, where [abx] means ’a’, ’b’ or ’x’, i.e. {w}{o}{a,b,x}{d}.

e w[~oulrd, where [~o] means any character except ’o’ and ’u’, i.e. {w}{o}(X — {o,u}){d}.

We denote a limited expression p = C1C;3...Cy,. A word ¢ = z1z>...2, in X7 is a factor of a lim-

ited expression p = C1Cy...Cy, if there exists an 7 such that z; € Ci_,41,22 € Ci_py2,...,2, € Cy.
Such an i is called a position of z in p. A factor ¢ = ziz2...2, of p = C1C5...C,, is a suffiz if
T1 € Cm—r+17:c2 € C’i—T+27 sy Ty € C'm

Similarly to the first part of this work, we design an automaton which recognizes all suffixes of a limited
expression p = C1C>...C,,. This automaton is not anymore a DAWG. We call it Eztended_DAWG. To our
knowledge, this kind of automaton has never been studied. We first give a formal construction, and then
prove its correctness.

6.1 Construction

The construction we use is quite similar to the one given for the DAWG, but with the new definition
of suffixes. For any # factor of p, we denote L-endpos(z) the set of positions of z in p. For example,
L-endpos(baa) = {3, 7} in the limited expression b/a,bjabbaa, and L-endpos(bba) = {3, 6} (notice that, unlike
before, the sets of positions may be non-disjoint and no one a subset of the other). We define the equivalence
relation =g for u, v factors of p by

u =g v if and only if L-endpos(u) = L-endpos(v).
We define v, (7,0) with ¢ € {0,1,...,m,m+1},0 € = by
) {i}if i<mand o €C;
Yp(i,0) =

? otherwise

LEMMA 1 Let p be a limited expression and =g the equivalence relation on its factors (as previously defined).
The equivalence relation =g s compatible with the concatenation on words.

Proof. Let u and v be two different factors of p that belong to the same equivalence class ¢, and let o € 3.
S = {i1,12,...,1k} is the set of positions corresponding to g. Two cases appear:

e if uo (resp. vo) is not a factor of p, neither is vo (resp. uo). Suppose uc is not a factor, but vo is.
Then there exists a position 2 < ¢ < m where vo ends in p. Hence v ends at ¢ — 1. But, as w and v are
at the same positions, u appears also at position 7 — 1 in p, and uc appears in 7. A contradiction.

e if uo (resp. vo) is a factor of p, vo (resp. uc) is also a factor of p and uoc =g vo. Assume that uo
is a factor, then uc ends in p at positions S, = ¥(¢1,0) U...Uy(i,0). As v ends at the same set of
positions S as u, vo ends at S, too. Therefore uo and vo belong to the same equivalence class.

Hence, the equivalence =g is compatible with the concatenation. O

This lemma allows us to define an automaton from this equivalence class. States of the automaton are
the equivalence classes of =g. There is an edge labeled by o from the set of positions {i1,72,...7x} to
Yp(i1 +1,0) Uvp(ia + 1,0)U. ..U~ (i + 1, 0), if this is not empty. The initial node of the automaton is the
set that contains all the positions. Terminals nodes of the automaton are the set of positions that contain
m. As an example, the suffix automaton of the word [a,bJaa/a,b/baa is given in Figure 8.
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Figure 8: Extended DAWG of the limited expression °[a, b]'a%a®[a, b]*b°a®a”

LEMMA 2 The Extended_ DAWG of a limited expression p = C1C5...Cy, recognizes the set of suffizes of p.

Proof.

1. Let w = ujuz...u, be a suffix of p. We show that u is recognized by Extended DAWG(p). We call
E, = {i1,12,...1;} the set of ending positions of v in p, which is not empty since it at least contains
m. We denote:

Eo=4{0,1,2,...,m}and E; = {iy —r+j,ia —r+j,...,ix — 7+ j}.

Ej is the initial set of Extended_ DAWG(p). There is a path from Eg to a state E] O E; labeled with
u1, because E] = vp(1,u1) Up(2,u1) U...U~p(m, u1), and there is at least one u; in the positions
E; (set of beginning positions of u in p). Assume now there is a path from the initial state labelled
by uiuz...u; arriving at the set of nodes E}, j < 7 and E; D Ej. Let E;,; the state we reached
by using the edge labeled with u;;; from E'; This state exists, because E; C E';», E; is not empty
and u;,, appears at least at position E; ;. More than that, for the same reason, F; ; C ;’+1' By
induction, we proved that there is a path from the initial node labeled by u arriving at the set of nodes
E!, which contains F,. As F, contains m, F, also does. Therefore, E! is marked as a terminal state
in Extended DAWG(p) and the suffix u is recognized.

