
Fast Approximate String Matching in a DictionaryRicardo Baeza-Yates Gonzalo NavarroDept. of Computer Science, University of ChileBlanco Encalada 2120 - Santiago - Chilegnavarro@dcc.uchile.clAbstractA successful technique for approximate searching on large indexed textual databases relieson an on-line search in the vocabulary of the text. This works well because the vocabulary isrelatively small (i.e. a few megabytes for gigabytes of text), and therefore the search takes afew seconds at most. While those times are appropriate for single-user environments, they areinappropriate for multi-user setups such as a text database server for the Web. We present aspeed-up technique for on-line searching in the vocabulary which needs only a 10% overhead.We also propose to exploit the fact that the problem involves a de�nition of similarity amongwords which respects the triangular inequality to structure the vocabulary in such a way thatit is not necessary to traverse it completely. We show that the improvement in time is verysigni�cative and pays for the extra space needed.1 IntroductionApproximate string matching is a recurrent problem in many branches of computer science, withapplications to text searching, computational biology, pattern recognition, signal processing, etc.The problem can be stated as follows: given a long text of length n, and a (comparatively short)pattern of length m, retrieve all the segments (or \occurrences") of the text whose edit distance tothe pattern is at most k. The edit distance ed() between two strings is de�ned as the minimumnumber of character insertions, deletions and replacements needed to make them equal.In the on-line version of the problem, the pattern can be preprocessed but the text cannot.The classical solution uses dynamic programming and is O(mn) time [27, 23]. Later, a numberof algorithms improved this to O(kn) time in the worst case or even less on average, by usingcleverly the properties of the dynamic programming matrix (e.g. [13, 17, 32, 11, 36]) or by using anautomaton which is used in deterministic or nondeterministic form [35, 4, 21]. Another trend is thatof \�ltration" algorithms: a fast �lter is run over the text quickly discarding uninteresting parts.The interesting parts are later veri�ed with a more expensive algorithm. Examples of �ltrationapproaches are [29, 6]. Some are \sublinear" in the sense that they do not inspect all the textcharacters, but the on-line problem is 
(n) if m is taken as constant.If the text is large and has to be searched frequently, even the fastest on-line algorithms arenot practical, and preprocessing the text becomes necessary. This is especially true for very largetext databases, which take gigabytes, while the fastest on-line search algorithms can process a fewmegabytes per second. We are interested in large text databases in this work, where the mainmotivations for approximate string matching come from the low-quality of the text (e.g. because ofoptical character recognition (OCR) or typing errors), heterogeneousness of the databases (di�erent1



languages which the users may not spell correctly), spelling errors in the pattern or the text,searching for foreign names and searching with uncertainty.Although many indexing methods have been developed for exact string matching from a longtime ago [34], only a few years ago indexing text for approximate string matching was consideredone of the main open problems in this area [35, 2]. The practical indices which are in use todayrely on an on-line search in the vocabulary of the text, which is quite small compared to the textitself.The fastest on-line approximate search algorithms run at 1-4 megabytes per second, and there-fore they �nd the answer in the vocabulary in a few seconds. While this is acceptable for single-userenvironments, the search time may be excessive in a multi-user environment. For instance, a Websearch engine which receives many requests per second cannot spend four seconds to traverse thevocabulary.We present two proposals in this paper. A �rst one is a speed-up for the normal on-line traversalwhich exploits the fact that consecutive strings in a sorted dictionary tend to share a pre�x. Thisspeedup costs only 10% extra space.Our second proposal needs more extra space: organize the vocabulary such as to avoid thecomplete on-line traversal. This organization is based on the fact that we want, from a set ofwords, those which are at edit distance at most k from a given query. The edit distance ed() usedrespects the axioms which make it a metric, and therefore we may apply any data structure tosearch in metric spaces. This imposes normally a space overhead over the vocabulary, but thereward is an important improvement in search times.We experimentally compare all the di�erent structures for metric spaces accounting for thesearch time and space overhead, and compare also the di�erent on-line variations.This paper