Searching in Metric Spaces by Spatial Approximation

*

Gonzalo Navarro
Dept. of Computer Science, Unwversity of Chile
Blanco Encalada 2120 - Santiago - Chile

gnavarro@dcc.uchile. cl

Abstract

We propose a new data structure to search in met-
ric spaces. A metric space is formed by a collection
of objects and a distance function defined among them,
which satisfies the triangular inequality. The goal is,
given a set of objects and a query, retrieve those o0b-
jects close enough to the query. The number of dis-
tances computed to achieve this goal is the complex-
ity measure. Our data structure, called sa-tree (“spa-
tial approzimation tree”), is based on approaching spa-
tially the searched objects. We analyze our method and
show that the number of distance evaluations to search
among n objects is o(n). We show experimentally that
the sa-tree is the best existing technique when the met-
ric space ts high-dimensional or the query has low se-
lectivity. These are the most difficult cases in real ap-
plications.

1. Introduction

The concept of “approximate” searching has appli-
cations in a vast number of fields. Some examples are
non-traditional databases (where the concept of exact
search is of no use and we search for similar objects, e.g.
databases storing images, fingerprints or audio clips);
machine learning and classification (where a new ele-
ment must be classified according to its closest existing
element); image quantization and compression (where
only some vectors can be represented and those that
cannot must be coded as their closest representable
point); text retrieval (where we look for words in a
text database allowing a small number of errors, or we
look for documents which are similar to a given query
or document); computational biology (where we want
to find a DNA or protein sequence in a database al-
lowing some errors due to typical variations); function

*This work has been supported in part by Fondecyt grant
1990627.

prediction (where we want to search the most similar
behavior of a function in the past so as to predict its
probable future behavior); etc.

All those applications have some common charac-
teristics. There is a universe U of objects, and a non-
negative distance function d : U x U — R™ defined
among them. This distance satisfies the three axioms
that make the set a metric space

d(:cv y) =0 & z=y
d(:c, y) = d(yv :c)
d(z,z) < d(z,y)+d(y,2)

where the last one is called the “triangular inequality”
and is valid for many reasonable similarity functions.
The smaller the distance between two objects, the more
“similar” they are. This distance is considered expen-
sive to compute (think, for instance, in comparing two
fingerprints). We have a finite database S C U, which
is a subset of the universe of objects and can be pre-
processed (to build an index, for instance). Later, given
a new object from the universe (a query ¢), we must re-
trieve all similar elements found in the database. There
are three typical queries of this kind:

(a) Retrieve all elements which are within distance r
to ¢g. Thisis, {z € S / d(z,q) <r}.

(b) Retrieve the closest elements to ¢ in S. This is,
{zeS/Vyes, d(z,q) <d(y,q)}

(¢) Retrieve the k closest elements to ¢ in S. This
is, retrieve a set A C S such that |A| = k and
Ve e A,ye S — A, d(z,q) <d(y,9).

Given a database of |S| = n objects, all those queries
can be trivially answered by performing n distance
evaluations. The goal is to structure the database such
that we perform less distance evaluations.

A particular case of this problem arises when the
space is R®. There are effective methods for this
case, such as kd-trees [3] or R-trees [9]. However, for
roughly 20 dimensions or more those structures cease

to work well. We focus in this paper in general metric
spaces, although the solutions are well suited also for
k-dimensional spaces. It is interesting to notice that
the concept of “dimensionality” can be translated to
metric spaces as well: the typical feature in high di-
mensional spaces is that the probability distribution
of distances among elements has a very concentrated
histogram (with larger mean as the dimension grows),
difficulting the work of any similarity search algorithm
[5, 7]. In the extreme case we have a space where
d(z,z) = 0 and Yy # z, d(z,y) = 1, where it is im-
possible to avoid a single distance evaluation at search
time. We say that a general metric space is high dimen-
sional when its histogram of distances is concentrated.

There are a number of methods to preprocess the
set in order to reduce the number of distance evalua-
tions. All them work by discarding elements with the
triangular inequality.

