
Similarity in Two-Dimensional Strings(Extended Abstract)Ricardo A. Baeza-YatesDepto. de Ciencias de la Computaci�onUniversidad de ChileCasilla 2777, Santiago, ChileE-mail: rbaeza@dcc.uchile.cl �AbstractIn this paper we discuss how to compute the edit distance (or similarity) between twoimages. We present new similarity measures and how to compute them. They can be usedto perform a more general two-dimensional approximate pattern matching. Previous work ontwo-dimensional approximate string matching either work with only substitutions or a restrictededit distance that allows only some type of errors.1 IntroductionA number of important problems related to string processing lead to algorithms for approximatestring matching: text searching, pattern recognition, computational biology, audio processing, etc.Two-dimensional pattern matching with errors has applications on computer vision.The edit distance between two strings a and b, ed(a; b), is de�ned as the minimum number ofedit operations that must be carried out to make them equal. The allowed operations are insertion,deletion and substitution of characters in a or b. The problem of approximate string matching isde�ned as follows: given a text of length n, and a pattern of length m, both being sequences over analphabet � of size �, �nd all segments (or \occurrences") in text whose edit distance to pattern is atmost k, where 0 < k < m. The classical solution is O(mn) time and involves dynamic programming[11].Krithivasan and Sitalakshmi (KS) [8] proposed the following extension of edit distance for twodimensions. Given two images of the same shape, the edit distance is the sum of the edit distanceof the corresponding row images. This de�nition is justi�ed when the images are transmitted rowby row and there are not too many communication errors. However, for many other problems,this distance does not reect well simple cases of approximate matching in di�erent settings. Forexample, we could have a match that only has the middle row of the pattern missing. In thede�nition above, the edit distance would be O(m2) if all pattern rows are di�erent. Intuitively,�This work was supported by Fondecyt Grant 95-06221



the right answer should be at most 2m, because only m characters were deleted in the patternand m characters are inserted at the bottom. In this paper we extend the edit distance to twodimensions lifting the problem just mentioned and also extending the edit distance to images ofdi�erent shapes.This paper is organized as follows. First we discuss previous work on two-dimensional patternmatching with errors. Next, we introduce new notions of similarity between two-dimensional stringsor images. As for the one-dimensional counterpart, we consider �rst the comparison of two imagesand then the problem of �nding approximate matches with at most k errors of a rectangular patternimage of size m1�m2 in a larger rectangular image (the text) of size n1� n2. We denote by � thesize of the (�nite) alphabet. We end by discussing possible extensions and open problems.2 Previous WorkTwo-dimensional approximate string matching usually considers only substitutions for rectangularpatterns, which is much simpler than the general case with insertions and deletions (because inthis case, rows and/or columns of the pattern can match pieces of the text of di�erent length). Forsubstitutions, the pattern shape matches the same shape in the text.If we consider matching the pattern with at most k substitutions, one of the best results onthe worst case is due to Amir and Landau [2] achieving O((k + log�)n2) time but using O(n2)space. A similar algorithm is presented in Crochemore and Rytter [4]. Ranka and Heywood [10],on the other hand, solve the problem in O((k +m)n2) time and O(kn) space. Amir and Landaualso present a di�erent algorithm running in O(n2 logn log logn logm) time. On average, the bestalgorithm is due to Karkk�ainen and Ukkonen [6], with its analysis and space usage improved byPark [9]. The expected time is O(n2k=m2 log� m) fork � � mdlog�(m2)e� m2 � 1 � m24 log� musing O(m2) space (O(k) space on average). This time result is optimal for the expected case.Under the KS de�nition, Krithivasan [7] presents an O(m(k + logm)n2) algorithm that usesO(mn) space. This was improved (for k < m) by Amir and Landau [2] to O(k2n2) worst casetime using O(n2) space. Amir and Farach [1] also considered non-rectangular patterns achievingO(k(k+pm logmpk log k)n2) time. This algorithm is very complicated and non-practical becauseit uses numerical convolutions.Very recently, Baeza-Yates and Navarro [3] obtained the �rst fast algorithm on average for theKS model. They use a �lter algorithm based in multiple approximate string matching, achievingO(n2k log� m =m2) average-case behavior for k < m(m + 1)=(5 log� m), and using O(m2) space.This time matches the best known result for the same problem allowing just substitutions and isoptimal [6], being the upper bound on k only a bit smaller. For higher error levels, they present analgorithm with time complexity O(n2k=(wp�)) (where w is the size in bits of the computer word),which works for k < m(m+ 1)(1� e=p�).Another related problem is geometric matching, where we have to match a geometric �gure ora set of points. In this case, the problem is in a continuous space rather than a discrete space andusually the Hausdor� measure is used. 2



