
A More Precise Solution to Two Problems on Tries(Preliminary Version)Gonzalo Navarro Patricio V. Poblete�AbstractWe use the Binomial Transform to address the problem of determining the average sizeand leaf depth of a trie. These problems lead to the need to �nd the poles of the function11�ps+1�qs+1 , which we solve exactly up to low-order terms. This improves previous asymptoticapproximations, which although solve the problem to a higher precision, do not allow to computeexact values for the main terms.1 Introduction1.1 Tries or Digital Search TreesA trie or digital search tree over an alphabet A is a tree where each non-leaf node has jAj sons,one for each element of A [2]. The trie is intended to store a set of strings over A, and retrieveany of them in time proportional to its length, in the worst case.Insertion into a trie proceeds as follows: we scan the characters of the string in order, andfollow the trie at the same time, starting at the root of the trie and at the beginning of the string.At each step, we follow the branch of the trie dictated by the current character of the string.If no string is a pre�x of another(this can be achieved by adding to all strings a terminatorcharacter which is not part of the alphabet), then the process continues until we reach a leafof the trie. The leaf may or may not hold another string. If the leaf does hold another string(which shares a pre�x with the one we are inserting, at least up to the examined characters),then the leaf has to be converted into an internal node, and the insertion process continuescreating internal nodes, until the two string di�er. In that moment, the last node correspondingto a coincident character will have two leaves, one for each string. Then the insertion processterminates.Searching into a trie proceeds much as insertion. We scan the string and follow the trieaccordingly. If the string ends in an internal node, we see whether the string is stored in thatnode. If we reach a leaf, we do the same. Again, if we use a special termination character, thenthe string ends always in a leaf.Tries have many applications, for example in lexical analysis, in lexicographical indexes fortext databases, in the Lempel-Ziv algorithm, and in general in any application which needs toretrieve a string from a set in a time independent on the size of the set.�This work has been supported in part by grant FONDECYT(Chile) 19402711



1.2 The problemsSince the average retrieval cost on a trie corresponds to its average leaf depth, this parameter isan important measure to analyze in order to get an idea of the e�ciency of this data structure.Another interesting problem in tries is the average size of a trie built up from n strings. Thissize is not immediate, since for example if two strings with a long common pre�x are inserted,the size of the trie may become proportional to their length).We model these problems by assuming that the strings (or keys) to insert are in�nite inlength, so all of them are stored at the leaves of the trie. In order to simplify the problem, wetake a binary alphabet, where the characters are 0 and 1. Finally, we take a probabilistic modelin which the bits are randomly and independently generated: at each string position, there is a0 with probability p, and a 1 with probability q, where p + q = 1. Note that in this case, thetotal number of internal nodes is the number of leaves minus one, and since there is at mostone string per leaf, the important parameter is the number of empty leaves. The answer to thesecond problem is, then,Trie Size(n) = 2� (n+Empty Leaves(n)) � 11.3 Previous approachesThe case p = q is completely solved in [2], by using the Mellin Transform. The case p 6= q ismuch harder. Recently, in [1], the presence of an oscilatory component was detected for thiscase, which was previously believed to exist only for p = q.The known solution for the case p 6= q is exact up to O(n�1) for the problem of the averageleaf depth [1], but although the presence of anO(1) oscillatory component is detected, no methodis provided to compute its values. Our attempt is to use the Binomial Transform to solve thecase p 6= q exactly for the main terms of the cost (that is, up to o(1)). The same approach maybe used to solve the problem of the average size of a trie, exactly for the main term (that is,o(n)).1.4 The Binomial TransformThe Binomial Transform [3] is a reversible transformation from sequences into sequences. It isde�ned by bas = Bsan = sXn=0(�1)n�sn�anand its inverse is the same, so an = BnBsanWe summarize here the properties of the transform we need. For details, we refer the readerto [3]. Observe that any rule stands for two, the other is obtained by applying Bn to both sides.P1. B is a linear operator.P2. Bs[n = k] = (�1)k�sk�. [cond] is a function which takes the value 1 when cond holds, and0 otherwise.P3. BsHn = � [s>0]s . Hn is de�ned as Pnk=1 1k , and it holds Hn = logn+ 
 + O( 1n).P4. BsPnk=0 �nk�pkqn�kak = ps bas. 2