In this work we present a new data structure to an-
swer similarity queries in metric spaces. We call it sa-
tree, or “spatial approximation tree”. It is based on
a completely novel concept, namely to approach the
query spatially, getting closer and closer to it, instead
of the generally used technique of partitioning the set
of candidate elements. We start by presenting an ideal
data structure that, as we prove, cannot be built, and
then design a tradeoff which can be built. We ana-
lyze the performance of the structure, showing that the
number of distance evaluations is o(n). We also exper-
imentally compare our data structure against previous
work, showing that it outperforms all the other schemes
for high dimensions or queries with large radii.

2. Previous Work

Different tree structures have been proposed to fil-
ter out elements based on the triangular inequality.
Burkhard-Keller Trees (bk-trees) [6] are designed for
discrete distance functions: they select a pivot element
p as the root of the tree, and put at child z the elements
which are at distance ¢ to the pivot. Each subtree is
recursively built with the same technique until there
are b elements or less, in which case the elements are
simply stored in a “bucket” at the tree leaf. A type (a)
query g with tolerance radius r is searched by measur-
ing d(p, ¢), reporting p if appropriate, and entering only
into subtrees numbered d(p,q) — r to d(p,¢) + r. The
rest are filtered out with the triangle inequality. The
buckets reached are exhaustively compared against g.

Fixed Queries Trees (fq-trees) [2] are an evolution
where the same pivot is used for all the nodes of the
same level of the tree. In this case the pivot does not
need to belong to the subtree. Many comparisons are

saved in the backtracking process because only one dif-
ferent pivot per level exists. However, the tree is taller.
A variant called Fixed Height fg-tree (fhg-tree) is also
proposed where all the leaves are at the same depth A,
regardless of the bucket size.

Vantage Point Trees (vp-trees) [13, 15] are designed
for continuous distance functions. The root has two
equal-size subtrees that divide the elements in closer
to and farther from the root. This can be extended to
m-ary trees (mvp-trees) [5, 4].

Generalized hyperplane trees (gh-trees) [13] use two
pivots for each tree node and divide the space accord-
ing to which of the two pivots is closer to each ob-
Ject. If this is generalized to an m-ary partition then a
Geometric Near-neighbor Access Tree (gna-tree) is ob-
tained [5], which makes a Voronoi-like partition of the
space [1] among the m pivots at each node of the tree.

Finally, algorithms like AESA [14], LAESA [11, 10]
and others [12, 8] are based in a common idea: k pivots
are selected and each object is mapped to k coordinates
which are its distance to the pivots. Later, the query
g is also mapped and if it differs from an object in
more than r along some coordinate then the element is
filtered out by the triangle inequality. The rest of the
elements are directly compared.

3. Spatial Approximation

We concentrate in this section on queries of the type
(b). Instead of the known algorithms to solve approxi-
mate queries by dividing the set of candidates, we try
a different approach here. In our model, we are al-
ways positioned at a given element of S and try to get
“spatially” closer to the query (i.e. move to another
element which is closer to the query than the current
one). When this is no longer possible, we are positioned
at the nearest element to the query in the set.

Those approximations are performed only via
“neighbors”. Each set element ¢ € S has a set of
neighbors N(a), and we are allowed to move only to
neighbors. The natural structure to represent this re-
striction is a directed graph. The nodes are the ele-
ments of the set and the neighbors are connected by
an edge. More specifically, there is an edge from «a to
b if it is possible to move from a to b in a single step.

Once such graph is suitably defined, the search
process for a query g is simple: start positioned at a
random node a and consider all its neighbors. If no
neighbor is closer to ¢ than a, then report o as the
closest neighbor to g. Otherwise, select some neighbor
b closer to g than a and move to 5. We can choose b as
the neighbor which is closest to ¢ or as the first one we
find closer than a.

