
Multiple Approximate String Matching byCountingGonzalo Navarro121 Dept. of Computer Science, University of Chile.Blanco Encalada 2120, Santiago, Chile. gnavarro@dcc.uchile.cl.2 This work has been supported in part by Fondecyt Grants 1950622 and 1960881.Abstract. We present a very simple and e�cient algorithm for on-line multiple approximate string matching. It uses a previously knowncounting-based �lter [9] that searches for a single pattern by quickly dis-carding uninteresting parts of the text. Our multi-pattern algorithm isbased on the simulation of many parallel �lters using bits of the com-puter word. Our average complexity to search r patterns of length m isO(rn logm= log n), being n is the text size. We can search patterns ofdi�erent length, each one with a di�erent number of errors. We showexperimentally that our algorithm is competitive with the fastest knownalgorithms, being the fastest for a wide range of intermediate error ra-tios. We give the �rst average-case analysis of the �ltering e�ciency ofthe counting method, applicable also to [9].1 IntroductionA number of important problems related to string processing lead to algorithmsfor approximate string matching: text searching, pattern recognition, computa-tional biology, audio processing, etc.The edit distance between two strings a and b, ed(a; b), is de�ned as the minimumnumber of edit operations that must be carried out to make them equal. Theallowed operations are insertion, deletion and replacement of characters in a orb. The problem of approximate string matching is de�ned as follows: given a textof length n, and a pattern of length m, both being sequences over an alphabet� of size �, �nd all segments (or \occurrences") of text whose edit distance topattern is at most k, where 0 < k < m. In typical text searching, n is large, m issmall (say, less than 30), � = k=m is small (say, less than 1=3), and � is not verysmall (at least 25). It is common to report only the endpoints of occurrences inthe text.In the online version of the problem, the pattern can be preprocessed but thetext cannot. We are interested in online algorithms in this work. The classicalsolution is O(mn) time and involves dynamic programming [13].The di�erent approaches to solve the problem e�ciently can be divided in threemain areas:

{ Those that use cleverly the geometric properties of the dynamic program-ming matrix, e.g. [7, 11, 17, 5]. These algorithms normally achieve O(kn)time complexity in the worst or the average case. An exception is [5],which achieves O(kn=p�) on average.{ Those that �lter the text, quickly leaving out most of the text and verifyingonly the areas that seem interesting, e.g. [16, 15, 14, 6, 4]. They achievesublinear expected time in many cases (e.g. O(kn log� m=m)) for small �.However, they tend to be practical only for m not too small and low errorratios. Some exceptions are [4, 9], which are O(n) for small � even whenm is small.{ Those that parallelize the computation of a classical algorithm in the bitsof computer words [21, 19, 22, 2, 1]. We call w the number of bits inthe computer word, which is assumed to be �(logn). These algorithmsnormally obtain a factor of O(1= logn) over their classical counterparts.An exception is [2, 1], which is O(n) for small patterns regardless of �,and O(pmk= logn n) for larger patterns and moderate �.On the other hand, multi-pattern approximate search has only recently beenconsidered. The only previous approaches we are aware of are [12] and [3]. In[12], hashing is used to handle thousands of patterns in parallel, although withonly one error. In [3], extensions of [2] and [4] are presented that improve [12]for a moderate number of patterns, and can handle any number of errors.In this work we extend a single-pattern approximate search algorithm to the caseof multiple patterns. The algorithm that we extend is a �lter based on countingmatching positions [9]. The single-pattern �lter is linear on average, and as any�ltration algorithm, is useful up to a certain � value. The strongest point of that�lter is its extreme simplicity. Despite that simplicity, it is among the fastestones in its area of usefulness. Because of its simplicity, it can be parallelized inbits of a computer word.Our multi-pattern algorithm is also competitive with previous work, being thefastest for intermediate error ratios. For r patterns and moderate �, it isO(rn logm= logn) time. We present the new algorithm, give the �rst average-case analysis of its �ltration e�ciency (applicable also to [9]), and present ex-perimental results for the single- and multi-pattern algorithms.This paper is organized as follows. In section 2 we explain our minor variationof the single-pattern algorithm [9]. In section 3 we present our multi-patternalgorithm. In section 4 we analyze both algorithms. In section 5 we showexperiments about the statistics of the problem and compare both algorithmsagainst previous ones. Finally, in section 6 we give our conclusions.