2. If there is a path from the initial state to a final state labeled by the word u in Extended DAWG(p),
then we show that u is a suffix of p. Let now E; be the state we reach with u; ...u;. E, contains m.
To arrive at this state by reading u,, u, must at least belong to E,,, and the previous state, E,_1,
contains m — 1. By induction, it is clear that u, € Cpy, up—1 € Cru_1,...u1 € Cy—r41, and hence u is
a suffix of p.

Therefore, Extended DAWG(p) recognizes the set of suffixes of p. O

We can use this new automaton to recognize the set of suffixes of a limited expression p. We do not
give an algorithm to build this Extended _DAWG in its deterministic form, but we simulate the deterministic
automaton using bit-parallelism.

6.2 A Bit-parallel Implementation

from the above construction, the only modification that our algorithm needs is that the B table has the -th
bit set for all characters belonging to the set of the :-th position of the pattern. Therefore we simply change
line 3 (part of the preprocessing) in the algorithm of Figure 6 to

For i € 1..m,c € T do if ¢ € C; then B|c] « B[c] | 0™ *10" 1
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such that now the preprocessing takes O(|X|m) time but the search algorithm does not change.

We combine the flexibility of limited expressions with the efficiency of a Boyer-Moore-like algorithm.
It should be clear, however, that the efficiency of the shifts can be degraded if the classes of characters
are significantly large and prevent long shifts. However, as we show later in the experiments, this is much
more resistant than some simple variations of Boyer-Moore since it uses more knowledge about the matched
characters.

We point out now another extension related to classes of characters: the text itself may have basic
characters as well as other symbols denoting sets of basic characters. This is common, for instance, in DNA
databases. We can easily handle such texts. Assume that the symbol C represents the set {ci,...,¢,}. Then
we set B[C] = Bleci] | ... | Bler]- This is much more difficult to achieve with algorithms not based in
bit-parallelism.

7 Searching for Multiple Patterns

Suppose we are interested in searching a set of patterns Pl...P" (where P = p’i..pfni), l.e. reporting the
occurrences of all P*’s. Assume that they are all of the same length m, otherwise truncate them to the
length of the shortest one. This may be ineffective for patterns of very different lengths but it is a common
practice in all the algorithms of the Boyer-Moore family as well.

If the total length of the patterns does not exceed the size of a computer word, i.e. r x m < w, we can
very efliciently search all the patterns in parallel, exploiting again the intrinsic parallelism inside computer
words. This technique, based on an arrangement described in [3], concatenates the r patterns Pl...P" as
follows

P =pi D} .0} D} D} Dy -er Doy Py Pl

(i.e. all the first letters, then all the second letters, etc.) and searches P just as a single pattern. The only
difference in the algorithm of Figure 6 is that the shift is not in one bit but in r bits in line 15 (since we have
7 bits per multipattern position) and that instead of looking for the highest bit d,, of the computer word we
consider all the = bits corresponding to the highest position. That is, we replace the old 10™~! test mask
by 1707(™=1) in line 12.

This will automatically search for words of length m and keep all the bits needed for each word. Moreover,
it will report the matches of any of the patterns and will not allow shifting more than what all patterns
allow to shift.

An alternative arrangement is as follows:

p=—ptp? . p

(i.e. just concatenate the patterns). In this case the shift in line 15 is for one bit, and the mask for line 12 is
(10™~1)". On some processors a shift in one position is faster than a shift in 7 > 1 positions, which could be
an advantage for this arrangement. On the other hand, in this case we must clear the bits that are carried
from the highest position of a pattern to the next one, replacing line 15 for D = (D << 1) & (1™~10)".
This involves an extra operation. Finally, this arrangement allows to have patterns of different lengths for
the algorithm of [3] which is not possible in their current proposal.

Clearly this technique cannot be applied to the case m > w. However, if 2m < w and r x m > w we divide
the set of patterns into [r/|w/m]|] groups, so that the patterns in each group fit in w bits. Therefore the
cost to search r patterns of length m can be made O(rmZn/w) in the worst case, and O(rn/w) in the best
case. This is respectively better than O(rmn) and O(rn/m) (which corresponds to sequentially searching
the r patterns with BDM).
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8 Approximate String Matching

Approximate string matching is the problem of finding all text segments which are at a “distance” of at
most k£ to the pattern. This has a number of applications in text retrieval, computational biology, pattern
recognition, signal processing, etc. Of course, the nature of the problem depends directly on the distance
function we use. Many distances exist, and among them two are commonly used: the Hamming and the
Levenshtein (or edit) distance. We explain now how to use our algorithm for approximate matching with
these two distances.

