
A Partial Deterministic Automatonfor Approximate String MatchingGonzalo Navarro121 Dept. of Computer Science, University of Chile.Blanco Encalada 2120, Santiago, Chile. gnavarro@dcc.uchile.cl2 This work has been supported in part by Fondecyt grants 1-950622 and 1-960881.Abstract. One of the simplest approaches to approximate string match-ing is to consider the associated non-deterministic �nite automaton andmake it deterministic. Besides automaton generation, the search time isO(n) in the worst case, where n is the text size. This solution is men-tioned in the classical literature but has not been further pursued, dueto the large number of automaton states that may be generated.We study the idea of generating the deterministic automaton on the y.That is, we only generate the states that are actually reached when thetext is traversed. We show that this limits drastically the number ofstates actually generated. Moreover, the algorithm is competitive, beingthe fastest one for intermediate error ratios and pattern lengths.1 IntroductionApproximate string matching is one of the main problems in classical stringalgorithms, with applications to text searching, computational biology, patternrecognition, etc.The problem is de�ned as follows: given a text of length n and a pattern oflength m (both sequences over an alphabet � of size �), and given a maximalnumber of errors allowed, k, we want to �nd all text positions where the patternmatches the text up to k errors. Errors can be replacing, deleting or insertinga character. We call � = k=m the error ratio. We are interested in the on-lineproblem, i.e. the text is not known in advance and therefore only the patterncan be preprocessed.The classical solution to this problem is O(mn) running time [16, 17]. Itmaintains a set of m + 1 values Ci (i 2 0::m), which at any moment representthe amount of errors if pattern[1::i] is matched against the best su�x of thealready traversed text. A match is reported whenever Cm � k. Ci is initializedat i, and the new C 0i values are computed in O(m) time from the Ci currentvalues using the formulaC0i = if (pattern[i] == text char) then Ci�1 else 1 +min ( Ci�1; C 0i�1; Ci )(1)where it is assumed that C0 is always 0.Further improvements in the last years achieved O(kn) time in the averagecase [23, 9] or even in the worst case [22, 9, 13, 14] by taking advantage of the



properties of the dynamic programming matrix. In the same trend is [6], withaverage time complexity O(kn=p�).Especially interesting to this work is [23], which de�ned \active" Ci values.Active values are those from 1 to the last i having Ci � k. The outcome ofthe algorithm depends only on the active values. It was conjectured (and laterproved in [6, 4]) that the average number of active values is O(k). By workingonly on the active values, O(kn) average time is achieved.Other approaches attempt to �lter the text, reducing the area in which dy-namic programming needs to be used [21, 20, 19, 7, 8, 11, 5, 18]. These al-gorithms achieve sublinear expected time in many cases (O(kn log� m=m) is atypical �gure) for moderate k=m ratios, but the �ltration is not e�ective forlarger ratios.Yet other approaches use bit-parallelism [1, 27] to reduce the number ofoperations [24, 28]. In [28], O(kn=w) average time is achieved, where w is thenumber of bits in the computer word.A radically di�erent approach to the problem is to look at it as a regulargrammar matching problem. Consider the NFA (non-deterministic �nite au-tomaton) for searching patt with at most k = 2 errors shown in Figure 1. Everyrow denotes the number of errors seen. The �rst one 0, the second one 1, andso on. Every column represents matching the pattern up to a given position. Ateach iteration, a new text character is considered and the automaton changesits states. Horizontal arrows represent matching a character (they can only befollowed if the corresponding match occurs), vertical arrows represent insertinga character in the pattern, solid diagonal arrows represent replacing a charac-ter, and dashed diagonal arrows represent deleting a character of the pattern(they are �-transitions3, since we delete the character from the pattern withoutadvancing in the text). Finally, the loop transition at the initial state allows toconsider any character as a potential starting point of a match. We say that astate is active if the automaton can reach that state after processing the text upto now. The automaton accepts a character (as the end of a match) whenevera rightmost state is active. This NFA has (m + 1)(k + 1) states. Initially, theactive states at row i (i 2 0::k) are at columns from 0 to i, to represent thedeletion of the �rst i characters of the pattern.If we look at the columns of this automaton, we see that once a state isactive, all subsequent states in the same column are active too, and therefore itis possible to de�ne a column by the minimum row active at that column. Thevalues obtained are precisely the Ci already mentioned. Therefore, simulatingthis NFA by columns leads to the classical algorithm.Although we have cited [23] to mention the idea of active values, the centralpoint of the paper is to make this automaton deterministic. Once this is done,the search time is O(n). However, the number of states of the DFA (determin-istic �nite automaton) can be huge. Although the regularities make the totalnumber of states far below the maximum O �2(m+1)(k+1)�, the bounds are stilldiscouraging. In [23], a bound of O(min(3m; (2�m)km)) is obtained. In [15] it3�-transitions are those that the NFA may follow without reading any input.