In order for that algorithm to work, the graph must
contain enough edges. The simplest graph that works
is the complete graph, i.e. all pairs of nodes are neigh-
bors. However, this implies n distance evaluations just
to check the neighbors of the first node! We prefer the
graph which has the least possible number of edges and
still allows to answer correctly all queries. This graph
G must enforce the following property:

Condition 1: YVa € S, Vg € U, if Vb ¢
N(a),d(g,a) < d(g,b), then Vb € S,d(q,a) <d(qg,b).

This means that, given any possible element g, if
we cannot get closer to ¢ from a going to its neigh-
bors, then it is because a is already the element closest
to g in the whole set S. Expressed in this way it is
the same that we already had, and therefore it is clear
that if G satisfies Condition 1 we can search by spatial
approximation. We seek a minimal graph of that kind.

This can be seen in another way: each ¢ € S has a
subset of U where it is the proper answer (i.e. the set
of objects closer to a than to any other element of S).
This is the exact analogous of a “Voronoi region” for
Euclidean spaces in computational geometry [1]. The
answer to the query ¢ is the set element ¢ which owns
the Voronoi region where ¢ lies. We need, if a is not the
answer, to be able to move to another element closer to
g. It is enough to connect each a with all its “Voronoi
neighbors” (i.e. set elements whose Voronoi area shares
a border with that of a), since if ¢ is not the answer,
then a Voronoi neighbor will be closer to ¢ (this is ex-
actly the Condition 1 just stated).

Consider the hyperplane between @ and b (i.e. which
divides the area of points z closer to a or closer to
b). Each neighbor b we add to a will make the query
to move from a to b provided ¢ is in b’s part of the
hyperplane. Therefore, if (and only if) we add all the
Voronoi neighbors to a, the only zone where the query
would not move away from a will be exactly the area
where a is the closest neighbor.

In a k-dimensional space, the minimal graph we seek
corresponds to the classical Voronoi graph (where el-
ements which are Voronoi neighbors are connected).
The Voronoi graph (generalized to arbitrary spaces) is
therefore the ideal answer in terms of space complexity,
and should have good performance too.

Unfortunately, it is not possible to compute the
Voronoi graph of a general metric space given only the
set of distances among elements of S and no further in-
dication of the structure of the space. This is because,
given the set of | S|? distances, different spaces will have
different Voronoi graphs. Moreover, it is not possible
to prove that a single edge from any a to b nodes is
not in the Voronoi graph. Therefore, the only super-

set of the Voronoi graph that works for an arbitrary
metric space is the complete graph, and as explained
this graph is useless. This outrules the data structure
for general applications. We formalize this notion as a
theorem.

Theorem: given a set S of elements in an unknown
metric space U, and given the distances among each
pair of elements in S, then for each a,b € S there exists
a valid metric space U where a and b are connected in
the Voronoi graph of S.

Proof: given the set of distances, we create a
new element z € U such that d(a,z) = M + ¢,
d(b,z) = M, and d(y,z) = M + 2¢ for all oth-
ers y € S. This satisfies all triangle inequali-
ties provided ¢ < 1/2 miny ,es{d(y,2)} and M >
1/2 maxy ,e¢s{d(y, z)}. Therefore, such an z may exist
in U. Now, given the query ¢ = z and given that we
are currently at element a, b is the element nearest to z
and the only way to move to b without getting farther
from g is a direct edge from a to b. See Figure 1. This
argument can be repeated for any pair a,b € S.

arc needed

Figure 1. lllustration of the theorem.

4. The Spatial Approximation Tree

We make two crucial simplifications to the general
idea to achieve a feasible solution. The resulting sim-
plification answers only a reduced set of queries, but
we show later how to solve the general case using the
same structure.

(1) We do not start traversing the graph from a ran-
dom node but from a fixed one, and therefore there is
no need of all the Voronoi edges.

(2) Our graph will only be able to answer correctly
queries ¢ € S, i.e. only elements already present in the
database.

