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Abstract

A successful technique for approximate searching on large indexed textual databases relies
on an on-line search in the vocabulary of the text. This works well because the vocabulary is
relatively small (i.e. a few megabytes for gigabytes of text), and therefore the search takes a
few seconds at most. While those times are appropriate for single-user environments, they are
inappropriate for multi-user setups such as a text database server for the Web. We present a
speed-up techmnique for on-line searching in the vocabulary which needs only a 10% overhead.
We also propose to exploit the fact that the problem involves a definition of similarity among
words which respects the triangular inequality to structure the vocabulary in such a way that
it is not necessary to traverse it completely. We show that the improvement in time is very
significative and pays for the extra space needed.

1 Introduction

Approximate string matching is a recurrent problem in many branches of computer science, with
applications to text searching, computational biology, pattern recognition, signal processing, etc.

The problem can be stated as follows: given a long text of length n, and a (comparatively short)
pattern of length m, retrieve all the segments (or “occurrences”) of the text whose edit distance to
the pattern is at most k. The edit distance ed() between two strings is defined as the minimum
number of character insertions, deletions and replacements needed to make them equal.

In the on-line version of the problem, the pattern can be preprocessed but the text cannot.
The classical solution uses dynamic programming and is O(mn) time [27, 23]. Later, a number
of algorithms improved this to O(kn) time in the worst case or even less on average, by using
cleverly the properties of the dynamic programming matrix (e.g. [13, 17, 32, 11, 36]) or by using an
automaton which is used in deterministic or nondeterministic form [35, 4, 21]. Another trend is that
of “filtration” algorithms: a fast filter is run over the text quickly discarding uninteresting parts.
The interesting parts are later verified with a more expensive algorithm. Examples of filtration
approaches are [29, 6]. Some are “sublinear” in the sense that they do not inspect all the text
characters, but the on-line problem is (n) if m is taken as constant.

If the text is large and has to be searched frequently, even the fastest on-line algorithms are
not practical, and preprocessing the text becomes necessary. This is especially true for very large
text databases, which take gigabytes, while the fastest on-line search algorithms can process a few
megabytes per second. We are interested in large text databases in this work, where the main
motivations for approximate string matching come from the low-quality of the text (e.g. because of
optical character recognition (OCR) or typing errors), heterogeneousness of the databases (different



languages which the users may not spell correctly), spelling errors in the pattern or the text,
searching for foreign names and searching with uncertainty.

Although many indexing methods have been developed for exact string matching from a long
time ago [34], only a few years ago indexing text for approximate string matching was considered
one of the main open problems in this area [35, 2]. The practical indices which are in use today
rely on an on-line search in the vocabulary of the text, which is quite small compared to the text
itself.

The fastest on-line approximate search algorithms run at 1-4 megabytes per second, and there-
fore they find the answer in the vocabulary in a few seconds. While this is acceptable for single-user
environments, the search time may be excessive in a multi-user environment. For instance, a Web
search engine which receives many requests per second cannot spend four seconds to traverse the
vocabulary.

We present two proposals in this paper. A first one is a speed-up for the normal on-line traversal
which exploits the fact that consecutive strings in a sorted dictionary tend to share a prefix. This
speedup costs only 10% extra space.

Our second proposal needs more extra space: organize the vocabulary such as to avoid the
complete on-line traversal. This organization is based on the fact that we want, from a set of
words, those which are at edit distance at most k from a given query. The edit distance ed() used
respects the axioms which make it a metric, and therefore we may apply any data structure to
search in metric spaces. This imposes normally a space overhead over the vocabulary, but the
reward is an important improvement in search times.

We experimentally compare all the different structures for metric spaces accounting for the
search time and space overhead, and compare also the different on-line variations.

This paper is organized as follows. In Section 2 we explain how the current indices for approxi-
mate string matching work. In Section 3 we survey the main techniques to search in metric spaces.
In Section 4 we explain our setup to speed up the on-line search in the vocabulary, and in Section
5 we explain our method to avoid the on-line traversal. In Section 6 we show experimental results.
In Section 7 we give our conclusions and future work directions.