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2 errorsFig. 1. An NFA for approximate string matching. Unlabeled transitions match anycharacter.is shown that O((k + 2)m�k(k + 1)!) is also an upper bound. For this reason,it has been attempted to simulate the non-deterministic automaton rather thanthe deterministic one.In [26], this automaton is simulated by rows (using bit-parallelism) andO(kmn=w) time complexity is achieved. In [4, 3] it is simulated by diago-nals (which allows higher parallelism) and O(pkm=w n) time is achieved formoderate error ratios.We return to the idea of building the DFA. However, we observe that mostof the states of the DFA are never reached throughout the search. Therefore,instead of building the automaton beforehand and then using it to search thetext, we have a partially built automaton. This partial automaton has onlythe states and transitions that have been reached. As we search, if we �nd atransition which has not been computed yet, we compute it before proceeding.This is as e�cient as building the automaton completely, but the number ofstates can be much smaller.The idea of on-the-y construction of DFAs is not new. For instance, it hasbeen mentioned before, although not exploited, for the more restricted case ofstring matching allowing character replacements (no deletions nor insertions)[2]. It has also been used for the general problem in [12], where it was imple-mented on a lazy functional language. They arrive to similar conclusions aboutperformance, although we include more algorithms in the comparison and ourtest suite is much larger and has no hidden performance factors that could beincluded in a funcional language implementation.We explain the algorithm and show experimentally that it outperforms all



the others for intermediate error ratios. This is because for very low error ratiosthe �ltration techniques inspect less than n characters, while for very high errorratios we generate a huge number of states anyway. We also show how the partialautomaton grows with the text size.2 The Partial DFA AlgorithmWe begin with some terminology. A deterministic �nite automaton or DFA isa set of states connected by transitions. Transitions are arrows among stateslabeled with symbols drawn from an alphabet �. There is exactly one transitionleaving every state for each alphabet symbol. One of the states is initial and somestates are �nal. The automaton is run over a text beginning at its initial state.Given each text character, it follows the appropriate transition and reaches anew state. We say that the automaton accepts a text position whenever it is ata �nal state just after that position is read.A partial DFA is a DFA where some transitions are missing. A missingtransition means that we still have not computed to which state it should go.A con�guration represents the state of the search at a given moment. Itcan be represented as the set of active or inactive states of the NFA, or asthe current (active) values of the the dynamic programming algorithm. Eachpossible con�guration corresponds to a state of the DFA.Our DFA will have one state per \known" con�guration. Only the con�gu-rations (states) which are actually reached in the processing of the text will bepresent.We begin with a partial DFA with just one state and all missing transitions.The state corresponds to the initial con�guration (Ci = i). We traverse thetext exactly as if we had a complete DFA. The di�erence is that, whenever wemust follow a missing transition, we compute it. That is, we take the currentstate (we store the con�guration that corresponds to each state) and perform anO(m) step of the classical algorithm. This gives us the con�guration of a newstate. We search the con�guration among the known states. If it already exists,we put the previously missing transition pointing to that state. Otherwise, wemust �rst create a new state (with all missing transitions leaving it).The advantage of such construction is that, although the DFA of a patterncan be very large, only a small portion of the states may be actually reachedalong the text. Of course, the larger the text, the more states will be generated,but this larger text will compensate for the e�ort of generating the automaton.Note that in natural language some substrings never appear, no matter how longthe text.The only disadvantage is that once the complete DFA is generated, the con-�guration to which each state corresponds needs not be stored, while in thepartial DFA we need to keep those con�gurations all the time to be able to gen-erate new transitions and states. This extra space turns out to be about a 25%extra per generated state, which is not too much, especially because much lessstates are generated in the partial DFA (as we show in the experimental section).