is organized as follows. In Section 2 we explain how the current indices for approxi-mate string matching work. In Section 3 we survey the main techniques to search in metric spaces.In Section 4 we explain our setup to speed up the on-line search in the vocabulary, and in Section5 we explain our method to avoid the on-line traversal. In Section 6 we show experimental results.In Section 7 we give our conclusions and future work directions.2 Indices for Approximate String MatchingThe �rst indices for approximate string matching appeared in 1992, in two di�erent avors: word-oriented and sequence-oriented indices. In the �rst type, more oriented to natural language textand information retrieval, the index can retrieve every word whose edit distance to the pattern isat most k. In the second one, useful also when the text is not natural language, the index willretrieve every sequence, without notion of word separation.We focus on word-oriented indices in this work, because the problem is simpler and hence hasbeen solved quite well. Sequence-retrieving indices are still very immature to be useful for hugetext databases (i.e. the indices are very large, are not well-behaved on disk, are very costly tobuild and update, etc.). It must be clear, however, that these indices are only capable of retrievingan occurrence that is a sequence of words. For instance, they cannot retrieve "flower" with oneerror from "flo wer" or "many flowers" from "manyflowers". In many cases the restriction isacceptable, however. 2



vocabulary occurrences TEXTINDEX
xxxOnlineApprox.Search OnlineApprox.,Multipatt.,or no Search

Figure 1: Approximate searching on an inverted index. In the case of full inverted indices thetext traversal is not necessary. In the case of block addressing text traversal may or may not benecessary.Current word-oriented indices are basically inverted indices: they store the vocabulary of thetext (i.e. the set of all distinct words in the text) and a list of occurrences for each word (i.e. theset of positions where the word appears in the text). Approximate string matching is solved by�rst running a classical on-line algorithm on the vocabulary (as if it was a text), thus obtaining theset of words to retrieve. The rest depends on the particular index. Full inverted indices such asIgrep [1] simply make the union of the lists of occurrences of all matching words to obtain the �nalanswer. Block-oriented indices such as Glimpse and variations on it [19, 5] (which reduce spacerequirements by making the occurrences point to blocks of text instead of exact positions) musttraverse the candidate text blocks to �nd the actual answers. In some cases the blocks need not betraversed (e.g. if each block is a Web page and we do not need to mark the occurrences inside thepage) and therefore the main cost corresponds to the search in the vocabulary. See Figure 1.This scheme works well because the vocabulary is very small compared to the text. For instance,in the 2 Gb TREC collection [14] the vocabulary takes no more than 2 Mb. An empirical law knownas Heaps Law [15] states that the vocabulary for a text of n words grows as O(n�), where 0 < � < 1.In practice, � is between 0.4 and 0.6 [1]. The fastest on-line approximate search algorithms run at1-4 megabytes per second (depending on some parameters of the problem), and therefore they �ndthe answer in the vocabulary in a few seconds. While this is acceptable for single-user environments,the search time may be excessive in a multi-user environment. For instance, a Web search enginewhich receives many requests per second cannot spend four seconds per query.3



3 Searching in General Metric SpacesThe concept of \approximate" searching has applications in a vast number of �elds. Some examplesare images, �ngerprints or audio databases; machine learning; image quantization and compression;text retrieval (for approximate string matching or for document similarity); genetic databases; etc.All those applications have some common characteristics. There is a universe U of objects, anda nonnegative distance function d : U � U �! R+ de�ned among them. This distance honors thethree axioms that makes the set a metric spaced(x; y) = 0 , x = yd(x; y) = d(y; x)d(x; z) � d(x; y) + d(y; z)where the last one is called the \triangular inequality" and is valid for many reasonable distancefunctions. The smaller the distance between two objects, the more \similar" they are. Thisdistance is consider expensive to compute (e.g. comparing two �ngerprints). We have a �nitedatabase S � U , which is a subset of the universe of objects and can be preprocessed (to build anindex, for instance). Later, given a new object from the universe (a query q), we must retrieve allsimilar elements found in the database. There are three typical queries of this kind:(a) Retrieve all elements which are within distance k to q. This is, fx 2 S = d(x; q) � kg.