
Searching in Metric Spaces by Spatial Approximation �Gonzalo NavarroDept. of Computer Science, University of ChileBlanco Encalada 2120 - Santiago - Chilegnavarro@dcc.uchile.clAbstractWe propose a new data structure to search in met-ric spaces. A metric space is formed by a collectionof objects and a distance function de�ned among them,which satis�es the triangular inequality. The goal is,given a set of objects and a query, retrieve those ob-jects close enough to the query. The number of dis-tances computed to achieve this goal is the complex-ity measure. Our data structure, called sa-tree (\spa-tial approximation tree"), is based on approaching spa-tially the searched objects. We analyze our method andshow that the number of distance evaluations to searchamong n objects is o(n). We show experimentally thatthe sa-tree is the best existing technique when the met-ric space is high-dimensional or the query has low se-lectivity. These are the most di�cult cases in real ap-plications.1. IntroductionThe concept of \approximate" searching has appli-cations in a vast number of �elds. Some examples arenon-traditional databases (where the concept of exactsearch is of no use and we search for similar objects, e.g.databases storing images, �ngerprints or audio clips);machine learning and classi�cation (where a new ele-ment must be classi�ed according to its closest existingelement); image quantization and compression (whereonly some vectors can be represented and those thatcannot must be coded as their closest representablepoint); text retrieval (where we look for words in atext database allowing a small number of errors, or welook for documents which are similar to a given queryor document); computational biology (where we wantto �nd a DNA or protein sequence in a database al-lowing some errors due to typical variations); function�This work has been supported in part by Fondecyt grant1990627.

prediction (where we want to search the most similarbehavior of a function in the past so as to predict itsprobable future behavior); etc.All those applications have some common charac-teristics. There is a universe U of objects, and a non-negative distance function d : U � U �! R+ de�nedamong them. This distance satis�es the three axiomsthat make the set a metric spaced(x; y) = 0 , x = yd(x; y) = d(y; x)d(x; z) � d(x; y) + d(y; z)where the last one is called the \triangular inequality"and is valid for many reasonable similarity functions.The smaller the distance between two objects, the more\similar" they are. This distance is considered expen-sive to compute (think, for instance, in comparing two�ngerprints). We have a �nite database S � U , whichis a subset of the universe of objects and can be pre-processed (to build an index, for instance). Later, givena new object from the universe (a query q), we must re-trieve all similar elements found in the database. Thereare three typical queries of this kind:(a) Retrieve all elements which are within distance rto q. This is, fx 2 S = d(x; q) � rg.(b) Retrieve the closest elements to q in S. This is,fx 2 S = 8y 2 S; d(x; q) � d(y; q)g.(c) Retrieve the k closest elements to q in S. Thisis, retrieve a set A � S such that jAj = k and8x 2 A; y 2 S �A; d(x; q) � d(y; q).Given a database of jSj = n objects, all those queriescan be trivially answered by performing n distanceevaluations. The goal is to structure the database suchthat we perform less distance evaluations.A particular case of this problem arises when thespace is Rk. There are e�ective methods for thiscase, such as kd-trees [3] or R-trees [9]. However, forroughly 20 dimensions or more those structures cease