On the other hand, the complete DFA algorithm needs to keep all con�gurationsto generate the DFA, and only then can free their space. Therefore, at somepoint it demands strictly more memory than what the partial DFA algorithmdemands along the whole search.Our algorithm can thus be sketched as followsSearch (text; n; pat;m; k)Aut initial state (configuration Ci = i)state initial state8c 2 �, transition(Aut; state; c) unknownfor (i = 0;i < n;i++)f nstate transition(Aut; state; text[i])if (nstate == unknown)f nconf  perform step(conf(Aut; state); text[i])nstate state in Aut corresponding to nconfif (nstate not found)f nstate new stateAut Aut [ fnstateg8c 2 �, transition(Aut; nstate; c) unknowngtransition(Aut; state; text[i]) nstategstate nstateif (state is final) report matchgThe � in the algorithm does not stand for the complete alphabet, but onlyfor those symbols appearing in the pattern, plus one that represents \any symbolnot in the pattern". The alphabet is then mapped to the interval [0::p] wherep � m, and therefore creating a new state costs O(m). The text characters aremapped in O(1) time by using a global O(�) size table.Now we point out some details of the algorithm.We represent con�gurations as the current Ci values of the classical dynamicprogramming algorithm. Therefore the con�gurations are O(m) size. The actionperform step of the algorithm simply makes a step of the classical algorithmon the given con�guration, and therefore it is O(m) time. Since we work onlyon active values, our representation for a column is [a; c1; :::; ca], where a is theposition of the last active value. As conjectured in [23] and proved in [6, 4], theaverage number of active values is O(k). However, this is probably not true ifwe compute each con�guration only once.Once nconf has been computed, it is necessary to know whether it corre-sponds to a state which is already present in the automaton. Therefore, wemust search in a set of \known" con�gurations. This search can be done in timeproportional to the length of the searched con�guration (i.e. O(m)) in the worstcase. The data structure to achieve this is a trie on the a + 1 \digits" of thecon�guration.