(b) Retrieve the closest elements to q in S. This is, fx 2 S = 8y 2 S; d(x; q) � d(y; q)g. In somecases we are satis�ed with one such element. We can also give a maximum distance r suchthat if the closest element is at distance more than r we do not want anyone reported.(c) Retrieve the i closest elements to q in S. This is, retrieve a set A � S such that jAj = i and8x 2 A; y 2 S � A; d(x; q)� d(y; q).Given a database of n objects, all those queries can be trivially answered by performing ndistance evaluations. The goal is to structure the database such that we perform less distanceevaluations.This is applicable to our problem because ed() indeed satis�es the axioms and therefore thesearch in the vocabulary is an instance of this problem. In our case the database is the set of all thedi�erent words of the text, and we are interested in queries of type (a). Moreover, our distance isdiscrete (i.e. gives integer answers), which is of importance for the types of data structures whichcan be applied. We briey survey the main applicable structures now.Probably the �rst general solution to search in metric spaces was presented in [10]. They proposea tree (thereafter called Burkhard-Keller Tree, or bk-tree), which is suitable for discrete distancefunctions like ed(). It is de�ned as follows: an arbitrary element a 2 S is selected as the root, andit has a number of children. In the i-th children we recursively build the tree for all elements inS which are at distance i from a. This process can be repeated until there is only one element toprocess, or there are no more than b elements (and we store a bucket of size b), or the tree has agiven height h. 4



To answer queries of type (a), where we are given a query q and a distance k, we begin at theroot and enter into all children i such that d(a; q)� k � i � d(a; q) + k, and proceed recursively(the other branches are discarded using the triangular inequality). If we arrive to a leaf (bucket ofsize one or more) we compare sequentially all the elements. Each time we perform a comparisonwhere d(q; x) � k, we report the element x.In [28], the use of more than one element per node of the tree is proposed. Those elements allowto eliminate more points per level at the cost of doing more distance evaluations. The di�erencewith a tree that uses those points successively downwards the tree is that the query is comparedagainst all the points of the node no matter which the result is.The advantage of the previous idea is made clear in a further development, called \Fixed-QueriesTrees" of fq-trees [3]. This tree is basically a bk-tree where all the elements stored in the nodesof the same level are the same (and of course do not necessarily belong to the set stored in thesubtree). The advantage of such construction is that some comparisons are saved between the queryand the nodes along the backtracking that occurs in the tree. If we visit many nodes of the samelevel, we do not need to perform more than one comparison. This is at the expense of somewhattaller trees. They show that their approach is superior to bk-trees. They propose a variant whichis called \Fixed-Height fq-trees", where all the leaves are at the same depth h, regardless of thebucket size. This makes some leaves deeper than necessary, which makes sense because we mayhave already performed the comparison between the query and one intermediate node, thereforeeliminating for free the need to compare the leaf.An analysis of the performance of fq-trees is presented in [3], which disregarding some compli-cations can be applied to bk-trees as well. We present the results in the Appendix. We also presentan analysis of �xed-height fq-trees which is new.An algorithm which is close to all the presented ideas but performs surprisingly better by anorder of magnitude is [33]. They select a point a 2 S at random and measure d = d(a; q), eliminatingall elements x of S which do not satisfy d� k � d(x; s) � d+ k. This is repeated until few enoughelements remain in the set. Although very similar to bk-trees, the key di�erence is that the secondelement to compare against q is selected from the remaining set, instead of from the whole set asin bk-trees. This means that this algorithm is more likely to compare the query against a centroidof the remaining set (i.e. an element whose distance distribution against the rest favors smallervalues). This is because the distance distribution tends to be very centered (which is bad for allrange search algorithms) and the selection of a centroid distributes the distances better.The problem with the algorithm [33] is that it needs O(n2) space and build time. In this senseit is close to [25]. This is unacceptably high for all by very small databases.Some approaches designed for continuous distance functions [31, 37, 8, 9, 12, 24] are not coveredin this brief review. The reason is that these structures do not use all the information obtainedfrom the comparisons, since this cannot be done in continuous spaces. It can, however, be done(and it is done) in discrete spaces and this fact makes the reviewed structures superior to theseones, although they would not be directly applicable in continuous spaces.5