2 A Simple Counting FilterIn this section we describe a minor variation of [9] (also very close to [8]), whichis the basic single-pattern counting �lter that our multi-pattern algorithm uses.Our approach is somewhat simpler because we use a �xed-size instead of variable-size text window (a possibility already noted in [18]).We begin by proving a very simple lemma, which is a special case (q = 1) ofLemma 7 of [10].Lemma: If there are i � j such that ed(text [i::j],pattern) � k, then text [j �m+ 1::j] includes at least m� k characters of pattern.Proof: Suppose the opposite. If j � i < m, then we observe that there are lessthan m � k characters of pattern in text [i::j]. Hence, more than k charactersmust be deleted from pattern to match the text. If j � i � m, we observethat there are more than k characters in text [i::j] that are not in pattern, andhence we must insert more than k characters in pattern to match the text. Acontradiction in both cases.Note that in case of repeated characters in the pattern, they must be countedas di�erent occurrences. For example, if we search aaaa with one error in thetext, the last four letters of each occurrence must include at least three a's.The �lter is based on the lemma. It passes over the text examining an m-letterslong window. It keeps track of how many characters of pattern are present inthe current text window (accounting for multiplicities too). If, at a given textposition j,m�k or more characters of pattern are in the window text [j�m+1::j],the window area is veri�ed with a classical algorithm (e.g. [17]). Veri�cation isof course necessary, since the characters of the text could be at di�erent positionsin the pattern.To avoid re-veri�cation due to overlapping areas, we keep track of the last po-sition veri�ed and the state of the veri�cation algorithm. If a new veri�cationrequirement starts before the last veri�ed position, we start the veri�cation fromthe last veri�ed position, avoiding to re-verify the preceding area.Observe that it is not necessary to verify the longer area text [j �m � k + 1::j](what would be the obvious area, since the occurrence can be of length up tom + k). This is because the lemma holds also for the window at any positioninside an occurrence, so that the counter will reach m�k also m characters pastthe beginning of the occurrence. A longer occurrence will keep triggering veri�-cations while the window is inside the occurrence. This fact, together with ourmechanism to avoid re-veri�cations by keeping the current state of veri�cation,ensures that the occurrence will be caught.We implement the �ltering algorithm as follows: we build a table A where, foreach character c 2 �, the number of times that c appears in pattern is kept. Wealso keep a counter of matching characters. To advance the window, we mustinclude the new character text [j+1] and exclude the last character, text [j�m+1].

To include the new character, we subtract one at the proper entry of A. If theentry was greater than zero before the operation, it is because the character is inpattern, so we increment the counter. To exclude the old character, we add oneat the proper entry of A. If the entry is greater than zero after the operation,it is because the character was in pattern, so we decrement the counter. Whenthe counter reaches m � k we verify the preceding area.Throughout the algorithm, each entry of A indicates how many occurrences ofthat character can still be taken as belonging to pattern. When it is negative, itmeans that that number of characters must exit the window before we take newcharacters. For example, if we run the pattern aloha over the text aaaaaaaa, itwill hold A[a] = �3, and the value of the counter will be 2.Figure 1 shows the pseudocode of the algorithm. We use C notation. As itcan be seen, the algorithm is not only linear (excluding veri�cations), but thenumber of operations per character is very small.CountFilter (text,n,pat,m,k)f /* preprocessing */for (c 2 �) A[c] = 0;for (i = 0; i < m; i++) A[pat[i]]++;count = �(m� k); /* searching */for (j = 0; j < m; j++) /* fill the initial window */if (A[text [j++]]�� > 0) count++;while (j � n) /* move the window */f if (count� 0) f verify text [j �m::j � 1] with dynamic programming gif (++A[text [j �m]] > 0) count��;if (A[text [j++]]�� > 0) count++;ggFig. 1. The code of the single-pattern algorithm.3 Our Multi-pattern Search AlgorithmTo search r patterns in the same text, we use bit-parallelism to keep all thecounters in a single machine word. We must do that for the A table and forcount.The values of the entries of A lie in the range �m::m, so we need exactly 1 +dlog2(m + 1)e bits to store them. This is also enough for count, since it is inthe range �(m � k)::k. Hence, if we call w the number of bits in the computerword, we can pack � w1 + dlog2(m + 1)e�patterns of length m in a single search. If the patterns have di�erent lengths,this limit holds for the longest one. If we have more patterns, we must divide