to work well. We focus in this paper in general metricspaces, although the solutions are well suited also fork-dimensional spaces. It is interesting to notice thatthe concept of \dimensionality" can be translated tometric spaces as well: the typical feature in high di-mensional spaces is that the probability distributionof distances among elements has a very concentratedhistogram (with larger mean as the dimension grows),di�culting the work of any similarity search algorithm[5, 7]. In the extreme case we have a space whered(x; x) = 0 and 8y 6= x; d(x; y) = 1, where it is im-possible to avoid a single distance evaluation at searchtime. We say that a general metric space is high dimen-sional when its histogram of distances is concentrated.There are a number of methods to preprocess theset in order to reduce the number of distance evalua-tions. All them work by discarding elements with thetriangular inequality.In this work we present a new data structure to an-swer similarity queries in metric spaces. We call it sa-tree, or \spatial approximation tree". It is based ona completely novel concept, namely to approach thequery spatially, getting closer and closer to it, insteadof the generally used technique of partitioning the setof candidate elements. We start by presenting an idealdata structure that, as we prove, cannot be built, andthen design a tradeo� which can be built. We ana-lyze the performance of the structure, showing that thenumber of distance evaluations is o(n). We also exper-imentally compare our data structure against previouswork, showing that it outperforms all the other schemesfor high dimensions or queries with large radii.2. Previous WorkDi�erent tree structures have been proposed to �l-ter out elements based on the triangular inequality.Burkhard-Keller Trees (bk-trees) [6] are designed fordiscrete distance functions: they select a pivot elementp as the root of the tree, and put at child i the elementswhich are at distance i to the pivot. Each subtree isrecursively built with the same technique until thereare b elements or less, in which case the elements aresimply stored in a \bucket" at the tree leaf. A type (a)query q with tolerance radius r is searched by measur-ing d(p; q), reporting p if appropriate, and entering onlyinto subtrees numbered d(p; q)� r to d(p; q) + r. Therest are �ltered out with the triangle inequality. Thebuckets reached are exhaustively compared against q.Fixed Queries Trees (fq-trees) [2] are an evolutionwhere the same pivot is used for all the nodes of thesame level of the tree. In this case the pivot does notneed to belong to the subtree. Many comparisons are

saved in the backtracking process because only one dif-ferent pivot per level exists. However, the tree is taller.A variant called Fixed Height fq-tree (fhq-tree) is alsoproposed where all the leaves are at the same depth h,regardless of the bucket size.Vantage Point Trees (vp-trees) [13, 15] are designedfor continuous distance functions. The root has twoequal-size subtrees that divide the elements in closerto and farther from the root. This can be extended tom-ary trees (mvp-trees) [5, 4].Generalized hyperplane trees (gh-trees) [13] use twopivots for each tree node and divide the space accord-ing to which of the two pivots is closer to each ob-ject. If this is generalized to an m-ary partition then aGeometric Near-neighbor Access Tree (gna-tree) is ob-tained [5], which makes a Voronoi-like partition of thespace [1] among the m pivots at each node of the tree.Finally, algorithms like AESA [14], LAESA [11, 10]and others [12, 8] are based in a common idea: k pivotsare selected and each object is mapped to k coordinateswhich are its distance to the pivots. Later, the queryq is also mapped and if it di�ers from an object inmore than r along some coordinate then the element is�ltered out by the triangle inequality. The rest of theelements are directly compared.3. Spatial ApproximationWe concentrate in this section on queries of the type(b). Instead of the known algorithms to solve approxi-mate queries by dividing the set of candidates, we trya di�erent approach here. In our model, we are al-ways positioned at a given element of S and try to get\spatially" closer to the query (i.e. move to anotherelement which is closer to the query than the currentone). When this is no longer possible, we are positionedat the nearest element to the query in the set.Those approximations are performed only via\neighbors". Each set element a 2 S has a set ofneighbors N (a), and we are allowed to move only toneighbors. The natural structure to represent this re-striction is a directed graph. The nodes are the ele-ments of the set and the neighbors are connected byan edge. More speci�cally, there is an edge from a tob if it is possible to move from a to b in a single step.Once such graph is suitably de�ned, the searchprocess for a query q is simple: start positioned at arandom node a and consider all its neighbors. If noneighbor is closer to q than a, then report a as theclosest neighbor to q. Otherwise, select some neighborb closer to q than a and move to b. We can choose b asthe neighbor which is closest to q or as the �rst one we�nd closer than a.