The structure of this trie is quite particular. The root has m�k subtries (oneper possible a value). The subtrie number i has height i. Every non-root nodewhich is not a leaf has at most 3 children. This is because the di�erence betweentwo consecutive values in the column is �1, 0 or 1 (recall Eq. (1)). This fact,already noted in [23], allows to save a lot of space in the trie implementation.This structure is used in [12].However, we found that a simple hashing turns out to be the most e�cientdata structure in practice. We take the hash function over the a + 1 \digits"of the con�guration. Collisions are resolved with a linked list. If the table sizeand the hash function are well chosen, the average cost is O(m) (to evaluate thehash function), at much less space consumption.3 AnalysisWe call s and t the total number of states and transitions, respectively, in thecomplete automaton. This is an upper bound to those actually generated (s0and t0, respectively). As Ukkonen has shown in [23], the number of states canbe upper bounded by s = O(min(3m; (2�m)km)) (the �rst one comes from theproperty mentioned before about tries, the second one considers all possiblestrings at distance � k from the pattern). Since we can map � to O(m) func-tionally di�erent symbols, we replace � by min(�;m) (this is also noted in [15]).In [15], an alternative bound is given by s = O((k+2)m�k(k+1)!). This is clearby looking at the approach of [4], where the NFA is represented by diagonalswith m� k numbers in the range 0::k+1 (the non-full diagonals were discardedin that paper and correspond to the (k + 1)! present here).The number of transitions is therefore t = O(smin(m;�)). We have s0 =O(min(s; n)) and t0 = O(min(t; n)), since each text character can create at mostone state and transition. The space needed by our algorithm is O(s0min(m;�)+t0) = O(s0min(m;�)) in the worst case, i.e. O(min(s; n)min(m;�)). The al-gorithm is linear time except for the generation of the states and new tran-sitions, each one costing O(m). This makes the total cost of the algorithmO(n+ s0min(m;�) + t0m) = O(n+ t0m) = O(n+mmin(t; n)).It is extremely di�cult to set up a correct probabilistic model to compute thenumber of states that are generated on average after reading n random symbols.We make the simplifying assumption that each new character produces a randomtransition. This assumption is pessimistic since some transitions are much moreprobable than others.The probability of a given transition not being generated at a particular textposition is (1 � 1=t). Therefore, the average number of generated states afterreading n text characters ist0 = t�1� �1� 1t�n� = t�1� e�n=t�+ O(1=t)and therefore the average time complexity is O(n+mt(1� e�n=t)). Notice that



(1�e�n=t) is the factor by which building our partial DFA is more e�cient thanbuilding the full DFA. We have three cases now[n = o(t)] In this case e�n=t = 1� n=t+O((n=t)2), which makes the total timecost O(n + mn(1 + o(1))) = O(mn). That is as bad as plain dynamicprogramming. However, in this case the partial DFA is asymptoticallybetter than the full DFA (i.e. partial/full = 1� e�n=t = o(1)).[n = !(t)] In this case we have that the time is O(n+mt) = o(mn), and thereforewe improve dynamic programming. If n = 
(mt), then the algorithm isO(n).[n = �(t)] We have that (1 � e�n=t) = �(1) (i.e. constant) and therefore thetotal time is �(mn), although the constant is smaller. For instance, ifn = t it is � 0:63mn.This shows that the algorithm is competitive when the text is large comparedto the size of the automaton, which is intuitively clear. However, this analysis ispessimistic and the results are much better in practice, as well as the e�ciencyratio among partial and full DFA. We show this in the next section.4 ExperimentsWe present some experimental results collected on English text. We �rst showthe growth of the automata and then we compare our algorithm against theothers.The tests were run on a Sun SparcServer-1000 running SunOS 5.5, with 128Mb of RAM (this impliesw = 32). We tested English text from the trec collec-tion [10], selecting the patterns randomly from the same text, at the beginningof non-stopwords. The text was converted to lower-case and all separators to asingle space (respecting lines). This �ltering is to mimic classical InformationRetrieval scenarios. We used 10 Mb of �ltered text.Each data point was obtained by averaging over 10 trials.4.1 Automaton GrowthWe experimentally show in Figure 2 which is the growth of the partial andcomplete DFAs as the error level increases and as the traversed text increases.As it can be seen, the size of the automaton grows slowly with the text sizeafter a sharp start. Even after processing 10 Mb of natural language, the sizesare less than 20% of the complete automata (except for very small k where thecomplete automata are very small anyway). Memory limitations prevented usto compute automata with more than 500,000 states. For m = 20 we could notgenerate the complete automaton past k = 6 and for m = 30 past k = 5. Forthose larger patterns our improvement is more dramatic, since the partial DFAsare completely manageable up to k = 10 or 11, being hundreds of times smaller.For m = 30 we could not even compute the partial automata past k = 18.