Given those simplifications, we can build the analo-
gous to the Voronoi graph to search by spatial approx-
imation queries of type (b). Actually, the result is not
a graph but a tree, which we call the sa-tree (“spatial
approximation tree”). Later, we show how to use this
tree to search any query ¢ € U (not only ¢ € §), for
problems of type (a), (b) and (c¢) (not only (5)).

4.1. Construction Process

We select an element a € S to be the root of the
tree. We then select a suitable set of neighbors N(a)
satisfying the following property:

Condition 2: (given a,5) Vz € S,z € N(a) &
Vy € N(a) — {z},d(z,a) < d(z, y).

That is, the neighbors form a set such that any
neighbor is closer to a than to any other neighbor. No-
tice that the set is defined in terms of itself in a non-
trivial way. We want the smallest possible set N(a).

Observe that if d(z,a) > d(z,y) and y is already
in N(a), then z is not in N(a). Therefore, we can
define an “exclusion graph” where in the mentioned
case y has an edge to z. However, there are loops in the
exclusion graph. For instance, it may be the case that,
by adding y to N(a), z is excluded, and vice versa. The
minimal set of neighbors sought is a maximal subset
of the nodes with no edges among them. This is a
particular case of the Independent Set problem, which
is NP-complete. It is not immediate that Independent
Set can be reduced to this problem but it also seems
not easy to take advantage of our particular case.

However, simple heuristics which add more neigh-
bors than necessary work well. We begin with the ini-
tial node a and its “queue” holding all the rest of S.
Since we expect that closer nodes are more likely to
be neighbors, we first sort the set of nodes by distance
to a. Then, we start adding nodes to N(a) (which is
initially empty). Each time we consider a new node b,
we see if it is closer to some element of N(a) than to a
itself. If that is not the case, we add b to N(a). At the
end we have a suitable set of neighbors. We now put
each node not in {a} U N(a) in the queue of its closest
element of N(a). Observe that this requires a second
pass on the queue once N(a) is fully determined.

We are done now with a, and process recursively all
its neighbors, each one with the elements of its queue.
Note that the resulting structure is not a graph but a
tree, which can be searched for any ¢ € S by spatial
approximation for queries of type (b). The reason why
it works is that, at search time, we can repeat what
happened with ¢ during the construction process until
we reach ¢ (this is because ¢ is already in the tree). Be-
ing a tree, the space needed by this structure is O(n).
Figure 2 depicts the building process, where the first
invocation is Build(a,S — {a}) with a a random ele-
ment of the set S.

A problem with this structure is that it is difficult
to add new elements, since the construction algorithm
needs all elements. Each time a new element is in-
serted, we must go down the tree until the new ele-
ment must become a neighbor of the current node. All

Build (Node a, Queue of nodes Q)

N«©§ /* neighbors of a */
Sort @ by distance to a (closer first)
for v € Q do
if Vb€ N, d(v,a) <d(v,b) then N « N U{v}
for b€ N do Q(b) < 0 /* subtrees queues */
for v € Q@ — N —{a} do
Let b € N be the one minimizing d(v,5)
Q) « Q) U{v)
for be N do /* build subtrees */
Add b as a child of «
Build (b, Q(b))

Figure 2. Construction algorithm.

the subtree must be rebuilt from scratch (since some
nodes that went into another neighbor could prefer now
to get into the new neighbor). An alternative is to have
a queue per node with “extra” elements against which
the query must be compared but have no subtree to
follow. At periodic intervals, the index must be rebuilt
to maintain the search efficiency.

4.2. Searching

Of course it is of little interest to search only for ele-
ments g € S. The tree we have described can, however,
be used as a device to solve queries of any type for any
g € U. We start with type (a).

The key observation is that the answers to the query
are elements ¢’ € S. So we use the tree to pretend that
we are searching an element ¢’ € S. We do not know
q', but using ¢ we have some distance information: by
the triangular inequality it holds that for any z € U,
d(z,q) — r < d(z,q¢') < d(z,q) + r, where r is the
tolerance of our search.