8.1 Hamming Distance

The Hamming distance between two words is the minimal number of substitutions of letters that have to be
performed to make them equal. For example, d("test","text") = 1. A number of algorithms exist to solve
this problem [4, 13, 26].

To adapt our algorithm to this problem, we still move a window of the size of the pattern on the text, and
search backward a suffix u of the window which matches the pattern with at most k substitutions. For each
position of the text, instead of just using one bit of the computer word to know whether «" is at position i
in the reverse pattern p", we use L = |log,(k)] + 1 bits to encode the distance between u" and the factor
of length |u| which ends at position ¢ in p". We remember this time in the variable last the longest suffix of
the window that matches a prefix of the pattern with a distance less or equal to & (this is done in O(1) by
testing the highest bits of the computer word). If all the errors in the computer word are greater than k,
we can shift the window to last since no pattern factor matches the window with % errors or less. Figure 9
llustrates this algorithm.

Pattern a bbabbbababbbhb
D [1][4]2[2[2[4]1]3[2[2[3[-]- |-

last

|
LIl felafblal PIPTPTTTLTILTT]

-
Search backward for a factor with at most 1 error
Remember in last the longest prefix that matches with at most 1 error

Pattern abbabbbababbbb
D [3[3]5]2[3[3]3[5[-[-[-[-]- |-

last

|
LLL LD [bplblalablal [ [ [ [T [[TIT[]]]

Fail to recognize a factor with at most 1 error

LTI [oblblalablal [T T LT ITTT]

safe shift New window

Figure 9: Basic search for approximate pattern matching with the Hamming distance.
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8.2 Edit Distance

The Levenshtein distance (or just edit distance) between two words is the minimal number of substitutions,
insertions and deletions of letters needed to make them equal. For instance, d(''survey","surgery" ) = 2.
A number of solutions to this problem exist, being [6, 5, 19, 16, 20, 29] the fastest in practice. We present
two extensions of our algorithm for approximate string matching.

8.2.1 Partitioning into Exact Searching

In [28], a simple but very effective filter is proposed for approximate string matching. It is based on the
observation that if a pattern of length m appears with at most % errors in a text position, and we divide the
pattern in k + 1 pieces, then at least one of the pieces will appear with no errors in the occurrence (since k
errors cannot alter £+ 1 pieces). Therefore, they propose to split the pattern into £+ 1 pieces of equal length
|m/(k+1)] (discarding some characters at the end if necessary) and searching all the pieces in parallel. The
mechanism they propose is very similar to our setup of Section 7 (although the bit arrangement is different).
However, they use the Shift-Or algorithm to search and therefore their efficiency is limited. On the other
hand, they keep their ability to handle classes of characters and other extensions.

Later, [6] proposed the use of a multipattern Boyer-Moore strategy to perform the above search, which
at the cost of not allowing limited expressions gives a much more efficient algorithm. In [5] this algorithm
was implemented and shown to be the fastest in practice when the number of errors is low enough (this is,
k/m < 1/(3logjz; m) on random text and k/m < 1/4 on natural language).

Our multipattern search technique presented in Section 7 combines the best of both worlds: our perfor-
mance is comparable to that of the algorithms of the Boyer-Moore family, and we keep the flexibility of the
Shift-Or approach to handle classes of characters. In this case the Sunday extension to multipattern search
used in [5] is slightly faster in general because the search patterns are rather short. We show later their
relative performance.

8.2.2 A New Bit-Parallel Algorithm

In [28] another algorithm for approximate string matching is presented. It is based on the bit-parallel
simulation of an NFA built from the pattern, which recognizes its approximate occurrences in the text. In
[5] this automaton is simulated using a different technique.

Our approach is based on the same automaton. We modify the NFA so that it recognizes not only the
whole pattern but also any suffix of the pattern, allowing up to & errors.

Figure 10 illustrates the modified NFA. First disregard the state labeled “I” and the e-transitions leaving
it. Each row denotes the number of errors seen. The first one 0, the second one 1, and so on. Every column
represents matching the pattern up to a given position. At each iteration, a new text character is read
and the automaton changes its states. Horizontal arrows represent matching a character, vertical arrows
represent insertions into the pattern, solid diagonal arrows represent replacements, and dashed diagonal
arrows represent deletions in the pattern (they are e-transitions). The automaton accepts a text position as
the end of a match with % errors whenever the rightmost state of the last row is active.