P5. Bs 1n+x = n!xn+1 . an stands for a(a+ 1)(a + 2) : : : (a+ n� 1).P6. Bs[n > k]yn = [s > k]�bys �Pki=0(�1)i�si�yi�.P7. Bsnan = s( bas � das�1).P8. Bsan�1 = �Ps�1k=0cak.2 Average leaf depth of a trieWe begin by solving the �rst problem, that is, the average leaf depth of a trie. We do this byconsidering the following model: at �rst, the trie holds all the n strings in a single leaf. If thereare two or more strings in the same leaf, it is converted into an internal node with two leaves:in one of them we put the strings whose next character is a 0; in the other those which have a1. The process continues until no leaf has more than one string. Note that there may be emptyleaves.We will take a string at random and mark it. Then, we will study the average depth it getsin the trie when the process terminates. To ease manipulations, we assume we have n+ 1 keys,one of them is the marked one.We call Pn(z) the generating function for the probability to have the marked key at agiven depth, after inserting n+ 1 keys (including the marked one), so the average leaf depth isan = P 0n(1). Thus, we have P0(z) = 1since if only the marked key is inserted, it is at depth 0. For n > 0,Pn(z) = nXi=0 �ni�piqn�i(zpPi(z) + zqPn�i(z))the �rst three factors express the probability to generate a partition with i keys with 0 andn� i with 1 as the next character, the last factor expresses the probability for the marked keyto lie at each partition, the increment in cost (z), and what happens next. Observe that therecurrence ends when there are no more keys in the leaf, appart from the marked one.This way, we reach the complete recurrence for this problem:Pn(z) = nXi=0�ni�piqn�i(zpPi(z) + zqPn�i(z)) + (1� z)[n = 0] (1)Now we apply the binomial transform. By rewriting (1) asPn(z) = nXi=0 �ni�piqn�izpPi(z) + nXi=0�ni�qipn�izqPi(z) + (1� z)[n = 0]and by properties P1 and P4 we can transform the sequence Pn(z) for any z to getcPs(z) = pszpcPs(z) + qszqcPs(z) + (1� z)that is (1 � z(ps+1 + qs+1))cPs(z) = 1� z (2)3



Since the transform is linear, it commutes with the derivation operator; and since at anymoment we can take any particular value for z, our answer is obtained by untransformingbas = cPs0(1). So, we derive (2):�(ps+1 + qs+1)cPs(z) + (1� z(ps+1 + qs+1)cPs0(z) = �1and evaluate both sides at z = 1. Since Pn(1) = 1, cPs(1) = [s = 0] (by property P2, for k = 0):�(ps+1 + qs+1)[s = 0] + (1� (ps+1 + qs+1)cPs0(1) = �1Finally, bas = (ps+1 + qs+1)[s = 0]� 11� ps+1 � qs+1 = � [s > 0]1� ps+1 � qs+1 (3)The problem is to untransform this expression, which we address in the next section.3 Finding the polesWe solve the problem of inverting expression (3) by expanding it into partial fractions, so the�rst step is to �nd poles of the expression on the right side, that is, the complex solutions ofps+1 + qs+1 = 1 (4)By writing s = a + bi, we getpa+1eb log(p)i + qa+1eb log(q)i = 1by replacing exi = cos x+ i sin x, and calling � = b log p and � = b log q, the complex equation(4) turns into the real system pa+1 sin�+ qa+1 sin � = 0 (5)pa+1 cos�+ qa+1 cos � = 1 (6)from the modulus and (6) we infer a � 0. We then analyze the case a = 0, to get the simplerequations p sin�+ q sin � = 0 (7)p cos�+ q cos � = 1 (8)again, by looking at the modulus in (8), we get cos� = cos � = 1, which implies � = 2�k and� = 2�k0, for any integers k and k0 (observe it also satis�es (7)). That is,b = 2�klog p = 2�k0log qwhich implies logplog q = kk04