Therefore, instead of simply going to the closest
neighbor, we first determine the closest neighbor of ¢
among {a} U N(a) (say it is ¢). We then enter into
all neighbors b € N(a) such that d(g, b) < d(g,c) + 2r.
This is because the virtual element ¢’ we are searching
for can differ from ¢ in at most r at any distance evalu-
ation. In the way, we report all the nodes we have seen
which are close enough to g. Therefore, what was orig-
inally conceived as a search by spatial approximation
along a single path is combined now with backtracking,
so that we search by a number of paths.

Figure 3 depicts the algorithm. Initially, a is the
root of the tree. Notice that in the recursive case d(a, q)
is already known. Below we show an example of the
search process, starting from pq; (tree root). Only pg

is in the result, but all the bold edges are traversed.

Search (Node a, Query g, Radius r)

if d(a,q) <r then Report a
N + children nodes of a
mind < min.c{.3un d(c, q)
for b€ N do
if d(b,q) < mind + 2r then Search (b,q,r)

p3

Figure 3. Search algorithm and example.

To solve queries of type (), we start searching with
r = oo, and reduce r each time a new comparison is
performed that gives a distance smaller than r. All the
elements seen with the smallest distance found form the
answer. In this case it is important to enter into each
neighbor in order (closer neighbors first) to increase
the chance of quickly reducing the tolerance r. Queries
of type (c) are solved as a generalization of those of
type (b): instead of just the closest neighbor we keep
k closest neighbors and set r as the distance from ¢ to
the farthest among the k.

Finally, we can save some comparisons at query time
by storing at each node ¢ the maximum distance be-
tween ¢ and any element in the subtree rooted by a.
This information may show that it is not necessary to
get into some subtrees at query time.

5. Analysis

We analyze now our sa-tree structure. Our analysis
is simplified in many aspects, for instance it assumes
that the distance distribution of nodes that go into a
subtree is the same as in the global space. We also
do not take into account that we sort the queue before
selecting neighbors (the results are pessimistic in this
sense, since it looks as if we had more neighbors). This
analysis is done for a continuous distance function, al-
though adapting it to the discrete case is immediate.

For the analysis that follows, we assume that the
probability that two random elements are at distance

x 1S pg, where fooo pzdz = 1 (that is, p, is the his-
togram of distances). We call P, the probability that
the distance is < z,1.e. P, =1 — f:o prde.

We select a random node as the root and determine
which others are going to be neighbors. Imagine that
a is the selected as root and b is an already present
neighbor. The probability that a given node c is closer
to a than to b is

A:/ Pz Py dx
0

(where p, refers to the possible values of d(b, ¢) and P,
refers to d(a, ¢)). Therefore, if j neighbors are already
present, the probability that we add another neighbor
is that of being closer to a than to any neighbor, which
is A7. Calling X; the random variable that counts the
number of attempts to obtain the (j + 1)-th neighbor
given that there are already j, we have that X; is hy-
pergeometric with mean 1/47. From scratch, we need
Xo+ X1+ ...+ Xny_1 elements to obtain N neighbors.
Since the expectation commutes with the sum, the av-
erage number of elements needed to obtain NV neighbors
is Y 1/A7 = (AN —1) /(471 - 1).

We want to find which neighbor are we trying to add
when the queue is exhausted, to determine how many
neighbors we have on average. . If the queue has n
elements, we equate n with the previous expression to
get that the average number of neighbors is

N(n) = logs(1+n(A™ =1) = ©(logn)

although the constants depend on the probability dis-
tribution

This allows to determine some parameters of our
index. For instance, since on average ©(n/logn) ele-
ments go into each subtree, the average depth of a leaf

in the tree is
1
1+H[- " - e 28"
logn loglogn

The construction cost is as follows (in terms of dis-
tance evaluations). The queue of n elements is com-
pared against the root node. ©(logn) elements are se-
lected as neighbors and then all the other elements are
compared against the neighbors and are inserted into
one queue. Then, all neighbors are recursively built.

nlog®n
loglogn

H(n) =

B(n) = nlogn +log(n)B <%> ~0 <

The space needed by the index (number of links) is
O(n) because we have a tree.