Consider now the initial state “I” we added. The e-transitions leaving from the initial state allow the
automaton to recognize, allowing k errors, not only the whole pattern but also any suffix of it. Our second
modification on the original automaton of [28, 5] is the removal of a self-loop at the top-left state, which
allowed it to start a match at any text position. Our automaton, therefore, recognizes suffixes of the pattern
which start at the beginning of the text window.

In the case of edit distance, the size of the matching text segment may range from m — k to m + k. We
move a window of length m — % on the text, and we search backward a suffix u of the window with matches
the pattern with at most k errors. This search is done using the NFA explained above, which is built on the
reversed pattern. We remember in the variable last the longest suffix of the window that matches a prefix
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no errors

1 error

2 errors

Figure 10: Our NFA to recognize suffixes of the reversed pattern.

of the pattern with a distance less or equal to k. This is done in constant time by checking whether the
rightmost bottom state of the NFA is active. On the other hand, if the NFA runs out of active states we
know that a match is not possible in the window and we can shift to the last position where we found a
prefix, as in the exact matching algorithm.

Each time we move the window to a new position we restart the automaton with all its states active,
which represents setting the initial state to active and letting the e-transitions flush this activation to all the
automaton (the states in the lower-left triangle are also activated to allow initial insertions). If after reading
the whole window the automaton still has active states, then it is possible that the current window starts
an occurrence, so we use the traditional automaton to compute the edit distance from the initial window
position in the text. After reading at most m + &k characters we have either found a match starting at the
window position or left the automaton without active states.

The rationale for this algorithm is as follows. We are interested only in occurrences that start at the
current window position. Any occurrence has a length between m — &k and m + k. If there is an occurrence
of the pattern p starting at the window position with % errors, then a prefix of p must match the first m — k&
characters with & errors or less. Hence, we cannot miss an occurrence if we keep count of the matches of all
the pattern prefixes in a window of length m — k. If the automaton runs out of active states, then we cannot
miss the start of an occurrence and we shift the window to the next candidate. Finally, if the automaton
has active states after reading the complete window, then a match starting at the window is possible and we
have to check it explicitly since we can only ensure that a factor of the pattern matches in the window.

The automaton can be simulated in a number of ways. Wu and Manber do it row-wise (each row of the
automaton is packed in a computer word), while Baeza-Yates and Navarro do it diagonal-wise. In this case
we prefer the technique of Wu and Manber, since in [5] the initial diagonals of length < k are discarded and
they are needed here.

9 Experimental Results
We ran extensive experiments on random and natural language text to show how eflicient are our algorithms

in practice. The experiments were run on a Sun UltraSparc-1 of 167 MHz, with 64 Mb of RAM, running
SunOS 5.5.1. We measured CPU times and repeated the experiments many times so that the results were
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within +2% with 95% confidence (this involved thousands of repetitions).

We used texts of 10 Mb of size over which we searched many patterns. We ran experiments on random
text with uniformly distributed alphabets of sizes from 2 to 64, as well as non-random text, such as English
text (from the TREC Wall Street Journal collection), French text (a Bible), Spanish text (E-mail archives)
and DNA sequences. In random text the patterns were randomly generated on the same alphabet, while for
non-random texts the patterns were selected randomly from the same text (at word beginnings in the case
of natural language). We show results for short patterns (m < w) as well as for long patterns (m > w).

Exact Matching. We included in the comparison the best classical algorithms such as Boyer-Moore and
Sunday (which is strictly better than Horspool on average), Knuth-Morris-Pratt (which is not shown in the
plots because it was very slow, always close to 0.14 seconds per megabyte), Shift-Or (which is not always
shown, being always close to 0.07 seconds per megabyte), classical BDM, and our three bit-parallel variants:
BNDM, BM_BNDM and Turbo_ BNDM.

Figure 11 shows the results for random text and short patterns. As it can be seen, our bit-parallel
algorithms are the fastest in all cases, except for very short patterns (m < 1 to m < 8 depending on
the alphabet size). The BM_BNDM algorithm is the fastest one, although the difference against simple
BNDM is small. Our algorithms are especially good for small alphabets since they use more information
on the matched pattern than others. The exception is Boyer-Moore, which however is slower because of
its complexity (notice that Boyer-Moore is faster than BDM, but slower than BNDM). Therefore, our bit-
parallel versions are the fastest, which does not happen to the classical BDM version. For larger alphabets
another very simple algorithm gets very close: Sunday. However, a difference of 10% is always obtained.