In order for that algorithm to work, the graph mustcontain enough edges. The simplest graph that worksis the complete graph, i.e. all pairs of nodes are neigh-bors. However, this implies n distance evaluations justto check the neighbors of the �rst node! We prefer thegraph which has the least possible number of edges andstill allows to answer correctly all queries. This graphG must enforce the following property:Condition 1: 8a 2 S, 8q 2 U , if 8b 2N (a); d(q; a) � d(q; b), then 8b 2 S; d(q; a) � d(q; b).This means that, given any possible element q, ifwe cannot get closer to q from a going to its neigh-bors, then it is because a is already the element closestto q in the whole set S. Expressed in this way it isthe same that we already had, and therefore it is clearthat if G satis�es Condition 1 we can search by spatialapproximation. We seek a minimal graph of that kind.This can be seen in another way: each a 2 S has asubset of U where it is the proper answer (i.e. the setof objects closer to a than to any other element of S).This is the exact analogous of a \Voronoi region" forEuclidean spaces in computational geometry [1]. Theanswer to the query q is the set element a which ownsthe Voronoi region where q lies. We need, if a is not theanswer, to be able to move to another element closer toq. It is enough to connect each a with all its \Voronoineighbors" (i.e. set elements whose Voronoi area sharesa border with that of a), since if a is not the answer,then a Voronoi neighbor will be closer to q (this is ex-actly the Condition 1 just stated).Consider the hyperplane between a and b (i.e. whichdivides the area of points x closer to a or closer tob). Each neighbor b we add to a will make the queryto move from a to b provided q is in b's part of thehyperplane. Therefore, if (and only if) we add all theVoronoi neighbors to a, the only zone where the querywould not move away from a will be exactly the areawhere a is the closest neighbor.In a k-dimensional space, the minimal graph we seekcorresponds to the classical Voronoi graph (where el-ements which are Voronoi neighbors are connected).The Voronoi graph (generalized to arbitrary spaces) istherefore the ideal answer in terms of space complexity,and should have good performance too.Unfortunately, it is not possible to compute theVoronoi graph of a general metric space given only theset of distances among elements of S and no further in-dication of the structure of the space. This is because,given the set of jSj2 distances, di�erent spaces will havedi�erent Voronoi graphs. Moreover, it is not possibleto prove that a single edge from any a to b nodes isnot in the Voronoi graph. Therefore, the only super-

set of the Voronoi graph that works for an arbitrarymetric space is the complete graph, and as explainedthis graph is useless. This outrules the data structurefor general applications. We formalize this notion as atheorem.Theorem: given a set S of elements in an unknownmetric space U , and given the distances among eachpair of elements in S, then for each a; b 2 S there existsa valid metric space U where a and b are connected inthe Voronoi graph of S.Proof: given the set of distances, we create anew element x 2 U such that d(a; x) = M + �,d(b; x) = M , and d(y; x) = M + 2� for all oth-ers y 2 S. This satis�es all triangle inequali-ties provided � � 1=2 miny;z2Sfd(y; z)g and M �1=2 maxy;z2Sfd(y; z)g. Therefore, such an x may existin U . Now, given the query q = x and given that weare currently at element a, b is the element nearest to xand the only way to move to b without getting fartherfrom q is a direct edge from a to b. See Figure 1. Thisargument can be repeated for any pair a; b 2 S.
a b

x y

Μ+ε
Μ

Μ+2ε

arc needed

nearest to xFigure 1. Illustration of the theorem.4. The Spatial Approximation TreeWe make two crucial simpli�cations to the generalidea to achieve a feasible solution. The resulting sim-pli�cation answers only a reduced set of queries, butwe show later how to solve the general case using thesame structure.(1) We do not start traversing the graph from a ran-dom node but from a �xed one, and therefore there isno need of all the Voronoi edges.(2) Our graph will only be able to answer correctlyqueries q 2 S, i.e. only elements already present in thedatabase.Given those simpli�cations, we can build the analo-gous to the Voronoi graph to search by spatial approx-imation queries of type (b). Actually, the result is nota graph but a tree, which we call the sa-tree (\spatialapproximation tree"). Later, we show how to use thistree to search any query q 2 U (not only q 2 S), forproblems of type (a), (b) and (c) (not only (b)).