1The exact solution is N(n) = P, o, where P,p = AR(1 4
Po_i 1)+ (1 Ak)Pn_lyk and P; ;, = 0. We have proved that
P, 1 is O(logn), but the proof is not included for lack of space.

We analyze the search times now. Since we enter
into many neighbors, we must determine which is the
amount of backtracking performed. The probability
that, given the root a and j neighbors v;...v;, the ele-
ment ¢ € {a,vq,...,v;} closest to ¢ is at distance > =
from ¢ is P(d(g,¢) > =) = P(d(g,a) > z)x P(d(g,v1) >
z) X ... x P(d(g,vj) > z) = (1 — P,)7+

Therefore, the probability of entering into a given
neighbor v; is P(d(q,v;) < d(g,¢) + 2r) = P(d(g,¢c) >
d(qavi) - 21") S P27+e + f2?+epz(1 - Pz—ZT)j-I—ld:ca
where the inequality holds for any ¢ > 0 and be-
comes equality for ¢ = 0. In the integral, p, rep-
resents the possible values of d(g,v;). Now, since
j = O(logn) < slnn for some s > 0, we have that
the probability is Pa.ie + f;_l_e ppn® M(1=Poz,) gy <
Pyye + n° 1“(1_P€)f20:+6 pgzdz, which is smaller than
Pyrie+n for &« = —sln(1 — P.) > 0. Hence, there
is a constant part plus a negligible term. The constant
part appears because all neighbors at distance 2r or
less from g must be traversed no matter how close is the
closest neighbor. Since there are ©(log n) neighbors, all
them are compared against ¢, and on average we enter
into Pz, 4cO(logn)+O(n~“logn) of them. This makes
the search cost @(n) = log(n)(1 + P2, 4+.Q(n/logn)),
whose solution is

log(1/Papyc)
1_®(loglozgn) — nl—@(l/loglogn)

Q(n) =n
To give an idea of this complexity, we note that it
is o(n/polylog(n)) but w(n®) for any =z < 1. The effect
of the dimensionality is present in P,,.. As the dimen-
sion is higher, we need that r approaches the mean
of the distribution of distances in order to retrieve at
least one element. But since the histogram is more and
more concentrated and the mean larger, by the time the
cummulative distribution P, ceases to be zero, P, is
almost one, since almost all the significant values are
between P, and P,, [7]. This makes the exponent of n
tend to 1 as the dimension grows.

6. Experimental Results

We have tested our sa-tree and previous work on
a synthetic set of random points in a k-dimensional
space. However, we have not used the fact that the
space has coordinates, treating the points as abstract
objects in an unknown metric space. This choice allows
us to control the exact dimensionality we are work-
ing with, which is not so easy if the space is a gen-
eral metric space or the points come from a real situ-
ation (where, despite that they are immersed in a k-
dimensional space, their real dimension can be lower).
Our tests use the Euclidean distance and four different

dimensions: 5, 10, 15 and 20. For each dimension, we
generated 6 groups of data sets, from n = 50,000 to
n = 300, 000 elements.

For each dimension, the height of the tree, average
leaf depth and maximum arity of a node remain quite
stable as n grows, showing a very small increment. For
instance, on 10 dimensions they are (respectively) 12,
6.69 and 19 for n = 50,000; and 13, 8.10 and 23 for
n = 300,000. The dimension has much more impact
than the set size n, making the tree of smaller height
and larger arity. For instance, for n = 200,000 the
height, average leaf depth and arity are (respectively)
24, 12.89 and 9 for 5 dimensions; and 9, 5.51 and 67
for 20 dimensions.

In general, the sa-itree is more expensive to build
than most other data structures. The construction
times (averaged over 10 runs) are shown in Figure 4,
measured in number of comparisons per element. The
curves show the slightly superlinear behavior predicted
in the analysis.