Figure 12 shows the results on random text and longer patterns, for the relevant algorithms only. We
did not include the more complex variations of our algorithm because they have already been shown very
similar to the simple one. We did not include also the algorithms which are known to not improve, such as
Shift-Or and KMP. As it can be seen, our algorithm ceases to improve because it basically searches for the
first w letters of the pattern, while the classical DAWGSs keep improving. In fact, our algorithm ceases to
be the best for m close to 80-150 depending on the alphabet size and the architecture. This value would at
least duplicate in a 64-bit architecture.

Figure 13 shows the results on non-random text: English and DNA. The results are very similar to
random text for |X| = 16 and || = 4, respectively. On English text our algorithms are the fastest for
2 < m < 110, i.e. practically everywhere. For DNA this range reduces to 6 < m < 90. On French and
Spanish we obtained results similar to English.

Classes of Characters. We show some illustrative results using classes of characters, which were generated
as follows: we generated random texts of several alphabet sizes, |Z| = 4, 16 and 64, inside which we searched
random patterns of length 15 (resp. 30). In those patterns we introduced from 1 to 7 (resp. 1 to 15) jokers
randomly placed. By a joker we mean a class of characters that matches all the alphabet. The results
are shown in Figure 14. Our algorithm is the fastest in all cases, far below Shift-Or (which stays almost
constant whatever the number of jokers is), Sunday and Boyer-Moore extended to classes of characters®. As
the length of the patterns grows, the difference between our algorithm and the others increases sharply.

Multipattern Search. We also present some results on our multipattern algorithm, to show that although
we take the minimum shift among all the patterns, we can still do better than searching each pattern in turn.
We take random groups of five patterns of length 6 and show how our multipattern algorithm (in its two
versions) performs against five sequential searches with our sequential algorithm, and against the parallel
version proposed in [3]. As it can be seen, our first arrangement is slightly more efficient than the second
one, they are always more efficient than a sequential search (although the improvement is not five-fold but
two- or three-fold because of shorter shifts), and are more efficient than the proposal of [3] provided |X| > 8.

5These extensions consist simply in redefining the equality among characters when a joker is involved.
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— BDM - - BM_BNDM —&~ Shift-Or —— Boyer-Moore
— BNDM ---- Turbo_. BNDM —~ Sunday

Figure 11: Times in 1/100-th of seconds per megabyte, for random text on short patterns, |X| = 2, 4, 8, 16,
32 and 64 (in reading order).
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Figure 12: Times in 1/100-th of seconds per megabyte, for random text on long patterns, |X| = 2, 4, 8, 16,
32 and 64 (in reading order).
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Figure 13: Times in 1/100-th of seconds for non-random text: English (first line) and DNA (second line).
The left plots show short patterns and the right plots show long patterns.
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Figure 14: Times to search with classes of characters, in 1/100-th of seconds per megabyte. k is the number
of jokers (classes matching all X) in the pattern (randomly placed). The first column is for patterns of size
m = 15 and the second for m = 30. The first row stands for |X| = 4, the second for |X| = 16 and the last
one for |Z| = 64.
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by
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—° Multi-BNDM (1) —* Multi-BNDM (2) —°— Multi-WM —— BNDM

Figure 15: Times in 1/100-th of seconds per megabyte, for multipattern search on random text of different
alphabet sizes (z axis).

Searching Allowing Substitutions. We show now the performance of our approximate string matching
algorithm. for Hamming distance. Figure 16 shows the results for m = 10. We show random text with
|X| = 8 as well as English text. In this case our algorithm is the fastest for moderate error levels (i.e. & < 3).
The same happens for 4 < [Z| < 16 and pattern lengths between 10 and 16. We included in the comparison
all the other algorithms we are aware of, as well as some which were designed for edit distance and which
we adapted for this simpler case [20, 5, 6].

It is interesting to notice that for Hamming distance our algorithm beats exact partitioning [6], which is
the fastest known algorithm for edit distance. In the areas where exact partitioning is faster, our algorithm is
still reasonably competitive. Moreover, we can efficiently handle classes of characters, while exact partitioning
quickly degrades if it uses the Sunday search algorithm. On the other hand, it can be made more resistant
to errors by using our extension of BNDM to multipattern search.