the set in subsets of at most this size and search each subset separately. Forexample, in a 32-bit architecture we can handle in a single word up to 8 patternsof length 7, or 6 of length 15, or 5 of length 31, or 4 of length 127, etc. We focusour attention on a single subset now.The algorithm simulates the simple one as follows. We have a table MA thatpacks all the A tables. Each entry ofMA is divided in bit areas of the appropriatelength. In the area of the machine word corresponding to each pattern, we storeits normal A[] value minus 1, and set to 1 the most signi�cant bit of the area.If we have to add or subtract 1, we can easily do it in parallel without causingoverow from an area to the next. Moreover, the corresponding A[] value is notpositive if and only if the most signi�cant bit of the area is zero.We have a parallel counter Mcount, where the areas are aligned with MA. Itis initialized by setting to 1 the most signi�cant bit of each area and then sub-tracting m � k at each one. We can add or subtract one in parallel withoutcausing overow. Moreover, the window must be veri�ed for a pattern wheneverthe most signi�cant bit of its area reaches 1. The condition can be checked inparallel, although each veri�cation is sequential. Note that this allows to havedi�erent k values for each pattern. It is also possible to have di�erent m values,but the performance of the algorithmmay be degraded if they are very di�erent,because we have to use the longest text window for all the patterns.Observe that the counters that we want to increment or decrement correspondexactly to theMA areas that have a 1 in their most signi�cant bit. This allows anobvious bit mask-shift-add mechanism to perform this operation also in parallel.Figure 2 shows the pseudocode of the parallel algorithm. As it can be seen, thealgorithm is now more complex but the number of operations per character isstill very low.4 AnalysisWe analyze the space requirements and time complexity of the algorithms forsingle and multiple patterns.The space requirement of all the algorithms is O(�). The preprocessing cost isO(�+m) for the simple algorithmandO(�+rm) for the multi-pattern algorithm.If the number of veri�cations is negligible, each pass of the algorithms is O(n).That means that the simple algorithm is O(n). In the case of multiple patterns,onlyO(w= logm) patterns can be packed in a single search, so the cost to search rpatterns is O(rn logm= logn) (taking w = �(logn) as usual in the RAMmodel).In the worst case all the text positions are veri�ed, and the algorithms take thesame as dynamic programming, i.e. O(mn) the simple one and O(rmn) themulti-pattern one. This is because we avoid re-verifying a text position, even inthe case of overlapping veri�cation requirements.The di�cult part of the analysis is the maximum error ratio � that the �ltra-

CountFilter (text,n,pat1::r,m1::r,k1::r)f /* preprocessing */m = maxfms; s 2 1::rg;` = dlog2me;for (c 2 �) MA[c] = (01`)r;for (s = 0; s < r; s++)for (i = 0; i < ms; i++) MA[pats[i]] + = 10s(`+1);high = (10`)r;ones = (0`1)r;Mcount = (10` � (m� k)) � ones;/* searching */j = 0;while (j < m) /* fill the initial window */f c = text[j++];Mcount + = (MA[c]>> `) & ones;MA[c] � = ones;gwhile (j � n) /* move the window */f if (Mcount & high)! = 0 then /* verify the area */verify text[j �m::j � 1] with dynamic programming(for each pattern whose high Mcount bit is 1)c = text[j�m];MA[c] + = ones;Mcount � = (MA[c]>> `) & ones;c = text[j];Mcount + = (MA[c]>> `) & ones;MA[c] � = ones;ggFig. 2. The code of our multiple-pattern algorithm. The exponentiation of bits meansrepetition, e.g. 031 = 0001.