220 T
5dims —-—
10 dims —+—
L 15 dims —=— 4
190 20 dims ——
160 8

50 100 150 200 250 300
n (x 1,000)

Figure 4. Comparisons per element to build the tree.

We consider search times now. We have performed
range queries returning 0.01%, 0.1% and 1% of the to-
tal set size. This corresponds to more or less selectiv-
ity in the query (returning less elements is easier). The
search radius to achieve each percentage grows with the
dimension of the set, but remains stable as n grows.
Figure 5 shows how the percentage of elements consid-
ered decreases as n grows, for different dimensions and
selectivities (all the results have under 2% of error with
95% confidence). This shows that the number of com-
parisons is sublinear in the size of the set (as predicted)
and that all the search times worsen as the dimension
or the search radius grow.

We matched our cost model ¢t = anl—¢/In(In(»))

against the curves. The match is quite good, improving

for more dimensions. The values of ¢ (corresponding
to log(1/P,,)) are as high as 1.79 for 0.01% selectivity
in 5 dimensions and as low as 0.16 for 1% selectivity in
20 dimensions.

25 T

0.01% ——
0.1% ——
1% —=—

50 100 150 200 250 300
n (x 1,000) [5 dimensions]
65 T T T
0.01% ——
0.1% ——

1% —-=—
55 |

%

45 .

|
T

15
50 100 150 200 250 300
n (x 1,000) [10 dimensions]
100 T T T
0.01% ——
0.1% ——
1% —-=—

° 95 | 1
90 1
85 | 1
80

50 100 150 200 250 300

n (x 1,000) [20 dimensions]

Figure 5. Set fraction traversed with the sa-tree.

Finally, Figure 6 compares our sa-frees against other
data structures. This time we fix n = 250,000 and
show how the results change with the dimension. We
have tested bk-trees, fq-trees, fhq-trees, mvp-trees,
gna-trees and k-pivots, manually selecting the best pa-
rameters for each structure. All the trees use buckets

of size 1, which gives optimum performance. For bk-
trees, fq-trees and fhq-trees we use slices at distances
0.15, 0.35, 0.45 and 0.55, as the dimension goes from 5
to 20. For mvp-trees the best arity was always 2 (i.e.
vp-trees). For gna-trees we used arities of 4, 6, 10 and
14 as the dimension goes from 5 to 20.

The only case where we could not select the opti-
mum setup is for fhq-trees and k-pivots. This is be-
cause their optimum needs so much memory that it
cannot be achieved in practice. We have therefore lim-
ited the tree height (or number of pivots) so that their
space requirement is 3 times that of sa-trees, which
also matches the maximum space requirements of any
other structure and is the maximum we can handle in
our machine (64 Mb of RAM). This means using 12
pivots for k-pivots, and fhq-trees of heights 18, 21, 23
and 25 (growing with the dimension to use the same
amount of memory). In all cases we selected the piv-
ots and structure elements (tree roots, etc.) randomly,
since there are no clear criteria in the source papers.

As seen in Figure 6, sa-trees become the best as the
dimension grows or the query becomes less selective,
the most difficult cases in practice.

7. Conclusions

We have presented a new data structure, the sa-tree,
to search in metric spaces by approaching the query
spatially rather than by reducing the set of candidates
as in other approaches. As a byproduct we prove that
no reasonable superset of the Voronoi graph of a metric
space can be built using only the matrix of distances.