4.1. Construction ProcessWe select an element a 2 S to be the root of thetree. We then select a suitable set of neighbors N (a)satisfying the following property:Condition 2: (given a; S) 8x 2 S, x 2 N (a) ,8y 2 N (a) � fxg; d(x; a) < d(x; y).That is, the neighbors form a set such that anyneighbor is closer to a than to any other neighbor. No-tice that the set is de�ned in terms of itself in a non-trivial way. We want the smallest possible set N (a).Observe that if d(x; a) � d(x; y) and y is alreadyin N (a), then x is not in N (a). Therefore, we cande�ne an \exclusion graph" where in the mentionedcase y has an edge to x. However, there are loops in theexclusion graph. For instance, it may be the case that,by adding y to N (a), x is excluded, and vice versa. Theminimal set of neighbors sought is a maximal subsetof the nodes with no edges among them. This is aparticular case of the Independent Set problem, whichis NP-complete. It is not immediate that IndependentSet can be reduced to this problem but it also seemsnot easy to take advantage of our particular case.However, simple heuristics which add more neigh-bors than necessary work well. We begin with the ini-tial node a and its \queue" holding all the rest of S.Since we expect that closer nodes are more likely tobe neighbors, we �rst sort the set of nodes by distanceto a. Then, we start adding nodes to N (a) (which isinitially empty). Each time we consider a new node b,we see if it is closer to some element of N (a) than to aitself. If that is not the case, we add b to N (a). At theend we have a suitable set of neighbors. We now puteach node not in fag [N (a) in the queue of its closestelement of N (a). Observe that this requires a secondpass on the queue once N (a) is fully determined.We are done now with a, and process recursively allits neighbors, each one with the elements of its queue.Note that the resulting structure is not a graph but atree, which can be searched for any q 2 S by spatialapproximation for queries of type (b). The reason whyit works is that, at search time, we can repeat whathappened with q during the construction process untilwe reach q (this is because q is already in the tree). Be-ing a tree, the space needed by this structure is O(n).Figure 2 depicts the building process, where the �rstinvocation is Build(a,S � fag) with a a random ele-ment of the set S.A problem with this structure is that it is di�cultto add new elements, since the construction algorithmneeds all elements. Each time a new element is in-serted, we must go down the tree until the new ele-ment must become a neighbor of the current node. All

Build (Node a, Queue of nodes Q)N ; /* neighbors of a */Sort Q by distance to a (closer first)for v 2 Q doif 8b 2 N; d(v; a) < d(v; b) then N N [fvgfor b 2 N do Q(b) ; /* subtrees queues */for v 2 Q�N � fag doLet b 2 N be the one minimizing d(v; b)Q(b) Q(b) [fvgfor b 2 N do /* build subtrees */Add b as a child of aBuild (b, Q(b))Figure 2. Construction algorithm.the subtree must be rebuilt from scratch (since somenodes that went into another neighbor could prefer nowto get into the new neighbor). An alternative is to havea queue per node with \extra" elements against whichthe query must be compared but have no subtree tofollow. At periodic intervals, the index must be rebuiltto maintain the search e�ciency.4.2. SearchingOf course it is of little interest to search only for ele-ments q 2 S. The tree we have described can, however,be used as a device to solve queries of any type for anyq 2 U . We start with type (a).The key observation is that the answers to the queryare elements q0 2 S. So we use the tree to pretend thatwe are searching an element q0 2 S. We do not knowq0, but using q we have some distance information: bythe triangular inequality it holds that for any x 2 U ,d(x; q) � r � d(x; q0) � d(x; q) + r, where r is thetolerance of our search.Therefore, instead of simply going to the closestneighbor, we �rst determine the closest neighbor of qamong fag [N (a) (say it is c). We then enter intoall neighbors b 2 N (a) such that d(q; b) � d(q; c) + 2r.This is because the virtual element q0 we are searchingfor can di�er from q in at most r at any distance evalu-ation. In the way, we report all the nodes we have seenwhich are close enough to q. Therefore, what was orig-inally conceived as a search by spatial approximationalong a single path is combined now with backtracking,so that we search by a number of paths.Figure 3 depicts the algorithm. Initially, a is theroot of the tree. Notice that in the recursive case d(a; q)is already known. Below we show an example of thesearch process, starting from p11 (tree root). Only p9