tion scheme can tolerate while keeping the number of veri�cations low. If theprobability of verifying is O(1=m2) the algorithm keeps linear on average. If itexceeds 1=m, it becomes completely ine�ective. This is because the veri�cationscost O(m2), and hence this is the point where the algorithm becomes O(mn), thesame as plain dynamic programming. We call that point the \limit of usability",and say that the algorithm is \useful" before that limit.We derive in the Appendix a pessimistic bound for the limit of linearity andusability, namely � < e�m=� (Eq. (2)). The analysis shows that, as m grows,we can tolerate smaller error ratios. This is experimentally veri�ed in the nextsection.5 ExperimentsWe �rst show experiments about the maximum allowable error ratio for the�lter (i.e. up to where it is better than plain dynamic programming). Later, wecompare both algorithms against others.5.1 Maximum Error RatioWe experimentally �nd out which is the limit of usability of the algorithm fordi�erent types of texts, and use least squares to �nd a formula which is veryaccurate for the range of values we are interested in practice, i.e. m � 100 and20 � � � 60. That type of formula was selected among a number of classes wetried, since it gave us the best results. It is close in spirit to Eq. (2) (recall thatthat equation is pessimistic).The experiments were carried out as follows. For every � in the set f20; 30:::60gand every m in f4::100g, we generated a random text of 1 Mb, and repeated 100times the experiment of generating a random pattern and verifying which wasthe maximum error (k) up to where the number of veri�cations triggered wasless than 1=m times the size of the text.Separately for each value of �, we used least squares for the model �max = abm,which gave us the best results. Later, once a di�erent value of a and b wasobtained for each �, we used the models a = c�d and b = 1� f�g . The result isthe formula �max = 0:11 �0:43(1� 0:032=�0:37)mfor which we obtained an average squared error near 0.0004 (its square rootbeing 0.02).We also performed the test on English lower-case text, selecting the patterns ran-domly from the same text at the beginning of non-stopwords, to mimic classicalinformation retrieval queries.The experimental results are shown in Figure 3. The smooth curves are thoseobtained with least squares. The theoretical pessimistic approximations found

in the Appendix are totally below the experimental curves, but have the sameshape of those of least squares. Therefore, they are less exact for very small orvery largem. In the �rst case this is because the analysis works with probabilitiesof the form O(1=m), which allows larger errors for small m. In the second caseit is because the pessimistic part of the model refers to letters that appear manytimes in the text window of lengthm, which is more noticeable for largem (whenit is more probable to repeat letters).
10 10010 20 30 40 50 60 70 80 90 1000.0

0.6
0.00.10.20.30.4
0.50.6

m
�

Fig. 3. Experimental maximum level of usefulness of our algorithm. The lowest line isfor English lowercase text. The rest of non-smooth lines are for � = 20; 30:::60 (fromlower to higher). The smooth lines are our approximation.5.2 Comparison with Other AlgorithmsIn this section we experimentally compare the algorithms against the fastestprevious algorithms we are aware of. We leave aside a number of algorithms thatwere not competitive in our experiments, at least for the range of parameters weused.We tested random patterns against 1 Mb of random text on a Sun SparcStation4 running Solaris 2.3, with 32 Mb of RAM. We use w = 32 and � = 30 (typicalcase in text searching). We also tested on 1 Mb of lower-case English literarytext, where the patterns were randomly selected from the same text, at thebeginning of non-stopwords. Since the algorithms work on main memory, wemeasure user times. Each data point was obtained by averaging over 10 trials.Single Patterns We compare the counting �lter against: Ukkonen [17], Chang-Lampe [5], Sutinen-Tarhio [14], Baeza-Yates/Perleberg [4], Wu-Manber [21], Wu-Manber-Myers [22], Agrep [20], and Baeza-Yates/Navarro [2].