2 Indices for Approximate String Matching

The first indices for approximate string matching appeared in 1992, in two different flavors: word-
ortented and sequence-oriented indices. In the first type, more oriented to natural language text
and information retrieval, the index can retrieve every word whose edit distance to the pattern is
at most k. In the second one, useful also when the text is not natural language, the index will
retrieve every sequence, without notion of word separation.

We focus on word-oriented indices in this work, because the problem is simpler and hence has
been solved quite well. Sequence-retrieving indices are still very immature to be useful for huge
text databases (i.e. the indices are very large, are not well-behaved on disk, are very costly to
build and update, etc.). It must be clear, however, that these indices are only capable of retrieving
an occurrence that is a sequence of words. For instance, they cannot retrieve "flower" with one
error from "flo wer" or "many flowers" from "manyflowers". In many cases the restriction is
acceptable, however.



JE— | Online
——| | Approz.,
v Multipatt. ,
or no Search
! —]
| —
Online | p—
Approz. | —
Search | — |
= ==
I x|= —
— |
— |
vocabulary v
occurrences
INDEX TEXT

Figure 1: Approximate searching on an inverted index. In the case of full inverted indices the
text traversal is not necessary. In the case of block addressing text traversal may or may not be
necessary.

Current word-oriented indices are basically inverted indices: they store the wocabulary of the
text (i.e. the set of all distinct words in the text) and a list of occurrences for each word (i.e. the
set of positions where the word appears in the text). Approximate string matching is solved by
first running a classical on-line algorithm on the vocabulary (as if it was a text), thus obtaining the
set of words to retrieve. The rest depends on the particular index. Full inverted indices such as
Igrep [1] simply make the union of the lists of occurrences of all matching words to obtain the final
answer. Block-oriented indices such as Glimpse and variations on it [19, 5] (which reduce space
requirements by making the occurrences point to blocks of text instead of exact positions) must
traverse the candidate text blocks to find the actual answers. In some cases the blocks need not be
traversed (e.g. if each block is a Web page and we do not need to mark the occurrences inside the
page) and therefore the main cost corresponds to the search in the vocabulary. See Figure 1.

This scheme works well because the vocabulary is very small compared to the text. For instance,
in the 2 Gb TREC collection [14] the vocabulary takes no more than 2 Mb. An empirical law known
as Heaps Law [15] states that the vocabulary for a text of n words grows as O(nﬁ), where 0 < 8 < 1.
In practice, 3 is between 0.4 and 0.6 [1]. The fastest on-line approximate search algorithms run at
1-4 megabytes per second (depending on some parameters of the problem), and therefore they find
the answer in the vocabulary in a few seconds. While this is acceptable for single-user environments,
the search time may be excessive in a multi-user environment. For instance, a Web search engine
which receives many requests per second cannot spend four seconds per query.



3 Searching in General Metric Spaces

The concept of “approximate” searching has applications in a vast number of fields. Some examples
are images, fingerprints or audio databases; machine learning; image quantization and compression;
text retrieval (for approximate string matching or for document similarity); genetic databases; etc.

All those applications have some common characteristics. There is a universe U of objects, and
a nonnegative distance function d : U x U — R™ defined among them. This distance honors the
three axioms that makes the set a metric space

dz,y) = 0 & =z=y
d(:z:, y) = d(ya m)
dlz,z) < d(z,y)+d(y,z2)

where the last one is called the “triangular inequality” and is valid for many reasonable distance
functions. The smaller the distance between two objects, the more “similar” they are. This
distance is consider expensive to compute (e.g. comparing two fingerprints). We have a finite
database S C U, which is a subset of the universe of objects and can be preprocessed (to build an
index, for instance). Later, given a new object from the universe (a query ¢), we must retrieve all
similar elements found in the database. There are three typical queries of this kind:

(a) Retrieve all elements which are within distance k to ¢. Thisis, {z € S / d(z, ¢) < k}.

(b) Retrieve the closest elements to ¢ in S. Thisis, {e € S / Vy € S, d(z,q) < d(y,¢)}. In some
cases we are satisfied with one such element. We can also give a maximum distance 7 such
that if the closest element is at distance more than r we do not want anyone reported.