is in the result, but all the bold edges are traversed.Search (Node a, Query q, Radius r)if d(a; q) � r then Report aN children nodes of amind minc2fag[N d(c; q)for b 2 N doif d(b; q) � mind+ 2r then Search (b,q,r)
p13

p4

p2

p12
p3

p7

p15

p6

p8

p9
p14

p11

p1
q

p5

p10Figure 3. Search algorithm and example.To solve queries of type (b), we start searching withr = 1, and reduce r each time a new comparison isperformed that gives a distance smaller than r. All theelements seen with the smallest distance found form theanswer. In this case it is important to enter into eachneighbor in order (closer neighbors �rst) to increasethe chance of quickly reducing the tolerance r. Queriesof type (c) are solved as a generalization of those oftype (b): instead of just the closest neighbor we keepk closest neighbors and set r as the distance from q tothe farthest among the k.Finally, we can save some comparisons at query timeby storing at each node a the maximum distance be-tween a and any element in the subtree rooted by a.This information may show that it is not necessary toget into some subtrees at query time.5. AnalysisWe analyze now our sa-tree structure. Our analysisis simpli�ed in many aspects, for instance it assumesthat the distance distribution of nodes that go into asubtree is the same as in the global space. We alsodo not take into account that we sort the queue beforeselecting neighbors (the results are pessimistic in thissense, since it looks as if we had more neighbors). Thisanalysis is done for a continuous distance function, al-though adapting it to the discrete case is immediate.For the analysis that follows, we assume that theprobability that two random elements are at distance

x is px, where R10 pxdx = 1 (that is, px is the his-togram of distances). We call Px the probability thatthe distance is < x, i.e. Px = 1� R1x pxdx.We select a random node as the root and determinewhich others are going to be neighbors. Imagine thata is the selected as root and b is an already presentneighbor. The probability that a given node c is closerto a than to b is A = Z 10 pxPx dx(where px refers to the possible values of d(b; c) and Pxrefers to d(a; c)). Therefore, if j neighbors are alreadypresent, the probability that we add another neighboris that of being closer to a than to any neighbor, whichis Aj . Calling Xj the random variable that counts thenumber of attempts to obtain the (j + 1)-th neighborgiven that there are already j, we have that Xj is hy-pergeometric with mean 1=Aj. From scratch, we needX0+X1+ :::+XN�1 elements to obtain N neighbors.Since the expectation commutes with the sum, the av-erage number of elements needed to obtain N neighborsis PN�1j=0 1=Aj = (A�N � 1)=(A�1 � 1).We want to �nd which neighbor are we trying to addwhen the queue is exhausted, to determine how manyneighbors we have on average. 1. If the queue has nelements, we equate n with the previous expression toget that the average number of neighbors isN (n) = log1=A(1 + n(A�1 � 1)) = �(log n)although the constants depend on the probability dis-tributionThis allows to determine some parameters of ourindex. For instance, since on average �(n= log n) ele-ments go into each subtree, the average depth of a leafin the tree isH(n) = 1 +H� nlogn� = �� lognlog logn�The construction cost is as follows (in terms of dis-tance evaluations). The queue of n elements is com-pared against the root node. �(log n) elements are se-lected as neighbors and then all the other elements arecompared against the neighbors and are inserted intoone queue. Then, all neighbors are recursively built.B(n) = n log n+ log(n)B � nlog n� = �� n log2 nlog logn�The space needed by the index (number of links) isO(n) because we have a tree.1The exact solution is N(n) = Pn;0 , where Pn;k = Ak(1 +Pn�1;k+1)+(1�Ak)Pn�1;k and P0;k = 0. We have proved thatPn;k is O(logn), but the proof is not included for lack of space.