The sa-tree shows very good behavior on high di-
mensions (where the problem is more difficult) but is
not so good when the problem is easier (low dimen-
sions). This enables the possibility of designing hybrid
schemes, such as replacing all the small enough sub-
trees (where the intrinsic dimension is lower) by an-
other data structure better suited for that case. It
is also possible to combine the sa-free with a hierar-
chical clustering scheme, using the tree as a device
to search among the clusters representatives at each
level. We are currently working on those issues. We are
also working on an extension of the sa-free, an acyclic
graph, where some redundancy is added to the tree
in order to reduce backtracking in exchange for higher
space requirements and construction cost. Finally, a
problem still open is how to allow dynamic insertion
and deletion of elements without degrading the perfor-
mance. We are studying an alternative construction
scheme where each element is inserted into the first
neighbor closer than the root (instead of the closest
neighbor). With this strategy we can pretend that the

new incoming element was the last one in the queue,
which means that when it becomes a neighbor it can
be simply added as the last neighbor. This allows to
build the structure by successive insertions. Prelimi-
nary experimental results, however, indicate that the
structure is very unbalanced and inferior to the current
one.

Acknowledgements. We thank Edgar Chéavez for
fruitful discussions on the Voronoi graph and help with
the experiments. We also thank Ricardo Baeza-Yates
and an anonymous referee for their comments.

References

[1] F. Aurenhammer. Voronoi diagrams — a survey of a
fundamental geometric data structure. ACM Comput-
ing Surveys, 23(3), 1991.

[2] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu.
Proximity matching using fixed-queries trees. In Proc.

CPM’94, LNCS 807, pages 198-212, 1994.

[3] J. Bentley. Multidimensional binary search trees in
database applications. IFEE Trans. on Software En-
gineering, 5(4):333-340, 1979.

[4] T. Bozkaya and M. Ozsoyoglu. Distance-based index-
ing for high-dimensional metric spaces. In Proc. SIG-
MOD’97, pages 357-368, 1997. Sigmod Record 26(2).

[5] S. Brin. Near neighbor search in large metric spaces.
In Proc. VLDB’95, pages 574-584, 1995.

[6] W. Burkhard and R. Keller. Some approaches to best-
match file searching. CACM, 16(4):230-236, 1973.

[7] E. Chévez and J. Marroquin. Proximity queries in
metric spaces. In Proc. WSP’97, pages 21-36. Car-
leton University Press, 1997.

[8] E. Chévez, J. Marroquin, and R. Baeza-Yates.
Spaghettis: an array based algorithm for similarity
queries in metric spaces. In Proc. SPIRE’99, 1999.

[9] A. Guttman. R-trees: a dynamic index structure for
spatial searching. In Proc. ACM SIGMOD’8;, pages
47-57, 1984.

[10] L. Micé, J. Oncina, and R. Carrasco. A fast branch
and bound nearest neighbor classifier in metric spaces.

Patt. Recog. Lett., 17:731-739, 1996.

[11] L. Micé, J. Oncina, and E. Vidal. A new version of
the nearest-neighbor approximating and eliminating
search (aesa) with linear preprocessing-time and mem-
ory requirements. Patt. Recog. Lett., 15:9-17, 1994.

[12] S. Nene and S. Nayar. A simple algorithm for near-
est neighbor search in high dimensions. IEEE Trans.

PAMT, 19(9):989-1003, 1997.

[13] J. Uhlmann. Satisfying general proximity/similarity
queries with metric trees. IPL, 40:175-179, 1991.

[14] E. Vidal. An algorithm for finding nearest neighbors in
(approximately) constant average time. Patt. Recog.
Lett., 4:145-157, 1986.

[15] P. Yianilos. Data structures and algorithms for near-
est neighbor search in general metric spaces. In Proc.
SODA’93, pages 311-321, 1993.

100

80

60

40

20

100

80

%

60

40

20

100

80

%

60

40

20

Figure 6. Set fraction traversed with the different

sa-tree
bk-tree
fg-tree
fhg-tree
gna-tree
mvp-tree
k-pivots

10

15

dimension [capturing 0.01% of the space]

sa-tree
bk-tree
fg-tree
fhg-tree
gna-tree
mvp-tree
k-pivots

10
dimension [capturing 0.1% of

15
the space]

sa-tree
bk-tree
fg-tree
fhg-tree
gna-tree
mvp-tree
k-pivots

10

15

dimension [capturing 1% of the space]

data structures, for n = 250, 000.