... doctor6 doctoral4 doctrine3 document8 documental0 extraFigure 2: Example of a short section of a vocabulary with pre�x information added.4 Speeding Up the On-line SearchExcept for �ltration algorithms, all the on-line approximate search algorithms traverse the textcharacter by character. They store a context, which is the state of the search. For each newcharacter read they modify their context. Whenever their context indicates a match they reportit. For instance, if the search is done with a deterministic �nite automaton as in [21], the contextis simply the current state of the automaton. When run over a vocabulary, their processing is verysimilar, except because the context is initialized for each new word to process.If the vocabulary is stored in lexicographical order (which is useful to binary search on it forexact retrieval), each word will share a pre�x with the previous word. The larger the vocabulary,the longer the shared pre�xes. This property has been used in [22, 7, 20], for instance to compressthe vocabulary (since the pre�x shared with the previous word needs not be stored). However,direct access is complicated in those compression schemes. Figure 2 shows an example.We propose to use that property in a di�erent form. We store the complete words, as well asan additional byte which tells the length of the pre�x shared with the previous word. The searchalgorithm will not change except because it will store all the contexts that it traversed from thebeginning of the word. That is, it will keep a stack of contexts, and each time a new characteris read, the current context is pushed onto the stack before being modifying according to the newcharacter. When the word is �nally traversed, we have all the traversed contexts in the stack.If the next word shares a pre�x of length ` with the word just processed, we do not need toreprocess the �rst ` characters. We just take the `-th context of the stack instead of the initial oneand process the string from the (`+ 1)-th character on.This has the additional overhead of storing the contexts instead of just replacing them, whichmakes the strategy to work better for algorithms where the context is very small. On the otherhand, since we always search words (which are rarely longer than 10 letters), we need also algorithmswhich are especially e�cient for short words. Fortunately, both requirements match since the fastestalgorithms for short patterns are [4, 21], which use a very small context (we exclude �ltrationalgorithms because the technique is not applicable to them).The �rst algorithm simulates using bit-parallelism the behavior of a non-deterministic �niteautomaton that searches the pattern allowing errors. It uses just one computer word whenever(m � k)(k + 2) � w, where m is the length of the pattern, k is the number of errors and w isthe number of bits in the computer word. For instance it can search with m up to 9 in a 32-bitarchitecture. Although in the original work they show how to use many computer words for longer6



patterns, in our case this will occur very infrequently, and when it occurs the pattern will be oneor two letters longer. We prefer therefore to prune longer patterns and to verify after a match ifthere is indeed an occurrence of the complete pattern.The second algorithm converts the automaton to deterministic form, building only the stateswhich are actually reached in the text traversal. It is shown in [21] to be very e�cient on shortpatterns.To analyze the expected improvement, we notice that the number of letters that will be e�ec-tively traversed by the optimized algorithm is exactly the number of nodes of a trie [16] built overall the words of the vocabulary. This is because, if we consider all the pre�xes of all words, we workonly once on each di�erent pre�x. On the other hand, each node of a trie represents a di�erentpre�x. The original algorithm, on the other hand, will work on every character of every word.Not all the characters of all words are present in a trie built from the vocabulary, since oncethe pre�x of a word is unique the trie is not further expanded but the word is stored in a leaf. Theparts of the words which are not represented in the trie are worked on in all cases. The di�erence isin the letters represented in the trie: while the optimized algorithm works once per internal node,the amount of work of the original algorithm is proportional to the external path length, which isthe sum of the depth of all leaves (i.e. the sum of the lengths of all words, up to where they arerepresented in the trie).In [30], some asymptotical statistics are computed on a su�x trie, for large n, using a Markovianmodel (which is quite good for natural language). Statistics for random tries are equivalent to su�xtries over a random text, except for o(1) terms [26]. We take here the simpler case of independentcharacter generation (i.e. a Markovian model with no memory). The only di�erence in the generalcase is the constant factor of the results, not the order. The reader is referred to [30] for moredetails.Suppose our alphabet is composed from a �nite or in�nite number of symbols, call qi theprobability of the i-th symbol, and call H = Pi qi log(1=qi) the entropy of the language. Thenthe external path length is En = (n lnn)=H = O(n logn), while the number of internal nodes isSn = n=H = O(n) (this last result is taken from [18], for random tries). Therefore, we work inn(lnn�1)=H less characters. Except for the parts of the strings stored in the leaves, we work O(n)instead of O(n logn). Unfortunately, the part stored in the leaves is important and is proportionalto the part stored in the trie in practice.Finally, notice that our proposal is similar to that of storing a trie with the vocabulary and runthe algorithms recursively on the trie to factor out repetitions. However, our technique is fasterand has much less memory overhead.We found experimentally, however, that the technique we are proposing here is of no use againstthe fastest non-�ltering algorithms [4, 21]. This is because the algorithms are extremely e�cientand the amount of repetition in the pre�xes is not large enough to counter the accesses to the stackof contexts (the stack cannot be put in registers). The extra accesses to the stack eliminate theadvantage for the less letters considered.However, we believe that this idea can still have use for more complex edit distances, where thefastest algorithms cannot be applied and we must resort to the classical O(mn) algorithm. Thisstudy is part of our future work. 7



ApproximateSearch Metric SpaceData Structure
VocabularyExact or specialized search... doctor j doctoral j document j documental j extra j ...Figure 3: Proposed data structure.5 The Vocabulary as a Metric SpaceTraversing the whole vocabulary on-line is like comparing the query against the whole databasein a metric space. Our proposal in this section is to organize the vocabulary such as to avoid thecomplete on-line traversal. This organization is based on the fact that we want, from a set of words,those which are at edit distance at most k from a given query. The edit distance ed() used satis�esthe axioms which make it a metric, in particular a discrete metric.The proposal is therefore, instead of storing the vocabulary as a sequence of words, organize itas a metric space using one of the available techniques. The distance function to use is ed(), whichis computed by dynamic programming in time O(m1m2), where m1 and m2 are the lengths of thetwo words to compare. Although this comparison takes more than many e�cient algorithms, it willbe carried out only a few times to get the answer. On the other hand, the dynamic programmingalgorithm is very exible to add new editing operations or changing their cost, while the moste�cient on-line algorithms are not that exible.Figure 3 shows our proposed organization. The vocabulary is stored as a contiguous text (withseparators among words) where the words are sorted. This allows exact or pre�x retrieval by binarysearch, or another structure can be built onto it. The search structure to allow errors goes on topof that array and allows approximate or exact retrieval.An important di�erence between the general assumptions and our case is that the distancefunction is not so costly to compute as to make negligible all other costs. For instance, the spaceoverhead and non-locality of accesses incurred by the new search structures could eliminate theadvantage of comparing the query against less words in the vocabulary. Hence, we do not considersimply the number of comparisons but the complete CPU times of the algorithms, and comparethem against the CPU times of the best sequential search algorithms run over the complete vo-cabulary. Moreover, the e�ciency in all cases depends on the number of errors allowed (all thealgorithms worsen if more errors are allowed). Finally, we have to consider the extra space incurred8