We analyze the search times now. Since we enterinto many neighbors, we must determine which is theamount of backtracking performed. The probabilitythat, given the root a and j neighbors v1:::vj, the ele-ment c 2 fa; v1; :::; vjg closest to q is at distance � xfrom q is P (d(q; c) � x) = P (d(q; a) � x)�P (d(q; v1) �x)� :::� P (d(q; vj) � x) = (1� Px)j+1.Therefore, the probability of entering into a givenneighbor vi is P (d(q; vi) � d(q; c) + 2r) = P (d(q; c) �d(q; vi) � 2r) � P2r+� + R12r+� px(1 � Px�2r)j+1dx,where the inequality holds for any � � 0 and be-comes equality for � = 0. In the integral, px rep-resents the possible values of d(q; vi). Now, sincej = �(log n) � s ln n for some s > 0, we have thatthe probability is P2r+� + R12r+� pxns ln(1�Px�2r)dx �P2r+� + ns ln(1�P�) R12r+� pxdx, which is smaller thanP2r+� + n�� for � = �s ln(1 � P�) > 0. Hence, thereis a constant part plus a negligible term. The constantpart appears because all neighbors at distance 2r orless from q must be traversed no matter how close is theclosest neighbor. Since there are �(log n) neighbors, allthem are compared against q, and on average we enterinto P2r+��(log n)+O(n�� logn) of them. This makesthe search cost Q(n) = log(n)(1 + P2r+�Q(n= logn)),whose solution isQ(n) = n1��� log(1=P2r+�)log logn � = n1��(1= log logn)To give an idea of this complexity, we note that itis o(n=polylog(n)) but !(nx) for any x < 1. The e�ectof the dimensionality is present in P2r. As the dimen-sion is higher, we need that r approaches the meanof the distribution of distances in order to retrieve atleast one element. But since the histogram is more andmore concentrated and the mean larger, by the time thecummulative distribution Pr ceases to be zero, P2r isalmost one, since almost all the signi�cant values arebetween Pr and P2r [7]. This makes the exponent of ntend to 1 as the dimension grows.6. Experimental ResultsWe have tested our sa-tree and previous work ona synthetic set of random points in a k-dimensionalspace. However, we have not used the fact that thespace has coordinates, treating the points as abstractobjects in an unknown metric space. This choice allowsus to control the exact dimensionality we are work-ing with, which is not so easy if the space is a gen-eral metric space or the points come from a real situ-ation (where, despite that they are immersed in a k-dimensional space, their real dimension can be lower).Our tests use the Euclidean distance and four di�erent

dimensions: 5, 10, 15 and 20. For each dimension, wegenerated 6 groups of data sets, from n = 50; 000 ton = 300; 000 elements.For each dimension, the height of the tree, averageleaf depth and maximum arity of a node remain quitestable as n grows, showing a very small increment. Forinstance, on 10 dimensions they are (respectively) 12,6.69 and 19 for n = 50; 000; and 13, 8.10 and 23 forn = 300; 000. The dimension has much more impactthan the set size n, making the tree of smaller heightand larger arity. For instance, for n = 200; 000 theheight, average leaf depth and arity are (respectively)24, 12.89 and 9 for 5 dimensions; and 9, 5.51 and 67for 20 dimensions.In general, the sa-tree is more expensive to buildthan most other data structures. The constructiontimes (averaged over 10 runs) are shown in Figure 4,measured in number of comparisons per element. Thecurves show the slightly superlinear behavior predictedin the analysis.
40