(c) Retrieve the ¢ closest elements to ¢ in S. This is, retrieve a set A C S such that |A| = ¢ and
Ve € Ay € S—Ad(z,q) <d(y,q).

Given a database of n objects, all those queries can be trivially answered by performing n
distance evaluations. The goal is to structure the database such that we perform less distance
evaluations.

This is applicable to our problem because ed() indeed satisfies the axioms and therefore the
search in the vocabulary is an instance of this problem. In our case the database is the set of all the
different words of the text, and we are interested in queries of type (a). Moreover, our distance is
discrete (i.e. gives integer answers), which is of importance for the types of data structures which
can be applied. We briefly survey the main applicable structures now.

Probably the first general solution to search in metric spaces was presented in [10]. They propose
a tree (thereafter called Burkhard-Keller Tree, or bk-tree), which is suitable for discrete distance
functions like ed(). It is defined as follows: an arbitrary element a € S is selected as the root, and
it has a number of children. In the i-th children we recursively build the tree for all elements in
S which are at distance ¢ from a. This process can be repeated until there is only one element to
process, or there are no more than b elements (and we store a bucket of size b), or the tree has a
given height h.



To answer queries of type (a), where we are given a query ¢ and a distance k, we begin at the
root and enter into all children ¢ such that d(a,q) — k < ¢ < d(a, q) + k, and proceed recursively
(the other branches are discarded using the triangular inequality). If we arrive to a leaf (bucket of
size one or more) we compare sequentially all the elements. Each time we perform a comparison
where d(g, z) < k, we report the element .

In [28], the use of more than one element per node of the tree is proposed. Those elements allow
to eliminate more points per level at the cost of doing more distance evaluations. The difference
with a tree that uses those points successively downwards the tree is that the query is compared
against all the points of the node no matter which the result is.

The advantage of the previous idea is made clear in a further development, called “Fixed-Queries
Trees” of fg-trees [3]. This tree is basically a bk-tree where all the elements stored in the nodes
of the same level are the same (and of course do not necessarily belong to the set stored in the
subtree). The advantage of such construction is that some comparisons are saved between the query
and the nodes along the backtracking that occurs in the tree. If we visit many nodes of the same
level, we do not need to perform more than one comparison. This is at the expense of somewhat
taller trees. They show that their approach is superior to bk-trees. They propose a variant which
is called “Fixed-Height fg-trees”, where all the leaves are at the same depth h, regardless of the
bucket size. This makes some leaves deeper than necessary, which makes sense because we may
have already performed the comparison between the query and one intermediate node, therefore
eliminating for free the need to compare the leaf.

An analysis of the performance of fg-trees is presented in [3], which disregarding some compli-
cations can be applied to bk-trees as well. We present the results in the Appendix. We also present
an analysis of fixed-height fg-trees which is new.

An algorithm which is close to all the presented ideas but performs surprisingly better by an
order of magnitude is [33]. They select a point @ € S at random and measure d = d(a, ¢), eliminating
all elements z of S which do not satisfy d — k < d(z, s) < d+ k. This is repeated until few enough
elements remain in the set. Although very similar to bk-trees, the key difference is that the second
element to compare against ¢ is selected from the remaining set, instead of from the whole set as
in bk-trees. This means that this algorithm is more likely to compare the query against a centroid
of the remaining set (i.e. an element whose distance distribution against the rest favors smaller
values). This is because the distance distribution tends to be very centered (which is bad for all
range search algorithms) and the selection of a centroid distributes the distances better.

The problem with the algorithm [33] is that it needs O(n?) space and build time. In this sense
it is close to [25]. This is unacceptably high for all by very small databases.

Some approaches designed for continuous distance functions [31, 37, 8, 9, 12, 24] are not covered
in this brief review. The reason is that these structures do not use all the information obtained
from the comparisons, since this cannot be done in continuous spaces. It can, however, be done
(and it is done) in discrete spaces and this fact makes the reviewed structures superior to these
ones, although they would not be directly applicable in continuous spaces.
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Figure 2: Example of a short section of a vocabulary with prefix information added.