because the vocabulary is already large.It is interesting to notice that any structure to search in a metric space can be used for exactsearching, since we just search allowing zero errors (i.e. distance zero). Although not as e�cientas data structures designed speci�cally for exact retrieval (such as hashing or binary search), thesearch times may be so low that the reduced e�ciency is not as important as the fact that we donot need an additional structure for exact search (such as a hash table).6 Experimental ResultsWe show experimentally the performance obtained with our metric space techniques against on-line algorithms. The results are preliminary and must be tested on larger setups. We ran ourexperiments on a Sun SparcClassic with 16 Mb of RAM, running SunOS 4.1.3.We tested three di�erent structures: bk-trees (BKT), fq-trees (FQT) and fq-trees of �xed height(FQH). For the �rst two we tested buckets of size 1, 10 and 20; while for the last one we tested �xedheights of 5, 10 and 15. As explained before, other structures for metric spaces are not well suitedto this case (we veri�ed experimentally this fact with GNATs and gh-trees). We used a Spanishdictionary composed of more than 80,000 words (which is still modest compared to the 500,000words of the TREC collection which will be used in future work). The set was randomly permutedand separated in 8 incremental subsets of size 10,000 to 80,000.Our �rst experiment deals with space and time overhead of the data structures that implementthe search in a metric space, and its suitability for exact searching. Figure 4 shows the results. Asit can be seen, build times are linear for FQH and slightly superlinear (O(n logn) in fact) for BKTand FQT. The overhead to build them is normally below a minute, which is a small percentage ofthe time normally taken to build an index for a text database whose vocabulary is of 80,000 words.If we consider extra space, we see that BKT and FQT pose a �xed space overhead, of 100% orless (with respect to the size of the vocabulary with no more data), with the exception of FQT forb = 1 which is 200%. As an index normally has another 100% overhead over the plain vocabularyto store pointers to the index, we can consider that the extra overhead is in fact closer to 50-100%. This is not negligible but acceptable. The FQH indices pose a �xed extra space, whoseoverhead tends to zero as the vocabulary grows. However, these percentages are quite large forreasonably-sized dictionaries, except for small heights.Finally, we show that the work to do for exact searching involves a few distance evaluations (16or less) with very low growth rate (logarithmic). This shows that the structure can be also usedfor exact search. The exception is FQH (h = 5), since these structures are O(n) time for �xed h,and this is noticed especially for small h.We show in Figure 5 the query performance of the indices to search with one error. As it canbe seen, no more than 10% of the dictionary is traversed (the percentage is decreasing since thenumber of comparisons are sublinear except for FQH). The user times correspond quite well to thenumber of comparisons. We show the percentage of user times using the structures versus the bestonline algorithm for this case [6]. As it can be seen, for the maximum dictionary size we reach 40%of the online time for many metric structures (this percentage will improve for BKT and FQT inlarger dictionaries). From those structures, we believe that FQT and BKT with b = 1 are the bestchoices, since they are sublinear and they have a reasonable overhead (in contrast to FQH). For9



larger dictionaries, FQH with h = 10 could also be a good choice.Figure 6 shows the result with two errors. This time the online algorithm selected was [4]and the metric space algorithms do not improve the online search. The reason is that the o�inealgorithms are much more sensitive to the error level than the online algorithm used. This showsthat our scheme is only useful to search with one error.We also tested the search for the nearest neighbor, and the results are very similar to a searchwith k equal to the distance to that nearest neighbor.7 ConclusionsWe proposed a new method to organize the vocabulary of inverted �les in order to support approx-imate searching on the indexed text collection. Most present methods rely on a sequential searchover the vocabulary words using a classical online algorithm. We propose instead to organize thevocabulary as a metric space (taking advantage of the fact that the edit distance that models theapproximate search is indeed a metric).We show in our preliminary experiments that the best data structures for this task are Burkhard-Keller trees or Fixed-Queries trees, using no buckets. Those structures allow, with almost negligibleconstruction time and reasonable space overhead (50%-100% extra over typical space taken by thevocabulary, which is already very small), to search close to 5% of the dictionary for one error and25% for two errors. This cuts down the times of the best online algorithms to 40% for one error,although for two errors the online algorithms (though traversing the whole dictionary) are faster.For larger dictionaries, Fixed-Height fq-trees of height 10 could also be a good choice.We determined also that other structures not aimed to discrete spaces are not well suited forthis task, being their performance very inferior to the ones we presented. We also determined thata proposed idea to improve online search algorithms on a sorted vocabulary by skipping commonpre�xes, although theoretically appealing, is of no interest in practice. A study of this idea forthe case of a more expensive algorithm (e.g. to compute a more complex distance function) is ofinterest, however.Future work also involves repeating all the experiments on a larger machine and on a largervocabulary, to obtain �gures adequate to very large text databases. The dictionary used had 80,000words, which corresponds to a text of less than 100 megabytes. The 2 gigabytes TREC collectionhas a vocabulary of 500,000 words and we plan to use that vocabulary.References[1] M. Ara�ujo, G. Navarro, and N. Ziviani. Large text searching allowing errors. In Proc. 4thSouth American Workshop on String Processing, WSP'97, 1997. Valpara��so, Chile. To appear.