
Indexing Methods for Approximate Text Retrieval(Extended Abstract)Ricardo Baeza-Yates�Gonzalo Navarro�Erkki SutinenyJorma TarhiozAbstractWhile the problem of on-line approximate string matching is well studied, only recently the�rst o�-line indexing techniques have emerged. We study the di�erent indexing mechanisms forthis problem, proposing a taxonomy to classify them. We also propose and analyze two newtechniques which are adaptations of recent on-line algorithms. For the �nal version we plan toexperimentally compare all the algorithms in terms of index construction time, space overhead,query e�ciency and tolerance to errors, determining the best compromises for each case.1 IntroductionApproximate string matching is a recurrent problem in many branches of computer science, withapplications to text searching, computational biology, pattern recognition, signal processing, etc.The problem can be stated as follows: given a long text of length n, and a (comparatively short)pattern of length m, retrieve all the segments (or \occurrences") of the text whose edit distance tothe pattern is at most k. The edit distance between two strings is de�ned as the minimum numberof character insertions, deletions and replacements needed to make them equal.In the on-line version of the problem, the pattern can be preprocessed but the text cannot. Theclassical solution uses dynamic programming and is O(mn) time [31, 30]. Later, a number of al-gorithms improved this to O(kn) time in the worst case or even less on average, by using cleverly theproperties of the dynamic programming matrix (e.g. [12, 22, 36, 9]) or parallelizing the computationin the bits of computer words (e.g. [43, 41, 44]). Recently, an O(n) worst-case time algorithm forshort patterns based on bit-parallelism was presented in [5].Another trend is that of \�ltration" algorithms: a fast �lter is run over the text quickly discardinguninteresting parts. The interesting parts are later veri�ed with a more expensive algorithm. Ex-amples of �ltration approaches are [10, 35, 33, 8, 29]. Some are \sublinear" in the sense that they donot inspect all the text characters, but the on-line problem is 
(n) if m is taken as constant.If the text is large and has to be searched frequently, even the fastest on-line algorithms are notpractical, and preprocessing the text becomes necessary. Therefore, many indexing methods havebeen developed for exact string matching [40]. However, only a few years ago, indexing text forapproximate string matching was considered one of the main open problems in this area [43, 2].�Dept. of Computer Science, University of Chile. This work has been supported in part by Fondecyt grants1950622 and 1960881.yDept. of Computer Science, University of Helsinki, Finland. This work was supported by the Academy of Finland.zDept. of Computer Science, University of Joensuu, Finland.1



In this paper we survey indexes for approximate text search. We cover in detail the known approachesand propose and analyze two new indexing mechanisms, based on extensions of [5]. For the �nalversion we plan to experimentally compare all the techniques in terms of indexing times, spaceoverhead, querying times and tolerance to errors, pointing out as a conclusion which are the bestindexes under di�erent circumstances.2 Taxonomy OutlineThere are two types of indexing mechanisms: word-oriented and sequence-oriented. In the �rst one,more oriented to natural language text and information retrieval, the index can retrieve every wordwhose edit distance to the pattern is at most k. In the second one, useful also when the text is notnatural language, the index will retrieve every sequence, without notion of word separation.Avoiding text redundanciesSequence based Partition into exact searchGeneral partitioning
Word based

All matching stringsOptimal partitionApprox. q-gramsq-gramsFull inversionPartial inversion + sequential searchDepth-�rst searchPattern partitioning
Minimal redundancy traversal

Figure 1: Taxonomy of indexes for approximate string searching(categories where we propose new algorithms are highlighted).Current word-oriented indexes solve the problem by using a classical on-line algorithm on the setof words (i.e. the vocabulary), thus obtaining the set of words to retrieve [25, 7, 1]. The rest mayproceed without using approximate matching. Since the vocabulary is sublinear in size with respectto the text, they can achieve good performance. These indexes are not capable of retrieving anoccurrence that is not a sequence of words. However, this is in many cases exactly what is wanted.The problem becomes more complex if words are not used. This is the case, for example, of geneticdatabases (DNA or proteins). The solutions in this case fall into three classes.One class of algorithms is based on searching the complete pattern allowing k errors, in a way thatavoids the repetitions of the text. They typically traverse the su�x tree [21] of the text instead ofthe text itself [38, 11, 13]. A second class reduces the problem to exact matching of substrings of2