In all cases the code is from the authors, except Ukkonen (code is ours and infact it is used as our veri�cation engine), Baeza-Yates/Perleberg (code is ours)and Wu-Manber (code is from Alden Wright [19]). The codes have been usedwith the parameters suggested by the authors to achieve optimal behavior, andwe veri�ed that that was the case. The code for the counting �lter is that ofFigure 1.Figures 4 and 5 (upper part) show the results (for random and English text,respectively). Although we show results only for m = 20, similar results wereobtained for m = 10 and 30.It can be seen that in the area of usefulness the algorithm is very fast, beingcompetitive with the best known algorithms. It is even the fastest in a smallarea of moderate error ratio. We observe that the point where the algorithm isthe fastest is close to its maximumlevel of usability (which can be noted becauseit worsens immediately after that point, or by looking at the values in Figure 3).The reason for this is that the �lter, though simple and fast, inspects all textcharacters and therefore is not faster than the best sublinear �lters. However,it is more tolerant to errors and therefore it is the best one between the pointwhere the other �lters stop working up to where it also stops working becauseof the error level.Multiple Patterns There are few previous algorithms for multiple approxi-mate matching. We compare ours against all them: Muth-Manber [12] (whichis de�ned only for k = 1) and Baeza-Yates/Navarro [3] (which proposes 3 algo-rithms: \exact partitioning" (EP), and \superimposed automata" with two vari-ants, namely \pattern partitioning" (PP) and \automaton partitioning" (AP)).Figures 4 and 5 (lower part) show some comparisons (for random and Englishtext, respectively). Although we show only the case m = 20, similar results wereobtained for m = 10 and m = 30.We �rst compare all the algorithms for k = 1 (so that Muth-Manber can beincluded), to show that our algorithm is better than Muth-Manber for r up to10. However, Baeza-Yates/Navarro (EP) is the fastest algorithm in this area.We then compare all the algorithms for more errors (hence excluding Muth-Manber), for �xed k (k = 7 on random text and k = 4 on English text, i.e.moderate error level) and for �xed r = 15. As it can be seen, our algorithmis the best one for a moderate number of errors (i.e. in the last plot, from thepoint where Baeza-Yates/Navarro (EP) is eliminated for its many veri�cationsto where the same happens to our algorithm). In the multi-pattern case, thearea where our algorithm is the fastest one is wider than in the single patterncase.

� �+ + + + + +�� � � � � �� � �
2 182 4 6 8 10 12 14 16 180

10
02468
10

k
� UkkonenChang-Lampe� Sutinen-TarhioBaeza-Yates/Perleberg� Wu-ManberWu-Manber-Myers+ Baeza-Yates/Navarro� AgrepCounting

� � � � � �� � � � � � �� � � � � � �142 4 6 8 10 12 140.0
2.0
0.00.20.40.60.81.01.21.41.6
1.8

rk = 1 � � � � � � � � � �� � � � � � �
� � �4 604 12 20 28 36 44 52 600

40
048121620242832
3640

rk = 7
� � � � � � � � �� � � � � � � �� � � � � �2 102 3 4 5 6 7 8 9 100

20
0246810121416
1820

kr = 15 Muth-Manber� Baeza-Yates/Navarro (EP)� Baeza-Yates/Navarro (PP)� Baeza-Yates/Navarro (AP)OursFig. 4. Times in seconds for di�erent variations of the simple (upper part) and multiple(lower part) search problem. The plots are for m = 20 and random text with � = 30.

� � �+ + + + + +� �� � � � � �� � � �
2 182 4 6 8 10 12 14 16 180

10
02468
10

k
� UkkonenChang-Lampe� Sutinen-TarhioBaeza-Yates/Perleberg� Wu-ManberWu-Manber-Myers+ Baeza-Yates/Navarro� AgrepCounting

� �� � � �� � � � � � �142 4 6 8 10 12 140.0
2.0
0.00.20.40.60.81.01.21.41.6
1.8

rk = 1 � � � � � � � � � �
� � � � � �
� � �4 604 12 20 28 36 44 52 600

40
048121620242832
3640

rk = 4
� � � � � �� � � � �� � � �

2 102 3 4 5 6 7 8 9 100
20
0246810121416
1820

kr = 15 Muth-Manber� Baeza-Yates/Navarro (EP)� Baeza-Yates/Navarro (PP)� Baeza-Yates/Navarro (AP)OursFig. 5. Times in seconds for di�erent variations of the simple (upper part) and multiple(lower part) search problem. The plots are for m = 20 and English text.