4 Speeding Up the On-line Search

Except for filtration algorithms, all the on-line approximate search algorithms traverse the text
character by character. They store a context, which is the state of the search. For each new
character read they modify their context. Whenever their context indicates a match they report
it. For instance, if the search is done with a deterministic finite automaton as in [21], the context
is simply the current state of the automaton. When run over a vocabulary, their processing is very
similar, except because the context is initialized for each new word to process.

If the vocabulary is stored in lexicographical order (which is useful to binary search on it for
exact retrieval), each word will share a prefix with the previous word. The larger the vocabulary,
the longer the shared prefixes. This property has been used in [22, 7, 20], for instance to compress
the vocabulary (since the prefix shared with the previous word needs not be stored). However,
direct access is complicated in those compression schemes. Figure 2 shows an example.

We propose to use that property in a different form. We store the complete words, as well as
an additional byte which tells the length of the prefix shared with the previous word. The search
algorithm will not change except because it will store all the contexts that it traversed from the
beginning of the word. That is, it will keep a stack of contexts, and each time a new character
is read, the current context is pushed onto the stack before being modifying according to the new
character. When the word is finally traversed, we have all the traversed contexts in the stack.

If the next word shares a prefix of length £ with the word just processed, we do not need to
reprocess the first £ characters. We just take the £-th context of the stack instead of the initial one
and process the string from the (£+ 1)-th character on.

This has the additional overhead of storing the contexts instead of just replacing them, which
makes the strategy to work better for algorithms where the context is very small. On the other
hand, since we always search words (which are rarely longer than 10 letters), we need also algorithms
which are especially efficient for short words. Fortunately, both requirements match since the fastest
algorithms for short patterns are [4, 21], which use a very small context (we exclude filtration
algorithms because the technique is not applicable to them).

The first algorithm simulates using bit-parallelism the behavior of a non-deterministic finite
automaton that searches the pattern allowing errors. It uses just one computer word whenever
(m — k)(k + 2) < w, where m is the length of the pattern, k is the number of errors and w is
the number of bits in the computer word. For instance it can search with m up to 9 in a 32-bit
architecture. Although in the original work they show how to use many computer words for longer



patterns, in our case this will occur very infrequently, and when it occurs the pattern will be one
or two letters longer. We prefer therefore to prune longer patterns and to verify after a match if
there is indeed an occurrence of the complete pattern.

The second algorithm converts the automaton to deterministic form, building only the states
which are actually reached in the text traversal. It is shown in [21] to be very efficient on short
patterns.

To analyze the expected improvement, we notice that the number of letters that will be effec-
tively traversed by the optimized algorithm is exactly the number of nodes of a trie [16] built over
all the words of the vocabulary. This is because, if we consider all the prefixes of all words, we work
only once on each different prefix. On the other hand, each node of a trie represents a different
prefix. The original algorithm, on the other hand, will work on every character of every word.

Not all the characters of all words are present in a trie built from the vocabulary, since once
the prefix of a word is unique the trie is not further expanded but the word is stored in a leaf. The
parts of the words which are not represented in the trie are worked on in all cases. The difference is
in the letters represented in the trie: while the optimized algorithm works once per internal node,
the amount of work of the original algorithm is proportional to the ezternal path length, which is
the sum of the depth of all leaves (i.e. the sum of the lengths of all words, up to where they are
represented in the trie).

In [30], some asymptotical statistics are computed on a suffix trie, for large n, using a Markovian
model (which is quite good for natural language). Statistics for random tries are equivalent to suffix
tries over a random text, except for o(1) terms [26]. We take here the simpler case of independent
character generation (i.e. a Markovian model with no memory). The only difference in the general
case is the constant factor of the results, not the order. The reader is referred to [30] for more
details.