the pattern, and uses an index that retrieves exact substrings [17, 34, 23, 28, 6, 20]. The third classalso takes pattern substrings, but not as many to reduce the problem to exact matching, and henceapproximate search of the substrings is necessary, using some of the above indexes [34]. There are anumber of proposals to reduce the space requirements of many of these indexes [27, 7, 19, 18].Di�erent indexes involve di�erent trade-o�s between indexing time, space overhead, querying timeand tolerance to errors. For example, those of the second class tend to use smaller indices but canbe used with a low number of errors. We focus on the more powerful sequence oriented indexes inthis work, since the others only solve a simpli�cation of the original problem.Before presenting in detail the di�erent indexing schemes, we give some general concepts. We use thestandard notation for strings over a �nite alphabet of size �. We call a q-gram any string of length q.We use d(a; b) to denote the edit (Levenshtein) distance between two strings, which is the minimalnumber of insertions, deletions and substitutions needed to transform a into b. We denote by w theword size of the computer used, which is commonly assumed to be O(logn). We use 0 < � < 1 asthe error ratio k=m. Most analysis assume uniformly distributed text.Many approaches use what we call the partitioning lemma. Its most general form, proved in [5],establishes that if a string matches a pattern, then we can partition the pattern in j pieces as we likeand some piece will appear in the string with at most bk=jc errors. The particular case of j = k+ 1(reducing to exact matching) was proved before [43, 8]. Anther particular case appears in [28].3 Word-Oriented Indexes3.1 Partial Inversion plus Sequential SearchThe �rst proposal for a word-oriented index was due to Manber and Wu [25]. In a very practicalapproach, they propose a scheme based on a modi�ed inverted �le and sequential approximate search.The index structure is as follows: the text is logically divided into \blocks". The index stores all thedi�erent words of the text. For each word, the list of the blocks where the word appears is kept.To search a word allowing errors, an on-line approximate search algorithm (in this case, Agrep [42])is run over the index of words. Then, for every block where a matching word is present, a newsequential search is performed over that block (using Agrep again).The idea of using blocks makes the index small, at the cost of having to traverse parts of the textsequentially. The index is small not only because the pointers to the blocks are small, but alsobecause all the occurrences in a single block are referenced only once.Glimpse uses 250{256 blocks, which works well for moderate-size texts. For larger texts, it is possibleto point to �les instead of blocks, or even to occurrences of words. Typical �gures for the size of theindex with respect to the text are: 2-4% for blocks, 10-15% for �les, and 25-30% for words.Glimpse is not only an algorithm, but a software intended to index medium-size text collections. Thesmall index size makes it an attractive choice. It works well for texts of up to 200 Mb and moderateerror ratio. In an experiment run on a DEC 5000/240, 70 Mb of text were indexed in 9 minutes andthe index took 2.7% of the text. Queries were answered in 2-10 seconds, depending on the query.3