3 Extending the Edit DistanceLet a and b be two images of size nr�nc and mr�mc respectively. In the sequel we use rowi(a) todenote the i-th row of a and coli(a) to denote the i-th column of a. For example, the KS distanceis given by KS(a; b) = nrXi=1 ed(rowi(a); rowi(b))with the restriction that nr = mr. We also use the L-shape idea of Giancarlo [5] used for extendingsu�x trees to two dimensions. We denote by LSi;j(a) the L-shaped string consisting of the �rst jelements of the i-th row and the �rst i� 1 elements of the j-th column.Because our main motivation is approximate matching, we assume that the pattern and atext subimage are compared from top to bottom and from left to right. That is, the incrementalcomputation can be decomposed by extending a sub-image at the bottom or/and the right side. Itcan be argued that a pattern can match better �xing a di�erent corner, but this does not make anydi�erence, because that only changes the text position where the match will be reported, and stillonly one match is found. Another convention is that the text occurrence must have the same shapeof the pattern. Otherwise, we may have occurrences that have at most k errors that basically do notcount unmatched characters on the boundaries, which is not fair. Hence, although our similaritymeasures work for two images of di�erent size, they will be used later for subimages in the textthat have the same shape as the pattern.First, we solve the limitation of the KS model to handle deletions or insertions of whole rows.The solution is simple, we just treat each row as a single string which is compared to other rowsusing the normal edit distance (that is, only one dimension). If Ri;j is the distance between rows1 and j of image a and rows 1 and j of image b, we have thatRi;j = min(Ri�1;j + nc; Ri;j�1+mc;Ri�1;j�1 + ed(rowi(a); rowj(b)))where the boundary conditions are Ri;0 = i � nc and R0;j = j �mc, and the distance between thetwo images is given by R(a; b) = Rnr;mr.In the example given in the introduction, the distance is reduced to less or equal than 2minstead of being O(m2) as in the KS model. Similarly, we could use columns instead of rows. Thismodel is much more fair than the KS model. Although we use rectangular images, this measurealso works for any images where rows are connected and continuous.To generalize this idea to insertions and deletions at the same time in rows and/or columns isnot as simple. Suppose that we have two subimages that we want to compare. One alternativeis to decompose the border of a subimage in rows or columns. Then we can extend dynamicprogramming by1. removing one row or one column from one of the subimages or2. removing one row or one column in the same side of each subimage and computing the editdistance between them.Therefore, if RCi;j;k;` is the distance between the left-top corner of a bounded by row i and columnj and the left-top corner of b bounded by row k and column `, we have that RCi;j;k;` is the minimumof the following values: 3



� RCi�1;j;k;`+j, RCi;j�1;k;`+ i, RCi;j;k�1;`+`, and RCi;j;k;`�1+k which corresponds to deletingone row or column in one sub-image; and� RCi�1;j;k�1;`+ed(rowi(a); rowk(b))) and RCi;j�1;k;`�1+ed(colj(a); col`(b))) which correspondsto comparing two rows at the bottom or two columns at the right.The boundary conditions are RC0;0;i;j = RCi;j;0;0 = i � j. The distance RC(a; b) is given byRnr;nc;mr;mc. Figure 1 shows all these cases. This distance can also be applied to any convex image,for example circles or other regular polygons.
Figure 1: Decomposition used in RC (left, 6 cases) and L (right, 3 cases).Nevertheless, this distance does not handle cases where we want to change at the same time arow and a column. For that we use the L-shape mentioned earlier. So, we can also decompose theborder of a subimage using L-shapes and we can have the same extensions as for rows or columns.To compare two L-shapes we see them as two one-dimensional strings. Then we have the followingcases to �nd the minimal decomposed distance:� Li�1;j�1;k;` + i+ j � 1 and Li;j;k�1;`�1 + k+ `� 1 which corresponds to removing an L-shapein a subimage; and� Li�1;j�1;k�1;`�1 + ed(LSi;j(a); LSk;`(b))) which corresponds to comparing two L-shapes.The boundary conditions are the same as the RC measure and the �nal distance is similarly givenby L(a; b) = Lnr;nc;mr;mc. Figure 1 shows the decompositions associated to L.Finally, we can have a general distance All(a; b) that uses both decompositions at the sametime (RC and L) computing the minimal value of all possible cases. It is easy to show thatKS(a; b) � R(a; b)� RC(a; b)� All(a; b) and that L(a; b) � All(a; b) because each case is a subsetof the next. On the other hand, there are cases where RC(a; b) will be less than L(a; b) and viceversa. Speci�c examples will be included later. 4