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4.2 Comparison Against Other AlgorithmsWe experimentally compare our algorithm against the fastest previous algo-rithms we are aware of. These are (in alphabetical order)Agrep [25] is a widely distributed approximate search software, that imple-ments a hybrid algorithm. It is limited, although not inherently, to m � 29and k � 8, so it is only included in the test for small patterns. Becauseof its match reporting policy and its options, it is hard to compare fairlywith the other algorithms, but we include it as a reference point.Baeza-Yates/Navarro [4] parallelizes the NFA by diagonals using bits of thecomputer word. The code is from the authors.Baeza-Yates/Perleberg [5] is a �lter based on partitioning the pattern plusexact search of the pieces. The code is ours.Chang-Lampe [6] is the algorithm kn.clp, which computes only the placeswhere the value of the dynamic programmingmatrix does not change alongeach column. The code is from the author.Jokinen-Tarhio-Ukkonen [11] is a �lter based on moving a window over thetext and keeping a counter of text characters of the window that are presentin the pattern. The code is ours.Ours is our partial DFA algorithm.Sutinen-Tarhio [19] is a �ltration algorithm based on �nding portions (q-grams) of the pattern in the text. The method is limited to � < 1=2,and the implementation to k � w=2 � 3. The code is from the authors.We use s = 2 (number of samples to match) and maximal q (length of theq-grams), as suggested in [19].Ukkonen [23] is the standard dynamic programming algorithm, modi�ed towork only on active columns. The code is ours.Wu-Manber-Myers [28] applies a Four Russians technique to the dynamicprogramming matrix, storing the states of the automaton in computerwords. The code is from the authors, and is used with r = 5 as suggestedin [28] (r is related with the size of the Four Russians tables).Figure 3 shows the results. As it can be seen, our algorithm is the moste�cient for intermediate error ratios, especially in not very short patterns. Thatis, from the point where �ltration algorithms cease to work (since they are fasterthan linear) to the point where the number of states of the automaton growtoo much. Observe that, as m grows, that point is reached for smaller � value,which allows to predict that the area where the method is the best will shrinkand disappear for larger patterns.
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5 Conclusions and Future WorkWe have explored the use of a deterministic automaton for approximate stringmatching. The main drawback of the method, namely the huge number of statesof the automaton, is partially alleviated by building only the part of the automa-ton that is really needed in the search of that particular text. We have shownexperimentally that the method outperforms all the others for intermediate errorratios and pattern lengths, and studied the growth of the partial automaton asthe traversed text grows, �nding that the partial DFA is much smaller and moremanageable than the complete one.Future work regarding this issue involves better handling of the number ofstates. For instance, some states may have been generated and never used againsince a long time ago, and could be deallocated (and later re-generated if needed).Another alternative is to stop using the automaton in the interesting parts ofthe text (i.e. when the last active column approaches m). This would reducedrastically the number of states at the cost of using the classical algorithm insome portions of the text.We are also studying how to estimate accurately the correct size of the hashtable beforehand, or to use extendible hashing techniques. Finally, we can ap-proach multipattern approximate search by making a single DFA for all thepatterns. However, the number of states would grow even more than for a singlepattern.AcknowledgementsWe thank Ricardo Baeza-Yates and an anonymous referee for their suggestionsto improve this paper. We thank Stefan Kurtz for his prompt help on his PhD.thesis.References1. R. Baeza-Yates. Text retrieval: Theory and practice. In J. van Leeuwen, editor,12th IFIP World Computer Congress, volume I: Algorithms, Software, Architec-ture, pages 465{476. Elsevier Science, September 1992.2. R. Baeza-Yates and G. Gonnet. Fast string matching with mismatches. Informa-tion and Computation, 108(2):187{199, 1994.3. R. Baeza-Yates and G. Navarro. A fast heuristic for approximate string matching.In N. Ziviani, R. Baeza-Yates, and K. Guimar~aes, editors, Proc. WSP'96, pages47{63, 1996. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/wsp96.2.ps.gz.4. R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string match-ing. In D. Hirschberg and G. Myers, editors, Proc. CPM'96, pages 1{23, 1996.ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/cpm96.ps.gz.
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