[2] R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World Computer Congress,volume I, pages 465{476. Elsevier Science, Sep 1992.[3] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proximity matching using �xed-queriestrees. In Proc. CPM'94, LNCS 807, pages 198{212, 1994.10
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[37] P. Yianilos. Data structures and algorithms for nearest neighbor search in general metricspaces. In Proc. ACM-SIAM SODA'93, pages 311{321, 1993.Appendix. Analysis of Fixed-Height FQ-treesWe call pi the probability that two random elements from U are at distance i. Hence, Pi�0 pi = 1,and p�i = 0 for i > 0. In [3] the fq-trees are analyzed under the simplifying assumption that thepi distribution does not change when we enter into a subtree (their analysis is later experimentallyveri�ed). They show that the number of distance evaluations done to search an element withtolerance k (in our application, allowing k errors) on an fq-tree of bucket size b isPk(n) = O(n�)where 0 < � < 1 is the solution of Xi�0 i(k)p�i = 1where i(k) = Pi+kj=i�k pj . This Pk result is the sum of the comparisons done per level of the tree(a logarithmic term) plus those done at the leaves of the tree, which are O(n�).The CPU cost depends also on the number of traversed nodes Nk(n), which is also shown to beO(n�) (the constant is di�erent). Finally, the number of distance evaluations for an exact searchis O(b+ logn).Under the same simplifying assumption the analysis applies to bk-trees too. The main di�erenceis that the number of comparisons is for this case the same as the number of nodes traversed plus thenumber of leaf elements compared, which also adds up O(n�) (although the constant is higher). Thedistribution of the tree is di�erent but this di�erence is overriden by the simplifying assumptionsanyway.We analyze now fq-trees of �xed height. The analysis is simpler than for fq-trees. Let F hk (n)be the number of elements not yet �ltered by a proximity search of distance up to k after applyingh �xed queries. Then, the expected number of comparisons for a proximity query isPhk (n) = h+ F hk (n)Let �k be the probability of not �ltering an element when doing the proximity search at distance k.If an element is at distance i to a query, it is not �ltered with probability Pi+kj=i�k pj . The elementis at distance i with probability pi, so �k =Xi�0 pi i+kXj=i�k pjNote that �k converges to 1 when k increases. So, the expected number of elements not �lteredbetween two consecutive levels are related by F hk (n) = �kFh�1k (n). Clearly, F 0k = n, so F hk (n) =�hkn. Because F hk (n) decreases when h grows, the optimal h is obtained when P hk (n) � P h+1k (n).That is, when h+ �hkn � h+ 1 + �h+1k13



Solving, we obtain the optimal h for a given khk = log(n(1� �k))log(1=�k)Replacing this h in P hk (n) we getPk(n) = log(n(1� �k))log(1=�k) + 11� �kThat is, Pk(n) is logarithmic for the optimal hk (and linear for a �xed h). This is asymptoticallybetter than the O(n�) results for fq-trees and bk-trees. Nevertheless, the constant factor in the logterm grows exponentially with k, so this is good for small to medium k.To obtain this logarithmic behavior, the �xed height must increase as the number of elementsgrows (i.e. hk = O(logn)). Unfortunately the optimal height is dependent on the search tolerancek. However, the logarithmic cost can be maintained even for non-optimal h provided we useh = �(� logn), where � � 1= log1=�k (i.e. we overestimate the optimal height).On the other hand, the number of nodes visited is bigger than in fq-trees. In fact, using arecurrence similar to the one for fq-trees, it is possible to show that the number of nodes visitedis O(hkn�) for � < 1 which could easily be larger than n even for small k. So, these trees aregood when the cost of comparing two elements is very high, like comparing two genetic sequences,polygons or graphs.A related problem is the size of the data structure. While normal fq-trees or bk-trees are O(n)size, �xed-height fq-trees can in principle be superlinear. In fact, we could not reach the optimalhk in our experiments because of space limitations.
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