Searching Allowing Errors. We show now the performance of our extensions to deal with errors. We
first show how our multipattern algorithm performs when used for approximate string matching. We include
the fastest known algorithms in the comparison. We compare those algorithms against our version of [6]
(where the Sunday algorithm is replaced by our BNDM), while we consider [28] not as the bit-parallel
algorithm presented there but the other proposal, namely reduction to exact searching using their algorithm
for multipattern search shown in the previous experiment. Figure 17 shows the results for different alphabet
sizes and m = 20 (we obtained similar results for m = 10 and 30). As it can be seen, our implementation of
exact partitioning is quite close to [6] (sometimes even faster) and therefore our algorithm is a competitive
yet more flexible replacement, while it is faster than the other flexible candidate [28].

Since BNDM is not very good for very short patterns, our algorithm works better for n = 20 and 30.
Moreover, it ceases to be competitive for higher error levels since the length of the patterns to search for is
O(m/k).

Finally, we show the performance of our new algorithm for approximate string matching based on the
NFA simulation. Figure 18 shows the results. As the algorithm works well for very low error levels, we show
only the case k& = 1, for random (|| = 4) and English text. In the first case (very similar to DNA) our
algorithm outperforms all the others (this happens also for £ = 2 and & = 3). For English text, it can be
seen that for very low error levels and intermediate pattern lengths, our algorithm becomes very close to [6],
which is the fastest known algorithm for low error levels, beating all the other algorithms.
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— Ours -+~ NFA [5] — BY-filter [4] —+ TU-filter [26] —— Counting [4]
— Part.Ex. [6] — — Shift-Or [4] — EM-filter [13] —*— DFA [20] ---- Naive

Figure 16: Times in 1/10-th of seconds per megabyte, for approximate search under Hamming distance on
random (left, |X| = 8) and English (right) text. We use m = 10 and the z axis is the number of errors
allowed.

T T T T T T T 1 0.0 T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
— Exact Part. (BNDM) - — Exact Part. [28] —*— Bit-par. Matrix [19] —= DFA [20]
— Exact Part. [6] —2— Bit-par. NFA [5] —— Counting [16] —°— Four Russians [29]

Figure 17: Times in 1/10-th of seconds per megabyte, for random text on patterns of length 20, and |X| =
16 and 64 (first and second column, respectively), using edit distance. The z axis is the number of errors
allowed.
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— BNDM (ours) —° Bit-par. NFA [5] —£ DFA [20]
— — Exact Part. [6] —*— Bit-par. Matrix [19] —* Four Russians [29]

Figure 18: Times in 1/10-th of seconds per megabyte, for random text (|X| = 4, on the left) and English
text (on the right) and k& = 1 error, for m = 5 to 30, under edit distance.

10 Conclusions and Future Work

We present a new algorithm (called BNDM) based on the bit-parallel simulation of a nondeterministic suffix
automaton. This automaton has been previously used in deterministic form in an algorithm called BDM.
Bit-parallelism is a general way to simulate nondeterministic automata using the bits of the computer word.
Our new algorithm is experimentally shown to be very fast on average. It is the fastest algorithm in all cases
for patterns from length 5 to 120 (depending of the size of the alphabet and the length of the computer
word). For instance, on English our algorithm is the fastest for pattern lengths between 2 and 110, i.e. almost
everywhere. We present also some variations called TurboBNDM and BM_BNDM which are derived from
the corresponding variants of BDM. These variants are much more simply implemented using bit-parallelism
and become practical algorithms. TurboBNDM has average performance very close to BNDM, though O(n)
worst case behavior. BM_BNDM is slightly faster than BNDM.

The BNDM algorithm can be extended in simple ways to solve a large set of problems, like matching
classes of characters, approximate pattern matching and multiple pattern matching. We show experimentally
its good performance in all cases.

We hope that this work opens a new line of development, namely the combination of bit-parallel techniques
with those able to skip characters, this way keeping the best of both worlds: speed and flexibility.

The new suffix automaton we introduce and simulate for classes of characters has never been studied.
A study of this new automaton (maximal number of nodes and edges, minimality, algorithms to build it,
average number of nodes and edges) would be interesting by itself and should permit to extend the BDM
and Turbo_RF to handle classes of characters.

Agrep software [27] is sometimes faster than our algorithm, especially on natural language. This is
because Agrep uses BM algorithms on blocks of characters. This is an orthogonal technique than can be
incorporated in all algorithms, and a general study of this technique would permit to improve the practical
speed of pattern matching softwares. We are working at this.
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