70

100

130

160

190

220

50 100 150 200 250 300
n (x 1,000)

5 dims
10 dims
15 dims
20 dims

Figure 4. Comparisons per element to build the tree.We consider search times now. We have performedrange queries returning 0.01%, 0.1% and 1% of the to-tal set size. This corresponds to more or less selectiv-ity in the query (returning less elements is easier). Thesearch radius to achieve each percentage grows with thedimension of the set, but remains stable as n grows.Figure 5 shows how the percentage of elements consid-ered decreases as n grows, for di�erent dimensions andselectivities (all the results have under 2% of error with95% con�dence). This shows that the number of com-parisons is sublinear in the size of the set (as predicted)and that all the search times worsen as the dimensionor the search radius grow.We matched our cost model t = an1�c= ln(ln(n))against the curves. The match is quite good, improving

for more dimensions. The values of c (correspondingto log(1=P2r)) are as high as 1.79 for 0.01% selectivityin 5 dimensions and as low as 0.16 for 1% selectivity in20 dimensions.
0

5

10

15

20

25

50 100 150 200 250 300

%

n (x 1,000) [5 dimensions]

0.01%
0.1%

1%

15

25

35

45

55

65

50 100 150 200 250 300

%

n (x 1,000) [10 dimensions]

0.01%
0.1%

1%

80

85

90

95

100

50 100 150 200 250 300

%

n (x 1,000) [20 dimensions]

0.01%
0.1%

1%

Figure 5. Set fraction traversed with the sa-tree.Finally, Figure 6 compares our sa-trees against otherdata structures. This time we �x n = 250; 000 andshow how the results change with the dimension. Wehave tested bk-trees, fq-trees, fhq-trees, mvp-trees,gna-trees and k-pivots, manually selecting the best pa-rameters for each structure. All the trees use buckets

of size 1, which gives optimum performance. For bk-trees, fq-trees and fhq-trees we use slices at distances0.15, 0.35, 0.45 and 0.55, as the dimension goes from 5to 20. For mvp-trees the best arity was always 2 (i.e.vp-trees). For gna-trees we used arities of 4, 6, 10 and14 as the dimension goes from 5 to 20.The only case where we could not select the opti-mum setup is for fhq-trees and k-pivots. This is be-cause their optimum needs so much memory that itcannot be achieved in practice. We have therefore lim-ited the tree height (or number of pivots) so that theirspace requirement is 3 times that of sa-trees, whichalso matches the maximum space requirements of anyother structure and is the maximum we can handle inour machine (64 Mb of RAM). This means using 12pivots for k-pivots, and fhq-trees of heights 18, 21, 23and 25 (growing with the dimension to use the sameamount of memory). In all cases we selected the piv-ots and structure elements (tree roots, etc.) randomly,since there are no clear criteria in the source papers.As seen in Figure 6, sa-trees become the best as thedimension grows or the query becomes less selective,the most di�cult cases in practice.7. ConclusionsWe have presented a new data structure, the sa-tree,to search in metric spaces by approaching the queryspatially rather than by reducing the set of candidatesas in other approaches. As a byproduct we prove thatno reasonable superset of the Voronoi graph of a metricspace can be built using only the matrix of distances.The sa-tree shows very good behavior on high di-mensions (where the problem is more di�cult) but isnot so good when the problem is easier (low dimen-sions). This enables the possibility of designing hybridschemes, such as replacing all the small enough sub-trees (where the intrinsic dimension is lower) by an-other data structure better suited for that case. Itis also possible to combine the sa-tree with a hierar-chical clustering scheme, using the tree as a deviceto search among the clusters representatives at eachlevel. We are currently working on those issues. We arealso working on an extension of the sa-tree, an acyclicgraph, where some redundancy is added to the treein order to reduce backtracking in exchange for higherspace requirements and construction cost. Finally, aproblem still open is how to allow dynamic insertionand deletion of elements without degrading the perfor-mance. We are studying an alternative constructionscheme where each element is inserted into the �rstneighbor closer than the root (instead of the closestneighbor). With this strategy we can pretend that the