6 ConclusionsWe presented a new algorithm for multiple approximate string matching. Ouralgorithm is the fastest one for intermediate error ratios and can search patternswith di�erent lengths and number of errors. Up to a given error ratio, it is linearon average and very fast in practice. It performs a few operations per inspectedcharacter. Its tolerance to errors is more than enough for most text searchingapplications. The algorithm is based on a bit-parallel simulation of a previous�lter based on counting matching positions [9].We analyze and experimentally show which is the maximum error ratio up towhere the algorithms �ltrate e�ciently, giving the �rst average-case analysisfor the counting �lter. We experimentally compare both algorithms against thefastest we are aware of. In their area of usefulness, they are competitive with thebest ones. Moreover, the algorithms are the fastest for a range of intermediateerror values (this range is wider for our multi-pattern version). This is due tothe fact that, although the algorithms are not faster than the best �lters, theirtolerance to errors is higher.AcknowledgmentsWe thank Ricardo Baeza-Yates for his support and numerous useful comments toimprove this work. Thanks also to Erkki Sutinen, who gave us useful referencesto related works, and Jorma Tarhio for an early version of [9]. Finally, we thankan anonymous referee for its comments and references.References1. R. Baeza-Yates and G. Navarro. A fast heuristic for approximate string matching.In Proc. WSP'96, pages 47{63, 1996. ftp://ftp.dcc.uchile.cl/pub/users/-gnavarro/wsp96.2.ps.gz.2. R. Baeza-Yates and G. Navarro. A faster algorithm for approximate string match-ing. In Proc. CPM'96, pages 1{23, 1996. ftp://ftp.dcc.uchile.cl/pub/users/-gnavarro/cpm96.ps.gz.3. R. Baeza-Yates and G. Navarro. Multiple approximate string matching. InProc. WADS'97, pages 174{184, Halifax, Nova Scotia, Canada, 1997. ftp://-ftp.dcc.uchile.cl/pub/users/gnavarro/wads97.ps.gz.4. R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern match-ing. In Proc. CPM'92, pages 185{192, 1992. LNCS 644.5. W. Chang and J. Lampe. Theoretical and empirical comparisons of approximatestring matching algorithms. In Proc. CPM'92, pages 172{181, 1992. LNCS 644.

6. W. Chang and T. Marr. Approximate string matching and local similarity. InProc. CPM'94, pages 259{273, 1994. LNCS 807.7. Z. Galil and K. Park. An improved algorithm for approximate string matching.SIAM J. of Computing, 19(6):989{999, 1990.8. R. Grossi and F. Luccio. Simple and e�cient string matching with k mismatches.IPL, 33(3):113{120, Nov. 1989.9. P. Jokinen, J. Tarhio, and E. Ukkonen. A comparison of approximate string match-ing algorithms. Software Practice and Experience, 26(12):1439{1458, 1996.10. P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching instatic texts. In Proc. MFCS'91, pages 240{248, 1991. LNCS 520.11. G. Landau and U. Vishkin. Fast string matching with k di�erences. J. of ComputerSystems Science, 37:63{78, 1988.12. R. Muth and U. Manber. Approximate multiple string search. In Proc. CPM'96,pages 75{86, 1996.13. P. Sellers. The theory and computation of evolutionary distances: pattern recog-nition. J. of Algorithms, 1:359{373, 1980.14. E. Sutinen and J. Tarhio. On using q-gram locations in approximate string match-ing. In Proc. ESA'95, 1995. LNCS 979.15. T. Takaoka. Approximate pattern matching with samples. In Proc. ISAAC'94,pages 234{242, 1994. LNCS 834.16. J. Tarhio and E. Ukkonen. Boyer-Moore approach to approximate string matching.In Proc. SWAT'90, pages 348{359, 1990. LNCS 447.17. E. Ukkonen. Finding approximate patterns in strings. J. of Algorithms, 6:132{137,1985.18. E. Ukkonen. Approximate string matching with q-grams and maximal matches.Theoretical Computer Science, 1:191{211, 1992.19. A. Wright. Approximate string matching using within-word parallelism. SoftwarePractice and Experience, 24(4):337{362, Apr. 1994.20. S. Wu and U. Manber. Agrep { a fast approximate pattern-matching tool. InProc. USENIX, pages 153{162, 1992.21. S. Wu and U. Manber. Fast text searching allowing errors. CACM, 35(10):83{91,Oct. 1992.22. S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximatelimited expression matching. Algorithmica, 15(1):50{67, 1996.