Suppose our alphabet is composed from a finite or infinite number of symbols, call ¢; the
probability of the i-th symbol, and call H = >, ¢;log(1/g;) the entropy of the language. Then
the external path length is E,, = (nlnn)/H = O(nlogn), while the number of internal nodes is
Sn = n/H = O(n) (this last result is taken from [18], for random tries). Therefore, we work in
n(lnn—1)/H less characters. Except for the parts of the strings stored in the leaves, we work O(n)
instead of O(nlogn). Unfortunately, the part stored in the leaves is important and is proportional
to the part stored in the trie in practice.

Finally, notice that our proposal is similar to that of storing a trie with the vocabulary and run
the algorithms recursively on the trie to factor out repetitions. However, our technique is faster
and has much less memory overhead.

We found experimentally, however, that the technique we are proposing here is of no use against
the fastest non-filtering algorithms [4, 21]. This is because the algorithms are extremely efficient
and the amount of repetition in the prefixes is not large enough to counter the accesses to the stack
of contexts (the stack cannot be put in registers). The extra accesses to the stack eliminate the
advantage for the less letters considered.

However, we believe that this idea can still have use for more complex edit distances, where the
fastest algorithms cannot be applied and we must resort to the classical O(mn) algorithm. This
study is part of our future work.
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5 The Vocabulary as a Metric Space

Traversing the whole vocabulary on-line is like comparing the query against the whole database
in a metric space. Our proposal in this section is to organize the vocabulary such as to avoid the
complete on-line traversal. This organization is based on the fact that we want, from a set of words,
those which are at edit distance at most k from a given query. The edit distance ed() used satisfies
the axioms which make it a metric, in particular a discrete metric.

The proposal is therefore, instead of storing the vocabulary as a sequence of words, organize it
as a metric space using one of the available techniques. The distance function to use is ed(), which
is computed by dynamic programming in time O(mjm3), where m; and my are the lengths of the
two words to compare. Although this comparison takes more than many efficient algorithms, it will
be carried out only a few times to get the answer. On the other hand, the dynamic programming
algorithm is very flexible to add new editing operations or changing their cost, while the most
efficient on-line algorithms are not that flexible.

Figure 3 shows our proposed organization. The vocabulary is stored as a contiguous text (with
separators among words) where the words are sorted. This allows exact or prefix retrieval by binary
search, or another structure can be built onto it. The search structure to allow errors goes on top
of that array and allows approximate or exact retrieval.

An important difference between the general assumptions and our case is that the distance
function is not so costly to compute as to make negligible all other costs. For instance, the space
overhead and non-locality of accesses incurred by the new search structures could eliminate the
advantage of comparing the query against less words in the vocabulary. Hence, we do not consider
simply the number of comparisons but the complete CPU times of the algorithms, and compare
them against the CPU times of the best sequential search algorithms run over the complete vo-
cabulary. Moreover, the efficiency in all cases depends on the number of errors allowed (all the
algorithms worsen if more errors are allowed). Finally, we have to consider the extra space incurred



because the vocabulary is already large.

It is interesting to notice that any structure to search in a metric space can be used for exact
searching, since we just search allowing zero errors (i.e. distance zero). Although not as efficient
as data structures designed specifically for exact retrieval (such as hashing or binary search), the
search times may be so low that the reduced efficiency is not as important as the fact that we do
not need an additional structure for exact search (such as a hash table).

6 Experimental Results

We show experimentally the performance obtained with our metric space techniques against on-
line algorithms. The results are preliminary and must be tested on larger setups. We ran our
experiments on a Sun SparcClassic with 16 Mb of RAM, running SunOS 4.1.3.

We tested three different structures: bk-trees (BKT), fg-trees (FQT) and fqg-trees of fixed height
(FQH). For the first two we tested buckets of size 1, 10 and 20; while for the last one we tested fixed
heights of 5, 10 and 15. As explained before, other structures for metric spaces are not well suited
to this case (we verified experimentally this fact with GNATs and gh-trees). We used a Spanish
dictionary composed of more than 80,000 words (which is still modest compared to the 500,000
words of the TREC collection which will be used in future work). The set was randomly permuted
and separated in 8 incremental subsets of size 10,000 to 80,000.