new incoming element was the last one in the queue,which means that when it becomes a neighbor it canbe simply added as the last neighbor. This allows tobuild the structure by successive insertions. Prelimi-nary experimental results, however, indicate that thestructure is very unbalanced and inferior to the currentone.Acknowledgements. We thank Edgar Ch�avez forfruitful discussions on the Voronoi graph and help withthe experiments. We also thank Ricardo Baeza-Yatesand an anonymous referee for their comments.References[1] F. Aurenhammer. Voronoi diagrams { a survey of afundamental geometric data structure. ACM Comput-ing Surveys, 23(3), 1991.[2] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu.Proximity matching using �xed-queries trees. In Proc.CPM'94, LNCS 807, pages 198{212, 1994.[3] J. Bentley. Multidimensional binary search trees indatabase applications. IEEE Trans. on Software En-gineering, 5(4):333{340, 1979.[4] T. Bozkaya and M. Ozsoyoglu. Distance-based index-ing for high-dimensional metric spaces. In Proc. SIG-MOD'97, pages 357{368, 1997. Sigmod Record 26(2).[5] S. Brin. Near neighbor search in large metric spaces.In Proc. VLDB'95, pages 574{584, 1995.[6] W. Burkhard and R. Keller. Some approaches to best-match �le searching. CACM, 16(4):230{236, 1973.[7] E. Ch�avez and J. Marroqu��n. Proximity queries inmetric spaces. In Proc. WSP'97, pages 21{36. Car-leton University Press, 1997.[8] E. Ch�avez, J. Marroqu��n, and R. Baeza-Yates.Spaghettis: an array based algorithm for similarityqueries in metric spaces. In Proc. SPIRE'99, 1999.[9] A. Guttman. R-trees: a dynamic index structure forspatial searching. In Proc. ACM SIGMOD'84, pages47{57, 1984.[10] L. Mic�o, J. Oncina, and R. Carrasco. A fast branchand bound nearest neighbor classi�er in metric spaces.Patt. Recog. Lett., 17:731{739, 1996.[11] L. Mic�o, J. Oncina, and E. Vidal. A new version ofthe nearest-neighbor approximating and eliminatingsearch (aesa) with linear preprocessing-time and mem-ory requirements. Patt. Recog. Lett., 15:9{17, 1994.[12] S. Nene and S. Nayar. A simple algorithm for near-est neighbor search in high dimensions. IEEE Trans.PAMI, 19(9):989{1003, 1997.[13] J. Uhlmann. Satisfying general proximity/similarityqueries with metric trees. IPL, 40:175{179, 1991.[14] E. Vidal. An algorithm for �nding nearest neighbors in(approximately) constant average time. Patt. Recog.Lett., 4:145{157, 1986.[15] P. Yianilos. Data structures and algorithms for near-est neighbor search in general metric spaces. In Proc.SODA'93, pages 311{321, 1993.

0

20

40

60

80

100

5 10 15 20

%

dimension [capturing 0.01% of the space]

sa-tree
bk-tree
fq-tree

fhq-tree
gna-tree
mvp-tree
k-pivots

0

20

40

60

80

100

5 10 15 20

%

dimension [capturing 0.1% of the space]

sa-tree
bk-tree
fq-tree

fhq-tree
gna-tree
mvp-tree
k-pivots

0

20

40

60

80

100

5 10 15 20

%

dimension [capturing 1% of the space]

sa-tree
bk-tree
fq-tree

fhq-tree
gna-tree
mvp-tree
k-pivotsFigure 6. Set fraction traversed with the di�erentdata structures, for n = 250; 000.