4 Algorithmic IssuesFor sake of simplicity and without loss of generality assume that nr = nc = mr = mc = m. Adirect implementation for R would take O(m4) time and O(m2) space, while for RC and L wouldrequire O(m6) time and O(m4) space. The later, in particular, is prohibitive even for small images.However, this can be done better. The space is easily reduced to O(m) for R and O(m2) to RC andL by noticing that we only need to store the boundary of the matrices of the dynamic programmingcomputation as they are computed incrementally. The edit distances involved in both cases can alsobe computed incrementally. This needs additional space which matches the improved space boundjust mentioned. Therefore, each edit distance needed in the dynamic programming computationcan be computed in constant time, reducing the total time to O(m2) for R and O(m4) for RC andLC, and hence for All. In the full version we will include an appendix with the C code of theimproved computation. This implementation allows to handle patterns up to size 50� 50 withoutperformance problems.Now we discuss approximate two-dimensional pattern matching. For the R measure we canuse the same fast expected time algorithm of Baeza-Yates and Navarro [3]. This algorithm usesa �lter that searches all the pattern rows with a multiple approximate string matching algorithmto �nd potential matching areas. We only change the veri�cation phase (each potential matchfound by the �lter must be veri�ed) by using R to compute the distance. Because computing Rtakes the same time of computing KS, we obtain the same time bounds and the same error levelbound for whic the expected time result is valid. That is, O(n2k log� m =m2) average-case time fork < m(m+ 1)=(5 log� m), using O(m2) space. This expected time is optimal [6].For the RC measure, we can use the same algorithm by applying it twice. First based on thepattern rows and second on the pattern columns. Therefore we achieve the same expected timeand space complexity. We are currently adapting this algorithm to handle L-shapes and we planto include some preliminary results on the full version.5 Concluding RemarksOur measures can be easily extended to more dimensions. For d-dimensions we use (d � 1)-dimensional strings for the decompositions. The only drawback is that the number of cases growsexponentially with the number of dimensions. Then, computing All(a; b) for d-dimensional stringswould require O(2dn2d) time and O(nd) space. An open problem is to design optimal worst-casetime algorithms for approximate searching using the new measures. That is, achieving O(n4) timecomplexity in the case of two dimensions.Neither of the new measures de�ned can handle scaling transformations nor rotations. A morerealistic distance can be de�ned using the following idea, which tries to de�ne the largest com-mon image of two images, which generalizes the concept of longest common subsequence of one-dimensional strings. Given two images, �nd a set of position pairs that match exactly in bothimages subject to the following restrictions:1. The set of positions for the same pattern are disjoint;2. a suitable order given by the position values is the same for both images (for example, imagepixels can be sorted by their i+ j value, using the value of i in the case of ties); and5



3. the total size of the set of positions is maximized.For the edit distance, condition 3 has to be changed to:3. Minimize the number of mismatches, insertions and deletions needed to obtain the set ofmatching positions.This model may match a rotated pattern, because no corner is �xed. Figure 2 gives an example.All pieces of the pattern not in the text corresponds to deletions and mismatches and should becounted. In the text, black regions are not counted, because correspond to mismatches. All otherpieces are insertions in the pattern. It is not clear that the minimal string editing solution givesthe same answer as the largest common set of sub-images. Also, it could be argued that charactersinserted/deleted on external borders should not be counted as errors.
���
���
���
���

���
���
���
���

�
�
�
�
�

�
�
�
�
�

���
���
���

���
���
���

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���

���
���
���
���

4
��
��
��
��

�
�
�
�
�

�
�
�
�
�

���
���
���

���
���
���

Pattern Text piece

1 1

2

34 3

2Figure 2: Example of largest common image.The approximate two-dimensional pattern matching problem can be stated as usual using theabove de�nition as searching for all rectangular subimages of the text that have edit distance atmost k with the pattern. An alternative de�nition would be to �nd all pieces of the text that haveat least m2 � k matching positions with the pattern.References[1] A. Amir and M. Farach. E�cient 2-dimensional approximate matching of non-rectangular�gures. In Proc. SODA'91, pages 212{223, San Francisco, CA, Jan 1991.[2] A. Amir and G. Landau. Fast parallel and serial multidimensional approximate array match-ing. Theoretical Computer Science, 81:97{115, 1991. Also as report CS-TR-2288, Dept. ofComputer Science, Univ. of Maryland, 1989.[3] R. Baeza-Yates and G. Navarro. Fast two-dimensional approximate string matching. InLATIN'98, Campinas, Brazil, April 1998. to appear.[4] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, Oxford, UK, 1994.[5] R. Giancarlo. A generalization of su�x trees to square matrices, with applicati ons. SIAM J.on Computing, 24:520{562, 1995. 6



[6] J. Karkk�ainen and E. Ukkonen. Two and higher dimensional pattern matching in optimalexpected time. In Proc. SODA'94, pages 715{723. SIAM, 1994.[7] K. Krithivasan. E�cient two-dimensional parallel and serial approximate pattern matching.Technical Report CAR-TR-259, University of Maryland, 1987.[8] K. Krithivasan and R. Sitalakshmi. E�cient two-dimensional pattern matching in the presenceof errors. Information Sciences, 43:169{184, 1987.[9] K. Park. Analysis of two dimensional approximate pattern matching algorithms. In Proc.CPM'96, LNCS 1075, pages 335{347, 1996.[10] S. Ranka and T. Heywood. Two-dimensional pattern matching with k mismatches. Patternrecognition, 24(1):31{40, 1991.[11] P. Sellers. The theory and computation of evolutionary distances: pattern recognition. J. ofAlgorithms, 1:359{373, 1980.

7