Baeza-Yates and Navarro [7] propose an alternative search technique for the same index. Theysearch the pattern in the vocabulary (using [5, 4], which is especially well suited for short patterns,like words), but once the list of matching words of each block is obtained, approximate search is notused anymore. Instead, a multiple exact pattern matching algorithm is used to search the matchingwords in the text blocks. Experiments show that the algorithm is �ve times faster than Glimpse onapproximate word queries. The size of the blocks can be tuned to meet di�erent trade-o�s betweenindex space or query time, as shown experimentally in the paper. They also show analytically that itis not possible to have an index of this type which is sublinear in size and search times simultaneously.3.2 Full InversionAra�ujo, Navarro and Ziviani take the approach of full inversion [1]. For each word, the list of all itsoccurrences in the text are kept and the text is never accessed.The search on the vocabulary is as before (using [5]), but the second phase of the search changescompletely: once the matching words in the vocabulary are identi�ed, all their lists are merged.Phrases can also be searched, by splitting them into words. The approach is much more resistant tothe size of the text collection, and is shown to work well with text collections of more than 1 Gb.The index is built in a single pass over the text, and in linear time. The construction proceedsin-place, in the sense that the space requirement to build the index is that of the �nal index.The analysis shows that, under the assumption that the vocabulary size is O(n�) for � � 0:5 (whichis validated in that work and in previous ones [15]), the retrieval costs are near O(pn) for usefulsearches (i.e. those with reasonable precision).Although the space requirements of this index are similar to those of inverted lists (i.e. 30-40%), anapplicable word compression scheme is presented in [27], which not only reduces overall space usageto 50% in practice but also improves indexing and search times.Experiments run on a Sun SparcStation 4 with 128 Mb RAM show an indexing performance of 4Mb per minute and a space overhead of 35% (excluding stop-words). A 1 Gb text collection canbe searched for single word queries in nearly 2 seconds for k � 2. Even using pointers to words,Glimpse does not work well with such large texts.4 Sequence-Oriented Indexes4.1 Avoiding Text RedundanciesWe describe here the algorithms that avoid repetition of the same work due to the same text. Theyuse a su�x tree as a device to factor the redundancies present in the text.4.1.1 Minimal Redundancy TraversalThis technique is based on simulating a sequential algorithm, but running it on the su�x tree of thetext instead of the text itself. Since every di�erent substring in the text is represented by a single4



node in the su�x tree, it is possible to avoid the repetitions that occur in the text.The �rst papers on these lines were due to Jokinen and Ukkonen [17, 38]. Later, Cobbs [11] improvedtheir results. The algorithm is based on the fact that the state of the search at a given point in thetext is only in
uenced by the last characters read (m + k or less). They call \viable pre�xes" thesubstrings that can be pre�xes of an approximate occurrence of the pattern. The algorithms traversein the su�x tree all the di�erent viable pre�xes, simulating the dynamic programming algorithm.A su�x tree can be built in linear time with respect to the text size, given enough main memory[26, 39]. In the improved version [11], the complexity of the search is O(mQ) plus the size of theoutput, where Q is the number of distinct viable pre�xes in the text (Q � n). In [38], a worst-caseanalysis shows that Q = O(min(n;mk+1�k)), where � is the alphabet size. If k is small, Q << n.A weak point in this scheme is the large space needed by su�x trees. This is important not only byitself, but also because linear time construction is not practical if the su�x tree does not �t in mainmemory. A su�x tree indexing every character typically takes up a space of 12n bytes.This can be partially overcome by using compression: in [19], a technique is proposed which obtainsan index of size O(nH= logn), whereH = O(1) is the entropy of the text. They show experiments onnatural language where the space requirements are 2:5n bytes. This is much better, although still in-su�cient to index in main memory for medium-size texts. The search time is O(pnmH logm= logn).4.1.2 Depth-First Search over the TreeA di�erent algorithm over su�x trees is due to Gonnet [13]. In this case, the search method issimpler. Since every substring of the text (i.e. every potential occurrence) starts at the root of thesu�x tree, it is su�cient to explore every path starting at the root, descending by every branch upto where it can be seen that that branch does not represent an occurrence of the pattern.As is, this algorithm is not better than those of minimal redundancy, since it explores more nodes.However, its simplicity makes it suitable for a number of enhancements. For example, at an additionalO(logn) query time factor, it can be run over su�x arrays [24, 14]. A su�x array can be built inO(n logn) time if it �ts in main memory, and in O(n2 logn=M) otherwise (where M is the size ofmain memory). It takes up only 4n bytes.We propose now a variation on this indexing scheme, which is only possible because of the mentionedsimplicity. Instead of using dynamic programming over the su�x tree, we use [5]. This on-linealgorithm uses bit parallelism to simulate an automaton that recognizes the approximate pattern,and achieves linear time for small patterns in the worst case. If the pattern is long, the automatonis partitioned as in [5]. This technique can be seen as a particular case of general automatonsearching over a trie [3]. However, in this case the automaton is nondeterministic and converting itto deterministic is not practical, since it tends to generate large automata.For lack of space we do not include the analysis of this technique in this extended abstract version.The analysis shows the limit on � up to where the number of inspected nodes is sublinear in n. Iflog� n � m, it is � < (1� e=p�)(log� n)=m. Otherwise, it is � < (log� n)=m� 1 or � < 1� e=p�.The cost to inspect a node is O(1) for small patterns (i.e. (m� k)(k + 2) � w), while in general itis O(k(m� k)=w). In the original scheme [13], the cost to inspect a node is O(m).5