that is, if between p and q holds an algebraic equation of the formpk1 = qk2for some integers and relative primes k1 and k2, then all purely imaginary solutions to theequation are s = 2�k2klog p ifor any integer k. If, instead, no equation of that kind holds, then the only purely imaginarysolution is s = 0. This may be seen as if k2 = 0.We now turn our attention to the poles lying at a < 0. Recalling property P5, we show nowthat if z = x+ yi is a complex number where x > 0, then����Bn 1s+ z ���� = ���� n!zn+1 ���� � n!xn+1 = �(n)�(x)�(n+ x) = �(x)nnex+n �1 +O( 1n )�en(x+ n)x+n �1 + O( 1n+x�which for large n is �(x)exe�xO(1) 1(x+ n)x �! 0Since any pole wich lies at a < 0 will be expressed as 1=(s � a � bi), where �a is positive,the untransformed term tends to zero as n grows, so it is o(1). Therefore, we have found allpoles up to o(1).The next step is to �nd the constant which multiplies the fractions. Thus,lims! 2�k2klog p i s � 2�k2klogp i1� ps+1 � qs+1 = lims! 2�k2klog p i 1� log(p)ps+1 � log(q)qs+1 = 1�p log p� q log qwhich shows that all of them are single order poles. Thus we getbas = � [s > 0]1� ps+1 � qs+1 = �f(s) � [s > 0]p log 1p + q log 1q Xk2Z 1s + 2�k2klogp i + Bso(1)where f(s) is the analytic di�erence function, which is left when one subtracts all the partialfractions from the original function. We call f(n) = Bnf(s).The inverse of any of the summation terms is studied in [3], in reference to skip lists. Theproblem in that case is to invert Xk2Z 1s+ �k = Xk2Z 1s + 2�klogp iwhich is our case when k2 = 1. Their solution involves the de�nition of a family of functionscFs[r] = Xk2Z�f0g �rks + �kthat are studied in that paper. The untransformed versions are as follows:5



F [r]n � 2 Xk�1Re ��(r�k)e��k logn�which are found to be oscilatory, with period logp n and very little amplitude, in the order of10�6, but they do not tend to zero as n grows.To adapt this result to our problem we just replace �k by k2�k. Since in our case r = 0, the�nal value is 2 Xk�1Re �e��kk2 logn� = 2 Xk�1 cos (�kk2 logn) � F [0]nk2so di�erent values for k2 change the period, which gets longer as k2 is bigger. In fact, k2 is thequotient between both periods. Recall that if log p= log q is not a rational, this oscilatory termdoes not exist.The factor [s > 0] can be eliminated from all terms of the sum, except from the one whichcorresponds to k = 0, since for s = 0, the sum becomes Pk2Z�f0g 1=2�k2klogp i, which is alreadyzero (the justi�cation for the convergence of this particular summation can be found in [3], wherethe same result is extracted by expanding denominators of the form s2+(2�k= log p)2, which doconverge). Observe also that the sign of the sum is only signi�cant for the term correspondingto k = 0.This (still untransformed) term is [s > 0]=s, whose inverse transform is �Hn (recall P3). So,the untransformed result isan = �f(n) + 1p log 1p + q log 1q �Hn + F [0]nk2�+ o(1)What is left is to �nd the analytic di�erence function f(s).The values F [0]n , although may not be considered a closed form expression, may be computedfrom [3] in the following way: since that equation is[s > 0]ps � 1 = � [s > 0]2 + [s > 0]s log p + 1log pcFs[0]it can be put this way cFs[0] = [s > 0]� log pps � 1 + logp2 � 1s�so any desired value for F [0]n may be computed by applying the de�nition of Bn numerically, onthe right side of the equation, which is composed of known functions. This way, the values ofFn can be tabulated, for example. In this sense, Fn becomes a known function.This completes the solution of our �rst problem: the expected leaf depth of a trie afterinserting n random strings over a binary alphabet with probability p for the 0 is1p log 1p + q log 1q �Hn�1 + F [0](n�1)k2�� f(n � 1) + o(1)if log p= log(1� p) = k1=k2 (relative primes); and1p log 1p + q log 1q Hn�1� f(n � 1) + o(1)otherwise. 6