Our first experiment deals with space and time overhead of the data structures that implement
the search in a metric space, and its suitability for exact searching. Figure 4 shows the results. As
it can be seen, build times are linear for FQH and slightly superlinear (O(nlogn) in fact) for BKT
and FQT. The overhead to build them is normally below a minute, which is a small percentage of
the time normally taken to build an index for a text database whose vocabulary is of 80,000 words.

If we consider extra space, we see that BKT and FQT pose a fixed space overhead, of 100% or
less (with respect to the size of the vocabulary with no more data), with the exception of FQT for
b = 1 which is 200%. As an index normally has another 100% overhead over the plain vocabulary
to store pointers to the index, we can consider that the extra overhead is in fact closer to 50-
100%. This is not negligible but acceptable. The FQH indices pose a fixed extra space, whose
overhead tends to zero as the vocabulary grows. However, these percentages are quite large for
reasonably-sized dictionaries, except for small heights.

Finally, we show that the work to do for exact searching involves a few distance evaluations (16
or less) with very low growth rate (logarithmic). This shows that the structure can be also used
for exact search. The exception is FQH (h = 5), since these structures are O(n) time for fixed h,
and this is noticed especially for small h.

We show in Figure 5 the query performance of the indices to search with one error. As it can
be seen, no more than 10% of the dictionary is traversed (the percentage is decreasing since the
number of comparisons are sublinear except for FQH). The user times correspond quite well to the
number of comparisons. We show the percentage of user times using the structures versus the best
online algorithm for this case [6]. As it can be seen, for the maximum dictionary size we reach 40%
of the online time for many metric structures (this percentage will improve for BKT and FQT in
larger dictionaries). From those structures, we believe that FQT and BKT with b = 1 are the best
choices, since they are sublinear and they have a reasonable overhead (in contrast to FQH). For



larger dictionaries, FQH with A = 10 could also be a good choice.

Figure 6 shows the result with two errors. This time the online algorithm selected was [4]
and the metric space algorithms do not improve the online search. The reason is that the offline
algorithms are much more sensitive to the error level than the online algorithm used. This shows
that our scheme is only useful to search with one error.

We also tested the search for the nearest neighbor, and the results are very similar to a search
with k equal to the distance to that nearest neighbor.

7 Conclusions

We proposed a new method to organize the vocabulary of inverted files in order to support approx-
imate searching on the indexed text collection. Most present methods rely on a sequential search
over the vocabulary words using a classical online algorithm. We propose instead to organize the
vocabulary as a metric space (taking advantage of the fact that the edit distance that models the
approximate search is indeed a metric).

We show in our preliminary experiments that the best data structures for this task are Burkhard-
Keller trees or Fixed-Queries trees, using no buckets. Those structures allow, with almost negligible
construction time and reasonable space overhead (50%-100% extra over typical space taken by the
vocabulary, which is already very small), to search close to 5% of the dictionary for one error and
25% for two errors. This cuts down the times of the best online algorithms to 40% for one error,
although for two errors the online algorithms (though traversing the whole dictionary) are faster.
For larger dictionaries, Fixed-Height fq-trees of height 10 could also be a good choice.

We determined also that other structures not aimed to discrete spaces are not well suited for
this task, being their performance very inferior to the ones we presented. We also determined that
a proposed idea to improve online search algorithms on a sorted vocabulary by skipping common
prefixes, although theoretically appealing, is of no interest in practice. A study of this idea for
the case of a more expensive algorithm (e.g. to compute a more complex distance function) is of
interest, however.

Future work also involves repeating all the experiments on a larger machine and on a larger
vocabulary, to obtain figures adequate to very large text databases. The dictionary used had 80,000
words, which corresponds to a text of less than 100 megabytes. The 2 gigabytes TREC collection
has a vocabulary of 500,000 words and we plan to use that vocabulary.
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Appendix. Analysis of Fixed-Height FQ-trees

We call p; the probability that two random elements from U are at distance ¢. Hence, Y ,vop; = 1,
and p_; = 0 for i > 0. In [3] the fq-trees are analyzed under the simplifying assumption that the
p; distribution does not change when we enter into a subtree (their analysis is later experimentally
verified). They show that the number of distance evaluations done to search an element with
tolerance k (in our application, allowing k errors) on an fq-tree of bucket size b is

where 0 < a < 1 is the solution of

> yi(k)ps =1

i>0
where ~v;(k) = Z;";’f_k pj. This Py result is the sum of the comparisons done per level of the tree
(a logarithmic term) plus those done at the leaves of the tree, which are O(n®).