4.2 Partitioning into Exact SearchThis kind of algorithms use basically a traditional index, capable of exact retrieval only. This makesthem suitable for integration with other information retrieval systems. They manage to partition theapproximate problem into smaller exact searching problems.4.2.1 Exact q-GramsJokinen and Ukkonen [17] observed that if an approximate match of P with at most k errors ends atposition j of text T , then at leastm+1�(k+1)q q-grams of P occur in T [j�m+1; j]. T [j�m+1; j]includes m� q +1 q-grams, of which at most kq get broken in k edit operations. They divide T intotwo layers of consecutive, non-overlapping blocks of length 2(m� 1). Then, the number of patternq-grams in each block is counted. For each block with at least m+1� (k+1)q pattern q-grams, therespective text area is examined using dynamic programming.Holsti and Sutinen [16] apply the �ltration condition of [17], strengthened by using the fact that apreserved pattern q-gram cannot move more than k positions from its original position. This methoddoes not use the previous block-oriented scheme, but a window-oriented approach: each occurrenceof a pattern q-gram in T marks a corresponding window where an occurrence might be located.Sutinen and Tarhio [33] give another way to utilize the relative order of the preserved q-grams.The idea is based on observing a sequence of q-samples, i.e. non-overlapping q-grams of the text at�xed periods of length h. Supposing that an occurrence always includes at least k + s q-samples, aprecondition implying h = bm�k�q+1k+s c, they require that at most s of the q-samples may not occur inP , and the preserved q-samples occur approximately in the same locations in P and its occurrence.This condition can be veri�ed by utilizing pattern blocks: the pattern P is been divided into k + sslightly (of order k) overlapping blocks; the text scanning phase evaluates, for each sequence of k+ sq-samples, the blocks of the preserved q-grams. This is used in an indexing scheme [34], whose maincontribution is saving space: only every h-th q-sample of text T is stored into the index. At �rstsight, this seems to result in a di�erent index for each m and k, but they can adjust s in the formulaof h so that the index, precomputed according to a �xed h, can be applied.This index takes space O(n=h log(n=h)), is built in O(n) time and queried in O(nm=�q (k +log(m)=h)) time. Compression can be used to reduce the index space: in [18] a Lempel-Ziv-relatedtechnique obtains O(n= logn) size at no query time penalty. Another choice is to point to blocksrather than exact text positions, using sequential searching on the matching blocks. This has been im-plemented in a system called Grampse [23], which has been shown faster than Glimpse for sequencesof words (no errors) and is currently being adapted to handle approximate searching too.4.2.2 Searching Every Matching StringThis technique is proposed by Myers [28]. It uses an index where every sequence of the text up to agiven length ` is stored, together with the list of its positions in the text. To search for a pattern oflength � `�k, all the maximal strings whose edit distance to the pattern is at most k are generated,and each one is searched. Later, the lists are merged.6