4 Average size of a trieWe have mentioned another problem, namely the average number of empty leaves of a trie,which we have shown directly related with the total number of nodes. We will show that thesame technique used to solve the previous problem may be applied to this one.Calling Pn(z) the generating function for the probability to have a given number of emptyleaves after inserting n keys (then our answer is xn = P 0n(1), we haveP0(z) = zP1(z) = 1Pn(z) = nXi=0 �ni�piqn�iPi(z)Pn�i(z)where in the last case n > 1 is assumed. The intuition is as follows: if there are no keys, thereis a single empty leaf, with probability 1; if there is one key, there are no empty leafs, withprobability 1; if there are more than one key, the �rst three factors are as in the other problem,and the number of empty leaves must be added from both sides of the trie, weighted by theirprobability, and this is exactly what the �nal two factors do. A closed form for Pn isPn(z) = nXi=0 �ni�piqn�iPi(z)Pn�i(z) [n > 1] + [n = 1] + z[n = 0]by deriving the above equation we getP 0n(z) = nXi=0�ni�piqn�i(Pi(z)P 0n�i(z) + P 0i (z)Pn�i(z)) [n > 1] + [n = 0]and by evaluating at z = 1, that leads toxn = nXi=0 �ni�piqn�i(xi + xn�i) [n > 1] + [n = 0]By applying the binomial transform to the above equation, and using properties P4 and P6 weget bxs = [s > 1] ((ps + qs) bxs � 2 + s) + 1(since x0 = 1 and x1 = 0). Thus,bxs = 1 + (s� 2)[s > 1]1� [s > 1](ps + qs) = [s � 1] + [s > 1]1� ps � qs (s � 1)which is quite similar to the one we solved. Indeed, recalling that that sequence was called an,bxs = [s � 1]� (s � 1)das�1Let's call un = n�1Xk=0 ak7



by using properties P2, P7 and P8, we getxn = 1� n� un � n(un�1 � un) = 1� n� un + nan�1by expanding the expression for un, we obtainxn = 1� n+ nan�1 � n�1Xk=0 akthat is xn = 1� n� nf(n � 1) + no(1) +Pn�1k=0 f(k) � no(1) +1p log 1p+q log 1q �nHn�1 + nF [0](n�1)k2 �Pn�1k=0 Hk �Pn�1k=0 F [0]kk2�by introducing In =Pn�1k=0 F [0]k , the above expression isxn = 1� n� nf(n � 1) + n�1Xk=0 f(k) + o(n) + 1p log 1p + q log 1q �n� 1 + nF [0](n�1)k2 � Ink2�Finally,xn =  1p log 1p + q log 1q �1 + F [0](n�1)k2 � Ink2n �� 1!n + n�1Xk=0 f(k) � nf(n � 1) + o(n)Since In may be computed from F [0]n , we take it as a known function. In this sense, theformula is exact up to lower order (i.e. sublinear) terms. In the case that log p= log q is irrational,the formula reduces toxn =  1p log 1p + q log 1q � 1!n+ n�1Xk=0 f(k) � nf(n � 1) + o(n)So, the answer to our problem is that the expected size of a trie built up from n insertionsof strings from a binary alphabet with probability p for the 0, is2(n+ xn) � 1 = 2p log 1p + q log 1q �1 + F [0](n�1)k2 � Ink2n �n+ n�1Xk=0 f(k) � nf(n � 1) + o(n)for example, if p = q, it is � 2:88n. This is the value for p which minimizes the size of the trie.5 ConclusionsWe have focused on the problem of �nding the average leaf depth and size of a trie after n keyinsertions. The �rst measure is directly related to the time e�ciency of this data structure,while the second one is related to its space utilization.While previous approaches have solved this problem exactly for p = q, the case p 6= q ismuch harder, and has been solved up to O(n�1) for leaf depth and up to O((logn)�1) for size.However, these solutions do not allow to compute exact values for the oscillatory componentspresent in the main terms.We used an approach based on the Binomial Transform, to solve the problems up to o(1) inthe �rst case and up to o(n) in the second, that is, less deep than previous solutions. However,our solutions do allow to compute exact values for the main terms of the expressions.Further work on this subject needs to be carried out:8



� We should �nd the expression for the analytic di�erence function, f(s).� Variance should be studied in both cases (to obtain exact results for the main terms).� The results should be generalized for larger alphabets.� The poles should be studied more in depth to �nd more exact terms of the solution.While we have a number of results about where the poles can be located, we need moreinformation where a �! �0.References[1] P. Jacquet and W. Szpankowski. A functional equation arising in the analysis of algorithms.In Proceedings of STOC'94, pages 780{789, May 1994. Montreal, Canada.[2] D.E. Knuth. The Art of Computer Programming, volume 3. Sorting and Searching. Addison-Wesley, 1973.[3] P.V. Poblete, J.I. Munro, and T. Papadakis. The binomial transform and its applicationto the analysis of skip lists. In P. Spirakis, editor, Proceedings of ESA'95, pages 554{569,September 1995. Corfu, Greece. LNCS 979.
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