Appendix: Probability of VerifyingWe �nd an upper bound for the probability of triggering a veri�cation, and useit to derive a safe limit for � to make veri�cation costs negligible. We considerconstant � and varying m (the results are therefore a limit on �). We thenextend the results to the other cases.The upper bound is obtained by using a pessimistic model which is simpler thanreality. We assume that every time a letter in the text window matches thepattern, it is counted regardless of how many times it appeared in the window.Therefore, if we search aloha with 1 error in the text window aaaaa the veri�-cation will be triggered because there are 5 letters in the pattern (where in factour counter will not trigger a veri�cation because it counts only 2 a's).Consider a given letter in the text window. The probability of that letter beingcounted is that of appearing in the pattern. This is the same as being equal tosome letter of the pattern. The probability of not being equal to a given letter is(1�1=�). The probability of being in the pattern is therefore p = 1�(1�1=�)m .In our simpli�ed model, each pattern letter is counted independently of the rest.Therefore the number X of letters in the text window that matched the patternis the sum of m (window length) random variables that take the value 1 withprobability p, and zero otherwise. This has a Binomial distribution B(m; p).Our question is therefore when the probability P (X � m � k) is O(1=m2) (sothat the algorithm is linear) or when it is O(1=m) (so that it is useful). In theproof we use O(1=m2), since as we see shortly the result is the same for anypolynomial in 1=m.We �rst analyze the case where the mean of the distribution is below m� k, i.e.mp < m � k. This is the same as the condition � < 1� p.We begin by showing that, if X has a binomial distribution B(m; p) and j >mp, then P (X � j) = O(P (X = j)), i.e. the �rst term of the summation ofprobabilities dominates the rest once we passed the mean of the distribution. Ifwe call pr = P (X = r), we haveP (X � j) = mXr=j pr = mXr=j �mr�pr(1� p)m�rand we observe thatpr+1pr = (m � r)p(r + 1)(1� p) � mp(r + 1) � C < 1where the inequalities come from the fact that r � mp. C = mp=(mp + 1) is aconstant which acts as a �xed upper bound for all pr+1=pr which is independentof r and smaller than 1. Therefore, the terms of the summation decrease atleast by a multiplicative constant, what makes their sum a constant proportion

of the �rst summand, i.e. Dpj, where the constant D is bounded above byD = 1=(1� C).Therefore, it su�ces to prove that P (X = m � k) = O(1=m2). By using theStirling approximation to the factorial we haveP (X = m � k) = �mk�pm�k(1� p)k = mmpm�k(1� p)kkk(m � k)m�k O(pm)which can be rewritten as� p1��(1� p)���(1� �)1���m O(pm)It is clear that the above formula is O(1=m) or O(1=m2) whenever the base ofthe exponential is < 1. This isp1��(1� p)� < ��(1� �)1�� (1)To determine when the above condition is valid, we de�ne the functionf(x) = x�(1� x)1��which reaches its maximumat x = �. This shows that Eq. (1) holds everywhere,and therefore the probability of matching is O(1=m2) in this case, i.e. whenever� < 1� p.On the other hand, if the median of the distribution is beyond m � k, thenjust the term of the summation corresponding to the median r = mp is (usingStirling again)�mmp�pmp(1� p)m(1�p) = �pp(1� p)1�ppp(1� p)1�p�m
(m�1=2) =
(m�1=2)which is not O(1=m).Therefore, we arrive to the conclusion that the �lter is linear and useful whenever� < 1� p = �1� 1��m = e�m=� (1 +O(1=�)) (2)and is not useful otherwise.We have considered the case of constant � = k=m. Obviously, the �lter is linearfor k = o(m) and is not useful for k = m � o(m). The unexplored area isk = mp � o(m). It is easy to see that the �lter is not useful in this case, byconsidering P (X = mp + �) with � = o(m), and using Stirling. The resultingcondition is 1 � �2=(m2p(1 � p)) = O(m�1=2), which does not hold for any� = o(m).This article was processed using the LATEX2" macro package with CUP CS class