Longer patterns are split in many pieces of the required length. The partition proceeds in a binaryfashion, such that at level i the pattern is left split in 2i parts of similar length. The partitioninglemma of Section 2 shows that those parts can be searched with bk=2ic errors, provided everyoccurrence of every piece is veri�ed for a complete match. Instead of simply verifying each of thesubstrings occurrences, the algorithm goes up level by level in the partition process, obtaining theoccurrences of that level by combining those of their two children in the next level. When the patternis long, this is better than the simple veri�cation of each substring.The length of the strings stored in the index is made small enough to store them as computer integers.This allows to build the index in O(n) time (assuming it �ts in main memory), and very quickly inpractice. The strings must also be short to avoid an explosive number of them generated at searchtime. The space used by the index is mainly that of storing the positions of all sequences of the text.Query complexity is shown to be O(knpow(�) logn) on average, where pow(�) is a concave functionof � satisfying pow(0) = 0. This is sublinear where pow(�) < 1, which restricts the error ratiosup to which the scheme is e�cient. This maximum useful � increases with the alphabet size. Forexample, the formula shows that �max is 0:33 for � = 4 and 0:56 for � = 20. Experiments con�rmthose estimations, and show an improvement of various orders of magnitude over on-line algorithms.4.2.3 Optimal PartitioningBaeza-Yates and Navarro [6] propose a simple and practical scheme based on the partitioning lemmastated in Section 2, using the case j = k + 1. The pattern is split in k + 1 pieces, each piece issearched with no errors in an index, and each candidate is veri�ed for a complete occurrence. Thishas been also used for on-line approximate search [8, 5].Hence, the index stores all the text strings up to a given length. The length is selected to makethe index not very large and still have good selectivity (e.g. 3 to 5 letters can be used for naturallanguage). Longer pieces of the search pattern are pruned.Since in natural language a simple equal-length partition may give very bad results depending onthe resulting pieces, an O(m2(logn+ k)) dynamic programming algorithm is used to select the bestpartition. This is de�ned as the one that minimizes the total number of text positions to verify. Theinformation required to exactly predict the number of veri�cations is available from the index. Thisis also useful to give the user early feedback of the precision and the time cost of the posed query.It is possible to reduce space requirements at the cost of more expensive querying times, by pointingto blocks instead of exact occurrences. However, this has not worked well in practice.It is shown that the search time is O(n�) for � < ln �=((1� �) lnn + 3 lnm). The index is built inlinear time, and depending on the length of the sequences it takes from 1:5n to 3n bytes.Recently, Shi [32] studied the possibility of splitting the pattern in k + s parts instead of k + 1(s > 1), with no optimization. Although much less veri�cations are triggered, the search phase ismore complex, and therefore experimental results are needed to comment on the real performanceimprovement. Moreover, it is possible that the improvement in the numbe of veri�cations holds onlyfor long patterns, which is not the typical case in text retrieval.7



4.3 General PartitioningWe include in this section the algorithms which are intermediate between the two approaches shownbefore. Basically, they partition the pattern, but not up to the point in which the problem is reducedto exact matching. The result is a set of subpatterns that are to be searched with less errors.Their occurrences are to be veri�ed to check for complete matches. We describe here the previousalgorithms of this kind, and propose a new one, based on [5].4.3.1 Approximate q-GramsA �ltration condition can be based on locating approximate matches of pattern q-grams in the text.This leads to a �ltration tolerating higher error ratio as compared to the methods applying exactq-grams: a single error in the occurrence still quali�es as a match of the q-gram.There are few �ltration schemes utilizing approximate q-grams. Chang and Marr [10] have developeda dynamic algorithm, which is based on best match distances between the scanned text q-grams andthe searched pattern. The algorithm scans consecutive, non-overlapping text q-grams and maintainsa cumulative sum of best match distances. If a su�cient number of q-grams have been scannedbefore the cumulative sum exceeding k, the corresponding area is checked by an accurate method.Sutinen and Tarhio [34] apply the best match distance in a stricter way than [10]. In addition,they do not scan all but only every h-th q-sample of the text. Here, h depends on the number r ofq-samples whose best match distances to the corresponding pattern blocks are evaluated at the sametime: q � h � bm�k�q+1r c. The corresponding text area is examined only if the cumulative bestmatch distance for r consecutive q-samples is at most k.An index of q-grams can be used in two ways in this case: either inclusively, to locate all the q-samples which are close enough to the pattern q-grams, or exclusively, to �nd out the q-sampleswith a su�cient distance from the original pattern. Since the �ltration is based on the cumulativeresemblance of the text q-samples with the corresponding blocks, the goal in the inclusive approachis to �nd as few q-samples as possible, while the goal of the exclusive approach is the opposite. Thequery time complexity of this scheme is O(nm log(k+ q)=(q2w)).4.3.2 Pattern PartitioningWe present here a new algorithm based on the partitioning lemma given in Section 2. It is a staticvariation of an on-line version presented in [5].We divide the pattern in j pieces, such that each piece can be searched with the simple (non-partitioned) automaton of [5]. Then we search in the su�x tree of the text the j pieces using thealgorithm we proposed in Section 4.1.2. Finally, we collect all the nodes found and verify their textpositions for an occurrence of the complete pattern.In [5], it is shown that j = O((m� k)=pw) and that the number of veri�cations is sublinear in n for�1 < 1� e=p� mf(w;�1), where f(w; �) = j=(m� k) = 1 +p1 + w�=(1� �)=w. In practice, thatmeans a moderate error ratio (e.g. near 0.5 for m = 20, � = 30).Since we perform j searches of the same kind of Section 4.1.2, the same analysis holds considering8