The CPU cost depends also on the number of traversed nodes Ni(n), which is also shown to be
O(n®) (the constant is different). Finally, the number of distance evaluations for an exact search
is O(b + logn).

Under the same simplifying assumption the analysis applies to bk-trees too. The main difference
is that the number of comparisons is for this case the same as the number of nodes traversed plus the
number of leaf elements compared, which also adds up O(n®) (although the constant is higher). The
distribution of the tree is different but this difference is overriden by the simplifying assumptions
anyway.

We analyze now fg-trees of fixed height. The analysis is simpler than for fq-trees. Let F,i‘(n)
be the number of elements not yet filtered by a proximity search of distance up to k after applying
h fixed queries. Then, the expected number of comparisons for a proximity query is

Pli(n) = h+ F}(n)

Let 3k be the probability of not filtering an element when doing the proximity search at distance k.
If an element is at distance ¢ to a query, it is not filtered with probability Z;i’f_ & P;j- The element

is at distance 7 with probability p;, so

1+k
Br = Zpi Z Pj
>0 j=i—k

Note that 8 converges to 1 when k increases. So, the expected number of elements not filtered
between two consecutive levels are related by FJ}(n) = BxF ! (n). Clearly, FQ = n, so Ff(n) =
Bhn. Because F(n) decreases when h grows, the optimal h is obtained when PP'(n) < P} (n).
That is, when

h+Bfn < h+1+ pptt
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Solving, we obtain the optimal A for a given k

_ log(n(1 - B))
" log(1/B)

Replacing this h in P}'(n) we get

_ log(n(1 - Bx)) 1
Pulm) = log(l/ﬁk)k 1 Br

That is, Pg(n) is logarithmic for the optimal hj (and linear for a fixed h). This is asymptotically
better than the O(n®) results for fq-trees and bk-trees. Nevertheless, the constant factor in the log
term grows exponentially with k, so this is good for small to medium k.

To obtain this logarithmic behavior, the fixed height must increase as the number of elements
grows (i.e. hy = O(logn)). Unfortunately the optimal height is dependent on the search tolerance
k. However, the logarithmic cost can be maintained even for non-optimal A provided we use
h = ©(6logn), where § > 1/log1/p} (i.e. we overestimate the optimal height).

On the other hand, the number of nodes visited is bigger than in fq-trees. In fact, using a
recurrence similar to the one for fg-trees, it is possible to show that the number of nodes visited
is O(hxn®) for a < 1 which could easily be larger than n even for small k. So, these trees are
good when the cost of comparing two elements is very high, like comparing two genetic sequences,
polygons or graphs.

A related problem is the size of the data structure. While normal fg-trees or bk-trees are O(n)
size, fixed-height fg-trees can in principle be superlinear. In fact, we could not reach the optimal
hi in our experiments because of space limitations.
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Figure 4: Comparison of the data structures. From top to bottom and left to right, number of
distance evaluations to build the structures, user times to build the structures, extra space taken
by the structures as a percentage of the size of the vocabulary (FQH h = 15 is close to 700) and
number of distance evaluations for exact search (FQH h = 5 grows linearly). The z axis are the
number of words in the dictionary in multiples of 10,000.
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Figure 5: Comparison allowing one error. The first row shows the number of comparisons (on
the left, absolute number, on the right, percentage over the whole dictionary). The second row
shows user times for the queries (on the left, seconds, on the right, percentage over the best online
algorithms). The z axis are the number of words in the dictionary in multiples of 10,000.
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Figure 6: Comparison allowing two errors. The first row shows the number of comparisons (on
the left, absolute number, on the right, percentage over the whole dictionary). The second row
shows user times for the queries (on the left, seconds, on the right, percentage over the best online
algorithms). The z axis are the number of words in the dictionary in multiples of 10,000.
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