that each node is visited j times at O(1) cost, and therefore the cost of inspecting each node isO((m� k)=pw). To achieve search sublinearity, apart from the considerations of Section 4.1.2, wepose also the requirement that the total number of veri�cations must be sublinear (no veri�cationsare required in Section 4.1.2). Thus, we also require � < �1.5 Discussion and Future WorkWe have pointed out the importance of indexing schemes for approximate text retrieval, and discussedall the techniques we are aware of, presenting also their theoretical analysis. We focus more onsequence-oriented indexes, since word-oriented ones solve only a simpli�cation of the problem. Wearranged all the approaches in a taxonomy, and proposed and analyzed two new indexing schemes.Since comparing the di�erent approaches based only on their theoretical analysis is di�cult andprobably not accurate, our aim for the �nal version is to complete this work with an extensiveexperimental comparison among all the sequence-oriented indexes. This comparison will be carriedour for di�erent kinds of text databases (e.g. random, DNA or proteins, natural language, etc.) andwill measure: index construction times, index space overhead, query execution times and toleranceto errors (i.e. the maximum � value under which the scheme works well). This data will provide usinformation to compare the di�erent approaches in practice and to �nd out which is the best optiondepending on the di�erent circumstances.References[1] M. Ara�ujo, G. Navarro, and N. Ziviani. Large text searching allowing errors. Technical report, Dept.of CS, Univ. Federal de Minas Gerais, Brazil, 1996.[2] R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World Computer Congress, volume I,pages 465{476. Elsevier Science, Sep 1992.[3] R. Baeza-Yates and G. Gonnet. Fast text searching for regular expressions or automaton searching ona trie. J. of the ACM, 43, 1996.[4] R. Baeza-Yates and G. Navarro. A fast heuristic for approximate string matching. In Proc. WSP'96,pages 47{63. Carleton University Press, 1996.[5] R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string matching. In Proc. CPM'96,pages 1{23, 1996.[6] R. Baeza-Yates and G. Navarro. Practical indices for approximate string matching. Technical report,Dept. of CS, Univ. of Chile, 1996.[7] R. Baeza-Yates and G. Navarro. Block-addressing indices for approximate text retrieval. Submitted forpublication, 1997.[8] R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern matching. In Proc. CPM'92,pages 185{192, 1992. LNCS 644.[9] W. Chang and J. Lampe. Theoretical and empirical comparisons of approximate string matching al-gorithms. In Proc. CPM'92, pages 172{181, 1992. LNCS 644.9



[10] W. Chang and T. Marr. Approximate string matching and local similarity. In Proc. CPM'94, pages259{273, 1994.[11] A. Cobbs. Fast approximate matching using su�x trees. In Proc. CPM'95, pages 41{54, 1995.[12] Z. Galil and K. Park. An improved algorithm for approximate string matching. SIAM J. of Computing,19(6):989{999, 1990.[13] G. Gonnet. A tutorial introduction to Computational Biochemistry using Darwin. Technical report,Informatik E.T.H., Zuerich, Switzerland, 1992. DFS over the su�x tree.[14] G. Gonnet, R. Baeza-Yates, and T. Snider. Information Retrieval: Data Structures and Algorithms,chapter 3: New indices for text: Pat trees and Pat arrays, pages 66{82. Prentice-Hall, 1992.[15] J. Heaps. Information Retrieval - Computational and Theoretical Aspects. Academic Press, NY, 1978.[16] N. Holsti and E. Sutinen. Approximate string matching using q-gram places. In Proc. 7th FinnishSymposium on Computer Science, pages 23{32. Univ. of Joensuu, 1994.[17] P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in static texts. In Proc.MFCS'91, volume 16, pages 240{248, 1991.[18] J. K�arkk�ainen and E. Sutinen. Lempel-Ziv index for q-grams. In Proc. ESA'96, pages 378{391, 1996.LNCS 1136.[19] J. K�arkk�ainen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index structures for string match-ing. In Proc. WSP'96, pages 141{155. Carleton University Press, 1996.[20] J. Kim and J. Shawe-Taylor. An approximate string-matching algorithm. Theoretical Computer Science,92:107{117, 1992.[21] D. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching. Addison-Wesley, 1973.[22] G. Landau and U. Vishkin. Fast string matching with k di�erences. J. of Computer Systems Science,37:63{78, 1988.[23] O. Lehtinen, E. Sutinen, and J. Tarhio. Experiments on block indexing. In Proc. WSP'96, pages 183{193.Carleton University Press, 1996.[24] U. Manber and G. Myers. Su�x arrays: a new method for on-line string searches. In ACM-SIAMSymposium on Discrete Algorithms, pages 319{327, 1990.[25] U. Manber and S. Wu. glimpse: A tool to search through entire �le systems. Technical Report 93-34,Dept. of CS, Univ. of Arizona, Oct 1993.[26] E. McCreight. A space-economical su�x tree construction algorithm. J. of the ACM, 23(2):262{272,Apr 1976.[27] E. Moura, G. Navarro, and N. Ziviani. Indexing compressed text. Technical report, Dept. of CS, Univ.Federal de Minas Gerais, Brazil, 1996.[28] E. Myers. A sublinear algorithm for approximate keyword searching. Algorithmica, 12(4/5):345{374,Oct/Nov 1994.[29] G. Navarro. Approximate string matching by counting. Submitted for publication., 1996.[30] S. Needleman and C. Wunsch. A general method applicable to the search for similarities in the aminoacid sequences of two proteins. J. of Molecular Biology, 48:444{453, 1970.[31] P. Sellers. The theory and computation of evolutionary distances: pattern recognition. J. of Algorithms,1:359{373, 1980. 10



[32] F. Shi. Fast approximate string matching with q-blocks sequences. In Proc. WSP'96, pages 257{271,1996.[33] E. Sutinen and J. Tarhio. On using q-gram locations in approximate string matching. In Proc. ESA'95,1995. LNCS 979.[34] E. Sutinen and J. Tarhio. Filtration with q-samples in approximate string matching. In Proc. CPM'96,pages 50{61, 1996.[35] J. Tarhio and E. Ukkonen. Approximate Boyer-Moore string matching. SIAM Journal on Computing,22(2):243{260, 1993.[36] E. Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132{137, 1985.[37] E. Ukkonen. Approximate string matching with q-grams and maximal matches. Theoretical ComputerScience, 1:191{211, 1992.[38] E. Ukkonen. Approximate string matching over su�x trees. In Proc. CPM'93, pages 228{242, 1993.[39] E. Ukkonen. Constructing su�x trees on-line in linear time. Algorithmica, 14(3):249{260, Sep 1995.[40] I. Witten, A. Mo�at, and T. Bell. Managing Gigabytes. Van Nostrand Reinhold, New York, 1994.[41] A. Wright. Approximate string matching using within-word parallelism. Software Practice and Experi-ence, 24(4):337{362, Apr 1994.[42] S. Wu and U. Manber. Agrep { a fast approximate pattern-matching tool. In Proc. USENIX, pages153{162, 1992.[43] S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83{91, 1992.[44] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate limited expression match-ing. Algorithmica, 15(1):50{67, 1996.

11


